
MICRO AND MACRO VIEWS OF THE MAIZE-SETOSPHAERIA TURCICA

PATHOSYSTEM

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

In Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Tyr Wiesner-Hanks

May 2020

i



© 2020 Tyr Wiesner-Hanks

ii



Micro and macro views of the maize-Setosphaeria turcica pathosystem

Tyr Wiesner-Hanks, Ph. D.

Cornell University 2020

Interactions between host and pathogen can be understood at many different spatial 

scales, from nanometers to kilometers. In this dissertation, I explored multiple diseases at 

two very different spatial scales, focusing chiefly on the economically important disease 

Northern Leaf Blight (NLB) and the components of its pathosystem- the host, maize, and 

the fungal pathogen, Setosphaeria turcica.

At the “micro” scale, I reviewed the genetics of multiple disease resistance 

(MDR), what is known about the biological mechanisms thereof, and the ways in which 

MDR can be improved in plants. I mapped genetic loci conditioning MDR in order to 

understand the genetic architecture thereof, finding that the high degree of MDR 

observed in a maize line derived from recurrent selection was mostly attributable to 

independent loci for resistance to individual diseases, rather than pleiotropic loci 

conditioning MDR. I used RNA-seq to explore the transcriptomic aspects of infection, 

with a focus on the pathogen’s transition from biotrophy to necrotrophy and the impacts 

of pathogen virulence/avirulence in the presence or absence of the host Ht2 R gene. Gene
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expression in both host and pathogen shifted dramatically between biotrophy and 

necrotrophy, with specific trends demonstrating the different molecular mechanisms of 

infection and host defense during each phase. Pathogen avirulence, due to R-gene 

mediated resistance, led to an apparent arrest of the pathogen in the biotrophic phase. The

importance of gene-sparse regions of the S. turcica genome for pathogenesis was shown 

for the first time.

At the “macro” scale, I combined crowdsourcing and machine learning to develop

a new method for aerial detection of disease symptoms in the field. The task of 

annotating thousands of disease lesions in order to train a machine learning model was 

split in two, with experts annotating lesions in low resolution and numerous non-experts 

performing the more time-consuming task of outlining lesions, using the expert 

annotations as a base. This method allowed us to generate a large amount of reliable 

training data very quickly and at low cost. These data were used to train a convolutional 

neural network (CNN) to high accuracy, and a fully-connected conditional random field 

(CRF) was used to segment images into lesion and non-lesion areas using the CNN 

output. The final model was able to delineate lesions in aerial images down to the 

millimeter level, a finer spatial scale than any previously reported method. It also 

outperformed human experts by identifying lesions that they had missed. Though the 

techniques, findings, and impacts involved in work at these two very different scales are 

accordingly varied, they all contribute to a holistic understanding of the pathosystem and 

our ability to make practical change.
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CHAPTER 1

MULTIPLE DISEASE RESISTANCE IN PLANTS1

ABSTRACT

Many plants, both in nature and in agriculture, are resistant to multiple diseases. Although much of the 

plant innate immunity system provides highly specific resistance, there is emerging evidence to support

the hypothesis that some components of plant defense are relatively nonspecific, providing multiple 

disease resistance (MDR). Understanding MDR is of fundamental and practical interest to plant 

biologists, pathologists, and breeders. This review takes stock of the available evidence related to the 

MDR hypothesis. Questions about MDR are considered primarily through the lens of forward genetics, 

starting at the organismal level and proceeding to the locus level and, finally, to the gene level. At the 

organismal level, MDR may be controlled by clusters of R genes that evolve under diversifying 

selection,by dispersed, pathogen-specific genes, and/or by individual genes providing MDR. Based on 

the few MDR loci that are well-understood, MDR is conditioned by diverse mechanisms at the locus 

and gene levels.

INTRODUCTION

Plants must defend themselves against a wide range of pathogens with diverse offensive strategies. This

review considers the evidence regarding multiple disease resistance (MDR), with an eye to 

understanding its importance and mechanisms. Because we approach this evidence with crop 

improvement and protection in mind, we focus mostly on naturally occurring genetic variation 

1 Wiesner-Hanks T, Nelson R. 2016. Multiple Disease Resistance in Plants. Annual Review of Phytopathology 54: 229-
252.

1



affecting resistance, with a secondary interest in the potential of transgenic resistance. Although MDR 

is a highly desirable plant trait, the underlying genetic architecture and biological mechanisms are not 

as well understood as those of single-disease resistances. As such, in addition to reviewing the literature

surrounding MDR, we also speculate as to what mechanisms may in the future be revealed to mediate 

MDR.

Defining Multiple Disease Resistance

We use “host plant resistance to two or more diseases” as the definition of MDR (98, p. 203). This 

definition includes all forms of heritable host plant resistance, including both qualitative resistance and 

quantitative resistance (see 101 for a review of relevant terminology). It does not necessarily imply 

shared causal loci; a plant with MDR could carry several distinct R genes effective against different 

pathogens.

Note that this definition excludes nonhost resistance. Because most plants are nonhosts to most 

diseases, MDR should be distinguished from the many nonhost resistances of any given plant. MDR is 

also distinct from multiple disease susceptibility (MDS), the loss of baseline levels of resistance. A 

loss-of-function mutation in some critical defense gene may lead to extreme susceptibility to many 

pathogens (i.e., MDS), whereas overexpression of the same gene may (or may not) impart MDR. 

Although both are biologically interesting, only the latter might be used to improve host plant 

resistance.
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Multiple Disease Resistance: Why and Why Not?

There is reason to expect, a priori, that there might be a nonspecific component to disease resis- tance 

in plants. The plant innate immunity system, broadly speaking, has two main branches: a nonspecific 

form based on the recognition of pathogen-association molecular patterns (PAMPs) and a highly 

specific form based on the recognition of pathogen effectors, known as PAMP- triggered immunity 

(PTI) and effector-triggered immunity (ETI), respectively (29). Nonspecific PTI can result when plant 

pattern-recognition receptors (PRRs) detect highly conserved PAMPs such as bacterial flagellin or 

fungal chitin (9, 164). These PRRs are in turn targeted and silenced by pathogen effectors. Genetic 

variation that affects the sensitivity of plant PRRs, or their silencing by pathogens, would in turn affect 

resistance to many pathogens from similar taxa. Alternatively, if plants recognize host damage features 

that occur as a general consequence of pathogenesis [damage-associated molecular patterns (DAMPs)] 

(36, 102), they may be resistant to pathogens with similar effects on host tissue. Once signals (PAMPs, 

DAMPs, or effectors) have been recognized, genetic variation could affect the many downstream 

signaling cascades, in turn affecting the sensitivity, degree, or mechanism of the activated defense 

response.

Variation in constitutive defenses might also affect multiple resistances. Physical barriers and 

antimicrobial compounds, which have been implicated in both host and nonhost resistance (66), may 

hinder pathogens with similar invasion strategies or damage similar pathogen taxa. Other plant traits, 

like developmental timing or reduced herbivory, may allow the host to evade infection by pathogens 

with similar life cycles or vectors.

Considering the potential for general defense strategies, one might expect that MDR would be a

common phenomenon. Before considering the available evidence, it is worthwhile to reflect on why 
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MDR might not be common. Three hypotheses come to mind. The first is that although many defense 

systems can be broadly effective, they are not all constitutively active. Thus, plants must distinguish 

threats from nonthreats, creating room for specificity. The second is that the evolutionary arms race 

involves pathogens evolving to thwart plant basal defense mechanisms, which is in turn subject to 

reciprocal evolution by plants: a cycle of selection described by Jones & Dangl (66). The third is that 

defense strategies that defeat one set of pathogens may make the plant more vulnerable to another (e.g.,

cell death can stop biotrophs but facilitate pathogenesis for necrotrophs).

Genetic Scales

MDR can be conditioned by genetic variation at any scale, from many genes across the genome (e.g., 

of a highly resistant variety) to the single gene (e.g., the Lr34 gene in wheat). Resistance at the whole-

genome scale could be conditioned by multiple unlinked loci that each provide protection against single

pathogens (Figure 1.1a) or by chromosomal segment(s) that individually provide MDR (Figure 

1.1b,c,d). Resistance at the level of a chromosomal segment may be conditioned by clusters of tightly 

linked genes (Figure 1.1b) or by individual genes with pleiotropic effects (Figure 1.1c,d). There are a 

number of mechanisms by which a single gene might provide resistance to multiple diseases, several of

which have been empirically implicated. The bulk of this review discusses the evidence for MDR at 

these varying genetic scales.
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Figure 1.1. Four genetic scenarios by which a plant might be resistant to multiple diseases. (a) Loci 

conditioning resistance to single diseases (either R genes or quantitative trait loci effective against 

single pathogen species) may be stacked/pyramided within a single genotype. These loci may be on 

separate chromosomes or the same chromosome. (b) Loci conditioning resistance to single diseases 

may be in tight linkage with one another and thus typically transmitted as a unit from one generation to 

the next. These loci may be tightly or loosely linked, in coupling or in repulsion. (c,d ) A single locus 

may have pleiotropic effects on multiple diseases. It may have roughly comparable effect sizes on both 

diseases, which we term (c) even pleiotropy, or highly divergent effect sizes, which we term (d ) 

uneven pleiotropy. The key difference between even and uneven pleiotropy is that the former can be 

detected by genetic mapping methods, whereas the latter may be undetectable due to the small effect 

size on one of the diseases. The examples given here involve resistance to two diseases, but trade-offs 

are also possible; in some cases, within any of the above scenarios, resistance to one disease may be 

associated with susceptibility to another.
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MULTIPLE DISEASE RESISTANCE AT THE WHOLE-GENOME SCALE

Given the abundance and diversity of plant pathogens, MDR is of clear evolutionary importance and 

agricultural interest. Potato, for example, is attacked by least 12 major diseases and pests in Europe 

(62). Wheat plants are often infected by multiple pathogens at a given time (49). Legumes are 

vulnerable to a large number of diseases of many taxa, with plants often infected by more than one 

pathogen (98). Resistance to multiple diseases is therefore of great importance to plant pathologists and

breeders. MDR has been noted as a valued trait for more than a century; resistance to multiple diseases 

was documented in cowpea in 1902 (103, 146).

Multiple resistances are frequently described among the merits of plant genetic resources. To 

quantify the importance of MDR to modern plant breeding, we searched for relevant citations in the 

Journal of Plant Registrations (JPR), the official registration publication of the Crop Science Society of 

America since 2007. A Web of Science title search for “resistan  ” (which captures resistance, ∗

resistant, etc.) in the JPR returned 115 results. Of these, 30 described new varieties, mapping 

populations, or other germplasm resources with resistance to single diseases, and 70 described 

germplasm resistant to multiple diseases. MDR is clearly a highly valued trait in plant genetic 

resources.

Germplasm Screening

Crop improvement programs routinely screen germplasm collections for resistance to multiple diseases 

(e.g., 11, 48, 49, 56, 107). The prevalence of lines with MDR varies highly from study to study, often 

even across studies in the same host-pathogen systems. In many instances, resistances to multiple 

diseases have been found to be correlated across the entirety of a germplasm collection (26, 49, 50, 93, 
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106, 148). These significant correlations can exist across panels even if individual lines with a high 

degree of MDR are rare. For example, in a screening of spring wheat landraces for five leaf spot 

diseases, resistances were correlated for 11 of the 15 pairs of pathogens tested, but only less than 1% of

accessions were resistant to three or more diseases (50).

Even with similar diseases in the same species, the frequency with which MDR occurs can vary

highly among studies, as in the case of resistance to multiple leaf spot diseases in wheat, which are 

caused by various fungal pathogens and one bacterial pathogen. In a panel of diverse lines screened for 

two fungal leaf spot diseases, 11% carried partial resistance to both (48). In another panel of lines 

screened for three fungal leaf spot diseases, only 2.4% carried partial resistance to all three pathogens 

(1). As noted above, less than 1% of spring wheat landraces screened for five leaf spot diseases were 

partially resistant to three or more diseases (50).

Multienvironment Trials

Most of the disease screening studies referenced above were done under controlled conditions at a 

single location. An alternative approach is to use multienvironment field trials to assess the stability of 

resistance to multiple pathogen species and genera. In a study on fava bean, 43 accessions were tested 

for reaction to two diseases (138). Eleven accessions with stable resistance to both diseases were 

identified and confirmed under controlled conditions. In a multilocation study of resistance to multiple 

Fusarium species, 25 winter wheat genotypes were tested at six locations across Europe with 17 strains

of three Fusarium species (137). When the wheat genotypes were assessed for their responses to the 59 

combinations of strain, year, and location, resistances to different species were highly correlated. 
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Resistance to Fusarium head blight caused by multiple species was therefore inferred to be species 

nonspecific.

Screening of Wild Relatives

MDR may be sourced from wild or cultivated crop relatives, sometimes in hopes of identifying genes 

with broader-spectrum resistance phenotypes than are available within the cultivated gene pool. Wheat-

rye translocations have been used in several instances to bring MDR from rye to wheat (55, 162). 

Screening of wild crop relatives can capture highly effective forms of MDR. Jansky & Rouse (60), for 

example, identified an interspecific hybrid potato clone with resistance to five diverse diseases. Fetch 

et al. (37) tested accessions of the wild progenitor of barley (Hordeum spontaneum) for resistance to 

six fungal pathogens and found that resistance to most of them was present at high frequencies, with 

greater frequencies of resistance for populations sourced from more moist (likely disease-conducive) 

environments.

Accounting for Population Structure

To know whether correlations among resistances to different diseases reflect a common genetic basis, 

the population structure of the germplasm must be understood. Population structure refers to the 

patterns of genetic relatedness among populations of the same species. This can be estimated from the 

geographical origin of different lines or from known pedigrees but is most reliably inferred from 

molecular marker data. For example, population structure largely explained resis- tance correlations in 

two maize diversity panels, with tropical lines being generally more resistant than temperate lines (109,

148).
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Such patterns may reflect historical selection for multiple resistances. If two pathogens thrive in

similar environmental conditions, then plant breeders, including the farmers who selected landraces, 

will select for lines with resistance to both. Cox et al. (26) found higher levels of MDR in Triticum 

tauschii accessions from humid areas and hypothesized that the more severe disease pressure from 

diverse, humidity-loving pathogens led to more stringent selection for resistance. Among wheat 

accessions from European and Asian breeding programs, resistance to multiple leaf spot diseases was 

more strongly influenced by region of origin than whether the accession was a landrace or improved 

variety (49).

Resistance correlations may vary among subpopulations, driven by either highly resistant or 

susceptible lines. For example, in papaya, different genetic subgroups were found to have distinctive 

tendencies to provide resistance to various pathogens (139). Resistance to cassava bacterial blight was 

found to be correlated with resistance to cassava anthracnose disease in one panel of improved cassava 

varieties (31) but not in a partially overlapping panel of varieties from the same breeding program (40).

In a wheat diversity panel, resistances to two fungal leaf spot diseases were correlated in spring wheat 

accessions, many of which were highly susceptible to both diseases, but not in winter wheat accessions,

which were mostly somewhat resistant (48).

Structured Populations

Correlations in biparental families and other structured populations are more straightforward to 

interpret than correlations in diverse germplasm. To determine whether MDR at the whole- genome 

level is due to one or more loci, the typical approach is to make crosses and to evaluate patterns of 

segregation in the progeny. Resistance imparted by a dominant gene of substantial effect (e.g., an R 
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gene) segregates in a 3:1 ratio in an F2 population, whereas multiple genes of small effect give a 

continuous phenotypic distribution. When multiple resistances are correlated in a biparental family, 

they can be inferred to be controlled by similar chromosomal segments, which can be mapped through 

cosegregation with molecular markers. For example, resistances to two bacterial diseases were 

correlated in segregating populations of sweet corn (107). In a diallel analysis of alfalfa resistance to 

multiple pathogens, correlations were observed within several biparental populations (53). For one pair 

of pathogens, correlations were positive in two populations and negative for another, suggesting 

different architecture of causal loci in different populations. In contrast, if multiple resistances do not 

cosegregate in a biparental population, it implies that they are mediated by different genes, as was 

shown to be the case for MDR derived from an elite Australian wheat variety (68).

Correlated resistances have also been seen in recurrent selection programs. In alfalfa, recurrent 

selection for resistance to root rot caused by a single Fusarium species led to improved resistance to 

three Fusarium wilts (90). In Brassica rapa, Mitchell-Olds et al. (91) conducted three cycles of 

selection for resistance to each of three diseases and tested the responses for the one selected and two 

nonselected diseases. Resistance to both an oomycete and an ascomycete responded strongly to direct 

selection, and each of these diseases also responded significantly to selection for the other. Resistance 

to a third disease responded less strongly to direct selection and did not respond to selection for either 

of the other diseases.

MULTIPLE DISEASE RESISTANCE AT THE LOCUS LEVEL

Genetic mapping, supported by the use of molecular markers, has allowed genes influencing both 

quantitative and qualitative traits to be associated with particular chromosomal segments [quantitative 
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trait loci (QTLs); 124]. We use the term QTL mapping to refer to linkage mapping in structured 

populations (77, 158) and the term genome-wide association study (GWAS) to refer to the 

identification of trait-associated loci in diversity panels (112, 161).

Quantitative Trait Loci Colocalization

As QTLs for different resistances are mapped on plant genomes, the spatial relationships among them 

(in the chromosomal context) can be assessed. Colocalization of QTLs for different diseases can 

provide suggestive evidence for MDR loci. Most QTL mapping studies have focused on a single 

disease, and we could only find a few studies characterizing QTL colocalization for resistance to 

multiple diseases. Some examples are provided below, and a case study on maize is presented later.

For a given host and set of pathogens, different resistances might be conditioned by the same 

loci or by distinct loci, and it is not always easy to distinguish these two scenarios. QTLs for resistance 

to three Phytophthora species, all causing cocoa black pod, were found to greatly overlap (115). In 

ryegrass (Lolium spp.), a forage crop important in Europe and Australia, between one and seven QTLs 

were identified for each of four diseases in an interspecific mapping population (64). One locus, 

syntenous with a QTL for MDR in rice (149), conferred resistance to three of the four diseases. 

Clustering of resistance loci has been observed in several legume species (89, 129) and for loci 

conditioning rust resistance in wheat (18, 84). In other cases, genome-wide MDR is found to be the 

result of single-disease resistance QTLs that co-occur, as with the nonoverlapping QTLs for resistance 

to two Phytophthora diseases in pepper (12).

Genome-Wide Association Study Colocalization
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Colocalizing GWAS associations can also imply a common genetic basis of multiple resistances. A 

multivariate GWAS of resistance to three fungal foliar diseases in a maize diversity panel identified a 

single marker significantly associated with all three diseases, implicating a glutathione S-transferase 

gene (see Oxidative Stress below) (148). Subsequent GWAS analysis in the maize nested association 

mapping (NAM) population found additional evidence for MDR loci (see Case Study: Maize below). 

In a combined GWAS for spring wheat resistance to five leaf spot diseases, 32 loci were significantly 

associated with the different resistances, but no loci were associated with more than one disease (50).

Meta-Analysis

After resistance QTLs have been mapped in different populations of a given plant species, the overall 

architecture of MDR can be further clarified by meta-analysis, the rigorous integration of QTLs from 

studies in multiple mapping populations. A meta-analysis of the many QTL studies on barley disease 

resistance published since 1992 allowed integration of 166 QTLs from 28 studies (119). From these, 20

meta-QTLs were inferred, eight of which corresponded to MDR loci. Some MDR QTLs were 

associated with resistance to diverse fungal pathogens with a range of lifestyles (biotrophic, 

hemibiotrophic, and necrotrophic), whereas others were associated with resistance only to biotrophs.

Several meta-analyses have suggested that MDR loci are relatively common in rice. When 94 

disease resistance QTLs from 16 mapping studies were integrated onto the same genetic map, QTLs 

and known R genes were found to cluster by several measures, although the analysis was limited by the

low resolution of the mapping studies (149). A subsequent meta-analysis of 572 rice disease resistance 

QTLs from 56 mapping studies found evidence for 116 meta-QTLs, 76 of which conferred resistance to

more than one disease (71).
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Quantitative Trait Loci in Repulsion

Just as tightly linked QTLs can cause positive correlations between resistances, QTLs that are linked in

repulsion can cause negative correlations between resistances. For example, mapping of QTLs for 

resistance to seven diseases in a wheat biparental family revealed a QTL cluster on chromosome 3DL 

(165). Resistance QTLs for yellow leaf spot and Septoria tritici blotch, inherited from one parent, were 

linked in repulsion to resistance QTLs for leaf rust and stem rust, which were inherited from the other. 

Similarly, the wheat Sr2 locus, which confers resistance to stem rust, powdery mildew, and leaf rust 

(84), was tightly linked in repulsion to the Fhb1 locus, which confers resistance to Fusarium head 

blight (38). Understanding the genetic architecture of resistance to multiple diseases gives insight into 

the potential challenges and opportunities for improving MDR.

Intermediate Model: Uneven Pleiotropy

We have discussed scenarios in which a genetic locus confers resistance to either a single disease or to 

multiple diseases. There is evidence for an intermediate model as well, in which a locus has differential

effects on different pathogens, which we term uneven pleiotropy (Figure 1.1d). When QTLs were 

mapped in pepper for resistance to two Colletotrichum species, the major QTLs for resistance to the 

two species did not colocalize, but the major QTL for each colocalized with a minor QTL for the other 

(79). This could also explain instances in which QTL mapping for multiple resistances finds few to no 

loci with pleiotropic effects, even though those resistances are correlated, as suggested by Balint-Kurti 

et al. (6).

13



R-Gene Clusters

Results from several systems have shown that a given MDR locus may be either simple (when a single 

gene underlies an MDR locus) or complex (when multiple genes underlie the locus). Finemapping 

studies for dozens of pathosystems have revealed that complexes of homologous R genes often underlie

resistance loci (54), including MDR loci. A well-studied example is the lettuce Resistance Gene 

Candidate 2 (RGC2) cluster, which contains several dozen R-gene homologs (88). The gene 

complement varies across lettuce accessions (74), and most of the genes confer resistance to the 

oomycete Bremia lactucae, but one gene provides resistance to the root aphid (152). Given the size and

diversity of this cluster, it is possible that other, as-yet-undiscovered specific resistances are encoded by

other RGC2 genes. Given the prevalence of R-gene clusters in plant genomes and some examples of R-

gene clusters at MDR loci, we expect that more MDR loci will eventually be explained by clusters of 

tightly linked R genes.

R genes within a cluster can provide resistance for distantly related pathogen taxa because 

variations in R-gene sequences among paralogs or even homologs can result in novel specificities. For 

example, the allelic Arabidopsis genes HRT and RPP8 confer resistance to Turnip crinkle virus and the 

oomycete Peronospora parasitica, respectively (25). The potato cyst nematode resistance gene Gpa2 

and Potato virus X resistance gene Rx1 are two members of a four-gene cluster with 88% sequence 

similarity (136). This is likely not a unique phenomenon in potato, as most resistance gene homologs 

and known R genes cluster tightly on the potato genome (5). The multiple resistance complex J (MRC-

J) cluster in Arabidopsis is fascinating both for the diversity of R-gene targets and the genetic 

arrangement of the R genes it contains. Genes imparting race-specific resistance to several bacteria, 

viruses, a fungus, and an oomycete have all been characterized within this cluster, which also contains 
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roughly a dozen or so uncharacterized resistance gene homologs (25, 43, 97, 127). Two R genes 

arranged head-to-head in the cluster, RRS1 and RPS4, were found to both be necessary for three of 

these resistances (96).

GENE-LEVEL INSIGHTS

Relatively few disease resistance QTLs have been cloned to date. Among these, several have been 

shown to have conferred MDR, including Lr34 and Lr67 in wheat (72, 95), GH3-2 in rice (42), and 

mlo in barley (61). Below, we review the literature on cloned MDR loci, as well as speculate on what 

mechanisms might underlie as-yet-undiscovered cases of single-gene MDR.

Recognition of Conserved Signals

Disruption of recognition pathways can lead to the loss of multiple resistances (51, 52, 67), and 

successful pathogens have evolved ways to rapidly suppress the basal resistance provided by PAMP-

triggered immunity (66). Conversely, variation in plant genes can perhaps produce MDR by altering the

perception of certain PAMPs by plant PRRs or by affecting the inhibition of these PRRs by pathogen 

effectors. Another potential mechanism for single-gene MDR is the recognition by single plant R genes

of effectors from multiple pathogens. Several instances of dual-specificity R genes have been noted 

within single pathosystems; for example, the Arabidopsis RPM1 gene confers resistance to strains of 

Pseudomonas carrying either of two avr genes (46), and the tomato Pto gene recognizes Pseudomonas 

strains with either of two dissimilar effectors (69).

For R genes to recognize effectors from distinct pathogens, effector motifs would have to be 

conserved across species. This is not unlikely; comparison of predicted effector proteins from a wide 
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range of fungi and oomycetes found that effector sequences were often fairly conserved within clades, 

even for species of differing lifestyles (73). Groups of effectors from Pseudomonas and Ralstonia 

induced similar patterns of necrosis on diverse panels of tomato, pepper, and lettuce lines, even when 

the effector sequences were fairly divergent, suggesting similar targets in the hosts (151). Effector 

targets can be conserved among even extremely distant taxa. A yeast two-hybrid screening of effectors 

from Pseudomonas syringae and the oomycete Hyaloperonospora arabidopsidis found that effectors 

from these two distant species targeted several common Arabidopsis proteins (94). Host variation in 

effector targets might thus allow a plant to elude multiple pathogens. We further hypothesize that MDR 

may result, in some instances, from multispecificity R genes.

Hormone Signaling

Once threats have been recognized, plants rely on shared signaling pathways to initiate defense 

responses; recent reviews have described the roles of salicylate (140), jasmonate (17, 118), ethylene 

(15), abscisic acid (28), and the crosstalk between these pathways (13, 70, 116) in response to biotic 

and abiotic stress. Loci affecting hormone pathways have been suggested to underlie known resistance 

QTLs. Natural variation in the potato aos2 gene, which affects jasmonic acid production, is suspected 

to underlie resistance QTLs against Phytophthora infestans and Erwinia carotovora (105). The rice 

GH3-2 locus, which mediates resistance to Xanthomonas oryzae and Magnaporthe grisea, was found 

to encode a synthetase that produces the main form of auxin in rice (42). Less-direct evidence has also 

connected QTLs for MDR to loci controlling hormone signaling. Mapping of predicted defense genes 

in maize suggested several homologs of the rice Myb transcription factor, implicated in regulation of 

the jasmonic acid pathway, as candidate genes underlying QTLs for MDR (145).
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Sugar Signaling and Partitioning

A successful pathogen is able to draw nutrients from the host plant, whereas a successful plant is able 

to deny the pathogen these nutrients. Changing concentrations or ratios of sugars in plant tissue can 

induce plant defense genes, influence plant hormone pathways, and induce resistance to various 

diseases (10). Certain genes underlying sugar signaling and transport have been shown to have roles in 

MDR.

Feeding sucrose to rice plants through the roots was shown to induce expression of 

defenseresponse genes in a manner highly similar to a challenge by Magnaporthe oryzae (44). This 

relationship seems to apply to multiple diseases. Rice plants transformed with the maize PRms gene 

accumulated higher levels of sucrose in the leaves and showed increased resistance to infection by 

several fungi and a bacterial pathogen. Rice lines with constitutive overexpression of the cell wall 

invertase gene GIF1 accumulated more apoplastic hexoses and sucrose, leading to constitutively 

activated defense genes and elevated resistance to several diseases (125). The resistance allele of the 

wheat Lr67 gene (shown to underlie the loci Pm46, Sr55, Yr46, and Ltn3), which confers resistance to 

leaf rust, stripe rust, stem rust, and powdery mildew, encodes a hexose transporter that inhibits hexose 

uptake from the apoplast by host cells (94). This inflation of the apoplastic hexose:sucrose ratio is 

thought to be associated with sugar signaling of pathogen invasion. Similar sugar transporters (STP 

genes) in Arabidopsis have been shown to play a role in basal defense (80) and to be upregulated in 

response to pathogen infection (41).

