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Abstract. Hybrid automata model systems with both digital and analog components,
such as embedded control programs. Many verification tasks for such programs can
be expressed as reachability problems for hybrid automata. By improving on previ-
ous decidability and undecidability results, we identify the precise boundary between
decidability and undecidability of the reachability problem for hybrid automata.

On the positive side, we give an (optimal) PSPACE reachability algorithm for the
case of initialized rectangular automata, where all analog variables follow trajectories
within piecewise-linear envelopes and are reinitialized whenever the envelope changes.
Our algorithm is based on the construction of a timed automaton that contains all
reachability information about a given initialized rectangular automaton. The trans-
lation has practical significance for verification, because it guarantees the termination
of symbolic procedures for the reachability analysis of initialized rectangular automata.
The translation also preserves the w-languages of initialized rectangular automata with
bounded nondeterminism.

On the negative side, we show that several slight generalizations of initialized rect-
angular automata lead to an undecidable reachability problem. In particular, we prove
that the reachability problem is undecidable for timed automata augmented with a
single stopwatch.

1 Introduction

A hybrid automaton [ACHH93, ACHT95] combines the discrete dynamics of a finite automaton
with the continuous dynamics of a dynamical system. Hybrid automata thus provide a mathe-
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matical model for digital computer systems that interact with an analog environment in real time.
Case studies indicate that the model of hybrid automata is useful for the analysis of embedded
software and hardware, including distributed processes with drifting clocks, real-time schedulers,
and protocols for the control of manufacturing plants, vehicles, and robots [AHH93, NOSY93,
DOY94, HRP94, MV94, HH95b, HHWT95, HW95, MPS95, PV95]. Two problems that are central
to the analysis of hybrid automata are the reachability problem and the more general w-language
emptiness problem. The solution of the reachability problem for a given hybrid automaton allows
us to check if the trajectories of the automaton meet a given safety requirement; the solution to
the w-language emptiness problem allows us to check if the trajectories of the automaton meet a
liveness requirement [VW86]. While a scattering of previous results show that both problems are
decidable in certain special cases, and undecidable in certain general cases, this paper provides a
systematic identification of the boundary between decidability and undecidability.

Hybrid automata generalize timed automata. Timed automata [AD94] equip finite automata with
clocks, which are real-valued variables that follow continuous trajectories with constant slope 1.
Hybrid automata equip finite automata with real-valued variables whose trajectories follow more
general dynamical laws. For each class of dynamical laws, we obtain a class of hybrid automata. A
particularly interesting class of dynamical laws confines the set of possible trajectories to piecewise-
linear envelopes. Suppose, for example, that the variable z represents the water level in a tank.
Depending on the position of a control valve (i.e., the state of a finite control automaton), the water
level either falls nondeterministically at any rate between 2 and 4 cm s, or rises at any rate between
1 and 3 cm s~!. We model these two situations by the dynamical laws & € [~4,—2] and & € [1,3]—
so-called rectangular activities [AHH93, PV94]—which enforce piecewise-linear envelopes on the
water-level trajectories. Rectangular-activity automata are interesting from a practical point of
view, as they permit the modeling of clocks with bounded drift and the conservative approximation
of arbitrary trajectory sets [OSY94, HH95a, PV95], and from a theoretical point of view, as they
lie at the boundary of decidability.

Our results are threefold. First, we give an (optimal) PSPACE algorithm for the reachability prob-
lem for rectangular-activity automata with two restrictions: (1) whenever the activity of a variable
changes, the value of the variable is reinitialized; (2) the values of two variables with different
activities are never compared. Second, under the additional assumption of bounded nondetermin-
ism (in particular, bounded activities), we obtain a PSPACE algorithm for checking w-language
emptiness of rectangular-activity automata. Third, we prove that the reachability problem becomes
undecidable if either one of the restrictions (1) and (2) is relaxed, or if more general, triangular
activities are admitted. The first two results are proven by translating rectangular-activity au-
tomata of dimension n into timed automata of dimension 2n, where the dimension is the number
of real-valued variables. The third result is proven by a reduction from the halting problem for
two-counter machines.

We now place these results in the context of previous work.

Decidability [Section 3]. The first decidability result for hybrid automata was obtained for timed
automata, whose reachability and w-language emptiness problems are PSPACE-complete [AD94].
Under restrictions (1) and (2), that result was later generalized to multirate automata, with vari-
ables that run at any constant positive slopes [ACHH93, NOSY93], and to the reachability problem
for automata with closed rectangular activities [PV94]. While the latter result was based on the
discretization of time, we present a reachability preserving and (in the case of bounded nonde-
terminism) w-language preserving translation from rectangular-activity automata via multirate



automata to timed automata. Unlike discretization-based arguments, our translation applies to all
rectangular activities. Moreover, and perhaps most importantly, the translation implies that, when
applied to rectangular-activity automata that meet restrictions (1) and (2), existing semi-decision
procedures for the reachability problem of hybrid automata terminate. Such procedures have been
implemented in the HYTECH verification tool [AHH93, HHWT95].

Undecidability [Section 4]. Over the past few years, there have been several undecidability results
about hybrid automata. A constant-slope variable with slope other than 0 or 1 is called a skewed
clock, and a two-slope variable with slopes 0 and 1 is a stopwatch. In [ACHH93], it is shown
that reachability is undecidable for timed automata with two skewed clocks. In [KPSY93], it
is shown that reachability is undecidable for timed automata with two three-slope variables and
restriction (2). In [Cer92], it is shown that reachability is undecidable for timed automata with
three stopwatches and restriction (2). In [ACH93, BES93, KPSY93, BER94, BR95], it is shown
that, under various strong side conditions, reachability is decidable for timed automata with one
stopwatch, but the general problem is left open. We strengthen the undecidability results and give
a uniform characterization of the undecidability frontier. First, we prove that any relaxation of
restriction (1) leads to the undecidability of the reachability problem for timed automata augmented
with a single two-slope variable, such as a stopwatch. Second, we prove that any relaxation of
restriction (2) leads to the undecidability of the reachability problem for timed automata augmented
with a single skewed clock. As a corollary, we obtain the undecidability of the reachability problem
for triangular-activity automata, even under restrictions (1) and (2).

Other related work. In [OSY94], rectangular-activity automata are translated into more abstract
timed automata. Our translation, by contrast, preserves reachability and (in the case of bounded
nondeterminism) w-languages, and therefore leads to exact verification and decidability results. In
[MP93], decidability and undecidability results are obtained for a deterministic model of hybrid
systems with strong side conditions on the discrete dynamics. The hybrid automaton model, by
contrast, is nondeterministic and its discrete dynamics is unconstrained. Finally, our results do
not cover the case considered in [AHV93], where reachability is shown to be undecidable for timed
automata that compare clocks with slope 0 variables.

2 Rectangular Automata

A hybrid automaton of dimension n is an infinite-state machine whose state has a discrete part,
which ranges over the vertices of a graph, and a continuous part, which ranges over the n-
dimensional euclidean space R® [ACHH93]. A run of a hybrid automaton is a sequence of edge steps
and time steps. During an edge step, the discrete and continuous states are updated according to a
guarded command. During a time step, the discrete state remains unchanged, and the continuous
state changes according to a dynamical law, say, a differential equation. In this paper, we are con-
cerned with decidability questions about hybrid automata, and therefore consider restricted classes
of guarded commands and dynamical laws. This leads us to the definition of rectangular automata.

Notation. We use the symbol R>( to denote the set {# € R | z > 0} of nonnegative reals. We
use the boldface characters x, y, and z for vectors in R™, and subscripts on italic characters such
as z;, ¥;, and 2z for components of vectors.



Rectangular regions

Given a positive integer n, a subset of R™ is called a region. A closed and bounded region is compact.
A region B C R™ is rectangular if it is a cartesian product of (possibly unbounded) intervals, all of
whose endpoints are rational. We write B; for the projection of B on the ith coordinate, so that
B =TJ;-; B;. The set of all rectangular regions in R™ is denoted B™.

Definition of rectangular automata

An n-dimensional rectangular automaton A consists of a directed multigraph (V4, E4), a finite
observation alphabet ¥4, three vertex labeling functions inita : Va4 — B, wnva : Va4 — B7,
and actsq : V4 — B", and four edge labeling functions pre4 : F4 — B", post, : E4 — B",
upd : Eq4 — 2{1""’”}, and obsa: F4 — Y 4. An n-dimensional rectangular automaton with silent
moves A differs in that the function obss maps E4 into X7, where ¥ = ¥4 U {7} augments ¥4
with the null observation ™ € X 4. We suppress the subscript A if it is clear from context.

The initial function init specifies a set of initial automaton states. When the discrete state begins
at v, the continuous state must begin in init(v). The preguard function pre, the postguard function
post, and the update function upd constrain the behavior of the automaton state during edge steps.
The edge e = (v, w) may be traversed only if the discrete state resides at v and the continuous state
liesin pre(e). For each i & upd(e), the ith coordinate of the continuous state is not changed and must
lie in post(e);. For each i € upd(e), the ith coordinate of the continuous state is nondeterministically
assigned a new value in post(e);. The observation function obs identifies every edge traversal with
an observation from Y or X.7. The invariant function inv and the activity function act constrain
the behavior of the automaton state during time steps. While the discrete state resides at vertex v,
the continuous state nondeterministically follows a smooth (C®) trajectory within inv(v), and its
first derivative remains within act(v). A rectangular automaton with silent moves may traverse
T-edges during time steps.

Note that if we replace rectangular regions with arbitrary linear regions in our definition of rectan-
gular automata, we obtain the linear hybrid automata of [ACHH93]. Thus rectangular automata
are the subclass of linear hybrid automata in which all defining regions are rectangular.

Initialization and bounded nondeterminism

The rectangular automaton A is initialized if for every edge e = (v,w), and for all i with act(v); #
act(w);, we have i € upd(e). It follows that whenever the ith continuous coordinate of an initialized
automaton changes its dynamics, as given by the activity function, then its value is nondetermin-
istically reinitialized according to the postguard function.

The rectangular automaton A has bounded nondeterminism if (1) for every vertex v, init(v) and
act(v) are bounded, and (2) for every edge e, and every i € {1,...,n}, if ¢ € upd(e), then post(e)
is bounded. Note that bounded nondeterminism does not imply finite branching. It ensures that
the successor of a bounded region is bounded.

The labeled transition system of a rectangular automaton

The rectangular automaton A defines a labeled transition system on an infinite state space. A state
(v,x) of A consists of a discrete part v € V' and a continuous part x € R” such that x € inv(v).
The state space Qa C V x R™ of A is the set of all states of A. A subset of Q4 is called a zone.



Each zone Z C Qa can be uniquely decomposed into a collection |J,cy {v} x R¥ of regions R”,
one for each vertex v. The zone Z is rectangular (resp. bounded, compact), if each region R is
rectangular (resp. bounded, compact). The zone Z is multirectangular if it is a finite union of
rectangular zones. The state (v,x) of A is initial if x € init(v). The initial zone Inity C Q4 is
the set of all initial states of A. Notice that both the state space Q4 and the initial zone Init are
rectangular.

We now define a labeled transition relation = on Qg, where © € R>o U ¥ 4. For each edge
e = (v,w) € E, we define the relation < on Q4 by (v,x) = (w,y) iff x € pre(e), y € post(e),
and for each i & upd(e), z; = y;. Hence x and y differ only at coordinates in the update set
upd(e). For each observation o € X7, we define the edge-step relation — on Q4 by (v,x) = (w,y)
iff (v,x) = (w,y) for some edge e € E with obs(e) = 0.

For each nonnegative real ¢t € R>g, we define the relation L onQu by (v,%x) = (w,y)if (1) v=w
and (2) either ¢ = 0 and x =y, or t > 0 and ¥7= € act(v). Notice that due to the convexity of
rectangular regions, (v,x) L (w,y) iff there is a smooth function f: [0,¢] — inv(v) with f(0) = x,
f(t) =y, and for all s € (0,t), f(s) € act(v). Hence the continuous state may evolve from x to y
via any smooth trajectory satisfying the constraints imposed by inv(v) and act(v). If A does not
have silent moves, then we define the time-step relation L to be =. If A has silent moves, then
the time-step relation L, is defined by ¢ Lq’ iff there exists an integer m > 1, nonnegative reals
t1,...,tm, and states qi, ..., g2m—2 such that q%ql S 2“13 L Dgomo 1t:”}q' and t =" 1.

Given a zone Z C Qa, and a label T e R5o UX U E, let
Posty(Z)={q€Qa|Ir € Zr5q}

be the zone of states that are reachable in one 7-step from Z, and let Post4(Z) = Urep. ux Posti(2)
be the zone of states that are reachable in one edge or time step from Z. Similarly, let

Prey(Z)={q€Qa|TIreZ.q>r}

be the zone of states from which Z is reachable in one 7-step, and let Pre4(Z) = Urep. ux Prea(2)
be the zone of states from which Z is reachable in one edge or time step. Notice that Post4(Z) D
Z and Pre4(Z) O Z because of time steps of the form —>. We define Post”)™ ™ (Z) and
Pre’?™ ™% (Z) for a finite word momy - - - m, inductively in the usual way. We define Post’y(Z) =
Usen Post'y(Z) and Pre*y(Z) = U;ey Pre'4(Z). Then Post* (Z) is the zone of states that are reach-
able from Z in a finite number of steps. A state ¢ € Q4 is reachable if ¢ € Post(Inits). The zone
of reachable states of A is denoted Reach 4.

Proposition 2.1 For every rectangular automaton A, every multirectangular zone Z C Qa, and
every label 1 € R>g UX" U E, Posty(Z) and Pre%(Z) are multirectangular zones.

Proof. We give the proof for Post; the result for Pre then follows from Proposition 2.2 below.
Since each relation % with ¢ € 7 is a finite union of relations — with e € E, it suffices to prove
the proposition for 7 € R>q U E. Call a zone elementary if it is of the form {v} x R, where R is a
rectangular region. Then a zone is multirectangular iff it is a finite union of elementary zones. We
show that for any elementary zone Z' = {v} X R, Post’(Z') is elementary. If 7 = (v,w) € E, then
Post’y(Z') = {w} x R', where

R = post(m);, if i € upd(m);,
| R, if i ¢ upd(m);.



If m € R>, then Post’(Z') = {v} x R', where R’ is a rectangular region satisfying
inf R, = max{inf inv(v);,inf R; + 7 - inf act(v)}

and
sup R, = min{sup inv(v);,sup R; + 7 - sup act(v)},

where we have used the convention that 0-co =0:(—0c0) =0. ®

The w-language of a rectangular automaton

Let A be a rectangular automaton, possibly with silent moves, and let Z C Qa be a zone. A
timed word for A is an infinite sequence over the alphabet R>q U ¥4. A Z-run p of A is an

infinite sequence of the form go =% ¢1 = g2 = ---, where go € Z, and for all i > 0, ¢; € Q4 and
m € R>oU X 4. The Z-run p accepts the timed word momime---. The Z-run p is divergent if

YA{mi | i€ Nand m; € R>g} = co. The w-language of A from Z, denoted Lang 4(Z), is the set of
all timed words that are accepted by divergent Z-runs of A.! An Inita-run of A is called a run
of A. The w-language of A, denoted Lang(A), is Lang 4 (Inita).

