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Abstract 

While the empirical evidence on the pricing of food risk exposure in residential real estate 
held by uninformed households is mixed, this study shows that sophisticated investors 
in commercial real estate markets rationally respond to heightened food risk by bidding 
down the prices of exposed assets. Using a detailed property-level database on commercial 
real estate transactions completed in New York, Boston, and Chicago before and after the 
shift in the salience of food risk caused by Hurricane Sandy, we document that properties 
exposed to food risk experience slower price appreciation after the storm than equivalent 
unexposed properties. We further show that: the price e˙ect is not driven by physical 
damage incurred from Hurricane Sandy, nor by concurrent unrelated pricing trends for 
waterfront property; it persists through time, suggesting it does not refect a temporary 
overreaction that is subsequently reversed; it is driven by higher risk premiums for exposed 
properties; and it is exacerbated by contagion from locally important occupiers. 
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1 Introduction 

Regulators and market participants worry about the e˙ect of environmental risks on real asset 

values (Carney, 2015, 2016). The risk to coastal real estate from fooding is at the center of those 

concerns. However, empirical evidence on actual price discounts for real properties exposed 

to food risk is mixed. Murfn and Spiegel (2018) document that coastal property prices are 

insensitive to food risk. Bernstein et al. (2018) show that properties exposed to food risk trade at 

a signifcant discount relative to equivalent unexposed properties. Baldauf et al. (2018) fnd that 

the price e˙ect of food risk exposure depends on buyer beliefs about climate change. However, 

prior studies focus on food risk in residential properties owned by uninformed households for the 

purpose of housing consumption. We complement existing work by estimating the price e˙ects of 

food risk exposure of commercial properties held by sophisticated agents for investment purposes. 

The U.S. commercial real estate market is worth $8.8 trillion, 55% of which is equity-fnanced 

and 45% of which is commercial real estate debt (Ling and Archer, 2018). Of the equity share, 

60% is held by public and private institutional investors; the remaining 40% is held by other 

professional investors. Given the deep penetration of the U.S. commercial real estate market by 

investment professionals, the marginal buyer is likely to be a sophisticated agent with the skills 

and resources required to evaluate investment risk. As a result, this market is a useful laboratory 

for testing the hypothesis that food risk is capitalized into real estate transaction values. 

To capture a shift in the salience of food risk, we focus on Hurricane Sandy. Hurricane-related 

food risk has always been present along the southern parts of the U.S. East Coast but a 

northward shift in hurricane patterns puts new locations at risk (Kossin et al., 2014; Reed et al., 

2015). Hurricane Sandy unexpectedly hit New York in 2012:Q4 but spared locations further 

north, such as Boston. Nonetheless, Sandy is viewed as an example of the type of event in 

store for the entire region, including Boston. Sandy represents a discrete and unexpected event 

that has increased the salience of food risk in U.S. East Coast locations previously considered 

immune to this type of disaster (Baldini et al., 2016). In our empirical design, we use Hurricane 
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Sandy to document where, when, and through which channels food risk a˙ects commercial 

real estate values. 

To show how Hurricane Sandy has infuenced the e˙ect of food risk on real estate prices, 

we obtain a proprietary set of commercial real estate transactions over the 2001–2017 period 

from Costar, a leading commercial real estate data provider. Flood risk is primarily a function 

of a property’s proximity to the coast. However, this characteristic may also refect the 

environmental amenity value of waterfront property (Albouy et al., 2016; Chay and Greenstone, 

2005). Therefore, the empirical identifcation challenge is to separate any food risk discount 

from this amenity premium. In Costar, we observe transaction dates and values as well as a rich 

set of property characteristics. To this dataset we apply a matched pairs analysis. We frst flter 

transaction prices for value-relevant hedonics to obtain residual prices for the pre-Sandy period 

(2001:Q1 to 2012:Q3). In those hedonic regressions we include a property’s distance to the coast. 

The results suggest little environmental amenity value associated with that characteristic for 

the commercial properties in our sample. We then match estimated residual prices of properties 

sold after Sandy (2013:Q1 to 2017:Q4) with those sold before Sandy (2001:Q1 to 2012:Q3) 

based on their distance to the coast. Crucially, those residual prices are net of the impact of 

other observable value-relevant hedonics — including distance to the coast, which captures the 

amenity value associated with waterfront property prior to the shift in the salience of food risk 

caused by Hurricane Sandy. We regress the residual price di˙erence across matched properties 

sold in the pre- versus post-Sandy period on those properties’ distance to the coast and a 

set of covariates. With this regression, we are able to conduct a clean test of the hypothesis 

that distance to the coast, as a proxy for food risk exposure, a˙ects price appreciation for 

otherwise equivalent properties between pre-Sandy and post-Sandy sales, after accounting for 

the potential amenity value of waterfront property. 

Do investors capitalize information about food risk into real estate values? If so, where? 

We study three locations; namely, New York, Boston, and Chicago. New York used to be 

considered immune to food risk but experienced a severe storm when Hurricane Sandy hit in 

2012:Q4. Boston is now also considered exposed to food risk (Baldini et al., 2016), but has not 
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yet experienced major damage. Chicago is located on the shore of Lake Michigan but occupies 

an inland location; Chicago is thus not exposed to hurricane-related food risk and serves as 

a placebo test. 

We estimate that a one-mile reduction in distance to the coast results in a slowdown in 

price appreciation for New York properties sold in the pre- versus post-Sandy period of 21%. Of 

course, real estate in New York su˙ered physical damage from Hurricane Sandy, and our results 

may refect that. To mitigate the confounding e˙ects of physical damage incurred, we replicate 

the analysis of commercial properties in New York for properties in Boston. Boston real estate 

has not experienced physical damage due to Sandy, but salience of hurricane-related food risk 

in coastal locations long the eastern seaboard has increased since the hurricane struck New 

York. Our estimates suggest that a reduction in distance to the coast by one mile in Boston 

results in a slowdown in price appreciation across matched pre- versus post-Sandy transactions 

of 7%. Our results are consistent with Hurricane Sandy a˙ecting the capitalization of food 

risk exposure into real estate values in the area hit by the storm — but also further afeld, in 

previously una˙ected locations, through a shift in real estate investors’ awareness of food risk. 

Placebo tests in Chicago over the same period come out insignifcant, confrming that our results 

are not driven by concurrent unrelated price trends for waterfront property. We are the frst 

to document the price e˙ects of hurricane-related food risk exposure in commercial real estate 

markets across a range of location with varying degrees of past exposure to that type of disaster. 

We then turn to the question over what timeframe food risk a˙ects property prices in New 

York and Boston after Hurricane Sandy struck in 2012:Q4. We document that the price e˙ect of 

food risk exposure persists over the subsequent fve years until the end of our sample period in 

both locations. Our results suggest that the negative price e˙ects of food risk exposure represent 

a lasting level-shift in the pricing of fundamental property characteristics refecting an asset’s 

exposure to food risk. We fnd no evidence that such value e˙ects decay as time passes and the 

disaster becomes a more distant memory, or as an initial overreaction is reversed. This evidence 

is novel in that ours is the frst study to assess the persistence of the initial price e˙ects of food 

risk exposure on commercial real estate values over a number of years after a disaster has struck. 
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Next, we analyze the channels through which food risk a˙ects property prices. A sub-sample 

analysis suggests that food risk exposure a˙ects property values through higher capitalization 

rates, which refect higher risk premiums. We document no signifcant e˙ects on vacancy rates, 

suggesting that operating income, as driven by the occupancy of a property by rent-paying 

tenants, is una˙ected by food risk exposure. Our fndings imply that agents in the property 

investment market respond to food risk more than the actual users of space in buildings at risk 

of food damage. The granular data we employ in our analysis is unique in that it enables us 

to disentangle the di˙erent channels through which food risk exposure may a˙ect commercial 

real estate prices. 

We also document contagion from local occupiers to unrelated properties in their vicinity. 

Our results suggest that there is a temporary decline in the prices of properties that are close 

to the headquarters of public frms whose stock prices are negatively a˙ected by Hurricane 

Sandy, irrespective of their own location being exposed to the storm. The evidence we present 

on short-term local contagion of hurricane exposure, to our knowledge, is novel to the literature. 

Our inferences are robust to using several alternative testing approaches. The negative price 

e˙ect of food risk exposure holds when employing a broader measure of a given property’s food 

risk exposure based not only on distance to the coast, but also on combinations of distance and 

elevation above sea-level. We also verify that our results are robust to controlling for potential 

spikes in food risk insurance premiums, which may apply to exposed properties after a disaster 

has struck, as discussed in Froot (2001), and which may have a mechanical negative e˙ect on 

asset prices. Lastly, we confrm that the negative price e˙ect of food risk exposure we document 

is independent of the price e˙ects of sea-level rise reported in Bernstein et al. (2018). 

Our results relate to the broad literature on the drivers of investment demand and 

performance in real estate (see; e.g., Ghent (2018) and Sagi (2018)). Specifcally, our study 

contributes to the debate on the e˙ect of environmental risks on real estate values. On the one 

hand, Harrison et al. (2001), Bin and Landry (2013), Atreya et al. (2013), Atreya and Ferreira 

(2015), and Murfn and Spiegel (2018) fnd little evidence that food risk has a lasting negative 

impact on property prices. Flood risk also does not seem to outweigh the amenity value of 
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waterfront property (Atreya and Czajkowski, 2014). On the other hand, Keenan et al. (2018) 

show that properties at risk of inundation experience slower price appreciation, while Bernstein 

et al. (2018) document that such properties sell at a discount relative to equivalent unexposed 

properties.1 

There are at least two possible explanations for those conficting results. First, existing work 

commonly focuses on the value of residential property largely held by uninformed households for 

the purpose of housing consumption. Bernstein et al. (2018) acknowledge that the price e˙ects 

they document may be driven by the more sophisticated households in their sample. Second, 

prior studies focus on food risk emanating from sea-level rise, a slow and gradual process. Murfn 

and Spiegel (2018) and Giglio et al. (2018) point out that price e˙ects may be stronger when the 

salience of environmental risk shifts. In this study, we document signifcant price e˙ects of food 

risk in a sample of commercial properties held by sophisticated professional and institutional 

agents for investment purposes. Our results suggest that investor sophistication infuences the 

pricing of environmental risk factors. We also focus on the pricing of property characteristics 

associated with food risk exposure before and after Hurricane Sandy, a discrete event that has 

increased the salience of hurricane-related food risk along large parts of the U.S. East Coast that 

were previously considered immune. Our fndings suggest that the salience of environmental 

risks is a signifcant determinant of the extent to which they are capitalized into asset values. 

