INCREMENTAL COMPUTATION: A SEMANTICS-BASED

SYSTEMATIC TRANSFORMATIONAL APPROACH

A Dissertation
Presented to the Faculty of the Graduate School
of Cornell University
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by
Yanhong Annie Liu

January 1996



(© Yanhong Annie Liu 1996
ALL RIGHTS RESERVED



INCREMENTAL COMPUTATION: A SEMANTICS-BASED SYSTEMATIC
TRANSFORMATIONAL APPROACH

Yanhong Annie Liu, Ph.D.
Cornell University 1996

Incremental computation takes advantage of repeated computations on inputs
that differ slightly from one another, computing each new output incrementally by
making use of the previous output rather than from scratch.

This thesis concerns the theory, design, and implementation of a general approach
to incremental computation. It also elucidates the essence of improving the efficiency
of computations by relating it to incremental computation. Our general approach
allows incremental computation to be obtained systematically from non-incremental
computation and program efficiency to be systematically improved.

This research focuses on identifying the fundamentals of efficient incremental com-
putation out of domain-specific properties and language-specific features, devising a
general framework that accommodates these fundamentals, and developing a system-
atic approach based on the framework that exploits program semantics.

Three fundamental aspects of incremental computation are identified: avoiding
repeated identical computations, caching useful intermediate results, and discovering
appropriate auxiliary information. Given a program f and an operation &, an in-
cremental program is developed to compute f(z @& y) efficiently by using f(z), the
intermediate results computed in computing f(z), and auxiliary information about z
that can be inexpensively maintained.

The approach in this thesis is formalized for a simple functional language, but the
underlying principles also apply to other programming languages. It exploits pro-
gram semantics to discover incrementality that is not directly embedded in primitive
operators and takes into consideration properties of application domains as well. It
is composed of step-wise program analysis and transformation modules that can, for
the most part, be mechanized.

Since every non-trivial computation proceeds by iteration (or recursion), the ap-
proach is used straightforwardly for achieving efficient computation in general, by
computing each iteration incrementally using an appropriate incremental program.
This method is applied to problems in interactive systems, optimizing compilers,
transformational program development, etc. The design and implementation of a
prototype system, CACHET, for obtaining incremental programs is also described.
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Chapter 1

Introduction

1.1 Software development and maintenance

Computations in all kinds of computing systems are pervasive activities in today’s
information age. Fven though hardware is getting faster and faster, complicated ap-
plications that require intensive computations are increasingly desired, which requires
software to be more and more efficient. This straightforwardly explains the perva-
sive symptom in software: even the simplest tasks are obscured by optimizations in
designs and programs.

Optimizations are hard to find and code, and they make it even harder to under-
stand and maintain the resulting software. These lead to the high cost of software
development and the even higher cost of software maintenance. Methodologies for
program improvement, such as step-wise refinement, correctness-preserving transfor-
mations, and object-oriented methods, provide guidelines for the development and
maintenance process. Programming tools, such as structured editors, compilers for
very-high-level languages, and application generators, furnish programmers with a
modest amount of automated assistance.

Despite these developments, most people still find the software development and
maintenance process frustrating. Existing approaches and techniques are not gen-
erally applicable for improving program efficiency. Software development and main-
tenance costs keep rising. This bogs down the development and maintenance of
programming tools as well: often, these tools are themselves not fast enough.

A conceptual breakthrough that solves all the problems involved in software de-
velopment at once is unlikely; however, there has always been a need to explore
general principles illuminating the essence of efficient computation and to develop a
systematic approach based on these principles that can be used to guide efficiency
improvement for all applications.



1.2 Incremental computation—the essence of
improving the efficiency of computations

This thesis concerns the theory, design, and implementation of a general approach to
improving the efficiency of computations. Given a program f and an input change
operation B, the approach aims to obtain an incremental program that computes
f(z @ y) efficiently by making use of f(z), the intermediate results computed in com-
puting f(z), and auxiliary information about z that can be inexpensively maintained.
Since every non-trivial computation proceeds by iteration (or recursion), the approach
is used straightforwardly for achieving efficient computation in general by computing
each iteration incrementally using an appropriate incremental program.

This approach states explicitly that incremental computation is the essence of
improving the efficiency of computations. The principles of the approach are essen-
tially the same as those underlying the work by Allen, Cocke, Kennedy, and others on
strength reduction [A1169,CS70,Gri71,CK77,ACK81], by Earley on high-level iterators
[Ear76], by Fong and Ullman on inductive variables [FU76,Fon77,Fon79], by Paige,
Schwartz, and Koenig on finite differencing [PS77,Pai81,PK82], by Dijkstra, Gries,
and Reynolds [Dij76,Gri81,Rey81,Gri84] on maintaining and strengthening loop in-
variants, by Boyle, Moore, Manna, and Waldinger on induction, generalization, and
deductive synthesis [BM79,MW80,MW93|, by Dershowitz on extension techniques
[Der83], by Bird on promotion and accumulation [Bir84,Bir85], by Broy, Bauer,
Partsch, etc. on transforming recursive functional programs in CIP [Bro84, BMPP89,
Par90], by Smith on finite differencing of functional programs in KIDS [Smi90,Smi91],
as well as the work pioneered by Michie on memoization [Mic68,Bir80,Coh83, Web95].
The most basic idea can be traced back to the Difference Engine of Charles Babbage
in the 19th century [Gol72].

The approach in this thesis is formalized for a simple functional language with
all the most basic program constructs: variables, data constructors, primitive func-
tions, user-defined recursive functions, conditionals, and binding expressions. The
underlying principles also apply to other programming languages. The approach ex-
ploits program semantics, using analysis of program states at various program points,
to discover incrementality that is not directly embedded in primitive operators. It is
composed of step-wise program analysis and transformation modules that can, for the
most part, be mechanized. Therefore, compared to work by Allen, Cocke, Kennedy,
Earley, Fong, Paige, efc., where a set of rules is developed to transform expensive
primitive operations syntactically into efficient incremental operations, the approach
in this thesis is more semantics-based and more general; compared to work by Dijk-
stra, Gries, Boyle, Manna, Dershowitz, Bird, Broy, Smith, etc., where only general
strategies are suggested, the approach in this thesis is more systematic and more
automatable.



1.3 An overview of the work

This work began with the study of incremental computation, efficient computation
that takes advantage of repeated computations on inputs that differ slightly from one
another, making use of the old output in computing a new output rather than com-
puting from scratch. The large number of works on incremental computation in recent
years and their many applications [RR93], demonstrated by various incremental algo-
rithms such as [GM79,JG82,RTD83,Yeh83,RP88,Van’88, FMBI0,AHRT90,RR94] and
general incremental computation approaches such as [Ear76,Pai81,PK82,Pai84, HT86,
CP89,PT89,FT90,Smi90,Smi91,YS91,SH91,5un91,Ho092,van92,Fie93], motivated us
to look for the fundamentals of incremental computation and their role in efficient
computation. The goal has been a general approach and tools that allow incremental
computation to be obtained systematically from non-incremental computation and
program efficiency to be systematically improved.

The most challenging aspect of such a project is the design of a general frame-
work that captures the fundamentals of incremental computation. Program efficiency
depends on properties of domains for which programs are designed and on features
of languages in which programs are written. Therefore, this research has focused
on identifying the fundamentals of efficient incremental computation out of domain-
specific properties and language-specific features, devising a general framework and
developing a systematic approach based on this framework that exploits program
semantics.

A second aspect of this work has been relating the fundamentals of incremental
computation with efficient computation and program improvement in general. For
applications that manipulate direct input changes, such as interactive systems, ef-
ficient incremental computation is directly adopted. For general program efficiency
improvement, the iterative (or recursive) computation that is essential to all non-
trivial programs is cast as incremental computation in each iteration. This establishes
incremental computation as the essence of improving the efficiency of computations.

A third aspect of this work has been investigating the applicability of this general
approach for efficient computation. This resulted in re-development or re-discovery
of many existing incremental techniques and incremental programs. In some cases,
efficient programs were obtained by systematically following the approach where no
previous systematic approach was known. This investigation was further assisted by
the implementation of our prototype system, CACHET.

As discussed further in Chapter 2, much effort has been devoted to incremental
computation, but existing techniques depend to a large extent on domain-specific
properties, language-specific features, or both. Each technique has its own func-
tionality, none subsumes the others, relationships among them are scattered, and
applicability to various application domains are not always clear.

In contrast, the approach in this thesis is general and systematic. It sorts out fun-
damental aspects of incremental computation approached by existing techniques and
beyond. These aspects include avoiding repeated identical computations, identifying
useful intermediate results, determining appropriate auxiliary information, etc. The
general principles underlying the approach apply to different programming languages



and data structure organizations and take into consideration properties of application
domains as well. The approach is straightforwardly applied for systematic program
efficiency improvement. The prototype implementation helped demonstrate that ef-
fective tools can be developed based on the systematic approach.

1.4 An outline of the dissertation

This dissertation explores fundamental aspects of incremental computation step by
step, together with their applications to improving program efficiency in general.

As mentioned above, Chapter 2 discusses the literature in incremental compu-
tation. The desire to capture the fundamental issues out of the literature has in-
spired us with a new outlook on various techniques. The new outlook has led to a
semantics-based, systematic, transformational approach for incremental computation
and program improvement, as discussed in Chapters 3, 4, and 5.

The first and most important task was to devise a general approach for using the
result of a previous computation for an efficient new computation on changed input.
Such an approach to deriving incremental programs, also called inerementalization,
is described in Chapter 3. The basic idea is to symbolically expand the computa-
tion on the new input and replace subcomputations whose values can be efficiently
retrieved from the cached result of the previous computation by the corresponding
retrievals. This approach exploits program semantics in a way that is more general
and systematic than previous approaches.

The efficiency of a new computation may often be improved by using not only
the result of a previous computation but also some intermediate results. These re-
sults need to be identified and maintained. Chapter 4 presents a systematic approach
for symbolically caching intermediate results to improve efficiency of the derived in-
cremental programs. It first symbolically caches all intermediate results, then in-
crementalizes the resulting program, and finally prunes the programs to retain only
intermediate results that are useful for the incremental computation. The approach
is applied for improving program efficiency using caching, also called memoization.

Furthermore, the efficiency of a new computation may be improved by using in-
formation other than the intermediate results computed by the original computation;
such auxiliary information must be discovered, initialized, and efficiently maintained.
Chapter 5 proposes transforming the computation on the new input to expose sub-
computations that depend only on the old input but are not in the old computation as
candidate auxiliary information. A comprehensive approach is given that addresses
using auxiliary information and intermediate results at the same time.

A prototype system, CACHET, has been developed to facilitate application of the
systematic approach for deriving incremental programs written in our simple func-
tional language. It allows interactive program transformation by direct tree manipu-
lation and, as program trees are transformed, performs incremental program analysis
by incremental attribute evaluation. The design and implementation of CACHET
are described in Chapter 6.



Chapter 7 summarizes of the major ideas discussed in this thesis, draws some
conclusions, and suggests areas for future research.

As an aid to the reader, an index of symbols, terms, and names are included at
the end of the thesis.

Much of Chapters 3, 4, 5, and 6 appears in separate papers (specifically, [LT95b],
[LT95a], [LST96], and [Liu95], respectively). Each of them is largely self-contained.



Chapter 2

Providing a general systematic
approach to efficient computation

Incremental computation takes advantage of repeated computations on inputs that
differ slightly from one another, computing each new output incrementally by making
use of the previous output rather than from scratch. Methods of incremental com-
putation have widespread applications, e.g., loop optimizations in optimizing com-
pilers [Ear76,CK77,MJ81,ASU86| and transformational programming [Pai83,Par90,
Smi90], interactive systems like programming environments [MF81,Rep84] and edi-
tors [RTD83,RT88,BGV92|, and dynamic systems like distributed databases [L.S92,
CHKS93,ZGMHW94] and real-time systems [VC92].

The premise of this work is that methods of incremental computation can be
generalized and systematized by finding a conceptual model that captures all the
fundamentals. A comprehensive guide to methods of incremental computation has
appeared in [RR93]. Despite the relatively diverse categories discussed in [RR93], we
divide most of the work into three classes: incremental algorithms, incremental execu-
tion frameworks, and incremental-program derivation approaches. This classification
provided a new prospective on the literature in incremental computation, which then
motivated the approach in this thesis.

2.1 Incremental algorithm

Our first class includes particular incremental algorithms designed for particular
problems dealing with particular input changes. Examples include incremental pars-
ing [GM79,JG82], incremental attribute evaluation [RTD83,Yeh83,YK88,LMOWSS,
Jon90], incremental data-flow analysis [Zad84,RP88,Bur90,MR90,RR94], incremen-
tal circuit evaluation [AHRT90], and incremental constraint solving [Van88,FMB90].
The study of dynamic graph algorithms, such as transitive closure algorithms [Yel93],
can be viewed as falling into this class. These incremental algorithms are called ex-
plicit incremental algorithms by Pugh [Pug88b] and ad hoc incremental algorithms
by Field [Fie91].

Although efforts in this class are directed towards particular incremental algo-



rithms, they apply to a broad class of problems, e.g., any attribute grammar and any
circuit. However, designing these particular algorithms has been the realm of the few
experts in the application domain that also have good knowledge about algorithms.
As the word ad hoc suggests, these algorithms themselves do not provide a general
systematic approach for obtaining them.

Complexity-theoretic issues of incremental algorithms have received much atten-
tion in the past few years [BPR90,Mil91,RR91,Ber92,SVT93,Ram93, MSVT94]. Al-
though these works do not provide methods for obtaining incremental algorithms,
they can assist the study of general approaches to incremental computation by estab-
lishing certain theoretical bounds. Research in this area is yet in an early stage.

2.2 Incremental execution framework

In our second class, rather than manually developing particular incremental algo-
rithms as in the first class, application programs are run in a general incremental
execution framework so that incremental computation is achieved automatically. At-
tempts to provide general incremental mechanisms have become more active in the
past several years and they mostly fall into this class, e.g., incremental attribute
evaluation frameworks [RT88], incremental computation via function caching [PT89],
incremental lambda reduction [FT90], formal program manipulation using traditional
partial evaluation [SH91,Sun91], the change detailing network of INC [YS91], incre-
mental computation as program abstraction [Ho092], and incremental term rewriting
[van92,Fie93]. Such frameworks are called incremental evaluators by Pugh [Pug88b]
and general approaches by Field [Fie91].

Note that an incremental execution framework always employs a particular incre-
mental algorithm, where the algorithm is designed for executing a particular class of
application programs on their inputs and deals with a particular class of changes in
an application program and/or its input.

In these frameworks, often no explicit incremental version of an application pro-
gram is derived and run autonomously by a standard evaluator. Even if we could
specialize an incremental execution framework with respect to an application pro-
gram to get a stand-alone incremental application program, any input change to
the application program is mapped to whatever the framework can handle, which is
fixed for each framework. Therefore, these solutions to the incremental computation
problem for particular applications are not readily comparable with explicitly derived
incremental algorithms such as those in the first class.

2.3 Incremental-program derivation approach

In our third class, systematic approaches are studied to derive explicit incremental
programs from non-incremental programs using program transformation techniques
like finite differencing [Pai81,PK82]. These approaches aim to be general, as do
those in the second class; they also aim to derive explicit incremental programs, like
those manually derived in the first class. Examples are high-level iterators [Ear76],



finite differencing of set expressions in SETL [PK82], optimizing relational database
operations [Pai84,HT86], fixed-point computation and recomputation [CP89], differ-
entiation of functional programs in KIDS [Smi90,5Smi91], ete.

The pioneering work on finite differencing by Paige [PS77,Pai81,PK82,CP89] has
been one of the most successful contributions in this class. It uses set-theoretic lan-
guages, such as SETL, which provide convenient mathematical notations. Fixed rules
are offered for transforming aggregate primitive operations on sets into more efficient
incremental operations, and these transformations can be applied automatically. A
number of new algorithms have been derived following this approach [PTB85,PT87,
CPT92,BP92,CP92].

Unfortunately, such very-high-level languages pose hard questions concerning effi-
cient implementation [PH87,Pai89]. But the fundamental drawback of this approach
is that it does not sufficiently exploit program semantics. Thus, no incremental
programs can be derived when the given rules do not apply. Such approaches are
characterized as syntactic, using only formal notations, whereas a semantic solution
that explores the mathematical content of the subject has not been developed [Ner92].

Another highly successful contribution for deriving efficient programs is by Smith
[Smi90,Smi9l]. It advocates a more flexible approach to transforming programs
written in a functional language. In this work, a high-level strategy is given and
a general simplifier is used for finite differencing of functional programs that takes
advantage mainly of distributivity laws. This approach has been implemented in a
semi-automatic system KIDS and has helped to derive a number of efficient programs
[Smi91,SP93].

Approaches based on such high-level strategies do not provide systematic steps to
follow. How to automate such an approach is one of the most challenging issues to
be studied.

In summary, in most works in the third class, programs are written in very-high-
level languages with aggregate data structures, such as sets and bags; in most other
works, only high-level strategies are proposed. What is not provided is a systematic
procedure for deriving incremental programs from non-incremental programs written
in a standard language.

2.4 A general systematic transformational
approach

Providing a systematic approach to deriving incremental programs for a standard
language is not simply a matter of treating yet a different language from SETL. In
such standard languages, there are primitive operations that can not be mapped syn-
tactically into incremental operations. A general systematic approach to incremental
computation must exploit more program semantics to incrementalize programs writ-
ten using such primitive operations. Such a semantics-based approach can be used
to derive and justify finite differencing rules, as well as to obtain efficient incremental
computations where no given rules apply.



This thesis discusses such a general systematic approach for discovering incremen-
tality for programs written in a standard functional programming language. Given
a program f and an input change operation &, it aims to obtain an incremental
program that computes f(x @& y) efficiently by making use of the value of f(z), the
intermediate results computed in computing f(z), and auxiliary information about z
that can be inexpensively maintained, as will be discussed in Chapters 3, 4, and 5.
The approach exploits a number of program analysis and transformation techniques
and domain-specific knowledge, centered around effective caching and its utilization,
in order to provide a degree of incrementality not otherwise achievable by a generic
incremental evaluator. A prototype implementation of the general approach is de-
scribed in Chapter 6.

Language. For simplicity of exposition, we use a simple first-order functional pro-
gramming language. The expressions of our language are given by the following
grammar:

if e; then e; else e3  conditional expression

e 1= v variable
| cler, ..., en) constructor application
| pler, ..., en) primitive function application
| flet,...,en) function application
|
|

let v = €7 1In ey binding expression
A program is a finite set F' of mutually recursive function definitions of the form
flor, o) =e (2.1)

and a function fy that is to be evaluated with some input = (z1,...,z,). Note, for
simplicity, we will just use fy to refer to the program F', and f to refer to an arbitrary
function defined in F. Figure 2.1 gives some example definitions.

out(C,R) : compute the outer product of lists C' and R
out(C,R) = if null(C) then nil
else cons(row(car(C), R), out(cdr(C), R))

if null(R) then nil
else cons(c * car(R), row(c,edr(R)))

row(c, R)

ins(i,a, R) : insert @ in list R at position i

ins(i,a, R) = if i <1 then cons(a, R)
else if null(R) then cons(a,nil)
else cons(car(R), ins(i—1, a, edr(R)))

Figure 2.1: Example function definitions of out, row, and ins
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Each constructor ¢, primitive function p, and user-defined function f has a fixed
arity. In general, c_,L-1 denotes the z-th selector corresponding to the constructor ¢. The
semantics of the language is strict.

An input change operation & to a program fy combines an old input = (1, ..., )
and a change y = (y1,...,ym) to form a new input 2’ = (z),...,2}) = v & y, where
each z} is some function of z;’s and y;’s. For example, an input change operation &

to the function out of Figure 2.1 can be defined by
(C",R"Y = (C,R) @ (i,a) = (C,ins(i,a, R)). (2.2)

For typographical convenience, we shall always use xz to denote the previous input to
fo, y to denote the change parameter to the input z, and z' to denote the new input
x B y. Parameter y can be regarded as a change éx to the input z.



Chapter 3

Deriving incremental programs

Given a program fy and an input change operation &, a program f{ that computes
fo(z @ y) efficiently by making use of the value of fo(z) is called an incremental
version of fo under . For example, if sort is a sorting program and add adds a new
element to an old input list, then a program that inserts the new element into the
old sorted output list at the appropriate place is an incremental version of sort under
add.

This chapter discusses a general systematic approach for deriving an incremental
version f{ from a program fy and an input change operation & written in a standard
functional programming language. The basic idea is to identify in the computation of
fo(z @ y) subcomputations that are also performed in the computation of fo(z) and
whose values can be retrieved from the cached result r of fy(z). The computation of
fo(z @ y) is symbolically transformed to avoid re-performing these subcomputations
by replacing them with corresponding retrievals. This efficient way of computing
fo(z @ y) is captured in the definition of f{(z,y,r).

Defining the problem. Discussing efficient computation needs a cost model, ac-
cordingly, a time model 7 such that 7 (e) describes the time needed to compute ex-
pression e. Function 7 can be obtained from standard constructions [Weg75,Ros89].
In general, given two expressions e; and ey, it is not decidable whether e2 computes
faster than e; for given values of their variables. Therefore, we say 7 (e2) < 7 (ey) if
we can effectively confirm the inequality. Suppose vy, ..., v} are all the variables in e;
and ey and P is some predicate on these variables. We write

t(e2) <p t(er) (3.1)

to denote that we can effectively decide that there is a constant k such that, for any
values of vy, ..., v, if P holds then 7 (e2) < k7 (e1), and we say that ey is asymptol-
tcally at least as fast as ey under P. During our derivation, P always represents the
equations that hold at the occurrence of the expression currently under consideration;
therefore, it will be omitted for simplicity.

Given a program fp and an input change operation &, we aim to derive an incre-
mental version f{ of fy under &, such that, if fo(z) = r, then whenever fo(z & y)
returns a value, fy(z,y,r) returns the same value and is asymptotically at least as

11
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fast.! Instead of trivially defining f§(z,y,r) to be fo(zDy), we attempt to make f} as
efficient as possible by having it use the cached result r of fo(z) as much as possible.
For typographical convenience, we shall always use r to denote the cached result
of fo(x), and f{ to denote an incremental version of fy under &. When r is used as
a parameter to f}, we call it a cache parameler.
We use function out of Figure 2.1 and input change operation & in (2.2) as a
running example. At the end, we will obtain the incremental version out’ shown in

Figure 3.1.

If out(C, R) = r, then out'(C,i,a,r) = if null(r) then nil
out'(C,i,a,7) = out(C,ins(i,a, R)). else cons(row'(car(C), 1, a, car(r)),
out'(cdr(C), i, a, cdr(r)))
For C of length m and R of length n, row’(c,i,a,r1) = if i < 1 then cons(c*a, r1)
out'(C, i, a,r) takes time O(m * min(i,n)); else if null(r1) then cons(cxa, nil)
out(C,ins(i,a, R)) takes time O(m * n). else cons(car(ry),
row’(e,i—1, a, cdr(r)))

Figure 3.1: Resulting function definitions of out’ and row’

3.1 Outlining the derivation procedure

The derivation procedure recursively follows function applications in the computation
of fo(x@y) and aims to replace these applications by uses of new functions introduced
to compute the applications incrementally.

To introduce a new function f’ to compute a function application f(e,...,en)
incrementally, we collect an information set Iy that describes the context of the
application and a cache set C; that indicates how the values of certain relevant
computations can be retrieved from a cached result under certain conditions. Then,
we obtain a definition of f' by the following three steps. First, we unfold [BD77]
(also called expand [WegT76]) the application. Second, we incrementalize the unfolded
application. Basically, we consider each subexpression e of the unfolded application
in applicative order and (a) collect an information set I[¢) from €’s context based on
Iy and extend the cache set C'y under the condition that the facts in Iy are valid, (b)
recursively apply this procedure if e is a function application, (c¢) apply simplification
using I, and replacement by efficient retrieval using the extended Cy. Third, we
eliminate dead code mainly related to dead parameters of f. If the function f’
so obtained is suitably fast, then f(ei,...,e,) can be replaced by an application of
f'. Other applications of f that are subsequently analyzed may also be replaced by
applications of this f’, if appropriate.

"While fo(z) abbreviates fo(z1,...,2,), and fo(z @ y) abbreviates fo((z1,...,2n) & (Y1, .-, Ym)),
fo(z,y,r) abbreviates fy(z1,...,Zn, Y1, ..., Ym,7). Note that some of the parameters of f§ may be
dead and eliminated, as discussed in Section 3.3.
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The derivation procedure starts by considering the function application fo(z & y),
with an empty information set and a cache set containing only fo(z) = r. We
maintain a global data structure for the set D of functions introduced during the
derivation procedure. We take special care of recursive function applications to help
the derivation procedure terminate naturally and, at the same time, discover as much
incrementality as possible. When finished, we have the original set of functions F
and the set D of functions introduced during the derivation procedure, including f.
We then eliminate dead functions in F' and D not needed in computing f.

A function ZncApply implements the recursive procedure on a function application
fle1, ..., en) with information set I, cache set C', and global definition set D:

TncApplylf(c1, oy ex)] 1C D = ('€}, ly), D) (3.2)

/' is an introduced function such that f'(ef,...,e},) computes f(e1, ..., e,) incremen-

tally under I and C. Global set D may be extended to D' as a side effect.

Two Main Issues. The derivation procedure has two main tasks. First, incremen-
talizing an unfolded function application, i.e., discovering and replacing subcomputa-
tions whose values can be efficiently retrieved from cached results. Second, analyzing
recursive function applications and introducing incremental versions that are used to
replace these applications.

The first task corresponds to maintaining cache sets under collected information
sets at subexpressions of an unfolded application and applying simplification and
replacement to these subexpressions using these sets. The second task corresponds
to maintaining a global set of functions introduced to compute function applications
incrementally and replacing function applications with appropriate applications of
the introduced functions.

The two main issues are addressed in Sections 3.2 and 3.3, respectively. Section
3.4 summarizes the derivation procedure and addresses a number of important is-
sues, including correctness, termination, and mechanization. Section 3.5 gives some
examples. Section 3.6 discusses related work.

3.2 Incrementalization

We define two notions, information set and cache set. Given an information set [
and an initial cache set C' relevant to a function application, we describe how to use
them in incrementalizing the unfolded application, i.e., collecting information sets at
subexpressions, extending the cache set with respect to the collected information sets,
and using them to simplify subexpressions and replace subexpressions whose values
can be efficiently retrieved from cached results.

3.2.1 Information set and simplification

An information set I,j at the occurrence of an expression e is a collection of equations
that hold in the context of e. It represents symbolically the program state right before
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the execution of expression e. We write e; <> e3 to denote that two expressions e;
and ey are equal. For example, if fo(z @ y) is unfolded to an expression e as follows:

let v=¢7 in if v=0 then 0 else ¢e;

then Iy =0, I, =0, Ijy=g) = {v <> e1}, and [f.,) = {v > e1,v =0« F'}. Note that
we use 1" to denote the Boolean value true, and F' to denote the Boolean value false.

Given an information set at a top-level expression, it is simple to compute infor-
mation sets at occurrences of subexpressions:

if e is c(e1,...,en), p(e1,...,en), o f(€1,...r€n),

then ;) = I for 1 = 1..n;
if e is if €7 then ey else e3, then ][61] = ][e], ][62] = ][e] U{ey < T},
fjeg) = Tig U {er = F};
if eislet v = e in e9, then ][61] = ][e]a ][62] = ][e] U {v — 61}.

An underlying logic Lg is used to make inferences based on the facts in an infor-
mation set. We require that Ly be compatible with the semantics of the programming
language we are using [FN88], i.e., if two expressions are proved to be equal under Ly,
then they compute the same value. In this work, we assume that a theorem prover
based on Lg is available, and we write e <7 ez to denote that a finite proof that e;
equals ey can be found by the theorem prover using equations in set [.

Simplification. We can simplify expressions using information sets and the under-
lying logic, as summarized in Figure 3.2. Given an expression e and an information
set I, we say that e can be simplified under I lo ¢' if the corresponding condition
cond(I) holds.

Basically, the simplification is as conventional, except with the identity relation
generalized everywhere to the equality under I relation. Simplification of a function
application f(eq,...,e,) can unfold the application if the resulting expression (or its
context) can be computed as least as fast (through appropriate simplification corre-
sponding to the context). To automate this in practice, heuristic conditions such as
the following are used:

1) f is not recursively defined and unfolding f(eq, ..., en) does not duplicate non-
trivial computations, i.e., for each i, either t(e;) < t(v;) or v; occurs at most
once on every (syntactic) execution path in ;.

2) f(e1,...,en) is an argument to a primitive function p and this application of p
can be simplified after unfolding f using properties of p.

Simplification of a binding expression let v =¢j in ey unfolds it to ez[vy/v] if €1 equals
a variable vy under I. Otherwise, it treats the expression as f(e1), with f defined by
fv)=ea.

Given an expression e and an information set I, we define Simp[e]l to be €' if e
can be simplified under I to €', and e otherwise.
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‘ expression e ‘ expression e’ condition cond([) ‘
v c Vet
—1 —1
e 7 c(ci(ee), ..., Gplee))
clery ..., en) €c and 1(ec) <1(e)
o ) e can be simplified to ¢,
PACLs -5 En “» under [ using properties of p
fe en) erler/v1, e can be unfolded under [ and
o env/vn] fis defined as f(v1,...,v,) =€y
€9 €1 (—)}(r T
if e1then ey else e3 €3 e =7 F

ey <7 e3 and

es (or e3) t(ez) <t(e3) (or t(e3z)<t(ez2))
. ealv1/v] e1 <7 v1
let v=e1in ey eale1/v] e can be unfolded under /

Figure 3.2: Simplification

3.2.2 Cache set and replacement

A cache set C for an unfolded application is a set of tuples (eq, e, I') such that
1) expression e; depends only on z, expression ez depends only on r, and
2) if the equations in information set I hold, then e; and ey are equal.

For example, if fo(z & y) is unfolded to be e, then the initial cache set for e is
{{(fo(z),r,0)}.

Intuitively, an element (e1,e2,[) in a cache set C says that if the equations in [
hold, then the value of e; can be retrieved from a cached result by computing es.
Given a cache set and an occurrence of an expression e with information set [f,
we can extend the cache set at e under [[,). This extension requires techniques for
discovering more expressions whose values can be retrieved from cached results, i.e.,
discovering incrementality, as described below.

Discovering incrementality. The schematic diagrams of Figure 3.3 help explain
the basic ideas. The leftmost rectangle depicts the expanded computation of fo(zGy).
Clearly, if fo(x) occurs anywhere as a subcomputation, then its value can be straight-
forwardly retrieved from r. However, we seek to discover other subcomputations
whose values can also be retrieved from r. Suppose g(e1) occurs somewhere as a
subcomputation and it is not fo(z). If we collect the context information I at the
occurrence of g(e1) and find that fy(x) can be specialized to g(e1) under I, as de-
picted in the middle rectangle, then the value of g(e1) at the occurrence can also be
retrieved from r. Moreover, if ¢ is a function with an inverse ¢!, then the value of e;
can be retrieved from ¢(r), wherever I; holds. In a special situation, suppose h(ez)
occurs as a subcomputation but neither h(ez) nor ez is fo(z), g(e1), or er. If his
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Figure 3.3: Discovering incrementality

a Boolean valued function defined on all inputs, and h(fy(z)) can be specialized to
true (false) when h(ea) equals true (false), as depicted in the right rectangles, then
the value of h(eg) can be retrieved from h(r).

The specializations shown in the middle and right rectangles in Figure 3.3 employ
an auxiliary specializer G. Given an expression e and an information set I, G[e]/
specializes e under I, and whenever e computes a value, G[e]l computes the same
value. The specialization, achieved by unfolding and simplification, will be defined
at the end of this section. Here, we use G as a subroutine to help discover more
subcomputations whose values can be retrieved from cached results.