Example

In examples, we refer to a coordinate of the continuous state as a variable, and we name variables
a,b,c,... instead of z1,x2,23,... If the variable a corresponds to the ith coordinate, we write
act(v)(a) for act(v);, etc. In figures, we annotate each vertex with its activity function, and
sometimes with its invariant. For example, if act(v)(a) = [3,5], act(v)(b) = [4,4], inv(v)(a) = (1, 7],
and inv(v)(b) = (—o0, 0], we write “a@ € [3,5]”, “b=4", “1 < a < 77, and “b < 0” inside of v. Often
however, we give the invariant in the text and omit it from the figure. Edges are annotated with
observations and guarded commands. A guarded command % defines regions pre(y) and post(v),

and an update set upd(1)), in a natural manner. For example, if ¢ is the guarded command
a<5ANb=4 — b:=T; c:€]0,5]

then pre(y)(a) = (—00,5], pre(4)(b) = [4,4], pre(y)(c) = (—00,00), upd(¢)) = {b, c}, post(¢)(a) =
(—00,00), post(4)(b) = [7,7], and post(¢)(c) = [0,5].

Consider, for instance, the 2D rectangular automaton A of Figure 1. The observation alphabet
of A is {o1,02,03,04}, and the invariant function of A is the constant function Av.[—20,20]2 (not
shown in the figure). The automaton A is initialized, as the values of the two variables ¢ and d are
reinitialized whenever their activities change. Figure 2 shows a sample trajectory of A from the
initial zone Z = {(v1, (0,1))}. Each arc is labeled with a vertex giving the discrete state, while the
continuous state follows the arc. The discontinuities between the arcs labeled v and v3 correspond
to the update of variable d from —5 to —4 upon traversal of the edge from vy to v3. A timed

word accepted by a Z-run of the automaton A is (4o1lo2103104)“, with the corresponding state
sequence

((vlv (05 1))(’”17 (57 _10))(’027 (47 _10))(1)27 (07 _12'5))(1’37 (07 _4))(’”37 (_35 _2))(’047 (_17 —2))(’04, (07 0)))‘”_

!The authors have argued elsewhere [HKWT95] that time divergence is a suitable acceptance condition for w-
automata.



Figure 1: The initialized rectangular automaton A
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Figure 2: A sample trajectory of A

CNF edge families

We sometimes annotate edges of rectangular automata with positive boolean combinations of
guarded commands. Consider the two guarded commands %; and 2. First, the edge label 11 A1)
stands for a guarded command 3 with pre(y3) = pre(w1)Npre(w2), post(1s) = post(y1)Npost(yh2),
and upd(v3) = upd(1p1) U upd(1)2). Second, an edge with the label 1; V95 stands for two edges that
share source vertex, target vertex, and observation; one labeled with ¢ and the other with 1s.
These conventions generalize to DNF expressions of guarded commands. An edge labeled with a
CNF expression of guarded commands is interpreted by first converting the expression into DNF. A
CNF edge family, then, consists of a pair (v, w) of vertices, an observation o, and a CNF expression
of guarded commands. Consider, for instance, the CNF edge family with the vertex pair (v,w),
the observation o, and the CNF expression

[(z1<k—z1:=k)V (k<z1 <K A[(z2>k —22:=k)V (k<z3 <K

This edge family corresponds to four edges from v to w, each labeled with the observation ¢ and
one of the following guarded commands:

1.$1<k/\:132>kl—>£1:=k;$2:=kl,
2. 21 <k ANEkE<Lzo<k — z1:=k,
. E<z1<EkE ANzo>k — z0:=F,

4. E<z1 <K ANEkE<zy<E.



In this way, an n-dimensional rectangular automaton may be specified by a set of vertices, an
observation alphabet, initial, invariant, and activity functions, and a set of CNF edge families. If
Z is a zone of the rectangular automaton A, and ¥ is a CNF edge family, we define Post%(Z) to be
U, Post$(Z), where the union is taken over all edges e of A that correspond to the edge family V.

The reverse automaton

Let A be an n-dimensional rectangular automaton. The reverse automaton — A is an n-dimensional
rectangular automaton that defines the same state space as A, but with the transition relation
reversed. The components of —A are those of A, except for the following: for each vertex w,
act_a(v) = {x € R* | —x € act4(v)}; for each edge e = (v,w) of A, the reverse automaton —A
has the edge —e = (w,v) with pre_,(—e) = post(e), upd_4(—e) = upd 4(e), and post_4(—e) =
pre 4(e). Proposition 2.2 follows immediately from the definitions.

Proposition 2.2 For every rectangular automaton A, all states q,q' € Qa, and every label = €
R>oUE4, ¢g5¢ in Aiff¢ 5 qin —A.

It follows that for every zone Z of A, Prea(Z) = Post_a(Z) and Posts(Z) = Pre_a(Z).

Two problems concerning rectangular automata

We study the following two problems about rectangular automata.

Reachability. Given a rectangular automaton A, and a rectangular zone Z C Q4, is Z N Reach 4
nonempty? That is, is some state in Z reachable? A solution to this problem permits the
verification of safety requirements for systems that are modeled as rectangular automata. If
we equip rectangular automata with final zones, then the reachability problem is equivalent
to the finitary language emptiness problem.

w-language emptiness. Given a rectangular automaton A, is Lang(A) nonempty? That is,
does A have a divergent run? This problem is more general than the reachability prob-
lem, and a solution permits the verification of safety and liveness requirements for systems
that are modeled as rectangular automata.

For initialized rectangular automata, we provide a PSPACE decision procedure for the reachability
problem. For initialized rectangular automata with bounded nondeterminism, we give a PSPACE
decision procedure for the w-language emptiness problem. We then show that the reachability
problem (and therefore w-language emptiness) is undecidable for very restricted classes of unini-
tialized rectangular automata, and also for initialized automata with slightly generalized invariant,
activity, preguard, postguard, or update functions.

3 Decidability

We translate a given initialized rectangular automaton A into a timed automaton [AD94] that
contains all reachability information about A. The translation proceeds in two steps: from ini-
tialized rectangular automata to initialized multirate automata (Section 3.2), and from initialized
multirate automata to timed automata (Section 3.1). For the subclass of automata with bounded
nondeterminism, the translation also preserves w-languages (Section 3.3), and therefore reduces



the w-language emptiness problem for these automata to the corresponding problem for timed au-
tomata, which is well understood. In Section 3.4, we explain our translations in terms of simulations
and bisimulations of the underlying labeled transition systems. In Section 3.5, we supply practical
implications of our translations, showing that the model checker HYTECH terminates on initialized
rectangular automata after a linear preprocessing step.

3.1 From Initialized Multirate Automata To Timed Automata

We define several types of variables and several subclasses of rectangular automata. The variable ¢
is a one-slope variable if there exists a rational number £ such that act(v)(c) = [k, k| for all v € V.
A one-slope variable with slope 0 is called a memory cell. A one-slope variable with slope 1 is
called a clock. A one-slope variable with any other slope is called a skewed clock. Notice if every
variable of the rectangular automaton A is a one-slope variable, then A is initialized. The variable
¢ is a two-slope variable if there exists rational numbers k3 # ko such that for each vertex v, either
act(v)(c) = [k1,k1] or act(v)(c) = [ko,ke]. A stopwatch is a two-slope variable with k1 = 1 and
ko = 0. The variable ¢ is a multirate variable if for every vertex v, act(v)(c) is a singleton.

The rectangular automaton A has deterministic updates if (1) the initial zone Init4 is finite, and
(2) for every edge e € Ey4, and every 1 < ¢ < n, if i € upd(e), then post(e); is a singleton.
The second requirement says that along each edge step, each variable either remains unchanged
or is deterministically assigned a new value. A timed automaton is a rectangular automaton with
deterministic updates such that every variable is a clock. The reachability and w-language emptiness
problems for timed automata (with or without silent moves) are PSPACE-complete [AD94]. More
precisely, the w-language emptiness problem for an n-dimensional timed automaton 7" with silent
moves can be solved in space O(log(n!|Vr|k™)), where k is determined by the rational constants used
in the definition of 7" [Alu91]. If T uses only nonnegative integer constants, then & is the largest
constant appearing in the definition of 7. Otherwise, let K1 be the set of all finite endpoints of
intervals appearing in 7', and let d be the least common denominator of the elements of Kp. Then
k = max{|ed| : ¢ € Kr}. The reachability of a zone Z can be solved in the same amount of space,
where the constant k takes into account the endpoints of the intervals of Z as well as those in the
definition of T'. We consider generalizations of timed automata, and so all of our PSPACE-hardness
results follow from the corresponding results for timed automata.

A stopwatch automaton is a rectangular automaton with deterministic updates such that every
variable is a stopwatch. We later show that if even one of the variables of a stopwatch automaton
is not a clock, then the reachability problem is undecidable. If we require initialization, however,
then stopwatch automata are no more powerful than timed automata. This is because whenever
a stopwatch is stopped or started, it is reinitialized to a new value. Such stopwatches cannot be
used to accumulate delays; for example, it is not possible to record the amount of time spent in
a particular vertex during the course of a computation. It follows that a stopwatch z in a timed
automaton 7' can be replaced by a clock, if the vertex set is enlarged. When z has slope 0 in 7T,
its value is determined uniquely by the edge by which it was stopped. So by adding one bit for
each stopwatch telling if it has slope 0 or 1, and a function mapping each stopwatch to a value
to be used if it has slope 0, an initialized stopwatch automaton can be transformed into a timed
automaton with the same behavior.

Proposition 3.1 The reachability and w-language emptiness problems for initialized stopwatch
automata with silent moves are PSPACE-complete.



Proof. We translate a given n-dimensional initialized stopwatch automata automaton S into
a timed automaton T of the same dimension and using the same rational constants, but with
a vertex set of size |Vg|(k + 1)™. This does not affect the complexity of either the reachability
algorithm or w-language emptiness algorithm, because O(log(n!|Vs|(k + 1)"k™)) is polynomial in
the size of S.

Let K, = KgU {L}. The vertex set Vpy is Vg x (KL){L“""}. So a vertex of Ts is of the form
(v, f), where f: {1,...,n} — K, . If f(i) =L, then ¢; =1 in S. If f(i) #L, then &; =0 in S,
and moreover the last time z; was assigned a value, that value was f(7). It is a simple matter of
coding to translate the preguard and postguard of each edge e = (v,w) of S into a preguard and
postguard for edges from (v, f) to (w, f) for each f, f’, in such a way that T is timed bisimilar
to S (see Section 3.4). m

Stopwatch translation of initialized multirate automata

A multirate automaton is a rectangular automaton with deterministic updates such that all vari-
ables are multirate variables. We reduce problems for initialized multirate automata to problems
for timed automata, by translating a given initialized multirate automaton M into an initialized
stopwatch automaton Sys such that M and Sy are timed bisimilar (see Section 3.4 for a formal
definition of timed bisimulation).

Let M be an n-dimensional initialized multirate automaton with silent moves. For each vertex

v € V, assuming acty (v) = [[iq[ki, ki, define a : R™ — R™ by ay(z1,...,2a) = (55,5 22),
where m; = k; if k; # 0, and m; = 1 if k;, = 0. The maps o, are extended to regions in

the natural way. The components of the n-dimensional timed automaton Sj; with silent moves
are those of M, except for the following: for each v € V, and all i, initg,, (v) = a,(inity(v)),
mvs,, (v) = a,(tnvy(v)), and actg,, (v); = [li,l;], where [; = 0if k; = 0, and [; = 1 if k; # 0;
and for each edge e = (v,w), preg,, (€) = ay,(prey(e)) and postg, (€) = cu(posty(e)). Define
am : Qu — Qgs,, such that au(v,x) = (v,0,(x)). The map oy is extended to zones in the
natural way.

The next lemma, and the ensuing theorem, follow immediately from the definitions.

Lemma 3.2 Let M be an initialized multirate automaton with silent moves. Then ap(Inityr) =
Initg,,. Moreover, for every pair of states q,q' € Qu, and for every label T € Xy UR>g, >4 in
M iff au(q) = am(q) in Su.

Theorem 3.3 For every initialized multirate automaton M with silent moves, and for every zone
Z C Qu, aym(Posty (7)) = Posts, (am(Z)), au(Prey(Z)) = Pres, (am(Z)), and Langy (Z) =
Langg,, (am(Z)).

Corollary 3.4 For every initialized multirate automaton M with silent mowves,
Reachyr = oz]_v[;(Reacth) and Lang(M) = Lang(Sur)-

Corollary 3.5 [ACHH93, NOSY93] The reachability and w-language emptiness problems for ini-
tialized multirate automata with silent moves are PSPACE-complete.
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time
Figure 3: Envelope of the activity act(v)(a) = [k, k']

3.2 From Initialized Rectangular Automata to Initialized Multirate Automata

We reduce problems about initialized rectangular automata to problems about timed automata,
by translating a given initialized rectangular automaton A of dimension n into a 2n-dimensional
initialized multirate automaton M4 with silent moves such that M4 contains all reachability in-
formation about A. We first give a simplified construction for the compact case, and then proceed
to the general case. All of the main ideas of the construction are already present in the compact
case; the general case requires a lot of additional bookkeeping. The automata A and M4 are not
timed bisimilar, but A timed backward simulates My, and M4 timed forward simulates A (see
Section 3.4).

The compact case

Let A be an n-dimensional initialized rectangular automaton. To put across the main ideas of the
translation, we first restrict our attention to the case where inv 4 is the trivial invariant Av € V.R”?,
and all values of init4, acta, prey, and post 4 are compact. In this case, we say A is compact. The
generalization to arbitrary initialized rectangular automata is given later. Without loss of generality,
we assume for the remainder of Section 3.2 that for each edge e = (v,w) of A, pre(e) C inv(v),
post(e) C inv(w), and for each i ¢ upd,(e), pres(e); = post4(e);. If this is not the case, then
we replace each guard with its intersection with the appropriate invariant, and then replace each
pre 4(e)i and post 4(e); with ¢ ¢ upd 4(e) by their intersection pre 4(e); N post 4(e);. In the compact
case, we transform A into an initialized multirate automaton N4 with silent moves.

The idea is to replace each variable a of A with two multirate variables a; and a, such that when
acta(v)(a) = [k, k'], then acty,(v)(ag) = [k, k] and acty,(v)(ay) = [k',k']. Consider Figure 3.
With each time step, the activity of a creates an envelope, whose boundaries are tracked by ay
and a,. With each edge step, the values of a; and a, are updated so that the interval [ag, a,] is
precisely the range of possible values of a. In Figure 3, at time ¢ a transition is taken along an edge
e with pre 4(e)(a) = [m,00). Since the value of a; is below m at time ¢, a; is updated to the new
value m. In the following formal definition of the multirate automaton N4 with silent moves, the
variables yy;) and y,;) correspond respectively to the lower and upper bound multirate variables
for variable z; of A. For concreteness, put £(7) = 2i — 1 and u(%) = 2i.

