Solving Problems in the Presence of Process Crashes and Lossy Links*

Anindya Basu† Bernadette Charron-Bost† Sam Toueg†

September 24, 1996

Abstract

We study the effect of link failures on the solvability of problems in asynchronous systems that are subject to process crashes: given a problem that can be solved in a system with process crashes and reliable links, is the problem solvable even if links are lossy? We answer this question for two types of lossy links, and show that the answer depends on the maximum number of processes that may crash and the nature of the problem to be solved. In particular, we prove that the answer is positive if fewer than half of the processes may crash or if the problem specification does not refer to the state of processes that crash. However, in general, the answer is negative even if each link can loose only a finite number of messages.

1 Introduction

We study the effect of link failures on the solvability of problems in distributed systems. In particular, we address the following question: given a problem that can be solved in a system where the only possible failures are process crashes, is the problem still solvable if links can also fail by losing messages? The answer depends on several factors, including the synchrony of the system, the model of link failures, the maximum number of process failures, and the nature of the problem to be solved.

In this paper, we focus on asynchronous systems (results concerning synchronous systems will be described in a companion paper). The set of problems solvable in asynchronous systems with process crashes include Reliable, FIFO, and Causal Broadcast, and their uniform counterparts [Bir85, HT94], as well as Approximate Agreement [DLP86], Renaming [ABND90], and k-set Agreement [Cha90]. The question is whether such problems remain solvable (and if so how) if we add link failures.

We consider two models of lossy links: eventually reliable and fair lossy. Roughly speaking, they have the following properties: with an eventually reliable link, there is a time after which all messages sent are eventually received (messages sent before that time may be lost). Such a link can lose only a finite (but unbounded) number of messages. With a fair lossy link, if an infinite number of messages are sent, an infinite subset of these messages is received. Such a link can lose an infinite number of messages. Clearly, any algorithm that works with fair lossy links also works with eventually reliable links. Thus, to make our results as strong as possible, we assume eventually reliable links when we prove impossibility results, and fair lossy links when we show problems to be solvable.1

† Department of Computer Science, Upson Hall, Cornell University, Ithaca, NY 14853, USA.
‡ Laboratoire d’Informatique LIX, Ecole Polytechnique, 91128 Palaiseau Cedex, FRANCE.
1 Eventually reliable or fair lossy links do not lead to permanent network partitioning. Such partitioning renders most interesting problems trivially impossible.
Since an eventually reliable link can lose only a finite number of messages, it may appear that one can mask these message losses by repeatedly sending copies of each message, or by piggybacking on each message all the messages that were previously sent. Such a scheme is highly inefficient, but it does seem to simulate a reliable link. So it appears that, in principle, any problem that can be solved in a system with process crashes and reliable links, remains solvable in a system with process crashes and eventually reliable links.

Our first two results concern systems where half (or more) processes may crash. We first show that the intuition described above is flawed. We do so by exhibiting a problem, Uniform Reliable Broadcast [HT94], that is solvable with reliable links but not with eventually reliable links. However, not all problems are like Uniform Reliable Broadcast. Our second result characterizes a large class of problems that remain solvable even with fair lossy links. Informally, this class consists of all the problems whose specifications refer only to the behavior of correct processes (i.e., processes that do not crash) — these are called correct-restricted [Gop92] or failure-insensitive [BN92] problems. This class of problems includes Reliable, FIFO, and Causal Broadcast, and correct-restricted versions of Approximate Agreement, Renaming, and k-set Agreement. For such problems, we show how to automatically transform any algorithm that works in a system with process crashes and reliable links into one that works with process crashes and fair lossy links.

Our final result concerns systems where a majority of processes are correct. In this case, we show that any problem that is solvable with process crashes and reliable links is also solvable with process crashes and fair lossy links. We do this by showing that given a system with fair lossy links and a majority of correct processes, one can simulate a system with reliable links.

The problem of tolerating crash and/or link failures has been extensively studied (e.g., [AAF+94, AE86, AGH90, BSW69, FLMS93, GA88, JV96, WZ89]). Several papers focus on a single link and on how to mask failures of that link [AAF+94, BSW69]. In contrast, we study lossy links in the context of an entire system: we show that the effect of lossy links depends on the proportion of faulty processes in the system. Other works have also studied tolerating lossy links in the context of an entire network. However, most of them focus on the solution of specific problems such as end-to-end communication or broadcast [AE86, AGH90, GA88]. Moreover, some of them do not consider process crashes [GA88], while others assume that crashed processes recover [AGH90]. In contrast, our work considers the effect of lossy links and permanent process crashes on the solvability of problems in general. This brings to the fore the importance of the notion of correct-restricted problems. Concurrent work [JV96] also studies problem solvability in general, but assumes that crashed processes recover (and have no stable storage), and focuses on an impossibility result.

The paper is organized as follows. In Section 2, we define our model, including the various types of links that we consider. Sections 3 and 4 consider systems where a majority of processes may crash. We first prove that in general, reliable links cannot be simulated by eventually reliable links (Section 3). We then show that “natural” correct-restricted problems that are solvable with reliable links are also solvable with fair lossy links (Section 4). In Section 5, we consider systems where a majority of processes are correct, and show how to simulate reliable links with fair lossy links. Finally, in Section 6 we state our results more formally using a refinement of the model and the notion of translation.

2 Model

We consider asynchronous distributed systems where processes communicate by message passing via a completely connected network, and there are no bounds on relative process speeds or message transmission times.

The complement of this class of problems includes all problems with uniform specifications [NT90].
2.1 Variables and States

We postulate an infinite universal set of variables \mathcal{V}. Each variable v in \mathcal{V} can be assigned a value from the set of natural numbers \mathbb{N}. A state s is a mapping $V \rightarrow \mathbb{N}$ for some subset of variables V of \mathcal{V}. We say that state s is over variables V, and write $\text{var}(s) = V$. For any v in V, the value of v in state s is $s(v)$. The set of all states is denoted S.

2.2 Processes

Let $P = \{p_1, \ldots, p_n\}$ be an indexed non-empty set of n processes. Each process p_i in P is formally defined by a set of states Q_i, a set of initial states $Q_i^0 \subseteq Q_i$, a set of actions \mathcal{A}_i, a transition relation T_i on $Q_i \times \mathcal{A}_i$, and a state transition function $\delta_i : Q_i \times \mathcal{A}_i \rightarrow Q_i$.

The set Q_i is a set of states over some finite (non-empty) set of variables $V_i \subseteq \mathcal{V}$. We say that V_i is the set of variables of process p_i. We assume that the sets of variables of distinct processes are disjoint.

The set \mathcal{A}_i is the set of actions that p_i can execute. There are three types of actions: send, receive, and internal. To define the send and receive actions, we postulate a set $\mathcal{M}(P)$ of all the possible messages that processes in P can send. We assume that each message $m \in \mathcal{M}(P)$ has a header with three fields, $\text{sender}(m) \in P$, $\text{dest}(m) \in P$, and $\text{tag}(m)$, an integer used to differentiate messages.

The sets of send and receive actions of \mathcal{A}_i, denoted $\text{Send}(\mathcal{A}_i)$ and $\text{Receive}(\mathcal{A}_i)$, respectively, are defined as follows: $\text{Send}(\mathcal{A}_i) = \{\text{send}(m, p_j) \mid m \in \mathcal{M}(P), \text{sender}(m) = p_i, \text{dest}(m) = p_j\}$, and $\text{Receive}(\mathcal{A}_i) = \{\text{receive}(m) \mid m \in \mathcal{M}(P), \text{dest}(m) = p_i\} \cup \{\text{receive}()\}$. Action $\text{send}(m, p_j)$ models the sending of message m to p_j. Action $\text{receive}(m)$ models the receipt of message m, and action $\text{receive}()$ models the failure of p_i’s attempt to receive a message (because no message was sent to p_i yet, or the messages sent to p_i are “in transit”, or they were “lost”, etc.).

The transition relation T_i on $Q_i \times \mathcal{A}_i$ specifies which actions p_i can execute from any given state: $(s, a) \in T_i$ iff p_i in state $s \in Q_i$ can execute action $a \in \mathcal{A}_i$. To model the fact that it is not possible for a process to block because it does not have an action to execute, we assume that for every state $s \in Q_i$ there exists at least one action $a \in \mathcal{A}_i$ such that $(s, a) \in T_i$. To model the fact that a process can try to receive a message, but cannot select which message to receive, we assume if $(s, a) \in T_i$ and $a \in \text{Receive}(\mathcal{A}_i)$, then for all $a' \in \text{Receive}(\mathcal{A}_i)$, $(s, a') \in T_i$.

The state transition function $\delta_i : Q_i \times \mathcal{A}_i \rightarrow Q_i$ specifies what the state of p_i is after it executes an action. More precisely, if p_i is in state $s \in Q_i$ and executes action $a \in \mathcal{A}_i$, then p_i goes into state $s' = \delta_i(s, a)$.

Finally, we find it convenient to assume that in every execution, messages are “unique” (this will be made more precise in Section 2.6). To enforce this, we assume that p_i increments a message counter each time it sends a message, and that each message is tagged with the current value of this counter. More precisely, we make the following assumptions on V_i, δ_i and T_i. The set of variables V_i of p_i has a variable msg_cnt_{r_i}. If $s' = \delta_i(s, \text{send}(m, p_j))$ and $s(\text{msg_cnt}_{r_i}) = k$, then $s'(\text{msg_cnt}_{r_i}) = k + 1$. Moreover, if $(s, \text{send}(m, p_j))$ is in T_i, then $\text{tag}(m) = s(\text{msg_cnt}_{r_i})$.

2.3 Events and Histories

An event of process $p_i \in P$ is a tuple $e = (p_i, a_i, l)$ where $a_i \in \mathcal{A}_i$ and $l \in \mathbb{N}$. We say that action a_i is associated with event e.

A local history of process $p_i \in P$, denoted $H[i]_i$, is a finite or an infinite sequence $s_i^0 e_i^1 s_i^2 e_i^3 s_i^4 \cdots$ of alternating states and events such that: (a) if $H[i]_i$ is finite, it terminates with a state, (b) $s_i^0 \in Q_i^0$, (c) for all $k \geq 1$, $s_i^k \in Q_i$ and $e_i^k = (p_i, a_i^k, k)$, and (d) for all $k \geq 0$, $(s_i^k, a_i^{k+1}) \in T_i$ and $s_i^{k+1} = \delta_i(s_i^k, a_i^{k+1})$. The
state history of a local history $H[i]$, denoted $\overline{H}[i]$, is the sequence of states in $H[i]$, namely $s_0^i, s_1^i, s_2^i, \ldots$. A history H of P is a vector of local histories $<H[1], H[2], \ldots, H[n]>$. The state history of H of P, denoted \overline{H}, is the vector $<\overline{H}[1], \overline{H}[2], \ldots, \overline{H}[n]>$. Vector \overline{H} is also called a state trace, or simply a trace.

Process p_i is correct in history H if $H[i]$ is infinite; otherwise we say that p_i crashes in history H. The set of all correct processes in history H is denoted by $\text{correct}(H)$.

2.4 Event Ordering

We relate events that occur in a history using the happens-before (henceforth abbreviated as before) relation defined in [Lam78]. The before relation \prec_H over events of a history H is the smallest transitive relation such that: (1) if e and e' are different events in the same local history and e occurs before e' in that local history, then $e \prec_H e'$; (2) if, for some $e, e' \in H$, $e = (p_i, \text{send}(m, p_j), k)$ and $e' = (p_j, \text{receive}(m), l)$ are events in H, then $e \prec_H e'$. We write $e \preceq_H e'$ if $e \prec_H e'$ or $e = e'$.

2.5 Systems of P

Let P be a set of processes. We define $\mathcal{H}(P)$ to be the set of all histories H of P such that \prec_H is a strict partial order. Let H be any history in $\mathcal{H}(P)$ and H' be any down-set of H (i.e., H' is a vector such that, for every $p_i \in P$, $H'[i]$ is a prefix of $H[i]$, and if $H'[i]$ is finite it terminates with a state). Then, H' is also a history in $\mathcal{H}(P)$.

A system $S(P)$ of P is a subset of $\mathcal{H}(P)$. We denote by $\overline{S(P)}$ the set of traces in $S(P)$, i.e., the set $\{\overline{H} | H \in S(P)\}$.

2.6 Link Properties

Let P be a set of processes. As we saw in Section 2.2, each process p_i tags each message that it sends with a counter that is incremented after each sending. This ensures that in every history $H \in \mathcal{H}(P)$, messages are unique: if $(p_i, \text{send}(m, p_j), k)$ and $(p_j, \text{send}(m', p_k), k')$ are distinct events in H, then $m \neq m'$ (either $\text{sender}(m) \neq \text{sender}(m')$ or $\text{tag}(m) \neq \text{tag}(m')$).

We say that p_i sends m to p_j in H if event $(p_i, \text{send}(m, p_j), k)$ is in $H[i]$ for some k. Similarly, p_j receives m from p_i in H if event $(p_j, \text{receive}(m), l)$ with $\text{sender}(m) = p_i$ is in $H[j]$ for some l.

2.6.1 Reliable Links

A reliable link does not create, duplicate, or lose messages. Formally, the link from p_i to p_j is reliable in history H of P if H satisfies:

L1: (No Creation) For all $m \in \mathcal{M}(P)$, if p_j receives m from p_i, then p_i sends m to p_j.

L2: (No Duplication) For all $m \in \mathcal{M}(P)$, p_j receives m from p_i at most once.

L3: (No Loss) For all $m \in \mathcal{M}(P)$, if p_i sends m to p_j, and p_j executes receive actions infinitely often, then p_j receives m from p_i.

3This implies that p_j is correct in H.

4
Implementing reliable links in a (non-blocking) asynchronous system requires infinite storage for buffering messages — finite buffers can overflow and thus cause message losses. Note that in our model every process has infinite storage.

2.6.2 Lossy Links

A lossy link can lose messages in transit. We consider two types of such links. The link from p_i to p_j is

eventually reliable in history H of P if H satisfies L1, L2 and:

- \(L_4: \) (Finite Loss) If H executes receive actions infinitely often, then the number of messages sent by p_i to p_j that are not received by p_j is finite.

