
 A SIMULATED-ANNEALING HEURISTIC 1

A SIMULATED-ANNEALING HEURISTIC FOR SHIFT SCHEDULING USING NON-

CONTINUOUSLY AVAILABLE EMPLOYEES

Gary M. Thompson

Cornell University

February 1995

Author Note

Gary M. Thompson is Associated Professor of Operations Management in the School of Hotel

Administration at Cornell University. He holds an M.B.A. from the University of Western

Ontario and a Ph.D. in Operations Management from The Florida State University. His current

research focuses on the effects on customer service of labor staffing and scheduling decisions.

His previous research has appeared or is forthcoming in Decision Sciences, Computers &

Operations Research, Journal of Operations Management, Management Science, Omega and

Operations Research.

Acknowledgement

The author wishes to thank the anonymous referees for their helpful comments, Professors Mike

Brusco and Larry Jacobs for their insights regarding simulated annealing, and Dr Samuel Raff

for his patience with this article.

 A SIMULATED-ANNEALING HEURISTIC 2

SCOPE AND PURPOSE

 Labor scheduling, at its most basic level, involves ensuring that enough employees to

serve customers are present during all the operating hours of a service facility. Service managers

frequently hire service delivery personnel who are available for work only during predefined

subsets of the operating day, despite the scheduling difficulties caused by such limited staff

availability. In this paper, we develop a simulated-annealing heuristic for shift scheduling using

employees having limited availability and, by comparing its performance to that of an efficient

optimal integer programming model, demonstrate its effectiveness. Our results also allow us to

make observations regarding appropriate search "neighborhoods" in labor-scheduling and other

applications of simulated-annealing.

ABSTRACT

 This paper presents a simulated-annealing heuristic (SAH) for developing shift schedules.

We assume that each employee is available only during an individually-specified portion of the

day and has individually-specified limits on the duration of shifts to which he/she can be

assigned. We evaluate the effectiveness of the SAH under several "neighborhood" search

parameters using a primary set of 144 test problems. These parameters include numerous criteria

for adding shifts during schedule construction and for dropping shifts during schedule

improvement. Our results allow us to make observations regarding appropriate search

"neighborhoods" in labor-scheduling and other applications of simulated-annealing. Using a

secondary set of 20 test problems we compare the SAH to an efficient optimal integer-

programming model. On average, SAH's schedules are 0.29% more costly than optimal

schedules but are obtained in 8.4% of the time required to generate optimal schedules.

 A SIMULATED-ANNEALING HEURISTIC 3

INTRODUCTION

 Services are the dominant employers in our current economy and their importance is

unlikely to decline in the near future. Hence, this efficient use of labor in services is a worthy

goal at the macro (country) level as well as at the micro (company) level. Labor efficiency is

kept high by avoiding surpluses of on-hand staff. However, to serve customers adequately,

enough employees must be present to provide the service without causing undo waiting. These

aims-having sufficient but not excess numbers of employees on hand-coupled with customer

demand that varies temporally across and within days, make labor scheduling a crucial but

complex task facing service managers.

Much of the published labor scheduling research has contained restrictive assumptions

defining acceptable shifts. Because the number of valid shifts grows combinatorially, common

test conditions have included few eligible periods in which breaks may be taken and planning

periods of 0.5 h or longer. Although these restrictions may be legitimate in specific instances,

many service environments have considerably more scheduling flexibility. In this paper,

scheduling flexibility is understood to be the extent and tightness of restrictions defining

acceptable schedules. With a few exceptions (Glover et al. [1], Loucks and Jacobs [2], Love and

Hoey [3], Thompson [4]), the labor scheduling literature has either explicitly or implicitly

assumed employees are available at any time during the operating day. This is a valid assumption

when labour staffing decisions are made (decisions regarding staff size, for example), but it

becomes less so once individual employees are hired. In a large number of service environments,

many employees are available for work only at limited times, a result of their commitments or

desires. Consequently, work schedules must be developed in deference to employee availability.

We consider availability as having two dimensions. First, the specific periods during the

 A SIMULATED-ANNEALING HEURISTIC 4

operating day that an employee is available limits the shifts to which he/she can be assigned.

Second, each employee may have individual limits on the length of shift to which he/she can be

assigned, that are independent of the periods in which the employee is available for work.

In this paper we present a simulated-annealing (SAH) for developing shift schedules

using homogeneously-skilled employees. We assume that each employee: (1) is available only

during an individually-specified portion of the operating day; and (2) has individually-specified

limits on the length of shift that he/she may work. Using a primary set of 144 test problems we

evaluate alternate neighborhood search patterns in the SAH. We use a secondary set of 20 test

problems to compare the performance of the SAH to an efficient integer programming model.

The organization of the remainder of this paper is as follows. We review relevant

literature, describe the simulated-annealing heuristic; identify experimental objectives; specify

the test environments; and provide and discuss results. We conclude the paper with suggestions

for future research.