As with any disease resistance mechanism, the benefits of altering sugar transport must be 

considered in light of potential trade-offs for other traits. Constitutive expression of defense response 
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genes may hinder plant growth, and alternative modes of sugar partitioning may alter critical plant 

traits such as yield, staygreen, etc. Resistance is ultimately useful to the farmer when it results in 

improved productivity, nutrition, stability, or quality.

Cell Death and the Hypersensitive Response

Plant cell death is an important defense mechanism against biotrophic pathogens and a gateway to 

infection for necrotrophic pathogens. Several genes implicated in cell death have been shown to 

contribute to MDR. The most famous example of this is the recessive mlo gene in barley, which 

provides resistance to several biotrophic pathogens (19). MLO is a negative regulator of the defense 

response, and genotypes that are homozygous for weak or null alleles at this locus manifest an 

overactive defense response. The gene was originally implicated in resistance to Blumeria graminis 

ssp. hordei and has been implicated in response to leaf wounding, leaf senescence, herbicide treatment, 

and a challenge with rice blast pathogen M. oryzae (108). It has also been implicated as a susceptibility 

factor for multiple necrotrophic pathogens. Plants homozygous for mlo show leaf-tip necrosis, 

reflecting the overactive induction of cell death. A similar but more exaggerated phenomenon is seen 

with the accelerated-cell-death 6 (ACD6) gene in Arabidopsis, which conditions resistance to diverse 

pathogens as well as to herbivory (134). This gene is associated with necrosis and plant stunting, 

highlighting the fitness trade-offs that may be associated with defense strategies.

Lesion mimics are mutant plants that spontaneously develop lesions resembling a 

hypersensitive response or lesions caused by pathogens (99). These mutants offer an excellent system 

in which to study cell death and its effects on MDR. In rice, lesion mimic lines have been repeatedly 

shown to have increased resistance to M. oryzae and Xanthomonas oryzae pv. oryzae (92, 153, 154). 
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Interestingly, the mutations that impart dual resistance, or any resistance at all, are only a small subset 

of the characterized lesion mimic mutations in rice. Lesion mimic mutants also vary in terms of their 

physiological trade-offs. Arabidopsis lines heterozygous for two distinct lesion mimic mutations were 

healthier than homozygous mutants but still retained an elevated hypersensitive response when 

challenged with virulent Pseudomonas isolates (47).

Although cell death can be used to stop pathogens that require living tissue, it can facilitate 

infection by those that feed on dead tissue. In addition to being more resistant to powdery mildew, mlo 

barley is more susceptible to the necrotrophic Ramularia collo-cygni and to laboratory infection by the 

biotrophic M. oryzae (61, 87). Similarly, a barley lesion mimic mutation conferring high levels of 

resistance to the biotrophic fungus Puccinia hordei also conferred hypersensitivity to the necrotrophic 

oomycete Pyrenophora teres f. sp. teres (150). Variation in cell death can also work in the opposite 

direction, with deficiencies in hypersensitive response conferring resistance to necrotrophs but 

susceptibility to biotrophs. Arabidopsis mutants deficient in hypersensitive response, although more 

susceptible to P. syringae, were much more resistant to the necrotrophic fungi Botrytis cinerea and 

Sclerotinia sclerotiorum (45).

Oxidative and Chemical Stress

Upon challenge by a pathogen, plants begin to form a wide array of reactive oxygen species (ROS) in a

process known as the oxidative burst (135). These ROS strengthen plant cell walls, serve as a signal to 

induce the disease defense response, and potentially create a hostile environment for invading 

pathogens. Necrotrophic pathogens, in turn, can elicit host production of ROS and secrete toxic 

compounds to kill host tissue (45). Mitigating this chemical and oxidative stress is critical for 
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maintaining plant health. Plants produce enzymes that detoxify ROS in response to all manner of 

abiotic and biotic stresses (3). There is evidence that genes affecting these processes of generating and 

mitigating toxic compounds can underlie MDR.

In addition to managing exogenous chemicals, plants must manage the endogenous ROS they 

produce in response to pathogen attack. Multivariate analysis of resistance to three fungal foliar 

diseases in a maize diversity panel implicated a glutathione S-transferase (GST) gene (148). As GSTs 

have been noted for their roles in mitigating oxidative stress and detoxifying xenobiotic compounds 

(86), this is a plausible candidate for resistance to multiple, mostly necrotrophic, fungal diseases.

As indicated above, the wheat Lr34 gene provides resistance to several diseases of wheat (72, 

76, 123). It has been effective and in wide use for more than 100 years. The LR34/Yr18/Pm38 locus 

was assumed to be a complex of multiple genes, but when it was cloned in 2009, MDR was found to be

conferred by a single gene encoding an ATP-binding cassette (ABC) transporter (72). Although neither 

the substrate of the ABC transporter nor the mechanism by which it provides resistance is known, it is 

suspected to have a role in transporting or sequestering xenobiotic compounds.

Oxalate oxidases, which catalyze the production of hydrogen peroxide from oxalate, have been 

hypothesized to underlie MDR loci in rice (114) and wheat (35). Rice has four tandemly duplicated 

oxalate oxidase genes that have been suggested to underlie a QTL for resistance to rice blast and 

bacterial blight in rice (114). However, overexpression lines of these four oxalate oxidase genes were 

not more resistant to either Xanthomonas oryzae pv. oryzae or M. oryzae (160). Still, it is possible that 

natural variation in oxalate oxidases or similar proteins could affect MDR, as a cluster of 12 germin-

like proteins (formerly known as oxalate oxidase-like proteins) was shown to underlie a major rice 

blast QTL and also to contribute to sheath blight resistance (85).
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Antimicrobial Peptides

Plants, animals, bacteria, and fungi produce peptides with broad antimicrobial activity (157). 

Antimicrobial peptides vary greatly in structure, targets, and efficacy. Plant defensins, for example, are 

small, cysteine-rich antimicrobial peptides that have long been recognized as an ancient, basal 

component of plant defense against diseases (131). These compounds, found in high concentration in 

plant seeds and cell walls, have been shown to inhibit a diverse array of fungi and oomycetes, as well 

as a more limited number of bacteria in vitro (22, 100).

Although the use of antimicrobial peptides as transgenic sources of resistance has been well 

documented, there is more limited evidence that they may underlie resistance QTLs. The pea Pi39 

defensin has been implicated in QTLs conferring resistance to Fusarium solani f. sp. pisi (27) and 

Ascochyta blight, caused by three distinct species of fungi (133). Given the abundance, diversity, and 

broad-spectrum activity of antimicrobial peptides, it is likely that variation in other genes encoding 

antimicrobial peptides affects MDR as well.

CASE STUDY: MAIZE

A series of studies, beginning with forward genetics, was conducted to understand the genetic 

architecture of disease resistance in maize. In 2006, Wisser et al. (147) summarized the available 

evidence from 50 QTL mapping studies on maize diseases. Although QTLs and R genes for multiple 

diseases showed significant clustering, finding candidate MDR loci was limited by the resolution of 

mapping studies at the time. Subsequent mapping studies for resistance to three fungal, predominantly 

necrotrophic foliar diseases—southern leaf blight (SLB), northern leaf blight (NLB), and gray leaf spot 

21



(GLS)—have described the genetic architecture of these three resistances at increasingly high 

resolution.

Populations and Correlations

Many maize populations have been screened for these three diseases. In diversity panels, these 

resistances have been highly correlated. Roughly 250 lines of the Goodman diversity panel (39), 

representative of the genetic diversity of maize, were screened for these three diseases (148). 

Resistances were correlated (r = 0.55 to 0.67) even after adjusting for population structure, kinship, and

maturity effects. A subset of lines from this panel was used as parents to construct the maize NAM 

population. The NAM consists of 25 biparental families generated by crossing 25 diverse founders to a 

common parent, B73 (156). Across the entire population of 5,000 lines, resistances were also ∼

correlated (r = 0.42 to 0.59), in large part because of population structure rather than segregation within

families (109). In both the Goodman panel and the NAM, tropical lines tended were more broadly 

resistant than temperate lines (109, 148). This is likely because tropical environments tend to have 

more disease pressure, historically necessitating stronger selection.

Structured Populations

These resistances were found to be less correlated in structured mapping populations. Within the NAM,

correlations were much weaker within each of the biparental families (r = −0.07 to 0.41) than among 

their diverse parental lines (r = 0.62 to 0.77) (109). These three resistances are also loosely correlated 

in other structured families: the intermated B73 × Mo17 (IBM) biparental population (r = 0.16 to 0.42) 

(6), a biparental population derived from an MDR line (Ki14) and B73 (r = 0.25 to 0.62) (166), and a 
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set of near-isogenic lines (NILs) derived from an SLB-resistant line (NC250P) and B73 (r = 0.09 to 

0.38) (8). Altogether, this suggests that MDR is mostly mediated by multiple unlinked QTLs conferring

resistance to single diseases, rather than mostly by pleiotropic QTLs.

Quantitative Trait Loci Colocalization

In each of the studies mentioned above, resistance QTLs for SLB, NLB, and GLS were mapped, giving

deeper insight into the genetic architecture of MDR. Resistance QTLs rarely colocalized in any 

population. In the IBM biparental population, in only one instance did QTLs for two diseases 

colocalize (6). In the Ki14 × B73 biparental population, a greater degree of MDR was detected (166). 

Seventeen resistance QTLs were identified, five of which conditioned resistance to two or more 

diseases. One locus (in the 1.06 bin of the maize genome, discussed below) conditioned resistance to 

all three diseases and was also associated with an effect on flowering time.

The NAM population was designed to permit both QTL mapping and GWASs. Joint linkage 

mapping (i.e., locating QTLs in one or more biparental population) identified 32 QTLs for SLB 

resistance, 29 for NLB resistance, and 16 for GLS resistance (7, 75, 110). Of these, five colocalized 

between NLB and SLB, six between GLS and NLB, and one between GLS and SLB resistance 

(although the two QTLs had opposite effects) (7). The results of QTL meta-analysis tell a similar story: 

tightly linked and pleiotropic resistance QTLs are either rare or difficult to find. There are several 

plausible explanations for this (see Missing Loci? Below).

Genome-Wide Association Study Colocalization
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Significant associations identified by GWASs can also be used to dissect these correlated resistances at 

greater resolution. An initial multivariate GWAS for these three diseases in 250 lines of the Goodman∼

diversity panel found only a single polymorphism associated with all three diseases, despite high 

genetic correlations between the traits (148). This early study was based on a relatively small number 

of single-nucleotide polymorphism (SNP) markers (n = 858), likely limiting its resolution.

GWASs have also been conducted in the NAM for SLB resistance (75), NLB resistance (110), 

and GLS resistance (7).We compared the associations found in these studies in much the same way as 

the QTLs above. These studies should have more power to detect causal MDR loci, given the larger 

number of lines (n = 5,000) and SNPs (n = 1.6 million) utilized. Because of the limited LD breakdown 

in the NAM population (P. Bradbury, personal communication), we considered SNPs to colocalize if 

they were within 1 megabase of each other. This was supported empirically; at more stringent cutoffs 

for physical proximity, association results for the same disease with slightly different mapping 

approaches showed almost no colocalization.

GWAS co-localization has demonstrated several aspects of MDR in maize. Associations from 

GWASs were integrated into the same physical map and then combined if they were within 1 

megabase. After this, there were 121 regions significantly associated with NLB resistance, 115 with 

SLB resistance, and 99 with GLS resistance. Of these, 21 chromosomal regions colocalized between 

NLB and SLB, 25 between NLB and GLS, 14 between GLS and SLB, and 4 between all three diseases.

From another multitrait GWAS in the NAM, which included the same NLB and SLB phenotypic data 

as above (141), there were 44 regions associated with NLB resistance and 68 with SLB resistance, only

6 of which overlapped. That standardized effect estimates of co-localizing associations were positively 

correlated (r = 0.36 to r = 0.47) suggests that these colocalizing associations are truly pleiotropic or 
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linked loci, rather than spurious coincidences. This supports the hypothesis that pleiotropic or linked 

loci are rare.

Missing Loci?

Why are loci with pleiotropic disease effects hard to identify, even with similar diseases and correlated 

resistances? Several phenomena, or a combination thereof, could explain this. It may be that most 

pleiotropic loci have effects that are too small to be detected by mapping, or that loci with large effects 

on resistance to one disease may have weaker effects on resistance to another (uneven pleiotropy) 

(Figure 1.1d), as suggested by Balint-Kurti et al. (6). Uneven pleiotropy would be quite difficult to 

detect in the case of quantitative disease resistance, as most loci conditioning quantitative resistance are

expected to have small effects, but loci with negligibly small effects will not pass the significance 

threshold during QTL mapping; thus, the minor effect of a locus with uneven pleiotropy would be 

difficult to detect. It may simply be that QTLs for single-disease resistances, selected in environments 

with high disease pressure, co-occur in lines with a high degree of MDR (gene pyramiding) (Figure 

1.1a).

Dissection of Quantitative Trait Loci

Although most large-effect disease QTLs in maize appear to be disease-specific, genetic dissection has 

revealed several QTLs that provide resistance to multiple diseases. A series of studies has been 

conducted to dissect putative MDR loci using NILs. A study typically identifies a pair of lines differing 

for a locus that conditions resistance to a disease of primary interest and then analyzes the response of 

the lines to other diseases. Below, we review a series of such studies conducted on NILs derived from a
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cross between B73 and Tx303 that collectively illustrate the complex genetics and diverse mechanisms 

that can underlie MDR (24, 59).

Two QTLs, located on the same chromosome but in different bins (genome sections roughly 20 

cM in length), were introgressed from the broadly resistant line Tx303 into the more susceptible B73 

line (24). One (in bin 1.06) conferred resistance to NLB and Stewart’s wilt, whereas the other (in bin 

1.02) conferred resistance to NLB, Stewart’s wilt, and common rust. Both NLB and Stewart’s wilt are 

vascular diseases, with the former caused by a fungus and the latter by a bacterium.

The QTL in bin 1.06, which was shown to hinder leaf penetration by the NLB pathogen 

Setosphaeria turcica (24), proved recalcitrant to conventional genetic analysis, as recombination rates 

were vanishingly low (59). Whether this QTL is truly pleiotropic (Figure 1.1c) or a cluster of linked 

loci affecting separate diseases (Figure 1.1b) remains to be seen. This region is considered an 

important adaptive region in maize because of the many other QTLs for important traits that have been 

found there, including an MDR QTL derived from another population (166). Although limited 

recombination hindered the fine-mapping of this QTL, a mutant for a leucine-rich repeat receptor-like 

kinase (LRR-RLK) gene, Pan1, in the region showed resistance to both NLB and Stewart’s wilt (59). 

This suggests that the wild-type allele is useful in pathogenesis for both vascular pathogens. Pan1 had 

previously been shown to play a role in cytoskeletal dynamics (actin organization) required for proper 

stomatal development (21).

The QTL in bin 1.02, which was shown to restrict entry of S. turcica into the vascular tissue 

(24), could be dissected through recombination. This showed that although the Stewart’s wilt and 

common rust resistances may be due to pleiotropy, the NLB locus is a tightly linked, separate locus 

(58) (Figure 1.1b). Multiple cycles of recombination allowed the narrowing down to four genes, which
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were further assessed using mutants, implicating a remorin gene. Members of the remorin gene family, 

involved in membrane rafts and plasmodesmatal function, have been implicated in inhibiting Potato 

virus X mobility through plasmodesmata (113) and in promoting infection by P. infestans (14). Thus, a 

nonspecific role in restricting plasmodesmatal movement by different pathogens is plausible.

TRANSGENIC MULTIPLE DISEASE RESISTANCE

With direct transfer of genes among genotypes and species, the potential scope of resistance sources 

expands to different species, genera, and kingdoms. The extent to which this opportunity will be 

realized to produce MDR depends on whether known MDR genes are effective in heterologous 

systems, the technical ease of transformation, and the social and political context that influences the 

regulatory environment. Although the GMO debate has been politically fraught, the use of resistance 

genes from wild species could lead to reduced reliance on pesticides and thus could have some appeal 

from an environmental perspective. Here, we review the existing literature on transgenic methods and 

their implications for MDR.

Constitutive Defense and its Drawbacks

Most defense mechanisms require the plant to recognize threats and to activate defense response 

pathways. Constitutive expression of defense response genes can enable plants to bypass the 

recognition step, creating a hostile environment for invaders. There are many routes to affecting 

resistance via constitutively expressed defense genes. R-gene overexpression can lead to activation of 

defense response pathways and subsequent MDR, as was the case with the Pto gene in Arabidopsis 

(128). Defense-response genes on the downstream end can also be used. Overexpression of the rice 
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peroxidase OsPrx114, which catalyzes oxidation of substrates by peroxides during the oxidative burst, 

imparted resistance to multiple necrotrophs in carrot (143).

The Arabidopsis NPR1 gene, which regulates systemic acquired resistance and has homologs in

other crops, has been suggested as a source MDR (32). Overexpression of NPR1 has led to MDR in 

Arabidopsis (20, 155), tomato (83), carrot (142), and strawberry (120). Interestingly, the baseline 

expression of pathogenesis-related (PR) proteins in these NPR1 overexpression lines was not different 

from the wild-type expression level in Arabidopsis or carrot but was higher in tomato and strawberry. 

Because NPR1 activates defense response pathways in a dosage-dependent manner (32), it seems that 

constitutive expression of this upstream defense regulator can induce MDR in multiple ways: by 

constitutively activating defense pathways (an undesirable trait) or by increasing the sensitivity, 

intensity, or duration of the defense response (a potentially desirable trait).

There are good reasons why plants do not typically show constitutive activation of defense 

pathways, however. Many defense responses are expected to incur a cost to the host plant in some way, 

by either consuming limited resources or indirectly affecting growth (16, 122, 144). Evidence for 

fitness costs of transgenic MDR supports this. Overexpression of the RPM1 R gene in Arabidopsis led 

to stunted plants with lower seed production (134). Although Arabidopsis NPR1 overexpression lines 

are developmentally normal, NPR1 overexpression led to reduced growth in strawberry (120). 

Arabidopsis mutants that overexpressed the MAP kinase kinase 7 gene, previously shown to regulate 

basal and systemic acquired resistance, had high levels of MDR, but this was associated with a bushy, 

dwarf plant morphology (159). Constitutive expression of defense-related genes will ultimately be 

useful from a crop improvement standpoint if the transgene increases sensitivity only to signals from 

relevant threats, without sacrificing plant performance in the absence of pathogens.
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Antimicrobial Peptides

As with other disease defense mechanisms, plants that constitutively express antimicrobial compounds 

may be able to bypass the recognition of effectors. Transgenic constitutive overexpression of the potato

Snakin-1 peptide, originally found to have antibacterial function in vitro, imparted resistance to the 

bacteria Rhizoctonia solani and E. carotovora in potato (2). Plant defensins have also been transferred 

from one plant species to another with great success in many cases. Both tobacco and peanut plants 

transformed with the mustard defensin gene BjD are highly resistant to multiple distinct fungal diseases

(126). The radish defensin gene Rs-AFP2 has been transformed into tobacco (130), tomato (23), pear 

(78), wheat (82), and rice (63), providing in vitro resistance to a wide range of economically important 

fungal pathogens. Transformation of potato with the Nicotiana megalosiphon–derived peptide 

NmDef02 conferred resistance to Alternaria solani and P. infestans (111). Using plant defensins in 

transgenic plants is still a fairly conservative strategy, as the defensins are less likely to have broad 

phytotoxic properties.

Of course, transgene sources are not limited to the plant kingdom. Transforming plants with 

antimicrobial peptides from distantly related taxa arms them with chemical weapons that may be quite 

novel to potential pathogens. Synthetic analogs of magainin, an antimicrobial peptide from the African 

clawed frog, have been used to confer MDR in transgenic tobacco (22, 81) and banana (22). The 

msrA1 gene, which encodes for a chimeric protein derived from antimicrobial peptides of the giant silk 

moth and bee venom, imparted resistance to fungal and bacterial pathogens in potato (104) and to 

fungal pathogens in Brassica juncea (117). As many of these authors have noted, the broad 

antimicrobial activity of these peptides comes with a caveat: Novel transgenic peptides may have 
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unforeseen impacts on the plant, its pollinators, the beneficial microbes of the rhizosphere, and/or its 

human consumers.

IMPROVING MULTIPLE DISEASE RESISTANCE

As we learn more about the underlying genetic and biological mechanisms behind MDR, how do we 

translate this knowledge into improving MDR in different crops? Methods for producing crop varieties 

with whole-genome MDR vary, with the strategy depending on the nature of inheritance of MDR. To 

make efficient use of a resistance source, it is necessary to have a clear understanding of its inheritance.

For example, the breeding strategy required for utilizing monogenic resistance is distinct from one 

based on quantitative resistance. It would be relatively easy to manage a single gene that provided 

resistance to multiple diseases, and a much greater technical challenge to make practical use of a large 

number of loci of small effect.

A common strategy for producing MDR at the whole-genome level is to combine multiple 

major genes into a single line. The pyramiding or stacking of R genes or other major genes can be 

achieved by phenotypic selection and/or marker-assisted selection (MAS). For example, Singh et al. 

(121) and Zhou et al. (163) used MAS to pyramid R genes for rice blast and/or bacterial diseases in 

Basmati rice. Eibach et al. (33) used MAS to pyramid resistance QTLs for downy mildew and powdery

mildew in grape, avoiding the long generation times needed to conduct phenotypic selection.

Efforts to combine major genes are influenced by the distribution and nature of those genes 

within the species. If loci for different resistances are not closely linked, they must be introgressed 

independently of one another. If they are linked, they are easy to introgress if linked in coupling and 

more difficult to introgress if they are linked in repulsion. For example, the wheat MDR locus Sr2 was 
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difficult to combine with the Fusarium head blight resistance locus Fhb1 because the two were linked 

in repulsion (38). Screening by molecular markers eventually identified recombination events between 

the two loci; the resultant recombinant lines can be used as donors of both the Fhb1 and Sr2 loci with 

limited loss of stacked resistance due to further recombination.

Although molecular markers can be useful, phenotypic selection can also be used to combine 

resistances. Teran et al. (129) describe a strategy for developing breeding lines with resistance ´ to the 

five most important diseases of common bean in Latin America by screening multiparent populations 

with multiple pathogens. They found relatively high co-incidence of resistance to three fungal diseases 

and a viral disease. The authors note that their success in creating MDR lines was probably enhanced 

by the clustering of resistance genes in the bean genome. Elgin et al. (34) compared a range of 

selection methods for developing alfalfa populations with resistance to multiple diseases. They found 

that sequential selection for one disease at a time was ineffective (resistance to a given disease would 

respond to selection but would be lost when the population was later selected for resistance to other 

diseases), suggesting that resistances were genetically unlinked.

The reliance on major genes can be appealing because of their potential to provide complete 

resistance and the relative ease with which they can be analyzed. The main downside to their 

exploitation is their potential lack of durability, or their long-term performance in the face of pathogen 

evolution (65). Polygenic, quantitative resistance is considered to be the most durable form of 

resistance (124). Single R genes are generally race specific and relatively rapidly overcome as 

pathogen populations evolve under selection pressure. Broad-spectrum resistance is logically more 

likely to be durable than resistance for which compatible pathogen strains are already known. MDR can

be regarded as an exceptional form of broad-spectrum resistance and thus potentially particularly 
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difficult to overcome. Consistent with this, single genes associated with MDR, such as mlo and Lr34, 

are among the rare major resistance loci to have demonstrated durability.

CONCLUDING REMARKS

Only a few genes for quantitative resistance have been cloned to date. Some of these have been MDR 

loci, and their cloning has shed light on the types of mechanisms that can underlie resistance to 

multiple diseases. As more MDR loci reveal their secrets, we will gain insights of relevance to host-

pathogen interactions and of importance to crop improvement and protection. The loci thus far 

associated with MDR have ranged from clusters of diversifying R genes to those involved in chemical 

warfare. The patterns of MDR also vary with regard to similarities in pathogen relatedness; some loci 

are associated with resistance to various obligate biotrophs, whereas others provide resistance to more 

diverse pathogens. Optimal exploitation of the potential of MDR will benefit from a deeper 

understanding of the underlying mechanisms and the potential trade-offs with other traits of interest to 

pathologists, breeders, and growers.

FUTURE ISSUES

1. Many plant defense strategies for broad resistance against biotrophs lead to susceptibility to 

necrotrophs and vice versa. What genes or mechanisms lead to resistance against both necrotrophic and

biotrophic pathogens?

2. As more is learned about the genetic architecture underlying MDR in different crops, how can this 

knowledge translated into crop improvement?
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3. As genetic engineering falls in price and difficulty, it will be easier to move genes from nonhosts of a

given pathogen into hosts. How will this affect our understanding of host and nonhost resistance to 

multiple diseases? How will it change breeding for multiple resistances? Will the public accept this?
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CHAPTER 2

TRANSCRIPTOMICS OF THE BIOTROPHY-NECROTROPHY TRANSITION AND R-GENE-

MEDIATED RESISTANCE IN THE SETOSPHAERIA TURCICA-MAIZE PATHOSYSTEM2

ABSTRACT

Hemibiotrophic interactions are multifaceted and complex, as the mechanisms deployed by pathogens 

and their host(s) can change throughout the course of pathogenesis. In this study, RNA-seq was used to 

explore the Setosphaeria turcica- maize pathosystem as it transitioned from biotrophy to necrotrophy in

four combinations of host and pathogen. Both pathogen and host transcriptomes shifted dramatically 

throughout the biotrophic-necrotrophic transition. Pathogen avirulence in the presence of a 

corresponding host R gene led to an apparent arrest of pathogen growth and development. Gene-poor 

regions of the S. turcica genome tended to contain more genes differentially expressed during infection,

but these genes did not appear to evolve more rapidly. Overall differences of gene expression in the 

host between resistant and susceptible interactions were largely quantitative- of degree and timing- 

rather than qualitative differences in the identity of the genes and pathways involved. RNA-seq data 

were used to identify two plausible candidates for the maize Ht2 R gene. Maize gene expression in 

response to S. turcica infection could be used to predict maize resistance phenotypes from non-

inoculated gene expression levels.

2 Wiesner-Hanks T, Mideros S, Wu D, Haridas S, Andreopoulos W, Singan V, Daum C, Barry K, Saha S, Condon B,  
Grigoriev IV, Nelson RJ, and Turgeon BG. Transcriptomics of the biotrophy-necrotrophy transition and R-gene-
mediated resistance in the Setosphaeria turcica-maize pathosystem. In preparation.
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INTRODUCTION

Fungal plant pathogens are typically divided into three classes based on lifestyle and nutritional 

relationship with their host: biotrophs, necrotrophs, and hemibiotrophs. Biotrophs enter host cells 

without triggering plant defenses and thrive on living host tissue. Necrotrophs kill host tissue and are 

sustained by released nutrients. Hemibiotrophs begin their relationship with the host as biotrophs, then 

transition to a necrotrophic lifestyle (Perfect and Green 2008).

Setosphaeria turcica (Exserohilum turcicum) is a hemibiotrophic ascomycete and the causal 

agent of northern leaf blight (NLB) of maize (Leonard et al. 1989, Lim et al. 1974, Chung et al. 2010). 

Several races have been described (Leonard et al. 1989, Ferguson et al. 2004, Ferguson et al. 2007) 

based on their ability to infect maize lines carrying the resistance genes Ht1, Ht2, Ht3, and/or HtN. S. 

turcica race 1 is virulent on maize carrying Ht1, while race 23 is virulent on maize carrying Ht2 and/or 

Ht3, etc. NLB is one of the most important maize foliar diseases, causing an estimated economic loss 

of roughly $1.9 billion in 2016 in the US (Mueller et al. 2017). Despite its economic importance, S. 

turcica has not been studied as much as other hemibiotrophic fungi such as Colletotrichum spp., 

Zymoseptoria tritici or Magnaporthe oryzae.