We formalize the basic ideas as follows. Given a cache set (' and an occurrence
of an expression e with information set [}, we can extend C' at e under I, to be
C(C,e, I ), where C(C, e, I), called the closure of C' at e under I, is defined as follows.
Given (', e, and 1, let

F(C)={(e\, e I |{er,e2, 'Y €C, I =1, Glea]l =€},
FC) = (e (e, 1) [ {ersea 1) €C, T= 1, ey =g(€)} and (33)
Fy(C) = {(e, hlea), I)[{er,e2,I') €C, T=I', GLh(e)]TU{ecs 1) = 1},

where ¢ is a constructor or primitive function that has a known inverse ¢, and
h is a total Boolean valued function. Note that g and h can be straightforwardly
generalized to include functions with two or more parameters. As an example for Fb,
if e1=c(e],...,eh), then (e}, &\ (e2), I) € Fy(C) for i=1..n. Just as F»(C) extends C

when ej is a constructor or a special primitive function application, the following sets
extend C' when ej is a binding expression or a special conditional expression:

Fon(C)={(e5,e2, )| (let v ="¢) in ey, e, I)€C, I=1', ehfey/v] = €5},

Fa(C)={(eh, e2, I} | (if €} then €, else e, ex, I'Y € O, I=1', Gles](TU{e) =T} =¢€h},

Fo3(C)={(e, ez, I) | (if €} then e, else ey, ea, I'Y € C, I= 1, Geb](TU{e > F}) =€l }.
(3.4)



17

We let F5(C) also include the elements in these sets, and define C(C,e, ) to be
CUC'UF3(CUC"), where ' is the least set such that Fi(C') C C'" and Fp(C") C .

Set C' can be computed using a worklist algorithm. First, initialize C' to be () and
worklist L to be Fy(C). Then, repeatedly move any element (e1, e2, I') from L to C'
and, if ey is g(e}), add (€}, g (e2), I') to L, if ey is let v=e¢] in €}, add (eh[e} /v], e2, I')
to L, etc. This stops when L is empty, at which time we have obtained the final set
C'. Optimizations to the computation of the closure are possible. For example, we
can group elements that have the same information sets into units, and maintain a
tree of these units so that, if Iy = I, then the unit with I is a descendent of the
one with /. Every time we compute the closure, we only need to look at elements in
the units that are closest to the leaves and whose information sets are implied by the
current information set.

Example. Using the example in Figure 2.1, let e be the unfolded application of
out(C,ins(v,a, R))

if null(C') then nil

else cons(row(car(C),ins(i,a, R)), out(cdr(C),ins(i,a, R))) (3.5)

with information set ;) =  and initial cache set Cyut = {(out(C,R),r,0)}.
Let e; be the false branch of e. Given Cyyt = {{out(C,R),r,0)}, consider extending
Cout at ex with Ij. 1= {null(C)« F'}. Specializing out(C, R) under I}, we get the

expression ez below:
cons(row(car(C), R), out(cdr(C), R)) (3.6)

Thus,
C(Cout, €1, ][61]) = Cout U {(e2, 1, ][61]>, (3.7)
(row(car(C), R), car(r), Ic)),
(out(cdr(C), R), cdr(r), Iie;)}-

Given Coyt = {(out(C,R),r,0)}, consider extending Cyys at the Boolean subexpres-
sion null(C') in e with Iy =0. When null(C')<T holds, out(C, R) is specialized
to nil and thus null(out(C, R)) equals T'; when null(C')« F holds, out(C, R) is spe-
cialized to ez and thus null(out(C, R)) equals F'. Thus

C(Cout, null(C),0) = Cour U {{(null(C), null(r),0)}. (3.8)

Replacement. We say that expression e can be replaced by ¢’ under I and C,
denoted as e =3 €', if

(Her, e, [1) € C) [eesTer A T=1; A te) <t(e)].

Given a non-conditional and non-binding expression e, an information set /, and a
cache set C, if e can be replaced by ¢ under I and C, then we do so. Otherwise,
we extend the cache set to be C(C, e, I), and, if e can be replaced by €” under I and
the extended cached set C(C, e, ), then we do so. As a result, the cache set may be
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extended as a side effect of a replacement. We define a function Repl for replacement
as follows:

(e,C) if e is a conditional or binding expression
(e,C) elseif e =%, €
(e",C") elseif e =7q €, where C'=C(C,e,I)

(e,C")  otherwise, where C' is as above

Repl[e]IC = (3.9)

Another use of a cache set for replacement is as follows. Suppose an expression e
can not be replaced by any expression under / and C, but

3 <1f e1then ey else e3, ey, ]1> eC, I=1

such that e can be replaced by er(respectively, ep) under I U {e; T} (respectively,
T U {e1 < F}) and the correspondingly extended cache set. Then we can replace e
by if e;then et else ep provided t(if e;then et else ep) <i(e). For example, if e is
e3, and eg takes unit time, then we can replace e by if e;then eelse e4. We extend
function Repl for replacement to include this case, i.e., we replace the last case of
(3.9) by the following two cases:

(if ¢} then ey else ep, C")
if 3(if e; then ey else e3, eq, I1) € C', I = I, {(if €| then ey else ep) < i(e)

6II lf el _)* y 6”

where e} = ¢ ! 1C" 71 where C"=C(C', 1, 1)

e1 otherwise

e'B if e—>}BC,,, e'B

= s — 1 _
‘B= e otherwise where Ip=1U{e} < B}, for B=T F

CM=C(C", e, Ip) UC(C", e, Tp)
<€, OIII>

otherwise, where C"" is as above

(3.10)

3.2.3 Incrementalization by simplification and replacement

To incrementalize an unfolded application, a function Znc applies simplification and
replacement on subexpressions in applicative order. The cache set for the current
unfolded application may be extended as a side effect of replacement using Repl. In
particular, Znc calls ZncApply to consider subexpressions that are function applica-
tions. The global set of introduced functions may be extended as a side effect of using
IncApply.

We refer to the application of simplification and replacement by Znc as reduction.
Thus, Inc does innermost leftmost reduction. If a subexpression is reduced to a
conditional expression, then the condition is lifted out of the enclosing expression.
Similarly, if a subexpression is reduced to a binding expression, then the binding
is lifted. A function Subl is used by Znc to recursively reduce subexpressions and
perform necessary lifting, as defined in Figure 3.4.

The presentation of Subl is simplified by omitting detailed control structures that
sequence Subl through its subexpressions. We just present the case of Subl work-
ing on the ¢th subexpression of the top-level construct under the assumption that
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the subexpressions 1 through ¢ — 1 have been reduced. Operationally, we say that

a subexpression is reduced if it is the result of having already applied Znc for the

subexpression at that position; otherwise, it is not reduced. For a conditional expres-

sion if eythenes else ez, Inc reduces ey (respectively, e3) with the assumption that eq

equals true (respectively, false) added to the information set. Similarly, for a binding
expression let v=-e;1n ey, Inc reduces eg with the assumption that v equals €2 added

to the information set. At the end, all subexpressions are reduced with necessary

lifting performed.

Name Transformation Condition

(9) Sublfg(er, ...,en)] I C D where g is e, p, or f

(95) = Sublg(er,...,ei—1,€, €41, ...,e0)] T C' D if e1,...,e;_1 are reduced, not if
wlEteDe = Inclle;] I C D or let, but ¢; is not reduced
(gi—ir) = Subl[if €| then g(eq,...,e;_1, €5, €41, ..., €n) if e1,...,e;_1 are reduced, not if
else g(e1,...,ei—1,€5,€i41,...,e,)] IC D or let, ¢; is reduced, but e; is
where ¢/ is reduced and is not if or let if ¢} then ¢} else ¢}
(gicier) = Subl[let v=¢{in g(eq,...,ei—1,€5 €41, ...,ex)] IC D ifey,...,e;_1 are reduced, not if
where ¢/ is reduced and is not if or let or let, e; is reduced, but ¢; 1s
let v=¢/ in €}
(9n) = (g(e1,...,en), C, D) otherwise
(i) Subl[if e; then e elsee3] I C' D
(if1) = Subl[if ¢} then ey else e3] I C' D' if e1 is not reduced
where (e}, C', D'} = Inc[e;] I C D
(#f1=if) = Subl[if ¢} then (if ¢} then e; else e3) if ey is reduced, and e; is
else (if efthen eselse e3)] I C D if ¢ then ¢} else e}

where ¢/ is reduced and is not if or let
(fi—ier) = Subl[let v=¢) in (if ¢, then eselse e3)] I C D if ey is reduced, and e; is

where € is reduced and is not if or let let v=¢/in €
(ifn) = (if e; then €} else e, C", D) otherwise
/ ! VAR <€2, 07 D> lf€1<—>?F
where {e3, ", D) = { Incles] (TU{e1=T3})C D otherwise

(6/ C“D“) _ (637 c’, DI) if e =7T
300 " Incles] (IU{e1—=F}) C'D’ otherwise

(let)  Subl[let v=e; ines] I C D

letq = Sublflet v=e¢} ines] I C' D' if e1 is not reduced
1

where (e}, C', D'} = Inc[e;] I C D

let1_; = Subl[if ¢/ then (let v=¢in e, if e1 is reduced, and e; is
f 1 2
else (let v=efines)] I C' D if ¢ then ¢} else e}

where €] is reduced and is not if or let

leti_1:) = Subl[let v =¢in (let v=cLin ey)]I C D if e1 is reduced, and e; 1s
1 2

where € is reduced and is not if or let let v/ =€) in €}

(lety) = (let v=ejin e}, C', D) otherwise

where (e}, C", D'y = Incfes] (IU{v—ei}) C D

Figure 3.4: Definition of Subl

Finally, we define function Znc as in (3.11), where I¢ denotes the set I U {e] e
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ea | (e1, e, I"Y€C, I=1"}. We need I¢ instead of I because Tnc does applicative order
reduction, during which some subexpressions may be replaced by retrievals, and thus
the equations in / may involve the cache parameter. As a result, the underlying
logic needs to know the equality relation involving the cache parameter to make
inferences. For example, to reduce the expression e in (3.5), first null(C) is reduced
to null(r) according to (3.8), and thus I[, 1= {null(r)« F'} for the expression €1 in
the false branch of e. Now to specialize out(C, R) at e, we use the information set
{null(r)— F} U {null(z)—null(r)}, and we obtain the same expression as in (3.6).

Inc[e]ICD = (", C", D")
where (e, C") = Repl[[Simp[[e"]]]Cl]]]C/C"
P {InaApply[[e']]]C/C"D' if € is f(e1,...,en)
<€ 7D > - ! ! :
(e', D" otherwise
vt oy ) Subl[e]ICD if e is not v
(e O D) = { (e,C, D) otherwise
(3.11)
Function Znc proceeds as follows. First, if an expression e has subexpressions, then
Inc calls Subl to recursively reduce the subexpressions in turn. The cache set and
definition set may be changed while reducing subexpressions. Then if the resulting
expression is a function application, Znc calls IncApply and aims to replace the ap-
plication with an application of an introduced function that computes incrementally.
The definition set may be changed by ZncApply. Finally, Inc uses Simp to simplify
the top-level expression, and then calls Repl to replace the resulting expression by a
retrieval from a cached result, if possible. The cache set may be changed by Repl.

Auxiliary specializer. The auxiliary specializer G is defined in a way similar to
Inc, but it is much simpler. It simplifies subexpressions in applicative order and lifts
conditions and bindings as Znc does, but there are no cache sets or definitions sets
involved. If simplification of a function application unfolds the application, then G is
applied to the unfolded application. Let Subl' be Subl except that Subl' takes only
an expression and an information set as arguments, returns only an expression, and

calls G instead of Znc. Then G is defined as follows:

Glell = {g[[eu]]] if €' is f(e1,...,en) and € # ¢

e otherwise
where €' =Simp[e']l (3.12)
) Subl'[e]l if e is not v
e = i
€ otherwise

3.3 Manipulating recursive function applications

We define the definition set, which is a global set of functions introduced during the
derivation procedure to compute function applications incrementally. We describe
how to maintain the definition set when introducing functions and how to use the
introduced functions to replace appropriate function applications.
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3.3.1 Definition set

Definition set D is a set of tuples (f(e1,...,en), f'(v1,...,v%), C), where C is a single-
element cache set {(ec,e,, )}, such that

1) f is a function in the original set F, expressions eq,...,e, depend on z and
possibly on y, f' is a new function introduced in the set D, and v1, ..., v} are
variables in eq, ..., ey, €., and e,

2) if the cache set C is valid, i.e., the equations in the information set [ hold,
and e, = e,, then whenever f(ey,...,e,) terminates with a value, f'(v1,...,v})
terminates with the same value, and

3) a definition of f' is obtained by incrementalizing the unfolded f(eq, ..., €y) using
I and C, and some of the parameters of f’ may be dead and eliminated after
the incrementalization.

For example, given out(C, R) = r with empty information set at the initial application
out(C,ins(i,a, R)), we introduce a new function out', and we get the initial definition
set

{{out(C,ins(i,a, R)), out'(C,i,a, R,r), {{out(C, R),r,0)})} (3.13)

where a definition of out' is to be obtained by incrementalizing the unfolded
out(C,ins(t,a, R)) using out(C, R) = r.

Intuitively, an element in the definition set D says that a new function f’ is intro-
duced such that, if the equations in the information set I hold, and the value of e,
can be retrieved from a cached result by computing e,, then f'(v1,...,vg) computes
f(e1, ..., en) incrementally. To obtain a definition of f’, we unfold f(eq, ..., y), incre-
mentalize the unfolded application using the sets I and C', and then eliminate dead
parameters. While we incrementalize the unfolded f(ey,...,e,), we may encounter
other function applications before we obtain a final definition of f'. We say f’ is fully
defined if, for every introduced function ¢' in D that f' (transitively) depends on, a
final definition of ¢’ has been obtained.

Note the restriction that cache set (' contains only one element, which reflects our
main heuristic for introducing new functions. In general, a function application has
its context information set and a current cache set. Any element in these sets might
be used in incrementalizing the unfolded application. But we do not know, before
examining the unfolded application, what elements are used and how. Therefore,
any dynamic decision must be an approximation. Qur one-cache-element heuristic is
based on the observation that, in a well-structured program, a function application is
expected to be computed incrementally based on the cached result of a corresponding
previous computation. As a consequence of our way of choosing the single cache
element, as described below, there is only one variable in the expression e,. This
variable depends on r and is introduced as a parameter of f'. We call it the current
cache parameter during the process of incrementalizing the unfolded f(eq, ..., €n).

A function f may correspond to multiple introduced functions, since there may
be multiple occurrences of applications of f during the derivation, and different ap-
plications may correspond to different introduced functions.
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3.3.2 Generalization for function introduction

Given a function application f(e1,...,ey), let I be the information set at f(eq, ..., en),
and C the current cache set for the unfolded application that contains f(ey, ..., en).
To introduce a function f' to compute f(e, ..., e,) incrementally, the main task is to
decide, based on [ and C', a valid and relevant cache element that is to be used to
incrementalize the computation of f(eq,...,e,). An interaction with this comes from
using a version of generalization [Tur86] that enables f' to be used in more general
settings and, at the same time, does not impede the discovery of incrementality.

Considerations. Our use of generalization ignores substructures of expressions to
introduce functions for more general uses. For example, consider the function appli-
cation

row(car(C),ins(t,a, R)) with  (row(car(C), R), car(r), {null(C)-F}) € Cou

and T = {null(C') & F} in the false branch of (3.5). Instead of introducing -
(row(car(C),ins(i,a, R)), row' (C,i,a, R,r), (3.15)
{{row(car(C), R), car(r), {null(C)—F}})
and replacing the application by row'(C,4,a, R,r), we introduce
(row(c,ins(i,a, R)), row'(¢,i,a, R,r1), {{row(c,R), r1, I')}) (3.16)

where I' = {null(C)—F,car(C)«c}, and replace the application by row'(car(C),1, a,
R, car(r)). We say that ¢ generalizes car(C'), and r; generalizes car(r). Obviously,
the latter row’ is more general than the former and can be used in more general
settings.

Basically, the largest common super-expression of all occurrences of a variable is
generalized by a single (new) variable. However, there are two considerations. First,
generalization should not impede the discovery of incrementality. For example, if
we consider row(car(C),ins(¢,a, R)) in (3.14), then ins(7, a, R) is not generalized by
a variable, since we want to separate subcomputations depending only on z from
the rest so that the former can possibly be replaced by retrievals. Therefore, one
guideline is to generalize as much as possible without crossing the boundary between
subexpressions depending only on z and the rest.

The second consideration is associated with the main task of deciding a valid
and most relevant cache element to be used to incrementalize the computation of
fle1,...,en). For example, among the valid cache elements in (3.7), the element in
(3.14) is used to incrementalize row(car(C),ins(i,a, R)). To arrive at this choice,
consider row(car(C), ins(i,a, R)) together with the two expressions in a cache el-
ement. With the element in (3.14), we can generalize more than with any other
element in (3.7). Also, the information set becomes I', as in (3.16), since it relates
I with the new variable ¢. Therefore, the guideline is to generalize the function ap-
plication together with the two expressions in each valid cache element, choose the
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element that allows most generalization, and relate the information set with the new
variables.

To summarize, our use of generalization does not impede the discovery of incre-
mentality and helps obtain the most relevant cache element. We should note that
these are online techniques for the generalization.

Generalization. We present the above ideas formally as follows. Given expressions
€1, .-y €m, let U be the set of variables in them. Let {u} U U; C U where u € Uy. An
expression e is the largest common u\U;-cover of ey, ..., ey, if € is the largest common
super-expression of all occurrences of u in the e;’s such that the elements of U; do
not appear in e.

Given f(e1,...,en) with I and C', suppose u” is the current cache parameter. Let
{uf,...,u;,ugll,...,ug} be the set of variables other than u" in ey, ..., e, where uj’s

depend only on z and u}’s depend possibly on y. Let (ec, er, I1) be any element in C
such that [ = I; and all the variables in e, are in {uf,...,u;}, and thus the element
is valid and relevant.

Let E be a set of non-overlapping expressions e such that e is the largest common

u\{uf, ..., uy, ud, ..., ug-cover, uf\{u’ uf, ..., uy }-cover, or u\{u)uf, ..., uy }-cover of
€1, -+ En, €c, and e, for some uj or uy. Let
0 ={e/v|ee L} (3.17)

where v’s are distinct new variable names,? then 6 is a substitution corresponding to
these non-overlapping largest common covers. Using the inverse substitution §7=

{v/e]e/v € 0}, we obtain expressions €], ...,eh, €., and e such that e} = ;07 for
i = 1,...,n,c,r, and we obtain an information set I’ such that I’ is 767! extended

with equations induced by 6 that are relevant to 767, i.e.,
I'=167"U{e—v | ¢/v € 8, a variable in e occurs in 167"},

We say that (€], ..., el el el I'} is a generalization for (f(ey, ..., ey), I, C) with substi-
tution 0. For any e/v in 6, we say variable v generalizes expression e. It is clear that
such a generalization obeys the first consideration.

A tuple (f(e1,...,en),I,C) may have more than one generalization if there is
more than one element in C' or there is more than one set of non-overlapping largest
common covers for a cache element. Suppose A and Aj are two generalizations with
substitutions #; and 63, respectively. We say A; is more general than As if every
expression in {e|e/v € 0} is a subexpression of some expression in {e|e/v € 6;}.
We say Ay is most general if no other generalization is more general. This incorporates
the second consideration.

3.3.3 Function introduction and replacement

Given a function application f(ex,...,ey), let I be the information set at f(eq, ..., en),
C the current cache set for the unfolded application that contains f(eq,...,e,), and

If an expression e in set E is a variable u, then the corresponding variable v can be u, i.e., v
does not have to be a new variable in this case.
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D the current definition set. If we can use a previously introduced function f' in D
to compute f(eq, ..., en) incrementally, then f(eq, ..., e,) is replaced by an application
of f'. Otherwise, we introduce a new function f' into D to compute f(eq,...,€n)
incrementally and, if f' computes fast, replace f(e1,...,e,) by an application of this
[, otherwise, leave f(eq, ..., en) unchanged; as a result, the definition set is changed
as a side effect. This process is achieved by ZncApply, first introduced in Section 3.1.
It is defined in Figure 3.5 and explained below.

IncApply[f(er,...,en)]IC D

= <fl(vi19, ey Uijg), D>
i 3(f(el, .. en), f'(viy, -y vi;), {(eh, e, I') }) € D with a substitution 6 s.t.
fler, o en) =5 f(el0, ... en8), T=10, €0 —=F-e.6, and
if " is fully defined, t(f'(v;,0,...,v;,0)) < t(f(e1,...,en));
= (f'(vi,0,...,v;,0), D"")
else if f(e1,...,en) depends on & but can not be replaced by a retrieval, and,
after obtaining a definition of f as follows,

if f'is fully defined, t(f'(vs,0,...,v:,0)) < t(f(e1,...,en));
introduce d={(f(e}, ..., eL), ' (v1, ..., v1), C’) with 6, where C'={(el, e, I'}},

and obtain f/(v;,,...,v;;), to be defined as some ¢’”, by the following steps:
1) e =ele}/v1,...,e,/vn], where fis defined by f(v1,...,v,) =€
2) (", C", D"y = Inc[e']I' C" D', where D' = DU {d}
3) (f'(viy,y .oy viy), D) = Elim[f' (v, ..., vx)] D'} where f'(v1,..,vg) is
defined as e”
= <f(61: tey 6n), DH”)

otherwise, where D" is D" as above if it is computed and D otherwise

Figure 3.5: Definition of ZncApply

Function replacement. Since an introduced function f’ is associated with a cache
element as an invariant, to use f', we need to justify the corresponding invariant. We
say a function application f(eq,...,e,) with I, C, and D can be replaced by an applica-
tion of a previously introduced function f' if there is a tuple (f(€},..., €,), f'(viy,...,i;),

! ! !

{{el e, I'V}) in D and there is a substitution @ over the variables in €, ..., e}, €., el

and I’ such that
1) f(e1,...,en) equals f(€}8,...,el0), invariant I'8 holds, €.6 can be replaced by
elf, and
2) if f'is fully defined, f'(vif,...,v;#) is asymptotically at least as fast as f(e1,...,eq).
In this case, f(e1,...,en) can be replaced by f'(vi0,...,v;;0), and definition set D

remains unchanged.
For example, given the definition set (3.13), the application

out(cdr(C),ins(i,a, R))  with  (out(cdr(C), R), cdr(r), {null(C)—F}) € Cou
(3.18)
in the false branch of (3.5) can be replaced by out'(cdr(C'),1,a, R, cdr(r)).
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Function introduction. If f(ey,...,e,) with I, C', and D can not be replaced by an
application of a previously introduced function in D, then we introduce a new function
f'into D to compute f(eq, ..., e,) incrementally. Following the basic derivation idea,
we introduce f’ only if f(ey, ..., e,) depends on  but can not be replaced by a retrieval
from a cached result.

Given f(e1,...,ey) with I and C, let (€}, ..., e}, el €., I'} be a most general gener-

Y Ymy ey T
alization with substitution 6. Let vy, ..., v; be all the variables in €], ..., el €., and €.
We introduce (f(€,...,el), f'(v1,...,vr),C"), where C' = {(e,el, I')}, into D to get

D', and we obtain a definition of f' by the following three steps:

1) unfold the application f(e},...,€l,) to obtain €;

trm

2) incrementalize e’ with information set I, cache set C) and definition set D' to get
et

3) for f' defined by f'(v1,...,vr)=¢€", eliminate dead parameters of f’.

Note that the second step uses the function Zne, which may use IncApply recursively
for function applications. After the third step, if we obtain f'(vi, ..., v;) and, if f!
is fully defined, ¢(f'(vi,0,...,vi,0)) <t(f(e1,...,en)), then we replace f(er,...,en) by
f'(vir0, ..., vi;0). The set D is changed as a side effect.

Dead parameter elimination. After the second step above, f'(v1,...,vg) com-

i

putes f(€,...,el,) and is defined as e”. Since €¢” is obtained by replacing some sub-
]

computations of f(e€],...,el,) depending on z by computations depending on the cur-
rent cache parameter, those parameters of f' on which the replaced computations
depend may become dead.

Dead code elimination is a traditional optimization [MJ81,ASU86]. We assume a
subroutine £lim is given so that Elim[f' (v1,...,vr)]D", where f'(vi,..,vt) is defined
as €' in D", returns the pair (f'(viy,...,vi;), D"'), where 1 <4y < ... <i; <k and
I (viy, .., v;;) is defined as some e in D" after dead parameter elimination, and
f'(vig, ..., ;) returns a value if and only if f'(v1,...,v;) returns the same value.

Example. Consider the running example. For application row(car(C),ins(i,a, R))
in the false branch of (3.5), we introduce a new function row’ as in (3.16). To obtain
a definition of row’, we first unfold row(c,ins(i, a, R)) to get

if null(ins(i,a, R)) then nil (3.19)
else cons(c * car(ins(v, a, R)), row(c,cdr(ins(i, a, R)))) '
Then, we incrementalize (3.19) using row(e, R) = r1 as given by the cache set in
(3.16). The incrementalization is sketched as follows. It is easy to see that ins(i, a, R)
in the condition can be unfolded and the condition simplified to true, and thus (3.19)
is reduced to

cons(c* car(ins(t,a, R)), row(e, cdr(ins(i,a, R)))) (3.20)
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The first occurrence of ins(i, a, R) in (3.20) can be unfolded, conditions in the unfolded
application lifted, and car of cons applications simplified. Thus, (3.20) becomes

if + <1 then cons(c * a, row(c, edr(ins(i,a, R))))
else if null(R) then cons(c* a, row(c,cdr(ins(t,a, R)))) (3.21)
else cons(c* car(R), row(c,cdr(ins(i,a, R))))

The three occurrences of ins(i,a, R) in (3.21) can be specialized under their corre-
sponding contexts, unfolded, and then cdr of cons applications simplified. Thus,
(3.21) becomes

if + <1 then cons(c* a, row(c, R))
else if null(R) then cons(c* a, row(c,nil)) (3.22)
else cons(c * car(R), row(c,ins(i—1,a,cdr(R))))

In the first branch of (3.22), row(e, R) can be directly replaced by ri. In the second
branch, row(c,nil) can be specialized and unfolded to nil. For the third branch, we
have null(R) « F; thus row(c, R) is specialized to cons(c * car(R), row(c,cdr(R)))
and the cache set is extended so that

c*car(R) = car(r1) and  row(e,edr(R)) = edr(r).

Thus, ¢ * car(R) can be replaced by car(ri), and the application row(e,ins(i —
1,a,cdr(R))) can be replaced by row'(c,i—1,a,cdr(R),cdr(r1)). Additionally, in
a situation similar to (3.8), null(R) can be replaced by null(ri). Thus, (3.22) is

reduced to
if « <1 then cons(c*a, r)

else if null(r1) then cons(c* a, nil) (3.23)
else cons(car(ry), row'(¢,i—1,a,cdr(R),cdr(r1)))

Finally, for row'(c,7,a, R,r1) defined as (3.23), it is clear that the parameter R is dead
and can be eliminated. We obtain the final definition of row' as given in Figure 3.1.
The application row(car(C'),ins(i, a, R)) can be replaced by row'(car(C), i, a, car(r)),
since the latter is asymptotically at least as fast as the former.

To complete our example, for the initial application out(C,ins(¢,a, R)), we intro-
duce a new function out' as in (3.13). In incrementalizing the unfolded application of
out as in (3.5), the Boolean expression null(C') can be replaced by null(r) due to (3.8),
the application of row can be replaced by row'(car(C),i,a, car(r)) as just given above,
and the recursive application of out can be replaced by out'(cdr(C),i,a, R, cdr(r)) as

followed from (3.18). Therefore, the unfolded application (3.5) is reduced to

if null(r) then nil

else cons(row'(car(C),i,a,car(r)), out'(cdr(C),i,a, R, cdr(r))) (3.24)

For out'(C,i,a, R,r) defined as (3.24), it is clear that the parameter R is dead and
can be eliminated. We obtain the final definition of out’ as given in Figure 3.1.
Finally, the application out(C,ins(i,a, R)) can be replaced by out'(C,i,a,r), i.e.,
given out(C, R) = r, out'(C,i,a,r) computes out(C,ins(i,a, R)) and is at least as
fast.
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3.4 Summarizing the derivation procedure

The derivation procedure can be summarized as follows. Function ZncApply main-
tains global set D, introduces new functions to compute function applications incre-
mentally, and replaces these applications by appropriate applications of introduced
functions. IncApply calls function Zne, which maintains a cache set €, discovers sub-
computations whose values can be retrieved from cached results, and incrementalizes
the computation of an unfolded function by simplification and replacement using re-
trievals. Inc recursively calls ZncApply if a subcomputation is a function application.
The derivation procedure starts with

IncApplylfo(z & y)] 0 {{fo(z),r,0)} 0 (3.25)

and, if it terminates, returns (fj(z,y,r), D), where D is the set of functions in-
troduced during the derivation. We can eliminate dead functions in F' (the set of
functions in the original program) and D that are not reachable from f in the call-
graph.

The derivation procedure preserves the semantics of programs and achieves at
least as fast computations, i.e., if fo(z) = r, then (a) whenever fo(z & y) returns
a value, fi(x,y,r) returns the same value; and (b) fi(z,y,r) is asymptotically at
least as fast as fo(x @ y). To see this, notice that semantics are preserved and fast
computations are achieved by all the transformations in the derivation procedure —
simplification by Stmp, computation of cache sets and replacement by Repl, lifting
of conditions and bindings by Subl, and function replacement and introduction with
generalization by ZncApply. Note that unfolding may result in computations that
terminate more often than the original computations.

Transformation techniques. The transformation is a deterministic transforma-
tional procedure. It starts with fo(z @ y), so that fj is computable, and aims to
improve the efficiency by replacing subcomputations whose values can be retrieved
from cached result r of fo(x) by corresponding retrievals. This starting point is similar
to that of partial evaluation, which starts with a trivial specialized program given by
Kleene’s s-m-n theorem [Kle52] and attempts improvements by symbolic reductions
or similar techniques. We summarize the major transformation techniques used and
emphasize how they are combined to achieve the goal.

First, context information is collected for each subcomputation and used to sim-
plify the computation, which mimics the main techniques of generalized partial eval-
uation [FN88], where program states are represented symbolically and programs are
specialized with the help of a theorem prover. In addition to simplification, context
information has another important role in our work, i.e., it serves as keys to cached
results and introduced functions for valid replacement to happen.

Second, a cache set is maintained for each unfolded application and used to in-
crementalize it, i.e., to replace certain subcomputations, under certain context infor-
mation, by retrievals from a cached result of a previous computation. A cache set is
augmented, finitely and in a disciplined way, with the help of an auxiliary specializer
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so that the cached result is utilized effectively under valid context information. The
use of a cached result often suggests memoization [Mic68,Bir80]. However, the real
power of our approach comes from the effective exploitation of a memoized value
under valid context information. The approach to be proposed in Chapter 4 for in-
creasing incrementality by caching intermediate results can be regarded as a form of
smart memoization.

Third, consistent with the strict semantics of our language, we apply simplifi-
cation and replacement on subcomputations in applicative order and, moreover, lift
conditions and bindings out of subcomputations. This lifting technique is similar in
spirit to the driving transformation by supercompilation [Tur86]. It causes relatively
drastic reorganization of program structures that helps expose incrementality that is
otherwise hidden.

Fourth, a global definition set is maintained and used to replace function applica-
tions, with corresponding relevant cache elements and valid context information, by
applications of introduced functions. Function introduction with generalization and
function replacement use the unfold/define/fold scheme [BD77] in a regulated manner
so that the transformations are deterministic and the derived programs converge if
the originals do. Moreover, relevant cache elements with valid context information
are chosen to be passed into introduced functions, so that they can be effectively used
to incrementalize the computation of corresponding function applications.

Last, after the replacements described above, we apply dead code elimination,
a traditional optimization technique [MJ81,ASU86]. It is particularly useful here,
since replacement changes dependencies between computations, and computations
on which no other computations depend are then dead and can be eliminated.

Analysis techniques. To implement the above transformations for achieving the
ambitious goal of deriving incremental programs, a number of program analysis tech-
niques are needed.

First, time analysis [Weg75,R0s89] is used when replacing subcomputations by
retrievals or replacing function applications by applications of introduced functions.?
It is a must if we want to guarantee the efficiency of the derived programs.

Then, several analyses [JGS93] are used to assist transforming function applica-
tions. Dependency analysis enables us to recognize subcomputations that are possibly
computed incrementally, i.e., subcomputations depending on x, and thus avoid intro-
ducing functions for function applications that depend only on y, which then helps the
derivation procedure terminate. Call-graph analysis tells us whether a function is re-
cursively defined and also whether an introduced function is fully defined. Occurrence
counting analysis helps us decide whether an unfolding duplicates computations.