The multirate automaton N4 has dimension 2n. It has the same observation alphabet as A and
the same vertex set. The initial function inity, is given by inity,(v)s;) = mininita(v); and

11



94

® ~
[T

o= w =

.0 o

A
3

cy 2 —3ANdy < -2 —

cp = —25cqy 1= —1
cu > —3Ad] < —2Ady >—2—| o3
1= —2jcy = —15dy 1= =2
d] < =5 > dj,dy 1= —4

Figure 4: The initialized multirate automaton N ;

inity , (v)y(s) = max inita(v);. The invariant function invy, is the trivial invariant. The activity
function acty, is defined as outlined above, if acta(v); = [k,%'], then actn,(v)si) = [k, k], and
acty, (V) = [, k']

We are left with defining a set of CNF edge families for N4. For each edge e = (v,w) of A,
the multirate automaton N4 has the CNF edge family ¥, = (v, w, 0bs a(€), ), which shares the
observation of e. The CNF expression 1. is a conjunction A™_; %% of n CNF expressions 1. Suppose
that pre4(e); = [k, k'] and post 4(e); = [m,m!]. If i € upd 4(e), then the CNF expression ¢! is the
guarded command
Yeiy Sk AN Yoy 2 k= Yoy = Yu) = m

The values of yy(;) and y,(;) satisfy the guard iff [yy;), yu(i)] intersects pre 4 (e);. Since i € upd 4(e),
the range of values of z; after traversal of e in A is exactly post4(e);, and hence yj ;) is set to the
minimum of this interval, and y,; is set to the maximum. If i ¢ updy(e), then by assumption
[k, k'] = [m,m/], and the CNF expression 1)} is

[(eiy <k = Yoy = k) V (B < Yoy KED A [y > K = iy = E) V (B < yuy < E))-

The idea is that if the edge e is traversed in A, new information becomes available about the value
of z;, namely, that it lies within the interval [k, k']. Therefore, if y,;y < k, it must be updated to ,
and if y,;) > k', it must be updated to &', in order to keep [Ye(i)» Yu(s)] in M4 the range of possible
values of z; in A.

This completes the definition of the multirate automaton N4 for the compact case. The multirate
automaton N, is initialized, and has 47~1*r4e)l edges for each edge e of A. Figure 4 gives the
initialized multirate automaton N ; corresponding to the initialized rectangular automaton A of
Figure 1. Figure 5 shows the timed automaton T, corresponding to N ;.

We introduce the map €4: Qn, — 294 by £a(v,y) = {v} x [Ti1[Ye(s)s Yu(s)]- This map formalizes
the relationship illustrated in Figure 3. The map &4 is extended to zones by {4(Z) = Ugez €a(q)-
The upper half-space Uy, of N4 is the zone of all states (v,x) € Qur, such that yy;) < yy;) for all
1<i<n,ie,Un, ={q€Qn, | €alq) # 0}. Our first lemma shows that the initial zone of N4
maps to the set of initial states of A.

Lemma 3.6 For every compact initialized rectangular automaton A, £a(Inity,) = Inita.
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Figure 5: The initialized stopwatch automaton (and timed automaton) Sy,

The following lemma follows immediately from the proof of Lemma 2.1. It states that £4 commutes
with time steps.

Lemma 3.7 Let A be a compact initialized rectangular automaton. Then for every state g € Un,,
and every duration t € R>q,

Posty(€a(q)) = €a(Posty, (¢)).

We can now prove the analogue of Lemma 3.7 for edge steps.

Lemma 3.8 Let A be a compact initialized rectangular automaton. Then for every state ¢ € Uy, ,
and every edge e € E4,

Post§(£4(q)) = Ea(Postys, (a))-

It follows that reachability problems in A are reducible to reachability problems in N4. The next
theorem follows immediately from the two lemmas.

Theorem 3.9 Let A be a compact initialized rectangular automaton. For every zone Z C Uy,,
Posty (£a(2)) = Ea(Posty, (%)) and Prey(§a(2)) = E-a(Prel y_,)(%)).

Corollary 3.10 For every compact initialized rectangular automaton A, Reacha = {a(Reachyr,).

It follows from Corollary 3.10 that the reachability problem for compact initialized rectangular
automata is PSPACE-complete.

The general case

All of the main ideas are already present in the construction for compact automata. The extension
to the general case is mostly a matter of bookkeeping. In particular, for each lower or upper bound
multirate variable, one bit is used to distinguish a strict from a non-strict bound, and another bit
is used to distinguish a finite from an infinite bound. The reader who is uninterested in the details
can skip ahead to Theorem 3.20 without loss of continuity (in this case, the reader should know
that M4 is the analogue of N4, B4 is the analogue of £ 4, Lemma 3.19 is the analogue of Lemma 3.7,
and Lemma 3.16 is the analogue of Lemma 3.8).
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We encounter the following difficulties when the rectangular automaton A has non-compact com-
ponents and a nontrivial invariant. (1) For each variable z, the lower and upper bound variables
zy and z, may violate the invariant of a vertex, and so the mapping function £ 4 must be changed
to include only states of A. (2) The lower and upper bounds represented by z, and z, may be
strict or weak (non-strict). To solve this problem, we introduce a bit called the weak/strict bit for
each multirate variable. (3) Upper and lower bounds may be finite or infinite. For this, we intro-
duce a bit called the finite/infinite bit for each multirate variable. (4) Unbounded activities cause
discontinuous jumps in upper and lower bounds. For example suppose the variable z is assigned
the value 3 by traversal of edge e = (v,w), where act(w)(z) = [1,00). Then in Mg, both y,; and
Yu(s) are assigned the value 3 by traversal of edge e. But after any positive amount of time passes,
the upper bound on z; should be co. We introduce a 7-edge called a jump edge which is taken
before any positive time step. In this example, the jump edge sets the finite/infinit bit for y,,
to inf. Since the result of the jump edge presupposes that some positive amount of time has passed,
all edge transitions inherited from A are disabled until time passes. Implementing this restriction
requires a new clock z and a bit called the time passage bit. (5) Strict activities can cause a weak
bound to change to strict after any positive amount of time passes. For example, suppose in the
above case that act(w)(xz) = [1,5). Then after edge e is traversed, the upper bound on z; is a
non-strict bound of 3. But after ¢ > 0 time units pass, the upper bound is a strict bound of 3 + 5¢.
Once again, we use the jump edge to solve this problem. When the jump edge is traversed, the
weak /strict bit for Yu(s) 18 set to str.

The weak/strict and finite/infinite bitvectors are encoded in the discrete state. We now proceed
formally to define the (2n + 1)-dimensional initialized multirate automaton M4 with silent moves
corresponding to the initialized rectangular automaton A. We first define the continuous variables
of M4, then the vertex set, and then an analogue to £4. Next the activity and invariant are defined.
Then come jump edges and edges inherited from A. Last, we define the initial zone. We provide
lemmas about M4 as soon as enough definitions have been made to give the proofs.

For each variable z; of A, the multirate automaton M, has multirate variables y,;) and y,()
corresponding respectively to the lower bound and upper bound on z;. We add a zeroth coordinate
to M4, so that the synchronization clock z is given by yg in M4. The observation alphabet of M4
is that of A. The vertex set Vi, is Va4 x ({0,1}2")2 x {0,1}. A state of M4 is a tuple of the
form (v, X, U, tp,y), where X is the vector of finite/infinite bits (fin = 0, inf = 1), ¥ is the vector of
weak /strict bits bits (wk = 0, str = 1), tp is the time passage bit, and y € R?**! is the continuous
state.

Relating the state spaces of M4 and A. We define a map 14 : Qu, — 2"4*®") which
specifies how the variables of M4 give the range of possible values for the variables of A. Let
qg= ((v,x, U,tp),y) € Qu,- The set na(g) is a rectangular region, so each component n4(g); is
an interval, and hence is completely specified by its infimum, supremum, and which, if any, of the
latter two it contains.

e If the finite/infinite bit Ay;) = inf, then infn4(g); = —oo.
e If the finite/infinite bit Ay;) = fin, then infn4(q); = yu()-

e The weak/strict bit vy;) determines the strictness of the lower bound: if Ay;) = fin, then
infna(q) € nalq) iff vy, = wk.

We make the corresponding definitions for the upper bound.

14



e If the finite/infinite bit A,;) = inf, then supna(g); = oco.
e If the finite/infinite bit A,;) = fin, then supna(q)i = Yu(s)-

e The weak/strict bit v,(;) determines the strictness of the lower bound: if A,;) = fin, then
supna(q) € na(q) iff vy = wk.

Since the lower (resp. upper) bound multirate variables do not respect the lower (resp. upper)
bounds of the invariant of A, n4(q) ¢ Q4 for some states ¢ of M4. We remedy this deficiency
by introducing a map Ba : Qu, — 294 defined by Fa(q) = 14(g) N Qa, except if yo = 0 and
tp = 1, when (34(q) = 0. We make the latter adjustment because the states in which yo = 0 and
tp = 1 are only reached transiently after a jump edge before a positive time step—mno edge inherited
from A can be traversed from such a state. The upper half-space Upr, of My is the zone of all
states ¢ € Qur, such that Ba(g) # 0. We extend na and 4 to functions from 29Ma to 294 by
na(Z) = Ugez 14(q), and similarly for 4. The truncation of n4 to (4 is justified by the following
lemma, which follows from the assumption that the preguard of every edge is contained in the
invariant of the source vertex.

Lemma 3.11 For every edge e of A, and every state ¢ € Upr,, na(q) N pres(e) # O off Ba(g) N
prey(e) # 0.

For the rest of this section, ¢ ranges over {1,...,n}, j ranges over {1,...,2n}, v ranges over Vjy,
X and 7 range over {0,1}?", and tp ranges over {0,1}. So when we quantify these variables, as in
“for all v, A\, U, tp,1,j”, the quantification is over the domain just specified for each variable.

Activity and invariant of My4. Let I be an interval. Define the lower strictness of I by

o | wk, ifinfIel,
stmctlf—{ str, if infl ¢ I.

Define the upper strictness of I by

. ) wk, if suplel,
strict] I = { str, if supl ¢ I.
We now define the invariant function invy,. Let v, X, v, tp,i be given. Then
(—OO, OO), if >‘E(z) = inf,
invnr, (V, A, U, tp) gy = § (—00,supinva(v)i], if Ay = fin and vy = strict] inva(v); = wk,

(—o0,sup inva(v);), otherwise.

If the finite/infinite bit Ay;) is infinite, then the value of lower bound multirate variable yy; is
irrelevant, so we do not constrain it. If the finite/infinite bit is finite, then the upper bound on
this interval is strict unless both the strictness vy of the lower bound multirate variable y,;) and
the upper strictness of the invariant are both weak. The motivation for this is that if 7 and J
are intervals, and inf I = supJ, then I N J # 0 iff strict| I = strict] J = wk. Here I is meant
to represent the range of allowable values for z; in A, as determined by the state of M4, and J
is meant to represent an invariant inv4(v);. We have the corresponding definitions for the upper
bounds. Define

(—00, ), if Ay@iy = inf,
v, (U, A, 7, tp)ys) = § [Infinva(v)i,00), if Ayu) = fin and vy = strict] inva(v); = wk,
(inf tnv 4(v);,00), otherwise.
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The invariant of the synchronization clock is defined so that time may not pass if the time passage
bit tp is 0: invar, (v, A, 7,0)9 = {0} and invar, (v, A, 7,1)¢ = [0, 00).

We now define the activity function actps,. For all v, X, v, tp, i,

S ) {infacta(v);}, if infacta(v); > —o0,
aCtMA(Ua)\,V, tp)[(l) - { {0}, if inf aCtA('U)Z' = —00.

> __J {supacta(v)i}, if supacta(v); < oo,
aCtMA(v7)\7 Va tp)u(z) - { {0}’ if Sup aCtA('U)i = 0.

The slope of yy(;) in M4 is the infimum of the allowable slopes for z; in A, unless that infimum is
infinite. The synchronization variable is a clock: actyr, (v, X, 7, tp)o = {1}.

It remains to define the edges of M 4. As in the compact case, the multirate automaton M4 has an
edge family for each edge of A. We say that the edges defined by these edge families are inherited
from A. In addition, the multirate automaton M4 has a set of T-edges called jump edges. The
jump edges provide changes to bound value and strictness that are caused by the passage of any
positive amount of time. For example, an unbounded activity always causes a discontinuous jump
in the bound value. Such a jump can only be simulated by an edge transition.

Jump edges. We proceed to define the jump edges. For all v, X, 7, there is an edge from (v, X, 7,0)
to (v, N,7,1) with observation 7. The target vertex components X, 7’ will be defined presently.
The preguard and postguard are both {0} x R?", and so this edge can only be traversed when
yo = 0. The update set is empty. Recall that jump edges provide changes that become necessary if
any positive amount of time passes. These edges are taken proactively, before any time passes: i.e.,
only if the synchronization clock yo has value 0. To prevent spurious edges from being taken due
to the changes made by these edges, no edge inherited from A may be traversed until a positive
amount of time has passed, i.e., until yg > 0.

The finite/infinite bitvector must be changed to account for finite bounds that become infinite due
to an unbounded activity.

. inf, if infacts(v); = —o0,
) 71 Agu), otherwise.

Voo inf, if sup acty(v); = o0,
u®) T ] Ayu), otherwise.

The weak /strict bitvector must be changed to account for weak bounds that become strict due to
a strict activity.
o str, if strict] acta(v); = str,
() Vys),  otherwise.

o str,  if strict] acta(v); = str,
“) 7| Vu@), otherwise.

The jump edges, just defined, play the following role in M 4. Suppose an edge inherited from A is
taken. Then tp = 0. If no edge inherited from A is traversed, then before any time may pass (since
no time may pass when tp = 0), a jump edge is traversed, setting ¢p to 1, and performing whatever
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bookkeeping is required for the weak/strict and finite/infinite bitvectors. The changes made by the
jump edge reflect the situation after some positive amount of time has passed only. Therefore no
edge inherited from A is allowed to be traversed before some time passes: if {p = 1 and yo = 0,
then no inherited transitions are enabled.

Inherited edges. We now define the edges of M4 inherited from A. It is convenient to extended
the definition of CNF edge family to allow multiple target vertices. When we use such edges,
we consider the bitvectors X and # to be discrete array variables, and so we write, for example,
Agiy = inf to change the £(i) component of the finite/infinite bitvector to inf. The translation of
such ezxtended CNF edge families into edges is a straightforward extension of the existing translation
of edge families into edges, and will not be detailed. An extended CNF edge family is completely
specified by a source vertex, an observation, the first component of the target vertex (an element of
V4), the time passage bit of the target vertex, and a CNF expression extended to include assignment
to the discrete array variables X and 7.