The link from p_i to p_j is

fair lossy in history H of P if H satisfies L1 and L2 and:

- \(L_5: \) (Fair Loss) If p_i sends an infinite number of messages to p_j, and H executes receive actions infinitely often, then H receives an infinite number of messages from p_i.

Property L3 implies L4, and L4 implies L5. Thus, a reliable link is also eventually reliable, and an eventually reliable link is also fair lossy. A reliable link does not “lose” messages, an eventually reliable link can lose only a finite number of messages, and a fair lossy link can lose an infinite number of messages.

2.7 Systems of P with Reliable and Lossy Links

The system of P with at most t process crashes and reliable links, denoted $S_R^t(P)$, is the set of all histories $H \in \mathcal{H}(P)$ such that at most t processes crash in H (i.e., at most t local histories $H[i]$ of H are finite) and all links are reliable in H (i.e., for all $p_i, p_j \in P$, the link from p_i to p_j is reliable in H). The system of P with at most t process crashes and eventually reliable links, denoted $S_{ER}^t(P)$, and the system of P with at most t process crashes and fair lossy links, denoted $S_{FL}^t(P)$, are similarly defined. Note that for all t, $S_R^t(P) \neq \emptyset$ and $S_R^t(P) \subseteq S_{ER}^t(P) \subseteq S_{FL}^t(P) \subseteq \mathcal{H}(P)$.

2.8 Problem Specifications, Solving a Problem

A problem specification is often given in the form of requirements on sets of traces. To see this, consider a problem like Consensus. Roughly speaking, a system $S(P)$ of P solves Consensus, if $S(P)$ satisfies the following conditions: (a) in every trace $H \in \mathcal{S}(P)$, each process has some propose and decision variables that satisfy some agreement and validity requirement (e.g., correct processes agree on the value of their decision variables, a decision value must be a proposed one, etc.), and (b) $\mathcal{S}(P)$ must have two traces H_0 and H_1 such that the initial value of all the propose variables is 0 in H_0, and 1 in H_1. Informally, the specification of Consensus is the set of all $S(P)$ for all P, that satisfy (a) and (b). In other words, it is the set of all sets of traces that satisfy (a) and (b).

To formally define a problem specification, we first need to define the set of all traces. Let $\text{Seq}(S)$ be the set of all non-empty finite and infinite sequences over S such that all the states in a sequence have the same set of variables (i.e., for each σ in $\text{Seq}(S)$, and any two states s and s' in σ, $\text{var}(s) = \text{var}(s')$). If $\sigma \in \text{Seq}(S)$, $\text{var}(\sigma)$ denotes the set of variables of any state in σ. The set of all traces, denoted $\text{Vec}(S)$, is $\bigcup_{\sigma \in \text{Seq}(S)} \{ \sigma_1, \sigma_2, \ldots, \sigma_k : \forall i, j, 1 \leq i, j \leq k, \sigma_i \in \text{Seq}(S) \text{ and } \text{var}(\sigma_i) \cap \text{var}(\sigma_j) = \emptyset \}$.

Two traces H and H' in $\text{Vec}(S)$ are compatible if they have the same dimension, say k, and for all i, $1 \leq i \leq k$, $\text{var}(H[i]) = \text{var}(H'[i])$. A set of traces is proper if it is non-empty and all its elements are compatible. The
set of all proper sets of traces is \(\Sigma^* = \{ \mathcal{S} \mid \mathcal{S} \subseteq \text{Vec}(S) \text{ and } \mathcal{S} \text{ is proper} \} \). A problem specification (or simply a specification) \(\Sigma \) is a subset of \(\Sigma^* \).

Let \(\Sigma \) be a problem specification, \(P \) be a set of processes, and \(S(P) \) be a system of \(P \). We say that \(S(P) \) solves (problem specification) \(\Sigma \), if \(\mathcal{S}(P) \in \Sigma \).

2.9 Closure under Non-Trivial Reduction

The specifications of most problems satisfy a natural closure property that we now describe. Let \(P \) be a set of processes, and \(S = S(P) \) and \(S' = S'(P) \) be two systems of \(P \). Suppose that \(S \) solves some problem specification \(\Sigma \). Is it reasonable to require that if \(S' \subseteq S \) then \(S' \) solves \(\Sigma \)? To understand this issue, consider a specific example: let \(\Sigma \) be the specification of Consensus (sketched in the previous section).

Since \(S \) solves \(\Sigma \), then \(\mathcal{S} \) satisfies condition (a) of \(\Sigma \), namely, every trace \(\mathcal{H} \in \mathcal{S} \) satisfies agreement and validity. If \(S' \subseteq S \), it is obvious that \(\mathcal{S}' \) also satisfies condition (a). But the set \(\mathcal{S}' \subseteq \mathcal{S} \) may not satisfy condition (b): for example, every trace \(\mathcal{H} \in \mathcal{S}' \) may start with all the propose variables equal to 0. In this case, \(S' \) does not solve \(\Sigma \).\(^4\) On the other hand, if \(\mathcal{S}' \) satisfies condition (b), then \(S' \) indeed solves \(\Sigma \).

As with Consensus, it is often the case that a system \(S \) solves a problem specification \(\Sigma \) if its set of traces \(\mathcal{S} \) satisfies two types of conditions: one on each trace of \(\mathcal{S} \) (e.g., condition (a) of Consensus), and one on the set of initial states in \(\mathcal{S} \) (e.g., condition (b) of Consensus). In such a case, any subset \(S' \) of \(S \) that keeps all the initial states of \(S \) also solves the problem. This motivates the following definitions and assumption.

The initial state of a trace \(\mathcal{H} \), denoted \(\text{init}(\mathcal{H}) \), is the vector \(s_1^0, s_2^0, \ldots, s_k^0 \), where \(k \) is the dimension of \(\mathcal{H} \), and for all \(i, 1 \leq i \leq k, s_i^0 \) is the first state in \(\mathcal{H}[i] \). For any \(\mathcal{S} \in \Sigma^* \), we define \(\text{init}(\mathcal{S}) = \{ \text{init}(\mathcal{H}) \mid \mathcal{H} \in \mathcal{S} \} \), the set of all initial states of all traces in \(\mathcal{S} \).

For all \(\mathcal{S} \) and \(\mathcal{S}' \) in \(\Sigma^* \), we say that \(\mathcal{S}' \) is a non-trivial reduction of \(\mathcal{S} \) if \(\mathcal{S}' \subseteq \mathcal{S} \) and \(\text{init}(\mathcal{S}') = \text{init}(\mathcal{S}) \). A specification \(\Sigma \) is closed under non-trivial reduction if \(\mathcal{S} \in \Sigma \) and \(\mathcal{S}' \) is a non-trivial reduction of \(\mathcal{S} \) implies \(\mathcal{S}' \in \Sigma \). Henceforth, we consider only such specifications.

2.10 Correct-Restricted Problem Specifications

Intuitively, a problem specification is correct-restricted if it refers only to the states of correct processes (those with infinite traces) [Gop92, BN92]. Formally, let \(\mathcal{H} \) and \(\mathcal{H}' \) be any two traces in \(\text{Vec}(S) \) with the same dimension, say \(k \). Traces \(\mathcal{H} \) and \(\mathcal{H}' \) are correct-equivalent, denoted \(\mathcal{H} \sim \mathcal{H}' \), if for all \(i, 1 \leq i \leq k, \) if \(\mathcal{H}[i] \) or \(\mathcal{H}'[i] \) is infinite then \(\mathcal{H}[i] = \mathcal{H}'[i] \). For any \(\mathcal{S} \) and \(\mathcal{S}' \) in \(\Sigma^* \), we say that \(\mathcal{S}' \) is a correct-restricted extension of \(\mathcal{S} \), denoted \(\mathcal{S}' \geq \mathcal{S} \), if \(\mathcal{S}' \geq \mathcal{S} \) and \(\forall \mathcal{H} \in \mathcal{S}', \exists \mathcal{H}' \in \mathcal{S}, \mathcal{H} \sim \mathcal{H}' \). In other words, \(\mathcal{S}' \) is obtained from \(\mathcal{S} \) by adding some traces that are correct-equivalent to those in \(\mathcal{S} \). Finally, we say that a specification \(\Sigma \) is correct-restricted if for all \(\mathcal{S}, \mathcal{S}' \in \Sigma^* : \mathcal{S}' \geq \mathcal{S} \) and \(\mathcal{S} \in \Sigma \) implies \(\mathcal{S}' \in \Sigma \).

Reliable Broadcast (RB) and Consensus are examples of problems with a correct-restricted specification. Their uniform counterparts (e.g., URB in Section 3) are not correct-restricted (their specifications refer to all processes, whether correct or faulty) [HT94].

3 Reliable is Strictly Stronger than Eventually Reliable

Since an eventually reliable link can lose only a finite number of messages, it may appear that one can mask these message losses by repeatedly sending copies of each message, or by piggybacking on each message all

\(^4\)This is not fortuitous: we do not want to allow a system to trivially “solve” Consensus by just avoiding certain initial states.
the messages that were previously sent. Such a scheme is certainly inefficient, but it does seem to simulate a reliable link (akin to a data link protocol that uses retransmissions to simulate a reliable link over a lossy one). So it may appear that any problem that is solvable with reliable links is also solvable with eventually reliable links. We now show that this intuition is incorrect: in systems where a majority of processes may crash, there are natural problems that can be solved with reliable links but not with eventually reliable links.

One such problem is **Uniform Reliable Broadcast** (or simply **URB**) [HT94]. Informally, URB is defined in terms of two primitives, **broadcast** and **deliver**, that must satisfy three properties:

- **Validity**: If a correct process broadcasts a message \(m \), then it eventually delivers \(m \).
- **Uniform agreement**: If a process (whether correct or faulty) delivers a message \(m \), then all correct processes eventually deliver \(m \).
- **Integrity**: For any message \(m \), every correct process delivers \(m \) at most once, and only if \(m \) was previously broadcast by its sender.

A simple algorithm given in [HT94] solves URB with reliable links and any number of process crashes, and a standard partitioning argument shows that URB cannot be solved with eventually reliable links if a majority of processes may crash.

In the Appendix we use our model to formally specify and prove similar results about **Weak Uniform Reliable Broadcast** (**WURB**), a simple variant of URB. An informal definition of **WURB** and the statement of these results follows. Process \(p_1 \) has a variable \(\text{message} \) initially set to 0 or 1. Every process \(p_i \) has a variable \(\text{delivery}_i \) initially set to 0. If \(p_1 \) starts with \(\text{message} = 1 \) and \(p_1 \) is correct then \(p_1 \) eventually sets \(\text{delivery}_1 = 1 \). If \(p_1 \) sets \(\text{delivery}_1 = 1 \), then every correct process \(p_i \) should also set \(\text{delivery}_i = 1 \). Finally, if \(p_1 \) starts with \(\text{message} = 0 \) then no process \(p_i \) should ever set \(\text{delivery}_i = 1 \). The formal specification of WURB for a set of \(n \) processes, denoted \(\Sigma^n_{\text{WURB}} \), is given in Section A.1 of the Appendix, where we show the following theorem:

Theorem 3.1

1. For \(0 \leq t < n \), there is a set of processes \(P \) such that \(\mathcal{S}^t_R(P) \) solves \(\Sigma^n_{\text{WURB}} \).
2. For \(2 \leq n \leq 2t \), there is no set of processes \(P \) such that \(\mathcal{S}^t_{\text{ER}}(P) \) solves \(\Sigma^n_{\text{WURB}} \).

The above theorem implies that one cannot simulate reliable links with eventually reliable links when a majority of processes may crash. The precise statement of this impossibility result is given in Section 6.5 (Theorem 6.2), after the formal definition of simulation is given.

4 Solving Correct-Restricted Problems with Fair Lossy Links

The previous result does not mean that all problems that are solvable with reliable links are unsolvable with eventually reliable links. In fact, (most) correct-restricted problems that are solvable with reliable links are also solvable with fair lossy links, and thus with eventually reliable links. To prove this, we first introduce a new type of link that is weaker than a reliable link but stronger than an eventually reliable link — this intermediate link type is called **weakly reliable** (Section 4.1). We then show that any set of processes that solves a correct-restricted problem with reliable links also solves it with weakly reliable links (Section 4.2). Finally, we show how to simulate weakly reliable links with fair lossy links (Section 4.3). Note that weakly reliable links are introduced for technical reasons only — they may not model any “real” links.

5 Indeed it may require the sending of an infinite number of message copies, or, alternatively, the sending of messages of infinite size.
4.1 Weakly Reliable Links: An Intermediate Model

Let P be a set of processes. The link from p_i to p_j is weakly reliable in history H of P if H satisfies $L1$, $L2$, and:

$L6$: (No Visible Loss) For all $m \in \mathcal{M}(P)$, if p_i sends m to p_j before some event e_j of some correct process p_i (according to \prec_H), and p_j executes receive actions infinitely often, then p_j receives m from p_i.

Roughly speaking, $L6$ states that if the sending of a message m by p_i to p_j is “visible” to a correct process (because it is in the “causal past” of that process), then m is not lost: if p_j executes receive actions infinitely often, then it eventually receives m.

The system of P with at most t process crashes and weakly reliable links, denoted $S^t_{WR}(P)$, is the set of all histories $H \in \mathcal{H}(P)$ such that at most t processes crash in H and all links are weakly reliable in H. Since $L3$ implies $L6$ and $L6$ implies $L4$, we have $S^t_R(P) \subseteq S^t_{WR}(P) \subseteq S^t_{ER}(P)$.

4.2 Solving Correct-Restricted Problems with Weakly Reliable Links

Any set of processes that solves a correct-restricted problem with reliable links also solves it with weakly reliable links. To show this formally, we first prove:

Lemma 4.1 For any set of processes P and any t, if H is a history in $S^t_{WR}(P)$ then there is a history H' in $S^t_R(P)$ such that $\overrightarrow{H'} \simeq \overrightarrow{H}$ and $\text{init}(\overrightarrow{H'}) = \text{init}(\overrightarrow{H})$.