Dessaint and Matray (2017) report that the temporary salience of a disaster leads managers 

to put excessive weight on its probability in the short-term, even if their own frms were una˙ected 

by a given disaster. The authors interpret that evidence as being consistent with behavioral 

salience theories of choice (Tversky and Kahneman, 1973, 1974). In contrast, Aretz et al. (2018) 

document that hurricanes have a persistent e˙ect on the distress risk of hurricane-struck frms, 

refecting a level-shift in the riskiness of those frms. That evidence is consistent with standard 

Bayesian theory of judgment under uncertainty. While Sandy itself did not change the objective 

probability of a hurricane strike on the eastern seaboard, its landfall unusually far north has 
1Related evidence explores the impact of fooding and food risk on local economic growth and output 

(Boustan et al., 2017; Deschênes and Greenstone, 2007; Novkov and Tol, 2018) as well as the impact of hurricane 
mitigation features on home prices (Gatzla˙ et al., 2018). 
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alerted investors to the risk to which locations along the East Coast are actually exposed. Our 

fndings of a persistent e˙ect of hurricane-related food risk on property prices in such locations 

thus align more closely with the rational investor response documented in Aretz et al. (2018). 

Barr et al. (2017), Ortega and Taspinar (2016) and Gibson et al. (2017) also study Hurricane 

Sandy but focus on the New York housing market alone. We provide evidence for commercial 

property held for investment purposes and document the impact of Hurricane Sandy in locations 

further afeld, beyond those that experienced acute physical damage in the storm. In this respect, 

our fndings also relate to Hong et al. (2017), who show that the stock market under-reacts 

to drought risk, due to a lack of experience with this risk. Our results show that investors do 

not necessarily need to experience a disaster locally in order to respond to it by incorporating 

the relevant risk factors into asset valuations. We further expand on prior work by identifying 

possible economic channels (capitalization rates, vacancy, contagion from locally important 

occupiers) through which food risk infuences real property values. 

We proceed as follows. Section 2 describes stylized facts about hurricane patterns in the 

U.S. The data used in our study are presented in Section 3. Section 4 outlines our methodology. 

Section 5 discusses the empirical results. Section 6 presents robustness tests. Section 7 concludes. 

2 Hurricane Patterns in the U.S. 

We begin by exploring hurricane patterns in the U.S. for the period 1965–2015. Figures 1 and 2 

graphically show the development of the sea surface temperature anomaly, as a primary indicator 

of global climate conditions, against di˙erent measures of hurricane incidence and severity.2 

Panel A of Figure 1 depicts hurricane incidence in the U.S. against annual global sea surface 

temperatures. A bar indicates that at least one hurricane struck the U.S. in that year, with the 

length of the bar indicating the number of years that passed since the last hurricane. We also ft 

a trend line through those bars. Along with rising temperatures, the incidence of hurricanes has 

increased, as illustrated by the declining trend in the number of years since the most recent storm. 
2Sea surface temperature is the temperature of the upper millimeter of the ocean’s surface. The temperature 

anomaly is the departure from the average temperature between 1971 and 2000. See United States Environmental 
Protection Agency on climate change indicators in the U.S. https://www.epa.gov/climate-indicators. 
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(A) Frequency of Hurricanes (B) Duration of Hurricanes 

Figure 1. Sea Surface Temperatures and Hurricanes in the U.S., 1965–2015. The fgure 
depicts the relationship between the sea surface temperature (SST) anomaly and hurricanes in the U.S. 
Panel (A) shows the time series evolution of the number of years since the most recent hurricane in the 
U.S., along with a linear trend line ftted to the data, against annual global sea surface temperature 
anomalies. Panel (B) shows the average duration (in days) of hurricanes in the U.S., along with a linear 
trend line ftted to the data, against annual global sea surface temperature anomalies. This graph uses 
the 1971–2000 global sea surface temperature average as a baseline for measuring temperature anomalies. 
Hurricane data are obtained from SHELDUS. Sea surface temperature data are obtained from NOAA. 

Panel B of Figure 1 shows the average duration of hurricanes in the U.S., along with a linear 

trend line, against sea surface temperatures. The data suggest that increasing temperatures 

coincide with a positive trend in the average duration of hurricanes in the U.S. 

Panel A of Figure 2 presents the time series evolution of hurricane severity, measured as 

total damage to property, along with a linear trend line. Overall, the data suggest a positive 

correlation between sea surface temperatures and the severity of hurricanes. 

Panel B of Figure 2 lists the states on the U.S. East Coast sorted from south to north and 

the total number of hurricanes experienced by state and decade. Prior to 1986, no coastal state 

north of Florida experienced more than one or two hurricanes per decade. Over the period 

1986-1995, coastal states as far north as New York began experiencing a higher number of 

hurricanes. From 1996 to 2005, coastal states even north of New York, such as Massachusetts 

and New Hampshire, began experiencing higher numbers of hurricanes. Our data is consistent 

with a northward migration of hurricanes along the U.S. East Coast, putting numerous densely 

populated centers of economic activity at risk. 
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East coast states south to north 1965-1975 1976-1985 1986-1995 1996-2005 2006-2015
Florida 3 1 2 4 2
Georgia 1 0 1 3 0
South Carolina 1 1 2 2 0
North Carolina 1 1 3 6 2
Virginia 2 1 2 6 2
Maryland 2 1 4 5 2
Delaware 1 1 0 3 1
New Jersey 1 1 1 4 2
New York 1 1 3 4 2
Connecticut 1 1 2 2 2
Rhode Island 1 1 2 2 2
Massachusetts 1 1 1 3 2
New Hampshire 1 1 2 3 1
Maine 0 1 1 2 0

(A) Severity of Hurricanes (B) Northward Migration of Hurricanes 

Figure 2. Hurricane Patterns in the U.S., 1965–2015. The fgure depicts hurricane patterns 
in the U.S. Panel (A) shows the time series evolution of total hurricane damage to property in the 
U.S., along with a linear trend line ftted to the data, against annual global sea surface temperature 
(SST) anomalies in degrees Fahrenheit. This graph uses the 1971–2000 global temperature average 
as a baseline for depicting temperature anomalies. Panel (B) shows the states on the East Coast of 
the U.S. sorted from south to north and the total number of hurricanes experienced in those states 
by decade. To illustrate geographic and time series patterns in hurricane exposure, the shading of 
the cells becomes darker as the number of hurricanes experienced in a state in a given decade increases. 
Hurricane data are obtained from SHELDUS. Sea surface temperature data are obtained from NOAA. 

In all, the frequency, duration and intensity of hurricanes have increased over recent decades 

(Mann and Emanuel, 2006). By way of reference, the economic toll of the 2017 hurricane season 

exceeds $200 billion, most of which is concentrated in real property.3 Going forward, average 

hurricane intensity and destructiveness are projected to increase further (Emanuel, 2005). 

3 Data 

We collect property transaction data from Costar, a leading commercial real estate data provider. 

To our knowledge, this is the frst study employing Costar data to assess the price e˙ects of 

food risk on commercial property prices. Costar comprehensively tracks commercial property 

transactions in the U.S. based on public records, real estate listing services, press releases, SEC 

flings, and news reports. As of 2017, the Costar database covers more than 3.2 million U.S. 

commercial real estate deals, representing over 80% of the total market by transaction volume. 
3USA Today, 11/29/17: Nightmarish, Destructive 2017 Hurricane Season Comes to an End. 
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Each record in the database contains transaction-specifc information, such as transaction 

date and price. Costar further provides a set of hedonics, including property type, size, age, 

number of stories, building class, and exact address location. The database covers transactions 

on all major types of commercial property. We focus on oÿces. This property type is highly 

redeployable as it is not very specifc to the current owner or user, increasing the number of 

potential investors. Moreover, there is a lot of it, so increasing our sample size. By focusing 

on oÿce space, we minimize the infuence on price dynamics of thin markets, which may occur 

for more specialized property types, such as hotels, for instance. 

We obtain data on oÿce transactions from 2001:Q1 to 2017:Q4 in three major U.S. 

commercial real estate markets: New York (NY), Boston (MA), and Chicago (IL). From 

the initial sample, we discard properties built after Hurricane Sandy. Properties constructed 

after Sandy may incorporate advanced building technology that may be more resilient to 

hurricane strikes. Also, building codes may have evolved to require more features that make 

buildings more resilient to hurricanes. We also restrict the sample to properties located within 

20 miles of the coast, as food risk becomes less relevant further inland. The fnal sample 

contains 11,682 transactions.4 

We compile property-specifc data on food risk as follows. We use the property addresses 

provided in Costar to geocode the location of the properties, producing an exact longitude/latitude 

position for each of them. For each property location, we measure distance to the coast using 

topological modeling and GIS software. We obtain shape fles for U.S. counties and coast from 

the U.S. Census Bureau and U.S. Geological Survey. The U.S. Board on Geographic Names 

provides primary feature attributes including elevation. To calculate elevation, we take the 

average of the elevation data for primary features in each county. We obtain property elevation 

with coordinates using Elevation API from Bing Maps REST Services. 

We obtain data on hurricane damage to properties from the Spatial Hazard Events and 

Losses Database for the United States (SHELDUS).5 SHELDUS is a county-level hazard data 

set for the U.S. and covers natural hazards such thunderstorms, hurricanes, foods, wildfres, 
4Our results are robust to including properties built after Hurricane Sandy and lifting the 20-mile restriction. 
5For details on the SHELDUS database, see; e.g., Cutter and Emrich (2005) or Arkema et al. (2013). 
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and tornadoes as well as perils such as fash foods, heavy rainfall, etc. The data set contains 

information on the date of an event, a˙ected location (county and state) and the direct losses 

caused by the event including damage to physical property in U.S.$. Data and maps are compiled 

and geo-referenced at the University of South Carolina. The database covers the period 1965 

to 2015. The smallest geographical unit for which we observe damage is a U.S. county. 

