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Abstract

We generalize the concept of “systematic risk” to a broad class of risk

measures potentially accounting for high distribution moments, downside risk,

rare disasters, as well as other risk attributes. We offer two different ap-

proaches. First is an equilibrium framework generalizing the Capital Asset

Pricing Model, two-fund separation, and the security market line. Second is

an axiomatic approach resulting in a systematic risk measure as the unique

solution to a risk allocation problem. Both approaches lead to similar results

extending the traditional beta to capture multiple dimensions of risk. The re-

sults lend themselves naturally to empirical investigation.

Risk is a complex concept. The definition of risk and its implications have long

been the subject of both academic and practical debate. This issue has gained even

more prominence during the recent financial crisis, when markets and individual

assets were hit by catastrophic events whose ex-ante probabilities were considered

negligible. Indeed, these events demonstrate that “risk” accounts for much more

than what is measured by the variance of the returns of an asset. High distribution

moments, rare disasters, and downside risk are just some of the different aspects

that may be of interest when measuring risk.
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In this paper we allow “risk” to take a very general form. We then revisit the

classic notion of “systematic risk,” which reflects the contribution of an asset to the

risk of a portfolio. Traditional measures of systematic risk focus on a narrow set

of risk attributes. In particular, the most well-known and widely used measure of

systematic risk is the beta of the asset, which is the slope from regressing the asset

returns on portfolio returns (Sharpe (1964), Lintner (1965a, b), and Mossin (1966)).

Beta is the contribution of an asset to the risk of the portfolio as measured by the

variance of its return. It sets the foundations for all risk-return analysis as part of

the Capital Asset Pricing Model (CAPM). However, the traditional beta ignores all

aspects of risk other than the variance, such as high distribution moments and rare

disasters.

We offer two different approaches to generalizing systematic risk. First we

study an equilibrium framework modifying the traditional CAPM to allow for a

broad set of risk attributes. The equilibrium approach allows us to extend classic

results such as the geometry of efficient portfolios, the two-fund separation theorem,

the efficiency of the market portfolio, and the security market line. Second is an

axiomatic approach in which we recast the issue as a risk allocation problem. We

then specify desirable properties of systematic risk, leading to a unique solution.

Both approaches yield similar results, generalizing the traditional beta to reflect a

variety of risk attributes.

We begin with a broad definition of what would constitute a measure of risk. We

define a risk measure as any mapping from random variables to real numbers. That

is, a risk measure is simply a summary statistic that encapsulates the randomness

using just one number. The variance (or standard deviation) is obviously the most

commonly used risk measure. However, many other risk measures have been pro-

posed and used. For example, high distribution moments can account for skewness

and tail risk, downside risk accounts for the variation in losses, and value at risk is a

popular measure of disaster risk. Recently, Aumann and Serrano (2008) and Foster

and Hart (2009) offered two appealing risk measures that account for all distribution

moments and for disaster risk.1 All of these measures fall under our wide umbrella

1See Hart (2011) for a unified treatment of these two measures and Kadan and Liu (2014) for an

analysis of the moment properties of these measures.
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of risk measures. Moreover, any linear combination of risk measures is itself a risk

measure. Thus, one can easily create measures of risk that account for a number of

dimensions of riskiness, assigning the required weight to each dimension.

Our first analysis generalizes the classic CAPM to allow for a broad set of risk

measures. The idea is simple. In the classic CAPM setting investors are assumed to

have mean-variance preferences. That is, their utility is increasing in the expected

payoff and decreasing in the variance of their payoffs. In our generalized setting

we assume that investors have mean-risk preferences, where the term “risk” stands

for a host of potential risk measures. We provide mild sufficient conditions under

which these preferences are locally consistent with expected utility in the sense of

Machina (1982).

We consider an exchange economy with a finite number of risky assets, one

risk-free asset, and a finite number of investors with mean-risk preferences. As

usual, in equilibrium each investor chooses a portfolio of assets from the set of ef-

ficient portfolios, minimizing risk for a given expected return. However, due to the

generality of the risk measure, the geometry of this set is more complicated than

in the case where risk is measured by the variance. Nevertheless, we establish suf-

ficient conditions on the risk measure under which the solution to each investor’s

problem satisfies Tobin’s (1958) two-fund separation property. That is, each in-

vestor’s optimal portfolio of assets can be presented as a linear combination of the

risk-free asset and a unique portfolio of risky assets. We demonstrate that a variety

of risk measures satisfy these sufficient conditions, where the variance is just one

special case. A consequence of two-fund separation is that the equilibrium market

portfolio lies on the efficient frontier. Using this we establish a generalization of the

classic security market line (SML) to a large class of risk measures. Specifically, in

equilibrium, the expected return of each risky asset i satisfies

E (z̃i) = rf + BRi
(
E
(
z̃M
)
− rf

)
,

where z̃i is the risky return of asset i, z̃M is the risky return of the market portfolio,

rf is the risk-free rate, and BRi is the systematic risk of asset i given the risk measure

R. Moreover, BRi is given in closed form as the marginal contribution of asset i

to the market risk scaled by the weighted average of such marginal contributions
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across all assets in the economy.

In the special case in which R is the variance, BRi coincides with the traditional

beta. More generally, we show that our equilibrium setting is versatile enough

to allow for a variety of risk attributes such as tail risk, downside risk, and rare

disasters, among others. Our setting can also readily account for risk measures that

reflect several of these risk attributes, assigning different weights to each of them.

We illustrate that in all these cases one can readily derive closed form solutions for

the generalized betas. Typically, these betas reflect the covariation of the return of

asset i with some function of the market return. In general, these betas do not take

the form of a regression coefficient. Nevertheless, they can be estimated directly

from return data and applied in a standard Fama-MacBeth (1973) cross-sectional

analysis.

The CAPM equilibrium can be thought of as a special case of the more general

problem of risk allocation. Indeed, the CAPM beta measures the contribution of

one asset to the risk of the market portfolio. Many other problems of considerable

economic import require estimating the contribution of one asset to some specific

portfolio of assets (not necessarily the market portfolio). For example, the gov-

ernment is constantly interested in the contribution of particular banks and other

financial institutions to the total market risk (known as systemic risk). Banks and

other financial institutions may also find it useful to calculate the contribution of

different assets on their balance sheet to the total risk of the institution, so that each

asset or business unit could be “taxed” appropriately. All of these problems are

essentially risk allocation problems in which total risk should be allocated among

the constituents of a portfolio. We broaden the term “systematic risk” to designate

solutions to such problems. That is, a systematic risk measure is a vector specifying

the portion of the total portfolio risk allocated to each asset in the portfolio. The

literature has not yet presented a general solution to this problem for a broad set of

risk measures and for arbitrary portfolios.

In the second part of this paper we tackle this problem from an axiomatic point

of view. We state desirable properties of systematic risk measures, which we call

axioms, and we look for solutions that satisfy these properties. Unlike in the equi-

librium setting, here we do not need to impose almost any structure on the risk
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measure. Moreover, the portfolio of assets is arbitrary and is not limited to the

market portfolio.

We state four economically plausible axioms that systematic risk measures are

expected to satisfy. We then show that these four axioms imply a unique systematic

risk measure which applies to all risk allocation problems. This measure is given

by a scaled version of the Aumann-Shapley (1974) diagonal formula, which was

developed as a solution concept in cooperative game theory. Essentially, this for-

mula calculates for each asset the average of its marginal contributions to portfolios

along a diagonal starting from the origin and ending at the portfolio of interest. In

the common case in which the risk measure is homogeneous of some degree, the

solution becomes very simple, and it coincides with the generalized beta obtained

in the equilibrium setting above. In particular, it assigns to each asset its marginal

contribution to total portfolio risk scaled by the weighted average of marginal con-

tributions of all assets. Our proof of the axiomatization result relies on a mapping

between risk allocation problems and cost allocation problems studied in Billera

and Heath (1982).

The paper proceeds as follows. Section I discusses the related literature. In

Section II we define the notion of risk measures. Section III studies the equilib-

rium setup and offers a generalization of the CAPM. In Section IV we present the

axiomatic approach. Section V concludes. Proofs of the main theorems are in Ap-

pendix A, proofs of propositions and other derivations are in Appendix B, and other

technical results are provided in an Online Appendix.

I. Related Literature

Our paper contributes to several strands of the literature. First, the paper adds to

the growing literature on high distribution moments, disaster risk, and other risk

attributes, as well as their effect on prices. Rubinstein (1973), Kraus and Litzen-

berger (1976), Jean (1971), Kane (1982), and Harvey and Siddique (2000) argue

that investors favor right-skewness of returns, and demonstrate the cross-sectional

implications of this effect. In addition, Barro (2006, 2009), Gabaix (2008, 2012),

Gourio (2012), Chen, Joslin, and Tran (2012), and Wachter (2013) study the aver-
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sion of investors to tail risk and rare disasters. Ang, Chen, and Xing (2006) and

Lettau, Maggiori, and Weber (2014) show that downside risk is a good explana-

tory variable for returns in both equity and currency markets. Our paper adds to

this literature by outlining a general approach to measuring systematic risk that can

capture the contribution of an asset to a range of risk dimensions such as high dis-

tribution moments, downside risk, and rare disasters. Our framework is flexible and

can account for either one risk aspect or a combination of several of them.

Our equilibrium approach follows a reduced form, where preferences are de-

scribed through the aversion to broadly defined risk. Our main results are derived

without the need to specify an exact form of the utility function. This is differ-

ent from the approach in consumption-based asset pricing models (e.g., Bansal and

Yaron (2004) and Campbell and Cochrane (1999)). These models rely on the spec-

ification of a particular utility function (such as Epstein and Zin (1989) preferences

or preferences reflecting past habits). One advantage of our approach is that it

provides a parsimonious and simple one-factor model that can capture different as-

pects of risk in a manner that may lend itself naturally to empirical investigation.

Another feature of our approach is that, unlike consumption-based models, it re-

sorts to prices directly. Thus, one can potentially test our model without relying on

consumption data.

The paper also adds to the growing literature on risk measurement. This lit-

erature dates back to Hadar and Russell (1969), Hanoch and Levy (1969), and

Rothschild and Stiglitz (1970) who extend the notion of riskiness beyond the “vari-

ance” framework by introducing stochastic dominance rules. Artzner et al. (1999)

specify desirable properties of coherent risk measures, and Rockafellar, Uryasev,

and Zabarankin (2006a) introduce the notion of generalized deviation measures.

More recently, Aumann and Serrano (2008), Foster and Hart (2009, 2013), and Hart

(2011) have come up with appealing risk measures that generalize conventional sto-

chastic dominance rules. Notably, all the risk measures discussed in this literature

are idiosyncratic in nature. Our paper contributes to this literature by specifying a

method to calculate the systematic risk of an asset for any given risk measure. This

in turn allows us to study the fundamental risk-return trade-off associated with a

risk measure.
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Our paper also adds to the recent literature on systemic risk, which is the risk

that the entire economic system collapses. Adrian and Brunnermeier (2014) define

the ∆CoV aR measure as the difference between the value at risk of the banking

system conditional on the distress of a particular bank and the value at risk of the

banking system given that the bank is solvent. Acharya et al. (2010) propose the

Systemic Expected Shortfall measure, which estimates the exposure of a particular

bank in terms of undercapitalization to a systemic crisis. Huang, Zhou, and Zhu

(2009) measure the systemic risk of a financial institution by the price of insurance

against financial distress. Our paper takes a general approach to the problem of

estimating the contribution of one asset to the risk of a portfolio of assets. We

provide an easy-to-calculate and intuitive measure that applies to a wide variety of

risk measures, as well as in an array of contexts.

Our paper also contributes to the literature studying conditions for two-fund

separation. The idea of two-fund separation was introduced by Tobin (1958). Since

then the literature discussed different sufficient conditions in terms of either agents’

utility (e.g., Cass and Stiglitz (1970) and Dybvig and Liu (2015)) or the distribution

of returns (e.g., Ross (1978)). Here we take a somewhat different approach, as we

specify sufficient conditions for two-fund separation in terms of properties of the

risk measure. This approach is similar to the one taken in Rockafellar, Uryasev, and

Zabarankin (2006b), who consider general deviation measures. Our restrictions on

risk measures are weaker than theirs as we do not require homogeneity. All of these

papers consider two-fund separation only and do not provide any generalization of

the notion of systematic risk, which is the focus of our paper.