For each edge e = (v,w) of A, all edge bitvectors X and #, and each tp € {0,1}, there is in My
an extended CNF edge family \I'(e,x, v, tp) = ((v,X,z?, tp), obsA(e),w,O,iﬁ(e,X, 7,tp)). As in the
compact case, this edge family shares the observation label of the edge e. The time passage bit ¢p
is set to 0 along each of these edges. So every edge derived from the family has target vertex
of the form (w,X,#’,0). The CNF expression (e, X, 7, tp) is a conjunction of CNF expressions
Oip N Nieq w(e,x,ﬁ, tp);. The guarded command 6y is yo = 0 and the guarded command 6, is
yo > 0 — yo := 0. Hence an edge from family (e, X, #,0) can be taken only if the synchronization
clock has value 0, and an edge from family (e, X, 7,1) can be taken only if the synchronization
clock has value greater than 0. In the latter case the synchronization clock is reset to 0. An edge
of M4 derived from the edge family \I!(e,x,ﬁ, tp) may be traversed from state ¢ € Qur, iff the
range of possible values for each z; intersects pre(e);, i.e., iff na(q) N pre(e) # 0. It follows from
the inclusion of edge preguards in source vertex invariants that na(q) N pre(e) # 0 iff Ba(g) N
pre(e) # 0. If all values are finite and all bounds are weak, then the intersection is nonempty iff
Yeiy < max pre(e); and y,;) > minpre(e);. This was the requirement given in the construction
of N4 for compact A. Taking strictness and infinite bounds into account, we obtain the more
complicated guarded commands Zguard(i, pre(e);) and uguard(i, pre(e);). For an interval I, and
1 < i < n, define

true, if )\e(i) = inf
Eguard(i, I) = yl(z) S sup I, if )\az) = ﬁn and Vl(i) — strictTI = wk
Yeiy < supl, otherwise

true, if Ay = inf
uguard(i,I) = Yu@) = inf I, if Ay = fin and vy = strict] I = wk
Yu@i) > Inf I, otherwise
To understand this definition, consider the conditions under which an interval J intersects an
interval 1.

Lemma 3.12 Let I and J be nonempty intervals, and let ¢y and ¢, be defined as in Table 3.2.
Then I N J # O iff ¢¢ and ¢, are true.

The guarded command Zguard(i,I) corresponds to the predicate ¢y and the guarded command
uguard (i, I) corresponds to the predicate ¢,. Notice ¢, is always satisfied if inf J = —oo. Thus
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strict] J | strict] I | oy} | | strictT J | stm‘ctlI| Ou |

wk wk infJ <supl wk wk supJ > inf [l
wk str infJ < supl wk str supJ > inf [
str wk infJ <supl str wk supJ > inf 1
str str infJ <supl str str supJ < inf Tl

Table 1: JNI #Qiff ¢y A ¢y

Lguard(i, I) is satisfied if Ay;) = inf. If strict] J = strict] I = wk, then ¢, is inf J < sup /. Hence
the second line of the definition of Zguard(i, I). Finally, if either strict] J = str or strict] I = str,
then ¢y is inf J < sup I. Hence the third line of the definition of £guard(i,I). Symmetrical remarks
apply to uguard(i,I) and ¢,.

A CNF expression for M4 with no assignments, such as 8y,, £guard(i, I), and uguard(s, I), is simply
a predicate over R?"*1, Therefore we say that a state ((v,\,7,tp),y) of My satisfies such a CNF
expression v iff the continuous state y satisfies 1) regarded as a predicate over R?"*1,

Lemma 3.13 Let e be an edge of A, and for tp = 0,1, let 1y, be the CNF expression Oy A
Nizq(Lguard(i, pre(e);) A uguard(i,pre(e);)). Then for every state g € Unr,, Post$(Ba(q)) # 0 iff
q satisfies Pip.

Proof. Let q¢ = ((v,x, 7,tp),y). In the discussion following Lemma 3.12, we proved that if ¢
satisfies 04,, and na(g) = {v} x I, then I N prey(e) # 0 iff ¢ satisfies ¢,. So we may restrict
attention to those states ¢ for which 54(q) # na(g). There are two classes of such states. First, if
qg= ((’U,X,ﬁ, tp),y) with tp = 1 and yo = 0, then B4(¢) = 0. In this case, ¢ does not satisfy 6,
and so ¢ does not satisfy 11. Second, there is the class of states in which n4(¢) ¢ Q4, when, e.g.,
a lower bound multirate variable has dropped below the infimum of the invariant. In this case, the
result follows from Lemma 3.11. B

The reader may recall from the compact case that the construction for those i € upd 4(e) differs
from the construction for those i ¢ upd 4(e). We now continue the construction for ¢ € upd 4(e). In
this case, the lower and upper bounds on z; are assigned to the infimum and supremum of post 4(e);,
with corresponding assignments made to the finite/infinite, off/on, and weak/strict bitvectors. For
an interval I, and 1 < ¢ < n, define

true — Yy = inf I gy 1= fin; vy = strict| post4(e); if inf I # —oo,

Za&%gn(l,I) - { true — yl(z) = 0, Ag(z) = an, Vﬁ(i) = str if infI = —C.

true — Yyu() 2= sup I; Ay = fin; vy = strict] post4(e);  if supl # oo,

uassign(i, I) = { true = Yu(s) 1= 05 Ayi) 1= Inf; vy = str if supl = o0.

The assignments to 0 above are required for M4 to be initialized. After such an assignment, the
value of the multirate variable is ignored due to the finite/infinite bit set to inf.

For i € upd 4(e), the guarded command (e, X, 7, tp); is
Lguard(i, pre4(€);) N uguard(i, pre4(e);) N Lassign(i, post 4(€);) N uassign(i, post 4(e);)-
The remainder of the definition of (e, X, 7, tp) makes no mention of any i € upd(e). Therefore we

have the following lemma.
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Lemma 3.14 For every edge e of A, every state g = ((’U,X,lj, tn),y) € Un,, and everyi € upd(e),

Posty(84())i = Ba(Post L&) (g)),.

As before, the case of i ¢ upd(e) is more complicated, because the lower (resp. upper) bound is
only reset if it is too small (resp. too large). Strictness also contributes some complications. Our
definitions follow once again from Lemma 3.12. The extended CNF expressions £adjust(i, pre 4(e)i)
and uadjust(i, pre 4 (e);) give the adjustments to yy(;), Yu(s), the finite/infinite bits Ay, and Ay,
and the weak/strict bits vy;) and vy, for i ¢ upd4(e). Let I be a nonempty interval. Define

( true if inf I = —o0,
()\g(z inf — Mgy = fin; Yy = inf I; vy := strict| I)
Cadjust(i, T) = ¢ V (Agiy = fin A ygy < infl — y[(i) = inf I vy = strict| I)

()‘Z(z; fin A yyiy = 1inf I A vyy = wk — vy = strict] I)
V ()‘Z(z) ﬁn A yz(i) =inf I A Vl(i) = StT)
LV ()\g(z) fin A Yeiy > inf I), if inf I # —c0.
( true if supl =
(M) = nf — Ay(iy = fin; yu(iy = sup I; vy = strict I)
V (Aus) = fin A Yoy > supl — yu() = sup I vy = strict] I)

uadjust(i, I) = \Y ()\u(i) = fin A Yuuy =supl A vyi) = wk — vy = strict] I)

V ()\u(z) = ﬁn A yu(z) = Sup[ A V’LL(z') — St’f’)
LV (i) = fin A yuy < supl), if sup T £ oo.

Explanation of these definitions is deferred to the next paragraph. For i ¢ upd 4(e);, the guarded
command (e, A, 7, tp); is

Lguard(i, pre4(e)i) N Ladjust(i,pre (e)i) A uguard(i, pre (e)i) N uadjust(i, pre 4(€);).

The conjuncts £guard (i, pre 4(€);) and uguard(i, pre4(e);) ensure that the edge can be taken iff the
interval defined by the lower and upper bounds and the finite/infinite and weak/strict bits intersects
the preguard interval pre 4 (e);. The conjuncts £adjust(i, pre4(e);) and uadjust(i, pre 4(e)i) reset the
lower and upper bound values and their finite/infinite and weak/strict bits based upon the new
information learned about the value of z; if the edge e is traversed in A.

We now examine the definition of Zadjust(i, pre4(e);). If edge e is traversed in A, then new infor-
mation about the value of z; is obtained, namely that it lies within pre 4(e);. Put k = inf pre4(e);.
If £ = —o0, then there is no new information, and so £adjust(i, pre 4(€);) = true; hence the first
line of the definition. If £ > —oo, then we have several cases. If the finite/infinite bit Ay;) = inf,
then the present lower bound is infinite, and so Ay;) must be set to fin, y,;) must be reassigned
to k, and the weak/strict bit v;) must be assigned to the lower strictness of pre4(e); (line two).
Now suppose the finite/infinite bit Ay;) = fin. If y,;) < k, then again y,;) and vy;) must be reset
to k and its strictness (line three). If y4;) = &k and the strictness bit v4;) = wk, then information is
gained if the lower strictness of pre 4(e); is str. So in this case (line four) we perform the assignment
Vy(s) := strict| pre(e)i. But if y, = k and the strictness bit vy;) = str, then no information is
gained; and so no assignment is performed (line five). Finally, if y,;) > k, then there is no new
information, and so there is no assignment (line 6). We have proven the following lemma.

Lemma 3.15 For every edge e of A, every state ¢ = (('U,X,lj, tp),y) € Um,, and everyi ¢ upd(e),

Post§(Ba(q)): = Ba(Posty &™) (g))..
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Putting together Lemmas 3.13, 3.14, and 3.15, we have the following lemma.

-

Lemma 3.16 Let A be an initialized rectangular automaton. For every state g = ((v,\, U, tp),y) €
Unm,, and every edge e of A,

Posté,(Ba(q)) = Ba(PostL P (g)).

Moreover, |Postﬂ:’>"ﬁ’tp)(q)| < 1. That is, Posti(j’)"ﬁ’tp)(q) is either empty or a singleton.

Proof. the first statement follows from Lemmas 3.13, 3.14, and 3.15, and from the fact that
Postﬂqjl(:”\’ﬁ’tp)(q) # 0 iff ¢ satisfies the predicate 14, from Lemma 3.13. For the second claim,

notice that all of the assignments made in the guarded commands comprising zp(e,x,ﬁ, tp) are
deterministic (that is, |posty, (€);] = 1 whenever j € upd,, (€) for some 0 < j < 2n and some edge
& derived from ¥(e, X, 7, tp)), the disjuncts of £adjust (i, pre 4 (e);) are mutually exclusive, as are the
disjuncts of uadjust(i,pre4(e);). So each state ¢ can execute at most one of the disjuncts of each
of these guarded commands, and each guarded command makes only deterministic assignments.

Initial zone. It remains to define the initial zone Initys, in such a way that Sa(Initar,) = Inita.
This is done by setting yy;) and y,(;) at vertex v to be the infimum and supremum of the region
of Initpr, associated with v. Let Z C Q4 be a rectangular zone. Then there is the canonical
decomposition Z = U,cy,{v} x R for some regions R* C R"™. Define lowhigh Z as follows. Each
{v} x R" contributes a singleton zone {(U,X(R”),D’(R”),O,y(R”))} to lowhighZ. 1If inf R} = —o0,
then A(RY)y;) = inf, v(R")y;) = str, and y(R")y;) = 0. If inf RY # —oo, then A(R")y;) = fin,
V(R)yq) = strict| R}, and y(R")y;) = inf R}. Similarly, if sup R} = oo, then A(R"),;) = inf,
V(R")yy = str, and y(RY)y;) = 0. If sup R} # oo, then A(RY)y;) = fin, v(R")yu) = strict] R,
and y(R")y(;) = sup RY. Now define Inityr, to be lowhigh Inita.

Lemma 3.17 Let A be an initialized rectangular automaton. For every rectangular zone Z C Qa,
Ba(lowhigh Z) = Z. In particular, Ba(Initpyr,) = Inity.

This completes the definition of the multirate automaton M 4. Notice that M4 is initialized and has
deterministic updates. The automaton M 4 has exponentially many more vertices and edges than A.
As in the translation from initialized stopwatch automata to timed automata, this exponential
blowup does not adversely affect the complexity of reachability or w-language emptiness.

Analysis of time steps. For the remainder of this section, it will be convenient to refer to the
components of a state ¢ of M4 generically as v, X, U, tp, and y. We say “vy;) in ¢” or “vy;) in q”
to distinguish components of different states. Lemma 3.16 gives the basic correspondence between
edge steps in A and edge steps in M4. We must now develop a correspondence for time steps. The
next lemma simply says that every reachable state of M4 that is the target of a time-step has its
finite/infinite and weak/strict bits set correctly.

-

Lemma 3.18 For every reachable state ¢ = ((v, A, 7, tp),y) € Reachar, N Unr, with yo > 0 and
tp =1, and for every i,

1. ifinf acta(v); = —oo then Ay;) = inf; if sup acta(v); = oo then Ay = inf.

2. if strict] acta(v) = str, then vy, = str; if strict] acta(v) = str, then vy = str.
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The following lemma gives the time-step correspondence between A and May4.

Lemma 3.19 Let A be an initialized rectangular automaton. Then for every reachable state q €
Reachpyr, N Upn,, and every duration t € R>q,

PostY (Ba(q)) = Ba(Postiy, (q)).

Moreover, |Posth;, (¢) N Umy,| < 1. That is, Posthy, (¢) 0 Un, is either empty or a singleton.

Proof. 'The second claim is the determinism of the time-step relation. It follows from the fact
that M4 is initialized and its continuous variables are multirate variables: they take on only one
rate between initializations. Let ¢ € U, be a reachable state, and let S4(¢) = {v} x B.

Case 1: t = 0. In this case Post’;(84(q)) = Ba(q). Every ¢' € Posty;, (q) is either ¢ itself, when
obviously Ba(q") = Ba(q), or the target of a jump edge, when 34(q') = 0. Hence Posty(54(q)) =

Balq) = Ba(Postl, (q)).

Case 2: t > 0 and Post’y(B84(q)) # 0. Recall from Proposition 2.1 that each Post%(84(q)); is a
nonempty interval with

inf PostY (84(q)); = max{inf inva(v);,inf B; +1 -inf acta(v);}, (1)

and
sup Posty(Ba(q))s = min{sup inv 4 (v)s;,sup B; +t - sup acta(v);}. (2)

The strictness of the infimum is given as follows. Put Inv = inva(v);, Act = acta(v);, and
Try = inf B; +t - inf acta(v);. If inf Inv > Try, then strict | Post4y(Ba(q)) = strict| Inv. If
inf Inv = Try, then strict| Post'y(Ba(q)) = wk iff strict| Inv = strict| B; = strict| Act = wk. If
inf Inv < Try, then strict| Posty(84(q)) = wk iff strict| B; = strict| Act = wk. The strictness of
the supremum is given symmetrically.

There is exactly one state ¢’ € Posth;, (¢). We show that Ba(¢') = Posty(Ba(q))-

Subcase 2a: (a(q) and acts(v) are bounded. The upper bound clock y,;) moves at the
supremum of the allowable rates for z; in A. If this rate is positive then the upper bound reaches
the upper boundary of inva(v); after =B ﬁ;‘ﬁ;{;(;ﬁp Bi nits of time pass, Hence supBa(q') =
min{sup inv4(v);,sup B; + t - sup act4(v);}, which is the same as sup Post’(84(q));. Similarly,
inf Ba(q') = max{inf inv 4(v);,inf B; +t - inf act4(v);}, which is the same as inf Post’y(8a(q));- So
the infimum and supremum of 34(¢’); coincide with the infimum and supremum of posty (84(q));.
The question of strictness remains. If sup B; + t - sup acta(v); > supinva(v);, then strict |
Ba(qd)s = strict T inva(v); = strict T Post'(Ba(q)). The strictness is correct. Now suppose
sup B; + t - sup acta(v); < supinva(v);. Then in state ¢', the upper bound y,;) has value
sup B; + t - sup acta(v);. Since ¢' is reachable, Lemma 3.18 implies that in ¢/, vy = wk iff
strict] Ba(q); = strict] acta(v); = wk. A glance at the discussion of strictness following Equa-
tion 2 shows that the strictness is correct: strict] Ba(q'); = strict] Post'y(B84(q)). Finally, suppose
sup B; + t - sup acta(v); = supinva(v);. In this case, again we have that in ¢/, v, = wk iff
strict] Ba(q); = strict] acta(v); = wk. But here the definition of G4, which intersects the value
of ma with the invariant, comes to the fore, resulting in a strict bound if strict] inva(v); = str.
Therefore strict] Ba(q'); = wk iff strict] Ba(q); = strict] acta(v); = strict] inva(v); = wk. The
discussion of strictness following Equation 2 shows that the strictness is correct: strict] 34(q")i =
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strict] Post%y(Ba(q)). Symmetrical remarks apply to the lower bound multirate variable, and we
have completed the discussion of strictness.