Previous transcriptomic studies of hemibiotrophs have shown that gene expression profiles of 

both pathogen and host are usually dissimilar during the biotrophic and necrotrophic phases (Brunner et

al. 2013; Gan et al. 2013; Yang et al. 2013; Palma-Guerrero et al. 2016). In the dicot pathogen 

Colletotrichum higginsianum, for example, categories of genes typically associated with virulence 

(e.g., those encoding enzymes for secondary metabolite (SM) biosynthesis, small secreted 

proteins/effector proteins (SSPs), cell wall degradation (CAZys), transporters, peptidases, transcription 

factors) are transcribed in ‘waves’ roughly corresponding to lifestyle phase (Gan et al, 2013; O’Connell
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et al. 2012). SM, SSP, and CAZy associated genes tend to be upregulated in the early biotrophic phase, 

while transporters and hydrolases are associated with the later necrotrophic phase (O’Connell et al. 

2012). While most SM genes are upregulated in the fungus in planta, expression profiles are diverse: 

some are upregulated in appressoria in vitro and also in planta, and others are upregulated in 

appressoria in planta and in the biotrophic phase, some during both bio- and necrotrophic phases and 

others only in the necrotophic phase (Dallery 2017).

Another observation regarding virulence-related fungal genes is their location in the genome. In

some fungi, genes mediating fungal virulence are found preferentially in gene-poor regions. SSPs in 

particular tend to be located in gene-poor, high A+T regions in Leptosphaeria maculans (Rouxel et al. 

2011; Winter et al. 2018). In the well-studied rice blast fungus M. oryzae, effector-encoding genes are 

preferentially located near telomeric regions, while for the emerging wheat blast strain, many effector 

genes are located on gene poor mini chromosomes (Peng et al., 2018).

Previous RNA-seq studies have elucidated the temporal dimensions of hemibiotrophy in 

different host-pathogen interactions. In many pathosystems, gene expression profiles in both pathogen 

and host are typically quite different during these two phases (Brunner et al. 2013; Gan et al. 2013; 

Yang et al. 2013; Palma-Guerrero et al. 2016; Wang et al. 2018). Certain pathogen infection strategies, 

such as the production of polyketides and small peptides, have been observed in many pathosystems 

(Gan et al, 2013; O’Connell et al. 2012). Other offensive strategies, such as the production of 

hydrophobins during necrotrophy, have so far been noted in only a single pathosystem (Yang et al. 

2013; Meinhardt et al. 2014).

Many studies have explored the transcriptomic aspects of R-gene-mediated (qualitative) 

resistance, but findings vary widely from pathosystem to pathosystem, defying generalizations. 
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Differential gene expression (DGE) in response to infection may be more pronounced in the resistant 

host than the susceptible host (Kawahara et al. 2012; Sonah et al. 2016) or just the opposite (Matić et 

al. 2016). The genes or pathways that are up- or downregulated by the resistant and susceptible hosts 

may be very similar (Sonah et al. 2016) or quite distinct (Han et al. 2015). Some plant defense 

strategies against hemibiotrophs, such as chitinase production, appear to be fairly conserved among 

various hosts (Yang et al. 2013; Meinhardt et al. 2014; Gharbi et al. 2017).

Many maize loci conditioning NLB resistance manifest their effects at varying stages of 

symptom development, making the maize-S. turcica pathosystem a useful model to study 

hemibiotrophic plant-pathogen interactions. For instance, the R gene HtN delays lesion formation 

(Hurni et al. 2015), while the nearby R gene Ht2 slows the rate of lesion growth (Chung et al. 2010a). 

Quantitative resistance loci (QRL) can also have stage-specific effects. Two maize QRL derived from 

the same resistant donor line were found to impart resistance via distinct mechanisms: one reduces 

hyphal penetration of the leaf, hindering the pathogen during early biotrophy, while the other inhibits 

penetration of the host vascular tissue and delays the biotrophy-necrotrophy transition (Chung et al. 

2010). These diverse host strategies provide many avenues for comparison of different resistance 

mechanisms.

To explore the shared and unique aspects of biotrophy and necrotrophy, and of resistant and 

susceptible interactions, we analyzed 78 RNA-seq libraries derived from four combinations of host 

(either carrying or lacking the Ht2 resistance gene) and pathogen (either carrying or lacking the 

AVRHt2 gene, which causes a resistance response in maize carrying the Ht2 gene; Table 2.1) and the 

appropriate controls. Each host/pathogen combination was assayed over several time points to explore 
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the different aspects of biotrophy and necrotrophy and which patterns were shared or unique. The 

patterns of gene regulation during the biotrophic and necrotrophic phases were quite distinct, and 

characterization of these sets gives a clear insight into host and pathogen strategy during the two 

phases.

S. turcica isolate

Maize host 

line

StNY001

[AVRHt2]

St28A

[avrHt2]

ZmHt2+ Resistant

Ht2/AVRHt2

Susceptible

Ht2/avrHt2

ZmHt2- Susceptible

ht2/AVRHt2

Susceptible

ht2/avrHt2

Table 2.1. Genotypes and expected R-gene mediated interaction of host lines and pathogen isolates 

used in this study.

RESULTS

Fungal genome structure

The StNY001 genome was sequenced and assembled for the first time, allowing a comparison to the 

previously reported St28A genome (Condon et al. 2013) and more accurate alignment of transcript 
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reads from StNY001. The assembled genomes were comparable by most metrics, though the St28A 

assembly was both slightly larger and contained fewer gaps (Table 2.2). Alignment with nucmer 

showed that 98.5% of the St28A genome and 87.5% of the StNY001 genome were covered by regions 

of at least 99% sequence similarity, the larger St28A assembly contained proportionally more unique 

genomic regions. Most gene models were common to both isolates: 11,012/12,028 (91.6%) of St28A 

gene models and 11,012/12,547 (87.8%) of StNY001 gene models had a reciprocal best hit (RBH) in 

the other isolate. These shared gene models were often identical: 7,024/11,012 (63.8%) of shared 

models had 100% sequence identity.

Table 2.2. Summary of S. turcica genome assemblies.  

Genome characteristic St28Aa StNY001b

Genome sequence total (Mb) 43.01 38.42

Genome scaffold count 407 489

Genome contig count 1,959 1,823

Scaffold N50 8 45

Scaffold L50 (Mb) 2.14 0.23

% genome covered by gaps 11.10% 6.00%

# gene models 12,028 12,547

# shared gene models 11,012 11,012
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# unique gene models 1,016 1,535

a https://genome.jgi.doe.gov/Settu3/Settu3.home.html

b https://genome.jgi.doe.gov/Settur3/Settur3.home.html

Sequencing and alignment of reads

Sequencing of 78 RNA-seq libraries- 24 from mock-inoculated maize tissue, 24 from maize tissue 

inoculated with S. turcica isolate 28A (St28A), 24 from maize tissue inoculated with S. turcica isolate 

NY001 (StNY001), and 6 from axenic S. turcica tissue- yielded 3.6 billion reads in total, for an average

of 47 million (M) reads per library (Table 2.3). In total, 81.4% of reads were successfully aligned to a 

unique position overlapping with a single annotated transcript from the appropriate genome. The 

percentage of reads mapped was comparable in most tissue types (roughly 80-82%), except in the 

St28A axenic libraries, in which only 73.0% of reads aligned.

Although reads were aligned to both fungal and maize genome FASTA files simultaneously, 

alignment of fungal reads to the maize genome and vice versa was rare. Of the 328 M reads from the 

six S. turcica axenic libraries, 17,083 (0.0052%) mapped to the maize genome. Of the 1,067 M reads 

from the 24 maize mock-inoculated libraries, only 5,062 (0.00047%) mapped to the S. turcica genome.
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Table 2.3. Summary of sequencing and alignment of reads.     

Source M reads # libs M reads/lib % 

mapped

% 

unmapped

All libraries 3634 78 47 81.4 18.6

Mock-inoculated maize 1067 24 44 81.4 18.6

St28A-inoculated maize 1121 24 47 82 18

StNY001-inoculated maize 1118 24 47 82 18

Axenic St28A 119 3 40 73 27

Axenic StNY001 209 3 70 80.4 19.6

Differential Expression

Host and pathogen gene counts in inoculated tissue were tested for differential expression (DE) relative

to gene counts in the appropriate negative control: mock-inoculated maize tissue for host genes and 

axenic cultures for fungal genes. A large proportion of both host and pathogen genes were DE at some 

point in at least one host/pathogen combination: 49.8% (19,741/39,625) of maize gene models, 67.3% 

of St28A gene models, and 33.4% of StNY001 gene models were significantly DE (p < 0.01 after false 

discovery rate [FDR] correction) at least at one time point during pathogenesis.
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In all host/pathogen combinations, the proportion of genes that were significantly DE (p < 0.01 

after FDR correction) in planta generally increased over time in both host and pathogen (Fig. 2.1). 

These patterns of differential expression were more pronounced in host/pathogen combinations 

involving St28A than those involving StNY001. In S. turcica, the proportion of genes that were DE (in 

planta v. axenic) was 2-3x higher in St28A than in StNY001 across all time points, regardless of the 

presence or absence of Ht2 in the host. The proportion of maize genes that were down- or up-regulated 

in inoculated tissue vs. mock-inoculated tissue at most time points was similar across all four host-

pathogen combinations, although by 10 DPI there were more up- or down-regulated genes in maize 

infected with St28A (13.3-17.2%) than in maize infected with StNY001 (9.9-11.9%). The proportion of

StNY001 genes up- or down- regulated in planta was similar in the Ht2+ and Ht2- hosts.
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Figure 2.1: The proportion of genes that was significantly differentially expressed (DE) during 

infection relative to negative control tended to increase over time in both the host maize (a) and 

pathogen S. turcica (b) in all host-pathogen combinations. 
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Gene models common to both fungal isolates were roughly 2.5 times more likely to be 

differentially expressed (DE) in planta compared to gene models unique to one isolate (Fig. 2.2). 

Across all time points in all host/pathogen combinations, 25.6% of S. turcica gene models shared by 

both isolates were significantly DE between in planta and axenic libraries, compared to only 10.6% of 

isolate-specific gene models. Baseline (axenic) expression of isolate-specific genes was also much 

lower. The median transcript count in axenic libraries for gene models present in both isolates was 

12.5, while the median count for gene models found in only a single isolate was 0.684. These findings 

were not surprising, as transcript reads from axenic cultures were used to augment gene calling, so 

genes that were highly expressed in axenic cultures were presumably more likely to be called as gene 

models.

Examination of the most significantly DE gene models (in planta expression vs. axenic) in S. 

turcica revealed several interesting trends. Of the 42 gene models that were among the 10 most 

significantly DE in at least one host/pathogen/DPI combination, only 12 had a predicted function or 

protein domain (Supplementary Table S2.1). We consider those with no predicted function or protein 

domain to be prime targets for functional analysis and discovery of novel virulence determinants.

Some gene models were highly DE across all hosts/timepoints, e.g. StNY001 protein ID 170288

(predicted chitin-binding domain), which suggests a general role across all phases of pathogenesis. 

Others seemed to serve a biotrophy-specific role, such as St28A 19500 (multicopper oxidase, type 

1/2/3) and 185131 (peptidase S10), and StNY001 436826 (haem peroxidase), all among the top DE 

genes at 3-7 DPI in both hosts, or a necrotrophy-specific role, such as StNY001 538563 (galactosyl 

transferase), among the top DE genes on both hosts at 10 DPI (Supplementary Table S2.1).
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Figure 2.2: S. turcica gene models present in both isolates are more likely to be significantly 

differentially expressed (DE) in planta relative to axenic. a. Gene models found in both St28A and 

StNY001. b. Gene models found in only one isolate.
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We also analyzed expression patterns of all S. turcica gene models with a given protein domain,

in addition to considering gene models individually. Enrichment analysis identified 22 Pfam domains 

significantly enriched among up- or down-regulated S. turcica gene models (Supplementary Table 

S2.2, 15 enriched among upregulated gene models, 7 enriched among downregulated gene models). 

Three protein families were enriched among upregulated gene models in most combinations of 

host/isolate/timepoint (Fig. 2.3), again suggesting a general role: cytochrome P450 proteins (PF00067),

major facilitator superfamily (MFS) proteins (PF07690), and zinc-binding dehydrogenases (PF00107). 

All three of these protein types are often associated with secondary metabolite gene clusters. 

PF1500324 (amino acid permease), PF00775 (dioxygenase), and PF00067 were notable in being 

upregulated at 5 days in the resistance interaction only. The same was true of PF00561 (alpha/beta 

hydrolase fold) at 10 days. PF02133 (permease) was upregulated in all three susceptible interactions at 

10 days, but not in the resistant interaction.

In maize multiple gene models with the same predicted protein domain were among the most 

highly DE models across most of the host/isolate/timepoint combinations (Supplementary Table S2.3). 

This included predicted cytochrome P450 genes (GRMZM2G118809, GRMZM2G161472), ABC 

transporter genes (GRMZM2G413774, GRMZM2G391815, GRMZM2G415529), and terpene 

synthase genes (AC214360.3_FG001, GRMZM2G028306, GRMZM2G127087). Other gene models 

were among the most highly DE models predominantly in one host, e.g. 

GRMZM2G169240/GRMZM2G169261 (fatty acid desaturases, mostly DE in the ZmHt2+ host), or at 

a specific timepoint, e.g. GRMZM2G078667 (dirigent-like protein, top DE gene model at 3 DPI) or 

GRMZM2G090980 (zinc-binding dehydrogenase, top DE gene model at 10 DPI). The domain-level 

trends of maize differential expression- which classes of genes or predicted protein domains were often 
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induced or suppressed during pathogenesis- were strongly influenced by the phase of pathogenesis and 

the presence/absence of R-gene-mediated resistance, as described below.

Figure 2.3: Pfam domains enriched among S. turcica gene models upregulated in planta. Each 2x2 

square represents the four combinations of host and pathogen, as shown in the key at bottom.
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The biotrophy-necrotrophy transition

Necrotic lesions first appeared between 7 and 10 DPI, reflecting the transition from biotrophy to 

necrotrophy. During this transition, fungal biomass in susceptible maize tissue, as measured by 

proportion of fungal reads over total reads, grew rapidly from 1.9-2.8% at 7 DPI to 4.8-14% at 10 DPI 

(Fig. 2.4). In contrast, fungal biomass in the resistant ZmHt2+/StNY001[AVRHt2] reaction was far less 

in this same period (doubled from 0.3-0.5% to 0.6-1.0%).

Figure 2.4: Fungal biomass increased dramatically between 7 and 10 DPI, except in the resistant 

interaction (ZmHt2+/StNY001). Lines show mean proportion of aligned reads from inoculated maize 

tissue that aligned to the S. turcica genome, rather than to the maize genome. Bars indicate standard 

error.
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Total biomass was significantly lower in the resistant Ht2+/NY001 reaction than in the 

susceptible Ht2-/NY001 reaction at 7 and 10 dpi (Fig. 2.4). The mean fungal biomass for strain NY001 

in the susceptible interaction increased 2.5x, while in the resistant interaction it increased 1.9x between 

7 and 10 DPI. During this same period, the increase in fungal biomass was much larger in the two 

susceptible interactions involving strain 28A. The presence of the Ht2 gene did not impair the relative 

growth of pathogen biomass as it entered the necrotrophic phase.

The biotrophy-necrotrophy transition was characterized by sharp, global changes in gene 

expression patterns in both host and pathogen, as shown by principal component analysis (PCA) of the 

transcriptomes. In S. turcica, the greatest global expression differences were between the axenic 

libraries and the four sets of in planta libraries (Fig. 2.5a). In planta expression patterns in S. turcica 

changed very little between 3 and 7 DPI, while expression patterns between 7 and 10 DPI changed 

dramatically in the three susceptible combinations, but not in the single resistance interaction.

In the host transcriptomes, the differentiation between inoculated and control (mock-inoculated)

tissue was less extreme (Fig. 2.5b). Expression patterns did change gradually throughout the biotrophic 

phase, but changes of a similar degree were observed in the mock-inoculated tissue, suggesting that 

these were more due to tissue maturation than infection by S. turcica. As in the pathogen, there was 

then a large shift between expression at 7 DPI and 10 DPI.
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Figure 2.5: Global gene expression in both host and pathogen changes dramatically between 7 and 10 

DPI in susceptible host/pathogen interactions, but not in the resistant interaction (ZmHt2+/StNY001, 

top left of each panel). a. Principal component analysis (PCA) of regularized-log-transformed counts of

S. turcica transcripts in inoculated maize tissue and axenic culture (control). b. PCA of regularized-log-

transformed counts of maize transcripts in inoculated and mock-inoculated (control) tissue.

The types of maize genes upregulated at each time point characterize the changes happening 

during this shift. In maize, 100 Pfam domains were significantly enriched (p < 0.01 after Bonferroni 

correction) among upregulated genes in at least one host-pathogen-DPI combination, while only 14 

domains were similarly enriched among downregulated maize genes. Pfam domains enriched among 

upregulated maize genes fell into three broad categories: enriched only during biotrophy (3-7 DPI), 

enriched only during necrotrophy (10 DPI), and enriched across both phases (Fig. 2.6). Five of the 

seven “biotrophy-specific” domains (PF13855 through PF00139) were enriched at 10 DPI in the R 
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reaction, fitting with the previous observation that the host transcriptome of the R reaction at 10 DPI 

most closely resembled the R host transcriptome at 7 DPI. Proteins with LRR domains are strong 

candidates for a role in resistance (DeYoung and Innes 2006).

Figure 2.6: Pfam domains enriched among maize gene models upregulated in infected leaves were 

often enriched only during the pathogen’s biotrophic phase (3-7 DPI) or necrotrophic phase (10 DPI). 

Each 2x2 square represents the four combinations of host and pathogen, as shown in the key at bottom.
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Resistant v. susceptible interactions

The four combinations of host and pathogen provided two ways to investigate the effects of fungal 

AVR and host R genes in interactions: 1) a pathogen strain with or without an AVR gene encoding an 

effector (+/- AVRHt2) and 2) a host with or without an R gene encoding a protein for resistance (+/-

Ht2). Only one combination, AVRHt2/ Ht2+ brokered a resistance reaction; the other three 

(AVRHt2/Ht2-, avrHt2/Ht2+, avrHt2/Ht2-) led to susceptible interactions.

Differences in host gene expression in resistant and susceptible interactions were most notable 

at the start of infection. In response to StNY001[AVRHt2] at 3 DPI, thousands of genes were DE (both 

up- and down- regulated) by the resistant host (ZmHt2+), while there were few genes DE in the 

susceptible host (ZmHt2-)(Table 2.4). By 5 DPI, this trend reversed and more than a thousand genes 

were DE (both up- and down- regulated) by the susceptible host (ZmHt2-), but not in the resistant host 

(ZmHt2+). This trend quickly diminished: by 10 DPI, roughly 75% of genes up- or down-regulated in 

one host were similarly up- or down-regulated in the other. Those genes that were significantly DE in 

both hosts in response to StNY001[AVRHt2] at 3 DPI were 1.32 times more strongly up- or down-

regulated in the R reaction. Expression of genes in the resistant host (ZmHt2+) inoculated with virulent

strain St28A[avrHt2] or avirulent strain StNY001[AVRHt2] tended to be similarly up- or down-

regulated (Table 2.5).

Very few host genes were regulated in an opposite manner between the R and S interactions, i.e.

upregulated in one host in response to StNY001 and downregulated in the other. Of the 16,057 maize 

genes DE in response to StNY001 at any time point, only 37 were upregulated in ZmHt2+ and 

downregulated in ZmHt2- or vice versa. The host genes DE in the susceptible and resistant interaction 

71



also tended to be of the same classes. No Pfam domains or GO terms were significantly enriched 

among host genes up- or downregulated in ZmHt2+/StNY001 compared to those up- or downregulated 

in ZmHt2-/StNY001 at any time point.

Table 2.4: Number of gene models up- or downregulated in maize with or without R gene (Ht2+/Ht2-),

inoculated with S. turcica with the corresponding AVR gene (StNY001[AVRHt2]).

Upregulated Downregulated

DPI ZmHt2+ only

(R)

Both ZmHt2- only 

(S)

ZmHt2+ only 

(R)

Both ZmHt2- only

(S)

3 3056 1316 420 3187 454 341

5 762 1461 1611 843 1211 1053

7 1683 2228 1138 2239 1563 776

10 1330 3340 1619 1187 3156 1397
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Table 2.5: Number of gene models up- or downregulated in maize with the corresponding R gene 

(ZmHt2), inoculated with fungus with or without the functional AVRHt2 gene.   

Upregulated Downregulated

DPI StNY001

[AVRHt2] 

only (R)

Both St28A

[avrHt2]

only (S)

StNY001

[AVRHt2] only

(R)

Both St28A 

[avrHt2] 

only (S)

3 1335 3037 272 1413 2228 310

5 1707 516 86 1861 193 48

7 842 3069 1313 844 2958 1049

10 531 4139 3212 525 3818 2334

Fungal effectors and secondary metabolites

We had strong a priori interest in three fungal gene classes: polyketide synthase (PKS) encoding genes,

non-ribosomal peptide synthetase (NRPS) encoding genes, and those encoding small secreted proteins 

(SSP), as all classes encode proteins that may act as effectors. The number of predicted genes in these 

classes were similar in both isolates, and SSPs were by far the most numerous. In St28A, we predicted 

357 SSP, 23 NRPS, and 27 PKS genes, and in StNY001, 434 SSP, 22 NRPS, and 29 PKS genes 

(Supplementary Table S2.4). Of the 56 NRPS/PKS genes predicted in either isolate, 49 were present in 

both isolates. There were two predicted hybrid PKS/NRPS genes in both isolates, one of which (protein 
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179218 in St28A, 444637 in StNY001) has been identified as AVRHt1 (Mideros et al. 2018). Knowing 

the aforementioned, we investigated the other (protein 47468 in St28A, protein 444637 in StNY001) as

a candidate AVRHt2 gene. The predicted gene model was 575 aa longer in StNY001 than in St28A. 

However, expression of this gene in planta was extremely low, in contrast to the highly expressed 

AVRHt1, and it was not on a scaffold genetically associated with AVRHt2 (Mideros et al. 2018).

Predicted fungal SSP-, PKS-, and NRPS-encoding genes followed the same general pattern of 

expression in both isolates (Table 2.6). Roughly 20-30% were upregulated in planta at any given time 

point, a proportion that increased slightly over time. Expression profiles of the upregulated PKS- and 

NRPS-encoding genes varied, but most often they were highly upregulated evenly across all timepoints

or increasingly so over time (Fig. 2.7). The overall percentage of S. turcica genes upregulated in planta 

roughly tripled from 9.3-9.4% to 25.5-26.0% between 3 and 10 DPI (Fig. 2.1). SSP-, PKS-, NRPS-

encoding genes were 3x more likely than the average gene model to be upregulated at the start of 

pathogenesis. The AVRHt1 gene, a hybrid PKS/NRPS (protein 179218 in St28A, 444637 in StNY001) 

was upregulated in all combinations of host/pathogen/timepoint.
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Table 2.6: Upregulation of predicted NRPS-, PKS-, and SSP-encoding genes in S. turcica on the 

resistant ZmHt2+ host. Upregulated NRPS and PKS-encoding genes are listed by JGI protein ID in 

parentheses for each time point.

# upregulated by DPI

Isolate Gene class # 
genes

3 5 7 10

St28A All 12028 1120 1837 2259 3126

St28A SSP 357 67 60 73 78

St28A NRPS 23 6
[36641
54477
179218
169407
155102
173669]

5
[36641
54477
179218
155102
173669]

5
[36641
54477
179218
155102
173669]

6
[18754
54477
179218
169407
155102
173669]

St28A PKS 27 5
[179218
161586
92491
93994
158064]

4
[179218
92491
93994
158064]

5
[179218
161586
92491
93994
158064]

8
[179218
152662
30113
158567
161586
92491
93994
22370
100517
158064]

StNY001 All 12547 1185 1917 2467 3196

StNY001 SSP 434 64 59 61 79

StNY001 NRPS 22 3
[444637
227272
550530]

4
[444637
543585
468908

5
[444637
543585
468908

5
[444637
543585
468908
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550530] 550530
607936]

550530
607936]

StNY001 PKS 29 5
[444637
443749
434732
552647
606828]

5
[444637
443749
434732
552647
606828]

5
[444637
443749
434732
552647
606828]

5
[444637
443749
434732
552647
606828]
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Figure 2.7: Expression profiles of S. turcica predicted PKS- and NRPS-encoding genes that are 

significantly upregulated in at least one host/pathogen/DPI combination.
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Fungal gene-sparse regions

In both S. turcica strain 28A and NY001, genes that lay 10 kb or further from their nearest 

neighbor had a much higher mean ratio of in planta/axenic expression than genes less than 10 kb from 

their nearest neighbor (Fig. 2.8). In St28A, genes >10 kb from the nearest neighbor (63 genes, 0.52% of

total) had a mean in planta/axenic expression ratio of 200, compared to the global average of 1.09. In 

StNY001, genes >10 kb from their nearest neighbor (25 genes, 0.20% of total) had a mean expression 

ratio of 9.6, compared to the global mean of 1.0.

Figure 2.8: S. turcica gene models in gene-sparse regions tend to be highly expressed in planta in both 

St28A (left) and StNY001 (right). All gene models were binned by distance to nearest proximal gene in

both the 3’ and 5’ directions. Color indicates mean log-transformed ratio of in planta to axenic 

expression in a given bin.
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Predicted fungal SSP-, PKS-, or NRPS-encoding genes also tended to lie in more gene-sparse 

regions (Table 2.7). Relative to the average gene model, the average predicted SSP in either strain of S. 

turcica tended to have one fewer gene within 25 kb on either side and be 500-1100 bp farther from its 

closest neighboring genes, while a predicted PKS-encoding gene had 3-5 fewer nearby genes and be 

1400-4000 bp farther from its closest neighbors. These differences between predicted SSP- and SM-

encoding genes and non-SSP or non-SM genes were all significant as determined by Wilcoxon rank-

sum test (p < 0.01, after Bonferroni correction). Predicted SSP-encoding genes also tended to be more 

likely to be very distant (>10 kb) from their closest neighbor. In isolate 28A, 6 of 357 predicted SSP 

genes (1.7%, protein IDs 25985, 32729, 161801, 164559, 1382176, and 1384223) were >10 kb from 

the closest neighboring gene, compared to 0.52% of non-SSP genes (p = 0.010 by Fisher’s exact test). 

In isolate NY001, 5 of 434 predicted SSP genes (1.2%, protein IDs 169173, 444690, 518715, 531761, 

and 609418), compared to 0.20% of non-SSP genes (p = 0.0034 by Fisher’s exact test). There were no 

predicted PKS- or NRPS-encoding genes >10 kb away from their closest neighbor. 

S. turcica genes in gene-sparse regions did not have especially high ratios of non-synonymous 

to synonymous mutations (dN/dS) relative to predicted orthologs in other pathogenic Pleosporales 

(Supplementary Fig. S2.1). Thus, these isolated genes did not show signs of more extreme diversifying 

or directional selection than the average S. turcica gene.
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Table 2.7: Number of nearby gene models tends to be lower and distance to nearest gene model tends 

to be higher for predicted S. turcica small secreted protein (SSP), polyketide synthase (PKS), and non-

ribosomal peptide synthase (NRPS) encoding genes. P-values are given for Wilcoxon Rank-Sum 

(WRS) test comparing given class of predicted gene to all gene models not in that class.

     

Gene class St28A
Gene models in 50 kb window

NY001
Gene models in 50 kb window

Mean p (WRS) Mean p (WRS)

All 15.6 16.2

SSP 14.6 2.22E-05 14.9 4.59E-06

PKS 12.2 5.24E-04 11.3 1.03E-05

NRPS 13.4 2.10E-02 13.4 3.10E-02

Gene class St28A
Distance (kb) to nearest gene

model

StNY001
Distance (kb) to nearest gene

model

Mean p (WRS) Mean p (WRS)

All 1.82 1.24

SSP 2.9 3.10E-12 1.9 7.00E-15

PKS 5.9 8.88E-05 2.67 5.46E-06

NRPS 2.1 1.50E-02 1.5 1.40E-01
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Effects of the Ht2 introgression

The maize lines used in this study were the most isogenic Ht2+/Ht2- pair available, but the exact size 

of the introgression was not known. After testing gene models for DE between non-inoculated ZmHt2+

and ZmHt2- tissue, we found clear breakpoints at 148.8 Mb and 160.8 Mb on chromosome 8 of the 

AGPv3 reference genome. This region contained 368 gene models, including the R gene HtN 

(GRMZM2G164612), known to be very close to Ht2 from genetic mapping (Chung et al. 2010b; 

Jamann 2013).