Finally, the paper adds to an extensive list of studies applying the Aumann-

Shapley solution concept in different contexts, e.g., Billera, Heath, and Raanan

(1978), Samet, Tauman, and Zang (1984), Powers (2007), and Billera, Heath, and

Verrecchia (1981). Tarashev, Borio, and Tsatsaronis (2010) use the Shapley value

(Shapley (1952), a discrete version of the Aumann-Shapley solution concept) to

measure systemic risk. Our paper offers theoretical foundations for their practical

approach.
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II. Risk Measures and Their Properties

Let (Ω,F , P ) be a probability space, where Ω is the state space, F is the σ-algebra

of events, and P (·) is a probability measure. As usual, a random variable is a

measurable function from Ω to the reals. In the context of investments, we typically

consider random variables representing the payoffs or the returns of financial assets.

Thus, we often refer to random variables as “investments” or “random returns.”

We generically denote random variables by z̃, which is a shorthanded notation for

z̃ (ω) , ∀ω ∈ Ω. We restrict attention to random variables for which all moments

exist. We denote the expected value of z̃ by E (z̃) and its kth central moment by

mk (z̃) = E (z̃ − E (z̃))k, where k ≥ 2.

A risk measure is simply a function that assigns to each random variable a single

number summarizing its riskiness. Formally,

Definition 1 A risk measure is a function mapping random variables to the reals.2

We generically denote risk measures by R (·) . The simplest and most com-

monly used risk measure is the variance (R (z̃) = m2 (z̃)). However, many other

risk measures have been proposed in the literature, capturing higher distribution

moments and other risk attributes. A risk measure R (·) is homogeneous of degree

k, if for any random return z̃ and positive number λ > 0,

R (λz̃) = λkR (z̃) .

A weaker requirement, which is sufficient for most of our results, is that the risk

ranking between two investments does not depend on scaling. We say that R (·)
is scaling independent if for all λ > 0 and any two random returns z̃1 and z̃2,

R (z̃1) > R (z̃2) implies R (λz̃1) > R (λz̃2) .

The next property of risk measures which will become useful is convexity. For-

mally, we say that a risk measure R (·) is convex if for any two random returns z̃1

2Strictly speaking, a risk measure is also a function of the underlying probability measure P.
However, in our analysis we fix P throughout, and yet consider different random variables. Thus,

it is convenient to think about risk measures as functions of the random variables, viewing the

probability measure as a fixed parameter.
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and z̃2, and for any λ ∈ (0, 1) , we have

R (λz̃1 + (1− λ) z̃2) ≤ λR (z̃1) + (1− λ)R (z̃2) ,

with equality holding only when z̃1 = z̃2 with probability 1. Notice that λz̃1 +

(1− λ) z̃2 can be considered as the return of a portfolio that assigns weights λ and

1 − λ to z̃1 and z̃2, respectively. Then the convexity condition says that the risk

of the portfolio should not be higher than the corresponding weighted average risk

of the constituent investments. Thus, convexity of a risk measure captures the idea

that diversifying among two investments lowers the total risk.

Next we would like to formalize a property dealing with the type of assets that

are risk-free. We say that a risk measure R (·) has the risk-free property, if (i)

R (z̃) ≥ 0 for all z̃; (ii) R (z̃) = 0 if and only if P ({z̃ = c}) = 1 for some constant

c; and (iii) R (z̃1 + z̃2) = R (z̃1) whenever R (z̃2) = 0. Namely, R has the risk-

free property if the only assets with zero risk are those that pay a constant amount

with probability 1, if all other assets have strictly positive risk, and if adding a zero-

risk asset does not change risk. In what follows, we often refer to assets satisfying

R (z̃) = 0 as risk-free.

Risk measures can be applied to individual random variables or to portfolios of

random variables. Formally, assume there are n random variables represented by

the vector z̃ = (z̃1, ..., z̃n) . A portfolio is a vector x = (x1, ..., xn) ∈ Rn, where

xi is the dollar amount invested in z̃i.
3 Then, x · z̃ =

∑n
i=1 xiz̃i is itself a random

variable. We then say that the risk of portfolio x is simply R (x · z̃) . When the

vector of random variables is unambiguous, we often abuse notation and denote

R (x) as a shorthand for R (x · z̃). We say that a risk measure is smooth if for any

vector of random returns z̃ = (z̃1, ..., z̃n) and for all portfolios x = (x1, ..., xn) we

have thatR (x · z̃) is continuously differentiable in xi for i = 1, ..., n.We then write

Ri (x) (or Ri (x · z̃)) for the partial derivative of R (·) with respect to the amount

invested in the ith asset evaluated at x.4

3Throughout the paper we denote vectors using bold notation (for both numbers and random

variables).
4Note that we use subscripts to denote both elements of a vector and partial derivatives. For

example, xi is the ith element of the vector xwhileRi (·) is the partial derivative ofR (·) considered

as a function of portfolio amounts. This notation does not result in any ambiguity since the only case
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When restricting attention to homogeneous risk measures, the properties dis-

cussed above are maintained when taking convex combinations of different risk

measures with the same degree of homogeneity. Thus, we can easily create new

risk measures satisfying these properties from existing homogeneous risk measures.

That is, let s be a positive integer, let R1 (·) , ..., Rs (·) be risk measures, and choose

θ = (θ1, ..., θs) with θj > 0 ∀j. We can then define a new risk measure by

Rθ (z̃) =

s∑
j=1

θjR
j (z̃) ,

where θj reflects the weight assigned to the risk attribute measured by Rj . We then

have the following trivial but useful lemma.

Lemma 1 Assume that each Rj is homogeneous of degree k, convex, smooth, and

satisfies the risk-free property. Then, Rθ also satisfies all of these properties.

A. Examples of Risk Measures

Below we present some popular examples of risk measures and discuss their prop-

erties. Each of these examples highlights a different aspect of risk that may be of

interest in applications. These examples will be crucial later in the paper when we

demonstrate how to apply our main results.

Example 1 Even central moments and normalized even central moments. For

any integer k ≥ 2 even, the central momentR (z̃) = mk (z̃) is a risk measure which

is homogeneous of degree k, convex, smooth and satisfies the risk-free property.

The normalized central moment wk (z̃) = (mk (z̃))1/k
is also a risk measure. For

example, when k = 2, wk (z̃) is the standard deviation of z̃. Normalized central

moments satisfy all of the above properties as well (with homogeneity of degree

1). Indeed, homogeneity, smoothness, and the risk-free property are trivial in these

cases. Convexity stems from the following result, which shows that wk (z̃) is convex,

and thus mk (z̃) is a fortiori convex.

in which the subscript should be interpreted as a partial derivative is when applied to the risk measure

considered as a function of portfolio amounts.
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Proposition 1 For all k ≥ 2 even, R (z̃) = wk (z̃) is a convex risk measure.

Example 2 Odd central moments and normalized odd central moments. For any

integer k ≥ 3 odd, the central moment R (z̃) = mk (z̃) is a risk measure which

is homogeneous of degree k and smooth. Similarly, the normalized odd moments

wk (z̃) are homogeneous of degree 1 and smooth. In contrast to the even central

moments, neither convexity nor the risk-free property holds in this case.5

Evidently, the feature of odd central moments that prevents them from satisfy-

ing convexity and the risk-free property is that they admit negative values. A natural

way to fix this is to focus on just one side of the distribution. The next example fol-

lows this idea, allowing one to readily incorporate aspects of odd central moments

(such as skewness) into risk measures that also satisfy convexity and the risk-free

property.

Example 3 Downside risk. When considering risk, investors sometimes restrict

attention to the lower outcomes of the distribution, in particular to those which

fall below the mean. Such an approach is called downside risk. Formally, for any

integer k ≥ 2, define the downside risk of order k of z̃ as

DRk (z̃) = (−1)k
(

E
(
[z̃ − E (z̃)]−

)k) 1
k
,

where [t]− = min (t, 0) for t ∈ R. Often, this measure is used in the special case

of k = 2. More generally, for any k ≥ 2, DRk (z̃) is a risk measure which is

homogeneous of degree 1, smooth, and satisfies the risk-free property. The next

proposition establishes that this risk measure is also convex.

Proposition 2 For any k ≥ 2, DRk (z̃) is a convex risk measure.

5To see the former, consider the simple example of two random returns, z̃1 and z̃2, which are

independent and have negative third central moments m3 (·). Then, by independence and the homo-

geneity of central moments,

m3

(
1

2
z̃1 +

1

2
z̃2

)
= (

1

2
)3m3(z̃1) + (

1

2
)3m3(z̃2) >

1

2
m3(z̃1) +

1

2
m3(z̃2),

since m3(z̃1) +m3(z̃2) < 0. To see the latter, note that the third moment can be negative, violating

the risk-free property.
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Example 4 Value at risk. A risk measure widely used in financial risk management

is the Value at Risk (VaR), designed to capture the risk associated with rare disas-

ters. VaR measures the amount of loss not exceeded with a certain confidence level.

Formally, given some confidence level δ ∈ (0, 1), for any random return z̃, the VaR

measure is defined as the negative of the δ-quantile of z̃, i.e.,

(1) VaRδ(z̃) = − inf {z ∈ R : F (z) ≥ δ} ,

where F (·) is the cumulative distribution function of z̃. Notice that we include the

minus sign to reflect the fact that a larger loss indicates higher risk. If z̃ is con-

tinuously distributed with a density function f (·), then (1) is implicitly determined

by

(2)

∫ −VaRδ(z̃)

−∞
f (z) dz = δ.

This risk measure is homogeneous of degree 1 and smooth.6 For any risk-free return

z̃ with P ({z̃ = c}) = 1, we have VaRδ(z̃) = −c, implying that the VaR of risk-free

assets depends on the risk-free return. Hence, the risk-free property is not satisfied.

In addition, it is not hard to find examples where convexity is violated for the VaR

measure.

Example 5 Expected shortfall and demeaned expected shortfall.7 These mea-

sures capture the average loss from disastrous events, defined as those involving a

loss larger than the VaR. Formally, assume that z̃ can be represented by a density

f (·). Given some confidence level δ ∈ (0, 1), for any random return z̃ the Ex-

pected Shortfall (ES) is the negative of the conditional expected value of z̃ below

the δ-quantile. That is,

(3) ESδ(z̃) = −1

δ

∫ −VaRδ(z̃)

−∞
zf (z) dz.

Additionally, when z̃ = c (a constant) with probability 1 we set ESδ(z̃) = −c.
Similar to VaR, ES is homogeneous of degree 1 and is smooth, but it does not satisfy

6Formally, smoothness follows if a joint density of the random returns in a portfolio exists. This

is shown using an application of the implicit function theorem to (2). We omit the proof for brevity.
7Expected shortfall is sometimes termed “conditional VaR.”
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the risk-free property. To ensure that the risk-free property is satisfied it is useful to

consider the demeaned version of ES defined as

DESδ(z̃) = −1

δ

∫ −VaRδ(z̃)

−∞
(z − E (z̃)) f (z) dz = ESδ(z̃) + E (z̃) .

Similar to ES, DES also captures the expected loss from a rare disaster. This risk

measure is also homogeneous of degree 1, smooth, and it satisfies the risk-free

property.8 Moreover, unlike VaR, both ES and DES satisfy the convexity property as

shown in the next proposition.

Proposition 3 For any δ ∈ (0, 1), R (z̃) = ESδ(z̃) and R (z̃) = DESδ(z̃) are

convex.

Example 6 The Aumann-Serrano and Foster-Hart risk measures. Two measures

of riskiness have been proposed by Aumann and Serrano (2008, hereafter AS) and

Foster and Hart (2009, hereafter FH). These measures generalize the notion of

second-order stochastic dominance (SOSD). The AS measure RAS (z̃) is given by

the unique positive solution to the implicit equation

(4) E

[
exp

(
− z̃

RAS (z̃)

)]
= 1.

The FH measure RFH (z̃) is given by the unique positive solution to the implicit

equation

(5) E

[
log

(
1 +

z̃

RFH (z̃)

)]
= 0.

Both these measures are homogeneous of degree 1 and smooth. These two risk

measures also satisfy the convexity property.9 By contrast, these two measures do

not satisfy the risk-free property.10

8The risk-free property follows since ESδ(z̃) + E (z̃) ≥ 0 for all significance level 0 < δ < 1
with equality if and only if z̃ is a constant with probability 1.

9This follows since these risk measures are subadditive and homogeneous of degree 1.
10To see this, note that for any constant c > 0, z̃ + c first-order stochastically dominates z̃. Since

RAS is consistent with first-order stochastic dominance, we have that RAS (z̃ + c) < RAS (z̃) .
A similar argument applies to RFH . Also, technically, these two risk measures are not defined for

risk-free assets.
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All of the risk measures discussed thus far are homogeneous of some degree.

However, most of our results do not require homogeneity. The next set of examples

illustrates how nonhomogeneous risk measures satisfying all of the other properties

can be constructed.