Table 1 presents descriptive statistics for the sample data. Panel A covers the county-level 

data over the 1965–2012 period. The county-level damage from an average hurricane is $56 

million. Average distance to the coast of counties hit by hurricanes is 89 miles while elevation 

is 50 ft, on average. Average population of counties hit by a hurricane is 127,000. 

Panel B of Table 1 shows descriptive statistics for property transactions completed before 

and after Hurricane Sandy by location. In New York, properties sold after Sandy have a mean 

price per sqft of $632, higher than the mean of $449 before Sandy. Those statistics are consistent 

with price trends observed in Boston and Chicago. They refect that commercial real estate 

prices experienced a strong upward trend during the sample period. The average property sold 

post-Sandy in New York is located slightly closer to the coast than in the pre-Sandy period. 

Properties sold in New York post-Sandy are also slightly smaller, older (given the passage of 

time), and fewer of them are categorized as class A assets. The property characteristics are 

largely comparable across the assets sold in Boston and Chicago before versus after Hurricane 

Sandy, suggesting few signifcant changes in the composition of the traded real estate stock 

over the sample period. As we outline in the next section, our empirical approach accounts 

for the impact of observable value-relevant hedonics in the analysis of the price e˙ect of food 

risk in commercial property investments. 

[Table 1 about here.] 
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4 Method 

4.1 Identifcation Strategy 

To identify the e˙ect of food risk on observed property prices, we require variation in the 

exposure of properties to this risk. Flood risk is a function of location characteristics, such as 

distance to the coast and elevation. Those characteristics are easy to measure on the level of 

individual properties. However, proximity to the coast and low elevation may infuence property 

prices for reasons other than food risk, such as the amenity value of waterfront property (Albouy 

et al., 2016; Chay and Greenstone, 2005). Cross-sectional regressions of property prices on those 

metrics alone are thus insuÿcient to identify the price impact of food risk. We additionally 

require variation in the salience of food risk over time. 

We obtain such time variation from the unexpected strike of Hurricane Sandy in New 

York in 2012:Q4 (October). Prior to Sandy, New York was believed to be immune to strong 

hurricanes because of its location north of the (sub-) tropical regions where these hurricanes 

typically occur. This belief was chattered when Hurricane Sandy struck. Moreover, given the 

changing geographical patterns of hurricanes, summarized in Section 2, Hurricane Sandy is an 

example of the kind of event now in store for cities all along the U.S. East Coast, including 

locations further north than New York itself (Baldini et al., 2016). However, hurricanes are 

a coastal phenomenon and do not much a˙ect locations further inland. 

Hurricane Sandy caused signifcant physical and economic damage to properties in New 

York. An analysis of property prices before and after Hurricane Sandy in New York alone would 

inadvertently confound the e˙ect of those damages and the potential price impact of exposure 

to future food risk. To address this issue, we analyze not only properties in New York but also, 

separately, in Boston. Boston is located even further north than New York and has thus far 

been spared major hurricane damage. However, as shown in Baldini et al. (2016), the experience 

of Hurricane Sandy in New York has raised the salience of food risk along the entire U.S. East 

Coast, including Boston. Further, to ensure that our analysis captures the impact of food 

risk alone, and not any other concurrent but unrelated price dynamics specifc to waterfront 
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property, we also analyze commercial property prices in Chicago. Chicago is situated on a 

major body of water (Lake Michigan), but due to its location far in-land it is insensitive to food 

risk resulting from hurricanes. Chicago thus serves as a placebo test in our empirical analysis. 

4.2 Measuring Flood Risk 

The National Hurricane Center reports that fooding from storm surge poses the greatest 

hurricane-related threat to coastal property.6 Therefore, our measure of food risk is based 

on exposure to storm surge risk. The most important location characteristics determining 

property exposure to storm surge risk are distance to the coast and elevation.7 We use those 

two property-location variables as proxies to measure food risk exposure on the property-level. 

We assess the suitability of those two risk proxies by regressing actual food damage on 

distance to the coast and elevation. If distance to the coast and elevation are related to actual 

damage, then those variables represent ex ante observable information about food risk exposure 

that investors are able to incorporate into valuations. We estimate the following OLS regression: 

Damagel,t = β0 + β1Riskm,l + β2P opulationl,t + γt + θt + δz + ul,t (1) 

where Damagel,t is the natural logarithm of hurricane damage to properties in county l at 

time t, measured in 2015 $ million. U.S. counties are the smallest geographic unit for which 

we observe damage data. β0 is a constant. Riskm,l denotes the two food risk measures; namely, 

Distancel, which is distance to the coast of properties located in county l, and Elevationl, 

which is elevation of properties located in county l. We aggregate the food risk measures to 

the county level by calculating the average distance and elevation across the sample properties 

in a given county. P opulationl,t is the natural logarithm of population in county l at time t. γt 

are year–fxed e˙ects. θt are month–fxed e˙ects. δz are state–fxed e˙ects. ul,t is the residual. 

We cluster standard errors by county. 
6Storm surge is an abnormal rise of sea water generated by a storm’s winds, which can reach heights well 

over 20 ft, span hundreds of miles of coast, and travel several miles inland. See NOAA on Storm Surge Risk. 
7See: NASA on Recipe for a Hurricane. 
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We expect negative coeÿcients β1 on the food risk measures in Eq. (1), indicating that 

closer proximity to the coast and lower elevation are associated with greater hurricane damage. 

However, we are ex ante agnostic about whether distance to the coast and elevation are equally 

important in determining food damage, or whether one characteristic dominates the other. 

As a consequence, we use the results from the regression described in Eq. (1) to inform our 

choice of which of the two food risk measures to use in the empirical analysis of food risk and 

property prices. We describe the empirical procedure we employ for the analysis of commercial 

property prices in the next section. 

4.3 Flood Risk and Property Prices 

Property prices are a function of observable building characteristics, location and time. We 

begin our price impact analysis by fltering transaction values for the e˙ect of those observables, 

using the following hedonic pricing model for all sample transactions completed prior to Sandy: 

P ricei,t = β0 + β1Hedonicsi,t + γt + δz + ui,t (2) 

where P ricei,t is the natural logarithm of the transaction price per square foot for property i at 

time t. The subscript t refects that property i may sell multiple times during our sample period. 

β0 is a constant. Hedonicsi,t is a matrix of covariates; namely, property size (natural logarithm 

of square footage), age, age squared, number of stories, and building quality class. Building 

quality class is denoted by letters from A to C, with A (C) representing the highest (lowest) 

quality. Building class A is excluded from the estimation as reference category. Hedonicsi,t 

also contains the properties’ food risk measures as described in Section 4.2. The resulting 

coeÿcient estimates provide an indication of the price of such characteristics prior to any 

shift in hurricane-related food risk perception caused by Hurricane Sandy. The associated 

coeÿcient estimates thus capture the potential amenity value of waterfront property. γt are 

year-quarter–fxed e˙ects, and δz are zip code–fxed e˙ects. ui,t is the residual. We estimate the 

regression in Eq. (2) separately for each location; that is, for New York, Boston, and Chicago. 
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We conduct the price impact analysis of Hurricane Sandy in each sample location using 

a matched-pairs approach. Hurricane Sandy hit New York in 2012:Q4 (October). For each 

property sold in a given location after Hurricane Sandy; that is, between 2013:Q1 until the 

end of our sample period in 2017:Q4, we identify the “best match” in that market among the 

properties sold before Hurricane Sandy; that is, properties sold between the start of our sample 

period in 2001:Q1 and 2012:Q3. The “best match” is determined based on distance to the 

coast of the property transacted post-Sandy. As discussed in Section 3, Table 1 shows only 

minor di˙erences in the composition of the traded real estate stock in the sample locations 

across pre- and post-Sandy periods, reducing concerns around selection bias in terms of the 

properties traded before versus after Sandy. We calculate the di˙erence in residual prices across 

the matched properties sold during the pre- versus post-Sandy sample periods. Residual prices 

are obtained from the location-specifc hedonic pricing model in Eq. (2), so the value e˙ects of 

observable property characteristics, including the potential amenity value of waterfront property, 

are accounted for. If several properties qualify as the best match, we compute the average of 

their residual prices. If the same property is sold before Hurricane Sandy and after Hurricane 

Sandy, then its features are identical and it is picked as its own best match. We regress the 

residual price di˙erence across matched properties on our food risk measure: 

Residual Price Di˙erence i = β0 + β1Risk i + γt + δz + ui (3) 

where Residual Price Di˙erence i is the di˙erence in residual prices, obtained from Eq. (2), for 

pair i of post-Sandy versus pre-Sandy matched transactions. β0 is a constant. Risk i is the value 

of our food risk measure for the property in the pair that is transacted after Hurricane Sandy. 

γt are year–fxed e˙ects for the year of the post-Sandy transaction, and δz are zip code–fxed 

e˙ects. ui is the residual. We expect β1 to be positive and signifcant. Such a result indicates 

that properties with greater distance to the coast or higher elevation, i.e. those properties less 

exposed to food risk, experience stronger price appreciation from the pre-Sandy period to the 
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post-Sandy period than those with greater food risk exposure, i.e. properties located in closer 

proximity to the coast or with lower elevation. 

5 Results 

5.1 Testing the Ex Ante Measures of Hurricane Risk 

Table 2 presents the regression results for county-level hurricane damage outlined in Eq. (1). 

The estimates in column (1) suggest that a one-standard deviation increase in distance to the 

coast reduces county-level hurricane damage on average by $1.1 million. For elevation, the 

estimated e˙ect is $1.7 million (column (2)).8 When including both measures in the same 

regression (column (3)), the e˙ect of distance to the coast dominates that of elevation. In all, 

those results suggests that the location features we use to construct our food risk measures 

contain relevant information about food risk as refected in property damage upon exposure 

to a storm. As the estimates reported under column (3) suggest that the e˙ect of distance to 

the coast dominates that of elevation, we focus on distance to the coast as the main food risk 

measure in the property-level analysis that follows. 