LITERATURE REVIEW

 Dantzig [5] developed the original integer programming (IP) formulation of the shift

scheduling problem:

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = ∑ 𝑛𝑛∊𝑁𝑁 𝑐𝑐𝑛𝑛𝑥𝑥𝑛𝑛, (1)

subject to

∑ 𝑛𝑛∊𝑁𝑁 𝑎𝑎𝑛𝑛𝑛𝑛𝑥𝑥𝑛𝑛 ≥ 𝑟𝑟𝑛𝑛 for 𝑝𝑝 ∊ 𝑝𝑝, (2)

𝑥𝑥𝑛𝑛 ≥ 0 and integer for 𝑚𝑚 ∊ 𝑁𝑁, (3)

where

n = index for shifts

 A SIMULATED-ANNEALING HEURISTIC 5

N = set of unique shifts

𝑐𝑐𝑛𝑛= cost of having an employee work shift n

p = index for periods

P = set of planning periods,

𝑥𝑥𝑛𝑛= number of employees assigned to shift n

𝑎𝑎𝑛𝑛𝑛𝑛= �1, if period 𝑝𝑝 is a working (nonbreak) period of shift 𝑚𝑚,
0, otherwise, }

𝑟𝑟𝑛𝑛= number of employees needed to provide the desired level of customer service in period p.

We shall call the model defined by (1)-(3) UASSM-the "unlimited-availability shift-scheduling

model". UASSM's objective: (1) is to minimize the cost of the schedule, subject to the

restrictions that sufficient employees are present in each planning interval (2), and that there are

no partial assignments of employees to shifts (3).

Because optimal solutions are difficult to obtain to UASSM when realistic numbers of

shift derivatives are used, heuristics have played a major role in scheduling research. Started-

from scratch heuristics have been used by Buffa et al. [6], McGinnis et al. [7], Henderson and

Berry [8] and Bechtold and Showalter [9]. Henderson and Berry [8], Keith [10], Krajewski et al.

[11], Mabert and Watts [12], Morris and Showalter [13], Bailey and Field [14], Holloran and

Byrn [15], and Showalter and Mabert [16] derived initial schedules by solving linear

programming (LP) relaxations of IP problems. These initial schedules were, in most cases,

subsequently heuristically improved. More recently, Bechtold et al. [17] rigorously evaluated a

wide range of scheduling heuristics, and found the procedures of Keith [10] and Morris and

Showalter [13] to perform best. Brusco and Jacobs [18] developed a simulated-annealing

 A SIMULATED-ANNEALING HEURISTIC 6

heuristic for the tour-scheduling problem that yielded better schedules than the Keith [10] and

Morris and Showalter [13] heuristics.

With a few exceptions, which we will discuss, the labor scheduling literature has either

explicitly or implicitly assumed employees are available at any time during the operating day.

Glover et al. [1] were the first to report on a procedure, a construction/improvement heuristic, for

scheduling employees with restricted availability. Love and Hoey [3] developed two network

flow models to be used consecutively for scheduling employees having limited availability. The

primary model scheduled shifts with the objective of minimizing surplus staffing, while the

secondary model assigned employees to the shifts scheduled by the first model using various,

differentially-weighted objective components. As the primary model treats all employees as

being continuously available, there is no guarantee that schedules it generates are availability-

feasible, that is, that all scheduled shifts can be uniquely assigned to individual employees.

Loucks and Jacobs [2] presented a model and heuristic for scheduling employees having

different skills and limited availability to different tasks. A key weakness of their model is its

failure to schedule breaks.

Thompson [4] developed a model which, by implicitly matching employees to shifts,

enabled a large reduction in the number of variables required to model limited employee

availability. This reduction in the number of variables required to model limited employee

availability. This reduction in the number of variables in turn resulted in significantly faster

solutions to an LP relaxation of the implicit-matching model than to an LP relaxation of an

explicit-matching extension of (1)-(4). To facilitate the implicit matching, Thompson [4] defined

a region to be all those shifts which could be staffed by the same subset of employees. These

regions were disjoint, and their union was the set of all shifts. With binary variables defined for

 A SIMULATED-ANNEALING HEURISTIC 7

each of the regions an employee could work, the implicit matching of employees to shifts was

imposed by first mapping employees onto regions, and then mapping regions onto shifts. Our

stimulated-annealing heuristic makes use of an expanded definition of regions that allows

individually-specified minimum shift durations, while we use a modified form of the efficient IP

model developed by Thompson [4] as a comparison procedure.

Combining and extending the models of Keith [10] and Thompson [4] gives the

mathematical programming model of the shift-scheduling problem we consider, which we call

IASSM:

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚 = ∑ 𝑒𝑒∊𝐸𝐸 ∑ 𝑛𝑛∊𝑆𝑆𝑒𝑒 𝑐𝑐𝑛𝑛𝑥𝑥𝑒𝑒𝑛𝑛 + ∑ (∑ 𝑘𝑘𝑛𝑛𝑝𝑝𝑢𝑢𝑛𝑛𝑝𝑝 − ∑ 𝑏𝑏𝑛𝑛𝑝𝑝0𝑛𝑛𝑝𝑝∞
𝑝𝑝=1

𝑟𝑟𝑝𝑝
𝑝𝑝=1 𝑛𝑛∊𝑃𝑃) (4)

subject to

∑ 𝑒𝑒∊𝐸𝐸 ∑ 𝑎𝑎𝑛𝑛𝑛𝑛𝑥𝑥𝑒𝑒𝑛𝑛 + ∑ 𝑢𝑢𝑛𝑛𝑝𝑝 − ∑ 0𝑛𝑛𝑝𝑝 = 𝑟𝑟𝑛𝑛 for 𝑝𝑝 ∊ 𝑃𝑃∞
𝑝𝑝=1

𝑟𝑟𝑝𝑝
𝑝𝑝=1𝑛𝑛∊𝑆𝑆𝑒𝑒 (5)

∑ 𝑥𝑥𝑒𝑒𝑛𝑛 ≤ 1𝑛𝑛∊𝑆𝑆𝑒𝑒 for 𝑚𝑚 ∊ 𝐸𝐸, (6)