In non-inoculated maize tissue, 109/368 (29.6%) of the gene models in the Ht2 introgression 

were DE between ZmHt2+ and ZmHt2- at at least one time point. The introgression also affected the 

baseline expression of genes in trans: of the gene models outside the introgression, 1,149/38,955 

(2.95%) were DE between the two non-inoculated hosts at at least one time point. However, there was 

no statistically significant enrichment of any Pfam domain or GO term among the genes DE between 

non-inoculated ZmHt2+ and ZmHt2- tissue. Thus, though we observed many differences in expression,

the biological significance of these differences, if any, was unclear.

Maize benzoxazinoid pathway

Benzoxazinoids, a class of hydroxamic acids, have been studied mostly for their role in plant defense 

against insect herbivores (Niemeyer 2009), but also have a role in defense against fungal pathogens, 

including S. turcica in maize (Long et al. 1975; Long et al. 1978; Ahmad et al. 2011). We divided maize

benzoxazinoid pathway genes into three phases: biosynthesis of DIMBOA-Glc, differentiation of 

DIMBOA-Glc into various related compounds, and activation of these compounds by deglucosidation 

(Fig. 2.9).
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Each set of genes had distinctive expression patterns. The genes that collectively synthesize 

DIMBOA glucoside (Bx1, Bx2, Bx3, Bx4, Bx5, and Bx6) were all downregulated in the later stages of 

virulence (7-10 DPI), possibly due to inhibition feedback caused by DIMBOA accumulation (Ahmad et

al., 2011). The pathogen isolate influenced certain genes; Bx3 and Bx5 were both significantly more 

downregulated at 10 DPI in response to St28A than in response to StNY001. The presence or absence 

of Ht2 did not influence expression of any of the genes involved in DIMBOA glucoside production.

We observed two trends among the genes that convert DIMBOA-Glc into different 

benzoxazinoid compounds (termed “differentiation” phase in Fig. 2.9; the products are still 

glucosinated and therefore inactive). First, Bx10, Bx11, and Bx12, all of which encode O-

methyltransferases of similar or identical function (Meihls et al. 2013), were all strongly upregulated at 

10 DPI (245x - 26,800x in susceptible host/pathogen combinations), suggesting a necrotrophy-specific 

role to HDMBOA. We observed different responses in the different host/pathogen combinations; Bx10 

and Bx11 were significantly upregulated by 7 DPI in the three susceptible host/pathogen interactions, 

but not in the resistant interaction. Second, Bx14, an O-methyltransferase gene responsible for the 

conversion of DIM2BOA to HDM2BOA (Handrick et al., 2016), was upregulated during both 

biotrophy (43x - 477x, 3-7 DPI) and necrotrophy (300x - 9360x, 10 DPI). This gene was notable as the 

only Bx pathway gene significantly upregulated at 3 DPI. Bx13 was not significantly DE at any time 

point in any host/pathogen combination.
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Figure 2.9: Expression of maize benzoxazinoid pathway genes. Pathway genes have been divided into 

three categories based on their role: production, differentiation, and activation. Y-axis of each 

expression graph represents ratio of gene expression in inoculated tissue vs. mock-inoculated tissue in 

log scale. Orange lines represent expression in St28A-inoculated lines, blue lines represent expression 

in StNY001-inoculated lines. Solid lines indicate expression in ZmHt2+, while dashed lines indicate 

expression in ZmHt2-.

The maize beta-glucosidase genes Glu1 and Glu2, which have similar sequences but different 

substrate specificity (Czjzek et al. 2000) and expression dynamics (Gomez-Anduro et al. 2011), were 

expressed quite differently in response to infection. Glu1 was highly upregulated across all time points.

In contrast, Glu2 was upregulated at 3 DPI in all hosts (16x - 28x) but returned to baseline (non-

inoculated) levels by 5 DPI and was not significantly DE thereafter. Expression of these genes was not 

significantly different (p < 0.01) between the four host/pathogen combinations at any time point.

Our observations were mostly consistent with HPLC profiling of maize benzoxazinoid 

compounds by Ahmad et al. (2011), with the key exception that they observed accumulation of 

HDMBOA by 5 DPI, much earlier than we saw upregulation of Bx10/Bx11/Bx12. However, this was 

observed in plants inoculated at 8 days old, much younger than those used in this study.

Maize diversity and resistance

We used several methods to relate the patterns of gene expression observed in this study to 

chromosomal regions associated with NLB by linkage mapping or GWAS. We found no relationship 
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between whether a gene was DE in response to S. turcica and whether it was in or near an NLB-

associated QTL or SNP. We were, however, able to predict NLB phenotypes from non-inoculated 

expression of NLB-induced genes with fairly high accuracy.

NLB-responsive genes were not any more likely than non-NLB-responsive genes to be located 

within QTL for NLB resistance. Roughly one fifth (20.45%, or 8,044/39,323) of AGPv3 gene models 

were located inside joint linkage QTL for NLB resistance in the maize NAM population calculated by 

Poland et al. (2011). Under a Fisher’s exact test, there was no significant difference between the 

proportion of genes that were DE in genes lying within NLB resistance QTL and those lying outside 

these QTL. A variety of comparisons were made (e.g. proportion in/not in QTL that were 

downregulated during necrotrophy in at least one sample, proportion that were upregulated during 

biotrophy only in the R interaction, etc.), but in no case was a significant difference in the proportion of

pathogen-induced genes observed, even before correcting for multiple tests.

Maize genes that were significantly DE in at least one inoculated tissue (49.8% of genes) did 

tend to be closer to GWAS hits for NLB resistance than genes that were not DE in response to S. 

turcica. DE genes were roughly 460 kb closer to the nearest association (15.10 Mb vs. 15.56 Mb), a 

significant (p = 0.0059) difference by t-test after log-transformation of distances. However, closer 

examination showed that this was mostly a function of gene density, as maize genes in gene-rich 

regions were slightly more likely to be DE in response to NLB infection. The distance to nearest NLB 

association was strongly affected by gene density (Supplementary Fig. S2.2), and after accounting for 

gene density, there was no significant difference between the proximity to NLB associations between 

DE and non-DE genes (p = 0.785).
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Though NLB-inducible genes showed no relationship to NLB resistance loci, expression of 

these genes was a fairly good predictor of NLB phenotype in diverse maize lines. We used ridge 

regression to predict NLB phenotype of lines in the Goodman maize diversity panel from gene 

expression in non-inoculated leaf tissue (Kremling et al. 2017), measuring prediction accuracy (r) by 

10-fold cross-validation (Fig. 2.10). Those maize genes that were significantly upregulated in response 

to StNY001 at 3 DPI in ZmHt2+, but not in ZmHt2- (i.e. those genes characteristic of a resistance 

response), were organized in increasing order of p-value for the test of significant difference between 

inoculated and mock-inoculated expression levels. From the expression of the top 100 NLB-induced 

genes, we could predict NLB phenotype with a median accuracy of r = 0.29, compared with a median r 

of 0.16 when sampling 100 random highly-expressed genes. This difference in accuracy diminished as 

more genes were considered: the expression of 3000 NLB-induced genes could predict NLB 

phenotypes with median r of 0.55, compared to a median r of 0.46 when using 3,000 randomly sampled

genes. This was unsurprising, as larger random samples will tend to have proportionally more overlap 

with the NLB-induced set.
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Figure 2.10: Non-induced expression of maize genes that are induced in response to NLB infection is 

more predictive of NLB phenotype than non-induced expression of maize genes in general. Boxplots 

show accuracies (r) when predicting NLB phenotype from expression of randomly sampled genes (left)

or of NLB-responsive genes (right) in non-inoculated leaf tissue of 282 diverse maize lines. Boxplots 

indicate quartiles of r from 100 bootstraps. Points indicate r values further than 1.5 times the inter-

quartile distance from the median r.
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Candidate Ht2 genes

We used several criteria to identify the most plausible Ht2 candidate among gene models in the 

B73 (AGPv3.31) reference genome. First, the gene model should be within 500 kb of the center of the 

Ht2 fine-mapping region. Second, de novo assembly of the aligned reads should show polymorphism 

between ZmHt2+ and ZmHt2-. Third, the gene model should have a predicted domain/function 

indicating a potential R gene role based on the existing literature. Lastly, the gene model should be 

expressed in planta. Two gene models met all four of these criteria.

The first, GRMZM2G144028, is a predicted protein kinase roughly 300 kb from the center of 

the Ht2 mapping region. It was expressed in inoculated leaf tissue, with a 1.60 – 4.19x higher baseline 

expression level in ZmHt2- than ZmHt2+. The assembled transcript sequences were polymorphic 

between ZmHt2- and ZmHt2+, with the ZmHt2- allele having 100% sequence identity to the B73 

reference allele and homology to OsWAK10d, a rice wall-associated kinase-like cytoplasmic kinase 

(Zhang et al. 2005). Upon infection, it was significantly upregulated in both hosts to a relatively low 

degree (1.06 – 3.52x higher than mock-inoculated, Fig. 2.11a).

The second, GRMZM2G316907, is a predicted LRR-protein kinase gene, also roughly 300 kb 

from the center of the Ht2 fine-mapping region. The assembled transcripts were also polymorphic 

between ZmHt2+ and ZmHt2-, with 5 non-synonymous mutations. Baseline (mock-inoculated) 

expression was significantly higher in ZmHt2+ across all timepoints (4.5 – 25x higher than ZmHt2-). 

Upon inoculation, the gene was significantly induced at host/pathogen/timepoints except for 5 DPI in 

ZmHt2+ (Fig. 2.11b), with more extreme upregulation in ZmHt2- bringing the post-inoculation 

expression levels to a similar point in both hosts.
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Figure 2.11: In planta expression patterns (fold change of expression in inoculated tissue relative to 

mock-inoculated expression) of GRMZM2G144028 (a) and GRMZM2G316907 (b) across different 

host/isolate/timepoint combinations.

Mining the unmapped reads, which could potentially contain sequence from Ht2 that did not 

align to the B73 (AGPv3.31) reference genome, did not produce any usable candidate sequences. De 

novo assembly of unmapped reads from the non-inoculated maize libraries yielded 87,118 unique 

sequences from ZmHt2+ and 154,942 from ZmHt2-. Of the unique ZmHt2+ sequences, 10,171 were 

unique to ZmHt2+. After translating these sequences in all potential reading frames and comparing the 

amino acid sequence to the Pfam hidden Markov models for NBS and LRR domains, we identified 44 

de novo assembled, ZmHt2+ specific sequences containing a putative NBS domain and 51 containing a

putative LRR domain. No sequences contained both a predicted NBS and predicted LRR domain. 

BLASTing these putative NBS/LRR sequences to maize GBS tags that had been genetically mapped 
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yielded none that matched a tag that had been mapped in or near the Ht2 fine-mapping region. 

BLASTing the sequences of the GBS tags used to map Ht2 in the DK888/S11 family to these de novo-

assembled sequences also yielded no hits. Thus, these sequences could potentially contain sequence of 

the Ht2 transcript, but their position in the maize genome remains unknown.

AVRHt2 candidate genes

We similarly attempted to identify one or more AVRHt2 candidate genes using the available 

data. For each of the 241 gene models on an StNY001 scaffold associated with AVRHt2 (Mideros et al. 

2018), we noted its expression in planta, presence/absence in St28A, polymorphism between the two 

isolates, and whether or not it was a predicted NRPS/PKS/SSP encoding gene (Supplementary Table 

S2.5).

Of the twelve predicted StNY001 SSP encoding genes on the AVRHt2-associated scaffolds, 

seven were identical to the St28A gene model and four were predicted only in StNY001 but had 100% 

sequence identity to genomic sequence in St28A, likely attributable to technical issues associated with 

automated gene calling. Only one of the predicted NRPS/PKS/SSP encoding genes was deemed a 

plausible candidate: a predicted SSP encoding gene unique to StNY001 (protein ID 517350). StNY001 

protein ID 517350 on scaffold 116 was unique to StNY001, but not significantly DE in planta.

All other gene models were either not expressed in planta, not polymorphic between the two 

isolates, or not predicted to have a domain or function associated with virulence. A predicted 

NRPS/PKS-like protein encoding gene (StNY001 protein ID 515003, St28A protein ID 174337) was 

not polymorphic between the two isolates. A predicted NRPS encoding gene on StNY001 scaffold 88 

(StNY001 protein ID 607382, St28A protein ID 99181) was polymorphic between the two isolates, but 
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not expressed at any timepoint, including axenic tissue. Thirty-two gene models on an StNY001-

associated scaffold were upregulated in planta and either specific to StNY001 or polymorphic between 

the two isolates, but none of these were predicted PKS/NRPS/SSP genes or contained a predicted 

protein domain otherwise associated with a known virulence factor. These genes of unknown function 

are prime targets for investigation as potential virulence determinants.

Ambiguous mapping and genome structure complicated the search for AVRHt2. While AVRHt1 

mapped neatly to a single marker in the middle of a scaffold, AVRHt2 mapped to seven different small 

StNY001 scaffolds (Mideros et al. 2018). Many of these scaffolds were syntenic to one another, further

complicating the matter. For example, parts of StNY001 scaffold 219 were syntenic to three StNY001 

scaffolds- 232, 245, and 281. Several genetic markers statistically associated with the AVRHt2-

mediated resistance mapped to these syntenic regions, and thus it was unclear which scaffolds were 

truly genetically linked to AVRHt2 and which were falsely associated by multiple alignments of the 

marker.

DISCUSSION

Biotrophy-necrotrophy transition

Gene expression patterns in both host and pathogen were relatively static throughout the biotrophic 

phase of the interaction. The subsequent biotrophy-necrotrophy transition was marked by sudden and 

dramatic changes in gene expression. The major gene classes observed during host response, as defined

by significant enrichment of Pfam domains among genes upregulated during pathogenesis, could be 

divided into three groups: biotrophy-specific, necrotrophy-specific, and observed throughout 

pathogenesis.
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In the pathogen, we did not see clear patterns of different gene classes being strongly 

upregulated at different times, despite the fact that global gene expression changed drastically between 

7 and 10 DPI. Pfam domains that were enriched among upregulated pathogen genes tended to be 

enriched either only in a single combination of host/pathogen/timepoint combination or across all 

combinations, rather than only during the biotrophic or necrotrophic phase as observed for many Pfam 

domains in the host. This was not driven by large differences in the richness of annotation of the two 

genomes: 62.7% of S. turcica gene models had at least one predicted Pfam domain, with an average of 

1.38 predicted domains per gene model, compared to 74.5% of maize gene models with at least one 

predicted domain, with an average of 1.45 predicted domains per gene model.

In the plant, biotrophy-specific gene classes were mostly related to pathogen detection. Several 

domains characteristic of NLR genes were strongly enriched among upregulated host genes exclusively

between 3 and 7 DPI. This observation is consistent with the emergent understanding that plants mount 

a wave of multiple recognition processes in response to infection, with PAMP detection inducing 

expression of NLR proteins (Lai and Eulgem 2018). The upregulation of maize mini-chromosome 

maintenance (MCM) genes during early biotrophy was unexpected, as this gene class is not normally 

associated with the plant defense response. MCM proteins form part of the initiation complex for DNA 

replication (Tye 1999). Though such genes play a role in diseases for which DNA replication is critical 

to pathogenesis, e.g. influenza in humans (Forsburg 2004) and cyst nematode infection in Arabidopsis 

(Huang et al. 2003), there has only been a single noted instance of a plant upregulating an MCM gene 

in response to infection by an oomycete (Wong et al. 2014) and none that we are aware of in response 

to a fungal pathogen. Plant MCM genes have been associated, through mostly unknown mechanisms, 

with salinity tolerance and low nitrogen stress response (Tuteja et al. 2011; Yang et al. 2013), so this 
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upregulation might simply be part of a general stress response. A more adventurous hypothesis is that 

MCM genes play a role in DNA replication for the purpose of extracellular DNA traps. These have so 

far been observed only in root tip exudates (Hawes et al. 2011), but deletion of a single extracellular 

DNAse gene from the maize foliar pathogen Cochliobolus heterostrophus drastically reduced its 

virulence (Park et al. 2019), suggesting that DNA-mediated resistance mechanisms are not limited 

solely to roots.

The genes involved in host response to necrotrophy mostly pertained to chemical warfare. 

Glutathione S-transferases (GSTs) detoxify xenobiotic compounds and have a known role in disease 

resistance in multiple pathosystems (Wisser et al. 2011). Three domains enriched among upregulated 

host genes during necrotrophy suggested a key role for vesicle trafficking: adaptins, a major coat 

protein domain (Boehm and Bonifacino 2001); Sec23/Sec24, the core components of COPII coat 

structures (Fromme et al. 2008); and Arf proteins, which play multiple roles in vesicle formation and 

membrane trafficking (D’Souza-Schorey and Chavrier 2006).

Many Pfam domains were enriched among upregulated host genes, but relatively few among 

downregulated host genes. This suggested that while numerous distinct pathways were induced upon 

infection, the genes and pathways that were downregulated were more general. Only four were 

enriched among at least four host-pathogen-DPI combinations, all at 7 or 10 DPI: chlorophyll A-B 

binding protein (PF00504), photosystem II subunit b (PF01789), CCT motif (PF06203), and CAAD 

domains of cyanobacterial aminoacyl-tRNA synthetase (PF14159), PsbP (PF01789).

Resistant and susceptible interactions
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The differences between the resistant reaction and susceptible reactions are only interpretable in the 

context of the pathogen’s lifestyle phases, with the starkest differences between resistance and 

susceptibility observed early on. At 3 DPI, the genes upregulated by the S hosts were mostly a subset of

the much larger set of genes upregulated by the R host. Furthermore, those genes upregulated by both 

R and S hosts at 3 DPI were more strongly upregulated in the R host than the S host. Very few maize 

genes responded to infection in an opposite manner in R and S interactions (upregulated in ZmHt2+ 

and downregulated in ZmHt2-, or vice versa). By the time that the pathogen had begun its necrotrophic 

phase in the S host/pathogen interactions, it was still arrested in biotrophy in the R interaction. The 

resistant host transcriptome at 10 DPI more closely resembled the S transcriptomes at 7 DPI 

(biotrophy) than the S transcriptomes at 10 DPI (necrotrophy). The R reaction did show some 

hallmarks of necrotrophy, such as the formation of necrotic lesions, a twofold increase in fungal 

biomass, and the enrichment of necrotrophy-associated genes- GSTs, adaptins, etc.

Fungal genome structure

The two S. turcica isolates had similar genomes, leaving open the question of why StNY001 is less 

aggressive than St28A. The difference in aggressiveness was clear: even in the absence of any R gene, 

StNY001 accumulated only about half as much biomass by 10 DPI as St28A did. No QTL mediating 

aggressiveness were discovered in a mapping population derived from StNY001 and St52B, another 

race 23N isolate, but the radial growth QTL colocalized with the AVRHt1 gene (Mideros et al. 2018). 

These results suggest that the absence of a fully functional AVRHt1 gene present on race 1 strains such 

as StNY001 results in slower grown in-vitro and diminished aggressiveness in planta.
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Our results supported the hypothesis of Dong et al. (2015) that gene-sparse regions of fungal 

pathogen genomes are “hotspots” for pathogenesis-related genes. Gene-sparse regions in both S. 

turcica genomes tended to contain genes that were highly upregulated in planta, as well as more 

predicted SSP, NRPS, and PKS genes. However, the dN/dS rate for genes in these regions was not any 

higher than the rate in gene-rich regions. This contradicted a core component of the above hypothesis, 

that pathogenesis-related genes can evolve faster in gene-sparse regions due to a greater rate of 

polymorphisms there.

Benzoxazinoids

Different maize benzoxazinoid compounds have distinct roles in defense against insect pests, with 

some defending more against phloem-feeding insects and others more against leaf-chewing insects 

(Zhou et al. 2018). This invites interesting comparison between maize defense against “parasitic” 

threats– biotrophic fungi and phloem feeding- and defense against “destructive” threats- necrotrophic 

fungi and leaf chewing. We found strong parallels between maize benzoxazinoid-related genes 

expressed during the two pathogen lifestyle phases and their known roles against different types of 

insect pests.

The only Bx gene significantly upregulated at 3 DPI was Bx14, which encodes an O-

methyltransferase that converts DIM2BOA to HDM2BOA. Though the differential effects of 

HDM2BOA and DIM2BOA are not yet known, both of these compounds negatively affect phloem-

feeding insect herbivores, but not chewing herbivores (Handrick et al. 2016). The Bx10/11/12 genes 

were strongly upregulated as pathogenesis went on, suggesting a potential necrotrophy-specific role 

HDMBOA. Many of the genes in the core benzoxazinoid biosynthesis pathway were downregulated 
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over time, though whether this was due to a negative feedback loop as proposed by Ahmad et al. (2011)

or due to inhibition of these genes by the pathogen cannot be determined from these data.

Candidate R/AVR genes

Because Ht2 was mapped to a region of the maize genome containing many protein kinase genes of 

various types, we sought to narrow down the list of candidates using expression data and the RNA 

sequences themselves. Two maize gene models were deemed strong candidate genes for Ht2 via 

multiple criteria. The first, GRMZM2G144028, is a protein kinase roughly 300 kb from the center of 

the Ht2 mapping region, was expressed in leaf tissue and induced by NLB infection in both ZmHt2+ 

and ZmHt2-. It is highly polymorphic between ZmHt2- and ZmHt2+, with the ZmHt2- allele having 

100% sequence identity to the B73 reference allele and homology to OsWAK10d, a rice wall-

associated kinase-like cytoplasmic kinase (Zhang et al. 2005). The second, GRMZM2G316907, is an 

LRR-protein kinase, also roughly 300 kb from the center of the Ht2 fine-mapping region. The 

assembled ZmHt2+ and ZmHt2- transcript sequences were polymorphic, baseline expression was 

higher in ZmHt2+, and the gene was induced by S. turcica infection.

We did not find a promising candidate for AVRHt2. The best candidate was StNY001 protein ID

517350, a predicted SSP unique to StNY001, but this was expressed at a fairly low level, not 

significantly DE in planta (in stark contrast to AVRHt1), and located on a scaffold only loosely 

associated to AVRHt2. One major complication was that AVRHt2 mapped to numerous small scaffolds 

(Mideros et al. 2018), most of which were syntenic to one another. Given this, we believe that AVRHt2 

is located in a repeat-rich, gene-poor region of the StNY001 genome that will be difficult to assemble 

correctly.
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MATERIALS AND METHODS

Host/pathogen lines

Two maize near-isogenic lines, one carrying the Ht2 resistance gene (ZmHt2+) and one lacking Ht2 

(ZmHt2-), were each inoculated with two fungal strains, which either induce a resistance reaction on 

maize carrying the Ht2 resistance gene (S. turcica strain NY001 carrying AVRHt2) or do not induce a 

resistance reaction on such lines (S. turcica strain 28A carrying avrHt2). A summary of expected 

reactions is given in Table 2.1.

S. turcica strains St28A (race 23N, MAT1-1, Caldwell Co., KY, from M. Carson via P. Balint-

Kurti), and StNY001 (race 1, MAT1-1, originally collected in New York by G. Bergstrom) were used. 

Genome sequence of strain 28A (https://genome.jgi.doe.gov/Settu3/Settu3.home.html) was reported 

earlier (Ohm et al., 2012; Condon et al., 2013). Genome sequence of strain NY001 

(https://genome.jgi.doe.gov/Settur3/Settur3.home.html) was generated as part of the current study. 

Unless mentioned otherwise, all strains were grown on lactose casein agar (LCA) under 12 hr 

fluorescent light/12 dark at approximately 22 °C (Xue et al., 2013).

The two maize lines used were near-isogenic lines described by Chung et al. (2010). The two 

lines were isogenic at all locations except in the region around chromosome 8, bin 6 (bin 8.06), at 

which one line (08CF2008_004s) carried an introgression from maize line DK888 containing the Ht2 

resistance gene, while the other (08CF2008_027s) carried an introgression from maize line S11 lacking

the Ht2 resistance gene. These lines were referred to as ZmHt2+ and ZmHt2-.
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Inoculation

Three-week-old maize lines (ZmHt2+ and ZmHt2-) were each inoculated with S. turcica strains NY001

(AVRHt2) and 28A (avrHt2). Prior to inoculation, cultures of S. turcica were grown on LCA for two 

weeks. Spores were dislodged by gently scraping the colony surface with a rubber policeman after 

application of 2 mL sterile deionized water containing 0.02% Tween 20. An aliquot was counted with a 

hemocytometer and spore solutions adjusted to 40,000 spores/mL. A modified airbrush sprayer (Preval)

was used to spray two ml/plant. Mock-inoculated plants were sprayed with a 0.02% Tween 20 solution 

in sterile deionized water. Plants were then placed in a mist chamber overnight. At 3, 5, 7, and 10 days 

post-inoculation (DPI), samples were excised from the leaf into sterilized tubes, frozen in liquid 

nitrogen, and transferred to a -80C freezer.
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RNA sequencing

Total RNA was extracted from frozen samples using TRIzol (Life Technologies) and purified with 

Qiagen RNeasy kit, as directed by the manufacturers. Quantity and quality were verified using a 

Nanodrop and Ribogreen. Samples were delivered to JGI for mRNA-Seq library construction and 

sequencing.

RNA sample prep was performed on the PerkinElmer Sciclone NGS robotic liquid handling 

system using Illumina TruSeq Stranded mRNA HT sample prep kit. The latter utilized poly-A selection 

of mRNA following the protocol outlined by Illumina 

(https://support.illumina.com/sequencing/sequencing_kits/truseq-stranded-mrna.html), and with the 

following conditions: total RNA starting material was 1 ug per sample and 10 PCR cycles were used 

for library amplification.

The prepared libraries were quantified using KAPA Biosystem’s next-generation sequencing 

library qPCR kit and run on a Roche LightCycler 480 real-time PCR instrument. The quantified 

libraries were then multiplexed with other libraries, and the pool of libraries was then prepared for 

sequencing on the Illumina HiSeq sequencing platform utilizing a TruSeq paired-end cluster kit, v4, 

and Illumina’s cBot instrument to generate a clustered flow cell for sequencing. Sequencing of the flow

cell was performed on the Illumina HiSeq 2500 sequencer using HiSeq TruSeq SBS sequencing kits, 

v4, following a 2x100 bp and 2x150 bp indexed recipes for the 300 bp and 4 kbp run, respectively.

Raw fastq file reads were filtered and trimmed using the JGI QC pipeline. In brief, using 

BBDuk, raw reads were evaluated for artifact sequences by kmer matching (kmer=25), allowing 1 

mismatch and detected artifacts were trimmed from the 3' end of the reads. RNA spike-in reads, PhiX 

reads, and reads containing any missing calls (“N” calls) were removed. Quality trimming was 
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performed using the phred trimming method set at Q6. Finally, following trimming, reads under the 

length threshold were removed (minimum length 25 bases or 1/3 of the original read length - whichever

is longer).

Filtered reads from each library were aligned to the combined reference transcriptomes using a 

tool developed at JGI utilizing BWA as the aligner with only unique mapping allowed. If a read 

mapped to more than one location, it was ignored. In-house tool was used to generate the raw gene 

counts. Raw gene counts were split one per reference. Raw gene counts were used to evaluate the level 

of correlation between biological replicates using Pearson's correlation and determine which replicates 

would be used in the DGE analysis.