Example 7 Nonhomogeneous risk measures. Let R be a risk measure which is

homogeneous of some degree k, convex, smooth, and satisfies the risk-free property,

and let h : [0,∞) → R be a strictly increasing, strictly convex, and continuously

differentiable function. Define a new risk measure R̂ by

R̂ (z̃) = h (R (z̃))− h (0) .

It is straightforward to verify that R̂ is scaling independent, convex, smooth, and

satisfies the risk-free property. However, R̂ may fail to be homogeneous of any

degree. For a concrete example, set h (x) = ex, and let R (z̃) = mk (z̃) for k even.

Then, R̂ (z̃) = eR(z̃) − 1 is not homogeneous of any degree and yet it satisfies all of

the other properties.

III. Systematic Risk in an Equilibrium Setting

Traditionally, systematic risk is derived from the CAPM equilibrium setting. We

will now present a generalized version of this model. We first outline the setup

of the model. We then study the geometry of solutions, and present a two-fund

separation result implying the efficiency of the market portfolio. Finally, we derive

a variant of the security market line, enabling us to obtain a generalization of the

traditional beta as a measure of systematic risk.

A. Model Setup

Investors, Assets, and Timing. Assume a market with n + 1 assets {0, ..., n} .
Assets 1, ..., n are risky and pay a random amount denoted by (ỹ1, ..., ỹn) . Asset

0 is risk-free, paying an amount ỹ0 which is equal to some constant y0 6= 0 with

probability 1. Denote ỹ = (ỹ0, ..., ỹn) . There are ` investors in the market, all of

whom agree on the parameters of the model. The choice set of each investor is
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Rn+1, where ζj ∈ Rn+1 represents the number of shares investor j chooses in each

asset i = 0, ..., n, i.e., ζj is a bundle of assets. Negative numbers represent short

sales, and we impose no short-sale constraints. The initial endowment of investor

j is a nonzero ej ∈ Rn+1
+ . We assume that

∑`
j=1 e

j
i > 0 for i = 1, ..., n. That is,

risky assets are in positive net supply. An allocation is an `-tuple A =
(
ζ1, ..., ζ`

)
consisting of a bundle ζj ∈ Rn+1 for each investor. An allocation A is attainable

if
∑`

j=1 ζ
j =

∑`
j=1 e

j , that is, if it clears the market. A price system is a vector

p = (p0, ..., pn) specifying a price for each asset. Similar to the standard CAPM

setting, there are two dates. At Date 0, investors trade with each other and prices

are set. At Date 1, all random variables are realized.

Risk and Preferences. The traditional approach features investors with mean-

variance preferences, i.e., they prefer higher mean and lower variance of invest-

ments. Instead, we assume that investors have mean-risk preferences. Formally,

fix a risk measure R (·) . The utility that investor j = 1, ..., ` assigns to a bundle

ζ ∈ Rn+1 is given by

(6) U j (ζ) = V j (E (ζ · ỹ) , R (ζ · ỹ)) ,

where V j is continuous, strictly increasing in its first argument (expected payoff)

and strictly decreasing in its second argument (risk of payoff), and quasi-concave.

Note that U j (ζ) cannot be in general supported as a von Neumann-Morgenstern

utility. Nevertheless, in the Online Appendix we show that if V j is differentiable

and if the risk measure is a differentiable function of a finite number of moments,

then U j (ζ) is a local expected utility function in the sense of Machina (1982).

Namely, comparisons of “close by” investments are well approximated by expected

utility. These conditions apply to a wide range of risk measures representing high

distribution moments.

An implication of quasi-concavity of V j is that when plotted in the mean-risk

space, the upper contour of each indifference curve is convex. Similar to the stan-

dard mean-variance case, we will assume that a risk-free asset cannot be created

synthetically from risky assets. That is, there is no redundant risky asset: for any

ζ = (ζ0, ζ1, ..., ζn) ∈ Rn+1 we haveR (ζ · ỹ) 6= 0 unless (ζ1, ..., ζn) = (0, ..., 0) .11

11In the standard mean-variance case this condition corresponds to the variance-covariance matrix
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Equilibrium. An equilibrium is a pair (p,A) where p 6= 0 is a price system

and A =
(
ζ1, ..., ζ`

)
is an attainable allocation, such that for each j ∈ {1, ..., `} ,

p ·ζj = p ·ej, and if ζ ∈ Rn+1 and U j (ζ) > U j
(
ζj
)

then p ·ζ > p ·ej . In words,

an equilibrium is a price system and an allocation that clear the market such that

each investor optimizes subject to her budget constraint. The next theorem specifies

conditions under which an equilibrium exists.

Theorem 1 Suppose that R (·) is convex, smooth, and satisfies the risk-free prop-

erty. Then, an equilibrium exists.

It is well known that the CAPM setting can yield negative or zero prices (see for

example Nielsen (1992)). The reason for this is that preferences are not necessarily

monotone in the number of shares. Specifically, the expected payoff to an investor’s

bundle increases as she holds more shares of a risky asset, but so does the risk. It

may well be that at some point, the additional expected payoff gained from adding

more shares to the bundle is not sufficient to compensate for the increase in risk. If

the equilibrium happens to fall in such a region then the asset becomes undesirable,

rendering a negative price. For our following results we will need that prices are

positive for all assets. The literature has suggested several ways to guarantee such

an outcome. In the Online Appendix we provide one sufficient condition which

follows Nielsen (1992). Other (and possibly weaker) sufficient conditions may be

obtained, but are beyond the scope of this paper.

From now on we will only consider equilibria with positive prices. Given pos-

itivity of prices, naturally, each equilibrium induces a vector of random returns

z̃i = ỹi/pi, and we can talk about the expected returns and the risk of the returns

in equilibrium, as in the usual CAPM setting. In particular, the equilibrium return

from the risk-free asset z̃0 is equal to some constant rf with probability 1. We now

study these returns.

of risky assets being positive-definite.
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B. A Generalized CAPM

i. Geometry of Efficient Portfolios

Let (p,A) be an equilibrium. The equilibrium allocation
(
ζ1, ..., ζ`

)
naturally in-

duces a portfolio for each investor j given by xj =
(
xj0, ..., x

j
n

)
, where xji = piζ

j
i is

the amount invested in asset i, and where the vector of portfolio weights of investor

j is denoted by αj and given by αji = xji/
(∑n

h=0 x
j
h

)
. Let

µj =

n∑
i=0

αjiE (z̃i)

be the expected return obtained by investor j in equilibrium. The next theorem

shows that the standard procedure of “minimizing risk for a given expected return”

applies to the equilibrium setting. It relies on the scaling independence and convex-

ity of the risk measure.

Theorem 2 Suppose that R (·) is scaling independent and convex. Then, in an

equilibrium with positive prices, for all investors j ∈ {1, ..., `}, αj is the unique

solution to

min
α∈Rn+1

R (α · z̃)(7)

s.t.
n∑
i=0

αiE (z̃i) = µj.

n∑
i=0

αi = 1.

Given this, we can now discuss the geometry of portfolios in the µ-R plane

where the horizontal axis is the risk of the return of a portfolio (R) and the vertical

axis is the expected return (µ). The locus of portfolios minimizing risk for any given

expected return is the boundary of the portfolio opportunity set. This set is convex

in the µ-R plane whenever R (·) is a convex risk measure. This follows simply

because the expectation operator is linear, implying that the line connecting any

two portfolios in the µ-R plane lies to the right of the set of portfolios representing

convex combinations of these two portfolios. Figure 1 illustrates two curves. The
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Figure 1: Portfolio Opportunity Set and Efficient Frontier

solid curve depicts the opportunity set of risky assets only. The dashed curve depicts

portfolios minimizing risk for a given expected return, corresponding to Program

(7). Both of these are defining convex sets. Unlike in the special case of the standard

deviation, we do not, in general, obtain a straight line connecting the risk-free asset

and risky portfolios. We say that a portfolio is efficient if it solves Program (7) for

some µj ∈ R. Thus, the dashed curve in Figure 1 corresponds to the set of efficient

portfolios.

ii. Two-Fund Separation

We say that two-fund separation holds if the equilibrium optimal portfolios for all

investors can be spanned by the risk-free asset and a unique portfolio of risky assets.

That is, there exists a unique portfolio with weights αP such that αP0 = 0, and for

all investors j ∈ {1, ..., `} , the solution to Problem (7) is a linear combination of

αP and the risk-free asset.

Theorem 3 Consider an equilibrium with positive prices. Assume that R (·) is

scaling independent, convex, and satisfies the risk-free property. Then, two-fund

separation holds.
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The proof is very intuitive, and we show it here. Let α1 and α2 be solutions to

Problem (7) for investors j1 6= j2, respectively, and without loss of generality as-

sume j1 = 1 and j2 = 2. The case of interest is when both α1 and α2 have nonzero

weights in some risky assets.12 By the risk-free property and by the nonredundancy

assumption, R (αj · z̃) > 0 for j = 1, 2. Hence, µj = E (αj · z̃) > rf for j = 1, 2,

since otherwise αj would be mean-risk dominated by the risk-free asset, and thus

would not be optimal.

Now, consider all the linear combinations of these two portfolios with the risk-

free asset. Since R (·) is assumed convex, the resulting curves are concave in the

µ-R plane as illustrated in Figure 2. Note that bothα1 andα2 can be presented as a

linear combination of the risk-free asset and some portfolios αP1 and αP2 of risky

assets only (i.e., αP10 = αP20 = 0). To show two-fund separation we need to show

that αP1 = αP2 . Suppose this is not the case. Then let α̂1 be a linear combination

of αP2 and the risk-free asset such that E
(
α̂1 · z̃

)
= µ1. Similarly, let α̂2 be a

portfolio of αP1 and the risk-free asset such that E
(
α̂2 · z̃

)
= µ2. By convexity of

R (·), α1 and α2 are the unique solutions to Program (7) for j = 1, 2. Hence,

(8) R
(
α̂1 · z̃

)
> R

(
α1 · z̃

)
and R

(
α̂2 · z̃

)
> R

(
α2 · z̃

)
.

Thus, as illustrated in Figure 2, the two curves must cross at least once. We will

now show that such crossings are impossible. Indeed, by scaling independence (8)

implies that for any λ > 0,

R(λα1 · z̃) < R(λα̂1 · z̃),

which together with risk-free property implies

R(λα1 · z̃+ (1− λ) rf ) < R(λα̂1 · z̃+ (1− λ) rf ).

This means that all linear combinations of α1 with the risk-free asset (with positive

λ) lie strictly to the left of all linear combinations of α̂1 with the risk-free asset. In

particular, α̂2 can be obtained as a linear combination of α1 with the risk-free asset

by setting

λ =
µ2 − rf
µ1 − rf

> 0,

12If only one investor holds nonzero weights in risky assets then two-fund separation is trivial.
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Figure 2: Graphical Illustration of the Proof of Theorem 3

where the inequality follows since µj > rf for j = 1, 2. But, using this λ we obtain

R(α̂2 · z̃) < R(α2 · z̃),

contradicting (8). Thus, two-fund separation must hold.

A corollary is that the unique portfolio αP is efficient. Indeed, let µP =

E
(
αP · z̃

)
. Since in equilibrium all investors hold a linear combination of the risk-

free asset and αP , and since µj = E (αj · z̃) ≥ rf for all j with strict inequality for

some j, we have two cases:13 (i) all investors hold αP with a nonnegative weight,

and µP > rf ; or (ii) all investors hold αP with a nonpositive weight, and µP < rf .

But, the second case is impossible since then the market cannot clear for at least

one risky asset, which is held in positive weight in αP . Thus, µP > rf .

Now, assume thatα′ 6= αP solves Problem (7) for µj = µP . Then, R (α′ · z̃) <
R
(
αP · z̃

)
, and so by the same argument as in the proof of Theorem 3, all linear

combinations of α′ with the risk-free asset would have strictly lower risk than the

corresponding linear combinations of αP with the risk-free asset. This contradicts

13If all investors choose the risk-free asset then the market for risky assets cannot clear.
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that αP and the risk-free asset span all optimal portfolios. We thus have:

Corollary 1 Under the conditions of Theorem 3, the portfolio αP is efficient. In

particular, it solves Problem (7) for some µP > rf .

Let xMi =
∑`

j=1 x
j
i be the total amount invested in asset i in equilibrium. We

call xM =
(
xM1 , ..., x

M
n

)
the market portfolio (consisting of risky assets only). Let

αM be the corresponding portfolio weights. By Theorem 3, in equilibrium, the

market portfolio is equal to αP , the unique portfolio of risky assets that together

with the risk-free asset spans all optimal portfolios.14 Moreover, by corollary 1, the

market portfolio is efficient, and its expected return is strictly higher than rf .