𝑥𝑥𝑒𝑒𝑛𝑛 ∊ {0,1} for 𝑚𝑚 ∊ 𝐸𝐸 and 𝑚𝑚 ∊ 𝑆𝑆𝑒𝑒 , (7)

𝑢𝑢𝑛𝑛𝑝𝑝 ∊ {0,1} for 𝑝𝑝 ∊ 𝑃𝑃 and 𝑗𝑗 = 1, … , 𝑟𝑟𝑛𝑛, (8)

𝑂𝑂𝑛𝑛𝑝𝑝 ∊ {0,1} for 𝑝𝑝 ∊ 𝑃𝑃 and 𝑗𝑗 = 1, … ,∞, (9)

where

𝑚𝑚 = index for employees

𝐸𝐸 = set of available employees,

𝑆𝑆𝑒𝑒 = set of shifts for which employee e is available to work (defined by the specific periods in

which employee e is available for work and by the minimum and maximum lengths of shifts to

which employee e can be assigned),

𝑥𝑥𝑒𝑒𝑛𝑛 = �1, 𝑚𝑚𝑖𝑖 𝑚𝑚𝑚𝑚𝑝𝑝𝑒𝑒𝑒𝑒yee e is assigned to shift 𝑚𝑚,
0, otherwise,

 A SIMULATED-ANNEALING HEURISTIC 8

𝑢𝑢𝑛𝑛𝑝𝑝 = �1, if period 𝑝𝑝 is understaffed by at least 𝑗𝑗 employees,
0, otherwise,

𝑒𝑒𝑛𝑛𝑝𝑝 = �1, if period 𝑗𝑗 𝑚𝑚𝑖𝑖 overstaffed by at least 𝑗𝑗 employees
0, otherwise,

𝑘𝑘𝑛𝑛𝑝𝑝 = incremental monetary cost of increasing the understaffing in period p from j - 1 to j

employees, where 1 ≤ 𝑘𝑘𝑛𝑛1 ≤ 𝑘𝑘𝑛𝑛2 ≤ ⋯ ≤ 𝑘𝑘𝑛𝑛,𝑟𝑟𝑝𝑝,

𝑏𝑏𝑛𝑛𝑝𝑝 = the incremental monetary benefit of increasing the overstaffing in period p from j- 1 to j

 employees, where 1 > 𝑏𝑏𝑛𝑛1 ≥ 𝑏𝑏𝑛𝑛2 ≥ ⋯

with p, P, 𝑎𝑎𝑛𝑛𝑛𝑛, 𝑐𝑐𝑛𝑛 and 𝑟𝑟𝑛𝑛 as earlier defined.

IASSM, or the "individual-availability shift-scheduling model", differs from UASSM in several

regards. First, the model explicitly accounts for the availability of individual employees by

explicitly matching employees to shifts. A matching of employees to shifts is necessary to ensure

the availability-feasibility of a schedule. Second, though the desired staffing levels (the𝑟𝑟𝑛𝑛) are

identical in UASSM and IASSM, IASSM allows shortfalls in each period. Though typically

undesirable, shortfalls of employees may be unavoidable if the limited availability of employees

precludes satisfying employee requirements in some periods. Third, IASSM recognizes the well-

established queuing phenomenon of diminishing marginal improvement in service with

increasing numbers of staff. IASSM uses binary variables to measure both the shortage and

surplus of employees, by period. Associated with these binary variables are nonlinear,

monotonically decreasing cost or value coefficients. The next section describes the heuristic we

developed to solve IASSM.

 A SIMULATED-ANNEALING HEURISTIC 9

SIMULATED-ANNEALING HEURISTIC (SAH)

Overview

Figure presents a pictorial representation of our simulated-annealing heuristic (SAH). In

developing the heuristic, we drew heavily on the work of Brusco and Jacobs [18). The SAH uses

three separate schedules-the best found so far, an incumbent schedule, and a trial schedule. All

schedule modifications are made to the trial schedule. The incumbent schedule essentially serves

to undo ineffective changes made to the trial schedule. To ensure availability-feasibility, all the

routines of SAH maintain an explicit matching of employees to shifts in all three schedules. Six

routines comprise the SAH: INITIALIZE, CONSTRUCT, NIXREDUNDANT, FINETUNE,

EVALUATE and PERTURB. INITIALIZE initializes the parameters used in the heuristic.

CONSTRUCT repetitively adds worthwhile shifts to the schedule. NIXREDUNDANT

eliminates shifts that reduce the attainment of the objective (4). FINETUNE seeks to improve the

solution by making minor changes in the scheduled shifts, such as in break timing, for example.

EVALUATE appraises the solution and, if necessary, replaces the incumbent and best solutions.

PERTURB disturbs the solution by dropping selected shifts. CONSTRUCT,

NIXREDUNDANT, FINETUNE, EVALUATE and PERTURB are used repetitively until the

SAH exceeds its specified executive time. We describe SAH's routines in greater detail below.

INITIALIZE

In INITIALIZE, parameters specific to the SAH are initialized. These parameters are

sahpt, the temperature, which is initialized to 1.25; saphl, the temperature length, which is

initialized to 100; sahpr, the cooling ratio, which is initialized to 0.92; 𝑚𝑚𝑏𝑏𝑒𝑒𝑏𝑏𝑏𝑏, the objective value

of the best solution found to date, which is initialized to∞; and L, the iteration counter, which is

initialized to 0.