NY001 DNA preparation

1000 mls of liquid LC medium were inoculated with 106 -107 spores and shaken at 150-200 rpm 

at room temperature for two days.  Mycelium was harvested on Whatman #4 filter paper using a 

Buchner funnel connected to a vacuum. The mycelium pad was peeled off the filter, placed in a 50 ml 

Falcon tube, and stored at -20ºC or directly lyophilized for 25 hrs (cap loose) or until mycelium is dry 

and brittle. Lyophilized mycelia were pulverized with a pre-chilled pestle in a pre-chilled mortar to a 

fine powder.  Mycelial powder (~0.2-0.5g) was suspended in 20ml isolation buffer [150 mM EDTA pH 

8.0, 50 mM Tris, pH 8.0, 1 % (w/v) sarkosyl (n-lauroyl sarcosine), 300 mg/L Protease XI (Proteinase 

K)] in disposable 30ml polypropylene tubes (Sarstedt) and vortexed vigorously for 30-60 sec.  Cell 

debris was pelleted by centrifugation in an SS-34 rotor (5 min, 5000 rpm, 4ºC) and supernatant 

transferred to a clean tube. 20ml isolation buffer was added and centrifugation repeated.  The recovered

supernatant was gently mixed with an equal volume of Tris-saturated phenol and tubes centrifuged (10 
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min, 5000 rpm, 4ºC) to separate phases.  The upper (aqueous) phase was transferred to a clean tube and

mixed with an equal volume of 25:24:1 phenol:chloroform:isoamyl alcohol. Centrifugation and 

recovery of the top aqueous layer was repeated twice. Finally the aqueous layers were mixed with an 

equal volume of 24:1 chloroform:isoamyl alcohol and centrifuged as before. DNA was extracted by 

ethanol precipitation (1/10 vol. of 3M NaOAc plus, 2 vol. of cold absolute ethanol) for 10 min at -20C 

and centrifuged as above. The pellet was transferred to a 1.5 ml tube, washed with 70% ethanol twice, 

centrifuged (5 min, 5K rpm, 4ºC) and air dried. The DNA was dissolved in 2x 200ul TE (65ºC 10-20 

min to dissolve, check frequently, not longer than 30 min), 2 ul RNase A (10ug/ul, Sigma R-6513) was 

added to each tube and incubated at 37ºC for 1 hr. A l.5ul aliquot was run on 0.7% gel to check if the 

RNA is still present. 

NY001 genome sequencing and assembly

Two libraries were made, one with an insert size of 300 bp and the other 4 kbp. For the 300 bp library, 

100 ng of DNA was sheared to 300 bp using the Covaris LE220 and size selected using SPRI beads 

(Beckman Coulter). The fragments were treated with end-repair, A-tailing, and ligation of Illumina 

compatible adapters (IDT, Inc) using the KAPA-Illumina library creation kit (KAPA Biosystems). The 

prepared libraries were quantified, multiplexed, and sequenced on HiSeq 2500 as described in the 

previous section but using 2x150bp indexed recipe.

For the 4 kb library, 5 µg of DNA was sheared using the Covaris g-TUBE™ (Covaris) and gel 

size selected for 4 kb. The sheared DNA was treated with end repair and ligated with biotinylated 

adapters containing loxP. The adapter ligated DNA fragments were circularized via recombination by a 

Cre excision reaction (NEB). The circularized DNA templates were then randomly sheared using the 
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Covaris LE220 (Covaris). The sheared fragments were treated with end repair and A-tailing using the 

KAPA-Illumina library creation kit (KAPA biosystems) followed by immobilization of mate pair 

fragments on strepavidin beads (Invitrogen). Illumina compatible adapters (IDT, Inc) were ligated to 

the mate pair fragments and 8 cycles of PCR was used to enrich for the final library (KAPA 

Biosystems).

Each fastq file was QC filtered for artifact/process contamination and subsequently assembled 

together with AllPathsLG version R49403, (Gnerre et al., 2010), to produce a 93.8 X coverage main 

assembly. Mitochondrial sequence was assembled separately with AllPathsLG version R49403 to 

produce a 90.3X coverage mitochondrial assembly with 2 scaffolds.

The genome was annotated using the JGI Annotation pipeline (Grigoriev et al, NAR 2014). 

Genome assembly and annotation have been deposited in DDBJ/ENA/GenBank under the accession 

number (TO BE PROVIDED UPON PUBLICATION). The NY001 genome is available on the JGI-

DOE MycoCosm portal (Grigoriev et al., 2014; 

https://mycocosm.jgi.doe.gov/Settur3/Settur3.home.html).

Alignment of reads

Reads were aligned to concatenated maize and S. turcica FASTA/GFF files and counted with STAR 

(Dobin 2013). The maize AGPv3.31 B73 reference genome (Schnable et al. 2009) was used, as 

functional annotation of the maize AGPv4 genome (Jiao et al. 2017) was still ongoing. For S. turcica, 

the St28Av2.0 and StNY001v2.0 genomes were sequenced, assembled, and annotated by JGI as 

described above. Transcript counts were then tested for differential expression between inoculated 

tissue and the relevant control library (mock-inoculated maize or axenic S. turcica) using DESeq2 
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(Love et al. 2014). Differential expression was considered significant if p < 0.01 after multiple test 

correction.

GO term enrichment among significantly differentially expressed genes was calculated using 

TopGO using the weight01 algorithm, a combination of the weight and elim algorithms described by 

Alexa et al. (2006). Enriched terms were calculated separately for each timepoint for each 

host/pathogen combination. Enrichment of Pfam domains among up- or downregulated genes was 

tested with a Fisher’s exact test and p-values were adjusted via the Benjamini-Hochberg False 

Discovery Rate (FDR) correction.

Unmapped reads from mock-inoculated maize libraries were de novo assembled using Trinity 

2.2.0 (Grabherr et al. 2011). Each Trinity-assembled transcript was translated into all six reading 

frames using transeq from EMBOSS (Rice et al. 2000). Potential PFAM matches for these six 

translations were obtained using HMMer (Finn et al. 2011). Coverage over the Ht2 fine-mapping 

region in the Ht2+/- lines was calculated using samtools (Li et al. 2009).

Gene-sparse regions

For each S. turcica gene, we counted the number of genes within 25 kb from the beginning and end of 

the transcript. Genes that were less than 25 kb from the end of a scaffold were included. If a gene was 

the last gene on a scaffold, the distance to the end of the scaffold was substituted for the distance to the 

nearest gene in that direction. If a given gene overlapped with another, the distance was taken as 0, 

rather than a negative value. We then examined the distribution of relative expression between mock-

inoculated and inoculated tissue (the log-2 fold change) for groups with a given number of neighboring 

genes in a 50 kb window.

103



As the distribution of log-transformed distance to neighboring gene had high kurtosis, and the 

distribution of the number of neighboring genes had strong negative skew, a Wilcoxon rank-sum test 

was used to test the hypothesis that these values were similarly distributed in predicted SSP or SM 

genes and the rest of the genome. Mean expression changes are given as arithmetic means of the log2-

fold changes, i.e. geometric means of the fold changes themselves.

S. turcica gene models

Gene models were considered common to both S. turcica isolates if the gene models were reciprocal 

best hits (RBHs). Predicted protein models were BLASTed all-vs-all with blastp default settings, and a 

custom Python script was used to find RBHs for which the BLAST E-value in both directions was less 

than 1e-10.

SSP effector genes were predicted using EffectorP (Sperschneider et al. 2016). All gene models 

with a secretion signal predicted by SignalP (Petersen et al. 2011) were evaluated with EffectorP. As a 

control, these predicted SSPs were compared to SSPs predicted by the criteria of Ohm et al. (2012), 

under which a gene was classified if its predicted protein product was fewer than 200 amino acids in 

length, contained a secretion signal as determined by SignalP, and had no transmembrane domain as 

determined by TMHMM v2.0 (http://www.cbs.dtu.dk/services/TMHMM/), unless it appeared in the 

first 40 amino acids. PKS-encoding genes were predicted using antiSMASH web platform, fungal 

version (Weber et al. 2015). NRPS-encoding genes were predicted using the method described in 

Bushley and Turgeon (2010).
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Estimating dN/dS

Rates of dN/dS were estimated between all St28A and StNY001 gene models and the gene models 

from five other pathogenic fungi in the order Pleosporales- Cochliobolus carbonum, Cochliobolus 

heterostrophus, Didymella zeae-maydis, Leptosphaeria maculans, and Stagonospora nodorum. 

Predicted protein sequences were searched all-vs-all using blastp in BLAST+ v2.6.0 on default settings

(Camacho et al. 2009). Orthogroups were predicted with OrthoMCL (Li et al. 2003) using an inflation 

cutoff of 4, percent-value cutoff of 1e-5 and, and pi cutoff of 80. Sequences from orthogroups for 

which there were no putative paralogs (i.e. at most one gene model from each species) were extracted 

with a custom Python script and aligned with MAFFT v7.312 (Katoh and Standley 2013). Multiple 

codon alignments were made with Pal2Nal v14 (Suyama et al. 2006), and rates of dN and dS were 

estimated with the method of Yang and Nielsen (2000) using PAML v4.9 (Yang 2007).

Diversity of maize gene expression (282 TWAS)

The Goodman-Buckler maize diversity panel, consisting of 282 lines from various subpopulations, has 

been evaluated for NLB resistance (Wisser et al. 2011), and gene expression has been quantified in 

multiple tissue types for most lines by 3’ RNA-seq (Kremling et al. 2017). Using ridge regression and 

10-fold cross-validation, we predicted NLB phenotypes from the expression of NLB-responsive genes, 

as well as from the expression of randomly sampled sets of genes as a baseline.

Transformed transcript counts from non-inoculated tissue of the middle of leaf 3 (L3mid) and mature 

adult leaves at daytime (LMAD) were taken from Kremling et al. (2018). Best linear unbiased 

predictions (BLUPs) for NLB resistance in the field were obtained from Judith Kolkman (personal 

communication). We then tested for significant associations between gene expression in L3mid and 
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NLB phenotype. To determine an appropriate p < 0.05 cutoff, we performed 1000 bootstrap iterations, 

in which we randomized phenotypes and found the most significantly associated gene by t-test. The 

empirical p-value cutoff was afterwards set at p = 1.4e-6 for L3mid.
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Supplementary Material

Supplementary Table S2.1: Ten most significantly differentially expressed S. turcica genes at each 

combination of host (R: Ht2+, S: Ht2-), pathogen isolate (NY001: AVRHt2, 28A: avrHt2), and 

timepoint (DPI: days post-inoculation), organized by predicted Pfam protein domain(s).

Plant Isolate DPI Protein ID
Base mean
expression

log2 
Fold 
Change p Description

R NY001 3 243127 1240 13.58 2.04E-166 Aspartic peptidase
S NY001 3 243127 1240 13.35 1.58E-162 Aspartic peptidase
R NY001 10 506629 46 7.74 4.07E-260 Aspartic peptidase
S NY001 7 506629 46 7.33 7.86E-246 Aspartic peptidase
S NY001 10 506629 46 7.03 4.33E-245 Aspartic peptidase
R NY001 3 170288 324 7.57 1.15E-169 Chitin-binding, domain 3
R NY001 5 170288 324 8.08 3.00E-301 Chitin-binding, domain 3
R NY001 7 170288 324 8.16 0.00E+00 Chitin-binding, domain 3
R NY001 10 170288 324 7.93 0.00E+00 Chitin-binding, domain 3
S NY001 3 170288 324 7.83 9.31E-197 Chitin-binding, domain 3
S NY001 5 170288 324 8.62 0.00E+00 Chitin-binding, domain 3
S NY001 7 170288 324 8.41 0.00E+00 Chitin-binding, domain 3
S NY001 10 170288 324 7.08 2.44E-272 Chitin-binding, domain 3
R NY001 10 538563 52 6.39 6.04E-242 Galactosyl transferase
S NY001 10 538563 52 5.48 5.42E-215 Galactosyl transferase
R NY001 3 436826 3079 13.33 2.18E-218 Haem peroxidase
R NY001 5 436826 3079 13.91 9.54E-244 Haem peroxidase
R NY001 7 436826 3079 13.78 1.03E-239 Haem peroxidase
S NY001 3 436826 3079 13.77 4.00E-236 Haem peroxidase
S NY001 5 436826 3079 14.36 1.19E-260 Haem peroxidase
R 28A 7 172060 245 -2.81 1.78E-150 LysM domain, Glycine zipper 2TM domain
R 28A 10 172060 245 -3.43 0.00E+00 LysM domain, Glycine zipper 2TM domain
S 28A 7 172060 245 -2.90 7.12E-176 LysM domain, Glycine zipper 2TM domain
S 28A 10 172060 245 -3.46 0.00E+00 LysM domain, Glycine zipper 2TM domain
R NY001 7 523400 225 8.67 5.91E-258 Methyltransferase type 12
R NY001 10 523400 225 9.38 0.00E+00 Methyltransferase type 12
S NY001 5 523400 225 8.99 3.18E-283 Methyltransferase type 12
S NY001 7 523400 225 9.31 0.00E+00 Methyltransferase type 12
S NY001 10 523400 225 8.54 2.98E-268 Methyltransferase type 12
R 28A 3 19500 329 8.88 2.77E-213 Multicopper oxidase, type 1/2/3
R 28A 5 19500 329 8.80 6.00E-234 Multicopper oxidase, type 1/2/3
R 28A 7 19500 329 7.92 2.39E-188 Multicopper oxidase, type 1/2/3
S 28A 3 19500 329 8.84 9.06E-213 Multicopper oxidase, type 1/2/3
S 28A 5 19500 329 8.59 2.42E-217 Multicopper oxidase, type 1/2/3
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S 28A 7 19500 329 8.09 4.25E-199 Multicopper oxidase, type 1/2/3
R NY001 7 448170 138 8.99 1.57E-250 Multicopper oxidase, type 1/2/3
R NY001 10 448170 138 8.70 1.26E-241 Multicopper oxidase, type 1/2/3
S NY001 3 448170 138 9.47 5.50E-195 Multicopper oxidase, type 1/2/3
S NY001 5 448170 138 8.93 1.67E-249 Multicopper oxidase, type 1/2/3
S NY001 7 448170 138 8.87 9.01E-261 Multicopper oxidase, type 1/2/3
R 28A 3 185131 3366 7.82 7.11E-177 Peptidase S10, serine carboxypeptidase
R 28A 5 185131 3366 8.05 3.77E-190 Peptidase S10, serine carboxypeptidase
R 28A 7 185131 3366 7.64 2.37E-171 Peptidase S10, serine carboxypeptidase
S 28A 3 185131 3366 7.53 1.63E-163 Peptidase S10, serine carboxypeptidase
S 28A 5 185131 3366 7.93 4.61E-184 Peptidase S10, serine carboxypeptidase
S 28A 7 185131 3366 7.80 6.96E-179 Peptidase S10, serine carboxypeptidase
S NY001 10 539128 42 7.95 4.11E-215 Peptidase S28
R NY001 3 599170 1794 12.60 1.96E-278 Protein of unknown function DUF3328
R NY001 5 599170 1794 13.55 0.00E+00 Protein of unknown function DUF3328
R NY001 7 599170 1794 13.36 0.00E+00 Protein of unknown function DUF3328
R NY001 10 599170 1794 13.78 0.00E+00 Protein of unknown function DUF3328
S NY001 3 599170 1794 12.30 3.00E-268 Protein of unknown function DUF3328
S NY001 5 599170 1794 14.14 0.00E+00 Protein of unknown function DUF3328
S NY001 7 599170 1794 13.91 0.00E+00 Protein of unknown function DUF3328
S NY001 10 599170 1794 13.16 0.00E+00 Protein of unknown function DUF3328
S NY001 7 389997 70 8.09 1.36E-237 Protein of unknown function DUF3455
S 28A 10 1409328 101 -7.76 9.64E-239 Ubiquitin 3 binding protein But2, C-terminal
R 28A 10 87828 76 3.69 0.00E+00
S 28A 10 87828 76 3.69 0.00E+00
R 28A 3 87999 545 6.75 9.51E-185
R 28A 5 87999 545 6.50 4.96E-190
R 28A 7 87999 545 6.14 7.86E-171
S 28A 3 87999 545 6.58 1.14E-174
S 28A 5 87999 545 6.45 5.01E-183
S 28A 7 87999 545 6.20 7.12E-176
R 28A 10 90147 686 -11.36 0.00E+00
S 28A 10 90147 686 -11.68 0.00E+00
R 28A 7 91593 126 -4.59 8.29E-157
R 28A 10 91593 126 -4.12 0.00E+00
S 28A 7 91593 126 -4.66 6.86E-188
S 28A 10 91593 126 -3.87 1.31E-292
R 28A 3 93458 1564 9.86 2.09E-166
R 28A 5 93458 1564 11.05 1.40E-220
R 28A 7 93458 1564 11.37 6.98E-234
S 28A 3 93458 1564 9.52 1.25E-153
S 28A 5 93458 1564 11.26 2.09E-228
S 28A 7 93458 1564 11.78 7.70E-252
R 28A 10 94576 115 -6.20 0.00E+00
S 28A 10 94576 115 -5.88 0.00E+00
R 28A 10 99782 133 -5.95 3.02E-268
S 28A 10 99782 133 -5.84 4.45E-267

118



R 28A 3 105298 6928 15.15 5.43E-168
R 28A 5 105298 6928 14.64 3.67E-157
S 28A 3 105298 6928 14.73 1.07E-158
S 28A 5 105298 6928 15.07 2.01E-166
R 28A 3 135655 973 7.53 8.80E-179
R 28A 5 135655 973 7.71 2.65E-198
R 28A 7 135655 973 7.22 4.93E-174
S 28A 3 135655 973 7.24 6.96E-164
S 28A 5 135655 973 7.58 7.52E-190
S 28A 7 135655 973 7.26 1.13E-176
R 28A 3 136414 8995 11.73 0.00E+00
R 28A 5 136414 8995 11.55 0.00E+00
R 28A 7 136414 8995 10.85 0.00E+00
S 28A 3 136414 8995 11.40 0.00E+00
S 28A 5 136414 8995 11.62 0.00E+00
S 28A 7 136414 8995 11.01 0.00E+00
R 28A 10 156179 74 -4.66 0.00E+00
S 28A 10 156179 74 -5.04 0.00E+00
R 28A 3 158705 9750 16.86 1.02E-171
R 28A 5 158705 9750 16.50 1.17E-164
S 28A 3 158705 9750 16.47 9.77E-164
S 28A 5 158705 9750 16.62 4.23E-167
R 28A 10 163718 164 -4.40 0.00E+00
S 28A 10 163718 164 -4.24 0.00E+00
R 28A 5 164809 359 -4.38 1.76E-165
R 28A 7 164809 359 -4.46 3.05E-192
R 28A 10 164809 359 -4.39 1.18E-247
S 28A 7 164809 359 -4.21 2.34E-191
S 28A 10 166088 146 -4.91 1.32E-266
R 28A 3 168886 6963 12.25 4.03E-234
R 28A 5 168886 6963 12.20 2.35E-233
R 28A 7 168886 6963 11.81 1.53E-218
S 28A 3 168886 6963 11.90 6.87E-221
S 28A 5 168886 6963 12.11 2.21E-229
S 28A 7 168886 6963 11.78 1.50E-217
R 28A 10 178296 148 -9.71 8.02E-251
S NY001 5 425953 103 6.75 6.79E-248
S NY001 7 425953 103 6.31 1.76E-236
R NY001 3 439242 2397 14.63 3.02E-210
R NY001 5 439242 2397 14.83 2.86E-220
R NY001 7 439242 2397 14.58 2.18E-213
S NY001 3 439242 2397 13.97 1.47E-191
R NY001 3 444690 1920 15.16 2.41E-231
R NY001 5 444690 1920 15.58 1.07E-251
R NY001 7 444690 1920 15.39 2.46E-246
R NY001 10 444690 1920 15.40 4.18E-247
S NY001 3 444690 1920 14.52 3.73E-212
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S NY001 5 444690 1920 16.00 9.55E-267
S NY001 7 444690 1920 15.44 2.39E-248
S NY001 10 444690 1920 14.18 1.53E-209
R NY001 3 492699 5692 16.53 4.78E-279
R NY001 5 492699 5692 17.24 0.00E+00
R NY001 7 492699 5692 17.12 1.92E-304
R NY001 10 492699 5692 17.28 0.00E+00
S NY001 3 492699 5692 16.21 2.87E-269
S NY001 5 492699 5692 17.66 0.00E+00
S NY001 7 492699 5692 17.16 0.00E+00
S NY001 10 492699 5692 16.01 2.61E-266
S NY001 10 498810 42 6.77 6.89E-257
R NY001 3 521286 518 8.25 7.83E-197
R NY001 5 521286 518 8.55 7.80E-264
R NY001 7 521286 518 8.47 9.90E-271
R NY001 10 521286 518 8.27 5.87E-261
S NY001 3 521286 518 8.41 2.82E-217
S NY001 5 521286 518 8.79 7.40E-294
S NY001 7 521286 518 8.52 1.67E-280
R NY001 3 522672 1743 10.87 5.44E-183
R NY001 5 522672 1743 12.14 5.23E-248
R NY001 7 522672 1743 11.92 1.21E-240
R NY001 10 522672 1743 12.50 3.01E-265
S NY001 5 522672 1743 12.35 8.36E-259
S NY001 10 522672 1743 11.35 1.09E-218
R NY001 3 523229 2481 14.28 4.80E-200
R NY001 5 523229 2481 14.82 4.57E-220
S NY001 3 523229 2481 13.88 1.25E-189
R NY001 5 593519 179 9.31 8.07E-224
S 28A 5 1224365 2844 12.66 6.85E-165
R 28A 3 1302593 738 12.19 3.57E-150

S 28A 3 1302593 738 12.06 5.18E-147
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Supplementary Table S2.2: Predicted Pfam domains that were significantly enriched (p < 0.01 by 

Fisher’s exact test, after Bonferroni correction) among S. turcica gene models upregulated or 

downregulated in planta.

Enriched
among Pfam ID Isolate Plant DPI

#
proteins

# DE
(expected)

# DE
(observed) p Description

Upreg PF00067 28A R 3 134 13.5 29 3.17E-03 Cytochrome P450
Upreg PF00067 28A R 7 134 26.6 44 8.34E-03 Cytochrome P450
Upreg PF00067 28A S 3 134 14.0 30 3.03E-03 Cytochrome P450
Upreg PF00067 28A S 7 134 28.0 51 8.30E-04 Cytochrome P450
Upreg PF00067 NY001 R 3 132 6.8 23 2.75E-05 Cytochrome P450
Upreg PF00067 NY001 R 5 132 10.0 26 4.20E-05 Cytochrome P450
Upreg PF00067 NY001 R 7 132 12.1 29 5.47E-05 Cytochrome P450
Upreg PF00067 NY001 R 10 132 15.3 33 1.19E-04 Cytochrome P450
Upreg PF00067 NY001 S 3 132 6.9 20 4.22E-04 Cytochrome P450
Upreg PF00067 NY001 S 7 132 13.9 27 6.61E-03 Cytochrome P450
Upreg PF00067 NY001 S 10 132 17.8 34 1.34E-03 Cytochrome P450
Upreg PF00106 28A R 5 126 20.7 39 5.89E-03 short chain dehydrogenase
Upreg PF00106 28A R 7 126 25.0 46 1.81E-03 short chain dehydrogenase
Upreg PF00106 28A S 7 126 26.3 49 1.22E-03 short chain dehydrogenase
Upreg PF00106 NY001 R 10 128 14.9 31 4.85E-03 short chain dehydrogenase
Upreg PF00106 NY001 S 7 128 13.5 29 7.71E-03 short chain dehydrogenase
Upreg PF00106 NY001 S 10 128 17.3 43 4.27E-06 short chain dehydrogenase
Upreg PF00107 28A R 3 59 5.9 18 4.21E-03 Zinc-binding dehydrogenase
Upreg PF00107 28A R 7 59 11.7 31 5.14E-05 Zinc-binding dehydrogenase
Upreg PF00107 28A R 10 59 15.8 36 7.85E-05 Zinc-binding dehydrogenase
Upreg PF00107 28A S 3 59 6.2 18 6.03E-03 Zinc-binding dehydrogenase
Upreg PF00107 28A S 7 59 12.3 30 3.33E-04 Zinc-binding dehydrogenase
Upreg PF00107 NY001 R 3 59 3.0 12 5.62E-03 Zinc-binding dehydrogenase
Upreg PF00107 NY001 R 5 59 4.5 16 7.27E-04 Zinc-binding dehydrogenase
Upreg PF00107 NY001 R 7 59 5.4 22 4.27E-06 Zinc-binding dehydrogenase
Upreg PF00107 NY001 R 10 59 6.9 24 7.13E-06 Zinc-binding dehydrogenase
Upreg PF00107 NY001 S 5 59 5.6 16 7.81E-03 Zinc-binding dehydrogenase
Upreg PF00107 NY001 S 7 59 6.2 21 7.39E-05 Zinc-binding dehydrogenase
Upreg PF00107 NY001 S 10 59 8.0 25 2.75E-05 Zinc-binding dehydrogenase
Upreg PF00153 28A S 10 39 10.7 23 9.98E-03 Mitochondrial carrier protein
Upreg PF00248 NY001 S 10 27 3.7 12 2.95E-03 Aldo/keto reductase family
Upreg PF00324 NY001 R 5 13 1.0 7 3.89E-03 Amino acid permease
Upreg PF00400 NY001 R 10 104 12.1 0 1.66E-03 WD domain, G-beta repeat
Upreg PF00400 NY001 S 10 104 14.1 0 2.25E-04 WD domain, G-beta repeat
Upreg PF00561 NY001 R 10 7 0.8 6 3.83E-03 alpha/beta hydrolase fold
Upreg PF00775 NY001 R 5 4 0.3 4 6.61E-03 Dioxygenase
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Upreg PF01532 28A S 5 10 1.7 8 7.31E-03 Glycosyl hydrolase family 47

Upreg PF01557 NY001 S 5 9 0.9 6 3.96E-03
Fumarylacetoacetate (FAA) 
hydrolase family

Upreg PF02133 28A R 10 9 2.4 9 3.03E-03 Permease for cytosine/purines
Upreg PF02133 28A S 10 9 2.5 9 3.29E-03 Permease for cytosine/purines
Upreg PF02133 NY001 S 10 9 1.2 7 5.02E-03 Permease for cytosine/purines

Upreg PF02668 28A R 3 16 1.6 8 5.89E-03

Taurine catabolism 
dioxygenase TauD, TfdA 
family

Upreg PF02668 NY001 R 3 15 0.8 7 2.25E-04

Taurine catabolism 
dioxygenase TauD, TfdA 
family

Upreg PF02668 NY001 R 5 15 1.1 7 4.35E-04

Taurine catabolism 
dioxygenase TauD, TfdA 
family

Upreg PF02668 NY001 S 3 15 0.8 7 1.22E-04

Taurine catabolism 
dioxygenase TauD, TfdA 
family

Upreg PF07690 28A R 5 203 33.3 57 1.59E-03 Major Facilitator Superfamily
Upreg PF07690 28A R 7 203 40.2 77 1.04E-06 Major Facilitator Superfamily
Upreg PF07690 28A R 10 203 54.4 88 1.53E-04 Major Facilitator Superfamily
Upreg PF07690 28A S 3 203 21.2 45 3.33E-04 Major Facilitator Superfamily
Upreg PF07690 28A S 5 203 34.8 58 2.07E-03 Major Facilitator Superfamily
Upreg PF07690 28A S 7 203 42.4 84 1.70E-07 Major Facilitator Superfamily
Upreg PF07690 28A S 10 203 55.6 84 2.86E-03 Major Facilitator Superfamily
Upreg PF07690 NY001 R 5 200 15.2 35 8.00E-05 Major Facilitator Superfamily
Upreg PF07690 NY001 R 7 200 18.3 38 4.30E-04 Major Facilitator Superfamily
Upreg PF07690 NY001 R 10 200 23.2 48 2.75E-05 Major Facilitator Superfamily
Upreg PF07690 NY001 S 5 200 19.0 40 2.25E-04 Major Facilitator Superfamily
Upreg PF07690 NY001 S 7 200 21.1 43 2.57E-04 Major Facilitator Superfamily
Upreg PF07690 NY001 S 10 200 27.0 56 7.13E-06 Major Facilitator Superfamily

Upreg PF08240 28A R 7 62 12.3 29 1.18E-03
Alcohol dehydrogenase 
GroES-like domain

Upreg PF08240 28A R 10 62 16.6 32 9.93E-03
Alcohol dehydrogenase 
GroES-like domain

Upreg PF08240 28A S 7 62 13.0 29 2.57E-03
Alcohol dehydrogenase 
GroES-like domain

Upreg PF08240 NY001 R 7 63 5.8 20 5.47E-05
Alcohol dehydrogenase 
GroES-like domain

Upreg PF08240 NY001 R 10 63 7.3 25 7.13E-06
Alcohol dehydrogenase 
GroES-like domain

Upreg PF08240 NY001 S 7 63 6.6 19 1.92E-03
Alcohol dehydrogenase 
GroES-like domain

Upreg PF08240 NY001 S 10 63 8.5 25 3.70E-05
Alcohol dehydrogenase 
GroES-like domain

Down PF00072 28A R 5 25 4.4 17 6.05E-05
Response regulator receiver 
domain

Downreg PF00072 28A R 7 25 4.9 19 1.43E-05
Response regulator receiver 
domain

Downreg PF00072 28A S 5 25 4.2 17 6.05E-05 Response regulator receiver 
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domain

Downreg PF00072 28A S 7 25 5.1 18 6.05E-05
Response regulator receiver 
domain

Downreg PF00072 NY001 S 5 25 2.8 12 6.14E-03
Response regulator receiver 
domain

Downreg PF00227 NY001 R 7 14 1.0 10 2.66E-05 Proteasome subunit
Downreg PF00227 NY001 S 7 14 2.0 10 3.02E-03 Proteasome subunit
Downreg PF00394 NY001 R 3 8 0.1 4 3.02E-03 Multicopper oxidase

Downreg PF00512 28A R 5 21 3.7 15 1.18E-04
His Kinase A (phospho-
acceptor) domain

Downreg PF00512 28A R 7 21 4.1 15 3.34E-04
His Kinase A (phospho-
acceptor) domain

Downreg PF00512 28A S 5 21 3.5 14 3.76E-04
His Kinase A (phospho-
acceptor) domain

Downreg PF00512 28A S 7 21 4.3 14 3.33E-03
His Kinase A (phospho-
acceptor) domain

Downreg PF02518 28A R 5 25 4.4 17 6.05E-05
Histidine kinase-, DNA gyrase 
B-, and HSP90-like ATPase

Downreg PF02518 28A R 7 25 4.9 17 1.90E-04
Histidine kinase-, DNA gyrase 
B-, and HSP90-like ATPase

Downreg PF02518 28A S 5 25 4.2 16 1.87E-04
Histidine kinase-, DNA gyrase 
B-, and HSP90-like ATPase

Downreg PF02518 28A S 7 25 5.1 16 1.70E-03
Histidine kinase-, DNA gyrase 
B-, and HSP90-like ATPase

Downreg PF07731 NY001 R 3 9 0.1 4 3.02E-03 Multicopper oxidase
Downreg PF07732 NY001 R 3 9 0.1 4 3.02E-03 Multicopper oxidase
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Supplementary Table S2.3: Ten most significantly differentially expressed maize genes at each 

combination of host (R: Ht2+, S: Ht2-), pathogen isolate (NY001: AVRHt2, 28A: avrHt2), and 

timepoint (DPI: days post-inoculation), organized by predicted Pfam protein domain(s).