[Table 2 about here.] 

5.2 The Hedonic Pricing Model 

Table 3 presents the hedonic pricing model from Eq. (2), estimated over the pre-Sandy period 

2001:Q1 through 2012:Q3. Column (1) shows the estimation results for New York. Columns 

(2) and (3) show the results for Boston and Chicago, respectively. The estimates in columns (1) 

indicate that in New York, property prices before Hurricane Sandy were insensitive to the e˙ect 

of a given property’s distance to the coast. The estimates reported in column (2) suggest that 

in Boston, property prices are weakly negatively related to variation in distance to the coast, 
8The economic magnitudes of those e˙ects are computed as follows. For Distance, coeÿcient –0.009 × 

standard deviation of Distance 97.18 = –0.09; the exponential of that value is approximately $1.1 million. For 
Elevation, coeÿcient –0.075 × standard deviation of Elevation 6.97 = –0.52; the exponential of that value 
is approximately $1.7 million. 
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but that the e˙ect is small in economic terms and only marginally signifcant. The estimates in 

column (3) suggest that property prices in Chicago are also insensitive to variation in distance 

to the coast. Our results suggest little amenity value associated with a waterfront location for 

the commercial properties in our sample locations. 

[Table 3 about here.] 

5.3 The E˙ect of Hurricane Risk on Property Prices 

Panel A of Table 4 presents the results of the price impact analysis described in Eq. (3). 

Columns (1) shows the price impact regression results for New York. 

The estimates in column (1) suggest that a one-mile increase in distance to the coast is 

associated with 21% faster price appreciation between transactions completed in New York 

before versus after Hurricane Sandy. In other words, properties located in closer proximity to 

the coast, which are at greater risk of fooding, experience signifcantly slower price appreciation 

than equivalent but less exposed properties transacted across the pre- versus post-Sandy periods. 

However, New York real estate has experienced considerable physical damage during Hurricane 

Sandy, and the results presented here may partly refect the economic cost of such damage. 

Thus, we also assess the extent to which food risk exposure a˙ects property price appreciation 

in Boston — a location that is at risk of hurricane-related fooding but has not yet been exposed 

to a major hurricane strike. 

[Table 4 about here.] 

The results for Boston are shown in column (2) of Table 4. The estimates reported there 

suggest that a one-mile increase in distance to the coast is associated with 7.3% faster price 

appreciation between matched transactions before and after Hurricane Sandy. This result 

indicates that distance to the coast signifcantly a˙ects commercial property price appreciation 

in Boston even before that market has experienced a local hurricane strike. Importantly, in the 

regression specifcations presented in Table 4, we control for zip code– and year–fxed e˙ects 
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to account for gentrifcation patterns that may occur in certain geographical sub-areas of the 

locations we analyze. 

To wit, the economic magnitude of the e˙ect of distance to the coast on property prices 

in Boston is equivalent to approximately one third of the e˙ect we estimate in New York, 

suggesting that the remaining two thirds of the e˙ect in New York represent the fallout from 

physical damage to properties incurred during Sandy. 

The placebo tests over the same period for Chicago, shown in column (3) of Table 4, are 

insignifcant, as could be expected given that hurricane-related food risk is not present for 

property near an inland body of water. Those estimates indicate that our results are not 

confounded by concurrent unrelated price trends in waterfront property. 

In all, our results suggest that the sophisticated investors in the commercial real estate 

market capitalize food risk into their investment asset valuations in a forward-looking manner, 

after observing disaster strike elsewhere. While the landfall of Sandy in New York itself has 

not increased the objective probability of a hurricane striking Boston, our evidence suggests 

that the storm has alerted investors to the fact that the northward migration of hurricanes has 

put a broad range of locations all along the U.S. East Coast at risk (Baldini et al., 2016). 

5.4 Dissecting the Price E˙ect of Hurricane Risk 

5.4.1 Price Impact of Hurricane Risk Over Time 

We dig deeper into our fndings by investigating how the price e˙ect of food risk exposure 

evolves over time. Investors may initially react to Hurricane Sandy but the e˙ect may decay 

over time as the event becomes an increasingly distant memory, or as an initial over-reaction 

is reversed. We assess the evidence for this hypothesis by augmenting the price impact analysis 

from Eq. (3) with interaction terms between distance to the coast and each year after Hurricane 

Sandy during which a transaction occurs. 

Panel B of Table 4 presents the results. Column (4) reports the estimates for New York. In 

this specifcation, the main e˙ect of Distance refects the price e˙ects of food risk exposure in 

2013, the frst year after Hurricane Sandy. The results suggest that the initial e˙ect of food risk 
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exposure persists over time, with no signifcant decay for further transactions completed in the 

subsequent years 2014–2017. Column (5) presents the main price e˙ect and year-by-year e˙ects 

of Distance in Boston. The results suggest that the price impact of food risk exposure persists 

in Boston as well, with no evidence of a decay in the price e˙ect of food risk exposure as time 

passes. The placebo tests for Chicago, reported in column (6), suggest no systematic shifts in 

the pricing of distance to the waterfront in this location, where food risk is not prevalent. 

To summarize, our results suggest that Hurricane Sandy had more than a temporary e˙ect 

on the pricing of a given property’s food risk exposure. The estimates we present imply that 

the storm has caused a level-shift in the salience of food risk for coastal property. Our fndings 

indicate that a property’s food risk exposure has become a become a persistent, frst-order 

determinant of real asset values with signifcant implications for asset price appreciation over 

time, even in locations that have not experienced a major hurricane-related food event yet. 

5.4.2 Channels of the Price Impact 

In this section, we examine the mechanism through which food risk infuences real asset values. 

Fundamentally, commercial property values are a function of the cash fows they produce -

which are driven by contract rents and vacancy rates - and the yield applied to capitalize 

the expected stream of future cash fows, which incorporates a risk premium for the property. 

Contract rents are fxed and do not react quickly to new market circumstances, but vacancy 

and the capitalization rate do. For a sub-set of the Costar records, we observe capitalization 

rate and vacancy at the time of the transaction. We replace the dependent variable in Eq. 

(3) with the di˙erences in capitalization rates and, alternatively, vacancy, across matched 

transactions. Given that we want to investigate the mechanism behind the price e˙ects, we 

focus on properties in New York and Boston, for this is where we observed these price e˙ects. 

As this is a sub-sample analysis over a smaller number of observations, we further replace the 

main independent variable with an indicator that takes the value of one when a post-Sandy 

transaction is located in the lowest decile; i.e., that with the shortest distance to the coast. In 
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order to maximize the number of high-quality matches over this smaller sub-sample, we match 

locations by county and building class for this stage of our analysis. 

[Table 5 about here.] 

Table 5 presents the results. The estimates in columns (1) and (2) show that the di˙erence 

in capitalization rates across pre- versus post-Sandy transactions for properties located closest 

to the coast increases by 75 basis points in New York and 97 basis points in Boston. The 

estimates in columns (3) and (4) suggest that there is no discernible e˙ect of food risk exposure 

on vacancy in New York or Boston. 

Our results imply that the value e˙ects of food risk exposure we document are unlikely to be 

driven by a decline in operating performance for properties at risk, as we document no signifcant 

changes in vacancy rates. As a result, our fndings indicate no occupancy-driven decline in 

operating income from properties with greater exposure to food risk due to tenant departures 

or delays to re-letting. By contrast, our results suggest that greater exposure to food risk is 

associated with an increase in capitalization rates. Given our evidence that property occupancy 

is una˙ected by food risk exposure, this increase in capitalization rates is more likely to be due to 

an increase in risk premiums charged by investors for bearing heightened exposure to food risk. 

5.4.3 Contagion E˙ects 

In addition to property-level operating performance, as refected in cash fows, vacancy rates, 

and risk premiums, real estate values are also a˙ected by the vibrancy of the neighborhood 

surrounding a given property. The vibrancy of an urban area is a function of the composition 

of the set of local real estate occupiers. Corporate space users may be di˙erentially a˙ected by 

hurricane strikes due to their line of business. Those who are more a˙ected may su˙er economic 

losses and move away, or local real estate investors may attribute a higher likelihood to this 

possibility. Such dynamics may also adversely a˙ect local real estate values. We use variation 

in the degree to which corporate space users were a˙ected by Hurricane Sandy to test this 

“local contagion” hypothesis. 
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We identify the publicly listed frms headquartered within a 0.25-mile, 0.5-mile, or 1-mile 

radius of each of our sample properties in New York and Boston. We estimate normal stock 

returns on those frms based on the capital asset pricing model from May 1, 2012 (Day –120) 

until October 19, 2012 (last trading day before Hurricane Sandy). We compute cumulative 

abnormal returns (CAR) during the 5-day period from October 22, 2012 (Day 0, when Hurricane 

Sandy frst developed into a tropical storm in the Caribbean Sea) to October 26, 2012 (Day 4, 

when New York declared a state of emergency). We construct Negative CAR as a variable that 

takes the absolute value of negative CAR, or zero if a frm does not generate negative CAR 

during Sandy. If there are multiple headquarters in the vicinity of a sample property, we use 

the CAR of the closest frm. We then replicate Eq. (3) for the residual price di˙erence across 

matched properties, using Negative CAR of the frm headquartered nearest the property sold 

post-Sandy as independent variable. As in the previous Section 5.4.2, the contagion analysis 

reported here relies on a smaller sub-sample of properties. In order to optimize the matching 

of pre- and post-Sandy transactions, we again match on property county and building class. 

[Table 6 about here.] 

Table 6 presents the results. The coeÿcient estimates on the variable Negative CAR in 

columns (1) through (3) consistently suggest that properties located in the vicinity of frms in 

New York that were adversely a˙ected by Hurricane Sandy experience slower price appreciation 

against their pre-Sandy matches than otherwise equivalent properties not located in the vicinity 

of such frms. The results reported in columns (4) through (6) indicate that the same basic 

patterns also hold for properties in Boston. Those results imply that natural disasters can 

negatively impact property values not only through physical damage to a building’s structure 

or through a shift in the salience of food risk, causing a revision in investors’ required risk 

premia, but also by dampening neighborhood vibrancy. 