Subcase 2b: [4(q) is not bounded from above. In this case, inv4(v) is not bounded from
above, either, and the finite/infinite bit A, is inf in state ¢. The jump edges do not change this
bit when inv4(v) is unbounded from above, and so in state ¢, still A, is inf, and so sup Ba(q')i =
oo = sup Post!y (Ba(g)). Symmetrical remarks apply to the case of 34(g) not bounded from below.

Subcase 2c: act4(v); is not bounded from above. Sincet > 0, Ay(;) = inf in ¢’ by Lemma 3.18.
So supfBa(q); = supinva(v); = sup Posty(8a(q));, with matching strictnesses. A symmetrical
argument handles the lower bound. We conclude that B34(¢'); = Post’(B34(q));. The case of t > 0
and Post'(84(q)) # 0 is complete.

Case 3: Posty(64(g)) = 0. This means that for each coordinate i, either the lower bound y,
rises above the upper boundary of inva(v); within time ¢, or the upper bound y,;) drops be-
low the lower boundary of inv4(v); within time ¢. Put bottom(i) = max{infinf(v);,inf B; + ¢ -
inf acta(v);} (see Equation 1) and top(i) = min{sup inva(v);,sup B; +t-sup acta(v);} (see Equa-
tion 2). That is, bottom(i) (resp. top(i)) would equal inf Post’(B84(q)): (resp. sup Post'y(B84(q)):), if
only Post'(84(q)); were nonempty. The fact that Post’;(84(q)); = § means that either bottom (i) >
sup inva(v); or top(i) > inf inv4(v);, or we have equality in one of these two expressions with a
strictness conflict. If bottom(i) > sup inv4(v);, then ¢ cannot take a — transition, because any
state ¢ with g5 ¢' has the lower bound clock Ye(i) > supinva(v);, which is impossible, since
for any such ¢', sup invar, (¢')ys) = supinva(v); (see the definition of invy,). So in this case
Posthy, (q) = 0, and so Ba(Postys, (q)) = 0 = Posty(64(g)) as desired. We have a similar de-
duction for top(i) < infinv4(v). Now suppose bottom(i) = sup inv4(v);. There are two possible
strictness conflicts. (1) The invariant upper boundary is strict. (2) The lower bound multirate
variable is strict. In either case, the invariant invys, places supinva(v); out of the reach of yy):
the supremum of the invariant for y,;) is sup inva(v);, but the supremum is not contained in the
invariant interval (the reader is encouraged to reread the second line of the definition of invas,).
The proof is complete. B

Theorem 3.20 For every initialized rectangular automaton A, and for every zone Z C Uy,
Post}y(B4(Z)) = Ba(Posty,(Z)) and Pre3(Ba(Z)) = B-a(Pre’y_,)(Z)).

Proof. The first claim is immediate from Lemma 3.16 and 3.19. The second follows from Propo-
sition 2.2 and the fact that 84 = 6_a:

Pre}y(8a(Z)) = Post” 4(Ba(Z)) = Ba(Posty_,(Z)) = B-a(Prely ,\(Z)). ®

Corollary 3.21 For every initialized rectangular automaton A, Reacha = a(Reachu,)-
Corollary 3.22 The reachability problem for initialized rectangular automata is PSPACE-complete.

Proof. Let A be an initialized rectangular automaton. The vertex reachability problem asks
whether Post’ ({v} x inv(v))N({w} X inv(w)) = 0. The general reachability problem from the initial
zone Init to another zone Z may easily be reduced in polynomial time to the vertex reachability
problem. So it suffices to show how to solve the latter in PSPACE. By Theorem 3.20, we may
reduce the vertex reachability problem from v to w in A to a reachability problem in M4 from a set
of vertices of the form {v} x ({0,1}2")2 x {0,1} to a set of vertices of the form {w} x ({0,1}?")? x
{0,1}. Since the dimension of M4 is only twice the dimension of A, this can be solved in space
O(log((2n + 1)!|Va|(k + 1)***1&>"*1)) by performing the search on Ts,, . The automaton Ts,,
need not be explicitly constructed to perform this search. m
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Figure 6: Lang(B) C Lang(Mp)

3.3 w-Language Emptiness

Let A be an initialized rectangular automaton. While Lemmas 3.16 and 3.19 imply that M4 and
A generate the same finite timed words, the multirate automaton M4 may generate infinite timed
words that are not in the w-language of A. For example, consider the timed automaton B in
Figure 6, with initial zone Z = {v} x (—00,0]. The timed word (10)“ is not an element of Lang(B).
However, since Z is unbounded, in Mp the lower finite/infinite bit Ay;) remains at inf on time
steps and o steps. Therefore (10)“ is an element of Lang(Mp). Consider the schematic picture
of Mp in Figure 6, in which guarded commands, the weak/strict bits, and the finite/infinite bit
for the upper bound multirate variable are suppressed. The multirate automaton M4 has the
divergent run (v; — vg :1>’L)2 %)%, where we have suppressed the continuous state. This is due to
the unboundedness of the initial zone. Similar behavior is exhibited in automata with unbounded
postguards. The definition of bounded nondeterminism (see Section 2) precludes both.

We prove that if A has bounded nondeterminism, then Lang(A) = Lang(M4). The main theorem
states that if A has bounded nondeterminism, then the w-language Lang(A) is limit-closed. That is,
given a bounded zone Z, and given any timed word =« such that every finite prefix of & is accepted
by a finite Z-run, then there is an infinite Z-run accepting . From this it follows that Lang(A) =
Lang(M ). We first give the result for A with the stronger requirement of compact nondeterminism,
because the proof of the main theorem for this restricted case is a simple consequence of the fact
that a decreasing sequence of nonempty compact regions has nonempty intersection. Thereafter
we proceed to the general case.

Preliminary definitions. Let A be a rectangular automaton, and let Z C Q4 be a zone. In this
section, it is convenient to consider timed words over the alphabet R>q U E4, where the edge set
replaces the observation alphabet. Each definition in this paragraph is exactly analogous to the
corresponding definition for the alphabet R>o U X4 given in Section 2. A timed edge word is an
infinite sequence over the alphabet R>qU E4. An Z-edge run p of A is an infinite sequence of the
form gg B q1 = g2 =3 - -, where go € Z, and for all 4, ¢; € Q4 and w; € R>gU E4. The Z-edge run
o accepts the timed edge-word wowiws - +. Divergence of a Z-edge run is defined in the same way
as for Z-runs. The edge w-language of A from Z, denoted ELang 4(Z), is the set of all divergent
timed edge words that are accepted by Z-edge runs of A.

23



The case of compact nondeterminism

The first proposition gives a basic property of compact zones which is inherited from Euclidean
space.

Proposition 3.23 Let A be a rectangular automaton, and let (Z;);en be a decreasing sequence of
nonempty compact zones of A. Then the intersection (\;en Zi 15 nonempty.

Proof. This follows from the corresponding statement for regions (subsets of R™), and the fact
that V4 is finite. m

The rectangular automaton A has compact nondeterminism if it has bounded nondeterminism, and
all rectangular regions appearing in the definition of A are closed. Formally, we say that A has
compact nondeterminism if

e for every vertex v, init(v) and act(v) are compact, and inv(v) is closed,
e for every edge e, pre(e) and post(e) are closed, and
e for every edge e, and every i € {1,...,n}, if i € upd(e), then post(e) is compact.

We show that rectangular automata with compact nondeterminism define limit-closed w-languages.
The following two technical lemmas are used to establish the compactness of all zones that are used
in the proof of the main theorem.

Lemma 3.24 Let A be a rectangular automaton with compact nondeterminism. For every compact
multirectangular zone Z C Qua, and every w € R>oU Ey, the zone Post3(Z) is compact and
multirectangular.

Lemma 3.25 Let A be a rectangular automaton with compact nondeterminism. For every pair
of compact zones Z,Z' C Qa, and every w € R>qU Ey, the zone Pre3(Z') N Z is compact and
multirectangular.

Note the asymmetry of the two lemmas. The intersection of Pre%(Z') with the compact zone Z is
required for compactness, because preguards of automata with compact nondeterminism are only
required to be closed, not compact. The next lemma gives the meat of the limit-closure argument,
showing that if all prefixes of a timed edge word may be generated from a given zone Z, then in
fact there is an element of Z from which each prefix may be generated.

Lemma 3.26 Let A be a rectangular automaton with compact nondeterminism, and let Z C Q4
be a compact multirectangular zone. Suppose w € (R>qU E4)* is a timed edge word such that
for every k € N, Post3°™*"™*(Z) # 0. Then there is a state ¢ € Z such that for every k € N,

Posto™" ™ ({q}) # 0.

Proof. For each k € N, define J = {q € Z | Post"”* "“*({q}) # 0}. Since each Post]*™*"*(Z)
is nonempty, each Ji is nonempty. Also, Ji D Ji4+1 for each k. We claim each Jj, is compact. If so,
then the sequence (Jg) is a decreasing sequence of nonempty compact sets. Hence the intersection
Ni—o J is nonempty. An element of the intersection is the requirement of the lemma.

We now establish the claim that each J is compact. By Lemma 3.24, for each k& € N, the zone
Post{*™*""®*(Z) is compact and multirectangular. The zone Pre7° ™' "“*(Post5°“'"“*(Z)) is
compact by Lemma 3.25. Hence Ji = Z N Pre°“ "™ (Post° ™ "?*(Z)) is compact as well. ®

The following main theorem establishes the limit closure of Lang 4(Z) for all rectangular automata A
with compact nondeterminism, and all compact zones Z.
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Theorem 3.27 Let A be a rectangular automaton with compact nondeterminism, and let Z C Qa
be a compact zone. Suppose w € (R>oU E4)* is a timed edge word such that for every k € N,
Post3" "% (Z) £ 0. Then there is a state ¢ € Z such that w € ELang 4({q}).

Proof. Let Zy = Z. By Lemma 3.26, there is a state go € Zy such that Post%°™* "™*({go}) # 0
for each k > 0. Let Z1 = Post°({go}). Then Z; is compact and multirectangular, and for each
k> 1, Posty'™* "% (Z1) # 0. So by Lemma 3.26, there is a state g1 € Z; such that for each k > 1,
PostZ ™"k ({g1}) # 0. Proceed inductively in this manner, with Z;11 = Post] ({g;}) compact
and multirectangular, and ¢;11 € Zj;1 given by Lemma 3.26, such that for each k& > j + 1,
Post "1 ({g;11}) # 0. Then

Go =g g
isa Z-edgerun of A. m

Corollary 3.28 For every initialized rectangular hybrid automaton A with compact nondetermin-
ism, Lang(A) = Lang(Ma).

Proof. Let Z = Inita. The inclusion Lang,(Z) C Langys, (lowhighZ) is immediate from Lem-
mas 3.16 and 3.19. For the reverse, suppose

W3 SgpS...

is an lowhighZ-edge run of M4. Then there exist states ¢; € Unr,, £ =0,1,2..., in the upper half
space of M4 such that

| @y ] WL | W2

Go— %1 —4a— "
is an lowhighZ-edge run of M. Define an edge word @’ for A by w} = wy if wy € R>g, and
wy, = e if wy is an edge of M4 derived from the edge e of A by an edge family \Il(e,x,[i, v, tp).
Then by Lemmas 3.16 and 3.19, for each k,

1 1 1
Wy W1 W

Post’y (Z) = Ba(Postyy,” " “*(lowhighZ)) O Ba({gh41}) # 0.
Hence by Theorem 3.27, there is a state ¢ € Z such that @’ € ELang(q). ®

Corollary 3.29 The w-language emptiness problem for initialized rectangular automata with com-
pact nondeterminism is PSPACE-complete.

The case of bounded nondeterminism

Let A be a rectangular automaton. Recall that the w-language of an automaton consists of all words
accepted by divergent runs. Let CLang(A) be the set of infinite timed words accepted runs of A
that are not necessarily divergent. Note that in the case of compact nondeterminism, CLang(A)
is limit-closed. This is no longer the case for bounded nondeterminism. Consider for example, the
timed automaton D in Figure 7. Every finite prefix of the infinite timed word = = ¢’ %a%a%a .- i8

generated by a finite run of D, and yet w ¢ Lang(A).

However, we show that Lang(A) is still limit-closed for all rectangular automata with bounded
nondeterminism. That is, whenever every finite prefix of a timed word m in which the time steps
sum to infinity can be generated by a finite run of A, then the infinite sequence x is accepted by a
run of A. Bounded regions have no analogue to Proposition 3.23, and this greatly complicates the
proof of limit closure. Limit closure of Lang(A) is now proven by a detailed case analysis of the
activity function. The following technical lemma is used to establish the boundedness of all zones
appearing in the proof of limit closure.
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Figure 7: The need for time divergence

Lemma 3.30 Let A be a rectangular automaton with bounded nondeterminism. For every bounded
multirectangular zone Z C Qa, and every w € R>qU Ey4, the zone Post%(Z) of w-successors of Z
1s bounded and multirectangular.

The next lemma gives the heart of the proof of limit closure. It says that for 1-dimensional A
with constant bounded activity, Lang(A) is limit closed with respect to timed edge words without
updates of the continuous state.

Lemma 3.31 Let T be a finite set of nonempty intervals, and let R, act be bounded intervals. Let
(tk)ken be a sequence of positive real numbers with Y 5> tr = 00, and let (Ix)ren be a sequence of
intervals such that Ip = R, and for every k > 1, I} is the intersection of one or more members
of . Suppose for each k € N, there is a finite sequence zg,Z1,-..,Tk of real numbers such that for
all0 < j<k,zj €I, and for each 0 < j < k, % € act. Then there is an infinite sequence

(k) ken such that for each k € N, xp, € I}, and % € act.

Proof. Think of a continuous variable z, initialized nondeterministically to some value in R, and

with & € act. Call a finite sequence g, Z1,...,2r k-admissible if for all 0 < j < k, z; € I}, and

for each 0 < j < &, z,+;7—m] € act. Call an infinite sequence (z)reny admissible if for each k € N,
7

zr € I, and W € act.