Corollary 2 Under the conditions of Theorem 3, the market portfolio is efficient.

In particular, it solves Problem (7) for some µM > rf .

iii. A Generalized Security Market Line

In the traditional CAPM framework, the security market line describes the equi-

librium relation between the expected returns of individual assets and the market

expected return. Specifically, the expected return of any asset in excess of the risk-

free rate is proportional to the excess market expected return, with the coefficient

of proportionality being equal to the traditional beta. The following theorem pro-

vides sufficient conditions under which a similar relation holds for a broad set of

risk measures.

Theorem 4 Consider an equilibrium with positive prices and letαM be the market

portfolio. Assume that R (·) is scaling independent, convex, smooth, and satisfies

the risk-free property. Then, for each asset i = 1, ..., n,

(9) E (z̃i) = rf + BRi
(
E
(
αM · z̃

)
− rf

)
,

where

(10) BRi =
Ri

(
αM
)∑n

h=1 α
M
h Rh (αM)

.

14Note that αP is of dimension n+ 1, but its first component is zero. By saying that αP = αM

we mean that αPi = αMi for i = 1, ..., n.
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If R (·) is also homogeneous of some degree k, then (10) takes the form

BRi =
Ri

(
αM
)

kR (αM)
.

Thus, the security market line has the traditional form, with the generalized

systematic risk measure
(
BRi
)

given as the marginal contribution of asset i to the

total risk of the market portfolio, scaled by the weighted average of marginal con-

tributions of all assets. If R is furthermore homogeneous, it is simply given by

the marginal contribution of asset i scaled by total risk multiplied by the degree of

homogeneity.

To see the intuition for this result, start with an efficient portfolio α∗ and con-

sider borrowing one dollar at the risk-free rate and investing this dollar in asset i.

The effect of this exercise on the risk of the portfolio is (up to first-order approxi-

mation) Ri (α
∗) − R0 (α∗) , which by the risk-free property is just Ri (α

∗) . Since

α∗ is efficient, the effect of this exercise on risk is equal to the shift in the expected

return constraint times the shadow price of the constraint, ξ, i.e.,

(11) Ri (α
∗) = ξ (E (zi)− rf ) .

Taking the weighted average using the portfolio weights gives

(12)

n∑
i=1

α∗iRi (α
∗) = ξ (E (α∗ · z̃)− rf ) .

Using (11) and (12) we obtain that for any efficient portfolio α∗,

Ri (α
∗)∑n

i=1 α
∗
iRi (α∗)

=
E (zi)− rf

E (α∗ · z̃)− rf
.

Namely, in equilibrium, BRi (as given in (10)) equals the ratio of the expected excess

return of any asset i to the expected excess return of the efficient portfolio α∗.

Finally, since αM has been shown to be efficient (Corollary 2) we obtain the result.

C. Applications and Empirical Implementation

We now provide several applications to illustrate the versatility and power of The-

orem 4 and its potential empirical usefulness. We show how to use this theorem to
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generalize the traditional CAPM to account for high distribution moments, down-

side risk, rare disasters, as well as combinations thereof. We also discuss the eco-

nomic interpretation of systematic risk in these cases and explain how these results

can be implemented empirically.

i. Applications

Application I: The standard CAPM. When the risk measureR is the variance, i.e.,

R (z̃) = Var (z̃) , Theorem 4 coincides with the standard CAPM (see Appendix B

for the derivation). Namely,

(13) BRi =
Cov

(
z̃i,α

M · z̃
)

Var (αM · z̃) .

Thus, in this case systematic risk is measured as the standard regression coefficient.

The same result is obtained when R (z̃) = w2 (z̃) , i.e., the standard deviation of

returns.

Application II: A CAPM reflecting aversion to tail risk. The simplest general-

ization of the standard CAPM is to the case in which investors are averse to any

moment of an even degree. That is, set R (z̃) = mk (z̃) = E (z̃ − E (z̃))k , k even.

This risk measure satisfies all of the conditions in Theorem 4 (see Example 1). In

this case the systematic risk takes the form (see Appendix B for the derivation)

(14) BRi =

Cov

(
z̃i,
(
αM · z̃−αM · E (z̃)

)k−1
)

mk (αM · z̃) .

That is, the systematic risk of asset i is proportional to the covariance of z̃i with

the (k − 1)th power of the demeaned market return. In the special case of k = 2

(variance), this reduces to (13) as expected. Another important special case is k =

4, in which R (z̃) measures the tail risk of z̃. Then,

BRi =

Cov

(
z̃i,
(
αM · z̃−αM · E (z̃)

)3
)

m4 (αM · z̃) .

Namely, the systematic risk of asset i is proportional to the co-kurtosis of z̃i with

the demeaned market return. Similarly, when R (z̃) = wk (z̃), the normalized kth

central moment, BRi again takes the form (14).
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Application III: A CAPM reflecting aversion to downside risk. AssumeR (z̃) =

DRk (z̃) for k ≥ 2. This risk measure satisfies all of the conditions in Theorem 4

(see Example 3). The systematic risk is then given by (see Appendix B for the

derivation)

(15) BRi = (−1)k
Cov

[
z̃i,
([
αM · z̃− E

(
αM · z̃

)]−)k−1
]

(DRk (αM · z̃))k
.

That is, the systematic risk of asset i is proportional to the covariance of z̃i with the

(k − 1)th power of the demeaned market return, censored at zero.

Application IV: A CAPM reflecting aversion to rare disasters. To account for

rare disasters we can use the demeaned expected shortfall measure, which satisfies

all the requirements in Theorem 4 (see Example 5). Assume then that R (z̃) =

DESδ (z̃) , where 0 < δ < 1 is some confidence level. The systematic risk in this

case is given by (see Appendix B for the derivation)

(16) BRi = −
E
[
z̃i − E (z̃i) |αM · z̃ ≤ −VaRδ(α

M · z̃)
]

DESδ(αM · z̃)
.

Thus, the systematic risk of asset i in this case equals (the negative of) the expected

demeaned return of asset i conditional on the market being in a disaster, scaled by

the market’s demeaned expected shortfall. An equivalent expression is

BRi = −
Cov

[
z̃i, 1αM ·z̃≤−VaRδ(αM ·z̃)

]
δ ·DESδ(αM · z̃)

,

showing that systematic risk in this case is proportional to the covariance of the

asset return with an indicator equal to one when the market is in a disaster.

So far we have restricted our applications to cases in which investors are averse

to just one risk aspect. In reality, it is likely that investors are averse to several risk

attributes. Our framework allows for this by constructing risk measures that account

for several risk characteristics using Lemma 1. The next application illustrates this

point.
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Application V: A CAPM reflecting aversion to variance, downside skewness,

tail risk, and rare disasters. Consider the following family of risk measures

R (z̃) = θ1w2 (z̃) + θ2DR3 (z̃) + θ3w4 (z̃) + θ4DESδ (z̃)

for some confidence level δ. Here θ1, ..., θ4 are nonnegative weights accounting for

the degree of aversion to variance, downside skewness, tail risk, and rare disasters,

respectively.15 The case θ1 = 1 and θ2 = θ3 = θ4 = 0 corresponds to the traditional

CAPM, whereas different values of the weights allow us to reflect different levels

of aversion to the different risk attributes.

By Lemma 1 these risk measures satisfy all the conditions in Theorem 4 and

so all the CAPM results above hold. The resulting systematic risk measure ac-

counts for the contribution of asset i to all four risk attributes. It is simply given

by a weighted average of the systematic risk measures as calculated in the above

applications (see Appendix B). Namely,

(17) BRi =
R1
(
αM
)

R (αM)
BR1i +

R2
(
αM
)

R (αM)
BR2i +

R3
(
αM
)

R (αM)
BR3i +

R4
(
αM
)

R (αM)
BR4i ,

where R1 (·) = θ1w2 (·) , R2 (·) = θ2DR3 (·), R3 (·) = θ3w4 (·) , and R4 (·) =

θ4DESδ (·) , and where BR1i , BR2i , BR3i , and BR4i are given by (13)–(16).

ii. Empirical Implementation

Similar to the classic CAPM, Theorem 4 and its applications lend themselves nat-

urally to empirical investigation. The standard approach for testing and applying

the CAPM follows Fama and MacBeth (1973) and Fama and French (1992). The

first stage in their approach consists of estimating beta through time-series regres-

sions, whereas the second stage consists of cross-sectional regressions of excess

asset returns on estimated betas.

To apply this approach in our case, one needs to first take a stand on what the

risk measure R is. Then, using Theorem 4 one can estimate BRi from time-series

data. For example, ifR takes the form as in Application V above, then we need time

15Note that we are using here w2 (·) and w4 (·) (the normalized second and fourth moments)

instead of m2 (·) and m4 (·) . This is done to make sure that all of the components in R (·) are

homogeneous of degree 1, and so R (·) is homogeneous.
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series return data for asset i and for the market portfolio in order to estimateBRi from

(17). This will be a weighted average of the betas prescribed in Applications I–IV.

Note that unlike in the classic CAPM, BRi is in general not a regression coefficient.

Nevertheless, it often takes the form of some scaled covariance of the asset returns

and some function of the market returns (see Applications I–IV). Thus, BRi can still

be readily estimated from time-series return data. The cross-sectional part is then

identical in nature to that in Fama and MacBeth (1973).

It is important to note that the model does not provide us with guidance as to

what R is. Rather, for any given risk measure the model provides an expression

for the associated systematic risk. In practice we believe that the data can guide

us in finding what the “true” risk is, to which investors are averse. For example,

consider Application V, which allows the risk measure to reflect aversion to vari-

ance, downside skewness, tail risk, and disaster risk. One still has a lot of flexibility

in choosing the weights θ1, ..., θ4, which determine the degree of aversion to each

particular aspect of risk. The model can then allow the data to determine which set

of weights obtains the most support. This flexibility is tantamount to the freedom

provided by the Arbitrage Pricing Theory (Ross (1976)) in which the model sug-

gests the existence of multiple systematic factors but does not provide guidance as

to what these factors are.

D. Further Discussion

Note that Theorem 4 relies on the market portfolio being efficient, and that two-fund

separation is a way to achieve this efficiency result. Our assumptions on the risk

measure are sufficient for two-fund separation, but they are by no means necessary.

Weaker conditions that guarantee two-fund separation may exist. Further, even

when two-fund separation fails, it does not necessarily mean that market efficiency

is rejected. The literature explores market efficiency from both theoretical (see, for

example, Dybvig and Ross (1982)) and empirical (see, for example, Levy and Roll

(2010)) views. Our generalized SML remains valid as long as we have evidence

that the market portfolio is mean-risk efficient.

We should also mention that the classical notion of beta and its relation to ex-

pected returns go beyond the standard CAPM setup. Specifically, as long as there is
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no arbitrage and so a stochastic discount factor exists, a beta representation of the

form

E (z̃i) = γ + Biλ

exists (see Hansen and Richard (1987) and Cochrane (2001) Ch. 6). This does

not stand in conflict to the results in this section. Rather, our results essentially

identify a class of stochastic discount factors driven by the mean-risk preferences

being assumed.

IV. Systematic Risk as a Solution to a Risk Allocation

Problem

The equilibrium approach presented in the previous section generalizes the classic

CAPM, but it has two limitations. First, this approach allows us to calculate the con-

tribution of an asset to the risk of the market portfolio, but not to arbitrary portfolios

of risky assets. Second, to obtain the equilibrium results we imposed restrictions

on the risk measures (scaling independence, convexity, and the risk-free property).

These restrictions allow us to establish existence of equilibrium and efficiency of

the market portfolio. However, some risk measures do not satisfy these conditions.

In this section we offer an alternative approach to developing a systematic risk

measure. This approach applies to any portfolio of risky assets and to a broader

class of risk measures. For example, if a bank would like to use the VaR measure

to estimate the contributions of different assets on its balance sheet to the total

VaR of the bank, then the results in this section can be applied. Importantly, when

the risk measure is homogeneous, the two approaches lead to an identical result,

generalizing the traditional beta.

Our approach is to consider this issue as a risk allocation problem, where the

total risk of a given portfolio needs to be “fairly” allocated among its components.

We offer four axioms that describe reasonable properties of solutions to risk alloca-

tion problems. We then show that these axioms determine a unique formula for the

systematic risk of an asset, the contribution of the asset to the risk of the portfolio.
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A. Axiomatic Characterization of Systematic Risk

A risk allocation problem of order n ≥ 1 is a pair (R,x) ,whereR is a risk measure

and x ∈ Rn
++ is a portfolio specifying the dollar amount invested in each of n

assets z̃ = (z̃1, ..., z̃n) , and R (x · z̃) 6= 0. Denote the total dollar amount invested

by x̄ =
∑n

i=1 xi. Also, let α be the vector of corresponding portfolio weights, i.e.,

αi = xi/x̄. The only two requirements we impose on R in this section are that

R (0) = 0 (i.e., zero investment entails no risk) and that R (·) is smooth.