Finally, dead code analysis recognizes dead code to be eliminated. In particular,
dead parameters of functions can be recognized with the help of dependency analysis,
and dead functions can be identified with the help of call-graph analysis.

Additionally, other analysis techniques, although not mentioned in our trans-
formations so far, would also benefit the derivation procedure. For example, type

3The minor use of time analysis in assisting some simplifications can be easily avoided.
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analysis would be helpful for simplifying overloaded functions. Also, static analysis
could provide annotations that guide the derivation and help it terminate, mimicking
binding-time analysis in partial evaluation, as discussed below.

Last but not least, it should be noted that, even with these analysis techniques,
the quality of a derived incremental program depends on the corresponding non-
incremental program. One should not expect “genuine creativity” without discoveries
and proofs of some “substantial” theorems. On another hand, with the power of our
combined techniques, a very simple theorem prover can already help us derive efficient
incremental programs. Examples can be found in Section 3.5.

Improving the derivation procedure. A number of optimizations can be made
to the derivation procedure. An implementer would naturally realize most of them.
As an example, assume the replacement guarantees

if Repl[e]IC = (', C"), then Repl[e|IC' = (¢/,C"),
then one can make the optimization:

Tnc[if e; then ey else e3]IC D = Inc[es]IC'D', if Tnc[e1]ICD = (F,C", D').

(3.26)
A relatively important improvement is with the function introduction for a func-
tion application f(e1,...,en), as in the second case in Figure 3.5. While we incre-

mentalize the unfolded application, its cache set is extended from C' to C”, but C”
is discarded after this, even if C" might be used in incrementalizing the rest of the
unfolded application that contains f(eq, ..., e5). To make use of C" for this purpose,
we can let IncApply also return the set C”0 and merge it with the cache set of the
unfolded application that contains f(eq, ..., en).

Termination. The derivation procedure follows function applications and intro-
duces new functions to compute these applications incrementally. Therefore, if func-
tions are recursively defined, the derivation procedure may not terminate due to
introducing infinitely many functions following infinite unfolding. Non-termination
is a traditional problem in transformational approaches, and it is well-known that
there is a trade-off between termination of the transformation and efficiency of the
transformed programs.

In our derivation, we introduce new functions only for function applications that
depend on x, which may affect the efficiency of other function applications but makes
the derivation terminate more often without impeding the discovery of incremental-
ity. It is also clear that function replacement and the notion of generalization for
function introduction help the derivation terminate in a natural way. However, our
heuristic of one cache element per introduced function might impede achieving incre-
mentality, since this element may not be sufficient, i.e., it may not enable all of the
simplifications and replacements that are possible when using more cache elements.
We could overcome this by using as many cache elements as possible when introducing
a function and eliminating useless ones later. But this may cause a too complicated
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treatment of recursive functions and may make the derivation terminate less often.
On the other hand, this is a place where separate passes of static analysis could help,
imitating binding-time analysis in partial evaluation. This suggests a direction for
future work.

Although in general, any attempt to limit function introductions could affect
achieving incrementality for certain programs, it does not hurt to try a few good
heuristics with more reasonable termination behavior. For example, we may introduce
a new function at a function application only if we can effectively decide that, in
incrementalizing the unfolded application, some subcomputations can be simplified.
Thus, assuming we have a complete equality reasoning mechanism and a sufficient
cache element when introducing a function, if the derivation procedure does not
terminate, there must be simplification possible along an infinite path, and thus
there must an execution of the original program that does not terminate. In other
words, if the original program terminates on all inputs, then the derivation procedure
terminates, and the derived program terminates on all inputs at least as fast with the
right values. Note, however, that the complexity of the derivation procedure may not
be bounded by the size of a given program, since it may loop on ground values. The
rationale is that computations done at transformation time need not be done in the
transformed programs.

Other concerns. Two other weaknesses result from unfolding as done by the
derivation procedure. First, only partial correctness is preserved, i.e., a derived pro-
gram may terminate more often than the original program. Second, subcomputations
may be duplicated in a derived program.

Both drawbacks can be overcome by inserting let bindings to compute the ar-
guments when unfolding function applications, i.e., instead of unfolding a function
application to efler/v1, ..., en/vp], we unfold it to

let vi=e¢7 in ... let v,=e¢, in ¢

Then we modify the condition of unfolding let expressions in Stmp, namely, let v=
e1in ez can be unfolded only if es[eq/v] neither duplicates non-trivial computations
nor discards non-terminating computations, where the latter means either e; can be
effectively decided to terminate or v occurs at least once on every (syntactic) execu-
tion path in e3. As occurrence counting analysis helps decide whether an unfolding
duplicates computations, it can also help decide whether an unfolding discards com-
putations.

Similar solutions are proposed in partial evaluation [Mog88,BD91]. Note that,
even without this technique, the efficiency of our derived programs is guaranteed
with the help of time analysis. But in partial evaluation where no time analysis
is employed, a transformed program could take exponential time while the original
program takes only polynomial time [Mog88]. As a matter of fact, even with this
technique, time analysis is still needed in our derivation, since we replace subcompu-
tations by retrievals from a cache result only when we can save time by doing so. This
is inherent in incremental computation and is a complication over partial evaluation.
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Mechanization. With the oracle of a theorem prover, time analysis techniques,
and heuristics for function introductions, the derivation can be fully automated. In
practice, the derivation can be made semi-automatic when some of these oracles are
only semi-automatically provided.

Although we see the derivation as certainly no more automatable than partial
evaluation, it is desirable to at least use the computer as a sophisticated editor,
suggesting and carrying out detailed transformations. It is also nice that the derived
programs are in the same language as the original programs, and therefore they are
executable and one can check solutions and try out alternatives.

3.5 Examples

To see the power and some interesting behavior of the derivation procedure, we con-
sider incrementalizing several different sorting programs. Let sort be a function that
takes a list of numbers z and returns the sorted list sort(z). Let the change to the
input of sort be that an extra number is added at the beginning of the list, i.e.,
2’ = cons(y, ).

3.5.1 Insertion sort

Suppose the program is an insertion sort that inserts the first element of the list into
the recursively sorted list of the rest, as in Figure 3.6. To compute sort(cons(y, z))

sort(z) : sort a list z using insertion sort
sort(x) = if null(z) then nil
else insert(car(z), sort(cdr(z)))

insert(i,z) = if null(z) then cons(i, nil)
else if i < car(z) then cons(i, z)
else cons(car(z), insert(i, cdr(z)))

Figure 3.6: Example function definitions of insertion sort and insert

incrementally using sort(z) = r, all we need to do is a function introduction, fol-
lowed by an unfolding, a few simplifications, a replacement, and a dead parameter
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elimination, and finally a use of the introduced function, as sketched below:

sort'(y1,x1,m1) = sort(cons(y1,z1)), with sort(z1) =
function introduction
= if null(cons(y1,z1)) then nil
else insert(car(cons(y1, x1)), sort(edr(cons(yi, z1))))

unfolding
= insert(y1, sort(z1)) simplifications
= insert(y1,r1) replacement
sort'(y1,m1) = insert(y1,r1) dead parameter elimination
sort(cons(y,z)) = sort'(y,r), for sort(z)=r using introduced function

The derived incremental program simply uses insert to insert the newly added number
into the previously sorted list.
A more formal derivation following the derivation procedure is given below. We
start with
IncApply[sort(cons(y,z))] O {(sort(z),r,0)} 0 (3.27)

where we introduce sort’ to get a tuple dy:
(sort(cons(y1,1)),sort' (y1,z1,71),C1), where Cy = {(sort(x1),r1,0)}

and we obtain a definition of sort' as follows:

1. We unfold sort(cons(y1,z1)) and get an expression e;:

if null(cons(yi,z1)) then nil
else insert(car(cons(yy, 1)), sort(cdr(cons(yi,z1))))

2. We incrementalize eq:
Incle1] 0 C1Dy, where Dy = {d}
which first calls Subl to reduce subexpressions:

Subl[e1] O C1 Dy
——by (if1), Inc[null(cons(y1,x1))] O C1D1 = (F,Cy, Dy)

= Sublif F then nil else e13] § C1D1, where €13 denotes false branch of e;
——by (ifn), Inclers] {F < F} C1Dy = (insert(y1,r1),C1, D1)

since car(cons(y1,x1)) =y1, cdr(cons(yi,x1)) =x1, and sort(xy) =ry;
insert(yi,r1) does not depend on z, so IncApply does not transform it

= (if F then nil else insert(y1,r1),C1, D)
and then applies Stmp and Repl to the resulting expression:

Repl[Simp[if F then nil else insert(y1,r1)] 091 01 C4
= Repl[insert(yy,m)] 0¢1 ¢4
= insert(y1,r1)
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3. We eliminate dead parameters of sort’, defined by sort'(y1,21,r1) =insert(y1,r1).
Clearly, z1 is dead. We obtain a final definition of sort':

sort'(y1,m1) = insert(y1,r1) (3.28)

It is clear that sort'(y1,71) is asymptotically at least as fast as sort(cons(yi,z1))
since each transformation step above guarantees this relation. Therefore, {(sort'(y,r))
< t(sort(cons(y,z))). Thus, (3.27) returns

(sort'(y,r), {(sort(cons(y1,z1)), sort' (y1,r1), {(sort(x1),r1,0)})})

where sort’ is defined as in (3.28) and insert is defined as in the original program in

Figure 3.6.

3.5.2 Selection sort

Suppose the program is a selection sort that selects the least number in the list as the
first number in the sorted list and sorts the rest recursively, as shown in Figure 3.7.
Again, we start by introducing sort'(y1,z1,71) to compute sort(cons(yi, 1)) incre-

sort(z) : sort a list z using selection sort

sort(z) = if null(z) then nil
else let k = least(z) in
cons(k, sort(rest(z, k)))
least(z) = 1if null(cdr(z)) then car(z)
else let s = least(cdr(z)) in
if car(z) < s then car(z) else s

rest(z, k) = if k = car(z) then cdr(z)

else cons(car(z), rest(cdr(z), k))

Figure 3.7: Example function definitions of selection sort, least, and rest

mentally. But while incrementalizing the unfolded sort(cons(yi,x1)) to get a defi-
nition of sort', the application least(cons(y1, 1)) is transformed recursively, which
results in the lifting of some conditions and bindings, and then applications of rest
are transformed under these conditions and bindings. As the result of these transfor-
mations, sort’ compares y; with the first number in r; to decide whether y; should
stay before ry, and, if not, recursively considers y; with the rest of 1. But this is
exactly the process of inserting y; into ry at the right place. Thus, to a certain degree,
the derivation procedure discovered the insertion process from the selection sort via
a series of transformations.

Since the derivation procedure is more complicated, an informal but complete
derivation is given below. As just mentioned, to compute sort(cons(y,x)) incremen-
tally using sort(z) = r, we start by introducing sort'(y1,z1,r1) for sort(cons(y1,z1))
with sort(z1) = r1.
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1. Unfold sort(cons(yi,x1)):

if null(cons(y1,x1)) then nil

else let k=least(cons(y1,x1)) in cons(k, sort(rest(cons(yi,x1),k))) (3.29)

2. Simplify condition null(cons(y1,z1)) in (3.29) to false and simplify (3.29) to:

let k = least(cons(y1, 1)) in cons(k, sort(rest(cons(yi,x1),k))) (3.30)

3. Consider application least(cons(y1, 1)) in (3.30) and introduce least'(y2, x2,2)
for least(cons(yz, x2)) with sort(za) = ra.

3.1. Unfold least(cons(ya, x2)):
if null(cdr(cons(ya, x2))) then car(cons(yaz, x2))

else let s = least(cdr(cons(ya, x2))) in (3.31)
if car(cons(yz2,x2)) < s then car(cons(yz,x2)) else s

3.2. Simplify the condition null(cdr(cons(yz, x2))) to null(xz), and then replace
null(x2) by null(ry) since when null(z2) is true (false)

null(sort(zq)) is specialized to true (false).

In the true branch, simplify car(cons(ya,z2)) to y2. In the false branch,
simplify least(edr(cons(ya,x2))) to least(x2), and replace least(x2) by
car(rg) since when null(ry) is false

sort(xg) is specialized to let ko =least(x2)in cons(ka, sort(rest(xa, ka))),

and then, in the body of the let expression, simplify car(cons(ya, z2)) to
y2. Thus, (3.31) becomes

if null(ry) then y; else let s=car(ry) in if y <s then y, else s (3.32)

3.3. For least’ defined by least'(y2, x2,72) = (3.32), eliminate dead parameter
T9.

Replace least(cons(y1, 1)) by least'(y1,r1), and unfold least'(y1,71) since least’
is not recursively defined and unfolding does not duplicate non-trivial compu-
tations. Thus, (3.30) becomes

let k£ = (if null(r1) then y; else let s=car(r1) inif y; <sthen y; else s) in
cons(k, sort(rest(cons(yr,x1),k)))
(3.33)

4. Lift the first condition null(r1) out of the top-level let. Thus, (3.33) becomes
if null(ry) then let k=y; in cons(k, sort(rest(cons(yi,x1),k)))

else let k£ = (let s=car(r1) in if y; <s then y; else s) in (3.34)
cons(k, sort(rest(cons(yr, x1),k)))
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5. In the true branch of (3.34), simplify z1 to nil. No functions are introduced for
the applications of rest and sort since they do not depend on x. Then unfold
the let:

cons(y1, sort(rest(cons(yi,nel),y1))) (3.35)
In the false branch of (3.34), lift the binding s = car(r1) out of the first let:

let s = car(rq1) in let k = (if y; < s then y; else s) in
cons(k, sort(rest(cons(yr, x1),k)))

and then lift the condition y; < s out of the second let:

let s=car(r1) in if y; <sthen let k=y; in cons(k, sort(rest(cons(yi,x1),k)))
else let k=sin cons(k, sort(rest(cons(yi,x1),k)))
(3.36)

6. In the true branch of (3.36), first consider rest(cons(y1,x1), k), and introduce
rest'(ys, x3, ks, r3) for rest(cons(ys, x3), k3) with sort(z3) = rs and also k3 <> ys3,
elc.

6.1 Unfold rest(cons(ys, x3), k3):

if k3 =car(cons(ys,x3)) then cdr(cons(ys,x3)) (3.37)

else cons(car(cons(ys, x3)), rest(cdr(cons(ys, x3)), k3)) '

6.2 Simplify the condition k3 = car(cons(ys,x3)) to k3 =y3, and further sim-
plify it to true, and thus (3.37) is to be simplified to the true branch
cdr(cons(ys, x3)), which is then simplified to z3.

6.3 For rest’ defined by rest'(ys, z3, k3,r3) = z3, eliminate dead parameters
y37k37 and r3.

Replace rest(cons(y1, 1), k) by rest'(z1), and unfold rest'(z1) to z1. Then,
replace sort(x1) by r1. Finally, unfold the let. Thus, the true branch of (3.36)
becomes

cons(y1,r1) (3.38)

7. In the false branch of (3.36), first consider rest(cons(y1,z1), k), and introduce
rest|(ya, x4, ka,ra) for rest(cons(ya, x4), ks) with sort(z4) = r4 and also yg <
s> Flky & s, ele.

7.1 Unfold rest(cons(ya,x4), ka):

if k4 = car(cons(ys,x4)) then cdr(cons(ya, x4)) (3.39)

else cons(car(cons(ya, x4)), rest(cdr(cons(ya, x4)), ka)) '

7.2 Simplify the condition k4 = car(cons(ya,xs)) to ks = ya, and further
simplify it to false, and thus (3.39) is to be simplified to the false branch,
which is then simplified to cons(ya, rest(za, k4)).
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7.3 For rest| defined by rest)(ya, x4, ka,74) = cons(ya, rest(za, k4)), eliminate
dead parameter ry.

Replace rest(cons(yi,z1),k) by rest)(y1,71,k) and unfold to cons(yi,rest(z1,k)).
Then, replace sort(cons(y1,rest(z1,k))) with sort'(y1,rest(z1,k), edr(r1)), since
when null(ry) is false

sort(zy) is specialized to let ky = least(x1) in cons(ky, sort(rest(z1,k1))),

which implies sort(rest(z1,k)) = cdr(r1) for k = s = car(ry) = ki. Finally,
unfold the let. Thus, the false branch of (3.36) becomes

cons(s, sort' (y1,rest(x1, s),cdr(ry))) (3.40)

8. Putting (3.34) (3.35) (3.36) (3.38) (3.40) together, sort’ is defined by

sort!'(y1,x1,m1) = if null(r1) then cons(y1, sort(rest(cons(y1,nil),y1)))
else let s=car(r)inif y; <s then cons(y,r)
else cons(s, sort'(y1,rest(x1,s), cdr(r1)))

Eliminating dead parameter x1, we obtain a final definition of sort':

sort'(y1,r1) = if null(r1) then cons(y1, sort(rest(cons(yi,nil),y1)))
else let s=car(ry) in if y; <s then cons(yi,r1) (3.41)
else cons(s, sort'(yi1, cdr(ry)))

It is easy to see that, in the true branch, sort(rest(cons(yi,nil),y1)) returns nil
in constant time given any number y;; in the false branch, the let expression
could be unfolded. Thus, sort’ exactly performs an insertion as the insert of

Figure 3.6.

At the end, we have sort(cons(y,z)) = sort'(y,r) for sort(z) = r, where sort' is

defined as in (3.41).

3.5.3 Merge sort

Suppose the program is a merge sort that divides the list into two sublists, recursively
sorts the two sublists, and then merges the two sorted sublists, as in Figure 3.8.  An
insertion can be easily obtained if we are given the property that sorting the new list
equals merging the new number into the previously sorted list.

sort'(y1,x1,m1) = sort(cons(y1,z1)), with sort(x1) =
function introduction

= merge(cons(y1,nil), sort(x1))  property of merge and sort
= merge(cons(yr,nil),r) replacement
sort'(y1,m1) = merge(cons(yr,nil),r) dead parameter elimination

sort(cons(y,z)) = sort'(y,r), for sort(x) = using introduced function
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sort(z) : sort a list z using merge sort

sort(z) = if null(z) then nil
else if null(cdr(z)) then cons(car(z), nil)
else merge(sort(odd(z)), sort(even(z)))

if null(z) then nil
else cons(car(z), even(cdr(z)))

odd(z)

even(z) = if null(z) then nil
else odd(cdr(z))

merge(z,y) = if null(z) then y
else if null(y) then z
else if car(z) < car(y) then
cons(car(z), merge(edr(z),y))
else cons(car(y), merge(z, cdr(y)))

Figure 3.8: Example function definitions of merge sort, odd, even, and merge

The derived program sort' basically performs an insertion with a constant factor
overhead over the insert of Figure 3.6. The required property that relates merge
and sort can be proved by a straightforward induction based on the associativity
and commutativity of merge. However, if the above property is not given, then no
incremental program can be derived using the derivation procedure. But what is
interesting is the following.

Suppose we cache certain intermediate results during the merge sort, namely,
the recursively sorted sublists. Then, following the derivation procedure, we can
easily obtain an incremental merge sort that sorts the new list by recursively merging
the new number with the appropriate intermediate results and, at the same time,
maintains the corresponding intermediate results. Each merge takes two sublists of
roughly equal lengths and returns a sorted list of doubled length, where the lengths of
the lists being processed go from one to the length of x. The derivation will be shown
in the next chapter, where systematic techniques for caching intermediate results are

described.

Both insertion sort and selection sort take O(n?) time, where n is the length of
the input list, and merge sort takes O(nlogn) time. Insertion takes only O(n) time;
but it uses O(n) space to store the previously sorted list. Incremental merge sort also
takes O(n) time; but it uses O(nlog n) space to store intermediate results.

The derivation of the incremental merge sort suggests that the approach of ex-
ploiting cached values for incrementality is powerful: the power of caching sometimes
obviates the reliance on a theorem prover for proving certain properties. We can also
view it as trading space for theorem proving ability.
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3.6 Related work

Related work in program analysis and transformation techniques has been summa-
rized in Section 3.4. This section takes a closer look at related work in incremental
computation, which is introduced in Chapter 2 and partitioned into three classes.

First of all, given particular problems with certain input changes, can the approach
be used to derive as efficient incremental programs as those in the first class? The
general answer is positive, but with three caveats. First, the particular problem needs
to be coded naturally in the language for which our approach is presented. Second,
the quality of a derived incremental program depends on the way the non-incremental
program is coded, as seen in the sort examples in Section 3.5. Third, intermediate
results and auxiliary information are needed for many incremental problems but may
be difficult to determine. In this case, we can use the techniques in Chapters 4
and 5, or at least use the derivation procedure on programs that are extended to
compute manually determined intermediate results and auxiliary information, and
derive programs that incrementally maintain these intermediate results and auxiliary
information.

Since the transformational approach is related to partial evaluation in some as-
pects, it is worthwhile to compare it with the work by Sundaresh and Hudak [SH91,
Sun91] in the second class. The common aspect is that both works aim at obtaining
incremental computation by transforming non-incremental programs. However, the
two approaches follow different lines. Their work mostly uses partial evaluation, with
extra efforts on partitioning program inputs and combining residual programs. Our
method combines a series of analysis and transformation techniques that “parallel”
those used in (generalized) partial evaluation, but with the goal of incrementaliza-
tion in addition to specialization, and therefore employs overall more extensive and
more complicated techniques. We believe a major limitation of the Sundaresh-Hudak
framework is that it can only handle input changes according to a pre-given input
partition, which is partly implied as a work in the second class.

Our work is closest in spirit to the finite differencing techniques of the third class.
The name “finite differencing” was originally given by Paige and Koenig [PK82].
Their work generalizes Cocke and Kennedy’s strength reduction [CK77] and provides
a convenient framework for implementing a host of transformations including Far-
ley’s “iterator inversion” [Ear76]. They develop a set of rules for differentiating set-
theoretic expressions and combine these rules using a chain rule to derive inexpensive
programs with incremental loop bodies. Such techniques are indispensable as part of
an optimizing compiler for languages like SETL or APL [PH87,CP89]. The APTS
program transformation system [Pai90,Pai94] has been developed for such purposes.
Our technique differs from theirs in that it applies to programs written in a standard
language like Lisp. In general, such programs are written at a lower abstraction level
so that a fixed set of rules for differentiating primitive operations involving complex
objects like sets is not sufficient. The technique we propose can be regarded as a
principle and a systematic approach, through which incrementality can be discovered
in existing programs written in standard languages.

Smith’s work in KIDS [Smi90,Smi91] is closely related to this work. KIDS is a
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semi-automatic program development system that aims to derive efficient programs
from high-level specifications [SL90], as is APTS. Its version of finite differencing
was developed for the optimization of its derived functional programs and has two
basic operations: abstraction and simplification. Abstraction of a function f adds
an extra cache parameter to f. Simplification simplifies the definition of f given the
added cache parameter. However, as to how the cache parameter should be used in
the simplification to provide incrementality, KIDS provides only the observation that
distributive laws can often be applied. The Munich CIP project [BMPP89,Par90]
has a strategy for finite differencing that captures similar ideas. It first “defines by a
suitable embedding a function f'”, and then “derives a recursive version of f' using
generalized unfold /fold strategy”, but it provides no special techniques for discovering
incrementality. We believe that both works provide only general strategies with no
precise procedure to follow and therefore are less automatable than ours.



Chapter 4

Caching intermediate results

The value of fy(x @& y) may often be computed faster by using not only the return
value of fy(x), as discussed in Chapter 3, but also the values of some subcomputations
performed in fy(z) that can not be retrieved from the return value of fo(x). These
values are called intermediate results useful for computing fy incrementally under &.

Examples where intermediate results are needed for incremental computation
include incremental parsing [JG82] and incremental attribute evaluation [RTDS83,
Yeh83]. An incremental parser may cache, in addition to the derived parse tree,
the LR(0) state corresponding to each shift and reduction. An attribute evaluator
may only return some designated synthesized attribute of the root [Kat84], but the
corresponding incremental attribute evaluator may cache the whole attributed tree.

This chapter describes a three-stage method, called cache-and-prune, for statically
transforming a program fy to cache intermediate results useful for the incremental
computation under &. The basic idea is to (I) extend fy to a program fo that returns
all intermediate results, (II) incrementalize fy under & to obtain an incremental ver-
sion fg, and (II1) using the dependencies in fg, prune fj to a program fo that returns
only the useful intermediate results and prune fg to a program f() that incrementally
maintains the useful intermediate results.

Note that every program computes by fixed point iteration and, for efficiency,
each iteration should be computed incrementally based on the previous iteration.
The approach for caching intermediate results for incremental computation can be
applied straightforwardly and systematically for improving program efficiency via
caching. As an example, we will see that the classical linear-time Fibonacci function
falls directly out of the approach. Previous work on caching relies on a fixed set of
rules [ACKS81,PK82], applies only to programs with certain properties or schemas
[Bir80,Coh83,Pet84,Pet87], requires program annotations [KS86,SH91,Ho092], etc.

Defining the problem. We use an asymptotic time model as in Chapter 3 and use
t(f(v1,..,vn)) to denote the asymptotic time of computing f(v1,...,vn). Since only
asymptotic time is of concern, it is sufficient to consider only the values of function
applications as candidate intermediate results to be cached. Of course, caching inter-
mediate results takes extra space, which reflects the well-known principle of trading
space for speed. This work assumes that there is unlimited space to be used for

40
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achieving the least asymptotic time possible. Pruning saves time as well as space for
computing and maintaining intermediate results that are not useful for incremental
computation.

Given a program fy and an input change operation &, we aim to transform fj
to cache intermediate results that are useful for computing fy incrementally under
. For example, consider function foo of Figure 4.1 and input change operation
2 =2@®y=1x+1. Using the approach in Chapter 3 directly, the function foo' of

foo(z) : sum three preceding “foo” numbers of z

foo(z) = if # < 2 then 1
else boo(z) + foo(xz — 3)

boo(z) = foo(x — 1) + foo(z — 2)

Figure 4.1: Example function definitions of foo and boo

Figure 4.2 can be derived. But computing foo'(z, r) is not much faster than computing
foo(z + 1) from scratch. This is an example where we can compute the value of
fo(zy) faster by caching and using, in addition to the value of fy(z), the intermediate
results computed in fo(x). For example, the value of foo(z—1)4 foo(x—2), which could
be used in computing foo'(z,r), is also computed by foo(z) but can not be retrieved
from r. We can cache this value and use it in computing the value of foo(x+1) faster.

Mechanical transformations for caching intermediate results need consistent nota-
tions. We use <> to denote a tuple constructed by the transformation that bundles
intermediate results with the original return value, with 1st returning the first ele-
ment, which is always the original value, and rst returning a tuple of the remaining
elements, which are the corresponding intermediate results. We use nth to get the
nth element of such a tuple, and we use an infix operation @ to concatenate two such
tuples.

For typographical convenience, fy shall always denote the extended function that
returns all intermediate results of fy, © the cached result of fy(x), and f§ an incre-
mental version of fy under @. Similarly, fo shall denote the pruned function that
returns only the intermediate results of fy useful for incremental computation, 7 the
cached result of fo(;z;), and fol a function that incrementally maintains the useful
intermediate results.

We use function foo of Figure 4.1 and input change operation z' =z Gy = z+1

—— 1
as a running example. At the end, we obtain the functions foo, boo, and foo shown

1
in Figure 4.2. In particular, foo computes incrementally using only O(1) time.

4.1 Overview of the approach

Since fo(z @& y) can be computed incrementally using only values that are available
like the value of fo(z), we want to extend fy so that intermediate values computed
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If foo(x) = r, then foo'(x,r) = foo(x + 1). Joo'(z,7) = if <1 then 1
For z of length n, foo'(z,r) takes time O(3"); else if x = 2 then 3
foo(z+1) takes time O(3"). else r + foo(x — 1) + foo(z — 2)
fo\o(m) =if  <2then <1>
Joo(z) = lst(ffo\o(x)). else let v; = b/o\o(m) in
For z of length n, f/o\o(x) takes time O(3"); . < Ist(v1)+ foo(z — 3), v1 >
foo(z) takes time O(3"). boo(z) = let v1=foo(z —1)in

< v+ foo(x — 2), < vy >>
1

foo (z,7) = if <1 then < 1>

— — 1 - —
If foo(x) =7, then foo (z,7) = foo(x + 1). elseif z=2 then <3 <2 <1 >>>

1 . .
For z of length n, foo (z,7) takes time O(1); else <1st(7)+1st(2nd(7)),
foo(z+1) takes time O(3™). <1st(7)+1st(2nd(2nd(7))),
<1st(7) >>>

—— 1
Figure 4.2: Resulting function definitions of foo', foo, boo, and foo

in fo(x) that can also be used in computing fo(z @& y) are returned as well.

Selective caching method. A relatively straightforward method is mimicking the
derivation approach in Chapter 3 to identify intermediate results of fy(z) that can be
used in computing fo(z © y) but whose values can not be retrieved from the cached
result r of fo(x) and transforming fo(z) to cache and return these values. Such a
selective caching method is as heavy-weight as the derivation approach in Chapter 3.

Moreover, suppose g(x) captures these intermediate results of fo(z). Let fi =
(fo,9). To compute fo(z @ y) incrementally, we need to maintain the value of g(z G y)

to support incremental computation after further input changes. Thus, f}(z & y)

needs to be computed incrementally using the cached result rl of f3(x). However,
computing g(x @ y) incrementally may introduce the need to cache other intermediate
results of fo(x), i.e., there may be other intermediate results of fy(x), and thus of

fd(z), that can be used to compute g(z & y), and thus fl(z @ y), but can not be

1

retrieved even from r!. To capture these other intermediate results, the selective

caching method needs to be applied again, to the extended program f3 and input
change operation 4.

This process may repeat until we obtain a program fé such that all intermediate
results of fi(z) that can be used in computing fi(z & y) can be retrieved from the

cached result rt of fé(a:) Intuitively, this always terminates since there exists an

~

upper bound of such fé’s, namely, a program that returns all intermediate results of
fo. However, the number of repetitions depends at least on fy and &. Moreover, each
repetition is heavy-weight. Thus, we propose instead a simple three-stage method
called cache-and-prune.
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Cache-and-prune method. The cache-and-prune method consists of three stages.
Whereas a light-weight dependency analysis may be iterated a number of times in
Stage I1I, the heavy-weight derivation in Chapter 3 is performed only once in stage
I1.

Stage I constructs a program fy, an extended version of fy, such that fy(z) returns
the values of all function calls made in computing fo(z). Basically, fo(z) returns a
tuple containing both the intermediate results and the value of fy(x), such that

Lst(fo(x)) = fo(z) and t(fo(z)) < t(fo(x)). (4.1)

Stage 11 derives a function fq, an incremental version of fq under &, using the
approach in Chapter 3, such that if fo(z) = r, then we have if fo(z @ y) = ', then

fo’(l‘,y,f) = fl and t(fo’(l’,y,f)) < t(fo(l‘ D y)) (42)

and thus, together with (4.1), we have

Lst(fo(z,y,7)) = 1st(fo(z B y)) = folzr D y). (4.3)

Stage III generates a function fg, a pruned version of fy, such that fg(m) returns
I1(7), where 7 is the return value of fy(z), and II(7) projects out the first and other
components of 7 on which 1st(fd(x,y,7)) transitively depends. The dependency is
transitive in the sense that if 1st(fJ(x,y,7)) depends on IIy(#), and Iy (fo(z,y,7))
depends on Ily(7), then 1st(fg(x,y,7)) depends also on Ila(7). This transitivity is
caused by the need to maintain intermediate results corresponding to those that
are used for computing 1st(fd(z,y,7)). In other words, this stage eliminates those
intermediate results cached in 7 that are not transitively needed in incrementally
computing 1st(fo(z,y,7)), the value of fo(z & y).! In particular, if fo(z) = r, then

Lst(fo(z)) = r and t(fo(z)) < t(fo(2))- (4.4)

Additionally, we obtain a function fo', a pruned version of fg, such that if fo(z,y,7)
returns 7', then fo'(:n,y,f“), where # is TI(7), returns TI(#'). This pruning is possible
because I1(7') depends only on II(7), which can be easily shown using the transitivity
above. With the relationship between fo and fy, together with (4.1) and (4.2), we
can prove that if fo(z) = r, then we have if fo(:zi) =7 and fo(z ®y)=r", then

[y, %) = folz @ y) and ((fi(z,y,7) < t(folz @ y)) (4.5)
and thus, together with (4.4), we have
Lst(fd(z,y, 7)) = 1st(fo(x @ y)) =+, (4.6)

Thus, fo'(x, y,7) incrementally computes the desired output and the corresponding
intermediate results and is asymptotically at least as fast as computing the desired

!Note that this is different from the partial dead code elimination in [KRS94], where partial dead
code refers to code that is dead on some but not all computation paths.
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output from scratch. Therefore, we do not have to conduct a derivation on fo and &
to obtain such an incremental function.