Case 1: 0 ¢ act. Suppose act C (€,00), where ¢ > 0. The case of act C (—o0,€) is handled
symmetrically. Let A be larger than all of the finite endpoints of the intervals in Z. The point here
is that the speed of z is bounded below by €, and so that once @ time has passed, no matter
what the initial value of @, the value of 2 will be greater than all of the finite bounds defining
intervals from Z. Let m be large enough so that E’,f:_ol t; > W. We claim that for every zg € R
for which there exists an m-admissible finite sequence zg, z1,...,Zmn, there is in fact an admissible
infinite sequence (zx)ren extending zg, 21, .. ., Z,. By assumption, for every k£ € N, a k-admissible
sequence exists. For any such sequence yo,¥1,--., ¥k, it must be that y; > h for each j > m. It
follows that since Z is finite, and every I; is an intersection of elements of Z, that for every & > m,
I D (h,00). Since act contains some € > 0, any m-admissible finite sequence zg, 21, ..., 2, can be
extended to the admissible infinite sequence

Oy L1y- -y Ly Lo + €bmy Ty + €(Em + tmg1), - - -

Case 2: 0 = inf act. The case of 0 = sup act is handled symmetrically. Among the I; are only
finitely many distinct intervals, because there are only finitely many intersections of the finitely
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many elements of Z. Let W be the set {I C R | I = I for infinitely many i}. Then O\W # 0,
because actN (—00,0) = 0, so z can never descend from an I; to an I; all of whose elements are less
than those of I;. Let m; be large enough so that for every & € N, I,,,, ;1 € W, and moreover that
for every W € W, there is a k < m; with I, = W. lL.e., m; is large enough so that all elements of
W have been met in the past, and only elements of VW will be met in the future. Let mo > my be
large enough so that all elements of W are represented among I, 41, .- Imy—1- Let 2o, 21,...,Zm,
be an mg-admissible sequence. Then z,,, € (| W, because z cannot decrease, each element of W
contains at least one of the z; with ¢ < m;i, and each element of W contains at least one of the z;
with m; < i. If 0 € act, then the infinite sequence zg,21,..., 25, is admissible. If 0 ¢ act, then
T, < sup(W. Let § = (sup(\W) — &,,. For each i > my, let ¢; be so that 0 < ¢; < tz% Then
the infinite sequence

0y L1y 3 Tmyy Tmy T Emy+1tmy+1, Lmy + €my+1tmy+1 + €my2tmy 42, .- -
is admissible.

Case 3: 0 is in the interior of act and (W # (. Since 0 is in the interior of act, every trajectory
can be slowed down to give another trajectory. Let mj be as in the previous paragraph. Since
0 € act, whenever an (m; + £)-admissible finite sequence terminates in ()W, it can be extended to
an admissible infinite sequence by repeating the last state ad infinitum. Such an (m+/£)-admissible
sequence terminating in (| W exists, because there exist Wi, Wy € W with inf Wy = inf N\ W (with
same strictness) and sup Wy = sup(\W (with same strictness). Any (m + £)-admissible finite
sequence with £ large enough so that both Wi, Wy each appear twice in Ipyt1,...,Inte—1 must
have m < ¢ < k with z; € W; and 2, € Wy, By slowing down the trajectory, ()W can be
reached: if z; > sup)V and z; < inf(\W, then for some j with ¢ < j < &, z; > sup(W
and zj41 < sup()W. By letting y be any number such that z;.1 < y and y € (W, the infinite
sequence
Oy L1y ey Tmy vy Ty Y

is admissible.

Case 4: 0 is in the interior of act and W = 0. Let Wy, W5 € W be such that every element
of Wy is greater than every element of Wy. Let m; be as in the previous two paragraphs. Let
m1 < p1 < g1 < p2 be so that I, = I,, = Wi and I;, = Wa. Let zg,21,...,2p, be p2-admissible.
We will first show that for every k& € N, there is a k-admissible finite sequence starting from z.
This is obvious for k£ < ps, so suppose k > p2. Let yo,y1,.-.,yr be k-admissible. We now have
three cases.

Subcase 4a: z,, = yp,. In this case zg,z1,...,Zp; s Yp1+1:Yp1+2, - - -, Yk 15 @ k-admissible sequence.

Subcase 4b: z,, < yp,. If 24, < y,,, then by slowing down, the z; sequence can meet up with the
y; sequence somewhere along the descent from Wy to Wa. If 24, > y,,, then for some p; < j < ¢y,
zj < y; and 241 > y;41. Since % € act and % € act, and

Yj+1 — Y5 < Yj+1 — Tj < Tj+1 — Ty,
it must be that #2124 € qct. Hence the finite sequence
7
L0y ZT1ye- s ZTjy Yj+1,Yj+25--+, Yk

is k-admissible.
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Subcase 4c: zp, > yp, . If 24, < yg4,, then by slowing down, the z; sequence can meet up with the
¥; sequence somewhere along the descent from Wi to Wa. So suppose x4, > yq,- Now if 2, > yp,,
then by slowing down, the z; sequence can meet up with the y; sequence somewhere along the
ascent from Ws to Wi. If zp, < yp,, the the y; sequence must cross the z; sequence as above,
and the same zg,21,...,2;,¥j+1,¥Y;+2;- - -, Yk construction provides a k-admissible finite sequence
beginning with zo. The subcase of z,, > y,, is complete.

It remains to construct an admissible infinite sequence. Let zg € R be such that for every k£ € N,
there is a k-admissible finite sequence starting with x¢. Let Rj be the set of ¢g-successors of zg,
ie, 1 = {y € R| 5% € act}. Then R, is bounded by Lemma 3.30. So applying what we
have already proven to Rj, the time sequence Ak.tg4+1, and the interval sequence Ag.Il11, there is
an 1 € R such that for every k, there is a k-admissible (with respect to Ak.txy1 and Ag.Ipy1)
sequence beginning from z;. Continuing inductively, we form an admissible sequence beginning
at zo. H

Now the proof of the main theorem consists of reducing to one dimension, eliminating updates, and
applying Lemma 3.31.

Theorem 3.32 Let A be an initialized rectangular hybrid automaton with bounded nondeterminism
and let Z C Q4 be a bounded rectangular zone. Suppose w € (R>gUE4)“ is a timed edge word such
that for every k € N, Post3°™" " “¥(Z) # 0. Then there is a state ¢ € Z such that w € ELang 4({q}).

Proof. It suffices to prove the proposition for 1-dimensional A, for each component of a run
of a multi-dimensional A is independent of the other components—that is, an n-dimensional au-
tomaton A has the edge run w iff each of the n 1-dimensional automata defined by restrict-
ing A to one continuous components has the corresponding component sequence of @ as an edge
run. So suppose A is 1-dimensional. If there exist infinitely many k& with 1 € upd(wy), then by
stringing together the pieces in between the updates, @w € ELang4({q}) for every state ¢ € Z
such that Post®*@1""%k(q) # () for some k with 1 € wupd(wg). So assume that 1 € upd(wy)
for only finitely many k. It now suffices to assume that 1 € wupd(wy) for no k. Because if
kmax = max{k € N | 1 € upd(wg)}, then by proving the theorem with Post®°®! " @kmax (Z) in
place of Z, and Ap.w144,,,.+p in place of @, the result for Z and @ follows by picking any ¢ € Z
with Post®0®1" @kmax ({q}) # (. The proposition now follows from an application of Lemma 3.31,
where the set 7 of intervals is the set of all nonempty values of inv4, prey, and post,. B

As Corollary 3.28 follows from Theorem 3.27, so does the next corollary follow from Theorem 3.32.

Corollary 3.33 For every initialized rectangular hybrid automaton A with bounded nondetermin-
ism, Lang(A) = Lang(My).

Corollary 3.34 The w-language emptiness problem for initialized rectangular automata with bound-
ed nondeterminism is PSPACE-complete.

3.4 Simulation Relations

In the above translations, we used several mappings between the state spaces of the original au-
tomaton and the transformed automaton. We were interested only that the translations preserved
reachability and w-languages. Here we study these mappings in greater detail and show that they
are (bi)simulations on the underlying labeled transition systems. In particular, the map ays from
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the initialized multirate automaton M to the initialized stopwatch automaton Sys (see Section
3.1) is a timed bisimulation, and the map (4 from the initialized rectangular automaton A to the
initialized multirate automaton M4 (see Section 3.2) flattens out into a timed forward simulation
in one direction, and a timed backward simulation in the other.

Let A and B be two rectangular automata with the same observation alphabet. A relation x C
Reachy x Reachp is a timed forward simulation of B by A [LV92] if

1. For every state r € Reachp, there exists a state ¢ € Reach 4 with (¢,r) € x.
2. For every initial state r € Initp, there is an initial state ¢ € Init 4 such that (g,r) € x.

3. For all states r,»' € Reachp, every state ¢ € Q4 with (¢,7) € x, and every 7 € R>qU X, if
r 57! in B, then there exists a state ¢ € Reach4 such that (¢/,r') € x and ¢ = ¢ in A.

The relation x is a timed backward simulation of B by A if
1. For every state r € Reachp, there exists a state ¢ € Reach4 with (¢,r) € x.
2. for every initial state r € Initg, and every ¢ € Reachy, if (¢,7) € X, then q € Init 4.

3. For all states 7,7’ € Reachp, every state ¢' € Q. with (¢/,r') € x, and every 7 € R>oU X, if
r 57! in B, then there exists a state ¢ € Reacha such that (¢,r) € x and ¢ ¢ in A.

A relation y such that both y and ! are timed forward simulations is a called a timed bisimulation.

It follows immediately from Lemma 3.2 that ajs is a bisimulation between the initialized multirate
automaton M and the initialized stopwatch automaton Sjs. There is also a bisimulation yg between
the initialized stopwatch automaton S and the timed automaton Ts from Section 3.1. It is defined
as follows. Let (v,x) € Qg be a state of S. Then ((v,x),(w, f,y)) € vg iff for each i, (1) w = v,
(2) if actg(v); = {1} then y; = x; and f(i) =L, and (3) if actg(v); = {0} then f(i) = z;.

Let A be an initialized rectangular automaton. Define the relation BA CQum, xQaby (q,¢) € ,@A
iff ¢ € Ba(g). Then ﬂ 4 is a forward simulation of A by M4, and 5’21 is a backward simulation of
M4 by A, if we restrict attention to Upr, N Reachyr,, the reachable part of the upper half space.
The proof is immediate from Lemmas 3.16 and 3.19.

Proposition 3.35 Let A be an initz’qlized rectangular automaton. The relation BA is a timed
forward stmulation of A by Ma, and ﬂzl is a timed backward simulation of M4, restricted to its
upper half-space, by A.

The complete chain of relationships between A, M4, Sm,, and Ts,, is shown in Figure 8. It
follows that A timed backward simulates Tsar > and Tsu, timed forward simulates A. The opposite
statements are false. In fact, A does not even forward simulate M4 in a time-abstract way, nor
does My backward simulate A in a time-abstract way. Time-abstract simulations are defined by
treating all time steps equally [ACH94]. Define me = User-, L. By replacing the alphabet
R>o U X with {tin)e} U Y in the above definitions of timed simulations, we arrive at their time-
abstract counterparts. Clearly, every timed simulation is also a time-abstract simulation (but not

vice versa).

Proposition 3.36 There exists a 1-dimensional (compact) initialized rectangular automaton C
such that there is no time-abstract forward simulation of Mc¢ by C, and no time-abstract backward
stmulation of C by Mc.
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Figure 8: Chain of simulations from A to T,

z=0

g

r=1—-2:=0
Figure 9: C does not forward simulate M¢, and M¢ does not backward simulate C

Proof.  Consider the automaton C in Figure 9. We suppress the X, v, and tp components
of M¢. If « is a forward simulation of M¢ by C, then there must be some (v,z) € Q¢ such
that ((v,z), (v,(0,1))) € a. But this is impossible, for no such (v, z) can traverse both the o and o
edges. Suppose k£ is a backward simulation k of C by M. Then k relates some state (v, (7y,6)) of
Mc to the state (v,0). Since the edge labeled ¢’ assigns z to 0, and « is a backward simulation, it
follows that v = § = 0. Now suppose (v,2) L (v,0) in A, where t > 0. Since & is a time-abstract
backward simulation, there is a ¢’ > 0 and a reachable state (v, (—t',—2t')) € Qu, that x relates
to (v,z). Since —t' > —2t' for ¢ > 0, and since (v, (—t', —2t')) is reachable, it follows that ¢’ = 0.
So ((v,0,0), (v,z) € k. This is impossible, because (v,z) is the target of a ¢” transition, whereas
(v,0,0) is not. m

3.5 Awutomatic Verification

HYTECH is an automatic analysis tool for hybrid systems [AHH93, HHWT95]. The core of HY TECH
is a semi-decision procedure that attacks the reachability problem for hybrid automata by iterating
the Post operation on zones. That is, to check if a zone Z is reachable in a rectangular automaton A,
HYTECH computes the sequence Inita, Posta(Inita), Posta(Posta(Inita)),..., until either Z is
met or a fixpoint is reached within a finite number of iterations of Post4. The HYTECH procedure
is known to terminate on every timed automaton with bounded invariants [HNSY94|, where the
rectangular automaton A has bounded invariants if for every v € Vy, inv(v) is bounded. Since Post 4
commutes with (4, we obtain the following corollary, which asserts that the HYTECH procedure
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zg =1—> 2y :=0

Figure 10: Post*({(v,0,0)}) does not converge

terminates on every initialized rectangular automaton with bounded invariants.

Corollary 3.37 Let A be an initialized rectangular automaton with bounded invariants. For every
rectangular zone Z C Qa, there is a natural number ¢ € N such that Pre(Z) = Pre%(Z) and
Post’y (Z) = Posty(Z).

Proof. The corresponding statements are true for initialized multirate automata with bounded
invariants [HNSY94]. Hence the result follows from Lemmas 3.16 and 3.19. B

The HYTECH procedure, however, does not terminate on all initialized rectangular automata.
Consider Figure 10, in which both z; and x5 are clocks. If Z is the singleton initial zone {(v,0,0)},
then for each i > 1, Post® Y(Z) = {(v,a,b) |0 < a < iand b = a — |a]}. So the computation
does not reach a fixpoint within finitely many iterations of Post. In this section, we remedy this
deficiency by preprocessing the input automaton. Suppose we wish to check if the zone Z is
reachable in the initialized rectangular automaton A. We preprocess A, obtaining an initialized
rectangular automaton A”, such that (1) Z is reachable in A iff Z is reachable in A”, and (2) the
HYTECH procedure terminates on A”. To facilitate the proof of (2), we first introduce another
automaton A’; which is exponentially larger than A.

An exponential preprocessing step

Let A be a n-dimensional rectangular automaton, and let Z;1, Zo C Q4 be rectangular zones of A.
We define an n-dimensional rectangular automaton A’ with bounded invariant, and zones Z}, Z}
of A', such that Zs N Post’(Z1) # 0 iff ZL N Post’,(Z]) # 0. Let h be one more than the largest
rational constant appearing in the definitions of A, Z;, and Z5. Let g be one less than the smallest
such constant. The idea is to truncate all invariants, preguards, and postguards by intersection with
[g, h]™. When a variable reaches the upper or lower boundary, it stops moving. The automaton A’
has vertex set Vi = V4 x {0,1,2}™. Put low = 0, ok =1, and high = 2, and let 0k™ be the n-vector
(ok, ok, ..., ok). Vertices (v,R) with k; = low represent states of A in which the ith continuous
component z; is no greater than g, vertices (v,k) with x; = ok represent states of A in which
g < z; < h, and vertices (v, k) with k; = high represent states of A in which x; > h. The initial
function of A’ is defined by init a4/ (v) = init4(v) N[g, h]™. The invariant function of A’ is defined by

{h}, if k; = high,
in?]Al (U, ’%\)’L == Zn/UA('U)/L ﬂ [g, h], if K; = Ok,
{g}a if R = low.