Proof: Let $H \in S^t_{WR}(P)$. We construct H' from H by removing from H all the events that are not “visible” to correct processes in H (and deleting all the states that follow removed events). To do so, we first define $\vartheta(H) = \{ e \mid \exists p_i \in \text{correct}(H), \exists e' \in H[i] : e \prec e' \}$. Intuitively, this is the set of all events that are “visible” to (i.e., in the “causal past” of) correct processes in H. Note that by transitivity of \prec_H, if $e' \in \vartheta(H)$ and $e \prec e'$ then $e \in \vartheta(H)$. We then construct H', the down-set of H that contains only the events in $\vartheta(H)$, as follows.

For each $H[i] = s^0_i e^1_i s^2_i \cdots e^k_i s^k_i \cdots$:

1. If $H[i]$ is infinite, we define $H'[i] = H[i]$.
2. If $H[i]$ is finite, we define $H'[i] = s^0_i e^1_i s^2_i \cdots e^k_i s^k_i$ where k is the maximum index such that $e^k_i \in \vartheta(H)$. If $H[i]$ has no event in $\vartheta(H)$, then $H'[i] = s^0_i$.

From this construction it is clear that H' is a down-set of H, $\text{correct}(H') = \text{correct}(H)$, and the set of all events in H' is $\vartheta(H)$. Furthermore, $\overrightarrow{H'} \simeq \overrightarrow{H}$ and $\text{init}(\overrightarrow{H'}) = \text{init}(\overrightarrow{H})$.

To show $H' \in S^t_R(P)$, note first that $H' \in \mathcal{H}(P)$ (because it is the down-set of a history in $\mathcal{H}(P)$), and that at most t processes crash in H' (because $\text{correct}(H') = \text{correct}(H)$ and, since $H \in S^t_{WR}(P)$, at most t processes crash in H). It remains to show that all links are reliable in H', i.e., for every two processes p_i and p_j, properties $L1$, $L2$, and $L3$ hold in H'. We first note that since $H \in S^t_{WR}(P)$, it satisfies $L1$, $L2$, and $L6$.

$L2$ (No Duplication). Since H satisfies $L2$, for all $m \in \mathcal{M}(P)$, p_j receives m from p_i at most once in H. Since H' is a down-set of H, p_j receives m from p_i at most once in H'.

$L1$ (No Creation). Suppose p_j receives m from p_i in H', and let e_j be the corresponding receive event. Since H' is a down-set of H, p_j receives m from p_i in H. Since H satisfies $L1$, p_i sends m to p_j in H; let e_i be the corresponding event. We have $e_i \prec e_j$. Since e_j is in H', $e_j \in \vartheta(H)$, and so $e_i \in \vartheta(H)$. Thus, e_i is also in H'. In other words, p_i sends m to p_j in H', as we needed to show.
Lemma 4.1

Let Σ be any correct-restricted problem specification. For any set of processes P and any t, $S^i_t(P)$ solves Σ if and only if $S^i_w(P)$ solves Σ.

Proof: Let Σ be any correct-restricted specification, and $S = S^i_w(P)$ and $S' = S^i_t(P)$. Suppose S solves Σ. Note that $S' \subseteq S$, and, by Lemma 4.1, $\text{init}(S') = \text{init}(S)$. Thus, S' is a non-trivial reduction of S. Since S solves Σ, S' also solves Σ.

Conversely, suppose S' solves Σ. We must show that S solves Σ. We know that $S' \subseteq S$. By Lemma 4.1, $\forall H \in S', \exists H' \in S : H' \sim H$. Thus, S' is a correct-restricted extension of S. Since S' solves Σ and Σ is correct-restricted, S also solves Σ. \hfill \Box

Theorem 4.2

Let Σ be any correct-restricted problem specification. For any set of processes P and any t, $S^i_t(P)$ solves Σ if and only if $S^i_w(P)$ solves Σ.

Proof: Let Σ be any correct-restricted specification, and $S = S^i_w(P)$ and $S' = S^i_t(P)$. Suppose S solves Σ. Note that $S' \subseteq S$, and, by Lemma 4.1, $\text{init}(S') = \text{init}(S)$. Thus, S' is a non-trivial reduction of S. Since S solves Σ, S' also solves Σ.

Conversely, suppose S' solves Σ. We must show that S solves Σ. We know that $S' \subseteq S$. By Lemma 4.1, $\forall H \in S', \exists H' \in S' : H' \sim H$. Thus, S' is a correct-restricted extension of S. Since S' solves Σ and Σ is correct-restricted, S also solves Σ. \hfill \Box

4.3 Simulating Weakly Reliable Links with Fair Lossy Links

Fair lossy links can be used to simulate weakly reliable links. To show this, we describe two procedures, \text{wr_send(m, p_j)} and \text{wr_recv(m)}, that satisfy the properties of weakly reliable links when executed in any system with fair lossy links. We only give an informal description of this simulation and its proof here (a more formal treatment is postponed to later sections). Since our focus is on solvability (rather than efficiency), we describe the simplest \text{wr_send(m, p_j)} and \text{wr_recv(m)} simulation procedures that are sufficient to carry our result. These primitives are inefficient, indeed they assume infinite storage, and infinite message sizes.

To simulate weakly reliable links, we must ensure that properties $\textbf{L1}$, $\textbf{L2}$, and $\textbf{L6}$ are satisfied. Roughly speaking, $\textbf{L6}$ (No Visible Loss) stipulates that if a process p_i sends a message m to a process p_j and this sending is in the “causal past” of some correct process p_i, then if p_j executes receive actions infinitely often, it eventually receives m. We can achieve this property with fair lossy links as follows: process p_i maintains a list of all the messages that were sent in its causal past, and this list eventually includes the message m above. In addition, p_i sends this list to every process infinitely often, and in particular to process $p_j = \text{dest($m$)}$. Since p_i is correct, property $\textbf{L5}$ (Fair Loss) of the links from p_i to p_j ensures that p_j eventually receives (a list that contains) m.

The \text{wr_send(m, p_j)} and \text{wr_recv(m)} procedures (for process p_i) given in Figure 1 are based on the simple idea described above. Every process p_i maintains a queue Prev_Sends_i that contains all the messages that were \text{wr_send} in its “causal past”. In order to \text{wr_send} a message m to process p_j, p_i simply appends m to its queue Prev_Sends_i. In addition, process p_i executes a Send Task to broadcast Prev_Sends_i after every internal action as well as after every return from a \text{wr_send} or a \text{wr_recv} procedure. Note that if p_i is correct, it broadcasts Prev_Sends_i infinitely often.

To \text{wr_recv} a message, p_i first executes a receive. If it receives some queue of messages Prev_Sends from some other process, p_i appends Prev_Sends to Prev_Sends_i. The \text{wr_recv} procedure now returns the first message in Prev_Sends_i with destination p_i that p_i has not yet \text{wr_recv}d (it returns the null message \bot otherwise).

We now sketch an informal proof that the \text{wr_send} and \text{wr_recv} procedures satisfy the properties of weakly reliable links, namely $\textbf{L1}$, $\textbf{L2}$, and $\textbf{L6}$.

Lemma 4.3

For every process p_i, the queue Prev_Sends_i is non-decreasing.

Proof: Obvious. \hfill \Box

Lemma 4.3
Simulation code for process p_i:

Variables

Prev_Sends_i : a queue of messages, initially empty

Procedure \texttt{wr_send}(m, p_j) \{simulating a send over a Weakly Reliable link\}

append m to Prev_Sends_i

end Procedure

Procedure \texttt{wr_recv}(m) \{simulating a receive over a Weakly Reliable link\}

receive(Prev_Sends)

if $\text{Prev_Sends} \neq \bot$ then append Prev_Sends to Prev_Sends_i

if Prev_Sends_i has a message m' such that

dest(m') = p_i and p_i has not yet executed $\texttt{wr_recv}(m')$

then $m :=$ first such message in Prev_Sends_i

else $m := \bot$

end Procedure

Send Task \{executed after every internal action and every $\texttt{wr_send}$ and $\texttt{wr_recv}$\}

for $j = 1, \cdots, n$ do $\text{send}(\text{Prev_Sends}_i, p_j)$

Figure 1: Simulating Weakly Reliable links with Fair Lossy links

Lemma 4.4 For every process p_i, a message m is in Prev_Sends_i only if sender(m) $\texttt{wr_sends}$ m.

Proof: The underlying links are fair lossy and thus do not create messages (property L1 of fair lossy links). The result is now clear from the way Prev_Sends_i is maintained, and can be obtained by a tedious induction that is omitted here. □Lem ma 4.4

Lemma 4.5 For every process p_i that executes $\texttt{wr_recv}$ infinitely often, if m is in Prev_Sends_i and dest(m) = p_i, then p_i $\texttt{wr_recv}$s m.

Proof: Every time p_i executes $\texttt{wr_recv}$, it $\texttt{wr_recv}$s the first message in the queue Prev_Sends_i with destination p_i that it has not yet $\texttt{wr_recv}$d (if such a message exists). It is now clear that once m is in the queue Prev_Sends_i, p_i will eventually $\texttt{wr_recv}$ m. □Lem ma 4.5

Lemma 4.6 If p_i $\texttt{wr_sends}$ m to p_j before some event e of a correct process p_i, then m is eventually in Prev_Sends_i.

Proof: If $p_i = p_j$, process p_i appends m to Prev_Sends_i during the execution of $\texttt{wr_send}(m, p_j)$. If not (i.e., $p_i \neq p_j$), then since p_i $\texttt{wr_sends}$ m to p_j before event e of p_i, by the definition of the before relation, there must exist some messages $m_0, m_1, \cdots, m_{k-1}$ and processes $p_i = p_{i_0}p_{i_1}\cdots p_{i_{k-1}}p_{i_k}$ = p_i such that:

1. $p_{i_j} \texttt{wr_sends}$ m_j to $p_{i_{j+1}}$ before $p_{i_{j+1}} \texttt{wr_recv}$s m_j, for $0 \leq j \leq k - 1$, and

Proof: □Lem 4.6
3. \(p_{ij} \) \(\text{wr recv} \ m_{j-1} \) before \(p_{ij} \) \(\text{wr send} \ m_j \) to \(p_{ij+1} \), for \(1 \leq j \leq k - 1 \), and
4. either \(p_{ia} \) \(\text{wr recv} \ m_{k-1} \) at the same time as event \(e \) of \(p_{ia} \) occurs (i.e., the two events are the same), or it \(\text{wr recv} \ m_{k-1} \) before \(e \).

Let \(p \) and \(q \) be any two processes, and \(m \) any message such that \(p \) \(\text{wr send} \ m \) to \(q \), and \(q \) \(\text{wr recv} \ m \). From Figure 1, it is easy to see that the queue \(\text{Prev Sends}_p \) of \(p \) immediately after \(p \) \(\text{wr send} \ m \) (note that this \(\text{Prev Sends}_p \) already contains \(m \)) is contained in the queue \(\text{Prev Sends}_q \) of \(q \) immediately after \(q \) \(\text{wr recv} \ m \).

From this observation, Lemma 4.3, and (1)-(4) above, we conclude that:

1. The queue \(\text{Prev Sends}_i \) immediately after \(p_i \) \(\text{wr send} \ m \) to \(p_i \), contains \(m \), and
2. the queue \(\text{Prev Sends}_{i+1} \) immediately after \(p_j \) \(\text{wr send} \ m_j \) to \(p_{j+1} \) is contained in the queue \(\text{Prev Sends}_{i+1} \) immediately after \(p_{j+1} \) \(\text{wr recv} \ m_j \), for \(0 \leq j \leq k - 1 \), and
3. the queue \(\text{Prev Sends}_{i} \) immediately after \(p_j \) \(\text{wr recv} \ m_{j-1} \) is contained in the queue \(\text{Prev Sends}_{i} \) immediately after \(p_{j+1} \) \(\text{wr send} \ m_j \), for \(1 \leq j \leq k - 1 \), and
4. the queue \(\text{Prev Sends}_{ia} \) immediately after \(p_{ia} \) \(\text{wr recv} \ m_{k-1} \) is contained in the queue \(\text{Prev Sends}_{ia} \) immediately after the event \(e \).

Since \(m \) is in \(\text{Prev Sends}_{ia} \) immediately after \(p_i \) \(\text{wr send} \ m \), by chaining the above facts we conclude that \(m \) is contained in the queue \(\text{Prev Sends}_{ia} \) of process \(p_{ia} = p_i \) immediately after the event \(e \). \(\Box \) Lemma 4.6

Theorem 4.7 The simulation procedures \(\text{wr send} \) and \(\text{wr recv} \) satisfy the three properties \(\text{L1, L2, and L6} \) of weakly reliable links.

Proof:

L1 (No Creation): Suppose \(p_i \) \(\text{wr recv} \ m \) from \(p_j \). From the code of the \(\text{wr recv} \) procedure it is clear that \(m \) is in \(\text{Prev Sends}_{i} \) and \(\text{dest}(m) = p_i \). From Lemma 4.4, we conclude that \(p_j \) \(\text{wr send} \ m \) to \(p_i \).

L2 (No Duplication): Obvious from the \(\text{wr recv} \) procedure.

L6 (No Visible Loss): Suppose \(p_i \) \(\text{wr send} \ m \) to \(p_j \) before some event \(e \) of a correct process \(p_i \), and \(p_j \) executes \(\text{wr recv} \) actions infinitely often. We need to show that \(p_j \) \(\text{wr recv} \ m \). Since \(p_j \) executes \(\text{wr recv} \) actions infinitely often, from Figure 1 it is clear that \(p_j \) must execute receive actions infinitely often. By Lemma 4.6, \(m \) is eventually in \(\text{Prev Sends}_{i} \). By Lemma 4.3, \(m \) remains in \(\text{Prev Sends}_{i} \) forever. Since \(p_i \) is correct it sends its (current) queue \(\text{Prev Sends}_{i} \) infinitely often to \(p_j \) (in the Send Task), and these are the only messages that it sends to \(p_j \). Only a finite number of these queues do not contain \(m \). Since the link from \(p_i \) to \(p_j \) satisfies property **L5** (Fair Loss), \(p_j \) receives an infinite number of the queues that \(p_i \) sends to \(p_j \). Thus, \(p_j \) eventually receives a queue that contains \(m \), and from this receipt onwards, \(m \) is in \(\text{Prev Sends}_{i} \).