 A SIMULATED-ANNEALING HEURISTIC 10

CONSTRUCT

CONSTRUCT scans all candidate shifts, keeping a list of the five having the highest

values on a specific set of criteria. Candidate shifts are those that can be assigned to an employee

and that reduce the cost of the schedule. One of the objectives of the research is to evaluate the

effectiveness of various rules for selecting shifts. These rules will be discussed later, but, by way

of example, one of these rules selects the shift that covers the period having the greatest

understaffing, and breaks ties by selecting the shift with the greatest average understaffing for

the periods that it covers.

CONSTRUCT randomly selects one of the five best shifts and adds it to the schedule.

CONSTRUCT continues to add shifts until all available employees have been assigned shifts or

the schedule cost cannot be reduced by adding any shift. For a shift to be added to the schedule, a

free (unassigned) employee is necessary. If any of the following conditions hold, then the shift is

staff able: (1) if a free employee can work the new shift; (2) if a free employee can be assigned to

a second employee's shift and the second employee can work the new shift; or (3) if a free

employee can work a second employee's shift, the second employee can work a shift assigned to

a third employee, and the third employee can work the new shift. If multiple employees can

feasibly be assigned to a new shift, the employee available for the shortest time is assigned to it.

Full-time (FT) employees typically allow for a lower flexibility in constructing schedules

than do part-time (PT) employees. Because of this, if the number of PT employees is limited, it

can be useful to schedule a minimum number of FT shifts prior to scheduling PT shifts. This

minimum is determined by assuming all available PT employees will work their shortest possible

shift. Any remaining requirements must then be staffed by FT employees, who are assumed to be

 A SIMULATED-ANNEALING HEURISTIC 11

able to satisfy requirements in each of the periods they work. The requirement of a minimum

number of FT shifts is removed following completion of the initial CONSTRUCT process.

To reduce both schedule construction and improvement times, the SAH makes use of the

concept of regions and the region-definition algorithm presented by Thompson [4]. Regions are

particularly useful in checking the availability-feasibility of changes to the schedule. This is

because there are typically far fewer regions than shifts, and because all shifts within a region

have the same availability-feasibility status.

The initial use of CONSTRUCT iteratively builds a schedule, one shift at a time. The

final schedule constructed in this manner is not likely to be optimal since any shift selected

affects all later shift choices. The goal of all subsequent actions of the SAH is to make

improvements to the initial schedule. We describe these actions in the following subsections.

NIXREDUNDANT

Upon completion of CONSTRUCT, the schedule may contain shifts which may be

dropped from the schedule while simultaneously lowering (4). NIXREDUNDANT identifies and

eliminates such shifts. It works by scanning all shifts in the schedule, and recording the three

shifts that would most reduce the schedule cost, should they be dropped. One of these three shifts

is selected at random and dropped from the schedule. The scan-and-drop process repeats until no

shift can be dropped without increasing the cost of the schedule.

FINETUNE

The four distinct routines of FINETUNE operate in a single-pass sequence: (1) move

breaks (BREAK) and (2) offset (OFFSET), (3) lengthen (LENGTHEN), or (4) shorten shifts

(SHORTEN). Three of the FINETUNE routines-OFFSET, LENGTHEN and SHORTEN have

both simple and advanced actions.

 A SIMULATED-ANNEALING HEURISTIC 12

In BREAK, each shift has its break checked in the full range of allowable positions and

the break having the best new position is moved. BREAK concludes when no break can be

moved to a position that lowers the cost of the schedule.

In the simple actions of OFFSET, displacements of up to 2 h are considered but break

timing is not altered. In the advanced option, displacements of up to 1.5 h are evaluated

simultaneously with changes in break timing. OFFSET implements the shift/break displacement

yielding the greatest schedule cost reduction and terminates when no shift movement lowers the

schedule cost. Both LENGTHEN and SHORTEN make three types of passes searching for an

improved schedule. As these routines are very similar, we will only describe LENGTHEN. In the

first of three types of passes, LENGTHEN checks all admissible shift extensions without altering

breaks. When no such extension reduces the schedule cost, LENGTHEN makes the second type

of pass. In this pass, it considers altering the position of a meal break simultaneously with

lengthening the shift. After making a single schedule improvement using the second type of

extension, LENGTHEN again considers shift changes of the first type. In the third type of pass,

LENGTHEN considers altering the position and, if appropriate, incrementing the length of meal

breaks simultaneously with lengthening each shift. For all three types of changes, LENGTHEN

implements the shift extension and break length and/or position change that yields the greatest

schedule cost reduction per unit of length change. After making a single schedule improvement

using the third type of extension, LENGTHEN reconsiders shift changes of the first type. It

terminates when no extension of any type reduces the schedule cost.

When modifying a shift in the schedule, a free employee is not always necessary to

ensure the schedule is availability-feasible. If the shift being modified falls in the same region, or

falls in a region that can be staffed by the employee currently assigned to the shift, then the

 A SIMULATED-ANNEALING HEURISTIC 13

employee assigned to the shift can continue to staff it. In the event that neither of these

conditions hold, the employee currently assigned to the shift is temporarily freed-up, and then the

modified shift is treated as if it were a new shift being scheduled. Then, if any of the earlier-

listed conditions for new shift applies, the modified shift is staffable.