At the end, putting (4.4), (4.5), and (4.6) together, we have if fo(z) = r, then

Lst(fo(z)) = r and t(fo(z)) < t(fo(x)) (4.7)
and if fo(z ®y) =r' and fo(;r:) = r, then

Lt (ff(e,9,7) = ', () = folw @), and ((fi(2,y,7) < H(fo(z & 1)),
(4.8)
i.e, the functions fo and fo' preserve the semantics and compute asymptotically at
least as fast. Note, however, that fo(;r:) may terminate more often than fo(x) and
fol(;r:, y,7) may terminate more often than fo(x @ y) due to the transformations used
in Stages II and III.

The three stages are described in Sections 4.2, 4.3, and 4.4, respectively. Section
4.5 discusses the program analysis and transformation techniques used and the time
and space consumption. Section 4.6 gives some examples, including the classical
Fibonacci function. Section 4.7 presents a comprehensive comparison with related
work in caching.

4.2 Stage I: Caching all intermediate results

Stage I transforms program fy to embed all intermediate results in the return value.
It consists of a straightforward extension transformation and administrative simplifi-
cations. Optimizations to this process are also made.

4.2.1 Extension

We first perform a local, structure-preserving transformation called extension. For
each function definition f(v1,...,v,) = e, we construct a function definition

f(o1, .y vn) = Ext[e] (4.9)

where Ert[e] extends an expression e to return the values of all function calls made
in computing e, i.e., it considers subexpressions of e in applicative and left-to-right
order, introduces bindings that name the results of function calls, builds up tuples of
these values together with the values of the original subexpressions, and passes these
values from subcomputations to enclosing computations.

The definition of &t is given in Figure 4.3. We assume that each introduced
binding uses a fresh variable name. For transforming a conditional expression, the
transformation Pad[e] generates a tuple of _’s of length equal to the number of
function applications in e, where _ is a dummy constant that just occupies a spot.
The lengths of the tuples generated by Pad[ez] and Pad[es] can easily be determined
statically. Actually, they are just the lengths of rst(v2) and rst(vs), respectively. This
mechanism assures that the extended function returns a uniform tuple no matter what
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Ext[v] = <v>
Ertlg(ey,...,en)] where giscorp = let vy=E&xtfer] in ... let v, =&xte,] in

< g(1st(vy), ..., Ist(vy,)) > Qrst(v)Q...Qrst(vy,)
Ext[[f(er, ..., en)] = let vi=E&xtfei] in ... let v, =&xt]e,] in

let v=f(1st(v1),..., 1st(vy)) in
< Ist(v) > Qrst(v1)@...Qrst(v,)@ < v >

Ert[if e; then ey else ej] = let vy =C&rtfer] in
if 1st(v1) then let vy =Ertfes] in
< Ist(vy) > Q@rst(vy)@rst(ve)@Pad[es]
else let vz =&rtes] in
< lst(vs) > @rst(vy)@Pad[es]@rst(vs)

Ertflet v=e; in es] = let vy =C&xtfe;] in
let v=1st(v1) in let vy =E&xtfes] in
< Ist(vy) > Q@Qrst(vy)Qrst(vy)

Figure 4.3: Definition of &xt

the value of the Boolean expression is, which makes the pruning stage simpler, since

we do not have to consider pruning differently under different conditions.
f(v1,...,v0) and f(v1,...,vy) perform essentially the same computation, and thus

take the same asymptotic time. In particular, they have the same termination be-

havior, and, if they terminate,

Ist(f(v1, .oy vn)) = f(01, .00y Un). (4.10)

The result of this transformation is a set of extended function definitions that
straightforwardly embed the values of all function calls in the return values. For
functions foo and boo of Figure 4.1, after the extension transformation, we obtain the
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functions foo, and booy as follows:

foo,(z) = let vi=let v;; = <z >inlet vi3 = <2 > in
< Ist(v11) <lst(viz) > @Qrst(vi1)@rst(viz) in
if 1st(v,) thenlet v3 = < 1> in
< Ist(vy) > Q@Qrst(vy)Q@rst(ve)@ < _, _ >
else let v3 =let v3; =let v31; = <z > 1In
let U = %1(15t(0311)) in
< Ist(uy),u; > @rst(vgyy) in
let v3s = let v39; = let v3o11= < & > inlet v3e12 = <3 > in
<18t(1)3211)—15t(1}3212) > @
TSt(ngll)@TSt(Ugglz) in
let us = ﬁl(lst(vgzl)) in
< Ist(uz),uz > @rst(vge;) in
< Ist(vz1) + lst(vs2) > @rst(vg)@Qrst(vzz) in
< 1st(v3) > Q@rst(v1)@ <> Qrst(vs)
%1(:&) = letvi = let vi; = letvi;1 =< x> inletvi;1o=<1> in
< 18t(1)111) — 18t(1)112)‘@7’8t(1)111)@7‘St(1’112) in
let u; = %l(lst(vu)) in
< Ist(u1),uq > @rst(v11) in
let v5 = let vo; = let vy =< 2> Inlet vy;9 =< 2> in
< Ist(var1) — 1st(va12) > @Qrst(var1)@rst(vaz) 1n
let uy = foo,(1st(va1)) in
< Ist(ug), us > @rst(vey) in
< Ist(vy) + 1st(ve) > Q@rst(vy)Qrst(vq)
(4.11)
The straightforward extension implemented by transformation &t is local and
structure-preserving. However, it may introduce unnecessary bindings for values of
expressions other than function applications, leave many tuple operations for passing
intermediate results unsimplified, and place bindings at undesirable positions, such

as within binding definitions. The result is complicated code and reduced readability.

4.2.2 Administrative simplification

Administrative simplifications are performed using a cleaning transformation to clean
up the program obtained above. For each function definition f(v1, ..., v,) = e obtained
from the extension transformation, we obtain a function definition

f(v1,...,v) = Clean[e] 0 (4.12)

where Clean[e] I cleans up an expression e using the information set [ at e, i.e., it
examines subexpressions in applicative and left-to-right order, collects information
sets at subexpressions, simplifies tuple operations for passing intermediate results,
unwinds binding expressions that become unnecessary as a result of simplifying their
subexpressions, and lifts bindings out of enclosing expressions when possible to en-
hance readability.

Here, an information set [f.) is a set of equations collected from the bindings
introduced in the context of e. For example, if some f(v1,...,v,) is defined to be e,
and e is let vy =€ 1n let vg=¢y in e3, then ][e] =) and I[eg] = {v; < e1,vy & e}



47

Clean uses a function Sempey,,, to perform basic simplifications like tuple opera-
tions and binding unfolding, as summarized in Figure 4.4. Given an expression e and
an information set I, we say that e can be simplified to ¢’ under I if the correspond-
ing condition cond(I) holds, and we define Simpejeqanle]l = €'; otherwise, we define
SimpClean [[6]]] = e

‘ expression e ‘ expression e’ ‘ condition cond([) ‘
e1e><eql,...,e1p; > € I, and
e1@Qeq < €11, ---,€1 €21y -evy €2y >
serey Clngy 3 eeey blng 62(_><€217---7€2n2>€]
Lst(e) el e <€er,€9,...,en>€ 1
rst(e) <€y uuny > e < ey, e, ..., e >€ [
. v is introduced by the extension
let v=e11n ey ealer/v] )
and occurs at most once in es

Figure 4.4: Simplification for Clean

Clean uses a function Sublejeq, to apply basic simplifications recursively to subex-
pressions and lift bindings out of enclosing expressions, as defined in Figure 4.5. As
for Subl in Chapter 3, the presentation of Subleje,, is simplified by omitting detailed
control structures that sequence it through the subexpressions. A subexpression is
reduced if it is the result of having already applied Clean for the subexpression at
that position; otherwise, it is not reduced. For an expression let v =¢;in es where
e1 1s not itself a binding expression, if e; is a conditional expression, then, for further
simplifying its two branches, Sublee,, lifts the condition out; otherwise, if v is intro-
duced by the extension transformation, Subleje,, cleans ey with the assumption that
v equals €1 added to the information set.

Finally, we define the function Clean as in (4.13). If an expression e has subex-
pressions, then Clean calls Sublejeq, to recursively clean them. Then Clean calls
Stmpereqn to simplify the top-level expression.

Clean[e]l = €"
where €' = Simpeean e
y _{ Subleieane]l if e is not v (4.13)

e otherwise

Clean cleans out only some of the bindings introduced by the extension transformation
and lifts some bindings and conditions. The resulting functions f still satisfy the
properties stated around (4.10), i.e., the formula (4.1) holds.

After cleaning, we obtain a set of extended function definitions that are simpler,
easier to read, and also easier for the subsequent stages to process. For the functions
fooy and booy in (4.11), after the cleaning transformation, we obtain the functions
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Sublcieanlg(er, ...,en)] I where g is e, p, or f

= Sublcieangler, ... iz, €}, €41, en)] T if e1, ..., e;_1 are reduced, not
where e} = Clean[e;] I let, but e; is not reduced
= Sublciean[let v=elin g(eq, ...,e;_1,€5, €41, ... en)] T if e1, ..., e;_1 are reduced, not
where ¢/ is reduced and is not let let, e; is reduced, but
e; is let v=e¢f in ¢},
=g(e1, ..., en) otherwise

Sublcican[if €1 then es else e3] T

= Sublcieqan [if €| then ey else es] T if e; is not reduced
where €] = Clean[ei] T

= Sublcieqn[let v=¢) in if e}, then e; else e3] T if e1 is reduced, and
where ¢/ is reduced and is not let e1 is let v=e¢f in €}

= if e; then Clean[es] I else Clean[es] T otherwise

Sublcicanlet v=ey in es] T

= Sublciean[let v=e} in es] I if e; is not reduced

where €] = Clean[ei] T
= Sublcieqn[let v/ =€} in let v=e¢l, in es] | if 1 is reduced, and

where ¢/ is reduced and is not let e1 is let v/ =¢f in ¢}
= Sublciean[if €} then let v=¢) in e, else let v=e% in es] I if €1 is reduced, and

where € is reduced and is not let ey is if €} then ¢} else ¢}
=let v=e;in Clean[es] I otherwise

where ' — TU{ve—ey}ifuis 1ptroduced

1 otherwise

Figure 4.5: Definition of Sublejeqy
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foo and boo as follows:

foo(z) = if t <2then <1,_,_ > boo(z) = let uy = foo(x — 1) in
else let u; = %(m) in let us = %(1‘ —2)in
let uy = foo(x — 3) in < Lst(uq)+1st(us), ur, us >

< Ist(uy)+1st(uz), ug, us >
(4.14)

4.2.3 Optimization

An obvious optimization can be incorporated into the extension transformation, i.e,
we can introduce bindings only for subexpressions that contain function applications.
Thus, there would be fewer tuple operations for passing intermediate results and fewer
bindings to be unwound or lifted, leaving less work for the administrative simplifica-
tions.

To do this, we replace the transformation &t with the transformation &rtl in
Figure 4.6. The notion of reduced for Extl is similar to that for Subleey,. We use
cf(e) to denote that expression e contains a function application, and nef(e) to denote
that e does not contain a function application.

For functions foo and boo of Figure 4.1, after the optimized extension transforma-
tion, we obtain the functions foo, and booy as follows:

fooy(2) = ifx<2then <1,_,_ >
else let v3 = let v3; = let u; = %2(1‘) in
< Ist(uy),us > @ <> in
let vy = let us = %2(1‘ —3)in
< Ist(ug),us > @ <> in
< Ist(va1) + 1st(vsz) > @Qrst(vs)@Qrst(vzy) in
< Ist(vz) > @ <> Q@rst(vs) (4'15)
%2(1‘) = letv; = let uy = %2(1‘ —1)in
< Ist(ui),u; > @ <> in
let v4 = let us = %2(1‘ —2)in
< lst(us),uz > @<> in
< Ist(vy) + 1st(ve) > @Qrst(vy)@Qrst(vq)

Then, after the cleaning transformation on them, we obtain the same functions foo
and boo as in (4.14).

4.3 Stage II: Incrementalization

Stage II derives a function f¢, an incremental version of fy under @. Basically,
one may identify subcomputations in the expanded fo(z @ y) whose values can be
retrieved from the cached result 7 of fy(x), replace them by corresponding retrievals,
and capture the resulting way of computing fo(z @ y) in the incremental version
fd(z,y,7). Such a derivation method is given in Chapter 3, and, depending on the
power one expects from the derivation, the method can be made semi-automatic or
fully-automatic. Two concerns specific to the prune-and-cache method and relating
the different stages are addressed here.
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Ertlfg(er,...,en)] A where g ise, p, or f

=let v;=&t1[e;] 0 in Extlfgler, ..., en)] (AU {{vs,€:)}) if e1,...,e;_1 are reduced,
e; is not reduced, and cf(e;)
=C&rtlfg(er,....,en)] A if e1, ..., e;_1 are reduced,
e; is not reduced, and ncf(e;)
=< g(e),...,eh) > @ef@.. @el! if e1, ..., e, are reduced, and
giscorp
=let v=g(e},...,e,) in < 1st(v) > @ef@..Qe/@ < v > otherwise, i.e.,if ey, ..., e, are

reduced, and g is f
1815(’(}2') if (Ui, 62’) €A and 6;-/ _ { Tst(’ui) if (Ui, 6Z'> €A

. . fori=1..n
€; otherwise <> otherwise

where €} = {

Extl[if e; then ey else e3] A
=let vy =&xt1[e1] 0 in Ext1[if e; then e, else es] {(v1,e1)} if ey is not reduced, and cf(e1)

= &xtl[if e; then e else e3] 0 if €1 is not reduced, and ncf(er)
= if ¢} then € else ¢} otherwise
b « [ let vo=Cxtles] 0in < 1st(vy) > Qef Qrst(vy)@Padfes] if cf(ez)
WHEEE €27 < ey > @/ @Pad]es] otherwise
o — let vs=CExtlfes] 0 in < 1st(vs) > Qe @Pad[es]@rst(vs) if cf(es)
37 | < e3 > @cf@Pad[es] otherwise
where ¢! = Ist(vy) if (vy, e.1> cA and ¢!’ = rst(vy) if (vy, e.1> cA
e1 otherwise <> otherwise
Ertllet v=e; in es] A
=let vy =&t1[e1] 0 in Extlflet v=re; in es] {(v1,e1)} if €1 is not reduced, and cf(e1)
= &rtlflet v=ey in es] if €1 is not reduced, and ncf(er)
=let v=¢] in ¢} otherwise
N let vo=CExtl]es] 0 in < lst(va) > @ef@rst(vy) if ef(ea)
where e} = y .
< ey > @ef otherwise
where ¢! = Ist(vy) if (vy, 6.1> cA and ¢!’ = rst(vy) if (vy, 6.1> cA
e1 otherwise <> otherwise

Figure 4.6: Definition of &xtl
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First, secondary to the goal of making the incremental program f¢(x,y,7) as
fast as possible, we want to make it use as few different intermediate results in 7 as
possible. To do this, we require that the derivation not use intermediate results that
are embedded in the results of enclosing computations so that the unused intermediate
results can be pruned out by Stage III. We could improve Stage I to avoid caching
intermediate results that can be statically determined to be embedded in the results
of enclosing computations. But we may do better by addressing the issue also in
Stage 11, where we may have more powerful reasoning support.

Second, not only do we want fd(z,y,7) to be no slower than fy(z @ y), as can be
guaranteed with the approach in Chapter 3, but we also want it to be no slower than
fi(z,y,r). To assure this, we require that the derivation replace a subcomputation in
the expanded fo(z@y) by a retrieval from an intermediate result in 7 other than 1st(7)
only if the subcomputation is also a subcomputation in fy(z).2 This requirement
helps assure that caching intermediate results is worthwhile, i.e., the time spent in
maintaining intermediate results will not surpass that saved by using them, as will
be explained in Section 4.4.1.

Consider the function foo that caches all intermediate results of foo in (4.14). To
derive an incremental version of foo under @ using the approach in Chapter 3, we

transform foo(z @ y) = foo(z+1), with foo(z) = r:

1. unfold %(:L‘—}—l), simplify primitives 2. separate cases, replace applications of foo by retrievals

= ifz<1then <1,_,_> = ifz<1lthen <1,_,_>
else let u;; = %(m) in else if z = 2 then
let u1o= foo(xz — 1) in <3, <2, <, _,_><l,_,_>> <1,_,_>>
let uy = < 1st(uyq)+ Lst(urz), else let uj; =7 in
u11, U1 > in let u12= 2nd(2nd(7)) in
let us = foo(x — 2) in let u; = <1st(u11)+1st(u12), 11, u12 > in
< Ist(ur)+1st(uz), ui, uz > let us = 3rd(2nd(r)) in

< Ist(up)+1st(usz), uy, uz >

and we obtain an incremental function %I such that, if foo(z) = 7, then %I(a:, r) =

foo(z+41), as follows:

Joo (z,7)
= ifz<1then <1,_,_ >
elseif r =2 then <3, <2,<1,_,_><1,_,_>> <1,_,_>>
else < 1st(F)+1st(2nd(7)), <1st(7)+1st(2nd(2nd(7))), 7, 2nd(2nd(7)) >, 3rd(2nd(7))>

(4.16)
Clearly, %I(m, 7) computes foo(z+1) in only O(1) time.

4.4 Stage III: Pruning

The input to the pruning stage is fo, a function that caches all intermediate results of
fo obtained from Stage I, and f{, an incremental version of fy under & obtained from
Stage II, together with a set of other function definitions used in computing fo and

’In practice, this is the best any derivation method could do without the power of a general
theorem prover as discussed in Chapter 3.
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fd, obtained from Stage I and I1. The goal is to prune fy, so that it returns only the
value of fy and the intermediate results useful for incremental computation under &,
and prune fg, so that it incrementally computes only the value of fy and the useful
intermediate results.

To achieve this goal, we analyze function fg to determine the components of 7, the
value of fo(z), on which 1st(fd(z,y,7)), the value of fo(x & y), transitively depends.
Two issues arise as we need to maintain these components: transitive dependencies
and cost. We first depict the transitive dependencies and address the cost issue. Then
we give an algorithm that computes the needed components based on a dependency
analysis using domain projections [Sco82,Gun92]. With this result, we prune both
the functions fy and fq.

4.4.1 Maintaining intermediate results: transitive
dependency and cost

Transitive dependency. The function application fg(x,y,) returns the value of
fo(z @ y) in the first component and all corresponding intermediate results in the
other components. To determine which components in the value r are needed for
incremental computation, we start with the first component in the value of f¢(z,y,7)
and find out the components of 7 on which this value depends. These components
may include those other than the first one of . To support incremental computation
after further input changes, we need to maintain these components of fo(z,y,7) as
well as the first component. They may depend on even other components of r, forming
a kind of transitive dependency.

Figure 4.7 illustrates the transitive dependencies for the example foo under change
operation . By definitions of foo and boo and associativity of ‘+’, we have

foo(x+1) = boo(x+1) + foo(x—2)
— (foole) + foolz— 1)) + foolz—2)
= foo(x) + (foo(x—1)+ foo(x—2)) = foo(x) + boo(x).

Thus, to compute the value v} of foo(x+1), %I uses the value vy of foo(x) and
the intermediate result vy of boo(z) returned by foo(x). Therefore, the corresponding
value v of foo(z+1) and the intermediate result v}, of boo(z+1) need to be maintained.
The value v} of foo(z+1) has just been considered. To compute the intermediate

result vy of boo(z+1), %I uses the value vy of foo(z) and the intermediate result v3
of foo(x—1) returned by foo(x). Therefore, the corresponding value v} of foo(z41)
and the intermediate result v} of foo(z) also need to be maintained. Again, the value
v} of foo(z+1) has just been considered. To compute the value v} of foo(z), %I just
uses the value vy of foo(x) returned by foo(z).

Thus, to summarize, the value v} of foo(xz+1) transitively depends on the compo-
nents of intermediate results corresponding to vy, vy, and v3, which are maintained as
v] = v1 + v2, v = vy +v3, and v} = vy, respectively. Other components of intermedi-
ate results are not needed and therefore do not need to be computed or maintained;
they can be be pruned out.
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foo(x): foo(x+1):
boo(x): boo(x+1):
(foo(x-1))+ foo(x-2) |+ foo(x-3) (foo(x)) + foo(x-1)|+ foo(x-2)

$ “J

S
<
N

Figure 4.7: Transitive dependencies

Cost. [s it always true that the time spent in maintaining intermediate results will
not surpass that saved by using them?

First, we consider the problem in general. Given a way of computing a function
f, let g be a function that computes some intermediate results of f in the way f
does, and let f: (f,g). Suppose f'(z,y,r) computes f(z & y) given r = f(z),
and f’(:n, y,r) computes f(:z: @ y) given f“:f(:zj) Then in general, it is not true that
t(f'(:z;, y,7)) < t(f'(z,y,r)). This is mainly because f, and thus g, could be arbitrary.
This is true even if all these functions compute with the best asymptotic time. What
it says is that maintaining arbitrary intermediate results may not be worthwhile for
incremental computation.

But, consider the particular functions f' and f’ derived using the derivation ap-
proach. Recall the second requirement in incrementalization: the derivation replaces
a subcomputation in the expanded fo(l’ y) by a retrieval from an intermediate result
in 7 other than 1st(7) only if the subcomputation is also a subcomputation in fo(:z:).
Thus, suppose we compute f(?: @ y) using the cached result 7 of f(;c), and suppose
computing 13t(f(;c B y)), e, f(xBy), uses a subcomputation g(z) in f(z), and the
value of g(z) can be retrieved from 7 but not 1st(#), i.e., r. Then, on the one hand,
the value of g(z @& y) needs to be maintained by f’(x, y,7); on the other hand, if we
compute f(z @ y) using only the cached result r of f(z), then the subcomputation
g(z) remains in f'(z,y,r), i.e., f'(z,y,r) has the cost of recomputing g(z).

Now, for intermediate results of f like the value of g above, if (a) the size of
y is bounded, (b) when the size of y is bounded, the time of computing = & y is
bounded, and (c) g is at most linear-power exponential time, i.e., g is polynomial
time or exponential time but with linear exponent, then we have

1 (a,y,#) < U (2,97)). (4.17)

It is easy to see that the three conditions are true for all practical and feasible in-
cremental applications and, therefore, we assume that they are satisfied. To prove
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(4.17), we notice that

t(f'(x, y, 7)) < t(f'(z,y,r))+t(x B y)+t(g(z")) by definition of f’ and derivation
<t(f'(z,y,r))+ (g ( ) by conditions on y, &, and ¢
<t(fz,y,r)) +t(f"(z,y,1)) by ¢ being subcomputation of f’
<t(f'(z,y,r)) by definition of ¢

We conclude that, with the conditions above, using and maintaining intermediate
results is always asymptotically at least as fast. Therefore, in order to achieve as fast
incremental computation as possible, we should compute the closure of the transitive
dependencies for maintaining intermediate results.

4.4.2 Dependency analysis using projections

We first describe our use of projections to represent components of the tuple values
constructed in Stage I and manipulated by Stage II. Then, we give a backward de-
pendency analysis that determines which components of r are needed for computing
certain components of f¢(z,y,7). Finally, we present an algorithm that computes the
closure of the transitive dependencies for maintaining intermediate results.

Projections. Our domain of interest D contains L, indicating a computation di-
verges, values d returned by functions in the original program fj, and constructed
tuples <dj, ..., d,, >, where each d; is (recursively) an element of D (other than L).
The length of a constructed tuple is statically bounded, but the depth of tuple nesting
may not be bounded, since it is dynamically determined. Intuitively, any components
of a constructed tuple value can be replaced by the dummy constant _, introduced in
Stage I, if we do not care about the values of those components. If a subcomputation
involves _, then the result of that subcomputation is _, but the result of the parent

computation need not be _. For any value d in domain D, L C d. For two values d;
and dy other than L’sin D, d; C dy iff
di= _, dy=d, or

dl = <d117"'7d1n>7 d2 = <d217"'7d2n >, and dli C d2i for e=1..n.

A projection over the domain D is a function Il : D — D such that II(II(d)) =
II(d) C d for any d € D. Three important projections are ID, ABS, and BOT'. ID
is the identity function ID(d) = d. ABS is the function ABS(d) = _ for any d # L.
BOT is the function BOT'(d) =

A non-bottom projection II of interest here can be represented as a set of selection
functions =, each of which is a sequence of 1%, 2" . k. The null sequence is denoted
€. Intultlvely, if II contains a sequence zkthzkt_h gt , then the 7;th element of the 7;_1th
element of the --- of the ¢;th element of II’s argument is selected, and if II contains
¢, then all components of II’s argument are selected. A projection Il replaces those

components of its argument that are not selected with the constant _. For example
{1#}, {19, 1#2"7}, and {1*1%2" ¢} are projections, and

{1St,13t2"d}(<d1,<<d211,d212 >,d22>>) = <d1,<<d211,d212>,_ >>
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For convenience of presentation, we use Il(;) to denote the set {z |zt e 10}, ie.,
Il(;y is the part of II that considers the ith component. With the set representation,
a projection Il = ID iff e € I or ;) = ID for : =1..n for arguments of II of length
n. A projection 1T = ABS iff 11 = (. For Il ¢ {ID,ABS}, (< di,....,dn >) =
< Hgy(dr), ..., Hy)(dn) >. For any two projections II; and Il other than BOIs,
IT; C Iy iff

Il1 = ABS, Il = 1ID, or
;) © Ly for ¢ = 1..n for arguments of 11 and Il of length n.

Dependency analysis. To compute which components of 7 are needed for com-
puting certain components of f¢(z,y,7), we apply a backward dependency analysis
to the program fq.

Following the style of [WH8T], for each function f of n parameters, and each ¢
from 1 to n, we define f* to be a dependency transformer that takes a projection that
is applied to the result of f and returns a projection that is sufficient to be applied
to the ith parameter. The sufficiency condition that f* must satisfy is: if II; = f'II
then

H(f(v1y .oy iy ooy vn)) E fo1, ., Ii(00), .y vp) (4.18)

Similarly, we define €’ to be a dependency transformer that takes a projection that is
applied to e and returns a projection that is sufficient to be applied to every instance
of v in e. A similar sufficiency condition must be satisfied: if II' = €Il then

I(e) C e[l (v)/v] (4.19)

For a function f whose definition is f(v1,...,vn) = €, we define I = e¥Il. The
definition of €’ may in turn refer to f?, thus the definitions may be mutually recursive.
We define

e’ BOlI' = BOT and e’ ABS = ABS. (4.20)

For Il # BOI', ABS, we give the definition of eIl in Figure 4.8. Note that, the
argument Il to e” must be ID if e is a variable whose value is not a constructed tuple,
or an application of a constructor or a primitive function that is not <> or «th. We
can easily show that each rule guarantees sufficient information. Thus, the sufficiency
conditions are satisfied by recursion induction.

Let i; be the index of 7 in the parameters of fj. With the above definitions, we
know that f¢*II computes how much of 7 is needed when II of fd(z,y,7) is needed.

To compute I for some f and II # BOT', ABS (otherwise, we can use (4.20)), if
the definition of f! does not involve recursion, then we can compute directly using the
definition. If the definition of f* involves recursion, then the argument projections
and resulting projections of some dependency transformers may contain selection
functions of unbounded depth. To approximate the result, we restrict the selection
functions of the projections to be of bounded depth d, namely, if a projection contains
a selection function i it .. .i" but k > d, then we truncate it to 75", it A
simple choice for the depth bound would be 1. A more prudent choice could be
the length of the longest cycle that contains f in the call graph. This limits the
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VIl = 1

VIl = ABS ifv#£u

(< €1,...,€pn >)HH = 6111H(1) U ... u GZH(H)

(ith(e))* T = e{nith |7 cll}

(g9(e1, ..., en))'TI = eyID U..UelID if g is ¢ or p but not <> or ith
(fle1,...,en))' T = eY(f) U ... U ey(frm)

(if 1 then e; else e3)'TT = €Y ID U €41 U €411

(let u=e; in ey)"Tl = eY(efT) U eyl

Figure 4.8: Definition of eIl for Il # BOT', ABS

domain of projections to be finite. Now, to solve the recursive definitions of these
dependency transformers, we just compute the limits of the ascending chains by
starting at fII = ABS for every f' and II and iterating using the definitions. This
iteration with the approximated domain of projections always terminates, since when
the depth of nesting being examined is bounded, the ascending chains are finite.

Computing the closure of the transitive dependencies. To compute the com-
ponents of 7 on which 1st(fd(z,y, 7)) transitively depends, we start with IT being {1}
and compute the smallest projection II of #* on which II(fJ(z,y,7)) depends, i.e., the
smallest projection II such that

() S I and T(f{(2,y,7) C i (2,9, T1(F)). (4.21)

Of course, the projection Il = ID is always a solution. But our goal is to make II as
small as possible, and thus to avoid as much unnecessary caching as possible.
Since f¢*II computes the components of 7 on which II(fd(z,y,7)) depends, we
define ,
no = {1}

ne+ty = 1 y gt (4.22)

and compute the least fixed point of II. In other words, II is the least projection that
satisfies {1*} T II and fJ*II T II. We call this projection the closure projection.
Note that the above computation always terminates since fg*II{Y) terminates and
returns only sets of selection functions of bounded depth.

The time complexity of the closure computation depends on the required size
of the projection domain and the complexity of the dependency analysis. Suppose
d is the maximum depth of selection functions we consider, and [ is the maximum
length of the constructed tuples, i.e., the largest number of function applications in
a function definition in the program fy. Then the maximum number ¢ of disjoint
components in these projections is at most (¢, which characterizes the maximum size
of the projection domain.
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We estimate the complexity of the dependency analysis in the simplest manner.
Consider the program fg. Let n be the number of function definitions, and a be the
maximum number of parameters in any of these definitions. Then there are at most
na dependency transformers. Since an argument projection may contain any of ¢
components, there are at most 2¢ argument projections to each transformer. Thus,
the number of projections f'II to be computed is at most na2¢. Now, let sf be the
maximum number of transformers used in a transformer definition, i.e., the number of
function applications in a function definition. Being careful, we can recompute each
f'TT only when any computed projections used by fII change, where each can change
at most ¢ times. Thus, the total number of computations of fIT using its immediate
definition is at most na2°csy. Each such computation takes at most sc time, where
s be the maximum size of a function definition, i.e., the number of subexpressions
in the defining expression, and ¢ is the time needed to compute operations, such as
union, on two projections. Therefore, the total time is at most na2‘5c233f.

If we limit depth of selection functions to be independent of the number of function
definitions, then a, ¢, s, and sy are all constant factors determined by the size of a
function definition. Thus the total time is linear in the number of function definitions,
although the constant factors could be very big.

Now that the above estimate includes the computations of all f'II, computing the
dependency closure takes at most ¢ projection unions, each taking at most ¢ time.
Thus, the total time of closure computation can be no worse than the above bound.

Example. Applying the dependency analysis to the function %I in (4.16), we get

DTID U(<1l,_,_>)TyU
Z)FID U(<3 <2, <1,_,_> <1 _,_>> <1 _,_>>) nmu

+18t(2nd( ))) ey U ] -
)—|—15t(2nd(2nd( P Meayay U (7F) Taya) U (2nd(2nd(7))) Mgy U
3rd(2nd(r)))" I s)

. . .- ——2 . . -2
For this example, since the definition of foo'™ is not recursive, we can compute fool 11
for a given II directly without iteration and approximation. For example,

Joo {11} = {1, 24
Joo {r2dy = {1, 12y
Joo {rzdy = {1}

which illustrates the dependencies depicted in Figure 4.7. An example where the
dependency transformer is defined recursively is shown in the merge sort example
in Section 4.6. Now, we compute the projection for the closure of the transitive
dependencies:

e n® U Joo T {1, 1 nd}
n® = OM U foo M = {1%, 129 1tydd)
06 = 0O U foo M = {1 1994 12 d )

We obtain the projection {1%, 1%2% 1o ondy,
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4.4.3 Pruning under the closure projection

With the closure projection Il obtained above, this section prunes the extended func-
tion fo to get a function fo such that I fo(z)) C fo(x), and prune the incremental
function fg to get a function fd such that I(fd(x,y,7)) C fd(:l:,y,ﬂ(f)). Of course,
setting fo to be fo and fo' to be fg would always work, but we only want to do this if IT
is ID, otherwise we want to make fo(a:) as close to II( fo(z)), and fo'(:li, y, 11(7)) as close
to I(fd(z,y,7)) as possible, and thereby avoid caching and maintaining unnecessary
intermediate results as much as possible.