Plant Isolate DPI Gene model
Base mean
expression

log2 
Fold 
Change p Description

R 28A 10 GRMZM5G899851 12430 6.53 1.6E-124 2Fe-2S iron-sulfur cluster binding domain

S 28A 7 GRMZM5G899851 12430 4.36 1.6E-54 2Fe-2S iron-sulfur cluster binding domain
R 28A 3 GRMZM2G099467 9066 4.18 5.61E-28 2OG-Fe(II) oxygenase superfamily
R 28A 7 GRMZM2G413774 1473 5.94 9.11E-46 ABC transporter
R NY001 10 GRMZM2G413774 1473 5.69 3.03E-44 ABC transporter
S 28A 7 GRMZM2G413774 1473 6.65 8.85E-54 ABC transporter
S NY001 7 GRMZM2G413774 1473 6.19 3.34E-46 ABC transporter
S NY001 10 GRMZM2G413774 1473 6.98 2.25E-65 ABC transporter
R 28A 10 GRMZM2G391815 4848 8.04 3.64E-122 ABC transporter
S 28A 10 GRMZM2G391815 4848 7.66 7.16E-108 ABC transporter
S NY001 10 GRMZM2G391815 4848 7.46 3.67E-102 ABC transporter
R 28A 10 GRMZM2G391815 4848 8.04 3.64E-122 ABC transporter
S 28A 10 GRMZM2G391815 4848 7.66 7.16E-108 ABC transporter
S NY001 10 GRMZM2G391815 4848 7.46 3.67E-102 ABC transporter
R 28A 3 GRMZM2G415529 3401 5.41 5.15E-51 ABC transporter
R 28A 7 GRMZM2G415529 3401 5.6 1.23E-53 ABC transporter
R 28A 10 GRMZM2G415529 3401 8.02 7.46E-117 ABC transporter
R NY001 3 GRMZM2G415529 3401 5.88 9.03E-61 ABC transporter
R NY001 7 GRMZM2G415529 3401 6.1 5.43E-64 ABC transporter
R NY001 10 GRMZM2G415529 3401 6.67 9.47E-80 ABC transporter
S 28A 3 GRMZM2G415529 3401 6.67 2.04E-72 ABC transporter
S 28A 5 GRMZM2G415529 3401 5.97 6.88E-57 ABC transporter
S 28A 7 GRMZM2G415529 3401 6.28 1.34E-69 ABC transporter
S 28A 10 GRMZM2G415529 3401 6.55 9.09E-81 ABC transporter
S NY001 3 GRMZM2G415529 3401 5.87 1.16E-55 ABC transporter
S NY001 5 GRMZM2G415529 3401 6.09 2.94E-59 ABC transporter
S NY001 7 GRMZM2G415529 3401 5.64 1.39E-55 ABC transporter
S NY001 10 GRMZM2G415529 3401 6.7 5.95E-84 ABC transporter
R 28A 7 GRMZM2G020631 13838 6.95 9.11E-46 Aldo/keto reductase family
S 28A 7 GRMZM2G020631 13838 6.68 3.67E-43 Aldo/keto reductase family
S 28A 10 GRMZM2G020631 13838 8.86 1.76E-77 Aldo/keto reductase family
R NY001 3 GRMZM2G155058 443 3.78 5.26E-35 Calcineurin-like phosphoesterase
S 28A 3 GRMZM2G456997 1138 5.18 4.12E-33 Cysteine-rich secretory protein family
R 28A 10 GRMZM2G170016 1389 7.99 5.21E-112 Cytochrome b5-like
S 28A 10 GRMZM2G170016 1389 6.96 4.17E-84 Cytochrome b5-like
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S NY001 10 GRMZM2G170016 1389 6.44 1.35E-71 Cytochrome b5-like
R 28A 3 GRMZM2G118809 1241 5.99 5.78E-60 Cytochrome P450
R 28A 5 GRMZM2G118809 1241 5.58 9.13E-48 Cytochrome P450
R 28A 7 GRMZM2G118809 1241 5.5 4.95E-57 Cytochrome P450
R NY001 3 GRMZM2G118809 1241 6.21 1.11E-64 Cytochrome P450
R NY001 5 GRMZM2G118809 1241 6.44 1.65E-64 Cytochrome P450
R NY001 7 GRMZM2G118809 1241 5.89 6.52E-66 Cytochrome P450
R NY001 10 GRMZM2G118809 1241 5.77 2.2E-72 Cytochrome P450
S 28A 3 GRMZM2G118809 1241 8.09 3.28E-69 Cytochrome P450
S 28A 5 GRMZM2G118809 1241 6.39 2.34E-62 Cytochrome P450
S 28A 7 GRMZM2G118809 1241 5.44 1.76E-58 Cytochrome P450
S NY001 3 GRMZM2G118809 1241 7.67 1.45E-61 Cytochrome P450
S NY001 5 GRMZM2G118809 1241 6.64 1.55E-67 Cytochrome P450
S NY001 7 GRMZM2G118809 1241 5.29 2.33E-55 Cytochrome P450
R 28A 10 GRMZM2G161472 3523 7.87 2.96E-113 Cytochrome P450
R NY001 10 GRMZM2G161472 3523 4.78 1.11E-40 Cytochrome P450
S NY001 10 GRMZM2G161472 3523 6.63 1.52E-80 Cytochrome P450
R NY001 3 GRMZM2G078667 1739 3.95 3.42E-35 Dirigent-like protein
S 28A 3 GRMZM2G078667 1739 3.96 1.15E-34 Dirigent-like protein
S NY001 3 GRMZM2G078667 1739 3.58 6.88E-28 Dirigent-like protein
R 28A 3 GRMZM2G181227 3506 5.47 2.3E-42 Enoyl-CoA hydratase/isomerase
R 28A 5 GRMZM2G181227 3506 4.82 9.68E-31 Enoyl-CoA hydratase/isomerase
R NY001 3 GRMZM2G181227 3506 5.95 1.09E-50 Enoyl-CoA hydratase/isomerase
R NY001 5 GRMZM2G181227 3506 6.09 9.86E-50 Enoyl-CoA hydratase/isomerase
R NY001 7 GRMZM2G181227 3506 5.75 6.52E-48 Enoyl-CoA hydratase/isomerase
R NY001 10 GRMZM2G181227 3506 5.78 4.38E-49 Enoyl-CoA hydratase/isomerase
S 28A 3 GRMZM2G181227 3506 5.89 1.46E-49 Enoyl-CoA hydratase/isomerase
S 28A 5 GRMZM2G181227 3506 5.62 1.3E-44 Enoyl-CoA hydratase/isomerase
S 28A 7 GRMZM2G181227 3506 5.64 4.23E-46 Enoyl-CoA hydratase/isomerase
S NY001 3 GRMZM2G181227 3506 4.81 3.5E-32 Enoyl-CoA hydratase/isomerase
S NY001 5 GRMZM2G181227 3506 6 4.13E-51 Enoyl-CoA hydratase/isomerase
S NY001 7 GRMZM2G181227 3506 5.08 4.38E-37 Enoyl-CoA hydratase/isomerase
R 28A 5 GRMZM2G169240 588 7.56 2.42E-25 Fatty acid desaturase, DUF3474
R NY001 5 GRMZM2G169240 588 8.59 2.77E-33 Fatty acid desaturase, DUF3474
R NY001 7 GRMZM2G169240 588 8.26 2.42E-33 Fatty acid desaturase, DUF3474
S NY001 3 GRMZM2G169240 588 8.5 3.92E-26 Fatty acid desaturase, DUF3474
R 28A 5 GRMZM2G169261 856 6.95 3.82E-30 Fatty acid desaturase, DUF3474
R NY001 5 GRMZM2G169261 856 7.96 7.98E-40 Fatty acid desaturase, DUF3474
R NY001 7 GRMZM2G169261 856 9.63 4.49E-36 Fatty acid desaturase, DUF3474
S NY001 7 GRMZM2G169261 856 9.31 4.38E-37 Fatty acid desaturase, DUF3474

R NY001 3 GRMZM2G462243 1759 5.82 3.73E-35
Glutathione S-transferase, C-terminal 
domain

R NY001 10 GRMZM2G462243 1759 5.96 8.3E-41
Glutathione S-transferase, C-terminal 
domain

R 28A 7 GRMZM2G176307 5777 6.39 1.04E-44
Glyceraldehyde 3-phosphate 
dehydrogenase

R NY001 7 GRMZM2G374827 682 3.87 1.64E-39
Glyceraldehyde 3-phosphate 
dehydrogenase
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R NY001 10 GRMZM2G374827 682 3.86 7.45E-41
Glyceraldehyde 3-phosphate 
dehydrogenase

S 28A 3 GRMZM2G374827 682 3.77 6.74E-37
Glyceraldehyde 3-phosphate 
dehydrogenase

S NY001 3 GRMZM2G374827 682 3.2 4.35E-26
Glyceraldehyde 3-phosphate 
dehydrogenase

S NY001 5 GRMZM2G374827 682 3.47 1.28E-30
Glyceraldehyde 3-phosphate 
dehydrogenase

S NY001 5 GRMZM2G175480 531 7.96 4.71E-29 Helix-loop-helix DNA-binding domain
S 28A 5 GRMZM2G084779 4892 5.66 5.52E-26 K+ potassium transporter
S NY001 5 GRMZM2G084779 4892 5.95 9.35E-29 K+ potassium transporter
S 28A 10 GRMZM2G041959 1859 6.44 1.76E-82 Kelch motif

S NY001 10 GRMZM2G091672 223 5.63 3.76E-64 Leucine Rich Repeat, NB-ARC domain
S 28A 5 GRMZM2G132995 443 5.58 2.49E-28 MatE
S NY001 7 GRMZM2G132995 443 5.36 1.3E-34 MatE
S NY001 10 GRMZM2G420988 1796 9.09 4.94E-64 Mitochondrial carrier protein

R 28A 10 GRMZM2G124175 9321 6.37 4.11E-133
Aldehyde dehydrogenase, Molybdopterin-
binding domain

S 28A 7 GRMZM2G124175 9321 3.96 1.36E-50
Aldehyde dehydrogenase, Molybdopterin-
binding domain

S 28A 10 GRMZM2G124175 9321 5.24 1.2E-89
Aldehyde dehydrogenase, Molybdopterin-
binding domain

S 28A 10 GRMZM2G179981 8589 3.47 4.53E-82
NAD dependent epimerase/dehydratase 
family

R 28A 3 GRMZM2G162098 455 4.15 4.31E-32 NB-ARC domain
R NY001 3 GRMZM2G162098 455 4.93 6.56E-46 NB-ARC domain
R NY001 7 GRMZM2G162098 455 4.09 4.76E-38 NB-ARC domain
R NY001 10 GRMZM2G162098 455 4.62 3.13E-53 NB-ARC domain
S 28A 3 GRMZM2G162098 455 5.06 4.27E-36 NB-ARC domain
S 28A 7 GRMZM2G162098 455 4.55 1.04E-46 NB-ARC domain
S 28A 5 GRMZM2G169584 59 4.91 1.81E-27 NB-ARC domain
S NY001 5 GRMZM2G169584 59 5.17 1.72E-30 NB-ARC domain
R 28A 5 GRMZM2G475014 207 4.93 2.03E-31 No apical meristem (NAM) protein
R NY001 5 GRMZM2G475014 207 4.95 6.37E-32 No apical meristem (NAM) protein
R NY001 7 GRMZM2G475014 207 3.71 3.77E-35 No apical meristem (NAM) protein
S 28A 5 GRMZM2G475014 207 5.81 4.23E-41 No apical meristem (NAM) protein
S 28A 7 GRMZM2G475014 207 4.59 1.23E-52 No apical meristem (NAM) protein
S NY001 5 GRMZM2G475014 207 5.92 1.19E-42 No apical meristem (NAM) protein
S NY001 7 GRMZM2G475014 207 4.02 1.01E-39 No apical meristem (NAM) protein
S 28A 3 GRMZM2G467893 788 4.45 2.22E-33 Nodulin-like
S 28A 5 GRMZM2G467893 788 4.41 2.83E-32 Nodulin-like
S NY001 3 GRMZM2G467893 788 4.18 8.84E-29 Nodulin-like
S NY001 5 GRMZM2G467893 788 4.28 1.97E-30 Nodulin-like
S 28A 3 GRMZM2G107228 128 5.69 1.54E-30 Peroxidase
S NY001 3 GRMZM2G107228 128 5.4 7.67E-27 Peroxidase
R 28A 5 GRMZM2G322819 55 19.88 1.46E-31 Prolyl oligopeptidase, N-term.
R NY001 5 GRMZM2G322819 55 19.93 5.64E-32 Prolyl oligopeptidase, N-term.
R NY001 7 GRMZM2G322819 55 22.37 7.32E-41 Prolyl oligopeptidase, N-term.
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S 28A 3 GRMZM2G322819 55 20.31 3.37E-33 Prolyl oligopeptidase, N-term.
S NY001 3 GRMZM2G322819 55 19.51 2.92E-29 Prolyl oligopeptidase, N-term.
R 28A 3 GRMZM2G432796 1564 1.6 3.4E-28 Protein kinase domain

S NY001 5 GRMZM2G303909 328 3.7 1.79E-27
Protein kinase domain, D-mannose 
binding lectin

R 28A 3 GRMZM2G443829 326 4.01 1.1E-26
Protein kinase domain, Legume lectin 
domain

S 28A 10 GRMZM2G087233 6376 3.77 3.79E-83 Ribosomal protein L16p/L10e
R 28A 3 GRMZM2G452896 1838 2.88 4.68E-28 Serine carboxypeptidase S28
R NY001 3 GRMZM2G452896 1838 3.19 1.39E-34 Serine carboxypeptidase S28

R NY001 7 AC214360.3_FG001 3018 5.48 1.98E-35
Terpene synthase, N-term/metal binding 
domain

R NY001 5 GRMZM2G028306 3943 10.46 4.83E-39
Terpene synthase, N-term/metal binding 
domain

R NY001 10 GRMZM2G028306 3943 8.32 8.3E-41
Terpene synthase, N-term/metal binding 
domain

S NY001 10 GRMZM2G028306 3943 11.46 1.69E-69
Terpene synthase, N-term/metal binding 
domain

R 28A 3 GRMZM2G127087 8039 11.64 2.93E-28
Terpene synthase, N-term/metal binding 
domain

R 28A 5 GRMZM2G127087 8039 11.23 5.82E-25
Terpene synthase, N-term/metal binding 
domain

R NY001 5 GRMZM2G127087 8039 12.92 1.96E-33
Terpene synthase, N-term/metal binding 
domain

S NY001 3 GRMZM2G127087 8039 12.03 3.92E-26
Terpene synthase, N-term/metal binding 
domain

S NY001 10 GRMZM2G127087 8039 12.31 1.44E-63
Terpene synthase, N-term/metal binding 
domain

R 28A 3 GRMZM2G315726 1654 2.69 8.87E-28 TLC domain
R NY001 3 GRMZM2G315726 1654 2.98 2.26E-34 TLC domain

R 28A 5 AC233910.1_FG003 122 6.38 2.46E-25 Ubiquitin family, Ribosomal L40e family

R 28A 7 AC233910.1_FG003 122 5.32 1.28E-39 Ubiquitin family, Ribosomal L40e family

R 28A 7 GRMZM2G334336 975 5.35 8.66E-41
UDP-glucoronosyl and UDP-glucosyl 
transferase

R 28A 10 GRMZM2G334336 975 9.17 7.66E-115
UDP-glucoronosyl and UDP-glucosyl 
transferase

S 28A 5 GRMZM2G334336 975 5.68 1.72E-31
UDP-glucoronosyl and UDP-glucosyl 
transferase

S NY001 7 GRMZM2G334336 975 5.77 7.62E-44
UDP-glucoronosyl and UDP-glucosyl 
transferase

R 28A 5 GRMZM2G100898 240 36.92 1.38E-32
XS domain, XH domain, XS zinc finger 
domain

R 28A 7 GRMZM2G100898 240 -40.86 1.93E-45
XS domain, XH domain, XS zinc finger 
domain

R NY001 5 GRMZM2G100898 240 38.29 3.24E-37
XS domain, XH domain, XS zinc finger 
domain

R 28A 10 GRMZM2G090980 11170 5.77 3.27E-119
Zinc-binding/Alcohol dehydrogenase 
GroES-like domain
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S 28A 10 GRMZM2G090980 11170 4.89 4.78E-85
Zinc-binding/Alcohol dehydrogenase 
GroES-like domain

S NY001 10 GRMZM2G090980 11170 4.31 7.56E-66
Zinc-binding/Alcohol dehydrogenase 
GroES-like domain

R 28A 10 AC214635.3_FG006 2388 8.19 5.01E-117
S 28A 10 AC214635.3_FG006 2388 6.92 9.89E-85
S 28A 10 GRMZM2G041959 1859 6.44 1.76E-82
R 28A 5 GRMZM2G069932 24 40.3 1.09E-65
R 28A 10 GRMZM2G069932 24 50.05 4.31E-106
R NY001 3 GRMZM2G069932 24 43.21 8.51E-76
R NY001 5 GRMZM2G069932 24 41.63 3.7E-71
R NY001 10 GRMZM2G069932 24 47.39 1.1E-93
R 28A 7 GRMZM2G119322 322 5.19 6.85E-45
S 28A 7 GRMZM2G119322 322 5.19 1.56E-46
S NY001 7 GRMZM2G119322 322 4.51 1.21E-34
R 28A 7 GRMZM2G468111 697 7.07 3.33E-44
S 28A 5 GRMZM2G468111 697 6 1.31E-29
S NY001 7 GRMZM2G468111 697 6.78 3.99E-42
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Supplementary Table S2.4: Predicted PKS/NRPS encoding genes in S. turcica isolates.

28A NY001

Type Isolates
Protein

ID Scaff. Start End
Protein

ID Scaff. Start End
Hybrid PKS-NRPS Both 179218 2 3545435 3557663 444637 254 4684 16290
Hybrid PKS-NRPS Both 47468 20 512645 525329 470037 177 27754 38780
NRPS 28A only 1256853 10 1948473 1948775 NA NA NA NA
NRPS 28A only 51661 10 1948761 1949171 NA NA NA NA
NRPS Both 29755 1 62373 76298 520000 167 11986 25806
NRPS Both 85461 1 1419528 1425397 227272 45 153043 159310
NRPS Both 178272 1 2520964 2524379 540897 92 49474 52889
NRPS Both 18754 1 3193173 3196632 564795 20 22677 26349
NRPS Both 163244 2 2696855 2699504 420336 8 415105 417341
NRPS Both 179218 2 3545435 3557663 444637 254 4684 16290
NRPS Both 179280 3 415602 438043 543322 1 1574976 1597178
NRPS Both 155102 4 334954 338493 468908 144 36354 40064
NRPS Both 1405196 4 2520629 2522879 518907 141 11943 15271
NRPS Both 141443 6 2077032 2093337 223375 43 191738 208293
NRPS Both 173669 7 481091 484939 543585 2 738191 742039
NRPS Both 97841 7 1919348 1924485 548269 39 32405 38877
NRPS Both 99043 8 1007319 1010673 441236 140 56532 59886
NRPS Both 99181 8 1650732 1669532 607382 88 23386 42378
NRPS Both 166785 10 1041597 1045485 503841 17 156653 160606
NRPS Both 36641 10 1928291 1934680 609376 211 26676 33594
NRPS Both 65284 10 1949289 1953251 442625 169 2095 4983
NRPS Both 158798 11 720196 723991 210853 4 543150 545239
NRPS Both 54477 14 603410 612100 550530 77 399 9098
NRPS Both 47468 20 512645 525329 470037 177 27754 38780
NRPS Both 169407 22 160579 163406 528260 32 173144 175215
NRPS NY001 only NA NA NA NA 516685 108 34202 36374
NRPS NY001 only NA NA NA NA 441768 150 23694 25761
NRPS NY001 only NA NA NA NA 383654 169 190 1974
PKS/NRPS-like protein Both 174337 8 1634382 1640616 515003 88 52266 58792
Type I Iterative PKS Both 152662 1 1458156 1464486 485490 45 114497 119909
Type I Iterative PKS Both 30113 1 1465118 1472667 538873 45 106316 113865
Type I Iterative PKS Both 171983 3 1687808 1696182 600137 1 325270 333669
Type I Iterative PKS Both 154973 3 3100977 3109360 544590 6 549753 558136
Type I Iterative PKS Both 21011 3 3452451 3459694 552175 122 78362 85605
Type I Iterative PKS Both 92491 4 326299 334342 552647 144 27722 35765
Type I Iterative PKS Both 33341 4 2377943 2385329 552297 127 64975 72361
Type I Iterative PKS Both 93994 5 1540110 1548361 434732 69 27969 36220
Type I Iterative PKS Both 22370 6 70512 78088 552764 149 44436 52012
Type I Iterative PKS Both 181366 7 1402178 1410045 547291 27 203067 210854
Type I Iterative PKS Both 100517 9 162363 169917 455599 23 232189 239789
Type I Iterative PKS Both 158064 9 1708392 1717224 606828 74 35754 44831
Type I Iterative PKS Both 174734 9 1825519 1834360 574724 51 24790 33631

129



Type I Iterative PKS Both 158567 10 1718469 1726126 520547 181 34964 41359
Type I Iterative PKS Both 103204 11 397371 404288 443168 185 24254 31171
Type I Iterative PKS Both 175651 12 567066 574223 440951 136 37201 43724
Type I Iterative PKS Both 38126 14 428942 434480 493842 133 61201 66911
Type I Iterative PKS Both 184365 18 254127 262657 542253 161 13725 21985
Type I Iterative PKS Both 161582 22 425520 432714 553208 178 5738 12932
Type I Iterative PKS Both 161586 22 472674 480118 443749 206 704 8148
Type I Iterative PKS Both 161587 22 481619 489481 495967 206 18409 25726
Type I Iterative PKS Both 1323930 29 9229 17122 553774 240 4691 12584
Type I Iterative PKS Both 40268 29 77574 84157 541777 130 29331 35995
Type I Iterative PKS NY001 only NA NA NA NA 553509 205 3671 11546
Type I Iterative PKS NY001 only NA NA NA NA 553510 205 12367 20065
Type I Modular PKS Both 39554 20 415948 424697 562383 168 10985 19734
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Supplementary Table S2.5: All StNY001 gene models located on scaffolds associated with AVRHt2, 

their homolog in St28A (if one exists), expression summary, and SSP/NRPS/PKS prediction status.

StNY001 St28A
Protein

ID Scaffold
Protein

ID Scaffold Polymorphic Expression Effector Notes
514223 81 NA NA NA Upreg. in StNY001
550711 81 35476 8 True Upreg. in both
436153 81 24034 8 False Upreg. in both
436251 81 99303 8 False Downreg. in both
436228 81 181802 8 False Downreg. in both
514227 81 166034 8 True Downreg. in both
550717 81 24029 8 True Downreg. in both

514233 81 NA NA NA
Downreg. In 
StNY001 SSP 100% ident.

531053 81 NA NA NA Not DE 100% ident.
436269 81 98296 8 False Not DE
312248 81 NA NA NA Not DE 100% ident.
312247 81 NA NA NA Not DE SSP 100% ident.
607114 81 181799 8 False Upreg. in both
531056 81 44505 8 False Upreg. in both
514244 81 166030 8 True Upreg. in both
531058 81 35466 8 False Downreg. in both
436182 81 99416 8 False Downreg. in both
597655 81 1407017 8 True Downreg. in both
514246 81 NA NA NA Not DE 100% ident.
514247 81 143325 8 False Not DE
464712 81 174305 8 True

514253 81 NA NA NA Not DE

100% ident., 
polymorphisms 
upstream

531066 81 1386030 8 True Downreg. in both
514257 81 NA NA NA Downreg. in both
514258 81 99171 8 True Downreg. in both
514259 81 NA NA NA Not DE 100% ident.
550731 81 44495 8 False Downreg. in both
312556 81 166021 8 False Downreg. in both
514266 81 157529 8 True Upreg. in both
312884 81 24011 8 False Upreg. in both
514271 81 143304 8 False Upreg. in both
540521 81 174297 8 False
531074 81 143299 8 True Not DE
436166 81 NA NA NA Not DE 100% ident.
514274 81 143296 8 True Upreg. in both
490154 81 123527 8 True
312936 81 NA NA NA Not DE 100% ident.
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514277 81 174292 8 True Not DE
514278 81 44486 8 False Downreg. in both
514279 81 166016 8 False Not DE
531080 81 NA NA NA Upreg. in StNY001 100% ident.
313034 81 174289 8 False Upreg. in both
514286 81 166015 8 True Downreg. in both
313216 81 NA NA NA Upreg. in StNY001 100% ident.
540529 81 98593 8 True Downreg. in both
436181 81 98988 8 False Upreg. in both
579857 81 98756 8 False Upreg. in both
436255 81 166012 8 False Downreg. in both
514297 81 44481 8 False Downreg. in both
531086 81 35438 8 False Upreg. in both SSP
313638 81 166011 8 True Upreg. in both
313644 81 1212335 8 False Upreg. in both
436210 81 166010 8 True Upreg. in both
436223 81 143261 8 False Upreg. in both
313669 81 1415037 8 True Upreg. in both
436252 81 166008 8 False Downreg. in both
490194 81 23991 8 False Downreg. in both
514305 81 143255 8 False Not DE
436157 81 166007 8 False Downreg. in both
436235 81 NA NA NA Not DE 100% ident.
579909 81 157501 8 True Not DE
437032 88 98395 8 False Upreg. in both
551020 88 123651 8 True
514997 88 98484 8 False Downreg. in both
607382 88 99181 8 True Not DE NRPS
321030 88 166061 8 False Downreg. in both
515001 88 174338 8 True Not DE

515003 88 174337 8 False Not DE

PKS/
NRPS-like 
protein

515008 88 1373915 8 True Upreg. in both
437053 88 1431171 8 False Downreg. in both
551028 88 174334 8 False Downreg. in both
540766 88 24058 8 False Downreg. in both
321170 88 166054 8 False
551031 88 166053 8 False Downreg. in both
531338 88 NA NA NA Not DE 100% ident.
540769 88 98544 8 True Downreg. in both
515021 88 44521 8 False Downreg. in both
437067 88 143379 8 False Upreg. in both
321419 88 NA NA NA Not DE
580658 88 174325 8 False Downreg. in both
321478 88 NA NA NA Not DE 100% ident.
437002 88 166048 8 True Downreg. in both
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321579 88 99634 8 False Upreg. in both
515034 88 1213516 8 False Upreg. in both

515036 88 NA NA NA
Downreg. In 
StNY001 100% ident.