By Lemma 4.5, \(p_j \) \(\text{wr recv} \ m \). \(\Box \) Theorem 4.7

This completes our informal proof that the \(\text{wr send} \) and \(\text{wr recv} \) procedures in Figure 1 simulate weakly reliable links using fair lossy links. By Theorem 4.2, if a correct-restricted problem is solvable with reliable links, then it is also solvable with weakly reliable links. Combining these two results, we conclude that for correct-restricted problems, fair lossy links are “as good as” reliable links in terms of problem solvability. A more precise statement of this claim is postponed to Section 6.6.

5 Simulating Reliable Links with Fair Lossy Links when \(n > 2t \)

Fair lossy links can be used to simulate reliable links, provided \(n > 2t \) (i.e., a majority of processes are correct). To show this, we describe two procedures, \(\text{rel send}(m, p_j) \) and \(\text{rel recv}(m) \), that simulate the
Simulation code for process p_i:

Variables

- $\text{Prev}_i\text{Sends}_i$: a queue of messages, initially empty
- $\text{Proc}_i\text{Ack}_i$: a set of processes, initially empty

Procedure $\text{rel}_i\text{send}(m, p_j)$

1. append m to $\text{Prev}_i\text{Sends}_i$
2. $\text{Proc}_i\text{Ack}_i := \emptyset$
3. while $|\text{Proc}_i\text{Ack}_i| < t + 1$
 1. for $j = 1, \cdots, n$ do $\text{send}(\text{Prev}_i\text{Sends}_i, p_j)$
 2. $\text{receive}($Prev$_i\text{Sends}_i$)$
 3. if $\text{Prev}_i\text{Sends}_i \neq ⊥$ then
 1. append $\text{Prev}_i\text{Sends}_i$ to $\text{Prev}_i\text{Sends}_i$
 4. if m in $\text{Prev}_i\text{Sends}_i$ then $\text{Proc}_i\text{Ack}_i := \text{Proc}_i\text{Ack}_i \cup \{\text{sender}(\text{Prev}_i\text{Sends}_i)\}$

Procedure $\text{rel}_i\text{recv}(m)$

1. if $\text{Prev}_i\text{Sends}_i$ has a message m' such that $\text{dest}(m') = p_i$ and p_i has not yet executed $\text{rel}_i\text{recv}(m')$
 1. $m := \text{first such message in} \text{Prev}_i\text{Sends}_i$
 2. else $m := ⊥$

Send-Receive Task

1. for $j = 1, \cdots, n$ do $\text{send}(\text{Prev}_i\text{Sends}_i, p_j)$
2. $\text{receive}(\text{Prev}_i\text{Sends}_i)$
3. if $\text{Prev}_i\text{Sends}_i \neq ⊥$ then append $\text{Prev}_i\text{Sends}_i$ to $\text{Prev}_i\text{Sends}_i$

Figure 2: Simulating Reliable links with Fair Lossy links when $n > 2t$

properties of reliable links when the underlying links are fair lossy and $n > 2t$. The simulation procedures that we give are simple but inefficient (they require infinite storage and infinite message sizes). The simulation and its correctness proof are informally described; a more formal treatment is deferred to later sections.

To simulate reliable links, every process p_i maintains a queue of messages $\text{Prev}_i\text{Sends}_i$ that stores all messages that were rel_isend in the “causal past” of p_i. In addition, p_i executes a Send-Receive Task after every internal action as well as after every return from a rel_isend or a rel_irecv procedure. This task broadcasts $\text{Prev}_i\text{Sends}_i$ and executes a receive. If any $\text{Prev}_i\text{Sends}_i$ queue is received, it is appended to the $\text{Prev}_i\text{Sends}_i$ queue.

In order to rel_isend a message m to a process p_j, process p_i invokes the $\text{rel}_i\text{send}(m, p_j)$ procedure. In this procedure, p_i first appends m to its queue $\text{Prev}_i\text{Sends}_i$ and then repeatedly broadcasts $\text{Prev}_i\text{Sends}_i$. When p_i receives echoes of m (inside $\text{Prev}_i\text{Sends}_i$ queues) from at least $t + 1$ distinct processes, p_i returns from $\text{rel}_i\text{send}(m, p_j)$. At this point at least one correct process, say p_i, has m in its $\text{Prev}_i\text{Sends}_i$ queue. Since p_i sends its $\text{Prev}_i\text{Sends}_i$ queue to p_j infinitely often, property L5 of fair lossy links ensures that if p_j executes receive actions infinitely often, p_j eventually receives a $\text{Prev}_i\text{Sends}_i$ queue containing m. Note that this holds even if p_i crashes after it returns from the $\text{rel}_i\text{send}(m, p_j)$ procedure.

In order to rel_irecv a message, p_i invokes the rel_irecv procedure which returns the first message in $\text{Prev}_i\text{Sends}_i$ with destination p_i that p_i has not yet rel_irecv (it returns the null message $⊥$ otherwise).

We now sketch an informal proof that the rel_isend and rel_irecv procedures indeed satisfy the properties of
reliable links, namely L1, L2, and L3.

Lemma 5.1 For every process p_i, the queue $\text{Prev} \cdot \text{Sends}_i$ is non-decreasing.

Lemma 5.2 No process blocks forever in the $\text{rel} \cdot \text{send}$ procedure.

Proof: The proof is by contradiction. Suppose that some process p_i blocks (by spinning forever in the while loop) while executing $\text{rel} \cdot \text{send}(m, p_j)$. From Figure 2, p_i sends $\text{Prev} \cdot \text{Sends}_i$ (which contains m) to all processes infinitely often. Moreover, each correct process executes receive actions infinitely often (even if it is itself blocked while executing a $\text{rel} \cdot \text{send}$). By property L5 of fair lossy links, each such correct process eventually receives $\text{Prev} \cdot \text{Sends}_i$ (containing m) either during an execution of the Send-Receive Task or during an execution of the $\text{rel} \cdot \text{send}$ procedure, and it then echoes m repeatedly forever (inside a $\text{Prev} \cdot \text{Sends}$ that it sends infinitely often). By property L5 of fair lossy links, p_i receives echoes of m from every correct process, i.e., from at least $t + 1$ distinct processes (because $n > 2t$), and p_i cannot block forever in the $\text{rel} \cdot \text{send}(m, p_j)$ procedure — a contradiction.

\[\Box \text{Lemma 5.2} \]

Lemma 5.3 For every process p_i, a message m is in $\text{Prev} \cdot \text{Sends}_i$ only if sender(m) $\text{rel} \cdot \text{sends} m$.

Lemma 5.4 For every process p_i that executes $\text{rel} \cdot \text{recv}$ infinitely often, if m is in $\text{Prev} \cdot \text{Sends}_i$ and dest(m) = p_i, then p_i $\text{rel} \cdot \text{recvs} m$.

Theorem 5.5 The simulation procedures $\text{rel} \cdot \text{send}$ and $\text{rel} \cdot \text{recv}$ satisfy the three properties L1, L2, and L3 of reliable links.

Proof:

L1 and L2: Similar to the proofs for L1 and L2 in Section 4.3.

L3 (No Loss): Suppose p_i invokes the $\text{rel} \cdot \text{send}$ procedure to send a message m to p_j, and p_j executes $\text{rel} \cdot \text{recv}$ actions infinitely often. If p_j $\text{rel} \cdot \text{recvs}$ message m, L3 is satisfied. Now suppose that p_j does not $\text{rel} \cdot \text{recv} m$. There are two cases:

1. Process p_i crashes while executing the $\text{rel} \cdot \text{send}(m, p_j)$ procedure, i.e., before returning from that procedure. In this case, we pretend that p_i crashes just before invoking $\text{rel} \cdot \text{send}(m, p_j)$ (i.e., just before $\text{rel} \cdot \text{sending} m$). This simulates a reliable link where p_i crashes just before sending m — a behavior consistent with L3.

2. Process p_i does not crash while executing the $\text{rel} \cdot \text{send}(m, p_j)$ procedure. By Lemma 5.2, p_i returns from $\text{rel} \cdot \text{send}(m, p_j)$. When this occurs, $|\text{Proc} \cdot \text{Ack}_i| \geq t + 1$, and so $\text{Proc} \cdot \text{Ack}_i$ contains at least one correct process, say p_i. From Figure 2, p_i received from p_i a queue $\text{Prev} \cdot \text{Sends}$ that contains m. By property L1 of fair lossy links, m is in $\text{Prev} \cdot \text{Sends}_i$. By Lemma 5.1, m remains in $\text{Prev} \cdot \text{Sends}_i$ forever. Since p_i is correct, from Figure 2, p_i sends $\text{Prev} \cdot \text{Sends}_i$ to p_j infinitely often. Only a finite number of these queues do not contain m. By property L5 (Fair Loss), p_j receives an infinite number of these queues. Thus, p_j eventually receives a queue that contains m. From this receipt onwards, m is in $\text{Prev} \cdot \text{Sends}_j$. Since dest($m$) = p_j, by Lemma 5.4, p_j $\text{rel} \cdot \text{recvs} m$ — a contradiction to our assumption that p_j does not $\text{rel} \cdot \text{recv} m$. Thus, case (2) cannot occur.

\[\Box \text{Theorem 5.5} \]

This completes our informal proof that when $n > 2t$, the $\text{rel} \cdot \text{send}$ and $\text{rel} \cdot \text{recv}$ procedures in Figure 2 simulate reliable links using fair lossy links. A more precise statement of this result is postponed to Section 6.7.
6 Simulation and Translation: Model and Results

In the previous sections we have informally proved that: (1) in general, eventually reliable links cannot simulate reliable links, (2) when \(n > t \), fair lossy links can simulate weakly reliable links, and (3) when \(n > 2t \), fair lossy links can simulate reliable links. To state these results more precisely, we refine our model and define the notions of simulation and translation [NT90].

6.1 Augmentation

The state of a process that simulates another one has two components: the simulated variables (all the variables of the simulated process) and the simulation variables (some bookkeeping variables that are used to carry out the simulation). These two sets of variables are disjoint. So if \(p' \) simulates \(p \), the variables of \(p' \) include those of \(p \). To formalize this, we introduce the following definitions.

We say that state \(s' \) augments state \(s \), \(s' \geq_a s \), if the set of variables of \(s' \) includes all the variables of \(s \), and the variables of \(s \) have the same value in \(s \) and \(s' \). Formally, \(s' \geq_a s \) if \(\text{var}(s') \supseteq \text{var}(s) \) and for all \(v \in \text{var}(s) \), \(s(v) = s'(v) \).

Let \(s_1 \) and \(s_2 \) be two states over disjoint sets of variables \(V_1 \) and \(V_2 \). Then \(s = (s_1, s_2) \) denotes the state over \(V_1 \cup V_2 \), such that \(\forall v \in V_1, s(v) = s_1(v) \) and \(\forall v \in V_2, s(v) = s_2(v) \). Note that if \(s' \geq_a s \) then \(s' = (s, \tau) \) for some state \(\tau \) over \(\text{var}(s') \setminus \text{var}(s) \).

We extend the notion of augmentation to sequences of states, and then to vectors of sequences of states (i.e., to traces), in the natural way. Recall that \(S \) is the set of all possible states. For any two sequences of states \(\sigma \) and \(\sigma' \) in \(\text{Seq}(S) \), we say that \(\sigma' \) augments \(\sigma \), and write \(\sigma' \geq_a \sigma \), if they have the same length, and every element \(s' \) in \(\sigma' \) augments the corresponding element \(s \) in \(\sigma \).

6.2 Stuttering

When a process simulates another one, it may execute several actions to simulate a single action of the simulated process. Thus, a simulation “stretches” the trace of the simulated process: a segment \(s_1 s_2 \) of a trace can be stretched into some “stuttering” version \(s_1 \cdots s_1 s_2 \cdots s_2 \) [Lam83]. For any two sequences of states \(\sigma \) and \(\sigma' \), we say that \(\sigma' \) is a stuttering of \(\sigma \), and write \(\sigma' \geq_s \sigma \), if (a) either both \(\sigma' \) and \(\sigma \) are infinite or they are both finite, and (b) \(\sigma' \) can be obtained from \(\sigma \) by repeated applications of the following operation: for any state \(s \) in \(\sigma \), replace \(s \) by any non-empty finite sequence of the form \(s \cdots s \).

6.3 Specifications Closed under Stuttering and Augmentation

As we saw, simulation leads to both stuttering and augmentation: the trace of the simulating process is a stuttered and augmented version of the trace of the simulated process. For any two sequences of states \(\sigma \) and \(\sigma' \) in \(\text{Seq}(S) \), we write \(\sigma' \geq_{sa} \sigma \) if there is a sequence \(\sigma_0 \in \text{Seq}(S) \) such that \(\sigma' \geq_a \sigma_0 \) and \(\sigma_0 \geq_s \sigma \). Similarly, for any two traces \(\overline{H} \) and \(\overline{H}' \) in \(\text{Vec}(S) \), we write \(\overline{H} \geq_{sa} \overline{H}' \) if they have the same dimension, say \(k \), and for all \(1 \leq i \leq k \), \(\overline{H}[i] \geq_{sa} \overline{H}'[i] \). Finally, for all \(S, \overline{S} \in \Sigma^* \), we say that \(\overline{S} \) is a stuttered and augmented version of \(S \), and write \(\overline{S'} \geq_{sa} \overline{S} \), if there is a mapping \(\tau \) from \(\overline{S'} \) onto \(\overline{S} \) such that \(\forall \overline{H} \in \overline{S}, \overline{H} \geq_{sa} \overline{H}' \) such that \(\forall \overline{H} \in \overline{S}, \overline{H} \geq_{sa} \overline{H}' \). Note that all the \(\geq_{sa} \) relations defined above are transitive.