To do this. For each expression e that defines a function f(vy,...v,), we associate a
projection with each subexpression of e indicating how much of the subexpression is
needed assuming I of fy (respectively f¢) is needed. The definition and computation
of the associated projections can be done in a fashion similar to the dependency anal-
ysis. For the program fg and the closure projection II, the final projection computed
associated with each variable will be the same as computed for the variable using
dependency analysis.

When the computation reaches the limit of the ascending chain of projections,
subexpressions associated with ID are left unchanged in the resulting function, and
subexpressions associated with ABS are replaced by _. If a variable whose value is a
constructed tuple is associated with a projection Il other than ID or ABS, then we
construct a tuple with the components selected by II filled with the corresponding
selections and the rest filled with _. For example, if a variable v is associated with a
projection {1¥,1#2} and v represents a tuple of length three whose second compo-
nent is a tuple of length two, then v is replaced by < 1st(v), <1st(2nd(v)),_ >, _ >.

As the result of such replacements, we have I1(fo(z)) C fo(:z:), but not fo(a:) =
II( fo(x)) as anticipated in Section 4.1. Nevertheless, the resulting fo is still good
enough to guarantee (4.7). We can just project II(r) out of the return value of fg(:{;).
But we do have fg’(x,y,ﬂ(f)) = 1I(fd(x,y,7)). Thus, assuming # = II(), we have
(4.8). As a matter of fact, we intend to use the function fo only once to get the initial
value, and then use the function fd repeatedly to compute all successive values.
Recall that ]60/ incrementally computes the desired output and the corresponding
intermediate results, as shown in (4.8).

Consider the functions foo and boo in (4.14). Only {1¥, 192" 12} of foo(x)
is needed, therefore only {1%, 192} of boo(z) is needed, and therefore only {1*} of
foo(x —3) is needed. Thus, l;;)l(x) returns only {1%, 12"} of boo(z), and ]707)1(3;)
returns only {19} of foo(z) and the result {1%, 12"} of l;;)l(:(;), as follows:

ffo\ol(m) = ifz<2then <1,_,_ >
else let u; = booy(z) in
let uy = foo;(z —3) in

< 1st(uy)+1st(uz), <lst(ur),<lst(2nd(u1)),—,—>,_>, _> (4.23)
b/O\Ol(:L‘) = let u; = f/o\ol(:b —1)in

let us = ]?0\01(1‘ —2)in
< Ist(ur)+1st(uz), <lst(ui),—,_>, >
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Consider the function ﬁl in (4.16). Only {1%, 1#o0d jsigndond) of ﬁl(:z:, y,7) is needed.
Thus, fooq(x,y,71) returns only the corresponding components. We have, if foo,(z) =
1, then Joo (2, 71) = fooy(x + 1).

1 —~

Joo,(z,71)

= lf:tjglthen <1l,_,_> (424)
elseif r =2 then <3, <2,<1,_,_><_,_,_>> < _,_,_>>
else <1st(r1)+1st(2nd(71)), <lst(71)+1st(2nd(2nd(71))), <1st(F1),—, - >,_>, _>

Simplification. After the replacements, a number of simplifications can be applied
to the resulting functions: (a) unfolding a let expression if a binding variable occurs at
most once in the body due to some replacements by _’s, (b) combining unnecessarily
split components resulting from some replacements for variables whose values are
constructed tuples, (c) lifting common selection computations to avoid unnecessarily
computing a compound value and using only part of it, and (d) replacing occurrences
of Lst(f(el, ...,€p)) by occurrences of f(eq, ..., ey).

For the function ]T()T)l in (4.23), we unfold the binding for uz, replace the occur-
rence of lst(]T()T)l(x —3)) by foo(xz — 3), and merge separate components of u;. For
the function booy in (4.23), we unfold the binding for wug, replace the occurrence of

1375(]707)1(:1; —2)) by foo(z — 2), and lift 1st(uy). We obtain

f{0\02(m) = ifz<2then <1,_,_ > b/o\oz(m) = let v1 = foo(z — 1) in
else let u; = booy(z) in <wv1+foo(x—2), <vi,_,_>, _>

<lst(u1)+ foo(x—3), uy, — >
(4.25)
Function ]707)11 remains the same.

Finally, we can eliminate _ components. But we must be careful if such a com-
ponent precedes a non-_ component in a tuple, since our selectors 2th’s follow the
indexing, which need to be changed accordingly. In particular, if £ of the components
preceding a component ¢ are eliminated from a tuple, we must replace all uses of the
selector ith for the tuple with (i—k)th. This elimination needs to be done consistently
for fo and fol. At the end, we obtain the function fo, which caches only the useful
intermediate results for incremental computation under &, and the function fg’ , which
incrementally maintains only the useful intermediate results.

Theses simpliﬁcations and eliminations can be fully automated. For the functions

f002 and booy in (4.25) and f001 in (4. 24) we eliminate unnecessary _ components

and obtain the functions foo boo and foo as given in Figure 4.2. The overall effect
is that only {1*} and part of {Z"d} are returned; and for the part of {2}, only {1%}
and part of {2} is returned; and for the part of {2} of {24}, only {1} is returned.

4.5 Discussion

We have obtained not only the extended function fo, which caches appropriate inter-
mediate results, but also the corresponding function fg that incrementally maintains
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these intermediate results. The functions fo and fd preserve the semantics of compu-
tations and compute asymptotically at least as fast, as described in (4.7) and (4.8).
The cache-and-prune method consists of three independent stages, and thus is
modular. It has certain nice properties. Stage I gives us maximality by providing all
the intermediate results possibly used by Stage II. Stage II uses these intermediate
results for the exclusive purpose of incrementalization. Stage III gives us a kind
of minimality by preserving only the intermediate results actually used by Stage
I1. Therefore, the whole approach is optimal with respect to the incrementalization
method of Stage II. Stages I and III are simple, clean, and fully-automatable.

Transformation and analysis techniques. In cooperation with the approach
for deriving incremental programs, we achieve the goal of identifying and maintaining
intermediate results useful for incremental computation. The idea of caching all
intermediate results followed by incrementalization can be regarded as a realization
of the reduction from Kleene’s course-of-values recursion to primitive recursion [Kle52,
Ner95]; subsequent pruning straightforwardly eliminates unnecessary computations in
the resulting function. We summarize techniques that are relevant to the program
analyses and transformations used for caching and pruning.

First, the transformation &xt is similar to the construction of call-by-value com-
plete recursive programs by Cartwright [Car84]. However, a call-by-value computa-
tion sequence returned by such a program is a flat list of all intermediate results,
while our extended function returns a computation tree, a structure that mirrors
the hierarchy of function calls. The transformations in Stage I also mimics the CPS
transformations in some aspects [Plo75,1.D93]: sequencing subexpressions, naming
intermediate results, passing the collected information, and performing administra-
tive reductions on the resulting program. However, they are simpler than the CPS
transformations since the collected intermediate results are passed directly to the
return values, rather than to the continuation functions.

Second, the backward dependency analysis and pruning transformations in Stage
III use domain projections to specify sufficient information, which i1s natural and
thus simple. Other uses of projections include the strictness analysis by Wadler and
Hughes [WHB8T7], where necessary information needs to be specified and thus accounts
for some complications, and binding-time analysis by Launchbury [Lau89], which is a
forward analysis and is proved equivalent to strictness analysis [Lau91]. The necessity
interpretation by Jones and Le Métayer [J1.89] is in the same spirit of our analysis,
where their notion of necessity patterns correspond to our notion of projections. While
necessity patterns specify heads and tails of list values, the projections here specify
specific components of tuple values and thus provide more accurate information.

Since the dependency analysis and pruning transformations simply eliminate dead
components and related computations on compound values, it would be useful for
general program optimizations in context. For example, in many functional programs,
we create compound values only to take them apart somewhere else, and perhaps we
only use some of the components. It would be nice to avoid constructing and passing
the unnecessary components. Related work is done in optimizing compilers that
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eliminate unnecessary tuple constructions and destructions in functional programs;
for example, the Id compiler [Tra86] does tuple elimination. We think our analyses
and transformations provide a straightforward solution to such problems. For us, it
is more lightweight than trying to adopt any of the existing techniques.

There are a couple of analyses and transformations not yet mentioned that we
believe could be incorporated in our framework. First, type analysis is very useful for
many program manipulations, e.g., for the incrementalization in Stage II. We could
easily equip the transformations in Stage I and III with corresponding manipulations
needed for types. Second, Stage III replaces irrelevant components with the constant
_’s and performs a number of simplifications, where further manipulation with pro-
jections may help perform more simplifications like component lifting. For example,
if we lift the single element in the second component of the second component of

foo and foo of Figure 4.2, and simplify the selection 1st(2nd(2nd(7))) in f(;)l to be
2nd(2nd(r)), we obtain foo as in Figure 4.2, and boo and fool as follows:

Z)/O\O(:L‘) = let v1 = foo(z—1) in f/\ool(:b,?) = if z <1then <1>
<v1+foo(x—2), v1 > elseif x =2 then <3, <2,1>>
else <1st(7)+1st(2nd(7)),
< 1st(F)+2nd(2nd(7)), 1st(r) >>

Cost model and time/space trade-off. The basic motivation for caching is to
trade space for speed. Ideally, we would have a cost model for time and a cost model
for space, and decide what to cache depending on the trade-off between time and space
required by the application. There are standard constructions for mechanical time
analysis [Weg75,R0s89], though further study is needed; automatic space analysis and
the trade-off between time and space are problems open for study.

This work assumes that there is unlimited space to be used for achieving the
least asymptotic time possible. Thus, we cache only values of function applications,
assuming other program constructs take constant time. For example, if the value of
f(z) + g(z) is needed in the incremental program, then we cache the values of f(z)
and g(x) and compute the sum from the two cached values. Note that we assume
that space is unlimited, not that it is free. Each of the three stages make an effort to
reduce space consumption without adversely affecting asymptotic time performance.

One could be more mindful of economizing cache space by avoiding caching values
of function applications unless they are absolutely needed. For example, if the value
of f(z) + g(x) is needed in the incremental program, but neither f(z) nor g(z) is
needed separately, then we can cache just the value of f(z) 4 g(z); coincidently, this
also improves the speed of this example by a slight constant amount.

On the other hand, we could be more mindful of constant speed-up regardless of
additional space consumption by caching the values of all program constructs, not
just function applications. For example, we would cache the values of f(z), g(z), and
f(z) + g(x) respectively for their respective uses in the incremental program, thus
saving the time to compute the sum, but consuming the space to store the sum.

Other choices of the time-space trade-off may also be required by applications,
e.g., a fixed cache space for achieving the least running time possible. For some
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applications, we may need to consider the number of times a given value is needed.

4.6 Examples

4.6.1 Fibonacci function

Consider Fibonacci function fib of Figure 4.9 and the input change operation z’' =
r@dy==x+1. Using the derivation approach in Chapter 3 directly, we can obtain

fib(z) : compute Fibonacci number z

fib(z) = if £ <1 then 1
else fib(z — 1) + fib(z — 2)

Figure 4.9: Example function definition of fib

the function fid' below such that, if fib(z) = r, then fib(z,r) = fib(z + 1):

fib'(z,r) = if © <0 then 1
else if x = 1 then 2 (4.26)
else r + fib(z — 1)

But fib/(z,r) takes time O(2%), no better than computing fib(z + 1) from scratch.
Now, we apply the cache-and-prune method, as follows:

[. We apply the optimized extension transformation &t1 and obtain a function

fiby(z) = if 2 <1then <1,_,_ >
else let v3 = let v3; = let v; = ml(r —1)in
< Ist(vy), vy > in
let vz = let vy = ml(r —2)in
< Ist(va), v > in

< Ist(va1)+1st(vaa) > Qrst(vsy)Qrst(vas)
< Ist(vz) > @ <> @ < rst(vz) >

We apply the cleaning transformation and obtain an extended function fib:

fib(z) = if x <1then <1,_,_ >
else let v; = fib(z — 1) in
let vy = fib(z — 2) in (4'27)

< lst(vy)+1st(v2), vi, va >
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II. We derive an incremental version of fib under & using the approach in Chap-
ter 3, i.e., we transform fib(z @ y) = fib(x + 1), with fib(z) = r:

1. unfold m(aj—kl), simplify primitives 2. separate cases, replace applications of fib

= ifz<0then <1,_,_ > = if 2 <0 then <1,_,_>
else let vy = fib(z) in else if z = 1 then
letvzzﬁ(m—l)in <2, <1l,_,_> <1,_,_>>
< 1St(’01)+15t(’02), vy, Vg > elselet vy =7 in

let vy = 2nd(7) in
< lst(v1)+1st(va), v1, va >

and obtain function ml such that, if fib(z) = 7, then ml(x, r) = fib(z +1):

fib(z,7)= if 2<0then <1,_,_ >
elseif x =1 then <2, <1,_,_> <1,_,_>> (4.28)
else < 1st(7)+1st(2nd(7)), 7, 2nd(7) >

ITI. Using dependency analysis for ml in a similar way as for ml but simpler, we
obtain the closure projection {1, 1%2}. To prune, we first obtain:

fz\bl(m) = ifz<1then <1,_,_ >
else let v; = fib(z — 1) in
let vy = fib(z —2) in

< Ist(vy)+1st(ve), < lst(v1),—,— >, - >
fiby(2,71) = if £ <0then <1,_,_>
elseif r=1then <2, <1,_,_> <1,_,_>>
else < 1st(71)+1st(2nd(71)), < Ist(F1),—,— >, — >

—— ]
Then, we simplify fib; and fib;, remove _ components, and lift the single

——— ]
component in the second component of fib; and fib; as discussed in Section
4.5. We obtain: -
fib(z) = if z <1 then < 1>
else let u; = fib(z — 1) in (4.29)
<wuy+ fib(z —2), u; >
Fib (z,7) = if £ <0then <1>
elseif x =1 then < 2,1 > (4.30)
else < 1st(7) + 2nd(7), 1st(¥) >

Clearly, f’i\bl(x, ) takes only time O(1). Note that: fib(z) = 1375(]7@'\6(:1:)) and, if
]Tz\b(a:) =r, then fi\bl(:zi, r) = ]TZ\Z)(J} +1). Using the definition of ]?z'\bl above in this last
equation, we obtain a new definition for fub:
fib(z+1)= if 2 <0then <1 >
elseif r =1 then < 2,1 >
else let 7 = fib(z) in < 1st(7¥)+2nd(7), 1st(7) >
Letting v =z + 1, we get
f{i\b(v): if v <1 then < 1>
elseif v =2 then < 2,1 > (4.31)
else let 7 = fib(v — 1) in < 1st(7)+2nd(7), 1st(r) >
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We define fib(v) = 13t(fi\b(v)) using the definition of fib in (4.31). Clearly, this

computes the Fibonacci function in linear

4.6.2 Merge sort

time, as desired.

Consider the merge sort function sort of Figure 3.8 and input change operation &y =

cons(y, ).

1. We cache all intermediate results of

sort(z)
= if null(z) then
<nil,_,_,_,_, _ >
else if null(cdr(z)) then
<x,_,_,_,_,_>

else let vy = W(l‘) in
let u; = sort(1lst(vi1)) in
let vy = €ven(z) in
let uy = sort(1lst(vs1)) in
let v = merge(1st(u1), Ist(usz)) in
< 1St(U), V11, U1, V21, U2,V >

sort and obtain the extended functions:

= 1if null(z) then < nil,_ >
else let v; = even(cdr(z)) in
< cons(ecar(z), Ist(vy)), v1 >
if null(z) then < nil,_ >
else let v; = odd(cdr(z)) in
< Ist(vy), v1 >

merge(z, y)
= if null(z) then <y,_,_ >
else if null(y) then <z,_,_ >
else if car(z) < car(y) then
let v; = merge(edr(z),y) in
< cons(car(z), Ist(v1)), vy, - >
else let vy = merge(z, cdr(y)) in
< cons(car(y), 1st(va)), —,v2>
(4.32)

II. We derive an incremental version of

sort under & using the approach in Chap-

ter 3, i.e., we transform sort(x @& y) = sort(cons(y, x)), with sort(z) = r:

1. unfold sort(cons(y, z)), simplify
if null(z) then
< cons(y,nil), _,_,_,_,_ >
else let v, = even(z) in
let v11 = <cons(y, 1st(v1)),
v > in
let u; = sort(1st(v11)) in
let vy = m(x) in
let vy = < 1st(vz2),v2 > in
let us = sort(1st(va1)) in
let v= merge(1st(uy),
1st(usz)) in
< 18t(1}), V11, U1, Va1, U2,V >

2. separate cases, replace applications of sort

if null(1st(7)) then
< cons(y,nil), _, _,_,_,_ >
else if null(cdr(1st(7))) then
let v11 = <cons(y, nil), <nil, <nil>>> in
let vo1 = < 1st(7), < 1st(7), <nil>>>in
let v= mmerge(cons(y, nil), 1st(7)) in
<Ist(v), vi1, <cons(y, nil) >, vay, <1st(7) >,
v >
else let vy = 4th(7) in
let v1; = <cons(y, Lst(v1)),v1 > in
let u; = m/(y7 1st(v1), 5th(7)) in
let v3 = 2nd(7) in
let va; = <1st(va),va > in
let us = 3rd(7) in
let v = merge(1st(u1), Lst(uz)) in
< 18t(1)), V11, U1, Va1, U, U >
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and obtain function sorl below such that, if sort(xz) = 7, then Sortl(y,f) =
sort(cons(y,x)):

sort (y,7) = if null(1st(7)) then
<cons(y,nil), _,_,_,_,_ >
else if null(cdr(1st(7))) then
let v11 = < cons(y, nil), < nil, < nil >>> in
let vy = < 1st(r), < 1st(F),< nil >>> in
let v = merge(cons(y, nil), 1st(7)) in
<1st(v), vi1, <cons(y, nil) >, var, <1st(F)>, v >
else let v; = 4th(7) in (4.33)
let v112 = < cons(y, Ist(v1)),v1 > in
let u; = ml(y7 5th(r)) in
let vy = 2nd(7) in
let va12 = < 1st(v2),v2 > in
let uy = 3rd(7) in
let v = merge(1st(u1), Ist(usz)) in
< 1St(’U), V112, U1, U212, U2, U >

ITI. First, using the dependency analysis, for 11 # ABS, we have
sort T = (null(1st(7)))" ID U ABS U
null(edr(1st(7))))” ID U (1st(7))" (merge2{1%}) U
Ath(r) ((Lst(v1))" My U M) U
5th(77))r7(50rt ((1 t(uy))"* (merge’ ((15t(v))“H(1) U Iley)) U Tz))) U
2nd(7))" ((1st(v2))? M 4)1) U H(4)(2))
Lst(us))“2(merge*((1st(v))" My U Igy)) U Hs)

P,

"((
3rd(r))"((

which is recursively defined, and can be simplified for 1% € 1I. With Wy = 1D
and merge' {1*} = merge>{1*} = ID, we have

sort/Q(O)H = ABS

orl /2(2-}—1)1—1 — {1St} U
(4th(m)"((1st(v1))" a1y U Taya)) U (4.34)
(5th(F))" (sort " ({1} U T(5))) U

(2nd(r)"((Lst(v2))"*Mayy U Meayay) U
(3rd(F))"({1"} U T(5))
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Limiting the depth of selection functlons to be 1, we compute the closure of the
transitive dependencies for sort? and obtain:

o = {1} and, by (4.34), sort VIO = (19} U (5th(7)) (sort * (1)) U {37}

sort "M = ABS

sort 2O = {19, 3}
sort ") = {1t 34 50y
sort G0 — {1, 37, 5th)

I = {1, 39 5t7 and, by (4.34), sort " TUIM = {1} U (5th(r)) (sort ~ID) U {3}
sort YD = {1t} U {4 U (5th(r)) (sort " ID) U
{29} U {37}
sort 2O = ABS
sort (V) = {19, 3}
sort ") = {1, 34 50}
sort () = {1, 34 510y
H(2) — {1st’ 3rd’ 5th}

Thus, we get the closure projection {1, 3%, 5**}. Actually, for this example, we
could directly see that

sort {1, 31 50} = {1*} U (5th(r)) (sort "ID) U (3rd(r)) ID C {1, 5th 39}

which matches the intuition that the first component of sorl depends only on
3rd(r) and 5th(r), and the third and fifth components depend on 3rd(r) and

5th(r) too. Now, we prune functions sort and sorl’, and we obtain

55;151(1‘) = if null(z) then

<ni,_,_,_,_,_ >
else if null(cdr(z)) then
<ZTy—y -y == >

else let u; = s/o\rt(odd(a?)) in
let us = @(euen(m)) in
< merge(1st(u1), 1st(uz)), -, u1, —, ug, - >

sorty(y,71) = if null(1st(71)) then
< cons(y,nil), _,_,_,_,_ >
else if null(cdr(1st(1))) then
< merge(cons(y, nil), 1st(71)), —, <cons(y,nil)>, _, <1st(r1)>, — >
else let u; = so/Ftl(y,5th(?1)) in
let us = 3rd(71) in
< merge(1st(u1), 1st(uq)), —, u1, —, uz, - >

Finally, we eliminate _ components, adjust the indexing, and obtain

S/O\T't(:c) = if null(z) then < nil >
else if null(cdr(z)) then <z >
else let u; = e@(odd(m)) in (4.35)
let us = @(even(m)) in
< merge(1st(uy), 1st(uz)), uy, us >
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s/o\mfl(y,?) = if null(1st(7)) then < cons(y,nil) >
else if null(cdr(1st(7))) then
< merge(cons(y, nil), 1st(7)), < cons(y,nil) >, < 1st(7) >> (4 36)
else let u; = S/O\T'tl(y, 3rd(7)) in '
let us = 2nd(7) in
< merge(lst(uy), 1st(usz)), uy, us >

For z of length n, merge sort sort takes O(nlogn) time. Incremental merge sort sort
takes only O(n) time, although it uses O(nlogn) space to store the intermediate
results of the previous sort.

4.6.3 Attribute evaluation using Katayama functions

Given an attribute grammar, a set of recursive functions can be constructed to eval-
uate the attribute values for any derivation tree of the grammar [Kat84]. Basically,
each function evaluates a synthesized attribute of a non-terminal, and the value of a
synthesized attribute of the root symbol is the final return value of interest. Thus,
for the given grammar, the set of recursive functions takes a derivation tree of the
grammar as input, and returns the value of a synthesized attribute at the root as
output.

We consider subtree replacement as the input change operation, given by a new
subtree and a path from the root of the whole tree to the root of the subtree to be
replaced.

First, caching all intermediate results leads to a set of extended recursive functions
that returns an attributed tree instead of just the value of an synthesized attribute
at the root. Then, incrementalizing the set of extended functions under a subtree
replacement is just composing a new attributed tree from the old one, evaluating
only attributes whose values are affected by the subtree replacement, yielding a set
of incremental recursive functions.

Suppose a given batch attribute evaluation program evaluates each attribute only
once, then the derived incremental program computes in O(|PATH| + |AFFECTED])
time, where PATH is the path from the root of the whole tree to the root of the new
subtree, and AFFECTED is the set of attributes whose values are different in the new
tree than in the old after the subtree replacement [RTD83].

4.6.4 Local neighborhood problems in image processing

We have mentioned that the general principles underlying our approach also apply to
other languages. This section gives an example where the cache-and-prune method
is used to improve imperative programs with arrays.

In image processing, computing information about local neighborhoods is common
[Wel86,Web92,Zah94,ZW94]. A simple but typical example is the local summation
problem [Wel86,Zab94]: given an n-by-n image, compute, for each pixel, the local
sum of its m-by-m neighborhood. The straightforward naive algorithm, given in
Figure 4.10(a), takes O(n?m?) time, while an efficient algorithm using dynamic pro-
gramming, given in Figure 4.10(b), takes O(n?) time. We show how to obtain the
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efficient algorithm systematically following our approach. For simplicity, initializa-
tions for the array margins are ignored.

for::=0ton do
for j :=0 ton do
sum = 0; for i := 1 ton do
for £ := 0 to m do for j:=1ton do
for [ := 0 tom do cli,j] =i, j—1] — a[i,j—1] + a[i, j+m];
sum := sum + a[i+k, j+1]; bli, 7] :=b[i—1,j] — c[i—1,j] + c[i+m,]]
b[i, j] .= sum
(a) (b)

Figure 4.10: Programs for local summation problem

Inner loop. To improve the naive algorithm, call it f, we first improve the inner
loop, call it g, with any fixed index : for the outer loop. We will obtain an incremental
program for the program ¢y, defined below, under input change operation jj = j1+1,
and uses the incremental program for each iteration of g.

for j :=0 to j; do
sum := 0;
for k£ :=0 to m do
for ! := 0 tom do
sum := sum + a[i+k, j+1];
b[i, j] ;= sum

I. Caching all non-trivial intermediate results, we obtain the program ¢; as follows:

1. save results of the innermost loop 2. eliminate common computation
for j :=0 to j; do for j :=0 to j; do
sum := 0; sum = 0;
for k£ :=0 to m do for £ :=0 to m do
row = 0; row = 0;
for | := 0 to m do for ! := 0 to m do
row := row + afi+k, j+]; row := row + ali+k, j+{;
sum := sum + a[i+k, j+1]; cli, 7, k] := row;
cli, j, k] := row; sum := sum + c[i, j, k];

bli, j] ;= sum b[i, j] :== sum
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II. Incrementalizing ¢; on new input j;+1, we obtain the program ¢’ as follows:

1. unfold g7 on new index j;+1, and 2. replace ¢[i,j1+1, k] by
save computing iterations 1 to j; cli, j1, k] — ali+k, j1] + ali+k, j1+14+m]
sum := 0; sum = 0;
for £ := 0 to m do for £ := 0 to m do
row = 0; row = 0;
for /:= 0 to m do for /:=0 tom do
row := row + ali+k, j1 +1+1]; row := row + afi+k, j1+1+];
cli, j1+1, k] := row; cli, j1+1, k] := c[i, j1, k] — a[i+k, ji]
sum := sum + ¢c[i, j1 +1, k]; +ali+k, j1+1+m];
b[i,j1+1] := sum sum := sum + c[i, j1+1, k];

b[i,j1+1] := sum
IT1. Pruning the program ¢;’, we obtain the program gy’

sum = 0;

for k := 0 to m do
cli, j1+1, k] := c[i, j1, k] — a[i+k, j1] + a[i+k, j1 +1+m];
sum := sum + c[i, j1+1, k];

bli,j1+1] := sum

Using ¢y for each iteration of ¢, we replace j1+1 by j (and thus j1 by j—1) and add
the outside loop for j to go from 0 to n. We obtain an optimized version of g:

for j ;=1 ton do
sum := 0;
for k :=0 tom do (437)
eli,j k] :=cli,j—1,k] — ali+k,j—1] + a[i+k, j+m]; )
sum := sum + c[i, j, k];
bli, j] ;= sum

Using the optimized version of ¢ in f, we obtain an optimized program f:

for i := 0 to n do
for j := 1 to n do
sum = 0;
for k := 0 to m do (4.38)
cli, j, k] :=cli,j—1,k] — ali+k,j—1] + a[i+k, j+m];
sum := sum + c[i, j, k];
bli, j] := sum

Outer loop. We then improve the outer loop of the new program f in (4.38). We
will obtain an incremental program for the program f;, defined below, under input
change operation i) = 7;+1, and uses the incremental program for each iteration of
the new f.
for i := 0 to i; do
for j :=1to n do
sum := 0;
for k := 0 to m do
cli,j, k] :=cli,j—1,k] — ali+k,j—1] + a[i+k, j+m];
sum := sum + c[i, J, k];
b[i, j] ;= sum
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I. Caching all intermediate results, we obtain the program fi same as fi, since all
intermediate results have already been returned.

I1. Incrementalizing fi on new input iy +1, we obtain the program fll as follow:

1. unfold f; on new index i;+1, and 2. replace b[i1+1, j] by
save computing iterations 1 to 7, bli1, j] — e[i1, J, 0] + e[ir+ 14+ m, j, 0]
for j := 0 ton do for j :=0 to n do
sum := 0; sum = 0;
for £ := 0 to m do for k£ :=0 to m do
C[i1—|—1,j, k] = C[i1+17j_1, k] C[i1—|—1,j, k] = C[i1—|—17j—1, k]
—aliy+1+k, j—1] —afi+1+k, j—1]
+a[iy+1+k, j+m]; +a[iy+1+k, j+m];
sum := sum + c[i1+1, j, k]; sum := sum + c[i1+1, J, k];
bli1+1,j] := sum bliv+1, 5] := b[ix, 5] — [ir, J, 0]

+C[i1+1+m7ja O]

ITI. Pruning the program fll, we obtain the program fll as follows:

1. prune unneeded code 2. prune unneeded array dimension
for j :=0to n do for j :=0to n do
clin+1,7,0] :=¢[in+1,7—1,0] clin+1,7] == c[in+1,5-1]
—ali;+1+0,j—1] —aliy+1,j—1]
taliy+140, j+m]; tali+1, j+m);
bli+1, 3] = blis, 3] — cli, j, 0 blir+1, 4] := blir, ] — clir, j]
a+ cliy+14m,j,0] +elip+14m, 4]

Using fll for each iteration of f, we replacing i1+1 by ¢ (and thus ¢; by i—1) and
add the outside loop for ¢ to go from 0 to n. We obtain the final optimized version
in Figure 4.10(b). Only four + operations are needed for each pixel, no matter how
large m is. Thus, the whole program takes only O(n?) time.

4.7 Related work

The cache-and-prune method uses a number of program analysis and transformation
techniques that have been summarized in Section 4.5. Here we compare our work
with related work in program improvement using caching techniques. Caching has
been the basis of many techniques for developing efficient programs and optimizing
programs. Bird [Bir80] and Cohen [Coh83] provide nice overviews. Most of these
techniques fall into one of the following three classes.

Separate caching. In the first class, a global cache separate from a subject pro-
gram is employed to record values of subcomputations that may be needed later,
and certain strategies are chosen for using and managing the cache. We call this
technique separate caching. It corresponds to the “exact tabulation” in [Bir80] and
the “large-table method” in [Coh83]. The initial idea of memoization, “memo” func-
tions, proposed by Michie [Mic68], belongs to this class. Thus, some uses of the word
“memoization” mainly refers to techniques in this class [Par90].
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In recent years, there has been additional work on general strategies for separate
caching. For example, Hughes [Hug85] discusses lazy memo-functions that are suit-
able for use in systems with lazy evaluation. Mostow and Cohen [MC85] discuss some
issues for speeding up Interlisp programs by caching in the presence of side effects.
Pugh [Pug88a] provides some improved cache replacement strategies for a simple
functional language. Two trends seem obvious: studying specialized cache strategies
for classes of problems, and adding annotations or certain specifications to subject
programs that provide hints to the cache strategies. An example of the former is
the stable decomposition scheme proposed by Pugh and Teitelbaum [PT89], who also
advocate a closer study of using memoization for incremental evaluation. Examples
of the latter include work by Keller and Sleep [KS86], which proposes annotating ap-
plicative languages, work by Sundaresh and Hudak [SH91,Sun91], which decides what
to cache based on given input partitions of programs, and work by Hoover [Ho092],
which proposes annotating an imperative language.

The pros and cons of separate caching are well discussed by Bird [Bir80] and
Cohen [Coh83]. To summarize, the idea is simple, and the subject programs are basi-
cally unchanged. But the caching methods are dynamic, and thus are fundamentally
interpretive. Moreover, the strategies for the use and management of the separate
cache are hard to be both general and powerful at the same time, and therefore are
sources of inefficiency.