437056 88 1373890 8 True Upreg. in both
531348 88 35486 8 False Downreg. in both
321591 88 98745 8 False Upreg. in both
515039 88 166039 8 True Upreg. in both
515041 88 64978 8 True Upreg. in both
436999 88 181806 8 False Upreg. in both
436989 88 98996 8 False Downreg. in both
531354 88 NA NA NA Not DE
436988 88 1213210 8 True Not DE
322751 88 24038 8 False Upreg. in both
551049 88 24037 8 False
438703 106 166067 8 False Upreg. in both
438701 106 98284 8 False Upreg. in both
551669 106 157589 8 True Upreg. in both
598429 106 24076 8 False Upreg. in both
31693 106 174347 8 False Not DE

492242 106 99312 8 False Not DE
541259 106 157592 8 True Not DE
531925 106 98919 8 False
531926 106 NA NA NA Not DE 100% ident.
31742 106 1407072 8 True Upreg. in both

516517 106 1214254 8 True Not DE
516519 106 1214257 8 False Not DE
551675 106 98552 8 True Downreg. in both
31786 106 NA NA NA Not DE 100% ident.

531930 106 98394 8 False Downreg. in both
516527 106 143439 8 True Upreg. in both
516528 106 44545 8 False Not DE
551679 106 157599 8 False Downreg. in both
438719 106 98879 8 False Upreg. in both
531935 106 24087 8 False Upreg. in both
589504 106 123686 8 False
598444 106 1386096 8 True Downreg. in both
438717 106 157605 8 True Downreg. in both
516547 106 185136 101 False Not DE
516554 106 NA NA NA Not DE
32102 106 99074 8 False Not DE

551685 106 98510 8 False
551686 106 166083 8 False Upreg. in both

516567 106 NA NA NA
Downreg. In 
StNY001 100% ident.

551687 106 24094 8 False Upreg. in both
516570 106 166085 8 True Upreg. in both
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551689 106 44555 8 False Downreg. in both
438746 106 166088 8 False Downreg. in both
32338 106 1214577 8 False Not DE

531947 106 99152 8 False Downreg. in both
32417 106 1373971 8 False Downreg. in both
46272 116 98807 8 True Not DE

439732 116 166116 8 False Upreg. in both
551990 116 143521 8 False Downreg. in both
517331 116 166115 8 False Downreg. in both
589729 116 166114 8 False Downreg. in both
532193 116 44572 8 False Downreg. in both
46569 116 166112 8 False Downreg. in both SSP

439679 116 157637 8 False Downreg. in both
439688 116 166110 8 True Downreg. in both
551997 116 174378 8 False Downreg. in both
541508 116 166106 8 True Upreg. in both
492995 116 123734 8 False
439682 116 157628 8 False Downreg. in both
552002 116 98753 8 True Downreg. in both
439694 116 99403 8 False Upreg. in both
46787 116 35553 8 False Upreg. in both SSP

517350 116 NA NA NA Not DE SSP
439710 116 24117 8 False SSP
46809 116 35551 8 True Not DE

552007 116 166100 8 False Upreg. in both
517354 116 24114 8 False Upreg. in both
598695 116 99548 8 True Not DE
46856 116 98875 8 False Upreg. in both

439741 116 174368 8 False Downreg. in both
439701 116 157617 8 True Not DE
517357 116 166097 8 True Not DE
517358 116 NA NA NA Not DE
493030 116 98685 8 False Upreg. in both
532212 116 35543 8 True Not DE
532213 116 35542 8 False Not DE
409242 116 35541 8 True Not DE
608217 116 24104 8 False Upreg. in both
517375 116 35540 8 True Not DE
517376 116 35539 8 True Not DE
532216 116 24103 8 False Not DE
599080 137 NA NA NA Upreg. in StNY001 100% ident.
518706 137 33410 5 True Upreg. in both

71115 137 94846 5 True Upreg. in both 100% ident.
590081 137 1405207 5 False Upreg. in both
518715 137 164559 5 False Upreg. in both SSP
541881 137 169072 19 True Not DE
441004 137 169073 19 False Downreg. in both
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71389 137 28307 19 False Upreg. in both
71408 137 NA NA NA Not DE 100% ident.

441030 137 37204 12 True Not DE
518774 137 NA NA NA Not DE SSP 100% ident.
71541 137 NA NA NA Not DE 100% ident.

560104 137 1441393 12 True Not DE
71558 137 NA NA NA Downreg. in both

560110 137 182963 12 True Not DE
519568 156 24141 8 False Upreg. in both
552897 156 123763 8 False Downreg. in both
552898 156 99372 8 False Downreg. in both
519571 156 35573 8 True Not DE
519577 156 166120 8 True Upreg. in both
519579 156 NA NA NA Not DE 100% ident.
442098 156 99451 8 False
519583 156 123774 8 False Downreg. in both
542189 156 35577 8 False Not DE
469476 156 166124 8 True Downreg. in both
87908 156 98578 8 False Downreg. in both

519594 156 98254 8 False Downreg. in both
519596 156 166125 8 True Upreg. in both
519595 156 NA NA NA Not DE 100% ident.
552907 156 123785 8 False Downreg. in both
87927 156 143554 8 False Upreg. in both

442058 156 24154 8 False Upreg. in both
553455 198 166132 8 False Upreg. in both
118706 198 99395 8 True Not DE
414282 198 98256 8 True Upreg. in both
533444 198 24167 8 False Upreg. in both
443588 198 174401 8 False Upreg. in both
521065 198 166133 8 True Upreg. in both
553461 198 99250 8 False Not DE
118759 198 35592 8 False Upreg. in both
443577 198 98410 8 False Upreg. in both
590717 198 123805 8 False Upreg. in both

521071 198 NA NA NA Not DE SSP

100% identity in 
coding region, 
downstream 
polymorphism

444082 219 1390250 27 True Not DE
470764 219 152159 27 True
140283 219 185070 27 False Not DE
533553 219 40207 27 True Not DE
521495 219 40206 27 False Downreg. in both
565643 219 1452275 27 True Not DE
394240 219 NA NA NA Not DE
521501 219 NA NA NA Not DE
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444081 219 NA NA NA Not DE
404769 219 NA NA NA Not DE 100% ident.
533599 232 39771 21 True Not DE

533600 232 NA NA NA Not DE

Potential SSP? 
Secretion signal by 
3/5 Nns

522177 245 NA NA NA Not DE
566873 245 112015 47 True Downreg. in both
444525 245 161957 68 True Not DE
566884 245 55644 93 False Not DE
496334 245 71967 9 True Not DE

388723 245 NA NA NA Not DE

Potential SSP? 
Secretion signal by 
3/5 Nns

533651 245 NA NA NA Not DE
444911 281 NA NA NA Not DE
444910 281 NA NA NA Not DE
444905 281 70449 25 True Not DE
444909 281 NA NA NA Not DE
522697 281 NA NA NA Not DE
444908 281 NA NA NA Not DE
599989 281 NA NA NA Not DE
554084 337 61335 8 True Upreg. in both
523198 337 166135 8 True Upreg. in both
189245 337 166136 8 False Upreg. in both
471237 337 98269 8 False Upreg. in both
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Supplementary Figure S2.1: S. turcica gene models in gene-sparse regions do not tend to have higher 

estimated rates of dN/dS in St28A (left) or StNY001 (right). All gene models were binned by distance 

to nearest proximal gene in both the 3’ and 5’ directions. Color indicates geometric mean of 

log10(dN/dS) for all genes in that distance bin relative to predicted orthologs in related pathogenic 

fungi in Pleosporales.
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Supplementary Figure S2.2: Distance from a given maize gene model to the nearest GWAS hit for 

NLB resistance is strongly influenced by the gene density in the region surrounding that gene model. 

Each point signifies a single maize gene model.
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CHAPTER 3

DEEP LEARNING FOR AERIAL DETECTION OF NORTHERN LEAF BLIGHT

CHAPTER 3.1: IMAGE SET FOR DEEP LEARNING3

ABSTRACT

Objectives

Automated detection and quantification of plant diseases would enable more rapid gains in plant 

breeding and faster scouting of farmers’ fields. However, it is difficult for a simple algorithm to 

distinguish between the target disease and other sources of dead plant tissue in a typical field, 

especially given the many variations in lighting and orientation. Training a machine learning algorithm 

to accurately detect a given disease from images taken in the field requires a massive amount of 

human-generated training data.

Data description

This data set contains images of maize (Zea mays L.) leaves taken in three ways: by a hand-held 

camera, with a camera mounted on a boom, and with a camera mounted on a small unmanned aircraft 

system (sUAS, commonly known as a drone). Lesions of northern leaf blight (NLB), a common foliar 

disease of maize, were annotated in each image by one of two human experts. The three data sets 

together contain 18,222 images annotated with 105,705 NLB lesions, making this the largest publicly 

available image set annotated for a single plant disease.

3 Wiesner-Hanks T, Stewart EL, Kaczmar N, DeChant D, Wu H, Nelson RJ, Lipson H, Gore MA. 2018. Image set for 
deep learning: field images of maize annotated with disease symptoms. BMC Research Notes 11:440.
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OBJECTIVE

Globally, plant diseases are an enormous burden to farmers. Northern leaf blight (NLB), a foliar disease

of maize, has become increasingly severe in the US (1). Screening a large area for early symptoms is 

time-consuming, and there is high intra- and inter-rater variation in NLB severity estimates (2).

Automated, field-based detection of plant disease symptoms would be valuable for plant 

breeders and growers. However, this is complicated by the “noisy” nature of field imagery. There may 

be many sources of dead tissue, along with obscured symptoms. This requires a computer vision 

approach that is specific to the target disease and insensitive to such variations.

Convolutional neural networks (CNNs) are a class of machine learning models that can be 

trained to accurately detect objects in images, making them the current standard for object recognition 

(3). CNNs must be trained on a large number of classified or annotated images, but unlike recognizable

everyday objects, plant disease symptoms require expertise and experience to identify.

Very few large, expert-curated image sets of plant disease exist (4). PlantVillage contains over 

50,000 images of numerous crops and diseases (5). However, these were taken with detached leaves on 

a plain background, and CNNs trained on these did not perform well on field images (6). Other image 

sets are much smaller (7), or not curated by experts (8).

We collected image data from several platforms and angles to help develop a system for real-

time monitoring and phenotyping of NLB in maize fields using drones equipped with CNNs. The 

resulting data set exceeds 18,000 maize plant images annotated with more than 100,000 NLB lesions, 

which is the largest collection of images for any one plant disease. These annotated images are 

expected to be valuable for furthering the development of novel computer vision and deep learning 

approaches in agriculture.
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DATA DESCRIPTION

The data consists of three image sets and their accompanying annotations. All images were taken in 

field trials of maize that had been inoculated with Setosphaeria turcica, the causal agent of NLB. All 

trials were planted at Cornell University’s Musgrave Research Farm in Aurora, NY 

(https://cuaes.cals.cornell.edu/farms/musgrave-research-farm/). The trials consisted of maize hybrids 

from The Genomes to Fields Initiative (https://www.genomes2fields.org/resources/), arranged in two-

row plots with a length of 5.64 m and inter-row spacing of 0.76 m. There was a 0.76 m alley at the end 

of each plot. The trials were rainfed and managed with conventional maize cultivation practices. Plants 

were inoculated at the V5–V6 stage with both a liquid suspension of S. turcica (isolate NY001) spores 

and sorghum grains colonized by the fungus as previously described (9). The first image set, the 

“handheld set,” was taken by hand in summer 2015. This image set was described and analyzed 

previously (9), but is included here to make all images available in a single repository. The second, the 

“boom set,” was taken by mounting the camera on a 5 m boom in summer 2015. This boom held the 

remotely triggered camera above the canopy with nadir view. The third, the “drone set,” was taken by 

mounting the camera on a DJI Matrice 600 sUAS in summer 2017. The drone was flown at an altitude 

of 6 m and a velocity of 1 m/s, and images were captured with nadir view every 2 s.

For the handheld and boom sets, images were checked manually to ensure the image was in 

focus and otherwise adequate. For the drone set, images with a low total length of edges (as reported by

canny edge detection) were filtered out, in order to remove blurry images. Images were then discarded 

during annotation if they were out of focus or otherwise unacceptable.
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In each image, lesions were annotated by one of two human experts, as denoted in the 

annotation files. Annotators drew a line down the main axis of each lesion visible in the image, 

stretching down the entire length of the lesion. If a lesion appeared bent or curved from the camera’s 

perspective, two or more intersecting annotation lines were drawn to form an angle or arc as needed. In 

the handheld set, this was done with the markup tools in Bisque (9). In the boom and drone sets, these 

steps were done using a custom ImageJ macro (Table 3.1, lesionCount_v2.1_dataNote.txt). Endpoint 

coordinates of each annotation line are recorded in the three.csv data files, each corresponding to a 

single data set. Images with 0 values for all four endpoint coordinates had no visible lesions.

The number of images and annotation lines are as follows:

• Handheld: 1787 images, 7669 annotations.

• Boom: 8766 images, 55,919 annotations.

• Drone: 7669 images, 42,117 annotations.

Some boom images are 1/4 slices of larger images, as a wider field of view made it difficult to annotate

the entire image at once. These are denoted with suffixes, e.g., ‘img01_00.jpg’, ‘img01_01.jpg.’

Label Name of data/file set File type (extension) Data repository and 

identifer

Images images_handheld .tar.gz (folder with.jpg 

files)

https://osf.io/arwmy/

images_boom .tar.gz (folder with.jpg 

files)

https://osf.io/er3zb/
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images_drone .tar.gz (folder with.jpg 

files)

https://osf.io/vfawp/

Annotations annotations_handheld .csv https://osf.io/7ue84/

annotations_boom .csv https://osf.io/u6mfb/

annotations_drone .csv https://osf.io/25agh/

ImageJ macro lesionCount_v2.1_data_

Note

.txt https://osf.io/av7dj/

Table 3.1: Overview of data files/data sets.

LIMITATIONS

• Lesion axis annotations do not indicate width or margins.

• There is no way to indicate confidence of annotations. Some lesions are easily visible, while 

others are partially occluded, out of the main focal plane, in heavy shade, or washed out by 

bright sunlight.

• Even experts may have a hard time distinguishing between NLB and similar-looking diseases, 

such as Stewart’s wilt or anthracnose leaf blight, from a distance. While no similar-looking 

diseases were noted as we phenotyped fields on foot, this does not preclude the possibility of 

such false positives.
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• All photographs were taken in a single field in central New York State. This limits the 

generalizability of the data, as symptoms of the same disease in other regions may present or 

develop differently.
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CHAPTER 3.2: MILLIMETER-LEVEL PLANT DISEASE DETECTION FROM AERIAL 

PHOTOGRAPHS VIA DEEP LEARNING AND CROWDSOURCED DATA4

ABSTRACT

Computer vision models that can recognize plant diseases in the field would be valuable tools for 

disease management and resistance breeding. Generating enough data to train these models is difficult, 

however, since only trained experts can accurately identify symptoms. In this study, we describe and 

implement a two-step method for generating a large amount of high-quality training data with minimal 

expert input. First, experts located symptoms of northern leaf blight (NLB) in field images taken by 

unmanned aerial vehicles (UAVs), annotating them quickly at low resolution. Second, non-experts 

were asked to draw polygons around the identified diseased areas, producing high-resolution ground 

truths that were automatically screened based on agreement between multiple workers. We then used 

these crowdsourced data to train a convolutional neural network (CNN), feeding the output into a 

conditional random field (CRF) to segment images into lesion and non-lesion regions with accuracy of 

0.9979 and F1 score of 0.7153. The CNN trained on crowdsourced data showed greatly improved 

spatial resolution compared to one trained on expert-generated data, despite using only one fifth as 

many expert annotations. The final model was able to accurately delineate lesions down to the 

millimeter level from UAV-collected images, the finest scale of aerial plant disease detection achieved 

to date. The two-step approach to generating training data is a promising method to streamline deep 

learning approaches for plant disease detection, and for complex plant phenotyping tasks in general.

4 Wiesner-Hanks T, Wu H, Stewart E, DeChant C, Kaczmar N, Lipson H, Gore MA, and Nelson RJ. 2019. Millimeter-
level plant disease detection from aerial photographs via deep learning and crowdsourced data. Frontiers in Plant 
Science. doi:10.3389/fpls.2019.01550.
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INTRODUCTION

Machine learning models for object detection require a large amount of training data, typically 

generated by humans. When the average person can identify the feature or object in question, such as a 

face, a stop sign, or an apple, these data can be generated through crowdsourcing, as was done for large

datasets such as ImageNet (Deng et al. 2009) and Microsoft COCO (Lin et al. 2015). Even if the 

feature is unfamiliar to most people, crowdsourcing may be viable if the task is simple and the feature 

obvious. In a recent study on best practices for crowdsourcing plant feature annotation, Zhao et al. 

(2018) found that, with minimal instruction, anonymous online workers could accurately identify maize

male flowers in images where they were clearly visible. Accurate identification of many plant features 

requires a certain level of expertise, however. If only a handful of human experts are qualified and 

willing to generate training data, the process takes much longer than if tasks could be reliably 

performed by hundreds or thousands of non-experts. This places a burden on those experts and creates 

a bottleneck in the model training process.

This dilemma has been addressed by many groups, particularly in the field of human medicine, 

wherein a model trained on low-quality data could endanger lives, but experts’ time is limited and 

expensive. Different circumstances allow for distinct solutions to the problem. For some tasks, such as 

interpreting X-ray radiographs, large amounts of training data are already generated and archived under

normal protocols, and these data can be used as is without need for additional annotations (Gale et al. 

2017). When untrained workers perform moderately well, but not quite on par with experts, their 

annotations can be used to train a “first pass” model that identifies regions of interest (Park et al. 2017),

or one that performs only those tasks that non-experts can do well (Heim et al. 2018). Researchers 

might have access to a community of knowledgeable, enthusiastic amateurs, such as those who enjoy 
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identification of birds (Van Horn et al. 2015) or aircraft (Maji et al. 2013). If nothing but expert 

annotations will suffice, data sharing lessens the burden on any one group. Multiple groups have used 

the International Skin Imaging Collaboration imageset of human skin diseases (Codella et al. 2015; 

Haenssle et al. 2018) or the PlantVillage imageset of plant diseases (Mohanty et al. 2016, Ghosal et al. 

2018, Picon et al. 2018).

Identifying plant diseases via machine learning presents two challenges that limit the feasibility 

of the above solutions. First, qualified expert judgment is needed at some point in the annotation 

process, since there are often many causes for tissue death (e.g., disease, abiotic stress, physical 

damage, natural senescence) and the average person has no experience distinguishing among these. 

Second, there are hundreds of economically important plant diseases, each with unique considerations 

of host tissue appearance, plant architecture, symptomatology, etc. A group aiming to implement 

machine learning detection of a given disease for the first time will likely have to generate novel 

training data.

The identification of plant disease symptoms in an image might belong to one of three classes 

of tasks, per Liu et al. (2018): classification, detection, or segmentation. Object classification methods 

detect the presence or absence of features within an image on the whole, e.g., “this is an image of 

wheat stem rust.” Object detection methods identify the location and extent of symptoms within an 

image on a coarse spatial level, most commonly delineating them with bounding boxes. Semantic 

segmentation methods delineate the boundaries of features, assigning each pixel of an image to a given 

class, e.g. leaf, soil, or disease symptom. In this paper, we undertake this last task- identifying and 

outlining every diseased region in an image.
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Aerial plant disease detection via machine learning has aroused much interest in the past few 

years, as evidenced in many reviews, letters, and prospectives (Singh et al. 2016, Tsaftaris et al. 2016, 

Shakoor et al. 2017, Yang et al. 2017, Araus et al. 2018, Ubbens and Stavness 2018, Maes and Steppe 

2019, Chouhan et al. 2019). Compared to the level of interest, relatively few examples have been 

published. Machine learning classification has been used to classify entire plants as virus-infected or 

not (Ha et al. 2017, Sugiura et al. 2018). Object detection methods have been used to identify diseased 

regions of grape plants (Kerkech et al. 2018) and diseased leaves of soybean (Tetila et al. 2017). 

Semantic segmentation of UAV images, the task we undertake here, has been implemented in soybean 

(Tetila et al. 2019), tea plants (Gensheng et al. 2019), and maize (Stewart et al. 2019).

In the course of our previous work, we labeled over 100,000 examples of northern leaf blight 

(NLB), a fungal foliar disease of maize that causes grey-brown necrotic lesions (Wiesner-Hanks et al. 

2018). Each of these annotations consisted of a line drawn down the principal axis of a lesion. With 

these line annotations, we trained convolutional neural networks (CNNs) to recognize NLB lesions in 

images taken by hand with 96.7% accuracy (DeChant et al. 2016) and in aerial field images with 95.0%

accuracy (Wu et al. 2019). Delineating lesion boundaries with polygons would be ideal, as such 

annotations can ultimately yield much more precise image segmentation than lower-resolution 

annotations (Bell et al. 2015). Drawing such polygons is prohibitively time-consuming to do with only 

a small number of trained experts, however.

In this study we describe and implement a two-step approach for generating large amounts of 

high-resolution training data that has been vetted by qualified experts. First, experts identify disease 

symptoms, annotating them quickly at low resolution. Second, the more time-consuming task of 

annotating the lesion boundaries is outsourced to anonymous online workers through Amazon’s 
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Mechanical Turk platform. This two-step approach allows us to maintain the reliability of expert 

diagnosis while also exploiting the speed and scale of crowdsourcing, producing a model with high 

accuracy and spatial resolution (Figure 3.1) with only one fifth as many expert-generated annotations.

Figure 3.1. Examples of lesion segmentation on original images taken in the field by UAV. Regions 

classified as disease lesions by model outlined in magenta.
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MATERIALS AND METHODS

Image annotation

All Mechanical Turk human intelligence tasks (HITs) consisted of one or more prompts to draw a 

single bounding polygon delineating the boundaries of a single lesion (Figure 3.2, top right), 

previously annotated with a line down the major axis by one of two human experts (Wiesner-Hanks et 

al. 2018). All images and annotations used, generated, or described herein are available in an Open 

Science Framework repository (https://osf.io/p67rz).

For each annotated lesion, a subimage was taken of the same width and height of the annotation

line, plus 150 pixels padding on all four sides, so that workers had some context to the image. The 

annotation lines mostly spanned 400-1200 pixels in the x- and y-dimensions (depending on 

orientation), so this padding usually expanded the field of view by 25-75%. Workers were given basic 

instructions asking them to draw a polygon delineating the edges of the necrotic lesion with between 10

and 15 vertices, along with an example lesion thereof (Supplemental text, Supplemental Figure 3.1). 

The annotation lines drawn by experts were included in these subimages in red to make clear which 

lesion to annotate, as there was often more than one lesion in a single subimage.
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Figure 3.2. Comparison of annotations used and results of expert-trained model (left; Wu et al. in 

review) and crowdsourced model described here (right). Top row: Original image with annotations 

overlaid. Middle row: Heatmap created by applying CNN in sliding window across image, brightness 

indicating probability of lesion at a given point (white = lesion, black = non-lesion). Bottom row: 

Binary mask output of CRF segmentation using original image and heatmap.
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HITs were deployed in three batches over the course of two months. Three unique workers were

assigned to complete each HIT. Each worker was paid $0.03/HIT, an amount chosen to be similar to 

payment for comparable tasks deployed on Mechanical Turk at that time, adjusting for the fact that 

different HITs involve a different number of tasks. An additional $0.01 was paid to Amazon each time a

worker completed a HIT, resulting in a total cost of $0.12/lesion (three workers per lesion, $0.03 per 

worker, $0.01 to Amazon per worker).

Annotations drawn by MTurk workers were first screened to see how much they agreed with 

the other annotations drawn on the same lesion. If a given worker drew polygons that rarely agreed 

with those drawn by other workers, their annotations were potentially suspect. After a batch was 

completed, the Intersection over Union (IoU), also called the Jaccard similarity, was calculated for each

pair of polygons drawn on the same lesion by taking the area in pixels of their intersection divided by 

the area in pixels of their union. Each polygon was thus compared to the two other polygons drawn by 

other workers on the same lesion. If the mean Jaccard similarity between all annotations drawn by a 

given worker and those drawn by other workers was < 0.5, the worker was flagged for manual review. 

This threshold was set at 0.5 because the vast majority of workers had overall mean IoUs in the 0.5-0.8 

range, while a small number, who mostly completed only a handful of HITs each, had mean IoUs in the

0-0.5 range (Supplemental Figure 3.2). Manual review was deemed necessary, since a worker may 

have drawn their high-quality annotations compared to low-quality annotations. If their work was 

found to be unacceptable, all of their annotations were rejected and lesion subimages were redeployed 

as needed until three unique workers had acceptably annotated each. In all cases, workers whose 

annotations were rejected appeared to be drawing polygons at random.
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The IoU was also used to filter out low-quality lesions. Entire UAV images were filtered 

automatically prior to annotation and manually during annotation, as described previously (Wiesner-

Hanks et al. 2018), but individual lesions in an image could still vary in how clear and defined the 

visible symptoms were. Preliminary manual inspection of MTurk annotations revealed that lesions on 

which otherwise well-performing workers drew lesions with low overlap with one another were often 

blurry, ambiguous, or otherwise unacceptable. Only lesions for which all three polygon annotations had

an IoU > 0.6 with one another (a threshold chosen to filter out roughly the bottom 25% of lesions) were

used to generate images for model training as described below. The mean and standard deviation of 

pixel RGB values, used for later normalization of images, were calculated on these whole images.

Training, validation, and test data were generated based on the method used with polygon 

annotations in the OpenSurface dataset (Bell et al. 2015). Multiple square subimages, hereafter referred

to as “patches,” were cropped from the entire UAV image and classified as “lesion” or “non-lesion” 

based on whether the exact center point of the image lay within a lesion. To generate positive patches 

(the “lesion” class), pixels lying within at least two of three annotation polygons were used as a search 

space. From these, random points were sampled via Poisson-disk subsampling 

(scipython.com/blog/poisson-disc-sampling-in-python/), with minimum distance of 200 pixels between

each point. Negative patches (the “non-lesion” category), were chosen by randomly sampling points 

from the pixels in each image that were not included in any of the annotation polygons. Negative 

training images thus could contain a lesion, so long as they were not centered on one.

Because the original UAV images consisted mostly of non-lesion area, many more non-lesion 

patches could be extracted from the images than lesion patches. Preliminary model testing with sample 

images suggested that using a balanced dataset with an equal number of lesion and non-lesion patches 
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biased model predictions towards false positives, i.e. detecting lesions where there were none (data not 

shown). We thus used a moderately unbalanced dataset and accounted for the class imbalance using 

weights in the loss function, as described below.

In order to make the model more generalizable, training images were augmented via random 

transformations that preserved the image class, i.e. the location of the central pixel in a lesion or not. 

Images were horizontally and/or vertically flipped, rotated by 0 to 90 degrees either clockwise or 

counterclockwise, and scaled between 0.75x and 1.33x. As these images were taken from directly 

overhead, there was no need to preserve image orientation.