The activity function of A’ is defined by

) acta(v);, if k; = ok,
actar (v, R)i = { {0}, if k; # ok.
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For each edge e = (v,w) of A, the automaton A’ has an edge ¢ = ((v, 0k™), (w, 0k™)) with
pre i (€') = preg(e) N [g,h]™, updi(e') = updy(e), and post 4 (€') = posts(e) N [g,h]". Define
trunc : R™ — [g, h]™ by

g, if z; < g,
trunc(x); =< z;, if g <z; <h,
h, ifx; > h.

A rectangular region R C R™ is gh-limited if for each 1 <7 < n,
e eitherinf R, = —coorg+1<infR; <h-—1, and
e cithersupR;, = org+1<supR; <h-—-1.

By definition of g and h, the following zones are gh-limited: Z;, Za, and all values of inv4, pre4,
and post 4. It follows that guards in A’ have the same effect as guards in A.

Lemma 3.38 Let x € R”, and let R C R™ be a gh-limited rectangular region. Then x € R iff
trunc(x) € RN [g, h]™.

The automaton A’ has T-edges to toggle the ;. For each vertex v € V4, each i € {1,...,n}, and

each & with k; = ok, there is an 7-edge ez 0 from (v,K) to (v,K[x; := low]), and also an edge
in the reverse direction from (v, g[x; := low]) to (v, <), each labeled with the guarded command
z; = g — x; := g. The trivial assignment keeps A’ technically initialized. Similarly, there are

T-edges from (v, §) to (v, K[k; := high]) and from (v, §[k; := high]) to (v, R), each labeled with the
guarded command z; = h — z; := h. This completes the definition of the initialized rectangular
automaton with bounded invariant A’.

Define ¢ : Qa4 — Qar by ((v,x) = ((v, 0k™), trunc(x)), and extend ( to zones in the usual way.
Define 7} = ((Z;) for j = 1,2.

Theorem 3.39 Let A be an initialized rectangular automaton, and let Z1,Zs C Q4 be rectangular
zones of A. Then Zy N Post’y(Z1) # 0 iff Z4 N Post™ (Z}) # 0.

Proof. To see that if Zo N Post%(Z1) # 0 then Z4 N Post*,(Z}) # 0, it suffices to note that (~! is a
timed forward simulation of A by A’. To simplify the notation, we prove this for 1-dimensional A.
The extension to n dimensions is immediate. Suppose ((v?,27) = (v, ok,y?) for j =1,2.

First, suppose (v, z!) B (v,z?) where t > 0. Then ‘”27”1 € acta(v). If g < 21,22 < h, then y! = 2!
and y? = 22, and
2 _ .1 2 _ 1
= € acta(v) = actar (v, ok).
Hence C(v,ml)—t>§(v,m2). Now suppose z! < g < h < z2. Then there exist t1,t2,t3 € R>o such

that ¢ = t1 + 2 + t3 and

(v,21) % (v,9) % (0, 1) = (v,2).
In A, y' = g and y? = h, and since act 4/ (v, 0k) = acta(v), we have
(v, ok, y*) 5 (v, low, g) 2 (v, low, g) = (v, ok, g) = (v, ok, h) 5 (v, high, h) 2 (v, high, h) 5 (v, ok, y?).
Again ((v,z!) ¢ (v%,22). Other positions of z! and z? relative to g and h are handled similarly.
For edge transitions, the key fact is that all preguards and postguards are gh-limited. Suppose

(v!,z1) > (v2,2%) where e € E4. Then z! € pre4(e), and 22 € post 4(e), and so by Lemma 3.38,
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yl = trunc(:rll) € pre 4 (e') and 3% = trunc(z?) € post 4 (¢'). In addition, upd 4(e) = upd 4 (e), and
so ((v!,21) = ((v?, 2?).

We now show that if Z N Post’,(Z]) # 0 then Zy N Post’y(Z1) # 0. Again, we prove the result for
1-dimensional A—the generalization to n dimensions being immediate. Suppose

(an Ok7y0) = (Ula 0k>y1) 5. (Um7 Okaym)
in A’, where (v9,9%) € Z} and (v™,y™) € Z. We will find z°,...,2™ such that
(0%,2%) = (vh,2h) B - T (0™, 2™)

in A, and for each 0 < j < m, trunc(z?) = y’. Since all postguards are rectangular, it suffices to
assume that each 7; € Ey has upd(Ea) = 0, otherwise we string together solutions obtained in
between variable assignments. Consequently, act(v?) = acta(v*) for each 0 < j,k < m. Now by
Lemma 3.38, it suffices to assume that m; € R>¢ for each j, that is, each 7; is a time step. Let act
be the common value of the act4(v?). If 0 € act, then

(U0>y0) = (Ulayl) =z (Um>ym)

already in A, so putting 2/ = g’ for each j, we are finished, because 3° € Z; and y' € Z by
Lemma 3.38. Now suppose act C (0,00). Here the most interesting case is given by 3% = g and
y™ = h. In this case, there exist 0 < k < k' < m such that y/ = g for j < k, g < y? < h for
E<j<k,andy =hforj>k. Weputal =1y for k <j <k'. To set the z7 for j > k', we

need only determine a suitable slope. Let p be such that for some A’ > h, p = ﬁ:—;% € act. Such

a p exists because (v*, ok, y*') Ty (¥ *1, 0k, h) in A". Put 2/ = y¥ + p(j — k') for each j > k.
Then (v7,27) %" (v3+1,29%1) for j = k',k' +1,...,m — 1. It remains to set @/ for j < k, which
is done in the same way. Since (v*, ok, g) ey (v*+1, ok, y*T1), there exists a p € act such that for
some ¢’ < g,p = yk:T:g—l € act. Then for each 0 < j < k, define 27 = y**! — p(k+ 1 — j). Then
(vi,29) "B (31 231 for j = 0,1,.. ., k, and we are finished. Other cases are handled in a similar
fashion. m

A linear preprocessing step

Whereas the automaton A’ uses the discrete part of the state space to store information about
variables that get too large, the automaton A” uses the continuous part. Instead of stopping
a variable when it reaches h, the automaton A” supplies a nondeterministic jump to any value
above h. Formally, the automaton A” is identical to A, except for some additional edges. For each
vertex v € Vy, and each 1 < i < n, the automaton A” has two 7-edges labeled respectively with
the guarded commands

2, < g— x;:€ (—00,g9) and z; > h — z; :€ (h,0).

Here z; :€ I is a nondeterministic assignment into the interval I. Our first theorem shows that
reachability in A is equivalent to reachability in A”. Since A” is simply A with some extra edges,
the “only if” portion of the proof is immediate. The “if” is extremely similar to the second part of
the proof of Theorem 3.39 above.

Theorem 3.40 Let A be an initialized rectangular automaton, and let Z1,Z2 C Q4 be rectangular
zones of A. Then Zy N Post’(Z1) # O iff Za N Post’yu (Z1) # 0.
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Next we show that HYTECH terminates on A”.

Theorem 3.41 Let A be an initialized rectangular automaton. For every w € (R>qU Ey4), and
every gh-limited rectangular zone Z,

Post% (trunc(Z)) = trunc(PostZu(Z)).

Proof. The statement for w € E4 is proven by Lemma 3.38. For @w € R>q, it suffices to prove
the result for one-dimensional A. Suppose (v,2) € Z, and (v,2') = (v,22) in A”. If g < 2%, 2% < h,
then immediately (v,z') = (v, 22) in A’. The most interesting case is 2' < g < h < 22. In this case
there exists a ¢ < w such that h—? € act(v). Hence

trunc(v,2') = (v, ok, 9) 5 (v, low, g) ' (v, low, g) = (v, ok, g) = (v, ok, h) = trunc(v, z%)

in A’. Similar arguments apply to different relative positions of z!, 22, g, and h. Therefore
Post% (trunc(Z)) D trunc(PostZu(Z)). The reverse inclusion is easy. m

Now from Theorem 3.41, Corollary 3.37, and Proposition 2.2 follows this corollary.

Corollary 3.42 Let A be an initialized rectangular automaton, and let Z1, Za C Q4 be rectangular
zones of A. Then there there is a natural number i € N such that Prejn(Z1) = Prelyu(Z1) and
POStZu(Zl) = POStZAH(Zl).

We conclude that with the addition of a preprocessing step (creating A” from A by adding 2nV
edges), HYTECH may be used to solve the reachability problem for initialized rectangular au-
tomata.

4 Undecidability

In the previous section, we showed that initialized rectangular automata form a decidable class
of hybrid automata. In this section, we show that they form a maximal such class. We proceed
in two steps. First, we show that without initialization, even a single two-slope variable leads
to an undecidable reachability problem. Second, we show that the rectangularity of the model
must remain inviolate. Any coupling between coordinates, such as comparisons between variables,
already brings undecidability with a single non-clock variable. (Timed automata, which have
only clock variables, remain decidable in the presence of variable comparisons [AD94].) A main
consequence is the undecidability of compact automata with clocks and one stopwatch. These
automata are important for the verification of duration properties.

The rectangular automaton A is simple if it meets the following restrictions:
1. Exactly one variable of A is not a clock.
2. For every vertex v, inv(v) and act(v) are compact.

3. For every edge e € F, and for all 1 < ¢ < n, if i € upd(e) then post(e); = [0,0], and if
i ¢ upd(e) then post(e); = pre(e);.

4. For every edge e € E, pre(e) is compact (and hence post(e) is compact by 3).
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The automaton A is m-simple if it meets restrictions 2—4, and exactly m variables of A are not clocks.
We use simple automata for our undecidability results. Restriction 3 allows only deterministic
variable updates, and so the nondeterminism of jumps in the continuous state, allowed in our
model of rectangular automata, does not contribute to our undecidability results. Many limited
decidability results are based on the digitization of real-numbered delays [HMP92, BES93, BER94,
PV94]. Since the digitization technique requires closed guards and invariants, restrictions 2, 3,
and 4 imply that the technique does not generalize beyond very special cases. Many limited
decidability results apply to automata with a single stopwatch [ACH93, BES93, KPSY93, BER94,
BR95, Hen95]. Restriction 1 implies that these results do not generalize either. We might also
replace condition 2 with the trivial invariant Av € V. R™, when our proofs would require only minor
modifications.

All of our undecidability proofs are reductions from the halting problem for two-counter machines
to the reachability problem for simple rectangular automata. A two-counter machine consists of a
finite control and two unbounded counters. Three types of instructions are used: branching based
upon whether a specific counter has value 0, incrementing a counter, and decrementing a counter
(which leaves unchanged a counter value of 0). In our reductions, each counter is modeled by a clock.

Counter value r (usually) corresponds to clock value kl(i—f)r, where k1 and ko are the slopes of a

two-slope variable in a simple automaton, k1 being the larger. When i—; = 2, decrementing (resp.

incrementing) a counter corresponds to doubling (resp. halving) the value of the corresponding
clock. Notice that since k3 > ko, it is the density of the continuous domain, rather than its infinite
extent, that is used to code the potentially unbounded counter values.

4.1 TUninitialized Automata

We show that initialization is necessary for a decidable reachability problem.

Theorem 4.1 For every two slopes k1, ke € Q with k1 # ks, the reachability problem is undecidable
for simple rectangular automata with one two-slope variable of slopes k1 and ko.

We first prove three lemmas that are basic to all of our undecidability proofs. In figures of simple
automata, all variables whose slopes are not listed are clocks—they have slope 1. Let W be a
positive rational number. A simple rectangular automaton A is W -wrapping if

e for every variable a of A that is a clock, and for every vertex v, inv(v)(a) = [0, W], and

e if 2 is the non-clock variable of A, and z takes only nonnegative slopes (i.e., act(v)(z) C [0, 00)
for each vertex v), then for each vertex v, inv(v)(z) = [0, W - max,ecy max act(w)(z)], and

e if z is the non-clock variable of A, and z takes only nonpositive slopes, then for each vertex v,
inv(v)(z) = [W - mingey min act(w)(2),0], and

e if z is the non-clock variable of A, and z takes both positive and negative slopes, then for
each vertex v, inv(v)(z) = [W - mingey min act(w)(2), W - max, ey max act(w)(2)].

A W -wrapping edge for a clock a is an edge e = (v,v) from vertex v to itself such that pre(e)(a) =
(W, W], upd(e) = {a}, and post(e)(a) = [0,0]. That is, a wrapping edge for a is labeled with
the guarded command a = W — a = 0. A W-wrapping edge for a non-clock variable z and
a vertex v with act(v) = [k, k] is an edge from v to itself labeled with the guarded command
z = kW — z:=0. The invariant of a wrapping automaton forces wrapping edges to be taken when
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Figure 12: Proof of the Wrapping Lemma for slope 1

they are enabled. We use wrapping to simulate discrete events by continuous rounds taking W
(or some multiple thereof) units of time. The wrapping edges ensure that variables take the same
values at the beginning and end of a round, unless they are explicitly reassigned by a non-wrapping
edge. This is the content of our first lemma. We stress that in figures, we leave these wrapping
conditions implicit, in particular, we omit invariants from every figure after those regarding the
basic lemmas, and we omit wrapping edges beginning with Figure 17. The wrapping technique
originated in [Cer92].

Wrapping lemma. Let W be a positive rational number. Let k1 € Q, and consider the simple
W -wrapping automaton fragment of Figure 11, Suppose that ¢ = v when edge ey is traversed into
v1, where 0 < v < BaW if k1 > 0, and kiW <y < 0 if k1 < 0. Then the next time e3 is traversed
out of v1, again ¢ =y.

Proof. Figure 12 contains a time portrait illustrating the proof for W = 4 and k; = 1. The
markings e, ea, and e3 along the time axis show at which points these edges are traversed. We
give the proof for k1 > 0. In order for ez to be taken in the future, the following series of steps
must occur: 1) e; is traversed; 2) exactly ﬁ(Wkl — ) units of time elapse, after which ¢ has value
Wk, and a has value %(Wkl —1); 3) the wrapping edge e is traversed, after which ¢ has value 0,
and a has value ﬁ(Wk:l —7); 4) exactly W — ﬁ(Wl»l — ) = 7 units of time elapse, after which
a has value W and c has value 7. ®

By only allowing clocks ¢ and d to wrap simultaneously, we can check if the two have the same
value.

Equality lemma. Let W be a positive rational number. Consider the simple W -wrapping
automaton fragment of Figure 13, in which all variables are clocks. Suppose that c =+ and d =6
when edge ey is traversed into vy, where 0 < v,6 < W. Then edge e3 can later be traversed iff
v =6, and the next time e3 is traversed, both ¢ and d have value v (= 6).

Similarly, by assigning skewed clock d to 0 at the same time as wrapping skewed clock ¢ to 0, we
perform the assignment d := ’,z—fc, where ¢ = k1 and d = ks.