Schema-based integrated caching. In the second and third classes, the above
drawbacks are overcome by transforming subject programs to integrate caching into
the transformed programs. Techniques in the second class apply transformations
based on special properties and schemas of subject programs. We call this schema-
based integrated caching. A nice survey of most of these ideas can be found in [Bir80],
following which some uses of the word “tabulation” mainly refer to techniques in
this class [Par90]. Typical examples of these techniques are dynamic programming
[AHUT74], schemas of redundancies [Coh83], and tupling [Pet84,Pet87,Chi93,CK93].
Dynamic programming applies to problems that can be divided into subproblems and
solved from small subproblems to larger ones by storing and using results of smaller
ones. Work on schemas of redundancies studies several forms of redundant recursive
calls and their mathematical properties and provides transformations to eliminate
them. Tupling looks for a recurrent pattern in computing intermediate results, groups
those computed in the pattern into a tuple, and transforms the program to compute
the tuple progressively.

Note that separate caching with a specialized cache strategy for a certain class of
problems can be used for schema-based integrated caching for this class of problems.
More precisely, for any problem that fits into this class, we treat the corresponding
program as fitting into a certain schema. We can then integrate the specialized
cache strategy by transforming the corresponding program and obtain a transformed
program with schema-based integrated caching. In this case, the separate caching
corresponds to an interpretive mechanism, the transformation with integration is like
compiling, and a transformed program corresponds to a compiled program.

While integrating caching into transformed programs eliminates the interpretive
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overhead of separate caching, a drawback of schema-based integrated caching is its
lack of generality.

Principle-based integrated caching. Techniques in the third class analyze and
transform programs according to general principles. We call this principle-based in-
tegrated caching. Often, such principles are used to derive a relatively complete set of
strategies and rules for programs written in a certain language, and these strategies
and rules are used to transform programs. For example, the conventional optimizing-
compiler technique of strength reduction [All69,CK77,ACKS81] identifies subcompu-
tations like multiplications that can be replaced with subcomputations like additions
while maintaining the values of these subcomputations. Similarly, the APTS program
transformation system [Pai83,Pai90,Pai94] identifies set expressions in SETL that can
be maintained using finite differencing rules [PK82].

Sometimes it is not sufficient to have only a fixed set of strategies and rules.
Seeking more flexibility and broader applicability, KIDS [Smi90] advocates certain
high-level strategies but leaves the choice of which intermediate results to maintain
to manual decisions. CIP [Par90] also proposes a general strategy for caching, but
it may even lead to less efficient programs. Recently, certain principles that can
directly guide program transformations have been proposed. Webber’s principle of
least computation [Web93, Web95] avoids subcomputations whose values have been
computed before or are not needed. Basically, first-order purely functional programs
are transformed into trace grammars, which are thinned using this principle and then
transformed back. This approach can not reduce the strength of primitive operators
or use any auxiliary information. The heavy inference engine for thinning leads
to some clever optimizations but is computationally exorbitant. Hall’s principle of
redistributing intermediate results [Hal90,Hal91] finds paths from subcomputations
to multiple uses of their values. However, the method uses a great deal of program
design knowledge, including annotations of invariances, test-case inputs, and proofs
of correctness. Also, it guarantees correctness of the transformed programs only on
the test-case inputs.

Our approach to the problem of program improvement via caching is a principled
approach that integrates caching into the transformed programs. The intrinsic iter-
ative computation property of programs drives the incremental computation of each
iteration, which in turn drives the decision of what intermediate results to cache.
The approach is a crucial complement to any incremental computation technique for
achieving the goal of program improvement.

Our approach is not limited to using a fixed set of rules for program analysis and
transformation. On the contrary, we can even use the approach to derive such rules
when necessary. Compared to the general approaches advocated by KIDS or CIP,
our approach is more algorithmic and automatable.
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Discovering auxiliary information

Efficient incremental computation of fo(z & y) may sometimes require auxiliary in-
formation about x other than the intermediate results computed by fo(x). This
information needs to be maintained efficiently as well.

Some approaches to incremental computation have exploited specific kinds of aux-
iliary information, e.g., auxiliary arithmetic associated with some classical strength-
reduction rules [ACKS81], dynamic mappings maintained by finite differencing rules
for aggregate primitives in SETL [PK82] and INC [YS91], and auxiliary data struc-
tures for problems with certain properties like stable decomposition [PT89]. However,
until now, systematic discovery of auxiliary information for arbitrary programs has
not been studied.

This chapter presents a two-phase method that discovers a general class of aux-
iliary information for any incremental computation problem. Phase A transforms
f(z & y) to expose candidate auziliary information — subcomputations of f(z & y)
that depend only on x and whose values are not embedded in the return value or
intermediate results of f(z). Phase B determines the usage of the candidate auxil-
iary information for the incremental computation — merges this information with f,
derives an incremental version of the resulting program, and prunes out the part of
the information that is not useful for the incremental computation.

All the program analyses and transformations are combined with considerations
for caching intermediate results. We obtain a systematic approach that transforms
non-incremental programs into efficient incremental programs that use and maintain
useful auxiliary information as well as useful intermediate results. The use of auxiliary
information allows us to achieve a greater degree of incrementality than otherwise
possible. The approach can be applied directly to incrementalization problems for
interactive systems, strength reduction in optimizing compilers, and finite differencing
in transformational programming. We give examples for these program improvements
that have applications in list processing, VLSI design, and graph algorithms.

Defining the Problem. We use an asymptotic time model and an unlimited space
model as in Chapter 4. Again, our primary goal is to improve the asymptotic running
time of the incremental computation, and we attempt to save space by maintaining
only information useful for achieving this.

73
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Given a program fp and an input change operation &, we aim to extend fy to
compute appropriate auxiliary information and obtain an incremental program that
computes fo(z & y) using this information and maintains the corresponding informa-
tion. For example, consider function emp of Figure 5.1 and input change operation
=2 &y = cons(y, ). Using the approach in Chapter 3, the function cmp'

emp(z) : compare sum of odd and product of even positions of list z

emp(z) = sum(odd(z)) < prod(even(z))

odd(z) = if null(z) then nil sum(z) = if null(z) then 0

else cons(car(z), even(cdr(z))) else car(z) + sum(cdr(z))
even(z) = if null(z) then nil prod(z) = if null(z) then 1

else odd(cdr(z)) else car(z) * prod(cdr(z))

Figure 5.1: Example function definitions of emp, odd, even, sum, and prod

of Figure 5.2 can be derived; using the method in Chapter 4, the functions ¢mp
and émp' can be obtained. But none of them is much faster than computing from
scratch. For this example, auxiliary information needs to be used to compute fo(xGy)
quickly. In particular, the values of sum(even(z)) and prod(odd(z)) are crucial for
computing cmp(cons(y,x)) incrementally but are not computed in cmp(x) at all.
We can compute these two pieces of auxiliary information, use them in computing
emp(cons(y, x)), and maintain them as well.

For typographical convenience, fy shall denote the function that returns all can-
didate auxiliary information for computing fo under . We shall use fy to denote
a function that returns both all intermediate results and all candidate auxiliary in-
formation of fy, r the cached result of fo(z), and fJ an incremental version of fy
under §. Similarly, % shall denote the pruned function that returns only the useful
intermediate results and auxiliary information, 7 the cached result of fy(z), and f§
a function that incrementally maintains the useful intermediate results and auxiliary
information.

We use function emp of Figure 5.1 and input change operation = @y = cons(y, x)
as a running example. At the end, we obtain the functions ¢mp and émp’ shown in
Figure 5.2. In particular, émp’ computes incrementally using O(1) time.

5.1 Phase A: Discovering candidate auxiliary
information

Auxiliary information is, by definition, useful information not computed by the orig-
inal program fy, so it can not be obtained directly from fy. However, auxiliary
information is information depending only on z that can speed up the computation
of fo(z @ y). Seeking to obtain such information systematically, we come to the idea
that when computing fo(z ¢ y), for example in the manner of fj(z,y,r), there are
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emp'(z,y) = emp(cons(y, x)). emp'(z,y) = if null(z) then y < 1

For z of length n, emp/(z,y) takes time O(n); else y+ sum(even(z))
emp(cons(y, x)) takes time O(n). < prod(odd(z))

emp(z) = 1st(¢mp(z)). emp(z) = let vy = odd(z) in

For z of length n, ¢mp(z) takes time O(n); let vy = even(z) in
cemp(z) takes time O(n). < sum(vy) < prod(vs), v1,v2 >

If émp(x) = 7, then émp' (y,7) = émp(cons(y, x)). amp'(y,7) = <y 4+ sum(3rd(7))

For z of length n, émp'(y, #) takes time O(n); < prod(2nd(7)),
cmp(cons(y, x)) takes time O(n). cons(y, 3rd(7)), 2nd(7) >

emp(z) = 1st(emp(z)). emp(z) = let vy = odd(z) in

For z of length n, ¢mp(z) takes time O(n); let u; = sum(vy) in
emp(z) takes time O(n). let vy = even(z) in

let uy = prod(vs) in
<uy < ug, ug, Uz,
sum(vs), prod(vy) >
emp'(y,7) = <y 4+ 4th(7) < 5th(7),
y + 4th(7), 5th(7),
2nd(7), y * 3rd(7) >

If emp(x) = 7, then emp' (y, 7) = émp(cons(y, x)).
For z of length n, émp'(y,7) takes time O(1);
cmp(cons(y, x)) takes time O(n).

Figure 5.2: Resulting function definitions of emyp', émp, émp', cmp, and cmp’

often subcomputations that depend only on = and r, but not on y, and whose values
can not be retrieved from the return value or intermediate results of fo(x). If the
values of these subcomputations were available, then we could perhaps make f{ faster.

To obtain such candidate auxiliary information, the basic idea is to transform
Jo(z @ y) as for incrementalization and to collect subcomputations in the transformed
Jfo(x@y) that depend only on = and whose values can not be retrieved from the return
value or intermediate results of fo(z). Note that computing intermediate resulls of
fo(x) incrementally, with their corresponding auxiliary information, is often crucial
for efficient incremental computation. Thus, we modify the basic idea just described
so that it starts with fo(z @ y) instead of fo(z @ y).

Phase A has three steps. Step 1 extends fy to a function fy that caches all
intermediate results. Step 2 transforms fo(z © y) into a function f¢ that exposes
candidate auxiliary information. Step 3 constructs a function fy that computes only
the candidate auxiliary information in fg.

5.1.1 Step A.1: Caching all intermediate results with
improvements

Extending fo to cache all intermediate results uses the transformations in Stage I
of Chapter 4. It first performs a straightforward extension transformation to embed
all intermediate results in the final return value and then performs administrative
simplifications.
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Certain improvements can be made to the extension transformation to avoid
caching redundant intermediate results. These improvements become more important
for discovering auxiliary information, since the resulting program should be much sim-
pler and therefore easier to treat in subsequent analyses and transformations. These
improvements also benefit the modified version of this extension transformation used
in Step A.3 for collecting candidate auxiliary information.

First of all, before applying the extension transformation, common subcomputa-
tions in both branches of a conditional expression are lifted out of the conditional.
This simplifies programs in general. For caching all intermediate results, this lifting
saves the extension transformation from caching values of common subcomputations
at different positions in different branches, which makes it easier to reason about
using these values for incremental computation. The same effect can be achieved by
explicitly allocating, for values of common subcomputations in different branches, the
same slot in each corresponding branch.

Next, we concentrate on major improvements. The basic idea underlying them
is to avoid caching values of function applications that are already embedded in the
values of their enclosing computations, since these omitted values can be retrieved
from the results of the enclosing applications. These improvements are based on an
embedding analysis.

Embedding analysis. First, we compute embedding relations. We use Mf(f,1)
to indicate whether the value of v; is embedded in the value of f(v1,...,v,), and we
use Me(e,v) to indicate whether the value of variable v is embedded in the value of
expression e. These relations must satisfy the following safety requirements:

it Mf(f,i)= true, then there exists an expression f;
such that, if u = f(v1,...,vy,), then v; = ﬁl(u)

1 (5.1)

if Me(e,v) = true, then there exists an expression €,
such that, if u = e, then v = e,'(u)

For each function definition f(v1,...,v,) = ey, we define Mf(f,i) = Me(ey,v;), and
we define Me recursively as in Figure 5.3. For a primitive function p, Elpl_»1 denotes
true if p has an inverse for the 1th argument, and false otherwise. For a conditional
cies denotes true if the value of e; can be determined statically or inferred
from the value of if e; then e; else e3, and false otherwise. For example, if{],,
true if ey is T" or F, or if the two branches of the conditional expression return

expression, ¢
is

applications of different constructors. For a Boolean expression ey, e; F Me(e,v)
means that whenever ey is true, the value of v is embedded in the value of e. In order
that the embedding analysis does not obviate useful caching, it considers a value to
be embedded only if the value can be retrieved from the value of its immediately
enclosing computation in constant time; in particular, this constraint applies to the
retrievals when Elpl_»1 or ifgl,,
We can easily show by induction that the safety requirements (5.1) are satisfied.

To compute Mf, we start with Mf(f,¢) = true for every f and ¢ and iterate using the

1s true.

above definitions to compute the greatest fixed point in the point-wise extension of
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Me(u, v) - {?;;Ze ftﬁe?w?se

Me(c(ey,...,en),v) = Me(e1,v) V ... V Me(en,v)

Me(p(eq,...,en),v) = (El YA Me(eq, )) V ...V (Elpjll/\Me(en,v))
Me(f(er,...,en),v) = (Mf(f, )/\Me(el,v)) V...V (Mf(f,n)/\Me(en,v))
Me(if e; then e, else ez, v) = iffl A (eli—Me(ez,v)) A (eli—Me(eg,v))

Me(let u = e in eq,v) = Me(ea,v) V (Me(el7 v) A Me(ez,u))

Figure 5.3: Definition of Me

the Boolean domain with false C true. The iteration always terminates since these
definitions are monotonic and the domain is finite.

Next, we compute embedding tags. For each function definition f(v1,...,v,) = €y,
we associate an embedding tag Mtag with each subexpression e of ey, indicating
whether the value of e is embedded in the value of ey, i.e., if Mtag(e) = true, then
there exists ¢! such that, for all computations of ey, if the computation of ey contains
a computation of e, then €'(ef) = e, otherwise €'(ef) = _. Mtag can be defined in
a similar fashion to Me. We define Mtag(ey) = true, and define the true values of
Mtag for subexpressions e of ey as in Figure 5.4; the tags of other subexpressions of
ey are defined to be false. These tags can be computed directly once the above

if Mtag(c(eq,...,en)) =true then Mtag(e;) = true, fori=1..n

if Mtag(p(e, ..., en)) = true then Mtag(e;) = true if Elpl ,fori=1.n

if Mtag(f(e1,...,en)) = true then Mtag(e;) = true if Mf(f,i), fori=1..n

if Mtag(if e; then e; else e3) =true then Mtag(e;) = true if iff}, ., fori=1,2,3

if Mtag(let v=e; in ey) = true then Mtag(es) = true; Mtag(er) = true if Me(es,v)

Figure 5.4: Definition of Mtag

embedding relations are computed.

Finally, we use the embedding tags to compute, for each function f, an embedding-
all property Mall indicating whether all intermediate results of f are embedded in
the value of f. We define, for each function f(v1,...,v,) = ey,

Mall(f) = A Mtag(g(er,...,em)) A Mall(g) (5.2)
all function applications
g(e1, ..., en) occurring in ey

where Mtag is with respect to ey. To compute Mall, we start with Mall(f) = true for
all f and iterate using the definition in (5.2) until the greatest fixed point is reached.
This fixed point exists for similar reasons as for Mf.
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Improvements. The above embedding analysis is used to improve the extension
transformation as follows. First, if Mall(f) = true, i.e., if all intermediate results of
f are embedded in the value of f, then we do not construct an extended function
for f. This makes the transformation for caching all intermediate results idempotent,
i.e., if caching all intermediate results for a set F' of function definitions yields a set
F of function definitions, then caching all intermediate results for F' yields the same
set F.

If there is a function not all of whose intermediate results are embedded in its
return value, then an extended function for it needs to be defined as in (4.9). We
modify the definition of &xt[f(ex,...,en)] as follows. If Mall(f) = true, which in-
cludes the case where f does not contain function applications, then, due to the first
improvement, f is not extended, so we reference the value of f directly:

et f(er,...,en)] = let vi=Ert[er] in ... let v, =Ext]e,] in
let v= f(1st(v1),..., Ist(vy)) in (5.3)
<v>Qrst(vy) @ ... Qrst(v,) Q<o >

Furthermore, if Mall(f) = true, and Mtag(f(e1,...,en)) = true, i.e, the value of
fle1,...,en) is embedded in the value of its enclosing application, then we avoid
caching the value of f separately:

Ext[f(er,....,en)] = let vi=E&xtfer] in ... let v, =Ext[e,] in
< f(1st(v1),..., Ist(vy)) > @ rst(vy) @ ... Q rst(vy)

To summarize, the transformation &xrt remains the same as in Figure 4.3 except
that the rule for a function application f(eq,...,e,) is replaced with the following:
if Mall(f) = true and Mtag(f(e1,...,en)) = true, then define Ext[f(e1,...,en)]
as in (5.4); else if Mall(f) = true but Mtag(f(e1,...,en)) = false, then define
Ext[f(e1,...,en)] as in (5.3); otherwise, define Ext[f(e1, ..., en)] as in Figure 4.3. Func-
tion applications f(ey,...,en) such that Mall(f) = true and Mtag(f(e1,...,en)) =
true should not be counted by Pad. The lengths of tuples generated by Pad can still
be statically determined.

(5.4)

For the function emp of Figure 5.1, this improved extension transformation yields
the following functions:

cmp(z) = let v1 = odd(z) in sum(z) = if null(z) then <0,_ >
let u; = sum(vy1) in else let v; = sum(cdr(z)) in
let vy = even(z) in < car(z) + Lst(vy), vy > (5 5)
let uy = prod(vy) in M(CL‘) = if null(z) then < 1,_ > ’

< 1st(uy) < 1st(uq),

else let v; = prod(cdr(z)) in
U1, U1, V2, Uz >

< car(z) * 1st(v1), vy >

Functions odd and even are not extended, since all their intermediate results are
embedded in their return values.

5.1.2 Step A.2: Exposing auxiliary information by
incrementalization

This step transforms fo(z @ y) to expose subcomputations depending only on z and
whose values can not be retrieved from the cached result of fy(x). It uses analyses and
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transformations similar to those in Chapter 3 that derives an incremental program
fd(z,y,7), by expanding subcomputations of fo(z @ y) depending on both z and y
and replacing those depending only on = by retrievals from 7 when possible.

Our goal here is not to quickly retrieve values from r, but to find potentially
useful auxiliary information, i.e., subcomputations depending on z (and 7) but not
y whose values can not be retrieved from r. Thus, time considerations in Chapter 3
are dropped here but picked up after Step A.3, as discussed in Section 5.3.

In particular, in Chapter 3, a recursive application of a function f is replaced by
an application of an incremental version f’ only if a fast retrieval from some cached
result of the previous computation can be used as the argument for the parameter of f’
that corresponds to a cached result. For example, if an incremental version f'(z,y,r)
is introduced to compute f(x @ y) incrementally for r = f(z), then in Chapter 3, a
function application f(g(z)&h(y)) is replaced by an application of f' only if some fast
retrieval p(r) for the value of f(g(x)) can be used as the argument for the parameter
r of f'(z,y,r), in which case the application is replaced by f'(g(z),k(y),p(r)). In
Step A.2 here, an application of f is replaced by an application of f’ also when a
retrieval can not be found; in this case, the value needed for the cache parameter is
computed directly, so for this example, the application f(g(x) @ h(y)) is replaced by
['(g(z), h(y), f(g(x))). Tt is easy to see that, in this case, f(g(z)) becomes a piece of
candidate auxiliary information.

Since the functions obtained from this step may be different from the incremental
functions f’ obtained in Chapter 3, we denote them by f*.

For the function emp in (5.5) and input change operation x & y = cons(y, ), we
transform the computation of emp(cons(y, x)), with emp(z) = r:

1. unfold emp(cons(y, x)) 2. unfold odd,sum, even; simp. 3. replace appls. of even, odd
= let vy = odd(cons(y,z))in = let v} = even(z) in = let v} = 4th(7) in

let u; = sum(vy) in let v} = sum(v}) in let v} = sum(v}) in

let vy = even(cons(y, z)) in let vy = odd(z) in let vy = 2nd(7) in

let us= M(t@) in let us= M(Uz) in let us= M(Uz) in

< 1st(uy) <1st(usz), <y+1st(u)) <1st(uq), <y+1st(u)) <1st(ua),

vy, U1, Vg, Ug > cons(y, vy), cons(y, vi),
<y+1st(u)), v} >, va, us> <y+1st(u)), ui>, ve, us>

Simplification yields the following function emp' such that, if emp(x) = r, then
cmp'(y, r) = emp(cons(y, )):

cmp'(y,7) = let v} = sum(4th(7)) in
let us = prod(2nd(7)) in (5.6)
< y+1st(u)) <1st(uz), cons(y,4th(7)), < y+1st(u}),u] >, 2nd(F), us >

where sum and prod are defined in (5.5).

5.1.3 Step A.3: Collecting candidate auxiliary information

This step collects candidate auxiliary information, i.e., intermediate results of
fo(z,y,7) that depend only on z and 7. It is similar to Step A.1 in that both col-
lect intermediate results; they differ in that Step A.1 collects all intermediate results,
while this step collects only those that depend only on = and r.
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Forward Dependency Analysis. We first use a forward dependency analysis to
identify subcomputations of f¢(x,y,7) that depend only on x and 7. The analysis
is in the same spirit as binding-time analysis [JSS85,Lau88] for partial evaluation, if
we regard the arguments corresponding to z and r as static and the rest as dynamic.
We compute the following sets, called forward dependency sets, directly.

For each function f(v1,...,v,) = e, we compute a set ¥y that contains the indices
of the arguments of f such that, in all uses of f, the values of these arguments depend
only on z and r, and, for each subexpression e of ey, we compute a set X, that
contains the free variables in e that depend only on x and r. The recursive definitions
of these sets are given in Figure 5.5, where F'V(e) denotes the set of free variables in
e and is defined as follows:

Pl )
FV(g(e1,...,en)) where gise, p,or f = FV(er)U..UFV(eyp)
FV(if e; then e; else €3) = FV(e1)UFV(ez) U FV(es)
FV(let v =e1 in e3) = FV(er)U(FV(e2)\ {v})
For each function f(v1,...,vn) = ey, define X, ;= {v; | €¥;}, and, for each subexpression e of ef,
if e is c(eq, ..., en) Or peq, ..., en) then Xy = ... = Xp. 1 = X
if eis fi(e1,...,en) then ¥, 1= ... = X[, = Xy and By ={i | FV(e;) C X} N Ep,
if e 1s if e; then ey else e3 then X1 = Zey) = B = X
. . . . _ _ E[e U {v} if FV(el) - E[e]
ifeislet v = ey in ey then X, = X[ and Xp.,; = {E[e \{v} otherwise

Figure 5.5: Definition of ¥

To compute these sets, we start with X7, containing the indices of the arguments of
fo corresponding to x and 7, and, for all other functions f, Y.y containing the indices
of all arguments of f, and iterate until a fixed point is reached. This iteration always
terminates since, for each function f, f has a fixed arity, ¥ decreases, and a lower
bound () exists.

For the running example, we start with Yzmp = {2} and Yem = Yo7 = {1}
We obtain Yemp = {2} and Yewmw = Y55
the definition of emp'(y,r), r € Y- For every subexpression e in the definitions of

sum(z) and prod(z), X = {z}.

= {1}. For every subexpression e in

Collection Transformation. We next use a collection transformation to collect
the candidate auxiliary information. The main difference between this collection
transformation and the extension transformation in Step A.1 is that, in the former,
the value originally computed by a subexpression is returned only if it depends only
on = and r, while in the latter, the value originally computed by a subexpression is
always returned.



81

Basically, for each function f(v1,...,v,) = e called in the program for fi and such
that ¥; # (), we construct a function definition

f(vil,...,vik) = (ol[€] (5.7)

where ¥y = {i1,...,0;} and 1 < 11 < ... < i < n. Colfe] collects the results of
intermediate function applications in e that have been statically determined to depend
only on = and r. Note, however, that an improvement similar to that in Step A.1 is
made, namely, we avoid constructing such a collected version for f if ¥; = {1,...,n}
and Mall(f) = true.

The transformation Col always first examines whether its argument expression
e has been determined to depend only on z and r, ie., FV(e) C Y- I so,
Cole] = Ext[e], where Ext is the improved extension transformation defined in Step
A.1. Otherwise, Col[e] is defined as in Figure 5.6, where Pad[e] generates a tuple of
_’s of length equal to the number of the function applications in e, except that func-
tion applications f(e1, ..., e,) such that ¥y =0, or ¥y = {1,...,n} but Mall(f) = true
and Mtag(f(e1,...,en)) = true are not counted. Note that if e has been determined
to depend only on z and 7, then 1st(Col[e]) is just the original value of e; otherwise,
Col[e] contains only values of intermediate function applications.

Col[v] = <>

Colg(ey,...,en)] where giscorp
= (ol[e1] @ ... @ Colfen]

Col[f(e1,...,en)] = let vy=C0Colfer] in ... let v, =Colfe,] in e} @ ... @ ¢/ @ ¢’
where e = {rst(vi) if i € E.f
¢ v; otherwise
L <> ifX;=0
Tl <f(1st(viy), ..., 15t(v;,)) > otherwise

where ¥;= {i1,..., iy} and 1< i1 <...<iz< n

Col[if e; then e; else e5] = let vy =0l[e;] in if FV(e1) C ey
if 1st(v1) then let vo=Col[es] in
rst(v1) @ vy @ Pad[es]
else let v3=Col[es] in
rst(vy) @ Pad[ez] @ v
= let vy =Col[e1] in let vy =Colfez] in otherwise
let v3==Col]es] in
U1 @ (25} @ V3

Col[let v=e¢;1 in €3] = let v1 =Colfe1] in if FV(e1) C ey
let v=1st(v1) in let vy =Col]es] in
rst(vy) @ vy
= let vy =Col[e;1] in let vy =Coles] in otherwise
U1 @ (25}

Figure 5.6: Definition of Col
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For the function emp' in (5.6), collecting all intermediate results that depend only
on its second parameter yields

erp(F) = < sum(4th(7)), prod(2nd(7)) > (5.8)

where sum and prod are defined as in (5.5). We can see that computing the auxil-
iary information erp(7) is no slower than computing cmp(z). We will see that this
guarantees that incremental computation using the program obtained at the end is
at least as fast as computing emp from scratch.

5.2 Phase B: Using auxiliary information

Phase B determines which pieces of the collected candidate auxiliary information are
useful for incremental computation of fo(z @ y) and exactly how they can be used.
The basic idea is to merge the candidate auxiliary information with the original
computation of fo(z), derive an incremental version for the resulting program, and
determine the least information useful for computing the value of fo(z & y) in that
incremental version.

However, we want the incremental computation of fy(x & y) to have access to
the auxiliary information in addition to the intermediate results of fy(x). Thus, we
merge the candidate auxiliary information in fo(z,7) with fy(z) instead of fo(z).
After deriving an incremental version for the resulting program, we prune out the
useless auxiliary information and the useless intermediate results. -

Phase B has three steps. Step 1 merges fy with fy to form a function fy that
returns candidate auxiliary information as well as all intermediate results. It also
determines a projection Ily that projects the return value of fy out of fo. Step 2
incrementalizes fy under & to obtain an incremental version fg. Step 3 prunes out
of fo and fJ the intermediate results and auxiliary information that are not useful.

5.2.1 Step B.1: Combining intermediate results and
auxiliary information

To merge the candidate auxiliary information with fo, we could simply attach it onto
fo by defining a function fy to be the pair of fy and fo:

}0(17) = let 7 = fo(x) in let 7 = fo(z,7) in < 7,7 >

and use the projection Ily(r) = 1st(1st(r)) to project out the original return value of
fo. However, we can do better by using a transformation to integrate the computa-
tion of fy more tightly into the computation of fy, as opposed to carrying out two
disjoint computations. The integrated computation is usually more efficient; so is its
incremental version.

We do not describe the integration in detail. Basically, it uses traditional trans-
formation techniques [BD77] like those used in tupling tactic [Fea82] and partial eval-
uation [JGS93]: introducing functions to compute function applications, unfolding,
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simplifying primitive function applications, driving, replacing recursive applications
with introduced functions, ete. We require only that Io(fo(z)) always project out
1st(fo(x)), which is the value of fo(z), and that the values of all other components
of fo(z) and fo(x,7) be embedded in the value of fy(z). This allows re-arranging the
order of the components in the return value into the most straightforward form and
adjust the projection Ilj.

For the functions emp in (5.5) and crivp in (5.8), we first define a function

emp(z) = let ¥ = emp(x) in let 7 = crap(F) in < 7,7 >

and a projection Ily(r) = 1si(1st(r)). Next, we transform cmp(z) to integrate the
computations of emp and crip:

1. unfold ¢mp, then emp and crp 2. lift bindings and simplify 3. unfold bindings for 7 and 7

= let 7 = let v; = odd(z) in = let v; = odd(z) in = let vy = odd(z) in
let u; = sum(vy) in let u; = sum(vy) in let u; = sum(vy) in
let vy = even(z) in let vy = even(z) in let vy = even(z) in
let uy = prod(vsz) in let us = prod(vy) in let uy = prod(vz) in
< Ist(uy) < 1st(ua), let 7 = <1st(uy) < Ist(uz), <<lst(ur) < lst(uq),
V1, U1, Vo, Ug > 1IN V1, U1, Vg, Uz > 1IN V1, U7, Vo, Uy >,
let 7 = < sum(4th(7)), let 7 = < sum(v,), < sum(vsy), prod(vy) >>
prod(2nd(7)) > in prod(vi) > in
<7, F> <7, >

Simplifying the return value and Iy, we obtain the following function cmp:
emp(z) = let v; = odd(z) in
let u; = sum(v1) in
let vy = even(z) in (5.9)
let uy = prod(vy) in

< Ist(uy) <lst(usz), vi, uy, va, uz, sum(ve), prod(vy) >

and the projection Ily(r) = 1st(r).

5.2.2 Step B.2: Incrementalization

To derive an incremental version f¢ of fy under &, we can use the method in Chapter
3. Basically, it identifies subcomputations in fo(z @ y) whose values can be retrieved
from the cached result r of fo(z), replaces them by corresponding retrievals, and cap-
tures the resulting way of computing fo(x @ y) in the incremental version fo'(z,y,r).

For the function emp in (5.9) and input change operation z & y = cons(y, z), we
derive an incremental version of emp under &:

1. unfold emp(cons(y, z)) 2. transform applications 3. replace appls. by retrievals
= let vy = odd(cons(y, z)) in = let v} = even(z) in = let v} = 4¢h(r) in
let u; = sum(vy) in let v} = sum(v}) in let v} = 6¢h(7) in
let vy = even(cons(y, z)) in let v3 = odd(z) in let vo = 2nd(7) in
let uy = prod(vs) in let us = prod(vy) in let us = Tth(7) in
< lst(uy) <1st(uz), let v}, = prod(v}) in let u, = 5th(r) in
V1, U1, V2, Uz, <y + lst(u}) <1st(uq), <y+ lst(u)) <1st(usq),
sum(vs), prod(vy) > cons(y, v}), cons(y, v'),
<y+1st(u)), u) >, va, us, <y+1st(u)), u) >, va, ua,

sum(vg), <y 1st(uy), ulf >> 3rd(r), <yxlst(uf), uf >>
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Simplification yields the following incremental version emp’ such that, if emp(z) =r,
then cmp'(y,r) = emp(cons(y, r)):

emp'(y,7) = < y+1st(6th(r)) <1st(Tth(r)),
cons(y, 4th(r)), <y+1st(6th(r)), 6th(r)>, 2nd(r), Tth(r), (5.10)
3rd(r), <yx1st(bth(r)), bth(r)>>

Clearly, cmp'(y,r) computes emp(cons(y,z)) in only O(1) time.

5.2.3 Step B.3: Pruning

To prune fp and fo, we use the analyses and transformations in Stage I1I of Chapter 4.
A backward dependency analysis determines the components of r and subcomputa-
tions of f¢ whose values are useful in computing Ilo(fo(z,y,7)), which is the value
of fo. A pruning transformation replaces useless computations with _. Finally, the
resulting functions are optimized by eliminating the _ components, adjusting the
selectors, etc.