A comparison of the economic magnitude of the coeÿcient estimates on Negative CAR 

across column (1) through (3) for New York, and (4) through (6) for Boston, also suggests that 

the contagion e˙ects we document monotonically increase in the proximity of a given property 
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to the headquarter location of a frm whose performance was negatively a˙ected during Sandy. 

Those results emphasize the localized nature of such neighborhood contagion e˙ects. 

The estimates reported in Table 6 also indicate that the neighborhood contagion e˙ects 

we document are short-lived. The coeÿcient estimates on Negative CAR discussed above refer 

to observations where a transaction was completed in 2013, the frst year after Sandy. The 

interaction terms with the subsequent years in the post-Sandy sample indicate that the initial 

negative price e˙ects reversed swiftly, suggesting that neighborhood contagion e˙ects on local 

property values are concentrated in the frst year after the disaster. 

Our results suggest that the economic toll of Hurricane Sandy was not limited to the 

immediate physical damage to properties and the ensuing persistent revision of investors’ 

evaluation of real asset food risk exposure. Rather, our fndings suggest that there are — at 

least in the short-term — further-reaching, economically important e˙ects stemming from 

the adverse impact of Hurricane Sandy on individual occupiers in a given area. The fndings 

reported here indicate that there is also a decline in the value of real assets due to diminished 

local economic activity. 

6 Robustness Tests 

In this section, we report results from several robustness tests. First, we replicate the estimation 

of our main price impact analysis from Eq. (3) with a more broadly defned food risk measure 

that relies on a combination of distance to the coast and elevation of a given property. In 

subsequent tests, we verify that the negative price e˙ect of food risk that we document is 

not the mechanical results of an increase in food insurance risk premiums applied to exposed 

properties following Hurricane Sandy. Lastly, we test whether the hurricane-related food 

risk exposure a˙ects properties separately from the exposure to sea-level rise, which has been 

explored in prior literature; see, e.g., Bernstein et al. (2018). 
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6.1 Accounting for Elevation in Measuring Flood Risk Exposure 

In our main analysis, we focus on food risk exposure as proxied by a given property’s distance 

to the coast. That choice was informed by the empirical results presented in Section 5.1, 

which indicate that distance to the cost dominates elevation as a predictor of actual damage 

incurred from fooding. In this robustness test, we replicate our main price impact analysis 

for an alternative measure of food risk that takes into account distance to the coast as well 

as elevation of a given property. 

We construct a Flood Risk Score based on each property’s distance to the coast and elevation. 

We frst create categories of distance to the coast and, separately, elevation, for the sample 

properties in each location. We then assign food risk scores ranging from one to fve, with a 

higher number indicating greater risk exposure. We assign scores as follows. The distribution of 

properties’ distance to the coast in each location is divided into four quartiles. The distribution 

of sample properties’ elevation in each location is divided along the median.9 Properties in the 

frst quartile; i.e., those closest to the coast, which are also in the lower elevation category (lower 

50% of the distribution), receive the highest risk score with a value of fve. Properties in the 

closest distance category but higher elevation category, as well as properties in the second-closest 

distance quartile but the lower elevation category, receive a score of four. Properties in the 

second-closest distance quartile but in the higher elevation category, as well as properties in the 

third-closest distance quartile but lower elevation category, receive a score of three. Properties 

located furthest from the coast (fourth quartile) and in either elevation category receive the 

lowest risk score with a value of one. 

Table 7 presents the results. Panel (A) of Table 7 shows that for each unit increase in Flood 

Risk Score, property price appreciation is 13.3% slower across pre- and post-Sandy transactions 

in New York (column (1)). The corresponding coeÿcient estimates show 8.3% slower price 

appreciation in Boston (column (2)), and no signifcant e˙ect in Chicago (column (3)). Our 

fndings again indicate that exposure to hurricane-related food risk, as proxied by a property’s 
9Our results are robust to choosing alternative cut-o˙s for the quantiles of distance and elevation. 
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distance to the coast as well as elevation, is priced into asset values by the sophisticated investors 

in the commercial property market. The estimates presented refect our earlier fnding that 

the price e˙ects we document are not simply a result of physical damages to properties a˙ected 

by Sandy. We draw this inference based on the evidence we show of a signifcant deceleration 

in price appreciation for properties in Boston, a location which has not experienced a major 

hurricane-related food event yet. 

[Table 7 about here.] 

Panel (B) of Table 7 presents the results for indicator variables representing the individual 

values that Flood Risk Score can take, with the lowest risk category (score of one) being excluded 

as the reference category. The estimates reported indicate that in New York and Boston, the 

negative price impact of food risk exposure increases monotonically in the degree of exposure of 

a given property to food risk, as refected in higher risk scores (column (4) and (5)). Specifcally, 

the results suggest that in New York, properties with the two highest risk score values of four and 

fve drive the price impact (column (4)). By contrast, in Boston, properties with risk score values 

of three, four, and fve drive the price impact results we document (column (5)). Column (6) again 

shows no signifcant results for the placebo tests in the Chicago commercial real estate market. 

6.2 Controlling for Rising Insurance Premiums 

In our second robustness test, we replicate our main price impact analysis controlling for food 

risk classifcation. Flood risk may be covered by food insurance, and premiums may spike after 

disaster strikes (Froot, 2001). A rise in food insurance premiums for properties exposed to food 

risk would reduce asset values for exposed properties, irrespective of past damages incurred. 

We collect data for food insurance risk maps in New York and determine whether a property 

in our sample is located in a food zone. To do so, we obtain shape fles for the 2007 and 

2013 versions of the New York food maps from the New York Department of Environmental 

Protection. This analysis is similar to Gibson et al. (2017). The original map applied before 

Hurricane Sandy was created in 2007 by the Federal Emergency Management Agency (FEMA). 
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In 2015 FEMA published an updated map following the experience of Hurricane Sandy. We 

replicate our analysis for New York using those two maps. We run a hedonic model controlling 

for a Flood Zone indicator using the 2007 map to obtain residual prices. Then we regress the 

di˙erential residual price on a Flood Zone indicator using the 2015 map, as a proxy for those 

properties that would have experienced an increase in food risk insurance premiums, in addition 

to distance to the coast as a major food risk factor. The results presented in Table 8 suggest 

that the negative impact of proximity to the coast remains signifcant after controlling for rising 

insurance premiums for properties newly classifed as being located in a food risk zone. Those 

results imply that our fndings are robust to the infuence of rising food insurance premiums. 

[Table 8 about here.] 

6.3 Accounting for Exposure to Sea-Level Rise 

In our fnal analysis, we investigate whether food risk is priced separately from the risk relating 

to sea-level rise. Bernstein et al. (2018) document the impact of sea-level rise on house prices 

by focusing on a sample of properties within a distance of 0.25 miles to the coast. The critical 

level of exposure to sea-level rise is around six feet. We discard observations that are located 

less than one mile from the coast and with elevation of up to six feet to test whether the values 

of properties that are less likely to be exposed to sea-level rise are still a˙ected by food risk. 

Our fndings remain signifcant, indicating that investors price food risk separately from an 

asset’s exposure to sea-level rise. The results from this robustness test are available on request. 

7 Conclusion 

We examine whether sophisticated investors in the commercial real estate market price food risk. 

We develop a measure of food risk exposure based on the geographic characteristics associated 

with the location of each property in our sample. We test the suitability of our risk measure by 

using it to explain actual county-level food damage. We then combine a hedonic pricing model 
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with a matched-pairs analysis of transactions completed pre- versus post-Hurricane Sandy to 

estimate the price e˙ect of food risk after the shift in salience caused by Sandy. 

We document that location features associated with waterfront property have little environmental 

amenity value before Hurricane Sandy. After Hurricane Sandy, properties in closer proximity 

to the coast experience signifcantly slower price appreciation over their otherwise equivalent 

pre-Sandy counterparts. We document signifcant price e˙ects of Hurricane Sandy in New York, 

which has su˙ered damage to property from the event, but also in Boston. Given recent shifts 

in hurricane patterns, Boston is also at risk of future hurricane strikes but has thus far been 

spared major damage. The evidence we present on the signifcant price impact of food risk on 

commercial property in Boston indicates that investors price food risk exposure already after 

observing the e˙ects of such disasters elsewhere. Further, we show that the impact of food risk 

on price appreciation persists through time, and does not dissipate as the event becomes an 

increasingly distant memory, or as an initial overreaction is reversed. Placebo tests in Chicago, 

also situated on a major body of water but immune to hurricane-related food risk given its 

inland location, confrm our results. 

We dig deeper into our fndings to identify the channel through which food risk a˙ects real 

estate values. We show that food risk a˙ects property values through higher capitalization 

rates, refecting higher risk premiums, while operating income as determined by vacancy rates 

is una˙ected. We also study local contagion as a transmission channel. Here, we document that 

the local presence of corporate occupiers whose stocks performed poorly during Hurricane Sandy 

is associated with adverse value e˙ects on properties nearby. We confrm that our fndings are 

robust to alternative measures of properties’ food risk exposure, to accounting for an increase in 

food insurance risk premiums for properties exposed to food risk, and that the price e˙ects of 

hurricane-related food risk are not confounded by the potential asset value impact of properties’ 

exposure to sea-level rise. In sum, in contrast to prior literature fnding insignifcant e˙ects of 

food risk exposure on the value of residential real estate held by uninformed households for the 

purpose of housing consumption rather than investment, our fndings show that sophisticated 
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investors in commercial real estate markets rationally respond to food risk by adjusting their 

valuation of exposed properties downward. 

26 

 Electronic copy available at: https://ssrn.com/abstract=3206257 



References 

Albouy, David, Walter Graf, Ryan Kellogg, and Hendrik Wol˙, 2016, Climate Amenities, 
Climate Change, and American Quality of Life, Journal of the Association of Environmental 
and Resource Economists 3, 205–246. 