A systematic risk measure is a function mapping any risk allocation problem

of order n to a vector BR (x) =
(
BR1 (x) , ...,BRn (x)

)
in Rn. Intuitively, one can

think of BRi (x) as the contribution of asset i to the total risk of portfolio x, which

is R (x · z̃) . Note that a systematic risk measure applies to all possible pairs of risk

measures and portfolios, rather than to a given pair.

We now state four axioms specifying desirable economic properties of system-

atic risk measures. The intuition for why these axioms make sense mostly comes

from the traditional beta. Here we simply try to identify properties of beta and

ask how these properties could be generalized to arbitrary risk measures. It is im-

portant to emphasize that these axioms do not impose any restriction on the risk

measure. Rather, they impose structure on what would constitute a solution to the

risk allocation problem.

The first axiom postulates that (as for the traditional beta) the weighted average

of systematic risk values across all assets is normalized to 1.

Axiom 1 Normalization:
∑n

i=1 αiBRi (x) = 1.

The sum of any two risk measures is itself a risk measure. The next axiom

requires that in such a case the systematic risk measure of the sum will be a risk-

weighted average of systematic risk based on each of the two risk components.

Axiom 2 Linearity: If R (·) = R1 (·) +R2 (·) , then

BRi (x) =
R1 (x)

R (x)
BR1i (x) +

R2 (x)

R (x)
BR2i (x) for all i = 1, ..., n.
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When risk is measured using variance, the notion of systematic risk is closely

tied to the concepts of correlation and covariance. It is not easy to generalize these

concepts to arbitrary risk measures. However, two features can be easily general-

ized laying the foundations for the next two axioms.

First, while the concept of “correlation” is not easy to generalize, the idea of

“perfect correlation” does lend itself to a natural generalization. The intuition is

that if several assets are perfectly correlated, then essentially they can be thought

of as the same asset. Thus, a portfolio of perfectly correlated assets can be viewed

as one “big” asset. This intuition comes from the standard notion of correlation

relating to risk being measured by the variance, but it can easily be generalized to

arbitrary risk measures.

Formally, given a risk measure R, we say that assets z̃ = (z̃1, ..., z̃n) are R-

perfectly correlated if there exists a function g (·) : R 7→ R and a nonzero vector

q = (q1, ..., qn) ∈ Rn
+, such that for any portfolio η = (η1, ..., ηn) ∈ Rn

+ we have

R (η · z̃) = g(η · q). That is, the n assets are R-perfectly correlated if the risk of

any portfolio of these assets as measured by R only depends on some linear combi-

nation of their investment amounts. In essence, this means that the n assets can be

aggregated into one “big” asset by assigning each asset a certain weight specified by

the vector q.16 Note that different risk measures correspond to different concepts of

R-perfect correlation, which typically would not coincide with the standard notion

of perfect correlation associated with the variance.17

The next axiom imposes that if the n assets areR-perfectly correlated, then their

systematic risk measures are proportional to each other.

16To see the correspondence to the standard notion of perfect correlation, consider the following

example. Assume risk is measured using variance and let z̃ = (z̃1, z̃2, z̃3) with z̃2 = 2z̃1 and

z̃3 = 5z̃1. Then, all three assets are perfectly correlated and for any portfolio (η1, η2, η3) we have

V ar (η1z̃1 + η2z̃2 + η3z̃3) = (η1 + 2η2 + 5η3)
2
V ar (z̃1) .

Thus, we can set g (t) = t2 and the vector of weights is q =
√
V ar (z̃1) (1, 2, 5) . More generally,

it is easy to verify that when risk is measured using variance, the concept of R-perfect correlation

coincides with the standard definition of perfect correlation.
17In the standard notion of perfect correlation, we differentiate between positive and negative

perfect correlation. We could do the same here by allowing elements of q to take negative values.

However, this is not needed for our axiomatic characterization.
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Axiom 3 Proportionality: If z̃ = (z̃1, ..., z̃n) areR-perfectly correlated with weights

q = (q1, ..., qn), then

(18) qjBRi (x) = qiBRj (x) for all i, j = 1, ..., n.

Next we turn to generalize the idea of “positive correlation.” Assume first that

risk is measured using variance. Then, if two assets are positively correlated, adding

additional units of an asset to any portfolio of the two always increases total vari-

ance. We can then rely on this feature to get a generalized notion of positive corre-

lation. Specifically, given a risk measure R, we say that assets z̃ = (z̃1, ..., z̃n) are

R-positively correlated if Ri (η · z̃) ≥ 0 for all η ∈ Rn
+ and for all i = 1, ..., n.

Namely, the assets are R-positively correlated if adding one more unit of an asset

to any portfolio with nonnegative weights can never reduce total risk. The key to

this definition is that for the assets to be R-perfectly correlated it is not enough

that adding one more unit of an asset would increase risk for a particular portfolio.

Rather, this property has to hold for all possible portfolios of these assets.18 The

next axiom requires that when the assets are R-positively correlated, the systematic

risk of all assets is nonnegative.

Axiom 4 Monotonicity: If z̃ = (z̃1, ..., z̃n) areR-positively correlated, thenBRi (x) ≥
0 for all i = 1, ..., n.

Our main result in this section follows. It states that Axioms 1–4 are sufficient

to pin down a unique systematic risk measure, which takes on a very simple and

intuitive form. Moreover, when the risk measure is homogeneous, the solution

coincides with the equilibrium result in Theorem 4.

Theorem 5 There exists a unique systematic risk measure satisfying Axioms 1–4.

For each risk allocation problem (R,x) of order n, it is given by

(19) BRi (x) =
x̄
∫ 1

0
Ri (tx1, ..., txn) dt

R (x1, ..., xn)
for i = 1, ..., n.

18It is easy to check that when risk is measured using variance, the assets are R-positively corre-

lated if and only if the correlation between any two assets is nonnegative.
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Furthermore, if R is homogeneous of some degree k, then (19) reduces to

BRi (x) =
Ri (α)∑n

h=1 αhRh (α)
(20)

=
Ri (α)

kR (α)
.(21)

Thus, whenR is homogeneous (which is a common case), the systematic risk of

asset i is measured simply as the marginal contribution of asset i to the total risk of

the portfolio, scaled by the weighted average of marginal contributions of all assets.

This is identical to the result in Theorem 4 only with respect to an arbitrary port-

folio rather than the market portfolio. When the risk measure is not homogeneous,

the expression in (19) shows that systematic risk depends not only on marginal

contributions at x, but rather on marginal contributions along a diagonal between

(0, ..., 0) and x. This is a variation of the diagonal formula of Aumann and Shapley

(1974). The integral can be interpreted as an average of marginal contributions of

asset i to the risk of portfolios along the diagonal. Then, BRi (x) is simply a scaled

version of the integral where the scaling ensures that Axiom 1 is satisfied.

Note that when the risk measure is homogeneous, BRi (x) depends only on the

portfolio weights α (and not on the dollar amounts invested in each asset). Indeed,

in the homogeneous case Ri (tx1, ..., txn) is proportional to Ri (x1, ..., xn) for all

t ∈ [0, 1] , yielding the simple expression in (20). When the risk measure is not

homogeneous, the actual investment amounts (not just the weights) are necessary

for the calculation of systematic risk.

The uniqueness part of the proof of Theorem 5 is in Appendix A. It relies on

the solutions to cost allocation problems established in Billera and Heath (1982).19

In this proof we draw a one-to-one mapping between risk allocation problems and

cost allocation problems, and from systematic risk measures to solutions of cost

allocation problems. Then, we show that given these mappings, our set of axioms

is stronger than the set of conditions specified in Billera and Heath (1982). This in

turn allows us to apply their result to obtain uniqueness.

19Billera and Heath (1982) define a cost allocation problem of order n as a pair (h,x) where

h : Rn+ → R is continuously differentiable and h (0) = 0. They interpret x as a vector of inputs and

h as a cost function. The question they ask is how to allocate total cost among the different inputs.

See Appendix I for more details on their model.
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Existence is straightforward and we show it below by demonstrating that (19)

satisfies Axioms 1–4. Suppose that BRi (x) is given by (19). Then,

n∑
i=1

αiBRi (x) =
n∑
i=1

xi
x̄

x̄
∫ 1

0
Ri (tx1, ..., txn) dt

R (x1, ..., xn)

=

∫ 1

0

∑n
i=1 xiRi (tx1, ..., txn) dt

R (x1, ..., xn)

=

∫ 1

0
dR(tx1,...,xn)

dt
dt

R (x1, ..., xn)
= 1, (since R (0) = 0)

and so Axiom 1 holds. To see Axiom 2, suppose R (·) = R1 (·) +R2 (·) . Then,

BRi (x) =
x̄
∫ 1

0
Ri (tx1, ..., txn) dt

R (x1, ..., xn)

=

x̄
∫ 1
0 R

1
i (tx1,...,txn)dt

R1(x1,...,xn)
R1 (x1, ..., xn) +

x̄
∫ 1
0 R

2
i (tx1,...,txn)dt

R2(x1,...,xn)
R2 (x1, ..., xn)

R (x1, ..., xn)
,

as required. Next, for Axiom 3, suppose that z̃ = (z̃1, ..., z̃n) are R-perfectly corre-

lated. Then, there exists g (·) : R 7→ R and a nonzero vector q ∈ Rn
+ such that for

all η = (η1, ..., ηn) we have R (η) = g(η · q). It follows that

Ri (η) = qig
′(η · q) for all i = 1, ..., n.

Hence, for all i = 1, ..., n,

BRi (x) =
x̄qi
∫ 1

0
g′ (tx · q) dt

R (x1, ..., xn)
,

which implies (18). Finally, given the definition of R-positive correlation, it is

immediate that (19) satisfies Axiom 4.

B. Applying the Result

In Section III.C we have provided several applications and shown how to calculate

systematic risk for different risk measures. All of these results apply to the approach

presented in this section as well, but now they can be used with respect to arbitrary

portfolios rather than just the market portfolio. The next example illustrates a case
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of risk measures that do not satisfy the conditions in Section III, but for which

Theorem 5 applies.

Recall the Aumann-Serrano and Foster-Hart risk measures in Example 6. These

measures are homogeneous, convex, and smooth, but they do not satisfy the risk-

free property.20 Still, Theorem 5 allows us to calculate the systematic risk associated

with these risk measures.

Using Theorem 5 and applying the implicit function theorem to (4) and (5)

yields the systematic risk of individual assets associated with the AS and FH mea-

sures relative to any portfolio weights α as follows:

BRASi (α) =
E
[
exp

(
− α·z̃
R(α)

)
z̃i

]
E
[
exp

(
− α·z̃
R(α)

)
α · z̃

] ,
and

BRFHi (α) =
E
[

z̃i
R(α)+α·z̃

]
E
[

α·z̃
R(α)+α·z̃

] .
C. Discussion

It is interesting to ask what would happen if we used (20) to define systematic risk

when R is not homogeneous (instead of using (19)). In particular, this alternative

measure only relies on the marginal contribution of asset i at α and not along the

diagonal. In the absence of homogeneity these two alternative definitions yield

different results. Thus, given Theorem 5, it must be that (20) violates at least one of

our axioms. It is straightforward to check that the axiom being violated in this case

is Axiom 2 while the other three axioms are satisfied.

20Although RAS (0) and RFH (0) are not defined, they can be approximated using a limiting

argument. Specifically, take any random return z̃ satisfying E (z̃) > 0 and P ({z̃ < 0}) > 0. Then,

for both R (·) = RAS (·) and R (·) = RFH (·) , we can define R (0) by

R (0) ≡ lim
t→0

R (tz̃) = 0,

where the equality follows since both the AS and the FH measures are homogeneous of degree 1.
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Another alternative to measuring systematic risk might be to define

BRi (α) =
Ri (α)

R (α)
,

namely, the systematic risk of an asset is the marginal contribution of the asset to

total risk, scaled by total risk. This measure satisfies Axioms 2, 3, and 4 but it fails

Axiom 1, so it cannot be considered as a generalization of the traditional beta.

Finally, it is worth noting that (20) can also be written as

BRi (α) =
d
dt

∣∣
t=0

R (α+tεi)
d
dt

∣∣
t=0

R (α+tα)
,

where εi is an n-dimensional vector equal to 1 at the ith dimension and zero else-

where. Namely, when the risk measure is homogeneous, systematic risk of asset i

can be thought of as the directional derivative of total risk along the ith dimension

scaled by the derivative along the diagonal in the direction of the portfolio itself.