For the functions emp in (5.9) and cmp' in (5.10), we obtain

emp(z) = let vy = odd(z) in
let u; = sum(vy) in
let vy = even(z) in
let uy = prod(vy) in
< 1st(uy) <lst(usz),
—, < lst(ur),— >, —, < Ist(ua), - >, < lst(sum(vs)), - >, < lst(prod(v1)), - >>

emp'(y, 1) = <y+1st(6th(r)) < 1st(Tth(r)),
—, <y+1st(6th(r)), — >, _, <lIst(Tth(r)), - >, <lst(3rd(r)), - >, <yx*1st(5th(r)), - >>

Optimizing these two functions yields the final functions émp and émp’, which appear
in Figure 5.2.

5.3 Discussion

Auxiliary information is intended to be used for incremental computation and is
maintained incrementally, so at the step of discovering it, we should not be limited
by the time complexity of computing it from scratch; this is why time considerations
were dropped in Step A.2. However, to make the overall approach effective, we must
consider the cost of computing and maintaining the auxiliary information. Here, we
simply require that the candidate auxiliary information be computed at least as fast
as the original program, i.e., t(fo(z,7)) < t(fo(z)) for ¥ = fo(x), which can be checked
after Step A.3. We guarantee this condition by simply dropping pieces of candidate
auxiliary information for which it can not be confirmed.

Suppose Step B.1 projects out the original value using 1st. With the above con-
dition, in a similar way to Section 4.1, we can show that, if fo(z) = r, then

Lst(fo(2)) = v and 4(Fo()) < t(fola)) (5.11)
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and if fo(z @ y) =r' and %(w) =7, then

Lst(fo(z,y,7)) =", fo(z,y,7) = fo(z B y), and i(fi(x,y,7)) < L(fo(x D y)).
(5.12)
i.e., the functions % and %’ preserve the semantics and compute asymptotically at
least as fast. Similarly, due to the transformations used in Steps B.2 and B.3, fo(z)
may terminate more often than fy(z), and %’(;L‘, y,7) may terminate more often than
folz & y).

The two-phase method consists of six separate steps. Each component performs
relatively independent analyses and transformations. Thus, the method is modular.
This facilitates integrating other techniques into this framework and re-using these
components for other optimizations. In particular, techniques for deriving incremental
programs in Chapter 3 and caching intermediate results in Chapter 4 are used for
discovering auxiliary information in this chapter, even though discovering auxiliary
information is regarded as extending the methods for the former two. These three
parts naturally complement one another to form a comprehensive principled approach
to incremental computation.

Transformation and analysis techniques. The comprehensive approach for in-
cremental computation discussed in this chapter is made possible by combining a
number of program transformation and analysis techniques. We summarize them
here.

First, Step A.1 uses the transformations in Stage I of the method in Chapter 4
to cache all intermediate results. In addition, an embedding analysis is developed
to help the extension transformation avoid caching redundant information. Step A.2
uses a slightly revised version of the incrementalization method in Chapter 3 to expose
candidate auxiliary information. Then, to collect the candidate auxiliary information,
Step A.3 modifies the extension transformation to make use of the results of a forward
dependency analysis.

Our forward dependency analysis is equivalent to binding-time analysis [JSS85,
Lau88]. However, the application here is different from that in partial evaluation
[JGS93]. In partial evaluation, the goal is to obtain a residual program that is spe-
cialized on a given set of static arguments and takes only the dynamic arguments,
while here, the goal is to construct a program that computes only on the arguments
corresponding to the “static” part without considering those corresponding to the
“dynamic” part. In this aspect, the resulting program here is similar to the slice
obtained from forward slicing [Wei84|. However, our forward dependency analysis is
different from the forward slicing analysis in that forward dependency analysis finds
parts of a program that depend only on certain information, while forward slicing
finds parts of a program that depend possibly on certain information. Another dis-
tinguishing aspect is that the resulting program here returns all intermediate results
on the arguments of interest as well.

Step B.1 merges candidate auxiliary information with intermediate results, which
may make use of a collection of existing transformation techniques like tupling [Fea82,
Pet84,Chi93]. Step B.2 uses the incrementalization method in Chapter 3, just as



86

Stage II of the method in Chapter 4. Finally, Step B.3 prunes the resulting programs
using the backward dependency analysis just as in Stage III of the method in Chap-
ter 4. This saves time and space by computing, using, and maintaining only useful
intermediate results and auxiliary information.

Multi-pass discovery of auxiliary information. The function % can sometimes
be computed even faster by maintaining still more auxiliary information, in particular,
for incrementally computing the auxiliary information in it. For example, suppose we
consider multiplication to be much more expensive than addition. Suppose we want
to compute f(z) = xxx*x incrementally under ' = z 4+ 1. If we do not use auxiliary
information, we get

fl(z,r) = r+3%z*z+ 3%z + 1

such that, if f(z) = r, then f'(z,r) = f(z+1). If we use auxiliary information 3+z*zx
and 3xz, then we get f(z) = < z*a*z, 3xr*xz, 3z > and

]?'(:E,F) = < 1st(7) 4 2nd(7) + 3rd(F) + 1, 2nd(7) + 243rd(F) + 3, 3rd(F) + 3 >

such that, if f(;r;) =7, then f'(:v,?) = f(;r:—l—l). While f(z+1) uses two multiplications
and f'(z,r) uses three, _]FI(.TL‘, 7) uses only one. But we can use the auxiliary information
2%3rd(7), which equals 6+z, to compute the auxiliary information 3*z*2z, and obtain
f(;z;) = < x*x*x, 3kT*T, 3*kT, 6kT > and

T2, 7) = < 1st(F)+2nd(F)+3rd(F)+1, 2nd(F)+4Lh(F)+3, 3rd(F)+3, 4Lh(F)+6 >

such that, if f(:z:) =7, then f'(:z:, r) = f(:ls +1). Now _]FI(ZC, 7) uses no multiplications.

To obtain such auxiliary information of auxiliary information, we can iterate the
above approach. However, since we guarantee only that the resulting incremental
program computes at least as fast as computing from scratch, such iteration may not
terminate. To ensure termination, we iterate either until all subcomputations in the
incremental computation that depend on x do not cost too much, or until an imposed
maximum number of iterations is reached. Again, further study is needed in time
and space analyses and the trade-off between them to help decide whether or not to
use certain auxiliary information.

Other auxiliary information. There are cases where the auxiliary information
discovered using the above approach is not sufficient for efficient incremental com-
putation. In these cases, use of the auxiliary information typically involves special
high-level properties of the particular problem at hand. For example, in SETL, sev-
eral kinds of maps are maintained for functions that are not continuous for certain
input changes [Pai83]. In dynamic graph algorithms, several special data structures
are employed: dynamic trees [ST83], topology trees [Fre85], and sparsification trees
[EGIN92].

Ideally, we can collect classes of special parameterized data structures as auxiliary
information parameterized with certain data types. Then, we can systematically ex-
tend a program to compute such auxiliary information and maintain it incrementally.
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In the worst case, we can code manually discovered auxiliary information to obtain a
program %, and then use our systematic approach to derive an incremental version
of % that incrementally computes new outputs using the auxiliary information and
also maintains the auxiliary information.

5.4 Examples

The running example on list processing illustrates the application of our approach
to solving explicit incremental problems for, e.g., interactive systems and reactive
systems. Other applications include optimizing compilers and transformational pro-
gramming. First, given a simplifier based on properties of primitive operations like
distributivities, the class of auxiliary information this method discovers includes all
that is needed in classical strength-reduction rules used in optimizing compilers. Sec-
ond, this class of auxiliary information covers much of what is needed in transforma-
tional programming. The benefit of our approach is evident in that it allows one to
derive efficient incremental programs in a systematic way and, therefore, helps avoid
unnecessary errors during the derivation.

This section presents an example for each of these two applications. The examples
are based on problems in VLSI design and graph algorithms, respectively.

5.4.1 Binary integer square root

This example is from [OLHA94], where a specification of a non-restoring binary in-
teger square root algorithm is transformed into a VLSI circuit design and implemen-
tation. In that work, a strength-reduced program was manually discovered and then
proved correct using Nuprl [CT86]. Here, we show how our method can automati-
cally derive the strength reductions. This is of particular interest in light of the recent
Pentium chip flaw, since the current technology for proving correctness of a chip is
still being argued [Gla95].

The initial specification of the algorithm is given in Figure 5.7. Given a binary
integer n of [ bits, where n > 0 and [ > 1, it computes the binary integer square root
m using the non-restoring method [Flo63,01.LHA94], which is exact for perfect squares
and off by at most 1 for other integers. In hardware, multiplications and exponentials

m =21
for i := 1 — 2 downto 0 do
pi=n—m?
if p > 0 then
m:=m+ 2
else if p < 0 then
m:=m—2

Figure 5.7: Specification of binary integer square root algorithm
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are much more expensive than additions and shifts (doublings or halvings), so the
goal is to replace the former by the latter.

To simplify the presentation, we jump to the heart of the problem, namely, com-
puting n — m? and 2! incrementally in each iteration under the change m' = m 4 2!
and i/ =i — 1. Let function fy be

fo(n,m,i) = pair(n — m?,2%)
where pair is a constructor with selectors fst(a,b) = @ and snd(a,b) = b, and input
change operation & be
(n',m" "y =(n,mi®()=(n, m+2 i—1)

A.1. We cache all intermediate results of fy and obtain

fo(n,m,i) = let v =m?

in < pair(n —v, 21), v >

A.2. We transform fg under @ and obtain

\

St

(n,m,i,7)
let v = (m + 2% in < pair(n — v, 2271, v >
let v = m? 4+ 2xm#2¢ 4+ (21)? in < pair(n — v, 21/2), v >
let v = 2nd(7) + 2xmx*snd(1st(7))+(snd(1st(7)))? in < pair(n—v, snd(1st(7))/2), v >

A.3. We collect candidate auxiliary information and obtain
fo(n,m,i,7) = < 2xmxsnd(1st(7)), (snd(1st(7)))* > (5.13)

B.1. We merge the collected candidate auxiliary information with fy and obtain

HO(?) = 1375(?) and
}a(n,m,i) = let v=m?in let u=2" in <pair(n—v,u), v, 2xmx*u, u?>

B.2. We derive an incremental version of ﬁ) under @ and obtain

f;)/(n, m,i,7)

= letv=(m+2)2inlet u = 2" in < pair(n — v,u), v, 2x(m £ 2" )*u, u? >

let v = m?+2+m*2+(29)? in let u =2¢/2 in <pair(n—v,u), v, 2xm*u+2+2 xu, u?>
let v = 2nd(7) & 3rd(7) + 4th(7) in let u = snd(1st(r))/2 in

< pair(fst(1st(r)) F 3rd(r) — 4th(7), u), v, 3rd(r)/2 & 4th(7), 4th(r)/4 >

B.3. We prune functions ﬁ) and ﬁ)l and obtain

fo(n,m,i) = letu=2"in < pair(n —m? u), _, 2xm*u, u? >

fol(n, m,i,r)
= <pair(fst(1st(r))F3rd(r)—4th(r), snd(1st(r))/2), —, 3rd(¥)/2+4th(r), 4th(7)/4>

Eliminating the _ components, we obtain
fo(n, m,i) = let u=2"in < pair(n —m? u), 2xmxu, u? > (5.14)
fo'(n,m, i, 7)
= < pair(fst(1st(7))F2nd(7)—3rd(7), snd(1st(7))/2), 2nd(7)/2+3rd(F), 3rd(F)/4 >
(5.15)
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Thus, the expensive multiplications and exponentials in each iteration are completely
replaced by additions and shifts. Following our systematic approach, we even dis-
cover that an extra shift is done in [OLHA94]. Thus, such systematic transforma-
tional approach is not only greatly desired for automating designs and guaranteeing
correctness, but also also for helping reduce the cost.

5.4.2 Path sequence problem

This example is from [Bir84]. Given a directed acyclic graph, and a string whose
elements are vertices in the graph, the problem is to compute the length of the
longest subsequence in the string that forms a path in the graph. We focus on the
second half of the example, where an exponential-time recursive solution is improved
(incorrectly in [Bir84], correctly in [Bir85]).

A function [lp is defined to compute the desired length, as below. The input string
is given explicitly as the argument, and the input graph is given as a predicate arc
such that arc(a, b) is true if and only if there is an edge from vertex a to vertex b in
the graph. A primitive function max is used to return the larger number of its two
arguments.

lp(l) : max length of subsequence in string / that is a path in a graph
lp(l) = if null(l) then 0

else max(llp(edr(l)), 1+ f(car(l), cdr(l)))
f(n,) = if null(l) then 0

else if arc(n, car(!)) then

max(f(n,cdr(l)), 1+ f(car(l), edr(l)))
else f(n,cdr(l))

Figure 5.8: Example function definition of llp

First, we formulate the problem as computing l{p incrementally under the input
change operation [ & ¢ = cons(z,1).

A.1. We cache all intermediate results of [lp and obtain

lip(l) = if null(l) then <0,_,_ >
else let vy = llp(cdr(l)) in
let vy = f(car(l), cdr(l)) in
<max(1st(v1), 14 1st(v2)), v1, v2 >

f(n,l) = if null(l) then <0,_, _ > (5_16)
else let v; = f(n,cdr(l)) in
if arc(n, car(l)) then
let vy = f(car(l), cdr(l)) in
<max(lst(vy), 14+1st(v2)), v1, v2 >

else < 1st(v1), v1, — >
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A.2. We define %\(i, 1,7) to transform lIp(cons(i, 1)), with llp(l) = 7

1. unfold IIp(cons(i, 1)), simplify
= let v; = lg_p(l) in
let vy = f(i,0) in

<max(1st(vy), 14 1st(va)), v1,v2 >

2. replace applications, separate cases 3. lift conditions, simplify
= let v; =7in = 1if null(l) then
let vy = if null(l) then <0,_,_> <1,<0,_,_>,<0,_,_>>
else f\(i,1,3rd(r)) in else let vy = f(i, 1, 3rd(7)) in
<max(lst(vi), 1+1st(v2)), v1, v2> <max(1st(7), 1+1st(vs)), 7, va>

where we define f*(i,1,71) to transform f(i,1), with [ # nil and f(car(l), cdr(l))

=ry:
1. unfold f(i,1), simplify
= let vy = f(i,cdr(l)) in
if arc(?, car(l)) then
let vy = f(car(l), cdr(l)) in
<max(1st(vy), 1+ 1st(ve)), v1, va >
else <1st(vy1), v1, - >
2. separate cases, replace applications 3. lift conditions, simplify
= letv1=if null(cdr(l)) then = if null(cdr(l)) then
<0,_,_> if arc(?, car(l)) then
else f(i, edr(l), f(car(cdr(l)), <1,<0,_,_>,<0,_,_>>
edr(edr(l)))) in else <0,<0,_,_>,<0,_,_>>
if arc(Z, car(l)) then else let vy = (i, cdr(l),f(car(cdr(l)),
let vo=7; in edr(edr(l)))) in
<max(1lst(v1), 1+ 1st(va)), vy, v2> if arc(?, car(l)) then
else < 1st(v1), v1, - > <max(1lst(v1), 1+ 1st(r1)), v1, 71>

else < 1st(v1), v1, - >

A.3. We collect candidate auxiliary information in W It comprises the result of the
function application f(car(edr(l)),edr(edr(ll))) and the (recursive) applications
that contain this result. All of them depend only on the argument [. Thus, we

obtain )
lUp(l) = if null(l) then < _ >
else < f(I) >
f(1) = if null(cdr(l)) then < _,_ > )
else < f(car(cdr(l)), cdr(cdr(l))), f(edr(l)) >

(5.17)

B.1. We merge the candidate auxiliary information /lp with 1lp. We first define
lip(l) = let 7 =1llp(l) inlet # = lIp(l) in <7 7>  and  Ho(¥) = Lst(1st(r))

and then transform ﬁ})(l) We omit the details of the transformation but just

notice that if we rewrite llp in (5.17) as

Up(l) = if null(l) then < _ >
else < fi(cdr(l)) >

fi(l) = if null(l) then < _,_ >
else < f(car(l), cdr(l)), fi(edr(l)) >

(5.18)
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then it is obvious that the auxiliary information f(car(l), edr(1)) in (5.18) should
be computed together with the intermediate results of f(n,[)in (5.16) regardless
of whether arc(n, car(l)) is true or false. Thus, we obtain

lp(l) = if null(l) then <0,_,_>
else let vy = llp(cdr(l)) in
let vy = f(car(l), cdr(l)) in
<max(1lst(vy), 1+ Lst(v2)), vy, v2>
f(i,1) = if null(l) then <0, _, >

else let uy = f(i,edr(l)) in
let us; = f(car(l), edr(l)) in
if arc(?, car(l)) then
<max(lst(uy), 1 + Lst(ug), ur, ug>
else <1st(uy), uy, us>

and Ty(r) = 1st(7)

B.2. We derive an incremental version of ﬁ})}}nder 6. We define ﬁp%i, [,7) to com-
pute lIp(cons(i,1)) incrementally, with lIp(l) = r:

1. unfold lEo(cons(i, 1)), simplify
= let v; = 17159(1) in
let vy = ?(z, ) in
<max(1lst(v1), 14 1st(va)), v1,v2 >

2. replace applications, separate cases 3. lift conditions, simplify
= letv; =7in = if null(l) then
let vy = if null(l) then <0,_,_> <1,<0,_,_>,<0,_,_>>
else f/(i,l, 3rd(r)) in else let vy = fﬂ(i, l,3rd(r)) in
<max(1st(vy), 14+1st(va)), v1, v2> <max(1st(r), 1+ 1st(va)), ¥, va>

where we define }El(i, I,m1) to compute }v(z, [) incrementally, with [ # nil and
flear(l),edr(l)) = ry:

1. unfold f(i,1), simplify

= let vy = f(i,cdr(l)) in
let vy = f(car(l), edr(l)) in
if arc(?, car(l)) then
<max(1st(vy), 14+ 1st(ve)), v1,v2 >
else < 1st(v1), vi, v2>

2. separate cases, replace applications 3. lift conditions, simplify
= let v; = if null(cdr(l)) then = if null(cdr(l)) then
<0,_,_> if arc(?, car(l)) then
elseﬂi, edr(l),3rd(r1)) in <1,<0,-,-><0,,->>
let v = 7 in else <0,<0,_,_>,<0,_,_>>
—
if arc(?, car(l)) then else let vy = f (i, edr(l),3rd(r1)) in
<max(Ist(vy), 14+ 1st(va)), v1, v2 > if arc(7, car(l)) then

else < 1st(v1), v1, va > <max(1lst(vy), 14+1st(r1)),v1,71 >

else <1st(vy), v1, 11 >
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B.3. We prune functions [lp and llpl, eliminate the underscore components, and
obtain s
Up(l) = if null(l) then <0>
else let vy = f(car(l), edr(l)) in
<max(llp(cdr(l)), 14+ 1st(ve)), vy >

f(i,1) = if null(l) then <0> (5.19)
else let us = f(car(l),cdr(l)) in
if arc(?, car(l)) then
<max(f(7,cdr(l)), 1+ 1st(uz), uz >
else < f(i,cdr(l)), us >

ilp (i,1,7) = if null(l) then <1,<0>>
else let v = fl(i,l, 2nd(7)) in
<max(1st(7), l+1st(ve)), va>
f(i,1,71) = if null(cdr(l)) then
if arc(Z, car(l)) then <1, <0>> (5,20)
else <0,<0>>
else let v = f’(i,cdr(l), 2nd(71)) in
if arc(?, car(l)) then
<max(1lst(vy), 14+ 1st(r1)), r1 >
else <1st(vq1), r1 >

While computing Ilp(cons(i,l)) from scratch takes exponential time, computing
ﬁ;(i, [,7) takes O(n) time, where n is the length of [, since f[})l(i, [,7) calls f', which
goes through the list [ once.

Finally, we use the derived functions for m)’ to compute the original function llp.
Note that llp(l) = 15t(lflz7(l)) and, if lflzv(l) = r, then %I(i, I,r) = %(cons(i, [)). Using
the definition of ﬁ; in (5.20) in this last equation, we obtain:

lp(cons(i,l)) = if null(l) then <1,<0>>
else let 7 = m)(l) in
let vy = f~’(i, [,2nd(7)) in
<max(1st(7), 1 +1st(vq)), va>

Using this equation and the base case llp(nil) = <0>, we obtain a new definition of
Ilp:
lip(l) = if null(l) then <0>
else if null(cdr(l)) then <1,<0>>
else let 7 = ﬁ;o(cdr(l)) in (5.21)
let vy = f’(car(l), edr(l), 2nd(7)) in
<max(1st(7), 1 +1st(va)), va>
where f' is defined in (5.20). This new llp takes O(n?) time, since it calls f" only
O(n) times.

5.5 Related work

Work related to our analysis and transformation techniques has been discussed in
Section 5.3. Here, we take a closer look at related work on discovering auxiliary
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information for incremental computation.

Interactive systems and reactive systems often adopt incremental algorithms to
achieve fast response time [DGHKL84,Rei84a,BS86,HN86,BC88, RT88,Kai89,BGV9I2].
Since explicit incremental algorithms are hard to write and appropriate auxiliary in-
formation is hard to discover, the general approach in this chapter provides a helpful
systematic method for developing particular incremental algorithms. For example,
for the dynamic incremental attribute evaluation algorithm in [RTD83], the charac-
teristic graph is a kind of auxiliary information that would be discovered following
the general principles underlying our approach. For static incremental attribute eval-
uation algorithms [Kas80,Kat84], where no auxiliary information is needed, the ap-
proach can cache intermediate results and maintain them automatically, as described
in Chapter 4.

Strength reduction [All69, CK77,ACK81,SKR91] is a traditional compiler opti-
mization technique that aims at computing each iteration incrementally based on the
result of the previous iteration. Basically, a fixed set of strength-reduction rules for
primitive operators like times and plus are used. Our method can be viewed as a
principled strength reduction technique not limited to a fixed set of rules: it can be
used to reduce strength of computations where no given rules apply and, furthermore,
to derive or justify such rules when necessary, as shown in the integer square root
example.

Finite differencing, proposed by Paige etc. [PST7,Pai81,PK82], can be regarded
as a generalization of strength reduction to set-theoretic expressions for systematic
program development. Basically, rules are manually developed for differentiating set
expressions. For continuous expressions, our method can derive such rules directly
using properties of primitive set operations. However, set expressions can be discon-
tinuous, in which case corresponding dynamic expressions need to be discovered and
rules for maintaining them derived. These dynamic expressions are composed of sev-
eral kinds of maps and are a certain kind of auxiliary information. How to discover
them is still a problem that needs to be studied, but once discovered, our method
can at least be used to derive rules that maintain this information. Also, in general,
Paige’s rules apply only to very-high-level languages like SETL; our method applies
also to normal high-level languages like Lisp.

Maintaining and strengthening loop invariants has been advocated by Dijkstra,
Gries, and others [Dij76,Gri81,Rey81,Gri84] for almost two decades as a standard
strategy for developing loops. In order to produce efficient programs, loop invariants
need to be maintained by the derived programs in an incremental fashion. To make a
loop more efficient, the strategy of strengthening a loop invariant, often by introduc-
ing fresh variables, is proposed [Gri84]. This corresponds to discovering appropriate
auxiliary information and deriving incremental programs that maintain such infor-
mation. Work on loop invariants stressed mental tools for programming, rather than
mechanical assistance, so no systematic procedures were proposed.

Induction and generalization [BM79,MW93] are the logical foundations for recur-
sive calls and iterative loops in deductive program synthesis [MW80] and constructive
logics [CT86]. These corpora have for the most part ignored the efficiency of the pro-
grams derived, and the resulting programs “are often wantonly wasteful of time and
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space” [MWS82]. In contrast, the approach in this thesis is particularly concerned with
the efficiency of the derived programs. Moreover, we can see that induction, whether
course-of-value induction [Kleh2], structural induction [Bur69,BM79], or well-founded
induction [BM79,MW93], enables derived programs to use results of previous itera-
tions in each iteration, and generalization [BM79,MW93] enables derived programs to
use appropriate auxiliary information by strengthening induction hypotheses, just like
strengthening loop invariants. The approach in this thesis may be used for systemat-
ically constructing induction steps [Kle52] and strengthening induction hypotheses.

The promotion and accumulation strategies are proposed by Bird [Bir84,Bir85] as
general methods for achieving efficient transformed programs. Promotion attempts
to derive a program that defines f(cons(a,z)) in terms of f(z), and accumulation
generalizes a definition by including an extra argument. Thus, promotion can be
regarded as deriving incremental programs, and accumulation as identifying appro-
priate intermediate results or auxiliary information. Bird used two nice examples to
illustrate the general strategies, with the help of succinct notations. However, we can
discern no systematic steps being followed in [Bir84]. As demonstrated with the path
sequence problem, our approach can be regarded as a systematic formulation of the
promotion and accumulation strategies. As such, it helps avoid the kind of errors
reported and corrected in [Bir85].

Other work on transformational programming for improving program efficiency,
including the extension techniques in [Der83], the transformation of recursive func-
tional programs in the CIP project [Bro84,BMPP89,Par90], and the finite differenc-
ing of functional programs in the semi-automatic program development system KIDS
[Smi90,Smi91], can also be further automated with our systematic approach. Such
a general systematic approach to program improvement is important to the area of
program development from specification since it helps separate efficiency concerns
from development of executable programs.

So far, we have presented not just a method for discovering auxiliary information,
but a comprehensive approach for efficient incremental computation. The approach
forms the basis of a general methodology for efficient computation and thus program
improvement, which is one of the most important issues in program development and
maintenance.



Chapter 6

CACHET: An interactive program
transformationsystem based on the
incremental attribution paradigm

To help apply the systematic approach for deriving incremental programs and further
establish its feasibility, automatic and semi-automatic tools need to be built. A
prototype system, CACHET, has been implemented for semi-automatic derivation
of incremental programs using the analyses and transformations described in the
previous chapters.

This chapter describes the design and implementation of CACHET as an inter-
active program transformation system based on the incremental attribute evaluation
framework.

6.1 Introduction

Program transformation systems are important tools that implement various program
manipulations that preserve program semantics and improve program performance

[HL78,Fea82,PS83,Fea87,Red88,BMPP89,Par90,Smig0,Paid4].

Interactive program transformation. Program transformation systems are of-
ten required to be interactive, for at least the following two reasons. First, the goal of
a program transformation system is often so ambitious that no fully automatic trans-
formation can succeed; interaction allows convenient semi-automatic transformation.
Second, the study of transformation techniques itself often consists of trying different
transformations and requires much tedious program rewriting; interactive invocation
of these transformations provides control during experimentation.

The usability of an interactive program transformation system depends greatly on
its interface. However, designing and implementing such an interface, especially with
various program manipulation functions, is a heavy task.
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Incremental program analysis. For any non-trivial program transformation, sub-
stantial program analysis is needed. The analyses determine various dependencies,
types, unique identifiers, etc. The results of the analyses are used to decide, or to
help a user to decide, what transformations to apply and where and how to apply
them. After each transformation step, the analyses need to be done again on the
transformed program. Such interleaving of analyses and transformations continues
until certain criteria for stopping are satisfied.

Each program transformation step typically changes only a small portion of the
program being transformed; thus one should be able to update the results of program
analyses to reflect the change. This is the problem of incremental program analysis
under program transformation. Solving this problem is indispensable for speeding up
the program analyses and thus the overall program transformations.

However, until now, all program transformation systems we are aware of use some
ad hoc inference engine to do the analyses, store the results of the analyses in some
database, and use some rewrite engine to do the transformations. The simple storage
of the results of the analyses makes it hard to incrementalize the analyses under the
transformations. This creates a performance bottleneck that is more severe for more
automated systems [Pai94].

Using an attribute-grammar-based programming environment. Interactive
program transformation and incremental program analysis naturally lead one to con-
sider an attribute-grammar-based programming environment. The Synthesizer Gen-
erator is a commercially available system that generates such environments [RT88].

With such a tool, the syntax of programs can be described using a context-free
grammar, and properties of programs can be described using attribute equations. In
such a declarative framework, program analysis is performed by program tree attri-
bution, program transformation directly mutates the program tree, and incremental
analysis is conducted by incremental attribute evaluation after each transformation
step.

CACHET. CACHET is an incremental-attribution-based interactive program
transformation system for programs written in a first-order functional language. It
is implemented using the Synthesizer Generator, with extensions to support com-
plex tree transformations. Incremental program analysis is performed by incremental
attribute evaluation, provided automatically by the Synthesizer Generator.

Attribute grammars and incremental attribute evaluation methods have been well
addressed in the literature [DJL88] for describing static semantics of programs. They
are not the subject of this chapter. Instead, this chapter describes how to adopt a
traditional programming environment and make it suitable for performing complex
tree transformations, interleaving transformations with external inputs, such as user
inputs, and making more use of attribution mechanisms.

CACHET has special functionality for deriving incremental programs. It has
been used to derive numerous incremental programs, including most of the examples
in Chapters 3, 4, and 5. It has also been of great help in studying transformations
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for caching intermediate results and discovering auxiliary information.

The rest of the chapter is organized as follows. Section 6.2 gives an overview of
the desired features, the problems to be solved, and the suggested solutions. Section
6.3 describes the implementation techniques used for CACHET. Section 6.4 contains
a sample derivation of an incremental program using CACHET. Section 6.5 discusses
related work. Section 6.6 discusses future work.

6.2 System design

This section discusses desired features, problems to be solved, and suggested solutions
for adopting a traditional programming environment for program transformations.

6.2.1 Complex tree transformation

To enable program transformations, the major power that needs to be added to a
traditional attribute-grammar-based framework is a metalanguage for complex tree
transformations.

The mechanisms needed for tree transformations are mainly pattern matching
and pattern instantiation. Languages designed specifically for specifying complex tree
transformations [Hec88], which may include sophisticated pattern matching languages
with, for example, second-order patterns [HLT78], can greatly facilitate programming
various transformations.

Transformations should be able to access attributes associated with the tree, since
they are often conditioned on the results of program analyses, which are performed
by tree attribution. Providing direct access to tree nodes and associated attributes at
non-local places can save programming effort as well as run-time space, since otherwise
extra attributes are needed to propagate information along the tree.

With pattern matching and instantiation, and with access to attributes, we can
program various transformations, such as fold-unfold, simplification, specialization,
and transformations enabled by equality analysis. Some transformations require more
complicated treatment; in particular, the function introduction with generalization
in Section 3.3 involves suspending transformation on the current tree and preparing
a new subtree for recursive transformations.

Finally, a metalanguage for complex tree transformations should include a rewrite
engine that can apply a set of transformations repeatedly to a subtree in a certain
traversal order. With such an engine, repeated invocation of transformations in cer-
tain fixed patterns can be easily automated, saving both programmers’ and users’ ef-
fort. Higher-order term rewrite [Pau83] offers a framework for defining such rewrites.
What needs to be provided is the ability to automatically interleave such repeated
rewrite with incremental attribute evaluation.
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6.2.2 External input as annotation

Program transformations are often semi-automatic and involve interaction with users
or other external facilities, such as theorem provers. Input from such external sources
is called external input. The role of external input is to provide transformations with
information that does not depend solely on the program tree or is too inconvenient
or too expensive to compute completely from the program tree.

As program transformation generalizes symbolic, and thus normal, executions of
programs, external input includes dynamic information that can be set during pro-
gram executions, e.g., the breakpoints in a debugger or the instruction pointer in an
interpreter. Such dynamic semantics [Kai89] is needed for run-time support, symbolic
debuggers, interpreters, as well as interactive program transformation systems.

External input scattered in the middle of program execution or transformation
is a new concept lacking in traditional declarative attribute-grammar-based environ-
ments. We describe a corresponding new notion called annotation that fits well into
the attribute-grammar-based framework for program transformation, preserving the
declarative nature.

Annotations. Annotations should not be part of the program tree, since they do
not represent terms of the subject language; nor should they be conventional at-
tributes, since they are not determined solely by the program tree, as conventional
attributes are. However, annotations should be associated with a particular position
in the tree. Moreover, they should be accessible for defining attributes, since external
input provides information to the analyses that guide the transformations, and the
analyses are done by attribution.

To implement annotations, we can put them directly in the tree, and thus at-
tributes can be defined solely on the tree, as before. However, some distinction
between annotations and subject language terms is needed to facilitate programming
with tree pattern matching on the subject language.