Aretz, Kevin, Shantanu Banerjee, and Oksana Pryshchepa, 2018, In the Path of the Storm: 
Does Distress Risk Cause Industrial Firms to Risk-Shift?, Review of Finance Forthcoming. 

Arkema, Katie, Greg Guannel, Gregory Verutes, Spencer Wood, Anne Guerry, Mary Ruckelshaus, 
Peter Kareiva, Martin Lacayo, and Jessica Silver, 2013, Coastal Habitats Shield People and 
Property from Sea-Level Rise and Storms, Nature Climate Change 3, 913. 

Atreya, Ajita, and Je˙rey Czajkowski, 2014, Is Flood Risk Universally Suÿcient to O˙set the 
Strong Desire to Live Near the Water?, Technical Report, Risk Management and Decision 
Processes Center, The Wharton School of the University of Pennsylvania. 

Atreya, Ajita, and Susana Ferreira, 2015, Seeing is Believing? Evidence from Property Prices 
in Inundated Areas, Risk Analysis 35, 828–848. 

Atreya, Ajita, Susana Ferreira, and Warren Kriesel, 2013, Forgetting the Flood? An Analysis 
of the Flood Risk Discount Over Time, Land Economics 89, 577–596. 

Baldauf, Markus, Lorenzo Garlappi, and Constantine Yannelis, 2018, Does Climate Change 
A˙ect Real Estate Prices? Only If You Believe in It, Review of Financial Studies Climate 
Finance Call, Conditionally Accepted. 

Baldini, Lisa, James Baldini, Jim McElwaine, Amy Benoit Frappier, Yemane Asmerom, Kam-Biu 
Liu, Keith Prufer, Harriet Ridley, Victor Polyak, Douglas Kennett, Colin Macpherson, Valorie 
Aquino, Jaime Awe, and Sebastian Breitenbach, 2016, Persistent Northward North Atlantic 
Tropical Cyclone Track Migration Over the Past Five Centuries, Scientifc Reports 6. 

Barr, Jason, Je˙rey Cohen, and Eon Kim, 2017, Storm Surges, Informational Shocks, and 
the Price of Urban Real Estate: An Application to the Case of Hurricane Sandy, Technical 
Report, Department of Economics, Rutgers University, Newark. 

Bernstein, Asaf, Matthew Gustafson, and Ryan Lewis, 2018, Disaster on the Horizon: The 
Price E˙ect of Sea Level Rise, Journal of Financial Economics Forthcoming. 

Bin, Okmyung, and Craig Landry, 2013, Changes in Implicit Flood Risk Premiums: Empirical 
Evidence from the Housing Market, Journal of Environmental Economics and Management 
65, 361–376. 

Boustan, Leah Platt, Matthew Kahn, Paul Rhode, and Maria Lucia Yanguas, 2017, The E˙ect 
of Natural Disasters on Economic Activity in U.S. Counties: A Century of Data, Technical 
Report 23410, National Bureau of Economic Research. 

Carney, Mike, 2015, Breaking the Tragedy of the Horizon – Climate Change and Financial 
Stability, Speech at Lloyd’s of London, 29 September. 

27 

 Electronic copy available at: https://ssrn.com/abstract=3206257 



Carney, Mike, 2016, Resolving the Climate Paradox, Speech at the Arthur Burns Memorial 
Lecture, Berlin, 22 September. 

Chay, Kenneth, and Michael Greenstone, 2005, Does Air Quality Matter? Evidence from the 
Housing Market, Journal of Political Economy 113, 376–424. 

Cutter, Susan, and Christopher Emrich, 2005, Are Natural Hazards and Disaster Losses in the 
U.S. Increasing?, EOS, Transactions American Geophysical Union 86, 381–389. 

Deschênes, Olivier, and Michael Greenstone, 2007, The Economic Impacts of Climate Change: 
Evidence from Agricultural Output and Random Fluctuations in Weather, American 
Economic Review 97, 354–385. 

Dessaint, Olivier, and Adrien Matray, 2017, Do Managers Overreact to Salient Risks? Evidence 
from Hurricane Strikes, Journal of Financial Economics 126, 97–121. 

Emanuel, Kerry, 2005, Increasing Destructiveness of Tropical Cyclones Over the Past 30 Years, 
Nature 436, 686–688. 

Froot, Kenneth A., 2001, The Market for Catastrophe Risk: A Clinical Examination, Journal 
of Financial Economics 60, 529–571. 

Gatzla˙, Dean, Kathleen McCullough, Lorilee Medders, and Charles Nyce, 2018, The Impact 
of Hurricane Mitigation Features and Inspection Information on House Prices, Journal of 
Real Estate Finance and Economics 57, 566–591. 

Ghent, Andra, 2018, What’s Wrong with Pittsburgh? Investor Composition and Trade Frequency 
in U.S. Cities, Technical Report, University of Wisconsin-Madison. 

Gibson, Matthew, Jamie Mullins, and Alison Hill, 2017, Climate Change, Flood Risk, 
and Property Values: Evidence from New York City, Working paper, University of 
Massachusetts-Amherst. 

Giglio, Stefano, Matteo Maggiori, Krishna Rao, Johannes Stroebel, and Andreas Weber, 2018, 
Climate Change and Long-Run Discount Rates: Evidence from Real Estate, Technical Report 
17-22, Chicago Booth. 

Harrison, David, Greg Smersh, and Arthur Schwartz, 2001, Environmental Determinants of 
Housing Prices: The Impact of Flood Zone Status, Journal of Real Estate Research 21, 3–20. 

Hong, Harrison, Frank Weikai Li, and Jiangmin Xu, 2017, Climate Risks and Market Eÿciency, 
Journal of Econometrics Forthcoming. 

Keenan, Jesse, Thomas Hill, and Anurag Gumber, 2018, Climate Gentrifcation: From Theory 
to Empiricism in Miami-Dade County, Florida, Environmental Research Letters 13, 054001. 

Kossin, James, Kerry Emanuel, and Gabriel Vecchi, 2014, The Poleward Migration of the 
Location of Tropical Cyclone Maximum Intensity, Nature 509, 349–352. 

Ling, David, and Wayne Archer, 2018, Real Estate Principles: A Value Approach, Fifth edition 
(McGraw-Hill Education). 

28 

 Electronic copy available at: https://ssrn.com/abstract=3206257 



Mann, Michael, and Kerry Emanuel, 2006, Atlantic Hurricane Trends Linked to Climate Change, 
Eos, Transactions American Geophysical Union 87, 233–241. 

Murfn, Justin, and Matthew Spiegel, 2018, Is the Risk of Sea Level Capitalized in Residential 
Real Estate?, Review of Financial Studies Climate Finance Call, Conditionally Accepted. 

Novkov, Monika, and Richard Tol, 2018, E˙ects of Sea Level Rise on the Economy of the United 
States, Journal of Environmental Economics and Policy 7, 85–115. 

Ortega, Francesc, and Süleyman Taspinar, 2016, Rising Sea Levels and Sinking Property Values: 
The E˙ects of Hurricane Sandy on New York’s Housing Market, Technical Report 10374, 
IZA. 

Reed, Andra, Michael Mann, Kerry Emanuel, Ning Lin, Benjamin Horton, Andrew Kemp, and 
Je˙rey Donnelly, 2015, Increased Threat of Tropical Cyclones and Coastal Flooding to New 
York City During the Anthropogenic Era, Proceedings of the National Academy of Sciences 
112, 12610–12615. 

Sagi, Jacob, 2018, Asset-Level Risk and Return in Real Estate Investments, Technical Report, 
UNC Chapel-Hill. 

Tversky, Amos, and Daniel Kahneman, 1973, Availability: A Heuristic for Judging Frequency 
and Probability, Cognitive Psychology 5, 207–232. 

Tversky, Amos, and Daniel Kahneman, 1974, Judgment under uncertainty: Heuristics and 
biases, Science 185, 1124–1131. 

29 

 Electronic copy available at: https://ssrn.com/abstract=3206257 



Table 1. Descriptive Statistics 

This table shows descriptive statistics for the main variables used in our empirical analyses. Panel (A) presents 
the descriptive statistics on the county-level variables used in the damage analysis. The sample includes 1,273 
counties in U.S. East Coast states that were hit by a hurricane during the 1965–2012 period. Damage is 
county-level hurricane damage, measured in 2015 $ million. Distance is mean distance to the coast of the sample 
properties located in a given county, measured in miles. Elevation is mean elevation of the sample properties 
in a given county, measured in 10 ft. Population is county-level population, measured in ’000 inhabitants. Panel 
(B) presents the sample of property transactions obtained from Costar by sub-period: before Hurricane Sandy 
(2001:Q1–2012:Q3) and after Hurricane Sandy (2013:Q1–2017:Q4). Descriptive statistics are shown separately 
by location; i.e., for New York, Boston, and Chicago. Price is property transaction price per sqft. Distance is a 
given property’s distance to the coast, measured in miles. Elevation is a given property’s elevation, measured in 
10 ft. Size is property size, measured in ’000 sqft. Age is property age, measured in years. Stories is the number 
of foors in a given property. Class indicates building quality and ranges from A (highest quality) to C (lowest 
quality). Di˙erence indicates the di˙erence in mean statistics between properties sold post-Sandy and pre-Sandy. 