EVALUATE

In EVALUATE, the trial schedule is evaluated relative to the best solution found to date

and to the current incumbent solution. Let 𝑚𝑚𝑏𝑏𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡equal the cost of the current trial schedule,

𝑚𝑚𝑡𝑡𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑏𝑏𝑒𝑒𝑛𝑛𝑏𝑏 equal the cost of the incumbent schedule, and x be a uniform (0, 1) random variate. If

𝑚𝑚𝑏𝑏𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡is less than 𝑚𝑚𝑏𝑏𝑒𝑒𝑏𝑏𝑏𝑏, then the current trial solution replaces both the best and incumbent

solutions; if 𝑚𝑚𝑏𝑏𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡 is less than 𝑚𝑚𝑡𝑡𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑏𝑏𝑒𝑒𝑛𝑛𝑏𝑏 or if x is less than exp (𝑚𝑚𝑡𝑡𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑏𝑏𝑒𝑒𝑛𝑛𝑏𝑏 − 𝑚𝑚𝑏𝑏𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡) ÷ sahpt,

then the trial solution replaces the incumbent solution; otherwise, the incumbent solution

replaces the trial solution.

Next, EVALUATE increments L by 1. If L equals sahpl, the sahpt is decreased by the

proportion of (1 - sahpr) and L is reset to zero. Finally, EVALUATE calculates the elapsed time.

If the elapsed time is less than the 30 s limit we imposed, SAH begins the PERTURB process;

otherwise SAH terminates.

PERTURB

PERTURB attempts to identify shifts which, if dropped from the schedule will, through

the addition of other shifts-allow for further improvement in the schedule. PERTURB drops 1/3

of the shifts in the schedule, but at least six, and no more than 10, in any iteration. PERTURB

scans all shifts in the schedule, recording the three with the highest values on a criteria set.

PERTURB randomly selects one of the three top shifts and drops it from the schedule. After

dropping the specified number of shifts, PERTURB passes control to CONSTRUCT.

 A SIMULATED-ANNEALING HEURISTIC 14

One of the objectives of the research is to evaluate the effectiveness of various rules for

selecting shifts to be dropped. These rules will be discussed in the next section, but, by way of

example, one of the rules selects the shift that covers the period having the greatest overstaffing,

and breaks ties by selecting the shift that yields the greatest improvement in the objective (4).

EXPERIMENTAL OBJECTIVES

 We had four goals in testing the SAH:

1. To identify better performing rules for adding shifts during CONSTRUCT.

2. To identify better performing rules for dropping shifts during PERTURB.

3. To evaluate the benefit of including no, simple, or both simple and advanced actions in

FINETUNE.

4. To compare SAH's performance to that of an optimal procedure.

We describe these goals below.

Our first goal was to evaluate a wide range of criteria for selecting shifts to add to the

schedule in CONSTRUCT. Table 1 presents definitions of and literature references for the

criteria used in selecting shifts. The primary criteria are: the maximum understaffing in any

working period of a shift; the average understaffing per working period; the reduction in

schedule cost that occurs when the shift is added, divided by the number of working periods; the

improvement in schedule smoothness that result from the addition of the shift; and a measure of

restrictiveness caused by the limited availability of employees.

Table 2 summarizes how the SAH used these criteria in 20 prioritized sets of "add-rules."

Each add-rule (AR) consists of a primary criterion with various tie breaking criteria. The tertiary

and quaternary tie-breakers are the same for all ARs: choose the shift with the greatest number of

 A SIMULATED-ANNEALING HEURISTIC 15

working periods; and alternate between choosing the shift with the earliest or latest starting time,

respectively. Working periods are defined to be those periods in a shift when work occurs, i.e.

breaks are excluded.

Our second goal was to evaluate rules for selecting shifts to be dropped from the schedule

in PERTURB. Table 3 presents definitions of and literature references for the criteria the SAH

uses to identify shifts for dropping. The SAH used three criteria sets, or "drop-rules" (DRs). The

DRs use a primary criteria: (1) the maximum overstaffing in any working period of a shift; (2)

the average overstaffing in the working periods of a shift; and (3) the schedule cost reduction

occurring when the shift is dropped, averaged across the number of its working periods. All

break ties by dropping the shift yielding the greatest reduction in schedule cost.

The third goal was to evaluate the effectiveness of the SAH implemented without

FINETUNE (FOl), with only simple FINETUNE actions (F02), and with both simple and

advanced FINETUNE actions (F03). The simple actions of FINETUNE including moving

breaks, and offsetting, lengthening, and shortening shifts without moving breaks. The advanced

actions of FINETUNE include the simple actions, as well as offsetting, lengthening and

shortening shifts while simultaneously moving or altering the length of breaks.

Addressing goals one through three factorially resulted in 180 implementations of the

SAH (arising from 20 ARs, three DRs and three FINETUNE options). We tested the 180

implementations of SAH on a set of 144 problems as described in the next section.

Our fourth goal was to evaluate the best implementations of SAH compared to optimal

schedules generated using commercially-available software for solving IP models. We conducted

this evaluate using a set of 20 test problems, as described in the next section.

 A SIMULATED-ANNEALING HEURISTIC 16

TEST ENVIRONMENTS

We utilize two test sets in this paper. The first, Test Data Set 1 (TDSl), was comprised of

144 separate problems and used in Experimental Goals 1-3. The second, Test Data Set 2 (TDS2),

was comprised of 20 problems and used in Experimental Goal 4.

A 15 h operating day, comprised of 60 15-min planning intervals, was used in all TDSl

problems. Allowable shifts for this problem set were defined by the restrictions given in Table 4.

These shift restrictions and the 15 h operating day resulted in a maximum of 4027 unique shifts

for all TDS 1 problems, ignoring availability-feasibility.