V. Conclusion

In this paper we generalize the concept of systematic risk to account for a variety

of risk characteristics. Our equilibrium approach shows that results attributed to the

classic CAPM hold much more broadly. In particular, aspects of the geometry of

efficient portfolios, two-fund separation, and the security market line are derived in

a setting where risk can account for a variety of attributes. Our axiomatic approach

specifies four economically meaningful conditions that pin down a unique measure

of systematic risk. Both approaches lead to similar generalizations of the traditional

beta.

When risk is confined to measure the variance of a distribution, our systematic

risk measures coincide with the traditional beta, the slope from regressing asset re-

turns on portfolio returns. More generally, systematic risk is not a regression coeffi-

cient. Our equilibrium setting leads to the conclusion that systematic risk is simply

the marginal contribution of the asset to the risk of the portfolio of interest, scaled

by the weighted average of all such marginal contributions. An identical result is

obtained in the axiomatic approach for homogeneous risk measures. When the risk
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measure is not homogeneous, the axiomatic approach gives rise to an expression

for systematic risk that involves averaging marginal contributions of the asset along

a diagonal from the origin to the portfolio of interest.

Our axiomatic approach applies to a wide variety of risk measures, requiring of

them only smoothness and zero risk for zero investment. The equilibrium frame-

work imposes additional conditions in the form of scaling independence, convexity,

and the risk-free property. Nevertheless, even in the equilibrium framework we are

still left with an extensive class of risk measures. Indeed, this class is sufficiently

broad to potentially account for high distribution moments, downside risk, rare dis-

asters, and other aspects of risk. A limitation of our framework is that we restrict

all investors to use the same risk measure. Future research may direct at develop-

ing weaker conditions on the risk measures and introducing more heterogeneity to

investor risk preferences.

Finally, our approach is agnostic regarding the choice of a particular risk mea-

sure. Indeed, which risk measures better capture the risk preferences of investors

is ultimately an empirical question. Our framework therefore provides foundations

for testing the appropriateness of risk measures and consequently selecting those

that are supported by the data.
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Appendix A: Proofs of Main Theorems

Proof of Theorem 1: Our setting is a special case of the setting in Nielsen (1989).

To show the existence of equilibrium Nielsen requires that preferences satisfy the

following three conditions: (i) each investor’s choice set is closed and convex, and

contains her initial endowment; (ii) The set of {ζ ∈ Rn+1 : U j (ζ) ≥ U j (ζ ′)} is

closed for all ζ ′ ∈ Rn+1 and for all j = {1, ..., `}; (iii) If ζ, ζ ′ ∈ Rn+1 and

U j (ζ ′) > U j (ζ) , then U j(tζ ′ + (1− t)ζ) > U j(ζ) for all t in (0, 1).

Condition (i) is satisfied in our setting since the choice set of each investor is

Rn+1, which is closed and convex, and contains ej for all j. Condition (ii) holds

since V is assumed continuous and R is assumed smooth, and so their composition

is continuous. Condition (iii) follows since V (·) is quasi-concave, strictly increas-

ing in its first argument and strictly decreasing in its second argument, and R (·) is

a convex risk measure.

Given these properties of the preferences, Nielsen (1989) establishes two con-

ditions as sufficient for the existence of a quasi-equilibrium: (i) positive semiinde-

pendence of directions of improvement, and (ii) nonsatiation at Pareto attainable

portfolios. Condition (i) follows in our setting as in Nielsen (1990, Proposition 1)

since in our setting all investors agree on all parameters of the problem (in particular

on the expected returns), and due to the nonredundancy of risky assets assumption.

To see why condition (ii) holds in our setting note that we assume the existence of

a risk-free asset paying a nonzero payoff with probability 1. Since R (·) satisfies

the risk-free property, we have that R (z̃1 + z̃2) ≤ R (z̃1) whenever z̃2 is risk-free

with P ({z̃2 > 0}) = 1. Thus, adding a positive risk-free asset can only (weakly)

reduce risk. It follows that we can always add this positive risk-free asset to any

bundle ζ, strictly increasing the expected return while weakly decreasing risk. This

implies that in our model there is no satiation globally. Thus, a quasi-equilibrium

exists in our setting. Moreover, any quasi-equilibrium is, in fact, an equilibrium

in our setting. This follows from the conditions in Nielsen (1989 p. 469). In-

deed, in our setting each investor’s choice set is convex and unbounded, and the set

{ζ ∈ Rn+1 : U j (ζ) > U j (ζ ′)} is open for all j and ζ ′ ∈ Rn+1.

Proof of Theorem 2: Suppose that the equilibrium bundle of investor j is ζj. Let
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x̄j =
∑n

i=0 x
j
i = p · ζj be the total dollar amount of investment of investor j. Then,

U j
(
ζj
)

= V j

(
E

(
n∑
i=0

ζji ỹi

)
, R

(
n∑
i=0

ζji ỹi

))
(A1)

= V j

(
x̄jE

(
n∑
i=0

ζji
x̄j
ỹi

)
, R

(
x̄j

n∑
i=0

ζji
x̄j
ỹi

))

= V j

(
x̄jE

(
n∑
i=0

ζjipi
x̄j

ỹi
pi

)
, R

(
x̄j

n∑
i=0

ζjipi
x̄j

ỹi
pi

))

= V j

(
x̄jE

(
n∑
i=0

xji
x̄j
z̃i

)
, R

(
x̄j

n∑
i=0

xji
x̄j
z̃i

))

= V j

(
x̄jE

(
n∑
i=0

αji z̃i

)
, R

(
x̄j

n∑
i=0

αji z̃i

))
= V j

(
x̄jE

(
αj · z̃

)
, R
(
x̄j
(
αj · z̃

)))
.

From the definition of equilibrium, each investor chooses ζj to maximize U j
(
ζj
)

subject to x̄j ≤ p · ej, where by the positivity of prices x̄j = p · ej > 0 (using that

ej ∈ Rn+1
+ is not zero by assumption). From (A1) and since V j is strictly increasing

in the first argument and strictly decreasing in the second argument, we have that

for any positive x̄j, U j
(
ζj
)

is strictly increasing in E (αj · z̃) and strictly decreas-

ing in R (x̄j (αj · z̃)) . Therefore, in equilibrium, αj must minimize R (x̄j (α · z̃))
for a given level of expected return E (αj · z̃) . By scaling independence, this is

equivalent to minimizing R (α · z̃) for a given level of expected return, and thus, to

solving Problem (7). The solution is unique since we assumed thatR (·) is a convex

risk measure, and so R (α · z̃) is convex as a function of α.

Proof of Theorem 4: By the smoothness ofR (·) and by Theorem 1, the solution to

Problem (7) for some µj = µ is determined by the first order conditions. To solve

this program, form the Lagrangian

L (α) = R (α)− ξ
(

n∑
i=1

αiE (z̃i) +

(
1−

n∑
i=1

αi

)
rf − µ

)
,

where ξ is a Lagrange multiplier. Equivalently,

L (α) = R

(
1−

n∑
i=1

αi, α1, ..., αn

)
−ξ
(

n∑
i=1

αiE (z̃i) +

(
1−

n∑
i=1

αi

)
rf − µ

)
.
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The first order condition states that for all i = 1, ..., n,

(A2) −R0 (α∗) +Ri (α
∗)− ξ (E (z̃i)− rf ) = 0,

where α∗ is any efficient portfolio (the market portfolio being a special case). By

the risk-free property, R0 (α∗) = 0. Hence,

(A3) Ri (α
∗) = ξ (E (z̃i)− rf ) .

It follows that

n∑
i=1

α∗iRi (α
∗) = ξ

n∑
i=1

α∗i (E (z̃i)− rf )(A4)

= ξ (E (z̃ ·α∗)− rf ) .

From (A3) and (A4) we obtain

Ri (α
∗)∑n

h=1 α
∗
hRh (α∗)

=
E (z̃i)− rf

E (z̃ ·α∗)− rf
,

as required. If R is homogeneous of degree k, then by Euler’s homogeneous func-

tion theorem and using the risk-free property this is also equivalent to

Ri (α
∗)

kR (α∗)
=

E (z̃i)− rf
E (z̃ ·α∗)− rf

.

Proof of Theorem 5: The proof relies on a mapping between risk allocation prob-

lems as defined in Section IV.A and cost allocation problems as defined in Billera

and Heath (1982, hereafter BH). Specifically, BH define a cost allocation problem

of order n as a pair (h,x) where h : Rn
+ → R is continuously differentiable and

h (0) = 0. Since R is smooth and satisfies R (0) = 0 we can view any risk alloca-

tion problem, (R,x) , of order n, as a cost allocation problem as defined in BH by

setting h (x) = R (x · z̃) . Given this mapping we will use (R,x) to denote both the

risk allocation problem and its corresponding cost allocation problem. BH define

a cost allocation procedure as a function assigning each cost allocation problem

(R,x) of order n a vector c (R,x) ∈ Rn. That is, c (R,x) should be interpreted as

the cost allocated to each of the n goods or services.
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We can then consider a natural mapping between systematic risk measures as

defined in Section IV.A and the BH cost allocation procedures as follows. IfBR (x)

is a systematic risk measure of the risk allocation problem (R,x) , then

(A5) c (R,x) =
BR (x)R (x · z̃)

x̄

is a cost allocation procedure for the corresponding cost allocation problem (R,x) .

Namely, risk allocation measures can be viewed as scaled versions of cost allocation

procedures for the corresponding problems.

Lemma A1 If a systematic risk measureBR (x) satisfies Axioms 1-4, then the cor-

responding cost allocation procedure c (R,x) satisfies Conditions (2.1)-(2.4) in

BH.

It is important to note that Axioms 1-4 and Conditions (2.1)-(2.4) in BH are not

equivalent to each other either as a group or individually. Rather, our four axioms

as a set are stronger than their four conditions as a set. The proof of this lemma

follows from the next four steps.

Step 1. Axiom 1 is satisfied if and only if Condition (2.1) in BH holds. Indeed,∑n
i=1 αiBRi (x) = 1 is equivalent to

∑n
i=1

(
xiR (x)BRi (x) /x̄

)
= R (x) , which

using (A5) is equivalent to
∑n

i=1 xici (R,x) = R (x) . This is Condition (2.1).

Step 2. Axiom 2 is satisfied if and only if Condition (2.2) in BH holds. Indeed,

suppose R (·) = R1 (·) +R2 (·) and

BRi (x) =
R1 (x)

R (x)
BR1i (x) +

R2 (x)

R (x)
BR2i (x) .

Then
BRi (x)R (x)

x̄
=
R1 (x)BR1i (x)

x̄
+
R2 (x)BR2i (x)

x̄
.

That is,

ci (R,x) = ci
(
R1,x

)
+ ci

(
R2,x

)
,

which is Condition (2.2).
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Step 3. Axioms 1 and 3 jointly imply Condition (2.3).

Assume that both Axioms 1 and 3 are satisfied and assume that for all η ∈ Rn
+,

(A6) R (η · z̃) = g (η · q)

for some function g (·) and a nonzero vector q ∈ Rn
+. Then, (z̃1, ..., z̃n) are R-

perfectly correlated.

By Axiom 3 for all i, j = 1, ..., n,

(A7) qjBRi (x) = qiBRj (x) ,

and hence

αiqjBRi (x) = αiqiBRj (x) .

Summing over i = 1, ..., n gives

(A8) qj

n∑
i=1

αiBRi (x) = (α · q)BRj (x) .

By Axiom 1 we know that
∑n

i=1 αiBRi (x) = 1. Plugging this into (A8) we have

qj = (α · q)BRj (x) for j = 1, ..., n.

By (A5), and recalling that R (x) 6= 0,

(A9) qj = (α · q)
cj (R,x) x̄

R (x)
= (x · q)

cj (R,x)

R (x)
for j = 1, ..., n.

If x ·q = 0 this implies that qj = 0 for all j, contradicting that q is a nonzero vector.

Hence, x · q is not zero. We then have

(A10) cj (R,x) =
qjR (x)

(x · q)
for all j = 1, .., n.

Consider an asset with return w̃ = (x · z̃) / (x · q) . Namely, investing x · q
dollars in this asset yields the same return as of the portfolio x. Then,

R ((x · q) w̃) = R (x · z̃) = g (x · q) .
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Consider now the risk allocation problem of order 1 with the single asset w̃ held at

the amount x ·q. By Axiom 1 the systematic risk measure of this asset must satisfy

BR (x · q) = 1,

or equivalently using (A5),

c (g,x · q) =
R ((x · q) w̃)

x · q =
g (x · q)

x · q .