Mean SD Min Max N Mean SD Min Max N 

Panel (A) County-Level Damage Data 

Damage 
Distance 
Elevation 
Population 

55.74 
89.26 
5.26 

127.00 

501.35 
97.18 
6.97 

260.00 

0.00 
0.00 
0.01 
0.04 

12,129.93 
605.78 
54.32 

3,980.00 

4,888 
4,888 
4,888 
4,888 

Panel (B) Transaction-Level Property Data 

Before Sandy After Sandy Di˙erence 

New York 

Price 
Distance 
Elevation 
Size 
Age 
Stories 
Class A 
Class B 
Class C 

448.62 
8.23 
5.17 

135.00 
67.68 
9.49 
0.14 
0.41 
0.45 

344.79 
2.95 
4.77 

235.00 
32.68 
9.99 
0.35 
0.49 
0.50 

9.27 
0.18 
0.00 
1.10 
0.00 
1.00 
0.00 
0.00 
0.00 

1,546.15 
20.00 
43.96 

1,070.00 
203.00 
102.00 
1.00 
1.00 
1.00 

3,323 
3,323 
3,323 
3,323 
3,323 
3,323 
3,323 
3,323 
3,323 

631.87 
7.93 
5.38 

121.00 
73.12 
9.12 
0.12 
0.42 
0.45 

428.77 
3.19 
5.08 

226.00 
33.28 
9.74 
0.33 
0.49 
0.50 

9.27 
0.15 
0.00 
1.10 
2.00 
1.00 
0.00 
0.00 
0.00 

1,546.00 
20.00 
42.00 

1,070.00 
216.00 
60.00 
1.00 
1.00 
1.00 

2,109 
2,109 
2,109 
2,109 
2,109 
2,109 
2,109 
2,109 
2,109 

183.25*** 
-0.30*** 

0.21 
-14.00** 
5.43*** 

0.37 
-0.02** 

0.02 
0.00 

Boston 

Price 
Distance 
Elevation 
Size 
Age 
Stories 
Class A 
Class B 
Class C 

188.88 
8.45 
7.46 
51.49 
60.75 
3.77 
0.10 
0.44 
0.46 

153.26 
4.91 
6.39 

108.00 
44.82 
4.24 
0.30 
0.50 
0.50 

9.27 
0.02 
0.00 
1.10 
0.00 
1.00 
0.00 
0.00 
0.00 

1,546.15 
20.00 
32.81 

1,070.00 
259.00 
62.00 
1.00 
1.00 
1.00 

2,212 
2,212 
2,212 
2,212 
2,212 
2,212 
2,212 
2,212 
2,212 

236.87 
8.50 
7.77 
47.45 
69.64 
3.69 
0.08 
0.44 
0.47 

219.02 
4.97 
6.67 
95.85 
45.21 
3.81 
0.28 
0.50 
0.50 

9.27 
0.02 
0.00 
1.10 
2.00 
1.00 
0.00 
0.00 
0.00 

1,546.15 
19.96 
32.81 

1,070.00 
274.00 
46.00 
1.00 
1.00 
1.00 

1,358 
1,358 
1,358 
1,358 
1,358 
1,358 
1,358 
1,358 
1,358 

48.00*** 
0.05 
0.31 
-4.05 

8.89*** 
-0.08 
0.01 
0.00 
0.00 

Chicago 

Price 
Distance 
Elevation 
Size 
Age 
Stories 
Class A 
Class B 
Class C 

140.36 
4.98 
4.98 

117.00 
48.34 
7.37 
0.11 
0.42 
0.47 

110.05 
4.27 
3.74 

219.00 
33.72 
11.48 
0.31 
0.49 
0.50 

9.27 
0.50 
0.66 
1.10 
0.00 
1.00 
0.00 
0.00 
0.00 

1,439.69 
19.20 
15.75 

1,070.00 
156.00 
110.00 
1.00 
1.00 
1.00 

1,752 
1,752 
1,752 
1,752 
1,752 
1,752 
1,752 
1,752 
1,752 

145.95 
5.05 
4.82 

115.00 
58.68 
7.11 
0.10 
0.48 
0.42 

141.26 
4.41 
3.69 

225.00 
34.54 
11.34 
0.30 
0.50 
0.49 

9.27 
0.57 
0.66 
1.10 
3.00 
1.00 
0.00 
0.00 
0.00 

1,546.15 
19.19 
14.76 

1,070.00 
144.00 
110.00 
1.00 
1.00 
1.00 

928 
928 
928 
928 
928 
928 
928 
928 
928 

5.59 
0.07 
-0.16 
-2.00 

10.34*** 
-0.26 
0.01 

0.06*** 
-0.05** 

Statistical signifcance is indicated as follows: * p <0.1; ** p <0.05; *** p <0.01. 
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Table 2. County-Level Hurricane Damage 

This table reports output from Eq. (1). The regression is estimated over the 1965–2012 period. The dependent 
variable is the natural logarithm of county-level hurricane damage to property, measured in 2015 $ million. 
Distance and Elevation are county-level hurricane risk factors, aggregated across the sample properties in a given 
county. Distance is mean distance to the coast of the sample properties located in a given county, measured in 
miles. Elevation is mean elevation of the sample properties in a given county, measured in 10 ft. Population is the 
natural logarithm of county-level population, measured in ’000 inhabitants. Fixed e˙ects are included as indicated. 
Standard errors are clustered by county. Heteroskedasticity-robust t-statistics are reported in parentheses. 

County-Level Damage 

(1) (2) (3) 

Distance 

Elevation 

Population 

-0.009*** 
(-16.872) 

0.164*** 
(4.881) 

-0.075*** 
(-9.404) 
0.173*** 
(4.767) 

-0.009*** 
(-13.248) 
-0.000 
(-0.022) 
0.164*** 
(4.893) 

Constant 
Year–Fixed E˙ects 
Month–Fixed E˙ects 
State–Fixed E˙ects 

Yes 
Yes 
Yes 
Yes 

Yes 
Yes 
Yes 
Yes 

Yes 
Yes 
Yes 
Yes 

Observations 
Adj. R-squared 

4,888 
0.294 

4,888 
0.274 

4,888 
0.294 

Statistical signifcance is indicated as follows: 
* p <0.1; ** p <0.05; *** p <0.01. 
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Table 3. Hedonic Pricing Model 

This table reports output from Eq. (2). The regression is estimated over the sub-sample period 
prior to Hurricane Sandy; that is, 2001:Q1 through 2012:Q3. The dependent variable is the natural 
logarithm of property transaction price per sqft. Column (1) presents results for New York. Column 
(2) presents results for Boston. Column (3) presents results for Chicago. Distance is a given property’s 
distance to the coast, measured in miles. Size is property size, measured in ’000 sqft. Age is property 
age, measured in years. Age Squared is the square of property age. Stories is the number of foors 
in a given property. Class indicates building quality and ranges from A (highest quality) to C (lowest 
quality). Building quality class A is the excluded category. Fixed e˙ects are included as indicated. 
Heteroskedasticity-robust t-statistics are reported in parentheses. 

Property Transaction Price 

New York 
(1) 

Boston 
(2) 

Chicago 
(3) 

Distance 0.042 -0.032* -0.028 

Size 
(0.856) 

-0.174*** 
(-1.794) 
-0.207*** 

(-1.211) 
-0.204*** 

Age 

Age Squared 

Stories 

(-12.422) 
-0.007*** 
(-4.586) 
0.000*** 
(4.172) 
0.007** 

(-14.044) 
-0.007*** 
(-6.660) 
0.000*** 
(5.626) 
0.024*** 

(-10.649) 
-0.009*** 
(-4.258) 
0.000*** 
(3.065) 
0.014*** 

Class B 
(2.490) 
-0.123** 

(6.014) 
-0.297*** 

(5.569) 
-0.335*** 

Class C 
(-2.125) 
-0.307*** 

(-5.579) 
-0.434*** 

(-5.278) 
-0.410*** 

(-4.497) (-7.196) (-5.336) 

Constant Yes Yes Yes 
Year-Quarter–Fixed E˙ects 
Zip Code–Fixed E˙ects 

Yes 
Yes 

Yes 
Yes 

Yes 
Yes 

Observations 
Adj. R-squared 

3,323 
0.514 

2,212 
0.454 

1,752 
0.339 

Statistical signifcance is indicated as follows: 
p <0.1; ** p <0.05; *** p <0.01. 

32 

 Electronic copy available at: https://ssrn.com/abstract=3206257 



Table 4. Price Impact of Hurricane Risk by Property Location and Transaction Year 

This table reports output from Eq. (3). The dependent variable is the di˙erence in residual prices 
across matched transactions from the pre- and post-Sandy sub-periods. The pre-Sandy sub-period 
runs from the start of our sample in 2001:Q1 to 2012:Q3. Sandy struck in 2012:Q4 (October). The 
post-Sandy sub-period runs from 2013:Q1 to the end of our sample in 2017:Q4. Residual prices are 
obtained from the hedonic pricing regression in Eq. (2), estimated by location for all transactions 
in the pre-Sandy period (see Table 3 for coeÿcient estimates). Each property sold in a given location 
during the post-Sandy sub-period is matched to a property sold in that location pre-Sandy, based 
on distance to the coast. Columns (1) and (2) present results for New York. Columns (3) and 
(4) (respectively, (5) and (6)) present results for Boston (Chicago). Odd columns report results for 
Distance. Even columns present results for Distance and interaction terms between this variable 
and indicators for the year of the post-Sandy transaction. The main e˙ect of Distance in the even 
columns refects the price impact of hurricane-related food risk exposure in 2013, the frst year after 
Hurricane Sandy. Distance is a given property’s distance to the coast, measured in miles. Fixed e˙ects 
are included as indicated. Heteroskedasticity-robust t-statistics are reported in parentheses. 