For TDS2, we randomly selected 20 of the 144 problems in TDSl and converted the

problems to 30-min planning intervals from the original 15-min periods. We made the

conversion since we were unable to solve the IP model using the original 15-min planning

periods. The restrictions defining acceptable shifts were essentially the same as those reported in

Table 4, but converted to 30-min planning intervals.

Employee requirements data

A limitation of much of the published scheduling research is the restricted range of

staffing requirements (demand) patterns used in testing scheduling procedures. In TDSl, five

types of employee requirements patterns were used: uniform, unimodal, bimodal, trimodal and

pattern-less (i.e. random). Each of these patterns was generated with mean employee

requirements of 5 and 15 employees and, excepting the uniform requirements, with coefficients

of variations of approx. 0.12 and 0.30. This resulted in TDSl having a total of 18 distinct staffing

requirements patterns representing the range of customer demand occurring in service

organizations. Figure 2 illustrates all of the patterns save the uniform.

 A SIMULATED-ANNEALING HEURISTIC 17

Employee availability data

Three types of employee availability characteristics were used, each having two levels:

the average number of hours of availability for: (1) FT; (2) PT employees; and (3) the

requirements coverage ratio. Combining the 18 employee requirements patterns with the eight

employee availability combinations yielded the 144 problems in TDSI.

The low and high levels of average FT employee availability were 40 and 55 15-min

periods. For PT employees, the comparable values were 25 and 50 15-min periods, respectively.

The total number of periods of availability for individual employees was uniformly distributed

about the averages.

For each employee, we randomly selected a contiguous subset of periods in which they

would be available for work. FT employees all had minimum and maximum acceptable shift

lengths of 36 periods. Each PT employee had a randomly selected minimum acceptable shift

length of between 12 and 19 periods and a randomly selected maximum acceptable shift length

of between 31 and 36 periods.

The low and high levels of the requirements coverage ratio were 1.25 and 2.50. The

requirements coverage ratio is given by the maximum hours that could be worked by all

employees, divided by the total labor hours required to satisfy customer demand. Coverage

values close to one represent a low degree of scheduling flexibility, while higher coverage values

represent higher scheduling flexibility.

For all problems, the relative abundance of FT employees was fixed at 0.2. We define

this measure to be the ratio of the maximum hours that could be worked by FT employees

divided by the maximum labor hours that could be worked by all employees. A level of 0.2

restricts the FT employees to comprising no more than approx 20% of the total hours scheduled.

 A SIMULATED-ANNEALING HEURISTIC 18

We define schedule generation time to be the average, across all problems in a test

problem set, of the time required on a Gateway P5-90 to perform all activities associated with

generating a schedule. The SAH was coded in FORTRAN and compiled using Microsoft

FORTRAN PowerStation 1.0 [19]. The IP model was generated using GAMS [20] and solved

using OSL [21].

Test Data Set 1

Table 5 presents the 20 best implementation of the SAH. AR2-DR3-F03 yielded the best

schedules overall, with a mean schedule cost of 964.516. This was followed closely by AR2-

DR1-F03, with a mean schedule cost of964.553. It is noteworthy that the best 12

implementations of the SAH all used the advanced FINETUNE option (F03).

In 52 of the 60 different AR/DR combinations, the SAH using F03 yielded a lower

average schedule cost than the SAH using F02 and in turn the SAH using F02 yielded a lower

average schedule cost than the SAH implemented with FOL We believe the effectiveness of

FINETUNE is due to the range of alternate shifts that can be quickly checked. That is, it is more

efficient to use a process like FINETUNE to quickly check if a small, incremental change in a

shift is beneficial than it is to search for a small improvement by dropping shifts from the

schedule and adding other shifts. We discuss the implications of this result in the next section.

Overall, the SAH implemented using AR2 yielded the best schedule, with the nine

implementations of the SAH that use AR2 yielding an average schedule cost of 977 .936. This

was followed by ARIO at 992.919, ARl 1 at 993.146, ARI at 994.438 and AR9 at 1008.010.

AR2 uses the maximum understaffing in any working period as the primary criterion for adding

a shift to the schedule.

 A SIMULATED-ANNEALING HEURISTIC 19

On average, the 180 implementations of SAH completed 312.95 iterations for the 72

problems having a mean requirement of 5 employees. By comparison, the 180 implementations

of SAH completed 95.88 iterations for the 72 problems having a mean requirement of 15

employees. We can thus estimate the number of iterations the SAH can average, per second, as a

function of the mean employee requirement mer as:

5.58 × 𝑚𝑚𝑚𝑚𝑟𝑟−1.075

The implication of equation (10) is that one should consider increasing the time allocated

to the SAH, in a slightly non-linear fashion, as the mean employee requirements increase.

Based on our initial results, we then investigated the reduction in schedule costs that

would occur as the best schedule was chosen from multiple schedules generated using various

implementations of the SAH. To do this, we sequentially chose the SAH implementation making

the biggest successive improvement as the next combination to use in the development of

multiple schedules. Table 6 presents the results of doing this on the TDSl problems. With the

average cost of schedules generated by AR2-DR3-F03 normalized to 100%, the average

schedule cost modestly fell to 99.81, 99.73 and 99.69% as the best schedule was selected from

two schedules (generated with AR2- DR3-F03 and AR20-DR3-F03), three schedules (generated

with AR2-DR3-F03, AR20-DR3-F03 and AR16-DR1-F03) and four schedules (generated with

AR2-DR3-F03, AR20-DR3-F03, AR16-DR1-F03 and AR19-DR2-F03), respectively. Even more

modest schedule cost reductions were observed as more than four schedules were generated for

each test problem.