An annotation may be more conveniently implemented as a special kind of at-
tribute whose existence and, perhaps, value are determined by external input, as
opposed to completely determined by the term tree or the attribution of the term
tree. Of course, a user can define the value of an annotation using anything, includ-
ing attributes.

The term annotation is used by Reiss in his FIELD environment [Rei90a,Rei90b]
as the primary mechanism for interacting with the source file in an editor; for example,
a breakpoint in the debugger is associated with an annotation in the editor. In the
current system CACHET, annotations are used to store expensive attributes whose
values are computed only upon user request.

6.2.3 Tree attribution mechanism

In addition to incremental attribute evaluation, as introduced in Section 6.1, a number
of other tree attribution capabilities are desired to facilitate program transformations.
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Circular attribute evaluation. Some program analyses are based on fixed point
iteration. If such analyses are done by attribute evaluation, then circular attribute
evaluation methods are needed. Although solutions to this problem have been pro-
posed [Far86,Jon90], they are rarely implemented due to complications and ineffi-
ciency. Here, we briefly describe how circular attribute evaluation can be simulated
using tree transformations and annotations.

Basically, one defines a circular attribute as a function of the program tree and
an annotation, where the annotation stores the value of the circular attribute from
the previous iteration, starting from bottom. A user can compare the value of the
attribute and the annotation and, if they are not the same, set the annotation to be
the value of the attribute, which then triggers the incremental attribution. This can
be repeated until the value of the circular attribute and the annotation are equal.
This iteration can be automated with rewrite, saving the user from intervening in
each iteration.

Modular attribute evaluation. Heavy program transformations are usually com-
posed of separate phases, where each phase conducts relevant, and often different and
smaller, program analyses and performs lighter transformations. Several approaches
have been proposed for modular attribute specification [GG84,DC90,Far92, FMY92,
BG94] and modular attribute evaluation [GG84,FMY92].

Modular specification improves the readability of attribute grammars and allows
more convenient modular evaluation. Modular evaluation provides the flexibility of
turning on and off attribution modules as necessary, which results in evaluators that
are speedier and more storage-efficient [FMY92]. They are particularly useful for
phase-based transformations. In particular, for phases not involving circular at-
tributes, efficient evaluators for non-circular attribute grammars can be generated.

6.2.4 Replay

We want to consider replaying transformations. A minimal approach is to record
the history or script of external input [Red88]. Powerful metalanguages can help
reduce the recording work [Fea82|; for example, with a metalanguage that allows
rewrite, we can record one rewrite in place of a sequence of transformations involved
in the rewrite. Replay is important not only for helping to understand the whole
transformation, but also for incremental transformation under changes to the input
program. Whether it is feasible to achieve such incrementality in practice still needs
to studied. An alternative to the direct tree manipulation framework for the purpose
of replay is discussed in Section 6.6.

6.3 Implementation

A prototype system, CACHET, based on the design principles in the previous sec-
tion, has been implemented. It uses the Synthesizer Generator [RT88], a system for
generating language-based editors, and consists of about 18,000 lines of code written
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in SSL, the Synthesizer Generator language for specifying editors. CACHET is in-
teractive: its flexible editor interface is generated automatically by the Synthesizer
Generator.

6.3.1 Building in transformation

Source-to-source transformations are operations built in to CACHET. The Synthe-
sizer Generator provides the functionality of defining transforms with first-order pat-
tern matching, tree mutation, and access to attributes. It has been easily used to
implement all but one of the basic program transformations, including fold-unfold,
simplification, lifting a subexpression, and transformations that may be enabled by
equality analyses. Some complex combinations of basic transformations, such as ex-
tensive simplification and specialization, have also been coded directly as transforms.

The one basic transformation not so easily implemented is function introduction
with generalization, where, in the middle of transforming a subtree, we need to es-
tablish a new tree, switch over to transform the new tree recursively, and switch back
to the original subtree when the recursion returns. A new input facility has been
added to the Synthesizer Generator to recursively invoke new program transforma-
tion buffers for this purpose.

Currently, the derivations are semi-automatic, since they are composed mostly of
basic transformations that are invoked manually. Manual invocation is used mainly
for two reasons. First, the Synthesizer Generator allows only subtree replacement and
does not currently have a rewrite engine for a fully-automatic exhaustive application
of basic transformations, in particular, for applicative-order reduction, as specified
by the incrementalization approach in Chapter 3. Second, we want an interactive
environment to study various transformations; thus manual invocation is suitable
most of the time. Also, at present, we are only using a simple equality reasoning
engine, not a full-blown theorem prover.

Mechanisms for defining combinations of transformations, especially rewrite mech-
anisms, are being added to the Synthesizer Generator to further automate derivations.
We also plan to enrich the transformation language with second-order pattern match-
ing and easy non-local access to make it a more convenient tool for describing complex
transformations.

6.3.2 Simulating annotation

Annotations are currently implemented as special parts in the program tree that are,
by default, not displayed together with terms in the subject language, though they
can be displayed upon request by the user.

One major issue that needs to be addressed is the validity of annotations under
program tree transformations and other editing operations like cut and paste. The
current implementation provides special transforms to manipulate annotations: an-
notations whose validities are not limited to the context in the program tree can be
elevated to the root of the tree; annotations that are valid only within its context can
simply be eliminated at the user’s request.
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We chose this current implementation strategy because it does not require new
features in the Synthesizer Generator. But we plan to extend the Synthesizer Gen-
erator to implement annotations as special attributes, provide mechanisms to specify
the validity conditions of annotations, and automate the elimination, elevation, or
possibly other treatments of annotations. This would make the Synthesizer Genera-
tor a more suitable tool for describing dynamic semantics with user interaction and
other external input.

6.3.3 Using attribution

Currently, attributes in CACHET are used mainly for propagating global informa-
tion, collecting context information, analyzing dependencies, and reasoning about
equalities. The values of these attributes can be displayed any time, as facilitated
by the Synthesizer Generator [RT88], to help a user understand the derivation. Of
course, these attributes are evaluated incrementally after each transformation step.

Methods for circular attribute evaluation still need to be implemented, either by
extending the Synthesizer Generator or using the simulation proposed in the previous
section. So far, the need for modular attribute specification and implementation is
not strong, since we have implemented only the derivation approach in Chapter 3
and the transformations for caching all intermediate results in Chapter 4. But we
expect that it would be very helpful when we implement the full-blown approaches
for exploiting intermediate results as in Chapter 4 and auxiliary information as in
Chapter 5, since they are strongly phase-oriented.

We believe that these implementation issues form a very promising area. Program
tree attribution provides a declarative framework for program analyses, which are
needed to guide powerful program transformations. Techniques for managing the
interactions among tree transformation, external input, and incremental attribution
can be used to generate powerful and incremental transformation systems.

6.4 Viewing an example derivation of an
incremental program

CACHET is designed specifically for deriving incremental programs. It has been used
to derive numerous incremental programs, including most of the examples in Chapters
3, 4, and 5.

The programs transformed by CACHET are written in a first-order functional
language, where expressions in function definitions are composed of variables, data
constructions, primitive function applications, user-defined recursive function appli-
1 An example is given in

the back window of Figure 6.1. It defines a function sort, which does selection sort,

cations, conditional expressions, and binding expressions.

and two auxiliary functions least and rest. The input change operation is adding

IThe syntax for binding expressions implemented in CACHET, let v = e; in e3 end, is slightly
different from the syntax used in previous chapters, let v = €1 in es.
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a new element i to an old input x to form a new input cons(i,x). We will derive an
incremental program sort’ that sorts cons(i,x) by inserting i into the sorted list
sort (x).

The basic idea for incrementalization is to transform sort(cons(i,x)) and re-
place subcomputations whose values are retrievable from the value of sort(x) with
corresponding retrievals. The derivation introduces incremental functions to com-
pute function applications, puts them in a definition set, and uses them to replace
the original applications. To obtain the definition of such an introduced function, the
derivation unfolds the corresponding function application, collects context informa-
tion, and simplifies subexpressions. It also finds subcomputations, in their respective
contexts, whose values are retrievable from the cached result of the previous compu-
tation, puts them in the corresponding cache sets,®> and replaces occurrences of such
subcomputations with corresponding retrievals.

Given a set of FUNCTION DEFINITIONS, the FUNCTION TO BE EVALUATED, the OLD
INPUT TO THE FUNCTION, and the NEW INPUT TO THE FUNCTION, the EXPRESSION
TO BE TRANSFORMED is initialized by a transform |init-tran-exp| We select the
expression to be transformed, shown by the underlined expression in the back win-
dow of Figure 6.1. Relevant transforms for the current selection are displayed in
buttons at the bottom of the window.

Transforms. A transform ending with * is a basic transformation that preserves
correctness. In particular, a transform ending with $* uses the cached result of the
previous computation. A transform ending with ! is a combination of correctness-
preserving basic transformations, and one ending with ? is a basic transformation
that may not preserve correctness (enabled for experimentation).

Transforms starting with . deal with annotations. In particular, transform

‘ .f_e(fun-intr-repl) *‘ introduces a new function to compute the current function
application or replaces the current function application with a previously introduced
function; any change to the definition set leaves the new set as an annotation at the
current selection. Transform | . AUX-specialize$|uses an auxiliary specializer to ex-
tend, at the current selection, the set of subcomputations whose results are retrievable

from the cached result of the previous computation; the resulting cache set is left as
an annotation at the current selection. Other transforms starting with . but with no
special ending symbols manipulate annotations by elevation or elimination.

Names of transforms attempt to be illustrative. Names starting with ¢, p, and £
are for applications of constructors, primitive functions, and user-defined functions,
respectively. Names starting with if and let are for conditional and binding ex-
pressions, respectively. Subscript _e denotes a transformation like simplification, and
_r denotes a replacement with a cached result. The strings in parentheses are for
further illustration, e.g., (de-con) denotes destructing a construction using a selec-
tor, (unfold-funEnv) denotes unfolding a function in the given set of functions,

ZRather than associating a cache set for each unfolded function application and associating ele-
ments of the cache set with their valid information sets, as described in Chapter 3, the implemented
cache sets are associated with occurrences of expressions in the unfolded application, so that their
valid information sets are just the information sets associated with the occurrences.
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[®] inc_syn:sort-cons.st {(read-only?
File Edit View Tools Option

FUNCTION DEFINITIONS:

sortix) = sorkbicons (1, =) =
if nullix) then sortl(i, = 1) =
nil let k = leasticons({i, )
else in -
¥Et k = least(x) cons(k, sorti{resticons(i, =), kil
1n 5 . end;
Ens?mh sortirestls k) (¢ inc_syn:=input={2>
File Edit Yiew Tools Options  Structug
leasti(x) = | =
if rullicdrix)) then leasticons{i, =)} =
car (#) least2(i, . 1) =
else if nullix) then
let 5 = least(cdc(x)) 1
in elze
if car(x) ¢ s then let 5 =
car (#) in
else if 1 ¢ = then
= 1
end; elze
]
restix, k) = end
if k == car(x) then
cdr () & CACHE SET FROM AUXILIARY SPECIALIZATION:
else ¢sortix), r»

<cons (least(x),

sort(rest(x least(x)))). r»
¢least{x), cac(r):
¢sortirest(x, least(x))). cdric):;
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sort
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Figure 6.1: Derivation of the example
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and (fold-defEnv) denotes folding into an introduced function in the definition set.
Subscript _n refers to the nth subexpression; -if and -let lift the condition and
the binding, respectively, of the nth subexpression out of the enclosing expression;
omitting a subscript n implies lifting all conditions or bindings.

Function introduction. With the underlined selection in the back window of Fig-
ure 6.1, clicking on transform ‘ .f_e(fun—intr—repl)*‘ suspends transformation in
the current window, pops up a new window, the middle window of Figure 6.1, and
switches over for recursive transformations that will yield a function sort1 to replace
the application sort (cons(i,x)). Note that a fresh identifier r is used as parameter

for the cached result of sort(x).

Unfolding and simplification.  To obtain a definition of sorti, in the mid-
dle window of Figure 6.1, we unfold the application sort(cons(i,x)) and apply
simplifications |p_e(null-cons)*| (transforming null(cons(i,x)) to false) and

‘if_e(cond—false)*‘ (transforming if false then el else e2 to e2). We obtain
what is shown in the middle window. Then, recursively, we introduce a function

least2, in the front window of Figure 6.1, to compute least(cons(i,x)). After
unfolding and applying simplification ‘ p-e(de-con)! ‘ (performing all destructions of

constructions), we obtain the upper part of the front window.

Annotation of cache set and auxiliary specialization. The lower part of the front
window shows an annotation, namely, the cache set at the branch where null(x) is
false. It is the result of applying auxiliary specialization to sort(x) with null(x)
being false at that branch, and is obtained by clicking | . AUX-specialize$| at the

bottom of the window and specializing sort (x) in another window (killed upon re-
turning the displayed cache set). The cache set indicates that the value of sort(x)
is r, the value of cons(least(x),sort(rest(x,least(x)))) (specialized sort(x)
when null(x) is false, by definition of sort) is r, the value of least(x) is car(r),
etc.

Replacement. With the displayed cache set, when we select the underlined and
highlighted expression 1east (x) in the front window, we find that rule applies.
Clicking on it replaces least(x) with car(r). Similarly, the boolean expression
null(x) can be replaced with null(r), essentially because null(x) is true if and
only if null(sort(x)) is true.

Function replacement. The above replacements yield the definition of function
least2(i,x,r) shown on the left of Figure 6.2.3 Then, we return to resume the
transformation for sorti, and we replace the application least(cons(i,x)) with
least2(i,x,r).

Annotation of definition set. A definition set is now annotated at selection
least2(i,x,r), as displayed in Figure 6.3. The tags at the bottom of each defi-
nition indicate whether the definition is done, whether it is recursive, and whether
it uses a cache argument. While the definition of least2 is done and not recur-
sive; the definition of sorti is yet not done and not recursive, and thus it is kept

3We skip the dead code elimination here, even though the parameter x of 1east2(i,x,r) is dead
and can be eliminated. This does not affect the subsequent derivation of this example.
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if null(r) then
i
else
let s = car(r) if s == i then
in X
if i < s then else
i cons(i, rest(x, s))
else
s
end

Figure 6.2: Intermediate function definitions

[#] inc_syn:=inputs
File Edit Yiew Tools Options St

sorticons (i, =) =
sorktl(i, = 1) =
let k = least2ii, =, rL

& INTRODUCED DEFINITIONS:

FOR leasti{consi{i, x)) DEFINE

least2({i, = 1)

WITH CACHE ARGUMENT r = sortiz)
if nullic) then

i
else
let 5 = car(r)
in
if 1 ¢ = then
i
else
5
end;

Done UnRec WithMoCachefrqu

FOR sorticons(i, ) DEFINE

sortl{i, = 1)

WITH CACHE ARGUMENT r = sortiz)
sort{cons (i, =));

UnDone UnRec WithCachefrgqu

in
cons (k, sorti{resti{cons(i, =), ki)
end;

LELE¥=defInfo || f_e{unfold-defEnwv}#*

-

Figure 6.3: Derivation of the example (continued 1)
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as sort(cons(i,x)). An annotation of a definition set at a subexpression can
be elevated to its root by selecting the root expression and clicking on transform
| .ELEV-defInfol, for example, the displayed definition set can be elevated to its
outside binding expression.

Application least2(i,x,r) is unfolded in place, since least2 is not recursively
defined. We then lift the conditionals and binding in the definition of least2 out of
the enclosing expression, simplify the resulting binding expressions, and obtain the
result shown on the left of Figure 6.4.

sort1(i, x, r) = sorti(i, x, r) =
if null(r) then if null(r) then
cons(i, sort(rest(cons(i,x),1i))) cons(i, r)
else else
let s = car(r) let s = car(r)
in in
if i < s then if i < s then
cons(i, sort(rest(cons(i,x),i)))| cons(i, r)
else | else
cons(s, sort(rest(cons(i,x),s))ﬂ if s == i then
end; cons(s, sort(x))
else
cons(s, sort(cons(i,rest(x,s)))ﬂ
end;

Figure 6.4: Derivation of the example (continued 2)

Then, similarly, we introduce a function to compute rest (cons(i,x)) in the first
branch, replace it, and unfold to obtain just x.* With this, the enclosing expression
becomes sort(x) and can just be replaced by r. We elevate the definition set con-
taining the function just introduced so that the next occurrence of rest (cons(i,x))
can use it and obtain x directly. Again, the enclosing sort(x) can be replaced with
r. For rest(cons(i,x),s) in the last branch, introducing a function, replacing, and
unfolding, we obtain the result shown on the right of Figure 6.2. Lifting the condition
out of the enclosing applications of sort and cons, we obtain the result shown on the
right of Figure 6.4.

Next, application sort (x) is replaced by r, and the two branches with conditions
i<s and s==i are merged, yielding if i<=s then cons(i,r). For the last branch,
sort (cons(i,rest(x,s))) is replaced with recursive call sorti(i,rest(x,s),
sort(rest(x,s))). With the knowledge of the context information s = car(r)
= least(x), and using the cache set displayed in the front window of Figure 6.1, we
see that sort(rest(x,s)) = sort(rest(x,least(x))) = cdr(r). Thus, we obtain
the result shown on the left of Figure 6.5.

4This is different from the derivation in Chapter 3 since it does not use the context information
that x 1s nil. But 1t allows us to show that the next application of rest can use the function thus
introduced.
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Dead code elimination. To complete the example, we need to eliminate dead code
in the above definition. In particular, the second parameter of sorti is dead and
should be eliminated. This is not implemented yet. It can be done using tradi-
tional compiler technologies, after which we would obtain the result shown on the
right of Figure 6.5, which is exactly an insertion. Finally, the original application

sort (cons(i,x)) can be replaced by sort’ (i,r), where r = sort(x).

sort1(i, x, r) =
if null(r) then
cons(i, r)
else
let s = car(r)
in
if 1 <= s then
cons(i, r)
else
cons(s, sortl(i,rest(x,s),cdr(r))ﬂ
end;

sort’(i, r) =
if null(r) then
cons(i, r)
else
let s = car(r)
in
if i <= s then
cons(i, r)
else
cons(s, sort’(i, cdr(r)))
end;

Figure 6.5: Derivation of the example (continued 3)

The derivation above is performed by manually selecting the subexpression and
clicking on one of the enabled transforms. After we implement the rewrite engine,
we will be able to automate the derivation using an applicative-order rewrite, as
specified by the derivation approach in Chapter 3. However, to see all the interesting
intermediate results during the derivation, manual invocation is appropriate.

6.5 Related work

Program transformation systems and the approaches and techniques used therein
are described in a number of surveys, e.g., [PS83,Fea87]. Eminent systems among
them and recent systems include APTS [Pai94], KIDS [Smi90,Smi91], CIP [BMPP89,
Par90], Focus [Red88], and ZAP [Fea82].

Compared to these systems, the most important and unique characteristic of CA-
CHET is its use of attribute grammars. This has at least two advantages. First, a
program transformation system based on program analysis is a complex constraint
system; the attribute grammar paradigm provides a declarative framework where
constraints can be specified and consistency can be maintained in a clean way. Sec-
ond, incremental program analysis is important for speeding up the overall program
transformation process; using attribute evaluation for program analysis allows us to
take advantage of known techniques for incremental attribute evaluation.
knowledge, the BMF-editor [VVF90] is the only program transformation system that
uses the incremental attribution paradigm, although incremental semantic analysis 1s
desirable in all these systems, especially for the more automatic approaches in APTS

To our
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[Pai94]. The BMF-editor emphasizes dynamic transformations but does not explicitly
address the problem of external inputs.

Since CACHET is implemented using a language-based editor generator, it has
a flexible interactive user interface, as is provided by the existing technologies of
programming environments. Among the systems above, KIDS [Smi90,Smi91] seems to
be the only one with such a flexible user interface. Of course, implementing CACHET
as a programming environment also facilitates the integration of program derivation
and validation with interactive editing, compiling, debugging, and execution.

CACHET can benefit from a stronger metalanguage, such as that pioneered by
ZAP [Fea82], and certain replay functionality, such as that in Focus [Red88]. As
discussed in Sections 6.2 and 6.3, a metalanguage for powerful tree transformation
has been designed and is being implemented for CACHET. How to integrate replay
and incremental replay in an attribute grammar framework with annotation is a
problem to be studied.

How does CACHET compare to traditional programming environments that do
dataflow analysis and code generation? First, if such an environment is viewed as a
program transformation system based on program analysis, then CACHET is more
general in that it allows interleaving program transformations with annotations of
external inputs. Techniques that address such dynamic program semantics have been
lacking in traditional attribute-grammar-based programming environments [Kaig89].
For example, OPTRAN [LMWS88] is an attribute-grammar-based system extended
with rewrite mechanisms. However, it is still a batch-oriented system mainly for
compiler applications rather than general program transformations.

Another difference is that traditional attribute-grammar-based programming en-
vironments perform code generation by attribution [GG84,RT88,BG94], while CA-
CHET transforms programs by direct manipulation. How to do program transforma-
tion by attribution in the presence of annotation is related to incremental replay, as
discussed in Section 6.6.

Finally, all of the above systems are for transformations from specifications to
programs, or from programs to more efficient programs, whereas CACHET has the
special functionality of deriving incremental programs. This functionality provides
a general solution to the finite differencing problem, which must be addressed in
program derivation from specification and program improvement in general [PK82,

BMPP89,Par90,Pai90,5mi90,5mi91]

6.6 Future work

A number of problems have been suggested that need to be further studied. We
discuss them here.

Tree rewrite. First, the Synthesizer Generator is being interfaced with Scheme,
which will allow us to implement a more powerful metalanguage with rewrite engines
in Scheme. However, arbitrary rewrite by itself may not terminate. Interleaving
rewrite with attribution may introduce additional circularity. Actually, the circular



109

attribute evaluation method proposed in Section 6.2 makes use of such circularity.
How to control circularity and guarantee termination is a direction for future study.

Annotation. Annotation provides a declarative framework for describing dynamic
semantics of programs that has been lacking. However, formal description of annota-
tion in the context of attribute-grammars is needed. An example of a question to be
answered 1s: while attributes are associated with non-terminals and attribute equa-
tions with productions, should annotations be associated with productions and/or
non-terminals?

Regarding the validity of annotations under tree transformation or other edit-
ing operations, we anticipate a number of issues. Should annotations be associated
with tree nodes or locations in the tree? When two valid annotations are present
at one place as a result of tree rewrite, should one overwrite the other or should
they be merged; if the former, which overwrites which; if the latter, how? Should
invalid annotation be tagged as invalid or simply removed? One way to answer these
questions is to treat annotations like attributes, and thus treat the validity as at-
tribute re-evaluation but perhaps simpler. Other approaches may consider features
like grouping some annotations together to decide their validity.

Finally, we need to study incremental algorithms that combine annotation vali-
dation with attribute evaluation. For example, if we treat validity as attribute re-
evaluation, then we need to first check the well-definedness of the attribute grammar
when repeated tree rewrite is allowed. In this case, we need to analyze even the
external functions that define the annotations.

Circular attribute evaluation. We need to study and compare the solution to
circular attribution in this chapter with previous ones, and weigh the pros and cons of
using annotation. In particular, all these methods are based on dynamic dependencies
between attributes, which have substantial interpretive overhead in implementation.
A static evaluation method is lacking.

Incremental replay. A potential alternative for accommodating replay is to change
our basic framework and conduct transformation by attribution instead of direct tree
manipulation. Thus, tree attribution is used not only for semantics analysis, but also
for recording transformed versions of the program.

Attribution has been traditionally used in programming environments for code
generation [RT88]; it has also been proposed for general program transformation, in-
cluding phase-based transformation. Approaches include attribute coupled grammars
[GG84], higher-order attribute grammars [VSK89], composable attribute grammars
[FMY92], and simple tree attributions [BG94]. Incremental attribute evaluation algo-
rithms for these frameworks could be used for incremental code generation. However,
these frameworks do not address external input. We need to extend them and study
how annotations should be incorporated with incremental attribute evaluation for
incremental program transformation.
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Programming effort. Finally, we want to avoid the duplication in programming
effort in attribution rules and transformation rules. Notice that both kinds of rules are
based on pattern-matching the expressions in the subject language, except that attri-
bution rules are typically grouped together by productions, i.e., expression patterns,
while transformation rules are grouped together by functionalities. A few frameworks
have been proposed for specifying attribution rules grouped around functionalities
and, in particular, attribute grammars can be generated from such specifications
[DCI0]. Mechanisms that can also compose functions from attribution rules would
be very helpful.



Chapter 7

Conclusion

Widespread applications of incremental computation have demonstrated the impor-
tance of the subject; but its extensive treatment in the literature has been unsat-
isfactory: too simple or too diverse classification and analysis, ad hoc comparison
with each other, unclear applicability to various application domains, ete. Therefore,
there has been a need of general theories and methods for incremental computation.
Although there have been many attempts to provide such general approaches [Ear76,
Pai81,PK82,Pai84, HT86,CP89,PT89,FT90,5mi90,5mi91,YS91,SHI1,Sun91,Hoo92,
van92,Fie93], none has incorporated many others. After all, the subject still suffered
from the lack of a general framework and a generally applicable systematic approach.

What is also unsatisfactory is the treatment of the relationship between incre-
mental computation and program efficiency improvement in general. It is well known
that the program optimization technique strength reduction utilizes the principle of
incremental computation. However, does incremental computation provide just one
of many kinds of program optimizations? Then why could Paige derive extremely
efficient programs using finite differencing—strength reduction generalized for SETL
[PS77,PK82,Pai83,Pai86,PT87,CP89,Pai94]? Is it all a result of SETL being a very-
high-level language? After all, finite differencing appears only as a set of syntactic
rules; its underlying semantics has not been explicitly stated.

This thesis describes a general framework that addresses fundamental aspects of
incremental computation. A general systematic approach based on this framework
is given for deriving incremental programs from any given programs f and input
change operations @, by analyzing and transforming f(z @ y). The generality of the
approach makes it directly applicable to any program efficiency improvement by al-
lowing program iterations to be computed using appropriate incremental programs.
This exposes the underlying fact that incremental computation is the essence of im-
proving the efficiency of computations.

We believe that the whole approach establishes a fundamental methodology for
program improvement in software development and maintenance. As a matter of
fact, the intended usage of the approach covers a spectrum of applications. At the
one extreme, the approach provides an off-line methodology for algorithm design and
program improvement. At the other extreme, a fully-automatable subset of the anal-
yses and transformations offers a comprehensive “strength reduction” optimization
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for language compilers.

7.1 Summary

Three major ideas in this thesis form the core of the semantics-based approach. They
are incrementalization, cache-and-prune, and looking for auxiliary information in the
transformed incremental computation.

The incrementalization in Chapter 3 explores the most fundamental aspect of in-
cremental computation. Based on program states, equality reasoning helps recognize
repeated identical subcomputations, and an auxiliary specializer helps explore more
opportunities for such recognition. Potential incrementality is thus discovered; then,
it 1s realized by replacements using retrievals from old results. This semantics-based
systematic approach sets this work apart from previous work.

The cache-and-prune approach in Chapter 4 opens up the potential of using all
intermediate results as candidate information for incremental computation. Making
use of the incrementalization, it is only left to prune out intermediate results that are
not useful. Although the idea is natural and simple, it leads to a general systematic
approach for program improvement via caching so that all previous techniques simply
fall out of it.

As an approach to overcoming the non-existence of auxiliary information in the
original programs, Chapter 5 makes use of the transformation for incrementalization
to expose subcomputations that depend on the old input but were not performed
by the old computation. After collecting such candidate auxiliary information, the
method of cache-and-prune is utilized to determine useful auxiliary information as
well as useful intermediate results.

Since every non-trivial computation proceeds by iteration, efficient computation
requires computing each iteration incrementally based on the result of the previous
iteration. Thus, the three aspects above not only form a comprehensive approach to
incremental computation, but also explore the essence of improving the efficiency of
computations. Examples in Chapters 4 and 5 have shown that this leads to significant
program improvement in a systematic way that was not known before.

The prototype implementation CACHET, described in Chapter 6, allows semi-
automatic derivation of incremental programs for a simple functional language. It
not only shows that effective tools can be built based on the systematic approach,
but has also provided great assistance during the advancement of the approach itself.
The implementation of program analyses and transformations using the attribute
grammar framework has proved to be an area of study in itself as well.

7.2 A general model for incremental
computation techniques

This section summarizes the contribution of this work to a general model M of in-
cremental computation techniques, namely, any such technique can be regarded as
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one that takes a program f and an input change operation &, both written in some
language £, and derives two programs f and f', where f extends f to return some
extra information (intermediate results and auxiliary information), and f" incremen-
tally computes f using the information and maintains the corresponding information.
Such a model M incorporates all three classes of work in incremental computation,
introduced in Chapter 2, for the following reasons.

The development of particular incremental algorithms in the first class is a special
case of the model M, where f and & are fixed according to particular problems, and
f and f’ are derived manually. An incremental execution framework in the second
class is a special case of the model M that is general in that it automatically incre-
mentalizes an application program f, but has poor specializability in that any change
by operation & to program f is handled in the way prescribed by the framework
(and often no explicit f’ is derived). Work in the third class is not only general,
but also specialized to any program f and operation §; however, so far, systematic
methods focus on special cases of the model M where the language £ is limited to a
very-high-level language. What has been missing is an effective approach for deriving
incremental programs from non-incremental ones written in a standard language.

This thesis presents such a systematic approach for deriving incremental programs
from non-incremental programs written in a functional language. It begins the study
of a general model for incremental computation along unique lines distinct from all
other approaches. Although this problem is, in general, very hard, we have shown that
an effective approach can be developed to derive incremental programs by effectively
combining particular program analysis and transformation techniques.

Although the approach is presented in terms of a first-order functional language
with strict semantics, the underlying principles are general and applies to other stan-
dard languages as well, e.g., higher-order functional languages, functional languages
with lazy semantics, and imperative languages with complex data structures and side
effects. An example has been given in Section 4.6 where the cache-and-prune prin-
ciple is used to improve imperative programs with arrays for the local neighborhood
problems in image processing. Further application of the principles to languages with
these features is a subject for future study. Of course, special program analysis and
transformation techniques related to these language features must be exploited, and
they may complicate the derivation issues in one way or another, just as when partial
evaluation techniques are developed to cope with such language features. On the
other hand, these other language features allow some algorithms to be coded more
naturally and incremental versions derived to be more efficient, making incremental
computation techniques more complete.

By studying these general techniques, we aim to better understand the essence of
efficient incremental computation. We also aim to establish a general framework in
which different ideas on incremental computation can be integrated. By specializing
the general techniques to different applications, we will be able to obtain particular in-
cremental algorithms, particular incremental computation techniques, and particular
incremental computation languages. Their applications could include most problems
discussed in the literature [RR93].



114

7.3 Future work

Several of the ideas presented in this thesis, including the transformations for incre-
mentalization and caching all intermediate results, have been implemented in CA-
CHET, a prototype system for deriving incremental programs from non-incremental
programs. The incremental programs developed using CACHET demonstrate the
potential of the approach for systematically producing efficient programs. However,
the present system is only a prototype suitable for such experimental studies and is
far from being a finished project. Continuing development of CACHET is needed
to increase its power and to construct a production system for a full programming
language.

In a larger context, our research is directed towards being able to produce efficient
incremental programs for different programming languages, not just any particular
language, let along the simple language treated in this thesis. The proposed approach
is semantics-based: it explores the fundamental aspects of incremental computation
that are independent of any particular language. However, without further research
on a generic mechanism to embed the approach, even if the principles underlying
the approach are broadly applicable, different analysis and transformation techniques
would have to be studied for different languages. Thus, one topic for further research
is to design a generic engine that implements such a semantics-based approach, so
that we can build front ends, and possibly back ends, for different languages and
obtain efficient incremental programs by using the generic incrementalization engine.

We believe that an important direction that should be taken by future research
on incremental computation is toward methodologies that make use of high-level
properties of special application domains and support the design and implementation
of efficient algorithms and systems for these domains. For example, one can imagine a
specialized methodology for graphical interfaces [Rei84b,Van88,Lar92, DR092,GT92],
or one for document processing [van86,ALBB92,Mee94]. One of the richest and most
challenging domain is incremental compilation, where many program analysis and
transformation techniques are employed [RTD83,Rei84a,SDB84,Zad84,RP88,Bur90,
AN91,PS92,JP94]. The methods developed in this dissertation make a contribution to
this line of research by providing a principled approach for exploring incrementality.
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