Plugging back into (A10) and using that R (x) = g (x · q) we have

cj (R,x) = c (g,x · q) qj.

This is exactly what Condition (2.3) in BH requires, restricting attention to the case

that q is a nonzero vector of nonnegative integers.

Step 4. Axiom 4 is satisfied if and only if Condition (2.4) holds. This follows

directly from (A5) and the definition of R-positive correlation.

Having established Lemma A1 we now turn to completing the proof of the the-

orem. First, existence has been proved in the text by showing that (19) satisfies

Axioms 1-4. To show uniqueness note that Lemma A1 implies that Axioms 1-4

are jointly stronger than Conditions (2.1)-(2.4) in BH. From BH’s main result we

know that there is a unique cost allocation procedure c (R,x) satisfying Conditions

(2.1)-(2.4). It follows (using the mapping (A5)) that there is a unique systematic

risk measure satisfying Axioms 1-4. Thus, the unique systematic risk measure is

given by (19).

Finally, to see that (19) and (20) are equivalent when R is homogeneous of

degree k, note first that in this case∫ 1

0

Ri (tx1, ..., txn) dt = Ri (x1, ..., xn)

∫ 1

0

tk−1dt

=
Ri (x1, ..., xn)

k
,
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where the first equality follows since Ri is homogeneous of degree k−1. It follows

that

BRi (x) =
x̄
∫ 1

0
Ri (tx1, ..., txn) dt

R (x1, ..., xn)

=
x̄Ri (x1, ..., xn)

kR (x1, ..., xn)

=
x̄Ri (x̄α1, ..., x̄αn)

kR (x̄α1, ..., x̄αn)

=
Ri (α1, ..., αn)

kR (α1, ..., αn)

=
Ri (α1, ..., αn)∑n

h=1 αhRh (α1, ..., αn)
,

where the penultimate equality follows from the homogeneity of degrees k and k−1

of R and Ri respectively, and the last equality follows from Euler’s homogeneous

function theorem. This completes the proof of Theorem 5.
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Appendix B: Other Proofs and Derivations

Proofs of Propositions

Proof of Proposition 1: We need to show that for any random returns z̃1 and z̃2,

and any 0 < λ < 1,

(A11) wk (λz̃1 + (1− λ) z̃2) ≤ λwk (z̃1) + (1− λ)wk (z̃2) .

Letting ẑ1 = z̃1 − E (z̃1) and ẑ2 = z̃2 − E (z̃2) , (A11) can be rewritten as

(A12)
(

E
[
(λẑ1 + (1− λ) ẑ2)k

]) 1
k ≤ λ

(
E
[
ẑk1
]) 1

k + (1− λ)
(
E
[
ẑk2
]) 1

k .

Applying the binomial formula to the LHS of (A12) implies that we need to

show(
k∑
i=0

(
k

i

)
λk−i (1− λ)i E

(
ẑk−i1 ẑi2

)) 1
k

≤ λ
(
E
[
ẑk1
]) 1

k + (1− λ)
(
E
[
ẑk2
]) 1

k .

Since k is even, replacing each ẑ1 and ẑ2 with |ẑ1| and |ẑ2| will not affect the RHS,

but it might increase the LHS. So, it is sufficient to show that(
k∑
i=0

(
k

i

)
λk−i (1− λ)i E

(∣∣ẑk−i1 ẑi2
∣∣)) 1

k

≤ λ
(

E
[
|ẑ1|k

]) 1
k
+(1− λ)

(
E
[
|ẑ2|k

]) 1
k
.

Since both sides are positive we can raise both sides to the kth power, maintaining

the inequality. Thus, it would be sufficient to show

k∑
i=0

(
k

i

)
λk−i (1− λ)i E

(∣∣ẑk−i1 ẑi2
∣∣) ≤ (λ(E

[
|ẑ1|k

]) 1
k

+ (1− λ)
(

E
[
|ẑ2|k

]) 1
k

)k
.

Applying the binomial formula to the RHS implies that it would be sufficient to

show

k∑
i=0

(
k

i

)
λk−i (1− λ)i E

(∣∣ẑk−i1 ẑi2
∣∣) ≤ k∑

i=0

(
k

i

)
λk−i (1− λ)i

(
E
[
|ẑ1|k

]) k−i
k
(

E
[
|ẑ2|k

]) i
k
.
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To establish this inequality we will show that it actually holds term by term.

That is, it is sufficient to show that for each i = 0, ..., k,

E
(∣∣ẑk−i1 ẑi2

∣∣) ≤ (E
[
|ẑ1|k

]) k−i
k
(

E
[
|ẑ2|k

]) i
k
.

To see this, note that it is equivalent to show that

E
(∣∣ẑk−i1 ẑi2

∣∣) ≤ (E
[∣∣ẑk−i1

∣∣ k
k−i
]) k−i

k
(

E
[∣∣ẑi2∣∣ ki ]) i

k

.

But, this is immediate from Hölder’s inequality, and we are done.

Proof of Proposition 2: For any integer k ≥ 2, we can rewrite the downside risk

measure as

DRk (z̃) = (−1)k
(

E
(
[z̃ − E (z̃)]−

)k) 1
k

=
(

E
(
[E (z̃)− z̃]+

)k) 1
k
,

where [t]+ = max (t, 0) for t ∈ R.
Consider any two random returns z̃1 and z̃2, and let ẑ1 = [E (z̃1)− z̃1]+ and

ẑ2 = [E (z̃2)− z̃2]+ . Obviously, we have ẑ1 ≥ 0 and ẑ2 ≥ 0. What we need to

show is that for any 0 < λ < 1,(
E
(
[E (λz̃1 + (1− λ) z̃2)− λz̃1 − (1− λ) z̃2]+

)k) 1
k ≤ λ

(
E
(
ẑk1
)) 1

k+(1− λ)
(
E
(
ẑk2
)) 1

k .

Now,

[E (λz̃1 + (1− λ) z̃2)− λz̃1 − (1− λ) z̃2]+ = [λ (E (z̃1)− z̃1) + (1− λ) (E (z̃2)− z̃2)]+

≤ λ [E (z̃1)− z̃1]+ + (1− λ) [E (z̃2)− z̃2]+

= λẑ1 + (1− λ) ẑ2,

where the inequality follows from Jensen’s inequality using that [·]+ is a convex

function.

Therefore, it is sufficient to show that(
E (λẑ1 + (1− λ) ẑ2)k

) 1
k ≤ λ

(
E
(
ẑk1
)) 1

k + (1− λ)
(
E
(
ẑk2
)) 1

k .

The rest of the proof follows closely the proof of Proposition 1. Indeed, since ẑ1

and ẑ2 are nonnegative here, the arguments in the proof of Proposition 1 apply in

this case to any positive k (odd or even).
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Proof of Proposition 3: In the definition of expected shortfall we assumed the ex-

istence of a cumulative distribution function F (·) applied to realizations of random

variables. For the sake of this proof it will be more useful to work directly with the

state space Ω and with the underlying probability measure P (·) .We first prove that

ESδ(z̃) is subadditive. That is, for any two random returns z̃1 and z̃2,

(A13) ESδ(z̃1 + z̃2) ≤ ESδ(z̃1) + ESδ(z̃2).

If either z̃1 or z̃2 is equal to a constant with probability 1, then the result is imme-

diate. We shall thus only consider the case in which both of them are not equal to

a constant. By (3), for any random return z̃ (which is not constant), ESδ (z̃) can be

expressed as

ESδ (z̃) = −1

δ

∫
{ω:z̃≤−VaRδ(z̃)}

z̃dP (ω) .

Let z̃1 and z̃2 be random returns and define z̃3 = z̃1+z̃2. Let Ωi = {ω ∈ Ω : z̃i ≤ −VaRδ (z̃i)}
for i = 1, 2, 3. Then, (A13) is equivalent to∫

Ω3

z̃3dP (ω) ≥
∫

Ω1

z̃1dP (ω) +

∫
Ω2

z̃2dP (ω) ,

which can be rewritten as∫
Ω3

z̃1dP (ω) +

∫
Ω3

z̃2dP (ω) ≥
∫

Ω1

z̃1dP (ω) +

∫
Ω2

z̃2dP (ω) .

It is sufficient to show that

(A14)

∫
Ω3

z̃1dP (ω) ≥
∫

Ω1

z̃1dP (ω) ,

and

(A15)

∫
Ω3

z̃2dP (ω) ≥
∫

Ω2

z̃2dP (ω) .

For brevity, we will only prove (A14). The proof of (A15) is parallel.

Define

Ω4 = {ω ∈ Ω : z̃1 ≤ −VaRδ (z̃1) , z̃3 ≤ −VaRδ (z̃3)} ,
Ω5 = {ω ∈ Ω : z̃1 ≤ −VaRδ (z̃1) , z̃3 > −VaRδ (z̃3)} , and

Ω6 = {ω ∈ Ω : z̃1 > −VaRδ (z̃1) , z̃3 ≤ −VaRδ (z̃3)} .
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Clearly, Ω4 ∩ Ω5 = ∅, Ω4 ∪ Ω5 = Ω1, Ω4 ∩ Ω6 = ∅, and Ω4 ∪ Ω6 = Ω3. Thus,∫
Ω1

dP (ω) =

∫
Ω4

dP (ω) +

∫
Ω5

dP (ω) ,

and ∫
Ω3

dP (ω) =

∫
Ω4

dP (ω) +

∫
Ω6

dP (ω) .

By the definition of VaR, we know∫
Ω1

dP (ω) =

∫
Ω3

dP (ω) = δ.

Thus, we obtain

(A16)

∫
Ω5

dP (ω) =

∫
Ω6

dP (ω) .

Similarly, we have∫
Ω1

z̃1dP (ω) =

∫
Ω4

z̃1dP (ω) +

∫
Ω5

z̃1dP (ω) ,

and ∫
Ω3

z̃1dP (ω) =

∫
Ω4

z̃1dP (ω) +

∫
Ω6

z̃1dP (ω) .

Hence, ∫
Ω1

z̃1dP (ω)−
∫

Ω3

z̃1dP (ω)

=

∫
Ω5

z̃1dP (ω)−
∫

Ω6

z̃1dP (ω)

≤
∫

Ω5

[−VaRδ (z̃1)] dP (ω)−
∫

Ω6

[−VaRδ (z̃1)] dP (ω)

= −VaRδ (z̃1)

[∫
Ω5

dP (ω)−
∫

Ω6

dP (ω)

]
= 0,

where the inequality follows from z̃1 ≤ −VaRδ (z̃1) when ω ∈ Ω5 and z̃1 >

−VaRδ (z̃1) when ω ∈ Ω6, and where the last equality follows from (A16). There-

fore, (A14) is obtained, and hence ESδ(z̃) is subadditive. Since DESδ(z̃) = ESδ(z̃)+

E(z̃) we have that DES is also subadditive.

Convexity now follows immediately from homogeneity of degree 1 and subad-

ditivity.
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Derivations of Systematic Risk for Applications I–V

Here we provide derivations of the systematic risk associated with different risk

measures discussed in Section III.C.

Application I: This is a special case of Application II.

Application II: Consider the risk measure R (z̃) = mk (z̃) for even k ≥ 2. The risk

of the market portfolio is

R
(
αM · z̃

)
= mk

(
αM · z̃

)
= E

(
αM · z̃− E

(
αM · z̃

))k
.

Differentiating with respect to the weight of asset i yields

∂mk

(
αM · z̃

)
∂αMi

= kE
[
(z̃i − E (z̃i))

(
αM · z̃− E

(
αM · z̃

))k−1
]

= kCov

(
z̃i,
(
αM · z̃−αM · E (z̃)

)k−1
)
.

By Theorem 4, and since mk (·) is homogeneous of degree k, the systematic risk is

then given by

(A17) BRi =

∂mk(αM ·z̃)
∂αMi

kmk (αM · z̃) =

Cov

(
z̃i,
(
αM · z̃−αM · E (z̃)

)k−1
)

mk (αM · z̃) ,

as required.

Now suppose alternatively that R (z̃) = wk (z̃) . The market portfolio risk is

R
(
αM · z̃

)
= wk

(
αM · z̃

)
=
(
mk

(
αM · z̃

)) 1
k .

Differentiating with respect to the weight of asset i gives

∂wk
(
αM · z̃

)
∂αMi

=
1

k

(
mk

(
αM · z̃

)) 1
k
−1 ∂mk

(
αM · z̃

)
∂αMi

.

By Theorem 4, and since wk (·) is homogeneous of degree 1, the systematic risk is

BRi =

1
k

(
mk

(
αM · z̃

)) 1
k
−1 ∂mk(αM ·z̃)

∂αMi

(mk (αM · z̃))
1
k

=

∂mk(αM ·z̃)
∂αMi

kmk (αM · z̃) ,
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which is identical to (A17).