We focus on problem specifications that are insensitive to stuttering (i.e., state repetitions) and augmentation (i.e., state extensions). Formally, a specification \(\Sigma \) is closed under stuttering and augmentation if:

\[\forall S, \overline{S} \in \Sigma^* : \overline{S'} \geq_{sa} \overline{S} \text{ and } \overline{S} \in \Sigma \text{ implies } \overline{S'} \in \Sigma. \]
Many natural problems, including Consensus and URB (and its weaker version described in Section 3), have specifications in this class.

6.4 Simulation and Translation

Let P and P' be any two sets of processes, and $S = S(P)$ and $S' = S'(P')$ denote any two systems of P and P', respectively. Intuitively, S' simulates S if the traces in S' are stuttered and augmented versions of a subset of the traces in S that has the same initial states as S. In other words, S' simulates S if S' is a stuttered and augmented version of a non-trivial reduction \overline{S}_0 of S. Formally, S' simulates S if:

$$\exists S_0 \subseteq S : \text{init}(S_0) = \text{init}(S) \text{ and } \overline{S}' \supseteq \overline{S}_0.$$

Note that $\overline{S}' \supseteq \overline{S}_0$ implies $\text{correct}(H') = \text{correct}(H)$. Thus, a simulation does not crash any process or mask any process failures. Moreover, it can be shown that the “simulates” relation is transitive.

Observation 6.1 Let Σ be any specification closed under stuttering and augmentation. If S' simulates S and S solves Σ, then S' also solves Σ.

Proof: Since S' simulates S, $\overline{S}' \supseteq \overline{S}_0$ for some non-trivial reduction \overline{S}_0 of S. Thus, $\overline{S} \in \Sigma$ implies that $\overline{S}_0 \in \Sigma$. Since $\overline{S}' \supseteq \overline{S}_0$, and Σ is closed under stuttering and augmentation, $\overline{S}' \in \Sigma$.

For any set P of processes, we use the notation $S_X^I(P)$ where $X \in \{RWR, ER, FL\}$ to denote any one of the systems $S^I_R(P)$, $S^I_{WR}(P)$, $S^I_{ER}(P)$, and $S^I_{FL}(P)$. A translation from X links to Y links for systems with n processes and at most t crashes, denoted $X \xrightarrow{n,t} Y$, is a translation function T that maps any set P of n processes into a set $P' = T(P)$ of n processes such that $S^I_X(P')$ simulates $S^I_X(P)$.

6.5 Impossibility of Translation $R \xrightarrow{n,t} ER$ for $n \leq 2t$

Consider a system with at least two processes where a majority of processes may crash (i.e., $2 \leq n \leq 2t$). In Section 3, we stated that the problem of Weak Uniform Reliable Broadcast can be solved with reliable links but not with eventually reliable links (cf. Theorem A.1 in the Appendix). This implies that reliable links cannot be simulated with eventually reliable links. More precisely:

Theorem 6.2 For $2 \leq n \leq 2t$, there is no translation $R \xrightarrow{n,t} ER$.

Proof: For contradiction, suppose there is a translation $R \xrightarrow{n,t} ER$ for some n and t, $2 \leq n \leq 2t$. Let T be the translation function of $R \xrightarrow{n,t} ER$. As noted earlier, Σ^I_{WR} (the specification of Weak Uniform Reliable Broadcast for n processes) is closed under stuttering and augmentation. By Theorem 3.1(1), there is a set of processes P such that $S^I_R(P)$ solves Σ^I_{WR}. Let $P' = T(P)$. By the definition of translation, $S^I_{ER}(P')$ simulates $S^I_R(P)$. By Observation 6.1, $S^I_{ER}(P')$ also solves Σ^I_{WR}. — a contradiction to Theorem 3.1(2).

6.6 Translation $WR \xrightarrow{n,t} FL$

In Section 4.3, we informally showed that two procedures, wr_send and wr_recv, can be used to simulate weakly reliable links using fair lossy links. Based on these procedures, we can define a translation $T = WR \xrightarrow{n,t} FL$
that maps any set of \(n \) processes \(P \) into a set of \(n \) processes \(P' = T(P) \) such that \(S^t_{FL}(P') \) simulates \(S^t_{WR}(P) \). Roughly speaking, \(P' \) is obtained from \(P \) by replacing the send and receive actions of processes in \(P \) with the actions of the \(wr_{send} \) and \(wr_{recv} \) procedures, respectively. A precise description of the mapping from \(P \) to \(P' \) that defines the translation \(T \), together with a proof of correctness, is given in the Appendix (cf. Figure 4 and Theorem A.18). We can now state our main result:

Theorem 6.3 Let \(\Sigma \) be any specification that is correct-restricted, and closed under stuttering and augmentation. Let \(T \) be the translation referred to above. For any set of processes \(P \), if \(S^t_R(P) \) solves \(\Sigma \) then \(S^t_{FL}(P') \) solves \(\Sigma \) where \(P' = T(P) \).

Proof: Suppose \(S^t_R(P) \) solves \(\Sigma \). Since \(\Sigma \) is correct-restricted, Theorem 4.2 implies that \(S^t_{WR}(P) \) also solves \(\Sigma \). Let \(P' = T(P) \). By the definition of \(WR \xrightarrow{n} FL \), \(S^t_{FL}(P') \) simulates \(S^t_{WR}(P) \). Since \(S^t_{WR}(P) \) solves \(\Sigma \), and \(\Sigma \) is closed under stuttering and augmentation, Observation 6.1 implies that \(S^t_{FL}(P') \) solves \(\Sigma \).

Theorem 6.3

6.7 **Translation \(n \xrightarrow{1} FL \) for \(n > 2t \)**

In Section 5, we informally proved that procedures \(rel_{send} \) and \(rel_{recv} \) can be used to simulate reliable links using fair lossy links when a majority of processes are correct. These procedures are the basis of a formal translation \(T = R \xrightarrow{n} FL \) for any \(n > 2t \). Roughly speaking, \(P' \) is obtained from \(P \) by replacing the send and receive actions of \(P \) by the actions of the \(rel_{send} \) and \(rel_{recv} \) procedures, respectively. A precise description of the mapping from \(P \) to \(P' \) that defines the translation \(T \), together with a proof of correctness, is given in the Appendix (cf. Figure 5 and Theorem A.31).

Theorem 6.4 Let \(\Sigma \) be any specification closed under stuttering and augmentation. Let \(T \) be the translation referred to above. For any set \(P \) of \(n > 2t \) processes, if \(S^t_R(P) \) solves \(\Sigma \) then \(S^t_{FL}(P') \) solves \(\Sigma \) where \(P' = T(P) \).
A Appendix

A.1 Possibility and Impossibility of Weak Uniform Reliable Broadcast

We now define Σ_{WURB}^n, the specification of WURB for n processes, and prove Theorem 3.1. Specification Σ_{WURB}^n is the set of all sets of traces $\overline{S} \in \Sigma^*$ that satisfy the following conditions:

1. For every trace $\overline{H} \in \overline{S}$:

 (a) the dimension of \overline{H} is n, and
 (b) all the local states in $\overline{H}[1]$ have variable message, and
 (c) for all $i, 1 \leq i \leq n$, all the local states in $\overline{H}[i]$, have variable delivery_i, and
 (d) in the initial state of $\overline{H}[1]$, $\text{message} = 0$ or 1, and for all $i, 1 \leq i \leq n$, in the initial state of $\overline{H}[i]$, $\text{delivery}_i = 0$, and
 (e) if $\text{message} = 1$ in the initial state of $\overline{H}[1]$ and $\overline{H}[1]$ is infinite, then $\text{delivery}_1 = 1$ in some state in $\overline{H}[1]$, and
 (f) if $\text{delivery}_1 = 1$ in some state in $\overline{H}[1]$, then $\text{delivery}_i = 1$ in some state of every infinite $\overline{H}[i]$, and
 (g) if $\text{message} = 0$ in the initial state of $\overline{H}[1]$, then there is no $i, 1 \leq i \leq n$, such that $\text{delivery}_i = 1$ in some state in $\overline{H}[i]$.

2. There are (at least) two histories \overline{H}_0 and \overline{H}_1 in \overline{S} such that $\text{message} = 0$ in the initial state of $\overline{H}_0[1]$, and $\text{message} = 1$ in the initial state of $\overline{H}_1[1]$.

Theorem A.1

1. For $0 \leq t < n$, there is a set of processes P such that $\mathcal{S}_{ER}^t(P)$ solves Σ_{WURB}^n.

2. For $2 \leq n \leq 2t$, there is no set of processes P such that $\mathcal{S}_{ER}^t(P)$ solves Σ_{WURB}^n.

Proof:

Part (1): It is easy to see that if links are reliable, the algorithm in Figure 3 solves WURB for n processes and any number of process crashes. From this algorithm, for any n and t, one can formally construct a set of n processes P such that $\mathcal{S}_{ER}^t(P)$ solves Σ_{WURB}^n. The construction is straightforward, but tedious and thus omitted.

Part (2): The proof is by a standard partitioning argument. For contradiction, suppose there exists n and t, $2 \leq n \leq 2t$, and a set of processes P such that $\mathcal{S}_{ER}^t(P)$ solves Σ_{WURB}^n, i.e., $\mathcal{S}_{ER}^t(P)$ satisfies conditions (1) and (2) of this specification. Furthermore, for every i, let V_i denote the set of variables of process p_i.

From conditions (2) and (1.a), (1.b), (1.c), and (1.d), we deduce that:

1. P is a set of n processes, and
2. variable message is in V_1, and
3. for every $i, 1 \leq i \leq n$, variable delivery_i is in V_i, and
4. p_1 has (at least) two initial states $s_1^0, s_1^1 \in Q^1_1$ such that $s_1^0(\text{message}) = 0$ and $s_1^1(\text{message}) = 1$, and $s_1^0(\text{delivery}_1) = s_1^1(\text{delivery}_1) = 0$, and
5. for every $i, 2 \leq i \leq n, p_i$ has some initial state $s_i \in Q_i^0$ such that $s_i(\text{delivery}_i) = 0.$
Partition P into two sets of processes of size at most t each, namely, $P_1 = \{p_1, \ldots, p_k\}$ and $P_2 = \{p_{k+1}, \ldots, p_n\}$, where $k = \lceil n/2 \rceil$. We now construct three histories H_1, H_2, and H_3 in $S^{n}_{WR}(P)$, such that H_3 violates one of the conditions of Σ^n_{WR} — a contradiction to the fact that $S^{n}_{ER}(P)$ solves Σ^n_{WR}.

Construction of H_1: Let $init(H_1) = \langle s_1, s_2, \ldots, s_n \rangle$. Starting from these initial states, we schedule all processes in P_1 to execute actions, in a round-robin order, forever: each time a process $p_i \in P_1$ is scheduled, it executes one action according to its transition relation T_i and changes state according to its state transition function δ_i. If p_i is in a state from which it can execute an action to receive a message, then it executes $receive(m)$ where m is the first6 message sent to p_i that p_i did not previously receive, if any exists, and executes $receive(\bot)$ otherwise. Note that for every $p_i \in P$, and every state $s \in Q_i$, there is at least one action $a \in A_i$ such that that $(s, a) \in T_i$, so our construction of history H_1 never blocks. Thus, each $p_i \in P_1$ executes infinitely many actions, and $H_1[i]$ is infinite. No process in P_2 executes any action. So, $correct(H_1) = P_1$, and at most t processes (those in P_2) crash in H_1.

From the way the construction of H_1 selects which message a process receives it is easy to see that (a) the relation $<_H$, is acyclic, and thus a strict partial order, and (b) H_1 satisfies the three properties of reliable links, namely L_1 (no creation), L_2 (no duplication), and L_3 (no loss). From (a), H_1 is a history of $P \in \mathcal{H}(P)$. From (b) and the fact that at most t processes crash, $H_1 \in S^n_{WR}(P) \subseteq S^n_{ER}(P)$.

Since $S^n_{ER}(P)$ solves Σ^n_{WR}, H_1 satisfies conditions (1.e) of Σ^n_{WR}: in other words, since $s^0_i(message) = 1$ and $H_1[1]$ is infinite, $delivery_i = 1$ in some local state in $H_1[1]$. Suppose the first such state occurs after the l-th event of p_1 in H_1. For each $p_i \in P_1$, let $H_i^l[\pi]$ be the prefix of $H_i[\pi]$ such that p_i executes exactly l actions. Note that the history $\langle H_i^1[1], \cdots, H_i^1[k], H_i^1[k+1], \cdots, H_i^n[\pi] \rangle$ is a down-set of H_1 that also satisfies properties L_1, L_2, and L_3 of reliable links.

Construction of H_2: Let $init(H_2) = \langle s_0^1, s_2^1, \cdots, s_n^1 \rangle$. Starting from these local initial states, we schedule all processes in P_2 to execute actions, in a round-robin order, forever. The message receipt policy is as in the construction of H_1. No process in P_2 executes any action. This scheduling constructs a history $H_2 \in \mathcal{H}(P)$ such that $correct(H_2) = P_2$, at most t processes crash (all those in P_1), and H_2 satisfies properties L_1, L_2, and L_3 of reliable links. Thus, $H_2 \in S^n_{ER}(P) \subseteq S^n_{ER}(P)$.

6In the round-robin scheduling.
Sends to map any set of processes

We now describe a translation of events of state — this event corresponds to an action interrupted by a crash.

Consider any history. If a ®nite local history (i.e., the history of a process that crashes) to end with an event that is not followed by a transition function and a transition relation, respectively. Figure 4 shows the algorithm that updates the simulated state.

Recall that a process often in are not received by . There are three possible cases:

1. \(p_j \in P_1; \) \(H_3 \) satisfies \(\mathbf{L4} \) because \(p_j \) crashes in \(H_3 \) and does not execute receive actions infinitely often.

2. \(p_i \in P_1; \) \(H_3 \) satisfies \(\mathbf{L4} \) because \(p_i \) can send at most \(l \) messages to \(p_j \) before it crashes in \(H_3 \).