36



Figure 13: Equality lemma: testing ¢ = d

c=Wky - ¢c,d:=0

Figure 14: Assignment lemma: performing the assignment d := k—fc

Assignment lemma. Let W be a positive rational number. Let k1,ko € Q, k1 # 0, and consider
the simple W -wrapping automaton fragment of Figure 14. Suppose that ¢ = v when edge ey is
traversed into vi, where 0 < v < BaW if k1 > 0, and kiW < v < 0 if k1 < 0. Then the next time
e3 is traversed, c =~ and d = ’,f:—f'y.

Proof of Theorem 4.1. We reduce the halting problem for two-counter machines to the reachability
problem for simple wrapping rectangular automata with a two-slope variable taking slopes k;
and ko. Let M be a two-counter machine with counters C' and D. Let a, b, ¢, and d be clocks, and
let z be a two-slope variable of slopes k; and ks.

Case 1: k1 > ky > 0 or k1 < ko < 0. Our automaton is W-wrapping, where W may be chosen
to be any number larger than k1. We encode the values of the counters C' and D in the values
of the clocks ¢ and d, respectively. We encode counter value r by clock value |k1|(%f)’" The
relationships ¢ = |k:1|(’,:—f)c and d = |k (’,z—f)D hold when ¢ = 0 or a = W (except when more than
one time interval of duration W is needed to simulate one computation step). The test C = 0
is implemented by two edges e; and ey, where pre(ej)(c) = [k1, k1] (corresponding to C = 0) and
pre(ez)(c) = [0, k2] (corresponding to C' # 0). Decrementing a counter corresponds to first checking
if it is zero as above, and if not, then multiplying the corresponding clock value by ’,z—; This is
implemented by two assignment lemma constructions in series as in Figure 15. In the first, 2 = ky;
it performs z := kjc. In the second, Z = keo; it performs ¢ := %z The bottom portion of Figure 15
contains a time portrait showing the operation of the decrementation fragment with W = 4, k; = 2,
and k2 = 1. Incrementing a counter corresponds to multiplying the corresponding clock value by
’Iz—i. It is done by reversing these assignments, as in Figure 16. First z := kqc is performed, and
then ¢ := %z The bottom portion of Figure 16 contains a time portrait showing the operation of
the incrementation fragment with W =4, ky = 2, and k2 = 1.

Case 2: ko = 0. In the remaining figures, we omit the wrapping edges required for the clock d.
The construction is insensitive to the sign of k1. The encoding of the two-counter machine is given
by counter value r corresponding to clock value 2!~". We use wrapping constant 4. Decrementing
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Figure 15: Counter decrement: multiplying ¢ by ,’2—; using the two-slope variable z
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Figure 16: Counter increment: multiplying ¢ by ’,z—f using the two-slope variable z

a counter corresponds to doubling the corresponding clock. The doubling procedure is given in
Figure 17. The idea is to perform z := kjc using the assignment lemma, then to put 2 = 0 until
c reaches W again, and then to put 2 = k; so that when a reaches W, z = 2kyvy, where v is the
original value of ¢. Then perform ¢ := %z with the assignment lemma. The lower portion of the
figure gives a time portrait illustrating the operation of the fragment for k; = 2. Halving ¢ requires
two auxiliary clocks  and y. First, a value is guessed in . Then y := 2z is performed using the
above doubling procedure. Then ¢ = y is checked by the equality lemma, and if this succeeds, then

¢ := z is performed using the assignment lemma.

Case 3: ko < 0 < ky. First suppose |ka| < |k1]. We use clock value kl(%)r to encode counter
value r. The wrapping constant W can be any number larger than k;. But now we use two
synchronization clocks a and b. Clock ¢ is synchronized with a, and clock d is synchronized with b.
The relationship ¢ = kl(%)c holds when a = 0 or a = W, and the relationship d = kl(%)D holds

when b = 0 or b = W. To multiply ¢ by “’z—;|, we first perform z := kjc and reset ¢ to 0. Then we

put 2 = ko, and when z reaches 0, we reset a to 0. At this point ¢ = |’,z—;|'y, where v is the original
value of ¢. See Figure 18. The bottom portion of the figure contains a time portrait for W = 4,
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Figure 17: Doubling ¢ using variable z taking slopes 0, &;
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Figure 18: Multiplying ¢ by % when k2 < 0 < kq

k1 =2, and ko = —1. To multiply ¢ by ’,:—f, simply reverse the slopes of z. Le., perform z := koc,
reset ¢ to 0, then put 2 = k; and when z reaches 0, reset a to 0. See Figure 19. The bottom portion

of the figure contains a time portrait for W =4, k; = 2, and kp = —1.
ka| > |k1|, we use clock value |k2|(|’,§—;|)’" for counter value r, which simply switches the roles
of multiplying by \II:_;\ and multiplying by % Finally, suppose k2 = —k;. In this case we use

If

clock value 2!=" for counter value r, and the wrapping constant is 4. Again we use separate
synchronization clocks for ¢ and d. To double ¢, perform z := kjc, and then put 2 = —k;, resetting
a when 2 reaches 0. See Figure 20, which gives the construction, and also a time portrait for k1 = 3.
Halving ¢ is done by nondeterministically guessing the midpoint of the interval of time between
¢ =4 and a = 4. The guess is checked by starting 2z at value 0, giving z at slope kj for the first half,
and slope —k; for the second half. If z returns to 0 at the same instant that a reaches 4, the guess
was correct. See Figure 21, which gives the construction and a time portrait for ky =5, W =4. 1

4.2 Generalized Automata

A slight generalization of the invariant, activity, preguard, postguard, or update function leads to
the undecidability of rectangular automata, even under the stringent restrictions of simplicity and
initialization.
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Figure 19: Multiplying ¢ by i—f when k2 < 0 < kq
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Figure 20: Doubling ¢ when k2 = —k1

Assignment updates. The update function can be generalized to allow the value of one variable
to be assigned to another variable. An assignment update assigns to each edge e both an update set
upd(e) C {1,...,n} and an assignment function assign(e): {1,...,n} — {1,...,n}. The transition-
step relation % is then redefined as follows: (v,x) -2 (w,y) iff there is an edge e = (v,w) with
obs(e) = o, x € pre(v), y € post(w), and for all i & upd(e), Yi = Tassign(s)- Using assignment
updates and one skewed clock, or assignment updates and one memory cell, the proof of Theorem 4.1
can be duplicated. The latter gives a new proof of a result from [Cer92].

Corollary 4.2 For every slope k € Q\ {0,1}, the reachability problem is undecidable for simple
(initialized) automata with one skewed clock of slope k (resp. one memory cell) and assignment
updates.

Proof. First assume k£ > 0. With assignment updates, it is simple to multiply the value of the clock
¢ by k when a skewed clock z of slope k£ is available. Simply use the assignment lemma to perform
z := ke, and then use an assignment update to perform ¢ := z. To divide ¢ by &, do the reverse: use
an assignment update to perform z := ¢, and then use the assignment lemma to perform ¢ := %z

We give the construction in Figure 22, along with a time portrait for £k =3, W = 4.

Now assume k£ < 0 and k& # —1. We use one synchronization clock a for clock ¢, and another
synchronization clock b for clock d, as in the proof of Theorem 4.1 for £ < 0. To multiply ¢ by |k|,
perform z := kc by the assignment lemma, and then perform ¢ := z;c¢ := 0 with an assignment
update. If v was the original value of ¢, then after this sequence a = kv and ¢ = 0. After kv time
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Figure 21: Halving ¢ when ko = —Fk;
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Figure 22: Multiplying by £ > 0 with assignment updates and a skewed clock of slope k

units pass, ¢ = 0 and ¢ = kv. See Figure 23, which includes the construction and a time portrait
for k = —2, W = 4. To divide by |k|, perform z := ¢; ¢ := 0 with an assignment update, and then
—'Iﬁ time units later when z reaches 0 (and ¢ reaches ‘—'Yk—|), perform a := 0. The constructions for
)c = —1 are similar.

When k = 0, we have a memory cell, which we refer to as m. We use clock value 21~ for counter
value r. The doubling procedure is given in Figure 24. Simply assign m := ¢ when o = 0, then wait
for ¢ to reach 4 and then assign ¢ := m. When a reaches 4, ¢ has twice its original value. Halving
is done by guessing and checking, as in Case 2 of Theorem 4.1. B

Triangular preguards, postguards, and invariants. The preguard, postguard, and invariant
functions can be generalized to allow comparisons between the values of variables. A triangular
restriction < is a partial order on {1,...,n}. A triangular preguard (resp. postguard) assigns to
each edge e both a rectangular region pre(e) (resp. post(e)) and a triangular restriction <.. The
transition-step relation = is then redefined as follows: (v,x) 2% (w,y) iff there is an edge e = (v, w)
with obs(e) = o, x € pre(v), y € post(w), for all i ¢ upd(e), z; = y;, and for all ¢ and j with 7 <. 7,
z; < z; (resp. y; < y;). A triangular invariant assigns to each vertex v both a rectangular region
inv(v) and a triangular restriction <,. The set Q4 of states of A is then redefined to contain a
state (v,x) € V x R™ iff x € inv(v) and for all ¢ and j with ¢ <, j, z; < ;. Using one skewed clock
and any of these three types of triangular conditions, the proof of Theorem 4.1 can be duplicated.

Corollary 4.3 For every slope k € Q\ {0,1}, the reachability problem is undecidable for simple
(initialized) automata with one skewed clock of slope k and triangular preguards (resp. postquards;
invariants).

Proof. Triangular preguards, postguards, or invariants allow comparisons between the variables of
the form z = y. This allows an assignment update y := z to be simulated by the unguarded reset
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Figure 23: Multiplying by |k

with assignment updates and a skewed clock of slope k < 0
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Figure 24: Doubling with assignment updates and a memory cell

y := 0 followed later in time by the test y = x. It follows that the constructions of Corollary 4.2 can
be implemented with triangular preguards, postguards, or invariants replacing assignment updates.
We give an example multiplication construction (performing ¢ := ke) for triangular invariants and
k = 2 in Figure 25. The “c = 2” inside of the rightmost vertex indicates the triangular invariant. m

Triangular activities. The activity functions can be generalized to impose an order on the
derivatives of variables. A triangular activity assigns to each vertex v both a rectangular region
act(v) and a triangular restriction <,. For ¢ > 0, the time-step relation = is then redefined as
follows: (v,x) L (w,y) iff v =w, ¥== € act(v), and for all i and j with ¢ <, j, yi — ;i < y; — z;.
A triangular activity is global if the functions act and M. <, are both constant functions on the
set of vertices. Using three variables and a global triangular activity, we can simulate the behavior

of the two-slope clock from Theorem 4.1.

Corollary 4.4 The reachability problem is undecidable for 3-simple automata with a global trian-
gular activity.

Proof. For this proof we use three variables z,y, z with global triangular activity 1 <2 <y < 2 < 2.
The doubling construction is given in Figure 26. The variable y will actually take only slopes 1
and 2; the former is accomplished by resetting z to 0 when a wraps to 0, and then later testing
a = 4 A\ z = 4; similarly the latter is accomplished by resetting  to 0 when a wraps to 0, and then
later testing a = 4 A 2 = 8. In this way, the two-slope variable constructions of Theorem 4.1 can
be duplicated. m

42



€1 eg e3 eq e5 eg
er

time

Figure 25: Doubling with triangular invariants and a skewed clock
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Figure 26: Doubling with the triangular activity 1 <z <y <2<2

A decidable class of triangular activities

Last, we show that symmetric triangular activities are harmless if all variables that are unrelated by
the activity are completely asynchronous. A clock-partition activity is a global triangular activity
that assigns to each vertex v the rectangular region [0, c0)™ and a symmetric triangular restriction <.
Note that < is thus an equivalence relation, and consequently induces a partition of {1,...,n}.
This can be viewed as a partition of a distributed system into individual processes. Clock-partition
activities, then, model distributed systems that are composed of perfectly asynchronous processes,
where the clocks within each process are perfectly synchronized.

Let A be a rectangular automaton with a clock-partition activity. The automaton A cannot have
bounded nondeterminism, because of its unbounded activity function. We say that A has bounded
assignments if Init 4 is bounded, and for every e € E4 and every i € upd(e), post(e); is bounded.

Theorem 4.5 The reachability problem and the w-language emptiness problem for rectangular au-
tomata with clock-partition activities and bounded assignments are PSPACE-complete.

Proof. We show that if the clock-partition activity of an automaton A is the trivial equivalence
relating each pair of indices, then A has an effective finite timed bisimulation. It follows that any
finite product of such systems again has a finite timed bisimulation, the product of the component
bisimulations [Hen95].

Note that a rectangular automaton A with the trivial clock partition activity is essentially a timed
automaton in which the time scale varies, for each variable moves at the same rate as all of the
others. It follows that the time-abstract bisimulation of timed automata [AD94] (called region
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equivalence) is a finite timed bisimulation for A. The reachability and w-language emptiness prob-
lems can be solved in space log B, where B is the number of bisimulation equivalence classes. This
gives the desired PSPACE inclusions. PSPACE-hardness follows from the PSPACE-hardness of
timed automata. ®

5 Conclusion

There are three uniform extensions of finite-state machines with real-valued variables. Timed au-
tomata [AD94] equip finite-state machines with perfect clocks, and the reachability problem for
timed automata is decidable. Linear hybrid automata [ACHH93] equip finite-state machines with
continuous variables whose behavior satisfies linear constraints, and the reachability problem for
linear hybrid automata is undecidable. Yet because the Pre and Post operations of linear hybrid
automata maintain the linearity of zones, the reachability problem is semidecidable, and thus the
verification of many linear hybrid systems is possible. This observation has been exploited in the
model checker HYTECcH [AHH93, HHWT95]. Initialized rectangular automata equip finite-state
machines with drifting clocks, that is, continuous variables whose behavior satisfies rectangular
constraints. Initialized rectangular automata lie strictly between timed automata and linear hy-
brid automata, at the boundary of decidability. One one hand, initialized rectangular automata
generalize timed automata without incurring a complexity penalty. Their reachability problem is
PSPACE-complete, and under the natural restriction of bounded nondeterminism, so is their w-
language emptiness problem. (We do not know the complexity of the w-language emptiness problem
without the restriction of bounded nondeterminism.) On the other hand, initialized rectangular
automata form a maximal decidable class of hybrid systems, because even the simplest uninitialized
or non-rectangular systems have undecidable reachability problems.

In summary, there are two factors for decidability: (1) rectangularity, that is, the behavior of all
variables is decoupled; (2) initialization, i.e., a variable is reinitialized whenever its activity changes.

Initialized rectangular automata are also interesting from a practical perspective. First, the model
checker HYTECH terminates on every initialized rectangular automaton with bounded invariants,
and on every initialized rectangular automaton after a linear preprocessing step. Second, many
distributed communication protocols assume that local clocks have bounded drift. Such protocols
are naturally modeled as initialized rectangular hybrid automata. HYTECH has recently been
applied successfully to verify one such protocol used in Philips audio components [HW95]. Third,
initialized rectangular automata can be used to conservatively approximate hybrid systems with
general dynamical laws [OSY94, PV95, HH95a].

Acknowledgement. We thank Howard Wong-Toi for a careful reading and for A”.
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