Application III: Assume R (z̃) = DRk (z̃) for k ≥ 2. The risk of the market

portfolio αM is given by

DRk

(
αM · z̃

)
= (−1)k

(
E
([
αM · z̃− E

(
αM · z̃

)]−)k) 1
k

.

Differentiating with respect to αMi gives21

∂DRk

(
αM · z̃

)
∂αMi

= (−1)k
(

E
([
αM · z̃− E

(
αM · z̃

)]−)k) 1
k
−1

E

[
(z̃i − E (z̃i))

([
αM · z̃− E

(
αM · z̃

)]−)k−1
]

= (−1)k
(

E
([
αM · z̃− E

(
αM · z̃

)]−)k) 1
k
−1

Cov

[
z̃i,
([
αM · z̃− E

(
αM · z̃

)]−)k−1
]
.

By Theorem 4, and since DRk (·) is homogeneous of degree 1, the systematic risk

is given by

BRi =

∂DRk(αM ·z̃)
∂αMi

DRk (αM · z̃)

=

Cov

[
z̃i,
([
αM · z̃− E

(
αM · z̃

)]−)k−1
]

E
(
[αM · z̃− E (αM · z̃)]−

)k
= (−1)k

Cov

[
z̃i,
([
αM · z̃− E

(
αM · z̃

)]−)k−1
]

(DRk (αM · z̃))k
.

Application IV: Assume R (z̃) = DESδ (z̃) for some confidence level 0 < δ < 1.

Let f(z1, ..., zn) denote the joint density function of z̃. Since all risky assets have

21Note that we are essentially relying here on Leibniz’s rule for differentiation under the integral.

While
([
αM · z− E

(
αM · z̃

)]−)k
is not everywhere differentiable, it is continuous and differen-

tiable almost everywhere. This guarantees that Leibniz’s rule applies.
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positive net supply and since asset prices are positive, we have αM1 > 0. Hence, the

risk of the market portfolio αM can be written as follows

DESδ(α
M · z̃)

= ESδ(α
M · z̃) + E

(
αM · z̃

)
= −1

δ

∫ +∞

−∞
...

∫ +∞

−∞

∫ −VaRδ(α
M ·z̃)−

∑n
j=2 α

M
j zj

αM1

−∞

(
n∑
j=1

αMj zj − E
(
αM · z̃

))
f(z1, ..., zn)dz1...dzn.

Differentiating DESδ(α
M · z̃) using Leibniz’s rule with respect to αMi yields

∂DESδ(α
M · z̃)

∂αMi
(A18)

= −1

δ

∫ +∞

−∞
...

∫ +∞

−∞

∫ −VaRδ(α
M ·z̃)−

∑n
j=2 α

M
j zj

αM1

−∞
(zi − E (z̃i)) f(z1, ..., zn)dz1...dzn

+
VaRδ(α

M · z̃) + E
(
αM · z̃

)
δ

· ∂

∂αMi

∫ +∞

−∞
...

∫ +∞

−∞

∫ −VaRδ(α
M ·z̃)−

∑n
j=2 α

M
j zj

αM1

−∞
f(z1, ..., zn)dz1...dzn

 .

Notice that by the definition of VaRδ(α
M · z̃),∫ +∞

−∞
...

∫ +∞

−∞

∫ −VaRδ(α
M ·z̃)−

∑n
j=2 α

M
j zj

αM1

−∞
f(z1, ..., zn)dz1...dzn = δ,

which is a constant, implying that the second term in (A18) is zero. Thus,

∂DESδ(α
M · z̃)

∂αMi
= −1

δ

∫ +∞

−∞
...

∫ +∞

−∞

∫ −VaRδ(α
M ·z̃)−

∑n
j=2 α

M
j zj

αM1

−∞
(zi − E (z̃i)) f(z1, ..., zn)dz1...dzn

= −1

δ
E
[
1αM ·z̃≤−VaRδ(αM ·z̃) (zi − E (z̃i))

]
= −E

[
z̃i − E (z̃i) |αM · z̃ ≤ −VaRδ(α

M · z̃)
]
.

By Theorem 4, and since DESδ(α
M · z̃) is homogeneous of degree 1, the sys-

tematic risk is given by

BRi =

∂DESδ(α
M ·z̃)

∂αMi

DESδ(αM · z̃)
= −

E
[
z̃i − E (z̃i) |αM · z̃ ≤ −VaRδ(α

M · z̃)
]

DESδ(αM · z̃)
.
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Application V: Consider the following family of risk measures

R (z̃) = θ1w2 (z̃) + θ2DR3 (z̃) + θ3w4 (z̃) + θ4DESδ (z̃)

for some confidence level δ and nonnegative weights θ1, ..., θ4. From Lemma 1, this

family of risk measures satisfies all of the conditions in Theorem 4. Moreover, it is

easy to verify that when

R (z̃) =

s∑
j=1

Rj (z̃) ,

the expression for BRi given in (10) implies

BRi =
s∑
j=1

Rj
(
αM · z̃

)
R (αM · z̃) B

Rj

i .

That is, the systematic risk takes the form of the risk-weighted average of the sys-

tematic risk associated with each of the risk components. (See also Section IV.A

for further discussion of this issue as it relates to Axiom 2 in that section.)
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Online Appendix

Mean-Risk Preferences and Expected Utility

Background

One would wonder how the mean-risk preferences considered in Section III are

related to the commonly assumed von Neumann-Morgenstern utility. It is widely

known that a von Neumann-Morgenstern investor with a quadratic utility function

only cares about the mean and the variance of his investments in the sense that he

prefers a high expected wealth and a low variance. In this sense, the mean-risk

preference is consistent with the von Neumann-Morgenstern utility when variance

is used as the risk measure. Alternatively, when returns are distributed according to

a two-parameter elliptical distribution (normal being a special case), mean-variance

preferences can also be supported by expected utility. These instances, however,

are quite restrictive. First, the quadratic utility is not very intuitive since it implies

increasing absolute risk aversion. Second, elliptical distributions, being determined

by the first two moments only, limit our ability to describe the dependence of risk

on high distribution moments and other risk characteristics. Thus, in general, mean-

variance preferences are not consistent with expect utility. The approach taken in

this paper is much more general, allowing for a variety of risk measures. Whether

a particular risk measure is consistent with expected utility depends on the actual

choice of the risk measure. For example, risk measures that are simple linear com-

binations of raw moments up to the kth degree can be represented by a kth degree

polynomial (Müller and Machina (1987)), generalizing the mean-variance result.

While in general the preferences defined in (6) cannot be supported by expected

utility, they are often consistent with expected utility locally. The idea is based

on Machina’s (1982) “Local Utility Function.” To facilitate this approach we first

restrict attention to risk measures that depend on the distribution of the random

variables only. Thus, we consider risk measures that are functions from the distri-

bution of realizations to the reals rather than functions from the random variables

themselves. Practically, this does not present a binding restriction since all the ex-

amples in this paper and all standard risk measures only rely on the distribution of
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realizations anyway. In this case the preferences in (6) can be written as

U (ζ) = V (E (Fζ·ỹ) , R (Fζ·ỹ)) ,

where Fζ·ỹ is the cumulative distribution of the random variable ζ · ỹ. When the

random variable of interest is clear, we will omit it from the notation and write the

utility as U (F ) = V (E (F ) , R (F )) .

According to Machina (1982), if the realizations of all random variables are

contained in some bounded and closed interval I and U (F ) is Fréchet differentiable

with respect to the L1 norm,22 then for any two distributions F1, F2 on I there exists

u (·;F1) differentiable almost everywhere on I such that

(A19)

U (F2)− U (F1) =

∫
I

u (y;F1) dF2 (y)−
∫
I

u (y;F1) dF1 (y) + o (‖F2 − F1‖) ,

where ‖·‖ denotes the L1 norm. That is, starting from a wealth distribution F1, if

an investor moves to another “close” distribution F2, then he compares the utility

from these two distributions as if he is maximizing his expected utility with a local

utility function u (·;F1) .

The key to applying Machina’s result is to find sufficient conditions on the risk

measure which guarantee that U (F ) is Fréchet differentiable. This can be done in

many ways. Next we provide one simple but effective approach which is sufficient

to validate many popular risk measures as consistent with local expected utility.

Risk Measures as Functions of Moments

Let µFk =
∫
ykdF (y) be the kth raw moment given distribution F, and mF

k =∫ (
y − µF1

)k
dF (y) be the kth central moment given distribution F. Consider risk

measures which are a function of a finite number of (raw or central) moments. We

denote such risk measures by R
(
µFj1 , ..., µ

F
jl
,mF

k1
, ...,mF

kn

)
. We assume that R is

differentiable in all arguments. The utility function in (6) then takes the form

(A20) U (F ) = V
(
µF1 , R

(
µFj1 , ..., µ

F
jl
,mF

k1
, ...,mF

kn

))
,

22Fréchet differentiability is an infinite dimensional version of differentiability. The idea here is

that U (F ) changes smoothly with F, where changes in F are topologized using the L1 norm. See

Luenberger (1969, p. 171).
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where V is differentiable in both mean and risk. This class of utility functions is

quite general and it allows the risk measure to depend on a large number of high

distribution moments. We then have the following proposition.

Proposition 4 If U (F ) takes the form (A20) then for any two distributions F1, F2

on I there exists u (·;F1) differentiable almost everywhere on I such that (A19)

holds.

Proof: We need to show that U (F ) is Fréchet differentiable. By the chain rule for

Fréchet differentiability (Luenberger (1969, p. 176)), we know that if both µFk and

mF
k are Fréchet differentiable for any k, then so is U (·) . The Fréchet differentia-

bility of µFk is obvious, since

µF2k − µ
F1
k =

∫
I

ykdF2 (y)−
∫
I

ykdF1 (y) = −k
∫
I

(F2 (y)− F1 (y)) yk−1dy.

Now we show that mF
k is Fréchet differentiable. We have

mF
k =

∫ (
y − µF1

)k
dF (y)

=

∫ k∑
i=0

k!

i! (k − i)!y
i
(
µF1
)k−i

dF (y)

=
k∑
i=0

k!

i! (k − i)!
(
µF1
)k−i ∫

yidF (y)

=
k∑
i=0

k!

i! (k − i)!
(
µF1
)k−i

µFi ,

which is a differentiable function of the µFi ’s. By the chain rule, it follows immedi-

ately that mF
k is also Fréchet differentiable. This completes the proof.

Sufficient Conditions for Positive Prices

Here we provide a sufficient condition for the positivity of equilibrium prices fol-

lowing the approach of Nielsen (1992). Let ζ ∈ Rn+1 be a bundle. Denote the

gradient of investor j’s utility function at ζ by ∇Uj (ζ) = (U j
0 (ζ) , ..., U j

n (ζ)),
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where a subscript designates a partial derivative in the direction of the ith asset.

Also, let γj (ζ) = −
(
V j

2 (E (ζ · ỹ) , R (ζ · ỹ))
)
/
(
V j

1 (E (ζ · ỹ) , R (ζ · ỹ))
)
> 0

be the marginal rate of substitution of the expected payoff of the bundle for the risk

of the bundle. This is the slope of investor j’s indifference curve in the expected

payoff-risk space. For brevity we often omit the arguments of this expression and

use γj (ζ) = −V j
2 /V

j
1 .

Proposition 5 Assume that for each asset i there is some investor j such that

E(ỹi) > γj (ζ)Ri (ζ · ỹ) for all ζ. Then, prices of all assets are positive in all

equilibria.

Proof: At an equilibrium, all investors’ gradients point in the direction of the price

vector. So the price of asset i must be positive in any equilibrium if there is some

investor j such that U j
i (ζ) > 0 for all ζ. Recall that

U j (ζ) = V j (E (ζ · ỹ) , R (ζ · ỹ)) .

Thus,

U j
i (ζ) = V j

1 E(ỹi) + V j
2 Ri (ζ · ỹ)

= V j
1 [E(ỹi)− γj (ζ)Ri (ζ · ỹ)],

where Ri (ζ · ỹ) denotes the partial derivative of R (ζ · ỹ) with respect to ζ i.

Since V j
1 > 0, U j

i (ζ) > 0 corresponds to

E(ỹi)− γj (ζ)Ri (ζ · ỹ) > 0,

as required.

Note that γj (·) can serve as a measure of risk aversion for investor j. We can

thus interpret this proposition as follows. If each asset’s expected return is suffi-

ciently high relative to some investor’s risk aversion and the marginal contribution

of the asset to total risk, then this asset will always be desirable by some investor,

and so, its price will be positive in any equilibrium.
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