3. \(p_i, p_j \in P_2; \) In this case, \(H_3[i] = H_3[i] \) and \(H_3[j] = H_3[j] \). So the set of messages sent by \(p_i \) to \(p_j \) that are not received by \(p_j \) is the same in both \(H_3 \) and \(H_2 \). Moreover, \(p_j \) executes receive actions infinitely often in \(H_3 \) if it does so in \(H_2 \). Since \(H_2 \) satisfies \(\mathbf{L2} \) (no loss), \(H_3 \) satisfies \(\mathbf{L4} \).

Thus, \(H_3 \in S'_{ER}(P) \). However, \(H_3 \) violates condition (1.f) of \(\Sigma^W_{URB} \): in fact, \(\text{delivery}_1 = 1 \) in some state of \(H_3[i] \) (because \(H_3[i] = H_3[i] \)), but for every \(p_i \in P_2, H_3[i] \) is infinite and no state in \(H_3[i] \) has \(\text{delivery}_i = 1 \) (because \(H_3[i] = H_3[i] \)).

\(\square \text{Theorem A.1} \)

A.2 Translation \(WR \stackrel{n.t}{\Rightarrow} FL \)

Typically, a process \(p_i \) simulates the execution of an action \(a \in A_i \) of a process \(p_i \) by executing a sequence of actions in \(A_i \). If \(p_i \) crashes before completing this sequence, the simulation of \(a \) is interrupted and does not complete. In other words, simulated actions are not necessarily “atomic”. To model this, we now allow a finite local history (i.e., the history of a process that crashes) to end with an event that is not followed by a state — this event corresponds to an action interrupted by a crash.

We now describe a translation \(T = WR \stackrel{n.t}{\Rightarrow} FL \) for any \(n \) and \(t, 0 \leq t < n \). We do so by showing how to map any set of processes \(P = \{p_1, p_2, \ldots, p_n\} \) into a set of processes \(P' = \{p'_1, p'_2, \ldots, p'_n\} \) such that \(S_{FL}(P') \) simulates \(S_{WR}(P) \). Figure 4 explains how to map each \(p_i \) into a process \(p'_i \) (for every \(i, 1 \leq i \leq n \)). Recall that \(p_i \) is defined by \(Q_i, Q_i^0, A_i, \delta_i \) and \(T_i \) a set of states, a set of initial states, a set of actions, a state transition function and a transition relation, respectively. Figure 4 shows the algorithm that \(p'_i \) executes to simulate \(p_i \). From this algorithm it is straightforward to derive the sets \(Q'_i, Q_i^0, A'_i \), the function \(\delta'_i \), and the relation \(T'_i \) that formally define process \(p'_i \). The formal definition of \(p'_i \) is tedious and is omitted here.

Consider any history \(H' \in S_{FL}(P') \), and let \(p'_i \in P' \). An invocation event of \(p'_i \) in \(H'[i] \) is one that corresponds to the execution of an action annotated \(\text{inv}(___) \) in Figure 4. Similarly, a return event in \(H'[i] \) is one that corresponds to an action of \(p'_i \) annotated \(\text{ret}(___) \) in Figure 4. Intuitively, invocation and return events of \(p'_i \) in \(H'[i] \) denote the beginning and end of the simulation of an event of \(p_i \) in \(H[i] \). Note that \(p'_i \) updates the simulated state \(s \) of \(p_i \) immediately after each return event, and only then. The simulated state remains unchanged when a non-return event occurs. Furthermore, \(p'_i \) broadcasts its queue \(\text{Prev.Sends}_i \) after each return event.
simulation variables
Prev_Sends _i : a queue of messages

simulated variables
\[v_1, \ldots, v_k : \text{all the variables of } p_i \]
\[\{ V_i = \{ v_1, v_2, \ldots, v_k \} \} \]

{In this algorithm, “variable” \(s \) represents the simulated state of \(p_i \).
\{ i.e., \(s \) is a shorthand for variables \(v_1, \ldots, v_k \) with their current values. \}
\{ Assignment \(s := s' \) is a shorthand for multiple assignment \(v_1, \ldots, v_k := s'(v_1), \ldots, s'(v_k) \) \}

initial state
\[s \text{ is some initial state } s'_i \in Q_i \]
\[\text{Prev}_i \text{ is the empty queue} \]

do forever
\[\alpha := \text{an action such that } (s, \alpha) \in T_i \]
\[\{ \text{select any action that } p_i \text{ can execute in state } s \} \]

\[\text{case}(\alpha) \]
\[\{ p'_i \text{ simulates action } \alpha \text{ of } p_i \text{ which can be internal, or a send, or a receive} \} \]

- \(\square \alpha \text{ is an internal action:} \)
 \[s := \delta_i(s, \alpha) \]
 \[\{ p'_i \text{ simulates internal action } \alpha \text{ of } p_i \} \]
 \[\{ \text{inv}(\alpha) \text{ and ret}(\alpha) \} \]

- \(\square \alpha \text{ is a send}(m, p_j) \text{ action:} \)
 \[\text{append } m \text{ to } \text{Prev}_i \text{Sends}; \]
 \[s := \delta_i(s, \text{send}(m, p_j)) \]
 \[\{ p'_i \text{ simulates a send action of } p_i \} \]
 \[\{ \text{inv}(\text{send}(m, p_j)) \} \]
 \[\{ \text{ret}(\text{send}(m, p_j)) \} \]

- \(\square \alpha \text{ is a receive action:} \)
 \[\text{receive}(\text{Prev}_i \text{Sends}) \]
 \[\text{if } \text{Prev}_i \text{Sends} \neq \bot \text{ then append } \text{Prev}_i \text{Sends} \text{ to } \text{Prev}_i \text{Sends}; \]
 \[\text{if } \text{Prev}_i \text{Sends}, \text{ has a message } m' \text{ such that} \]
 \[\text{dest}(m') = p_i \text{ and } p'_i \text{ did not previously simulate receive}(m') \text{ by } p_i \]
 \[\text{then } m := \text{first such message in } \text{Prev}_i \text{Sends}; \]
 \[\text{else } m := \bot \]
 \[s := \delta_i(s, \text{receive}(m)) \]
 \[\{ \text{ret}(\text{receive}(m)) \} \]

for \(j = 1, \ldots, n \) do send(Prev_Sends_i, p\'_j)
\[\{ \text{broadcast of } \text{Prev}_i \text{Sends} \} \]

Figure 4: Process \(p'_i \) simulating process \(p_i \)
We have to show that $S' = S'_{FL}(P')$ simulates $S = S_{WR}(P)$, i.e.,
\[\exists S_0 \subseteq S : \text{init}(S_0) = \text{init}(S) \quad \text{and} \quad \overline{S_{FL}} \geq_{sa} \overline{S}. \]

We do so by constructing a mapping $\gamma : S' \rightarrow S$ with the following properties:

- **[S1]** Let $S_0 = \gamma(S')$ be the image of S' under γ. Then $\text{init}(S_0) = \text{init}(S)$.
- **[S2]** For all $H' \in S'$, history $H = \gamma(H')$ is such that $\overline{H'} \geq_{sa} \overline{H}$.

Consider any history $H' \in S'$. Let p_i' be any process in P'. From Figure 4, any state s' of p_i' in $H'[i]$ is such that $s' = (s, r)$ where s is a state of p_i, and we define $\text{sim}(s') = s$.

We now describe a construction that takes $H' \in S'$ and produces a history H with an associated relation \prec_H, and then show that this construction is a mapping γ from S' to S that satisfies properties **[S1]** and **[S2]**. For any local history $H'[i]$ construct $H[i]$ as follows:

1. History $H[i]$ starts with $s_i^0 = \text{sim}(s'_i)$ where s'_i is the initial state of $H'[i]$.
2. Extract from $H'[i]$ the sequence σ consisting of all the return events and the states that immediately follow them. If $\text{ret}(a)$ is the k-th event in σ, then event (p_i, a, k) is the k-th event of $H[i]$. If $\text{ret}(a)$ is immediately followed by state s'_a in σ, then (p_i, a, k) is immediately followed by state $s_a = \text{sim}(s'_a)$ in $H[i]$.
3. If $H'[i]$ has an invocation event of the form $\text{inv}(\text{send}(m, p_j))$ but has no event of the form $\text{ret}(\text{send}(m, p_j))$,\(^7\) and $\text{ret}(\text{receive}(m))$ is in $H'[j]$, then event $(p_i, \text{send}(m, p_j), k)$ is the last element in $H[i]$.\(^8\)

Note that $H[i]$ is finite if and only if $H'[i]$ is finite.

We define the relations \prec_H and \preceq_H over events in H exactly as in Section 2.4. This completes the construction of H and its associated \prec_H.

For brevity, from now on, we denote an event $(p_i, \text{send}(m, p_j), k)$ of $H[i]$ simply as $\text{send}(m, p_j)$. Similarly, $(p_i, \text{receive}(m), k)$ is denoted $\text{receive}(m)$. This notation preserves the uniqueness of events because in each history, messages are unique.

Consider any history $H' \in S'_{FL}(P')$ and the history H obtained from H' by the above construction.

Lemma A.2 \(\overline{S_{FL}} \geq_{sa} \overline{H}\).

Proof: (Sketch) We must show that for every $p_i \in P$, $\overline{H}[i] \geq_{sa} \overline{H}[i]$. From Figure 4, process p_i' changes the (simulated) state s of p_i only after each return event in $H'[i]$. In other words, between every two consecutive return events of p_i' in $H'[i]$, the simulated state s of p_i remains the same (i.e., stutters). The result now follows from the construction of H. \(\square\) Lemma A.2

We now prove that H is in $S = S_{WR}(P)$. This implies that the construction is indeed a mapping from S' to S. To show $H \in S_{WR}(P)$, we must prove that (a) H is a history of P, (b) the relation \prec_H is a strict partial order (and so $H \in \mathcal{H}(P)$), (c) at most t processes crash in H, and (d) H satisfies properties **L1**, **L2**, and **L6** of weakly reliable links.

\(^7\)This can occur only if the history $H'[i]$ is finite, i.e., if p_i' crashes.

\(^8\)Index k denotes the total number of events in $H[i]$.

21
Lemma A.3 \(H \) is a history of \(P \).

Proof: This is immediate from the algorithm in Figure 4 and the construction of \(H \). \(\square\) Lemma A.3

We now show that the relation \(\prec_H \) is a strict partial order, so \(H \in \mathcal{H}(P) \). To do so, we first prove some technical lemmas which require the following definition: for any process \(p_j \) and any event \(g \) in \(H'[j] \), let \(s^>_g \) and \(s^+_g \) be the local states of \(p_j \) immediately before and after event \(g \) in \(H'[j] \) (if \(g \) is not followed by a local state in \(H'[j] \), \(s^+_g \) is defined as the local state that would have occurred after \(g \) if \(p_j \) did not crash, i.e., \(s^+_g = \delta_j(s^>_g, a) \) where \(a \) is the action of event \(g \)). We denote by \(PS^-(g) \) and \(PS^+(g) \) the values of the queue \(\text{Prev}_sends_j \) in \(s^>_g \) and \(s^+_g \), respectively.

Lemma A.4 Suppose receive\((m)\) is in \(H \), and let sender\((m) = p_j \) and dest\((m) = p_i \).

1. \(\text{inv}(\text{send}(m, p_i)) \) is in \(H'[j] \) and \(\text{inv}(\text{receive}(m)) \) is in \(H'[i] \) and
2. \(\text{inv}(\text{send}(m, p_i)) \prec_H \text{inv}(\text{receive}(m)) \).

Proof: From Figure 4 and the construction of \(H \), since dest\((m) = p_i \), receive\((m) \) is in \(H[i] \). Moreover, \(H'[j] \) has two corresponding events: \(\text{inv}(\text{receive}(m)) \) and \(\text{ret}(\text{receive}(m)) \). From Figure 4, it is clear that \(m \) is in \(PS^+(\text{ret}(\text{receive}(m))) \). Consider the set \(\Lambda = \{ g \mid g \text{ is an event of } H^i \text{ and } m \in PS^+(g) \} \). This set is non-empty since \(\text{ret}(\text{receive}(m)) \in \Lambda \). Let \(e \) be an event in \(\Lambda \) such that no event \(x \) in \(\Lambda \) occurs before \(e \) according to \(\prec_H \).

Claim A.5 Event \(e \) is unique, \(e = \text{inv}(\text{send}(m, p_i)) \), and, for all events \(g \) in \(\Lambda \), \(e \preceq_H g \).

Proof: Assume \(e \) occurs in \(H'[k] \) for some \(k \). Since \(\text{Prev}_sends_k \) is initially empty, from the definition of \(e \), we have \(m \not\in PS^- (e) \) and \(m \in PS^+(e) \). Thus, \(e \) corresponds to an action that updates \(\text{Prev}_sends_k \) (and results in the insertion of \(m \)). From Figure 4, it is now clear that \(e \) corresponds to either (a) the action that appends \(m \) to \(\text{Prev}_sends_k \) when \(p_k \) simulates the action \(\text{send}(m, p_i) \) of \(p_k \), or (b) the action that appends a queue \(\text{Prev}_sends \) (that contains \(m \)) to \(\text{Prev}_sends_k \).

In case (a), it must be that \(e = \text{inv}(\text{send}(m, p_i)) \), and that \(\text{sender}(m) = p_k \) and so \(k = j \).

In case (b), there is an event \(\tau \) corresponding to the action \(\text{receive}(\text{Prev}_sends) \) and \(\tau \prec_H e \). By property L1 of \(H' \), event \(x \) corresponding to the action \(\text{send}(\text{Prev}_sends, p_k') \) occurs in \(H' \). Since \(m \in \text{Prev}_sends \), \(m \in PS^+(x) \), and so \(x \in \Lambda \). Moreover, \(x \sim_H \tau \), and by transitivity \(x \sim_H e \). This contradicts the definition of \(e \), and so case (b) cannot occur.