Interestingly, four of the five criteria for adding shifts and all three of the criteria for

dropping shifts (see Tables 2 and 3) were represented in the four sequentially-best SAH

implementations (AR2-DR3-F03, AR20-DR3-F03, AR16-DR1-F03 and AR19-DR2-F03). Thus,

 A SIMULATED-ANNEALING HEURISTIC 20

the performance of the SAH when used to generate multiple schedules is likely to be

significantly more robust than when only a single schedule is generated for a problem.

Based on the results reported in Table 6, we decided to evaluate five additional

implementations of the SAH. The first, F AST2/3/3, was a fast implementation of AR2-DR3-

F03. FAST2/3/3 only calculates the parameter values relevant to AR2 and DR3, instead of all

parameter values reported in Tables 1 and 3 as for the standard SAH. The second, CMB, was an

implementation of the SAH that sequentially uses the top four forms of the SAH (AR2-DR3-

F03, AR20-DR3-F03, AR16-DR1-F03 and AR19-DR2-F03), switching between forms at each

iteration. The third, SWT, was another implementation using the top four forms, but SWT

switches between forms only at multiples of three iterations without an improvement in the

schedule. The fourth, EQTIME, uses AR2-DR3-F03, AR20-DR3-F03, and AR16-DR1-F03 for

10s each. The fifth, PRTIME, uses AR2-DR3-F03 for 15 s, AR20-DR3-F03 for 10 sand AR16-

DR1-F03 for 5 s. As with the original implementations, the five extra were each limited to 30 s

per problem. Table 7 reports the mean schedule costs of the five additional implementations. All

five new implementations yielded modestly better schedules than the original implementation of

AR2-DR3-F03. PRTIME yielded the best schedules, with a mean cost of 99.84% of that for the

original implementation of AR2-DR3-F03.

Test Data Set 2

Table 7 also compares schedules generated with the SAH to those generated with

Thompson's [4] efficient IP model on the 20 problems in TDS2. FAST2/3/3's average schedule

cost was 0.317% above the optimal schedule cost of 329.164. The best implementation of the

SAR was PRTIME, which yielded schedules costing only 0.285% above optimal. Generating the

optimal schedules required 357.98 s, on average, while the SAR implementations each used only

 A SIMULATED-ANNEALING HEURISTIC 21

30 s, per problem. Thus, the best implementation of the SAR yielded schedules only 0.29% more

costly than optimal schedules in 8.38% of the time required to generate optimal schedules.

On TDS2, therefore, SAR's performance must be judged as very good relative to the cost

of and time required to generate optimal schedules. SAR's performance/schedule generation time

ratio would likely be better with more complex problems, although this remains to be tested (the

generation of optimal solutions becomes very difficult with more complex problems like those

found in TDSl).

SUGGESTIONS FOR FUTURE RESEARCH

We have described a simulated-annealing heuristic for developing shift schedules using

homogeneously-skilled employees available at restricted times. Simulated-annealing heuristics

likely have wide practicality for service organizations since: (1) the SAR requires no specialized

solution software (such as that required to solved LP or IP models); (2) the SAR develops

schedules rapidly on a microcomputer even when a good deal of scheduling flexibility exists; (3)

the cost of schedules generated by SAR very nearly equaled the cost of optimal schedules; (4)

the SAR generated schedules in much less time than was required to generate optimal schedules;

and (5) the robustness of SAH is greater when complementary criteria are used together, with the

most beneficial assigned more of the available time.

Given SAH's strong performance, it is useful to consider improvements to it which

reduce both schedule generation times and mean schedule costs. It is possible, though unlikely,

that a procedure could be developed which would prove more effective than using regions to

determine the availability-feasibility of changes to the schedule. Second, the range of add- and

drop-rules could be expanded. However, given the close-to-optimal performance of the best SAH

 A SIMULATED-ANNEALING HEURISTIC 22

implementations, such an investigation is likely to yield only very small incremental reductions

in mean schedule costs.

Although this research has assumed all employees have equivalent skills, in reality skill

levels vary. Further, employees may be required to perform multiple tasks. It would seem

natural, then, to consider two direct extensions to this work: (1) the scheduling to a single task of

non-continuously available, heterogeneously-skilled employees; and (2) the scheduling to

multiple tasks of non-continuously available, heterogeneously-skilled employees having

heterogeneous qualifications. It is quite possible that the concept of regions could be extended to

the multi-task environment to facilitate the checking of availability and task assignment

feasibility.

Some may argue that tour scheduling is more relevant than shift scheduling. Tour

scheduling generates a week-long schedule, commonly assuming that employees work the same

shift each day they work. The SAH approach described here may offer possibilities for extension

into the tour scheduling environment. In particular, since we assumed that each employee has

individually-specified limits on the duration of shift he/she may work, the SAH would be useful

in a disaggregation approach to tour scheduling. Thompson [22] provides suggestions for how

one might do this. One approach would begin by solving the daily shift scheduling problems

independently. It would then use the resultant shifts in an assignment model that includes any

relevant across-day restrictions. For example, such restrictions might seek to assign each

employee a total work content between specified minimums and maximums. A second approach

would be to rank the days from least flexible to most flexible. In developing the rankings, one

could use measures similar to the availability index reported in Table 1. Then the daily shift

 A SIMULATED-ANNEALING HEURISTIC 23

scheduling problems could be solved, beginning with the least flexible and ending with the most

flexible. Any across-day restrictions could be incorporated, as appropriate, in the daily problems.