Residual Price Di˙erence 

Panel (A) Property Location Panel (B) Transaction Year 

New York 
(1) 

Boston 
(2) 

Chicago 
(3) 

New York 
(4) 

Boston 
(5) 

Chicago 
(6) 

Distance 0.214*** 0.073** -0.019 0.197** 0.084*** -0.004 

× Year 2014 
(2.825) (2.307) (-0.406) (2.561) 

0.022 
(2.592) 
-0.024 

(-0.084) 
-0.018 

× Year 2015 
(1.110) 
0.032 

(-1.424) 
-0.013 

(-0.903) 
-0.024 

× Year 2016 
(1.594) 
0.010 

(-0.779) 
-0.001 

(-1.197) 
-0.051** 

× Year 2017 
(0.488) 
0.025 

(-0.029) 
-0.025 

(-2.535) 
-0.006 

(1.201) (-1.174) (-0.287) 

Constant Yes Yes Yes Yes Yes Yes 
Year–Fixed E˙ects Yes Yes Yes Yes Yes Yes 
Zip Code–Fixed E˙ects Yes Yes Yes Yes Yes Yes 

Observations 
Adj. R-squared 

2,109 
0.167 

1,358 
0.179 

928 
0.251 

2,109 
0.166 

1,358 
0.179 

928 
0.254 

Statistical signifcance is indicated as follows: * p <0.1; ** p <0.05; *** p <0.01. 
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Table 5. Price Impact of Hurricane Risk by Performance Metric 

This table reports output from Eq. (3). The dependent variable is the di˙erence in operating 
performance metrics across matched transactions from the pre- and post-Sandy sub-periods. The 
pre-Sandy sub-period runs from the start of our sample in 2001:Q1 to 2012:Q3. Sandy struck in 
2012:Q4 (October). The post-Sandy sub-period runs from 2013:Q1 to the end of our sample in 
2017:Q4. Each property sold in the post-Sandy sub-period is matched to a property sold pre-Sandy, 
based on zip code and building quality class. Columns (1) and (2) present the results for di˙erences 
in the capitalization rate across matched transactions pre- and post-Sandy in New York and Boston, 
respectively. Columns (3) ad (4) present the results for di˙erences in vacancy rate across matched 
transactions pre- and post-Sandy in New York and Boston, respectively. Lowest-Decile Distance is 
an indicator that takes the value of one when a given property is in the lowest decile of the sample 
distribution for distance to the coast in its respective location (New York or Boston). Fixed e˙ects 
are included as indicated. Heteroskedasticity-robust t-statistics are reported in parentheses. 

Di˙erence in Performance Maetrics 

Capitalization Rate Vacancy 

New York 
(1) 

Boston 
(2) 

New York 
(3) 

Boston 
(4) 

Lowest-Decile Distance 0.750** 
(2.093) 

0.974** 
(2.222) 

4.736 
(1.021) 

-5.543 
(-1.209) 

Constant 
Year–Fixed E˙ects 

Yes 
Yes 

Yes 
Yes 

Yes 
Yes 

Yes 
Yes 

Observations 
Adj. R-squared 

190 
0.233 

113 
0.025 

704 
-0.002 

371 
-0.002 

Statistical signifcance is indicated as follows: 
p <0.1; ** p <0.05; *** p <0.01. 
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Table 6. Price Impact Analysis of Contagion E˙ects 

This table reports output from Eq. (3). The dependent variable is the di˙erence in residual prices across 
matched transactions from the pre- and post-Sandy sub-periods. The pre-Sandy sub-period runs from 
the start of our sample in 2001:Q1 to 2012:Q3. Sandy struck in 2012:Q4 (October). The post-Sandy 
sub-period runs from 2013:Q1 to the end of our sample in 2017:Q4. Residual prices are obtained 
from the hedonic pricing regression in Eq. (2), estimated for all transactions in the pre-Sandy period 
(see Table 3, column (1), for coeÿcient estimates). Each property sold in the post-Sandy sub-period 
is matched to a property sold pre-Sandy, based on zip code and building quality class. Results are 
presented separately for properties in New York and Boston. Under each location, each column presents 
results for Negative CAR calculated on publicly listed frm headquarters located within a 1 mile radius 
of the sample properties, a 0.5 mile radius, and a 0.25 mile radius, respectively. Negative CAR takes the 
absolute values of negative CAR experienced during Sandy by listed frms headquartered in the vicinity 
of the sample properties, and zero if such a frm does not generate negative CAR during Sandy. Fixed 
e˙ects are included as indicated. Heteroskedasticity-robust t-statistics are reported in parentheses. 

Residual Price Di˙erence 

New York Boston 

1 mile 
(1) 

0.5 mile 
(2) 

0.25 mile 
(3) 

1 mile 
(4) 

0.5 mile 
(5) 

0.25 mile 
(6) 

Negative CAR 

× Year 2014 

× Year 2015 

× Year 2016 

× Year 2017 

-5.601*** 
(-4.433) 
9.921*** 
(5.414) 
7.533*** 
(5.350) 

10.159*** 
(7.578) 

11.230*** 
(6.629) 

-5.632*** 
(-4.110) 
9.738*** 
(4.560) 
7.606*** 
(5.152) 

10.510*** 
(7.340) 

10.807*** 
(5.672) 

-6.449*** 
(-4.214) 
9.357*** 
(3.905) 
8.329*** 
(5.080) 

10.755*** 
(6.028) 

10.614*** 
(3.739) 

-7.318*** 
(-3.918) 
6.885*** 
(3.045) 
6.821*** 
(2.662) 
6.174** 
(2.424) 
2.685 
(0.676) 

-9.522*** 
(-5.579) 
7.794*** 
(3.131) 
5.245*** 
(2.683) 
7.845*** 
(2.815) 
4.715 
(0.929) 

-11.372*** 
(-5.866) 
9.006*** 
(2.890) 
6.477*** 
(2.843) 
8.362*** 
(2.757) 
4.863 
(0.929) 

Constant 
Year–Fixed E˙ects 
Zip Code–Fixed E˙ects 

Yes 
Yes 
Yes 

Yes 
Yes 
Yes 

Yes 
Yes 
Yes 

Yes 
Yes 
Yes 

Yes 
Yes 
Yes 

Yes 
Yes 
Yes 

Observations 
Adj. R-squared 

1,307 
0.109 

1,131 
0.089 

833 
0.074 

571 
0.183 

389 
0.149 

253 
0.096 

Statistical signifcance is indicated as follows: * p <0.1; ** p <0.05; *** p <0.01. 
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Table 7. Price Impact Analysis Controlling for Distance to the Coast and Elevation 

This table reports output from Eq. (3). The dependent variable is the di˙erence in residual prices 
across matched transactions from the pre- and post-Sandy sub-periods. The pre-Sandy sub-period 
runs from the start of our sample in 2001:Q1 to 2012:Q3. Sandy struck in 2012:Q4 (October). The 
post-Sandy sub-period runs from 2013:Q1 to the end of our sample in 2017:Q4. Residual prices are 
obtained from the hedonic pricing regression in Eq. (2), estimated by location for all transactions 
in the pre-Sandy period (see Table 3 for coeÿcient estimates). Each property sold in a given location 
during the post-Sandy sub-period is matched to a property sold in that location pre-Sandy, based 
on hurricane risk score, county, and building quality class. Columns (1) through (3) present results 
for New York, Boston, and Chicago, for the range of values of Flood Risk Score; i.e., one for lowest 
risk, to fve for highest risk. Columns (4) through (6) present the results for New York, Boston, and 
Chicago, for indicators representing the di˙erent values that Hurricane Risk Score can take, with 
the lowest risk category (score of one) being excluded as reference category. Fixed e˙ects are included 
as indicated. Heteroskedasticity-robust t-statistics are reported in parentheses. 

Residual Price Di˙erence 

Panel (A) Risk Score Panel (B) Risk Indicators 

New York 
(1) 

Boston 
(2) 

Chicago 
(3) 

New York 
(4) 

Boston 
(5) 

Chicago 
(6) 

Flood Risk Score -0.133*** -0.083** -0.012 

Flood Risk Score of 2 
(-3.144) (-2.171) (-0.247) 

0.069 -0.160 0.020 

Flood Risk Score of 3 
(0.803) 
-0.100 

(-1.582) 
-0.326** 

(0.163) 
0.240 

Flood Risk Score of 4 
(-1.042) 
-0.565*** 

(-2.364) 
-0.373** 

(1.449) 
0.112 

Flood Risk Score of 5 
(-3.410) 
-0.643*** 

(-2.424) 
-0.394** 

(0.585) 
0.016 

(-3.345) (-2.440) (0.081) 

Constant Yes Yes Yes Yes Yes Yes 
Year–Fixed E˙ects Yes Yes Yes Yes Yes Yes 
Zip Code– Fixed E˙ects Yes Yes Yes Yes Yes Yes 

Observations 
Adj. R-squared 

2,109 
0.181 

1,358 
0.302 

928 
0.382 

2,109 
0.187 

1,358 
0.301 

928 
0.383 

Statistical signifcance is indicated as follows: * p <0.1; ** p <0.05; *** p <0.01. 
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Table 8. Price Impact Analysis Controlling for Flood Risk Classifcation 

This table shows output from Eq. (2) and Eq. (3) for properties in New York. Column (1) replicates 
the results from estimating Eq. (2) during the pre-Sandy period. The dependent variable is the natural 
logarithm of property transaction price per sqft. In addition to the covariates included per the description 
of Eq. (2), this regression also includes Flood Zone (2007), an indicator that takes the value of one when 
a property is located in a food risk zone under the 2007 FEMA maps. Columns (2) and (3) replicate the 
results from estimating Eq. (3) for the properties in New York. The dependent variable is the di˙erence 
in residual prices across matched transactions from the pre- and post-Sandy sub-periods. In addition to 
the covariates included per the description of Eq. (3), this regression also includes Flood Zone (2015), an 
indicator that takes the value of one when a property is located in a food risk zone under the updated 
FEMA maps from 2015. Distance is a given property’s distance to the coast, measured in miles. Column 
(3) breaks the main e˙ect of Distance down by the year after Sandy in which a transaction occurred. 
Fixed e˙ects are included as indicated. Heteroskedasticity-robust t-statistics are reported in parentheses. 

Property Transaction Price Residual Price Di˙erence 

(1) (2) (3) 

Distance 0.039 0.191*** 0.195** 

× Year 2014 
(0.798) (2.585) (2.538) 

0.022 

× Year 2015 
(1.119) 
0.024 

× Year 2016 
(1.174) 
0.001 

× Year 2017 
(0.026) 
0.018 

Flood Zone (2007) 

Flood Zone (2015) 

-0.114 
(-1.260) 

-0.418*** 
(-3.227) 

(0.882) 

-0.433*** 
(-3.242) 

Constant Yes Yes Yes 
Property Characteristics 
Year/Quarter FE 
Year FE 

Yes 
Yes 
No 

No 
No 
Yes 

No 
No 
Yes 

Zip Code FE Yes Yes Yes 

Observations 
Adj. R-squared 

3,323 
0.514 

2,109 
0.227 

2,109 
0.173 

Statistical signifcance is indicated as follows: * p <0.1; ** p <0.05; *** p <0.01. 
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