Thus, \(e = \text{inv}(\text{send}(m, p_i)) \) and \(e \) occurs in \(H'[j] \). Since event \(\text{inv}(\text{send}(m, p_i)) \) cannot occur twice in \(H' \), \(e \) is unique. From the definition of \(e \), we conclude that for all events \(g \) in \(\Lambda \), \(e \preceq_H g \). \(\square\) Claim A.5

From the above, \(\text{inv}(\text{send}(m, p_i)) \) is in \(H'[j] \) and \(\text{inv}(\text{receive}(m)) \) is in \(H'[i] \)—concluding the proof of part (1) of the lemma. We now show part (2).

Claim A.6 There is an event \(g \) in \(\Lambda \) such that \(g \prec_H \text{inv}(\text{receive}(m)) \).

Proof: Let \(\tau = \text{inv}(\text{receive}(m)) \). Recall that \(\tau \) occurs in \(H'[i] \). There are two cases:

1. \(m \in PS^- (\tau) \). Since \(\text{Prev}_sends_i \) is initially empty, there is an event \(g \) in \(H'[i] \) such that \(g \prec_H \tau \) and \(m \in PS^+(g) \) (and so \(g \in \Lambda \)).

Recall that \(\delta_i \) and \(T_i \) ensure that each message \(m \) in \(H \) is uniquely tagged.
2. \(m \notin PS^{-}(\tau) \). Since \(m \in PS^{-}(\text{ret}receive(m)) \), \(m \) is inserted in \(\text{Prev.Sends}_i \) between events \(\tau \) and \(\text{ret}receive(m) \). From Figure 4, this must occur when \(p'_i \) appends a queue \(\text{Prev.Sends} \) containing \(m \) to \(\text{Prev.Sends}_j \). Note that event \(\tau \) corresponds to the \(\text{receive}(\text{Prev.Sends}) \) action (that is executed just before \(p'_i \) appends \(\text{Prev.Sends} \) to \(\text{Prev.Sends}_j \)). By property \(\text{L1} \) of \(H' \), history \(H' \) must have an event \(g \) corresponding to the action \(\text{send}(\text{Prev.Sends}, p'_i) \). Since \(m \in \text{Prev.Sends}, m \in PS^{+}(g) \), and so \(g \in \Lambda \). Moreover, \(g \prec_H \tau \). □

By Claims A.5 and A.6, there is an event \(g \) in \(\Lambda \) such that \(e \not\prec_H g \prec_H \text{inv(receive(m))} \), where \(e = \text{inv}send(m, p'_i) \). This concludes the proof of part (2) of the lemma.

Lemma A.7 The relation \(\prec_H \) is a strict partial order.

Proof: By construction, \(\prec_H \) is transitive. It remains to show that it is acyclic.

Claim A.8 For any pair of events \(e_1, e_2 \) in \(H \) the following holds:
\[
e_1 \prec_H e_2 \Rightarrow \text{inv}(e_1) \prec_H \text{inv}(e_2)
\]

(1)

Proof: If \(e_1 \) and \(e_2 \) are in the same local history, (1) follows directly from Figure 4, our construction of \(H \), and the definition of \(\prec_H \). If \(e_1 = \text{send}(m, p_j) \) and \(e_2 = \text{receive}(m) \), then \(\text{dest}(m) = p_j \), and (1) follows from Lemma A.4. The claim now follows from the transitivity of \(\prec_H \) and \(\prec_H \). □

Assume, for contradiction, that \(\prec_H \) has a cycle. Since \(\prec_H \) is transitive, there must exist some event \(e_1 \) in \(H \) such that \(e_1 \prec_H e_1 \). By Claim A.8, \(\text{inv}(e_1) \prec_H \text{inv}(e_1) \) — a contradiction to the fact that \(\prec_H \) is acyclic.

□Lemma A.7

By Lemmas A.3 and A.7, \(H \) is a history of \(P \) and \(\prec_H \) is a strict partial order. Thus, \(H \in \mathcal{H}(P) \).

Lemma A.9 At most \(t \) processes crash in \(H \).

Proof: Immediate from the following facts: (a) at most \(t \) processes crash in \(H' \) (because \(H' \in \mathcal{S}_{PL}(P') \)), and (b) for every \(i, 1 \leq i \leq n, H'[i] \) is finite if and only if \(H'[i] \) is finite, thus \(p_i \) is correct in \(H'[i] \) if and only if \(p'_i \) is correct in \(H'[i] \).

To prove that \(\mathcal{H}(P) \) it remains to show that \(H \) satisfies the properties of weakly reliable links.

Lemma A.10 For every process \(p'_i \in P' \), the queue \(\text{prev.Sends}_i \) is non-decreasing in \(H'[i] \).

Proof: Obvious from the way \(p'_i \) maintains \(\text{prev.Sends}_i \) in Figure 4.

□Lemma A.10

Lemma A.11 Suppose \(e = \text{inv}(\text{send}(m, \text{dest}(m))) \) is in \(H' \). For all events \(g \) in \(H' \), if \(PS^{+}(g) \) contains \(m \) then \(PS^{+}(g) \) also contains \(PS^{+}(e) \).

Proof: Let \(\Lambda' = \{ g \mid g \text{ is an event in } H' \text{ and } PS^{+}(g) \text{ contains } m \text{ but does not contain } PS^{+}(e) \} \). For contradiction, suppose that \(\Lambda' \) is not empty. Let \(e' \) be an event in \(\Lambda' \) such that no event \(x \) in \(\Lambda' \) occurs before \(e' \) according to \(\prec_H \). Suppose \(e' \) occurs in \(H'[j] \) for some process \(p'_j \).

By the definition of \(e' \), the monotonicity of \(\text{prev.Sends}_j \) (Lemma A.10), and the fact that \(\text{prev.Sends}_j \) was initially empty, we must have \(m \not\in PS^{-}(e') \) and \(m \in PS^{+}(e') \). Thus, \(e' \) corresponds to an action that updates \(\text{prev.Sends}_j \) (and results in the insertion of \(m \)). Since \(e \not\in \Lambda' \) (by definition of \(\Lambda' \)), \(e' \neq e \). Therefore,
\(e'\) corresponds to the action that appends a queue \(\text{Prev.Sends}j\) to \(\text{Prev.Sends}_j\) during the simulation of some receive action. Note that \(\text{Prev.Sends}\) contains \(m\) but does not contain \(PS^+(e)\).

We can now proceed as in case (b) of Claim A.5 to show that \(H'\) has an event \(z\) corresponding to the action \(send(\text{Prev.Sends},p_j)\), and \(z \prec_H e'\). Since \(\text{Prev.Sends}\) contains \(m\) but not \(PS^+(e)\), then \(PS^+(x)\) contains \(m\) but not \(PS^+(e)\), and so \(x \in \mathcal{N}'\) — contradicting the definition of \(e'\).

Lemma A.11

Corollary A.12 Suppose events \(inv(send(m, \text{dest}(m)))\) and \(ret(receive(m))\) are in \(H'\). Then \(PS^+(\text{ret(receive(m}))\) contains \(PS^+(inv(send(m, \text{dest}(m))))\).

Proof: Let \(g = \text{ret(receive(m))}\). Note that \(m \in PS^+(g)\) and apply Lemma A.11.

Lemma A.13 For every process \(p_i\) that executes receive actions infinitely often in \(H\), if \(m\) is in \(\text{Prev.Sends}_i\) in \(H'\) and \(\text{dest}(m) = p_i\), then \(p_i\) receives \(m\) in \(H\).

Proof: Since \(p_i\) executes receive actions infinitely often in \(H\), there are an infinite number of \(ret(receive(\bar{m}))\) events of \(p_i^e\) in \(H'[i]\). Thus, \(p_i^e\) executes the entire sequence of actions that simulates a receive action of \(p_i\) infinitely often in \(H'\). Every time \(p_i^e\) executes such a sequence of actions in \(H'\), \(p_i\) receives in \(H\) the first message \(m'\) of \(\text{Prev.Sends}_i\) that \(p_i\) has not yet received such that \(\text{dest}(m') = p_i\). Since \(m\) is in \(\text{Prev.Sends}_i\) and \(\text{dest}(m) = p_i\), from the way \(\text{Prev.Sends}_i\) is maintained by \(p_i^e\) in \(H'\), we deduce that \(p_i\) eventually receives \(m\) in \(H\).

Lemma A.14 If process \(p_i\) sends \(m\) to \(p_j\) in history \(H\) before (according to \(\prec_H\)) some event \(e\) of a correct process \(p_l\) in \(H\), then \(m\) is eventually in \(\text{Prev.Sends}_l\) in history \(H'\).

Proof: Since \(p_l\) is correct in \(H\), process \(p_l^e\) is correct in \(H'\). Suppose \(i = l\). In this case, \(p_l^e\) appends \(m\) to \(\text{Prev.Sends}_l\) in \(H'[i]\) during its simulation of the action \(send(m,p_j)\) of \(p_i\). Now suppose \(i \neq l\). By hypothesis, event \(send(m,p_j)\) is in \(H[i]\) and \(send(m,p_j) \preceq_H e\). By the definition of the \(\preceq_H\) relation (given in the construction of \(H\)) there must exist some messages \(m_0, m_1, \ldots, m_{k-1}\) and processes \(p_l = p_{i_0}, p_{i_1}, \ldots, p_{i_{k-1}}, p_{i_k} = p_l\) such that:

1. \(send(m,p_j) \preceq_H send(m_0,p_{i_0})\), both events are in \(H[i_0]\), and
2. for \(0 \leq j < k - 1\), \(send(m_j,p_{i_{j+1}}) \preceq_H receive(m_j)\), these two events occur in \(H[i_j]\) and \(H[i_{j+1}]\), respectively, and
3. for \(1 \leq j \leq k - 1\), \(receive(m_{j-1}) \preceq_H send(m_j,p_{i_{j+1}})\), both events are in \(H[i_j]\), and
4. \(receive(m_{k-1}) \preceq_H e\), both events are in \(H[i_k]\).

Since \(e\) occurs at a correct process, namely, \(p_{i_k} = p_l\), event \(ret(e)\) exists. From Lemma A.4, the definition of \(\preceq_H\), and (1)-(4) above, we have:

1. \(inv(send(m,p_j)) \preceq_H inv(send(m_0,p_{i_0}))\), both events are in \(H'[i_0]\), and
2. for \(0 \leq j < k - 1\), \(inv(send(m_j,p_{i_{j+1}})) \preceq_H ret(receive(m_j))\), these two events occur in \(H'[i_j]\) and \(H'[i_{j+1}]\), respectively, and
3. for \(1 \leq j \leq k - 1\), \(ret(receive(m_{j-1}) \preceq_H inv(send(m_j,p_{i_{j+1}}))\), both events are in \(H'[i_j]\), and
4. \(ret(receive(m_{k-1})) \preceq_H ret(e)\), both events are in \(H'[i_k]\).
By Corollary A.12, for any message $m \in \mathcal{M}(P)$, if $\text{inv}(\text{send}(m, \text{dest}(m)))$ and $\text{ret}(\text{receive}(m))$ are in H', then $PS^+(\text{ret}(\text{receive}(m)))$ contains $PS^+(\text{inv}(\text{send}(m, \text{dest}(m))))$. From this observation, Lemma A.10, and (1)-(4) above, we conclude that:

1. $PS^+(\text{inv}(\text{send}(m_0, p_i))))$ contains m, and
2. $PS^+(\text{ret}(\text{receive}(m_j)))$ contains $PS^+(\text{inv}(\text{send}(m_j, p_{i_j+1}))))$, for $0 \leq j \leq k - 1$, and
3. $PS^+(\text{inv}(\text{send}(m_j, p_{i_j+1})))$ contains $PS^+(\text{ret}(\text{receive}(m_{j-1}))))$, for $1 \leq j \leq k - 1$, and
4. $PS^+(\text{ret}(e)))$ contains $PS^+(\text{ret}(\text{receive}(m_{k-1})))$.

By chaining the above facts, $PS^+(\text{ret}(e)))$ contains m. Since $\text{ret}(e)$ occurs at a correct process, namely p_i^t, it is followed by a state. From the definition of $PS^+(\text{ret}(e)))$, we conclude that m is in the queue Prev_\text{Sends}_i of process p_i^t immediately after $\text{ret}(e)$ in $H'[i]$.

Lemma A.15 H satisfies the properties of weakly reliable links.

Proof: We must show that for every i, j, the link from p_i to p_j is weakly reliable in H, i.e., properties L1, L2 and L6 hold.

L1 (No Creation): Suppose p_j receives m from p_i in H, i.e., event $\text{receive}(m)$ with $\text{sender}(m) = p_i$ and $\text{dest}(m) = p_j$ is in $H'[j]$. By Lemma A.4, $\text{inv}(\text{send}(m, p_i))$ occurs in $H'[i]$. Since $\text{ret}(\text{receive}(m))$ also occurs in $H'[i]$ (because $\text{receive}(m)$ is in $H[j]$), by the construction of H from H', event $\text{send}(m, p_j)$ occurs in $H[i]$, i.e., p_i sends m to p_j in H.

L2 (No Duplication): From Figure 4 (and the construction of H from H'), it clear that no process $p_j \in P$ receives a message more than once in H.

L6 (No Visible Loss): Suppose p_i sends m to p_j in H before (according to \preceq_H) some event e of a correct process p_i in H (note that $\text{dest}(m) = p_j$). From Lemma A.14, m is eventually in Prev_\text{Sends}_i of p_i^t in H'. By Lemma A.10, m remains in Prev_\text{Sends}_i in H' forever. Consider the set \mathcal{M}_{ij} of all the messages sent by p_i^t to p_j^t in H'. Each such message is sent when p_i^t executes a $\text{send}(\text{Prev}$_\text{Sends}_i, $p_j^t)$ action, and it consists of p_i^t’s current value of the queue Prev_\text{Sends}_i. Since p_i is correct in H, p_i^t is correct in H'. Thus, p_i^t executes $\text{send}(\text{Prev}$_\text{Sends}_i, $p_j^t)$ actions infinitely often in H' and so \mathcal{M}_{ij} is infinite. Note that only a finite number of messages in \mathcal{M}_{ij} are Prev_\text{Sends}_i queues that do not contain m.