Our results have several implications for future research using simulated annealing. First,

the strong performance of the SAH implementations using the advanced FINETUNE options

suggest that similar actions be investigated in other problems. For example, in general set-

covering problems, it may prove beneficial to evaluate the "morphing" of a variable in solution

into variables that are not in solution. In labor tour scheduling, for example, "morphing" would

encapsulate changes in shift duration, but also changes in the days worked. Second, our results

suggest that better performance can be achieved if complementary criteria are used to generate

the neighborhood in simulated annealing. Third, our findings suggest that one allocate time to

various criteria in relation to the benefit of the criteria yield.

 A SIMULATED-ANNEALING HEURISTIC 24

REFERENCES

1. F. Glover, C. McMillan and R. Glover, A heuristic programming approach to the

employee scheduling problem and some thoughts on 'Managerial robots'. J. Opers. Mgmt

4, 113-128 (1984).

2. J. S. Loucks and F. R. Jacobs, Tour scheduling and task assignment of a heterogeneous

work force: a heuristic approach. Decis. Sci. 22, 719-738 (1991).

3. R.R. Love, Jr and J.M. Hoey, Management science improves fast food operations.

Interfaces 20, 21-29 (1990).

4. G. M. Thompson, Shift scheduling when employees have limited availability: an L. P.

approach. J. Opers. Mgmt 9, 352-370 (1990).

5. G. B. Dantzig, A comment on Edie's Traffic delays at toll booths'. Opers Res 2, 339-341

(1954).

6. E. S. Buffa, M. J. Cosgrove and B. J. Luce, An integrated work shift scheduling system.

Decis. Sci. 7, 620-630 (1976).

7. L. F. McGinnis, W. D. Culver and R.H. Deane, One- and two-phase heuristics for

workforce scheduling. Computers Ind. Engng 2, 7-15 (1978).

8. W. B. Henderson and W. L. Berry, Heuristic methods for telephone operator shift

scheduling: an experimental analysis. Mgmt Sci 22, 1372-1380 (1976).

9. S. E. Bechtold and M. J. Showalter, A methodology for labor scheduling in a service

operating system. Decis. Sci. 18, 89-107 (1987).

10. E.G. Keith, Operator scheduling. AIIE Trans. 11, 37-41 (1979).

11. L. J. Krajewski, L. P. Ritzman and P. McKensie, Shift scheduling in banking operations:

a case application. Interfaces 10, 1-8 (1980).

 A SIMULATED-ANNEALING HEURISTIC 25

12. V. A. Mabert and C. A. Watts, A simulation analysis of tour-shift construction

procedures. Mgmt Sci. 28, 520-532 (1982).

13. J. G. Morris and M. J. Showalter, Simple approaches to shift, days-off and tour

scheduling problems. Mgmt Sci. 29, 942-950 (1983).

14. J. Bailey and J. Field, Personnel scheduling with flexishift models. J. Opers Mgmt 5, 327-

338 (1985).

15. T. J. Holloran and J. E. Byrn, United Airlines station manpower planning system.

Interfaces 16, 39-50 (1986).

16. M. J. Showalter and V. A. Mabert, An evaluation of a full-/part-time tour scheduling

methodology. Int. J. Opers Product Mgmt 8, 54-71 (1989).

17. S. E. Bechtold, M. J. Brusco and M. J. Showalter, A comparative evaluation of labor tour

scheduling methods. Decis. Sci. 22, 683-699 (1991).

18. M. J. Brusco and L. W. Jacobs, A simulated annealing approach to the cyclic staff-

scheduling problem. Nav. Res. Logist. 40, 69-84 (1993).

19. Microsoft Corporation, Microsoft FORTRAN PowerStation 1.0. Microsoft Corporation,

Redmond, WA (1993).

20. A. Brooke, D. Kendrick and A. Meeraus, GAMS, Release 2.25, A User's Guide. The

Scientific Press, South San Francisco, CA (1992).

21. IBM Corporation. Optimization Subroutine Library, Release 2. Kingston, NY (1991).

22. G. M. Thompson, A comparison of techniques for scheduling non-homogeneous

employees in a service environment subject to non-cyclical demand. Unpublished Ph.D.

Dissertation, The Florida State University (1988).

 A SIMULATED-ANNEALING HEURISTIC 26

Table 1. Criteria for selecting shifts to be added to the schedule.

 A SIMULATED-ANNEALING HEURISTIC 27

Table 2. Add-rule shift selection criteria priority ranking.

 A SIMULATED-ANNEALING HEURISTIC 28

Table 3. Selection criteria for dropping shifts.

 A SIMULATED-ANNEALING HEURISTIC 29

Table 4. Restrictions defining allowable shifts for Test Data Set 1.

 A SIMULATED-ANNEALING HEURISTIC 30

Table 5. Average final schedule costs on Test Data Set I for the 20 best implementations of the

SAHa

 A SIMULATED-ANNEALING HEURISTIC 31

Table 6. The impact of generating multiple schedules with the SAH using different add- and

drop-rules and selecting the best.

 A SIMULATED-ANNEALING HEURISTIC 32

Table 7. A comparison of various implementations of the SAH on TOSI and TDS2a

 A SIMULATED-ANNEALING HEURISTIC 33

Figure 1. A pictorial overview of the simulated-annealing heuristic.

 A SIMULATED-ANNEALING HEURISTIC 34

Figure 2. Employee requirements patterns in TDSI.