Now assume that p_i executes receive actions infinitely often in H. By our construction of H from H', p_j^t executes receive actions infinitely often in H'. Since H' satisfies L5 (Fair Loss) and \mathcal{M}_{ij} is infinite, p_j^t receives an infinite subset of the messages in \mathcal{M}_{ij}. Thus, p_j^t eventually receives (in H') a queue Prev_\text{Sends}_i that contains m. From this receipt onwards, m is in Prev_\text{Sends}_j in H'. Since $\text{dest}(m) = p_j$, by Lemma A.13, p_j eventually receives m in H, as we needed to show. \qed

This completes the proof that our construction maps every history H' in $\mathcal{S}' = \mathcal{S}_{FL}(P')$ into a history H in $\mathcal{S} = \mathcal{S}_{W\mathcal{R}}(P)$. Let $\gamma: \mathcal{S}' \rightarrow \mathcal{S}$ denote this mapping.

Lemma A.16 Let $\mathcal{S}_0 = \gamma(\mathcal{S}')$ be the image of \mathcal{S}' under γ. Then $\text{init}(\mathcal{S}_0) = \text{init}(\mathcal{S})$.

Proof: Since $\mathcal{S}_0 \subseteq \mathcal{S}$, $\text{init}(\mathcal{S}_0) \subseteq \text{init}(\mathcal{S})$. We now show that $\text{init}(\mathcal{S}) \subseteq \text{init}(\mathcal{S}_0)$. Let $s^0_1, s^0_2, \ldots, s^0_n >$ be any element of $\text{init}(\mathcal{S})$. Note that, for $1 \leq i \leq n$, $s^0_i \in \mathcal{O}^t_i$ is an initial state of p_i. From Figure 4, process p^t_i can start by simulating any initial state of p_i. In particular, it can start from some state s^0_i such that $s^0_i = \text{sim}(s^0_i)$. So $s^0_1, s^0_2, \ldots, s^0_n >$ is in $\text{init}(\mathcal{S})$. From the definition of γ, $s^0_1, s^0_2, \ldots, s^0_n >$ is in $\text{init}(\mathcal{S}_0)$. \qed

25
Lemma A.17 \(S' = S'_{FL}(P') \) simulates \(S = S'_{WR}(P) \).

Proof: This follows from the existence of the mapping \(\gamma : S' \to S \) that satisfies properties [S1] (Lemma A.2) and [S2] (Lemma A.16).

\(\square \) Lemma A.17

Theorem A.18 Figure 4 defines a translation \(T = WR^{n,t} FL \) for any \(n \) and \(t \), \(0 \leq t < n \).

Proof: Figure 4 shows how to map any set of \(n \) processes \(P \) into a set of \(n \) processes \(P' \) such that \(S'_{FL}(P') \) simulates \(S'_{WR}(P) \) (Lemma A.17).

\(\square \) Theorem A.18

A.3 Translation \(R^{n,t} FL \) for \(n > 2t \)

The translation \(T = R^{n,t} FL \) is defined by Figure 5 which shows how to map a set of processes \(P = \{p_1, p_2, \ldots, p_n\} \) into a set \(P' = \{p'_1, p'_2, \ldots, p'_n\} \) such that \(S'_{FL}(P') \) simulates \(S'_{BR}(P) \) when \(n > 2t \). The proof that \(S'_{FL}(P') \) simulates \(S'_{BR}(P) \), i.e., \(T \) is indeed a translation \(R^{n,t} FL \) is similar to the proof of Lemma A.17, and is outlined below.

To show that \(S' = S'_{FL}(P') \) simulates \(S = S'_{BR}(P) \), we construct a mapping \(\gamma : S' \to S \) with the following properties:

- [S1] Let \(S_0 = \gamma(S') \) be the image of \(S' \) under \(\gamma \). Then \(init(S_0) = init(S) \).
- [S2] For all \(H' \in S' \), history \(H = \gamma(H') \) is such that \(H' \preceq_{sa} H \).

We map each history \(H' \in S' \) to a history \(H \) with its associated \(\prec_H \) relation exactly as we did in Section A.2 (for the translation \(WR^{n,t} FL \)). The proof that this is indeed a mapping \(\gamma \) from \(S' \) to \(S \) that satisfies properties [S1] and [S2] is given below. We omit the proofs of all the lemmas whose proofs are the same as in Section A.2.

Lemma A.19 For every process \(p'_i \in P' \), the queue \(\text{Prev}_i \text{Sends}_i \) is non-decreasing in \(H'[i] \).

Lemma A.20 For every \(i, 1 \leq i \leq n, H[i] \) is finite if and only if \(H'[i] \) is finite.

Proof: From our construction of \(H \) from \(H' \), it is obvious that for every \(i, 1 \leq i \leq n, \) if \(H'[i] \) is finite then \(H[i] \) is finite. The proof that for every \(i, H[i] \) is finite if only if \(H'[i] \) is finite is by contradiction. Suppose that for some \(i, H[i] \) is finite but \(H'[i] \) is infinite. From our construction, this implies that the number of return events in \(H'[i] \) is finite. From Figure 5, it is clear that this can happen only if \(p'_i \) spins forever in the \textbf{while} loop during the simulation of some \texttt{send}(\(m, p_j \)) action. In this loop, \(p'_i \) sends \(\text{Prev}_i \text{Sends}_i \) (which contains \(m \)) to all processes infinitely often. From Figure 5, it is clear that each correct process executes receive actions infinitely often (even if it is itself “blocked” spinning forever in the \textbf{while} loop during the simulation of a \texttt{send} action). By property L5 of fair lossy links, each such correct process eventually receives a \(\text{Prev}_i \text{Sends}_i \) that contains \(m \), and from Figure 5, it appends this \(\text{Prev}_i \text{Sends}_i \) to its own \(\text{Prev}_i \text{Sends} \) queue. By Lemma A.19 and Figure 5, each correct process sends a \(\text{Prev}_i \text{Sends} \) queue that contains \(m \) infinitely often to \(p'_i \). Since \(p'_i \) spins forever in the \textbf{while} loop, it executes receive actions infinitely often. By property L5 of fair lossy links, \(p'_i \) eventually receives a \(\text{Prev}_i \text{Sends} \) queue containing \(m \) from every correct process, i.e., from at least \(t + 1 \) distinct processes (because \(n > 2t \)). Thus, \(p'_i \) does not spin forever in the \textbf{while} loop — a contradiction.

\(\square \) Lemma A.20

Lemma A.21 \(H' \preceq_{sa} H \).
simulation variables

Prev_Sends_i : a queue of messages

Proc_Ack_i : a set of processes

simulated variables

v_1, \ldots, v_k : all the variables of \(p_i \)

\{V_i = \{v_1, v_2, \ldots, v_k\}\}

initial state

\(a \) is some initial state \(s_i^0 \in Q_i^0 \)

\(\text{Proc}_i\text{Ack} \) is the empty set

Prev_Sends_i is the empty queue and Proc_Ack_i is the empty set

\textbf{do forever}

\(a := \text{an action such that } (s, a) \in T_i \)

\{select any action that \(p_i \) can execute in state \(s \}\}

\textbf{case}(a)

\(\square a \text{ is an internal action:} \)

\(s := \delta_i(s, a) \)

\{\(p'_i \text{ simulates internal action } a \text{ of } p_i \}\}

\{inv(a) \text{ and } ret(a)\}\}

\(\square a \text{ is a send}(m, p_j) \text{ action:} \)

append \(m \) to \(\text{Prev}_i\text{Sends} \)

\(\text{Proc}_i\text{Ack} := \emptyset \)

while \(|\text{Proc}_i\text{Ack}| < t + 1 \)

for \(j = 1, \ldots, n \) do

send(Prev_Sends_i, p'_j)

receive(Prev_Sends)

if Prev_Sends \(\neq \bot \) then

append \(\text{Prev}_i\text{Sends} \) to \(\text{Prev}_i\text{Sends} \)

if \(m \) in \(\text{Prev}_i\text{Sends} \) then

\(\text{Proc}_i\text{Ack} := \text{Proc}_i\text{Ack} \cup \{\text{sender(Prev}_i\text{Sends)}\} \)

\(s := \delta_i(s, \text{send}(m, p_j)) \)

\{\(p'_i \text{ simulates a send action of } p_i \}\}

\{inv(\text{send}(m, p_j))\}\}

\(\square a \) is a receive action:

\if \(\text{Prev}_i\text{Sends} \) has a message \(m' \) such that

\(\text{dest}(m') = p_i \) and \(p'_i \) did not previously simulate receive(\(m' \)) by \(p_i \)

then \(m := \text{first such message in } \text{Prev}_i\text{Sends} \)

else \(m := \bot \)

\(s := \delta_i(s, \text{receive}(m)) \)

\{\(p'_i \text{ simulates a receive action of } p_i \}\}

\{inv(\text{receive}(m))\}\}

\(\text{for } j = 1, \ldots, n \) do send(Prev_Sends_i, p'_j)

receive(Prev_Sends)

if Prev_Sends \(\neq \bot \) then append \(\text{Prev}_i\text{Sends} \) to \(\text{Prev}_i\text{Sends} \)

\{broadcast \(\text{Prev}_i\text{Sends} \}\}

\{receive a message\}

\textbf{Figure 5: Process } p'_i \text{ simulating process } p_i
Lemma A.22 \(H \) is a history of \(P \).

Lemma A.23 Suppose receive\((m)\) is in \(H \), and let sender\((m) = p_j \) and dest\((m) = p_i \).

1. \(\text{inv}(\text{send}(m, p_i)) \) is in \(H'[j] \) and \(\text{inv}(\text{receive}(m)) \) is in \(H'[i] \), and
2. \(\text{inv}(\text{send}(m, p_i)) \prec_{H'} \text{inv}(\text{receive}(m)) \).

Proof: The proof is as in Lemma A.4, except for the proof of the claim below.

Claim A.24 There is an event \(g \) in \(\Lambda \) such that \(g \prec_{H'} \text{inv}(\text{receive}(m)) \).

Proof: Let \(\tau = \text{inv}(\text{receive}(m)) \) and \(\tau' = \text{ret}(\text{receive}(m)) \). Recall that both \(\tau \) and \(\tau' \) occur in \(H'[i] \). From Figure 5, it is clear that \(m \) is in \(PS^+(\tau') \). Furthermore, the queue \(\text{Prev}_{\text{Send}} \) is not modified between events \(\tau \) and \(\tau' \) in \(H'[i] \). Thus, \(m \in PS^+(\tau) \). Since \(\text{Prev}_{\text{Send}} \) is initially empty, there is an event \(g \) in \(H'[i] \) such that \(g \prec_{H'} \tau \) and \(m \in PS^+(g) \) (and so \(g \in \Lambda \)). \(\square_{\text{Claim A.24}}

Lemma A.25 The relation \(\prec_{H} \) is a strict partial order.

By Lemmas A.22 and A.25, \(H \in \mathcal{H}(P) \).

Lemma A.26 At most \(t \) processes crash in \(H \).

To prove that \(H \in S^t_R(P) \) it remains to show that \(H \) satisfies the properties of reliable links.

Lemma A.27 For every process \(p_i \) that executes receive actions infinitely often in \(H \), if \(m \) is in \(\text{Prev}_{\text{Send}} \) in \(H' \) and dest\((m) = p_i \), then \(p_i \) receives \(m \) in \(H \).

Lemma A.28 \(H \) satisfies the properties of reliable links.

Proof: We must show that for every \(i, j \), the link from \(p_i \) to \(p_j \) is weakly reliable in \(H \), i.e., properties L1, L2 and L3 hold.

L1 (No Creation) and L2 (No Duplication): The proof is the same as in the proof of Lemma A.15.

L3 (No Loss): Suppose that \(p_k \) sends \(m \) to \(p_j \) and \(p_j \) executes receive actions infinitely often in \(H \). We have to show that \(p_j \) receives \(m \) in \(H \).

Since \(p_k \) sends \(m \) to \(p_j \) in \(H \), from our construction of \(H \) from \(H' \) there are two possible cases:

1. Event \(\text{inv}(\text{send}(m, p_j)) \) is in \(H'[i] \) and event \(\text{ret}(\text{receive}(m)) \) is in \(H'[j] \). From the construction of \(H \) from \(H' \), \(p_j \) receives \(m \) in \(H \).
2. Event \(\text{ret}(\text{send}(m, p_j)) \) is in \(H'[i] \). When this event occurs, \(|\text{Proc}_{\text{Ack}}| \geq t + 1 \), and so \(\text{Proc}_{\text{Ack}} \) contains at least one correct process, say \(p'_i \). From Figure 5, \(p'_i \) received from \(p_i \) a queue \(\text{Prev}_{\text{Send}} \) that contains \(m \) in \(H' \). By property L1 of fair lossy links, \(m \) is in \(\text{Prev}_{\text{Send}} \). By Lemma A.19, \(m \) remains in \(\text{Prev}_{\text{Send}} \) in \(H' \) forever. The proof that \(p_j \) receives \(m \) in \(H \) now proceeds exactly as in the proof of property L6 in Lemma A.15. \(\square_{\text{Lemma A.28}}

This completes the proof that our construction maps every history \(H' \) in \(S' = S^t_{FL}(P') \) into a history \(H \) in \(S = S^t_R(P) \). Let \(\gamma : S' \rightarrow S \) denote this mapping.

28
Lemma A.29 Let $S_0 = \gamma(S')$ be the image of S' under γ. Then $\text{init}(S_0) = \text{init}(S)$.

Lemma A.30 $S' = S'_{FL}(P')$ simulates $S = S'_W(P)$.

Proof: This follows from the existence of the mapping $\gamma : S' \rightarrow S$ that satisfies properties [S1] (Lemma A.21) and [S2] (Lemma A.29).

Theorem A.31 Figure 5 defines a translation $T = WR^{-\frac{1}{t}}FL$ for any n and t, $0 \leq t < n$.

Proof: Figure 5 shows how to map any set of n processes P into a set of n processes P' such that $S'_{FL}(P')$ simulates $S'_W(P)$ (Lemma A.30).

Acknowledgments

We are grateful to David Cooper and Vassos Hadzilacos for valuable discussions that helped us to significantly improve the presentation of the results.

References