Network construction

We used a ResNet34 model (He et al. 2016) that had been pre-trained on the ImageNet dataset 

of several million labeled images (Russakovsky et al. 2015) as a generalized feature extractor, 

replacing the final fully-connected layer with a fully-connected layer of output dimension 2. The output

tensor for each input image was a two-dimensional vector of scores for the two classes: centered on a 

lesion or not centered on a lesion (note that images containing a lesion but not exactly centered on it 

belong to this second class). A weighted cross-entropy loss function was used, which normalizes the 

scores into estimated probabilities via the softmax function, then takes the negative log of these 

probabilities and multiplied by the class weights to account for class imbalance. Class weights of 0.36 

and 1.0 were used for lesion and non-lesion images, proportional to the number of images in each class.

In order to determine which patch size and learning rate was most appropriate, we analyzed 

performance on a smaller sample set of images. For both image classes (lesion and no lesion), 5% of 

the training and validation sets were randomly sampled. The above network was trained and validated 
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on this 5% subsample with six patch sizes (square patches of size 200, 400, 500, 600, 800, or 1000 

pixels, using the same centerpoints for each size) and seven learning rates (1e-5, 3e-5, 1e-4, 3e-4, 1e-3, 

3e-3, and 1e-2). With each combination of patch size and learning rate, the network was trained for 10 

epochs with a step size of 10 and gamma of 0.1, corresponding to a 10-fold decrease in the initial 

learning rate every 10 epochs.

The best-performing parameters were then used to train the network on the entire training and 

validation set for 20 epochs with a step size of 10 and gamma of 0.1. Patches were resized to 224 by 

224 pixels and treated with a random horizontal flip, then normalized using the previously calculated 

mean and standard deviation of pixel RGB values. To compare learning rate dropouts, the model was 

also trained using step sizes of 5 and 20, maintaining a gamma of 0.1. Weights were optimized using 

stochastic gradient descent with weights of 1.0 and 0.36 for the non-lesion and lesion labels, 

respectively, proportional to the number of images in each category. All training was done on an Nvidia

GTX 1070 Ti GPU with batch size 120, randomizing image input order.

To visualize the model-estimated probability of a given region containing a lesion or not, heatmaps 

were generated by applying the final CNN on a sliding window across whole UAV images, then 

applying softmax transformation to generate probabilities for the two classes (centered on a lesion or 

not). To account for varying lesion sizes, we used the resizing approach of Bell et al. (2015). The image

was resized by three separate scaling factors: the original scale r used in model training (such that a 

500x500 window was resized to 224x224 pixels), r*sqrt(2), and r/sqrt(2). At these scales, a window of 

size 500x500, 690x690, or 345x345 pixels, respectively, mapped to 224x224 pixels. Images were 

padded on all sides via reflectance padding, and the trained model was applied via a sliding window 

approach across the entire image with a stride of 50 pixels in both dimensions. The resultant output was
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then resized to the original 4000x6000 pixels via bilinear interpolation. The three resultant heatmaps 

were then averaged, and this averaged heatmap was used for downstream analyses. For comparison, the

trained model described by Wu et al. (2019) was applied in an identical manner. As the scaling used for

training purposes was identical between these two models, the same scales were used for heatmap 

generation.

Image segmentation

Pixel-wise classification was performed using the fully-connected conditional random field (CRF) 

method of Krahenbuhl and Koltun (2011), implemented in Python via pydensecrf. CRF optimization 

was performed using three separate color spaces: the original, untransformed RGB values, RGB values 

transformed to maximize contrast between lesion and non-lesion pixel values, and L*a*b* color space. 

For the second method, the pixels surrounding each polygon annotation were found by dilating the 

polygon mask (expanding the mask along its edges to include pixels for which a kernel overlaps with 

the mask) for five iterations using a 20 pixel by 20 pixel square kernel, then subtracting the area created

by performing only one dilation of the mask. The RGB values of pixels within these regions and those 

lying within polygon annotations were then downsampled by a factor of 10 and analyzed via linear 

discriminant analysis (LDA) to obtain a transformation maximizing between-group differences in 

Euclidean distance between values in the two regions. RGB to L*a*b* transformation was performed 

using OpenCV, producing 0-255 integer-valued L*a*b* coordinates.

CRF performance is controlled the θ parameters, which determine how strongly pixel 

classification is influenced by proximity (is it close to many pixels believed to be NLB lesions?) and 

color (is it the same color as pixels believed to be NLB lesions?). Because optimizing these is difficult 
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(Krahenbuhl and Koltun 2011), we used a simple grid search to find suitable parameters, evaluating 

CRF performance for all combinations of θ values on a set of 118 training images. These were selected 

from the entire set of training images by choosing images in which the annotation polygons of all three 

workers agreed fairly well (each one having IoU > 0.8 with the union of all three, a cutoff chosen to be 

fairly stringent) for all lesions in the image. CRF performance on each image was evaluated under each

color space with slightly different parameters, as appropriate for each. For the RGB and LDA-

transformed color spaces, the kernel width θα, corresponding to the spatial dimension of pixel 

correlation and deviation, was evaluated at values ranging from 10 to 600 by a step size of 10. For the 

untransformed RGB color space, θβ, corresponding to the color-space correlation and deviation of 

pixels, was evaluated at values ranging from 1 to 40, step size 1. For the LDA-transformed RGB 

values, θβ was evaluated at values ranging from 0.1 to 0.4, step size 0.1. For the L*a*b* color space, 

separate kernel widths were used for the distance along the L dimensions and distance in a-b 

dimensions. CRF performance was analyzed for θα (still the spatial kernel width, unrelated to the a* 

color dimension) ranging from 10 to 500 with step size 10, θL ranging from 1 to 25 with step size 1, 

and θab from 1 to 20 with step size 1. CRF performance on the model of Wu et al. (2019) was tested 

only in the RGB color space.

RESULTS

Mechanical Turk annotations

MTurk workers drew 15,240 polygon annotations on 5,080 lesions, cropped from 752 parent images 

collected by the UAV. Training data for the CNN were generated only from those images in which, for 

all lesions in the image, all three polygon annotations had an Intersection over Union (IoU) of at least 
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0.6 with one another, leaving us with 588 UAV images containing 3,834 annotated lesions. Poisson-

disk subsampling of the lesion polygon annotations yielded 22,193 centerpoints that were used to 

generate 22,193 positive images (Table 3.2). From the same 588 UAV images, we sampled 58,800 

negative images, 100 from each image. Both positive (centered on a lesion) and negative (not centered 

on a lesion) images were divided into training, validation, and test sets in a 70:15:15 ratio.

Most workers annotated only a few images, with a small number of workers annotating several hundred

(Supplemental Figure 3.3). On average, it took an MTurk worker 32 seconds to annotate a single 

lesion (median 27 seconds, standard deviation 19 seconds). All sets of deployed HITs were fully 

annotated in under 2 hours. Workers generally performed fairly well, as shown by the fact that any two 

annotations drawn on the same lesion tended to overlap (Figure 3.3). Most pairs of polygons (83.2%) 

had an IoU of at least 50%. Manual examination found that many of the annotations with low IoU were

on images that were blurry, ambiguous, or otherwise undesirable. Workers were paid $0.03/lesion, 

resulting in an average payment of only $3.75/hour for annotation.

Phase

Number of images

Lesion No lesion

Training 14,783 41,160

Validation 3,168 8,820

Test 3,168 8,820

Table 3.2: Number of images sampled of each label (lesion vs. no lesion) and their division into 

training, validation, and test sets.
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Figure 3.3. Histogram of Intersection over Union (IoU) between all pairs of polygon annotations 

drawn by MTurk workers, calculated as the area in pixels of intersection divided by the area in pixels 

of the union. Median IoU (0.7265) indicated by solid line, mean IoU (0.6832) indicated by dotted line.

Model performance

Testing classification accuracy of the crowdsourced CNN on a subsample of training and validation 

images, we found a learning rate of 3e-3 and a patch size of either 500 or 800 to be best (Figure 3.4). 

Though classification accuracy was slightly higher when using a patch size of 800 compared to a patch 

size of 500, we chose a patch size of 500 to be consistent with that used in the model trained on expert-

drawn-lines (Wu et al. 2019) to facilitate comparisons between the two.
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Figure 3.4. Comparison of crowdsourced CNN accuracy on 5% subsample of training/validation 

images across various parameters of learning rate (LR) and patch size in pixels.

The accuracy of the crowdsourced CNN on the validation set of image crops converged by 15 

epochs (Figure 3.5). One concern with any machine learning model is the possibility of overfitting: 

training a model that performs well on the specific data set being used, but that is not generalizable and 

performs poorly on new data. Loss on the validation set did not tend to increase after reaching a global 

minimum, suggesting that overfitting was not a major concern (James et al. 2013), though the gap 

between training loss and validation loss suggested some overfitting (Figure 3.5). On the final held-out

test set of image crops, the crowdsourced CNN performed well, achieving an overall classification 

accuracy of 0.9741, precision (TP/[TP+FP]) of 0.9351, recall (TP/[TP+FN]) of 0.9694, and F1 

(harmonic mean of precision and recall) of 0.9520 (Table 3.3).
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Figure 3.5. Accuracy of crowdsourced CNN on training images (dashed line) and validation images 

(solid line) converged by 15 epochs. Grey area shows standard deviation of accuracy over 5 

replications of training on the same training/validation sets.

Prediction
Image

Lesion No lesion

Lesion 3,071 213

No lesion 97 8,607

Table 3.3: Predictions of the final network on the held-out test set.
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Image segmentation

Applying a fully-connected CRF to the heatmaps generated by the crowdsourced CNN and the held-out

test images, we were able to accurately classify each pixel of an image as lesion or non-lesion with 

high spatial resolution (Figure 3.2, bottom row). Pixel-wise classification accuracy was high even 

when heatmaps were clearly not suitable, as the vast majority of most images is non-lesion, so a model 

that classified all pixels as non-lesion would still achieve an accuracy of 0.9940. For this reason, F1 

was taken to be a more suitable metric for image segmentation performance than accuracy.

Exhaustive grid search found the best-performing θ parameters for each color space to be θα=50, θβ = 

5 for the standard RGB color space, θα = 110, θL = 25, and θab = 1 for the L*a*b* color space, and 

θα=70 and θβ=0.7 for the LDA-transformed color space (Figure 3.6). Transforming images into the 

L*a*b* color space moderately increased segmentation accuracy. The best-performing CRF parameters

segmented images with an accuracy of 0.9957 and F1 of 0.6695 in the RGB colorspace, compared to 

peak accuracy of 0.9977 and F1 of 0.6777 in the L*a*b* color space. Transforming the RGB values 

using the matrices obtained via LDA was the most effective, yielding a peak accuracy of 0.9981 and F1

of 0.7153. The parameters that segmented LDA-transformed images with the highest F1 score also did 

so with near-maximum accuracy (Figure 3.7).
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Figure 3.6. Heatmap of pixel-wise F1 score of CRF segmentation across different levels of θα, 

corresponding to the spatial scale of correlations between pixel color values, and θβ, corresponding to 

the color space scale of correlations. Values were determined using images transformed with RGB 

values transformed via LDA-derived differentiation transformation, as this was the color space in 

which CRF segmentation performed best.
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Figure 3.7. Pixel-wise F1 score of lesion/non-lesion segmentation vs. accuracy thereof across different 

levels of θα and θβ. The CRF parameters that yielded the highest F1 score (red point) also yielded near-

maximum accuracy of segmentation. Each point represents a single combination of θα and θβ tested in 

the grid search (Figure 3.6).

CRF segmentations could be used to accurately estimate the proportion of an image covered by 

lesions (Figure 3.8). The proportional lesion coverage estimated by CRF was highly correlated to 

ground truth estimates. The heatmaps themselves could also be used to estimate proportional lesion 

coverage in an image, bypassing the CRF step. Thresholding probability heatmaps at 0.5 produced 

binary images, in which pixels had a value of 1 if the interpolated predicted softmax probability of the 

“lesion” prediction was higher and a value of 0 if that of “non-lesion” was higher. However, the lesion 

coverages estimated by CRF segmentation were proportional to the ground truth areas in an 
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approximately 1:1 manner, while the areas generated from thresholding probability heatmaps were 

artificially inflated (Figure 3.8).
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Figure 3.8. Correlation between the proportion of a test image classified as lesion in ground truth 

(consensus polygons of three high-quality MTurk annotations), CRF segmentation, and heatmap 

thresholded at 0.5. Red lines depict 1:1 ratio.

Image segmentation using the crowdsourced CNN and CRF tended to outperform human 

experts. There were seven instances in which the proportion of a test image classified as “lesion” 

diverged highly between CRF segmentation and ground truth (Figure 3.8, outliers lying off of the red 

1:1 line). This was surprising, as precision of CRF segmentation was higher than recall (0.7388 vs. 

0.6937) on a pixel-wise basis. Examining these seven cases more closely, we found that five of them 

were due to the model correctly locating lesions missed by the experts, while only two were due to the 

model misidentifying senescent leaves as lesions (Figure 3.9). Excluding the five images in which the 

CRF outperformed human experts, the Pearson’s correlation between the proportion of pixels in an 

image labeled as lesions in the ground truth masks and the proportion classified as lesions by the CRF 

segmentation rose from 0.8893 to 0.9428. Thus, while there is room to improve the model by 

addressing false positives, it was more often than not outperforming trained human experts.
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Figure 3.9. Original image (top row), ground truth annotations drawn by MTurk workers (middle row),

and CRF segmentation (bottom row) for all seven test images in which CRF segmentation and ground 

truth diverged highly. In left five images, crowdsourced model outperformed humans by identifying 

lesionated areas where humans had missed them. In the right two images, the model falsely classified 

senescent leaf tissue as lesions. White = lesion, black = non-lesion.

The two-step image segmentation process was fairly slow, however. Heatmap construction by 

the sliding-window approach using three different scales took a mean of 38.1 seconds on a 4000x6000 

image: 10.8 seconds at original scale r, 6.2 seconds at scale r/sqrt(2), and 21.1 seconds at scale 

r*sqrt(2). CRF segmentation of a 4000x6000 image took 2.8 seconds on average. Newer end-to-end 

segmentation methods should be able to improve on this, as discussed below.
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Benefits of crowdsourcing

Using crowdsourced polygon annotations greatly improved the spatial resolution of the final model 

with far less time investment from experts. We compared two CNNs of similar structure and 

implementation: one trained on lines drawn by experts (Wu et al. 2019) and the one trained on 

crowdsourced polygons, described here. These models were used to perform semantic segmentation 

using the same approach, via applying the CNN on a sliding window across images to generate 

probability heatmaps, then feeding these heatmaps into an optimized CRF to perform the final 

segmentation. Using the same approach with both model outputs isolated the effects of using the more 

information-rich crowdsourced polygons, rather than differences in segmentation methods.

Using the crowdsourced annotations provided three key benefits. First, the greater spatial resolution of 

polygon annotations allowed us to reliably delineate individual lesions with millimeter-level accuracy 

(Figure 3.10), which could not be done with line annotations alone. CRF segmentation using the 

crowdsourced CNN output was able to segment images into lesion and non-lesion pixels with a 

maximum F1 of 0.76 on the validation image set, while segmentation using expert-drawn lines 

achieved a maximum F1 of only 0.21.
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Figure 3.10. Image segmentations performed by CRF using heatmaps generated by the crowdsourced 

CNN. Magenta outline shows lesion boundaries from twelve randomly-selected images in the test set.

Second, the crowdsourced-polygon model was able to achieve this higher spatial resolution 

using only one-fifth as many annotations. The crowdsourced CNN was trained, validated, and tested on

only 5,080 expert-drawn lesions, compared to the 25,508 used for the expert-drawn-lines model (Wu et

al. 2019). 

Third, crowdsourcing allowed us to generate these polygons more quickly than would be possible using

only a handful of experts. Drawing a line took far less time than drawing a polygon. Examining the 
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timestamps of the annotations, we found that experts took 4.38 seconds on average to annotate a lesion 

with a line, while it took an MTurk worker a mean of 32 seconds to draw a polygon. An expert could 

thus annotate 1,000 lesions with lines in 73 minutes on average, while a non-expert would take 533 

minutes to annotate 1,000 lesions with polygons. The more complex non-expert task thus took 7.3x 

more time than the simpler expert task. Due to the parallel nature of crowdsourcing, however, all 5,080 

lesions were annotated by MTurk workers in less than 15 hours.

A comparison of the total time needed to generate training data at the scale used in this study shows the

benefits of a two-step crowdsourcing approach. A single human expert can annotate 5,000 lesions in 

roughly 6 hours, which could then be completely annotated with polygons by MTurk workers in one to 

two days. Assuming this expert worked as fast as the average MTurk worker (including locating 

lesions, which MTurk workers were not required to do), drawing these polygons would take them 

roughly 44 hours. Crowdsourcing the more laborious part of the task as described here is a more 

efficient use of plant scientists’ time and expertise.

DISCUSSION

Our full method, combining a CNN applied across a sliding window and image segmentation via a 

fully-connected CRF, was able to identify and delineate disease lesions at the millimeter level, the 

smallest spatial scale reported so far for aerial plant disease detection. The two-step approach for 

generating training data, in which experts annotate symptoms in low detail and non-experts annotate 

them further in high detail, was critical to achieve high spatial resolution. Without the non-expert 

polygon annotations, our previous effort was able to identify lesions with high accuracy at a sub-leaf 

scale (Wu et al. 2019), but not at sufficient resolution to accurately segment an image and delineate 
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individual lesions. With them, we were able to segment images down to the millimeter with sensitivity 

surpassing that of human experts: in five out of seven cases in which human ground truth and model 

predictions diverged, the model had correctly identified disease symptoms where experts had missed 

them (Figure 3.9).

Using Mechanical Turk, thousands of images could be annotated in only a few hours, reducing what 

was until then a major bottleneck in the model training process. Despite the fact that these workers 

(presumably) have no experience in plant disease diagnosis, their annotations were generally of high 

quality and could be used to train the model without the need for an expert to look over each one. With 

three annotations for each image, we were able to identify and filter both low-performing workers, 

whose annotations tended not to agree with others, and low-quality images, on which multiple 

(otherwise well-performing) workers drew annotations that did not agree. There are several 

possibilities for improving the MTurk annotation process. Increasing the number of workers per image 

could increase the quality of annotation polygons or the ease of identifying low-quality images.

The cost of crowdsourcing via MTurk was quite low, at $0.03/lesion, implying a wage of $3.75/hour 

based on the average time to annotate a lesion. Future studies would ideally compare different payment 

structures in order to maximize worker payment, minimize overhead, and maintain or increase 

annotation quality. Restructuring the HIT so that each consists of annotating multiple lesions, rather 

than just a single lesion, would decrease the payment to Amazon per image while paying workers the 

same per HIT. Many HITs posted on MTurk require a short qualification test to vet workers. In our 

case, workers could be asked to annotate three lesions adequately in order to be approved to complete 

HITs. Increasing worker payment in tandem with this could attract and retain better-performing 
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annotators, providing workers with a higher wage while decreasing the amount of post-processing 

needed to filter out low-confidence annotations.

We used a two-step method for semantic segmentation, first training a model to classify lesions, then 

using a sliding window approach and CRF to turn these classifications into semantic segmentation of a 

full image. This allowed us to make a useful comparison to a model trained on coarse, expert-generated

annotations, since the same segmentation method could be used with both models’ output, isolating the 

impact of the annotation data rather than the segmentation approach used. However, newer methods for

semantic segmentation, such as region proposal networks (Ren et al. 2016) or atrous convolution (Chen

et al. 2017) might well perform the task better and faster.

A chief limitation of this method is the difficulty of acquiring field images at high enough resolution 

and clarity such that individual lesions can be discerned. Capturing images in which each pixel 

represented a millimeter or less at canopy level required slow flights at low altitude with a high-zoom 

lens (Wiesner-Hanks et al. 2018), not ideal for comprehensively imaging a large area. This challenge 

would be even greater when working with a disease with small or inconspicuous symptoms- chlorosis, 

leaf curling, lesions only a few millimeters in diameter- as opposed to the large, obvious lesions of 

NLB. Targeted sampling of a field, rather than attempting to image every plant, can still give growers a 

large amount of information with which to make decisions regarding disease management. Acquiring 

images and diagnosing lesions every 10 meters or so would only analyze a very small proportion of a 

field’s total area, but it would provide much more information compared to the zig-zag walking paths 

commonly used when scouting for pests and diseases (Doll et al. 2016).

UAVs are now a common part of many US growers’ field operations, and interest continues to grow 

(Luck et al. 2018, Purdue Extension 2018, Miller and Adkins 2018). The use of UAVs for disease 
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diagnosis is still in its infancy, however. We predict that UAV-based disease phenotyping will be most 

readily adopted in crops with a high value per acre where fungicide usage is common, such as grapes or

almonds. In such crops, the added benefit of fast, frequent, reliable disease screening is most likely to 

outweigh the time and monetary costs needed to develop the diagnostic platform. As UAV and imaging 

technology progress, and more and more image datasets are generated and freely shared among 

researchers, we believe that UAV-based deep learning will become simpler to implement and will soon 

be a useful tool for growers and geneticists across many crops and pathosystems.
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Supplemental text: worker instructions

Place points around the edge of the lesion, where the dead brown tissue meets the healthy green tissue, 

as shown in this example. There may be multiple lesions in the image- only label the one with a red 

line down the center.

You must place at least 10 points, but no more than 15. When done placing points, right click to close 

the polygon. Once you close a polygon, you cannot delete the most recent point.

To move a point, click "Edit", then drag the point. To delete a polygon, click "Edit", select it, then click 

"Delete Selected Polygon".

If the image is very blurry, please draw the polygon as best you can and place a comment (e.g. 

"blurry") in the box below, then submit.
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Supplemental Figure 3.1. Example lesion annotation shown to MTurk workers.
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Supplemental Figure 3.2. Histogram of mean overlap (Intersection over Union) of all polygons drawn

by a worker.

Supplemental Figure 3.3. Histogram of number of lesions annotated by individual MTurk workers.
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CHAPTER 4

MULTIPLE DISEASE RESISTANCE IN TWO BIPARENTAL MAIZE POPULATIONS

DERIVED FROM RECURRENT SELECTION

INTRODUCTION

There are many mechanisms by a which a plant might be bear resistance to multiple diseases (Wiesner-

Hanks and Nelson 2016). As qualitative and quantitative resistance are better thought of as the far ends 

of a spectrum rather than distinct, unambiguous categories (Poland and Nelson 2011), many of these 

mechanisms apply similarly to the loci conditioning qualitative resistance (R genes) and those 

conditioning quantitative resistance (quantitative resistance loci; QRL). Multiple unlinked loci affecting

single diseases might simply be pyramided in a single line. Such disease-specific loci might be closely 

linked to one another, a distinct possibility given the tendency of R genes to occur in clusters. A 

resistance locus may be truly pleiotropic, either to an even degree or a very uneven degree. If the 

effects of a resistance locus on two diseases are quite uneven (e.g. a 50% reduction in disease A but 

only a 5% reduction in disease B), the effect might only be statistically detectable for one disease, 

making the pleiotropic nature of the functionally invisible. Whatever the case, genetic mapping efforts 

can begin to characterize the nature and extent, if any, of multiple disease resistance (MDR).

This study characterizes maize resistance to three fungal foliar diseases: northern leaf blight 

(NLB), southern leaf blight (SLB), and gray leaf spot (GLS). The three diseases all produce grey-

brown necrotic lesions but of quite different form and with quite different disease progression. NLB 

lesions are large and oblong, generally appearing at least a week after inoculation. SLB lesions are 

small and localized, typically appearing only a few days after inoculation. GLS lesions are intermediate
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in size between those of NLB and SLB, with a characteristic rectangular shape caused by the fact that 

they do not cross the major veins of the maize leaf. In 2013, these diseases accounted for a combined 

estimated yield loss of 217.8 million bushels in the US Corn Belt and Ontario (Mueller et al. 2016).

Several collections of maize germplasm have been screened for resistance to NLB, SLB, and/or 

GLS. Resistance to these three diseases is highly correlated in the maize 282 diversity panel, but only a 

single potentially pleiotropic locus was identified by multivariate association mapping in this panel 

(Wisser et al. 2011). In the maize nested association mapping (NAM) panel, though resistance to the 

three diseases is highly correlated among the 25 founder lines, resistances are much less correlated 

within the biparental populations, suggesting that population structure is a stronger driver of these 

correlated resistances than pleiotropic or closely linked loci (Poland 2011). Accordingly, QTL or SNP 

associations for these three resistances do not overlap in the NAM population any more than would be 

expected by pure chance (Wiesner-Hanks and Nelson 2016).

This study examines the genetic architecture of resistance to NLB, SLB, and GLS in two 

biparental populations derived from a single line with high resistance to all three diseases and B73, 

which is moderately susceptible to all three. Ceballos et al. (1991) generated 411 full-sib families using

parents from CIMMYT Pool 30, originally sourced from diverse subtropical lines from four continents.

They then subjected this population to four cycles of reciprocal half-sib/S1 recurrent selection for NLB 

and rust resistance, as well as general vigor, decreasing mean area under disease progress curve 

(AUDPC) by 70%. This improved population (C4) was also more resistant to SLB and GLS, despite 

the fact that it was not selected for these resistances at all (Poland 2011).
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MATERIALS AND METHODS

A single maize line from C4 of selection (C432-24) had been crossed to B73. Two F1 progeny were then 

selfed for four generations to create two population of F4:5 RILs, P05 and P10, consisting of 197 and 

235 lines respectively (Figure 4.1; Jesse Poland and Randall Wisser, personal communication). As the 

single C4 line was derived from a bulk selection scheme, it was expected to have high levels of 

heterozygosity, thus making the two F1 populations and resultant RIL populations distinct at some 

regions of the genome and isogenic at others.

Figure 4.1: Creation of P05 and P10 RIL populations. Note that C432-24 was highly heterozygous, thus 

F105 and F110 were not identical.

The two populations had been evaluated for NLB resistance in Aurora, NY in 2009, 2010, and 

2011 (Jesse Poland, personal communication), for SLB resistance in Clayton, NC in 2009 and 2010 

(Peter Balint-Kurti, personal communication), and for GLS resistance in Blacksburg, VA in 2009, 2010,

and 2011 (Jacqueline Benson, personal communication). NLB resistance was evaluated on a per-row 

185



basis as percent diseased leaf area (DLA) three times at roughly ten days intervals. GLS resistance was 

scored on a 1-9 scale, with 1 = not diseased, 9 = fully diseased. SLB resistance was originally scored 

on a 1-9 scale, with 9 = not diseased, 1 = fully diseased, but this was later inverted to match the GLS 

scale. With the exception of the 2010 GLS experiment, days to anthesis (DTA) was scored on a per-row

basis as the number of days after planting until anthers had emerged on >50% of the plants in a given 

row.

The standardized area under disease progress curve (sAUDPC) was calculated for each disease 

as:

sAUDPC=
1

tn− t1
∑

2

n

(t j− t j− 1)
x j x j− 1

2

Where n is the number of evaluations, tj is the days since planting at evaluation j, and xj is the diseased 

leaf area (DLA) or 1-9 score at evaluation j. sAUDPC scores were square-root transformed to achieve 

normality as determined by Wilcoxon rank-sum test.

Lines were genotyped with genotyping-by-sequencing (GBS). SNPs were called using the 

TASSEL GBSv2 pipeline (Glaubitz et al. 2014). SNPs were filtered for minor allele frequency (MAF) 

>= 0.05 and presence in >= 10% of taxa with TASSEL and imputed with FSFHap (Swarts et al. 2014).

SNPs called from GBS were merged with SNPs from the maize HapMapv3 (Bukowski et al. 2017), 

and the resultant intersecting SNPs were filtered for LD > 0.9 to the neighboring 5 SNPs. To call the 

parental origin of SNPs, haplotypes were pulled from GBS-called SNPs using FSFHap. A kinship 

matrix was calculated using the centered IBS method (Endelman and Jannink 2012).

Best linear unbiased predictors (BLUPs) for square-root transformed sAUDPC were calculated 

as:
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√( AUDPC )= u+ Pi+DTA jkl+Y j+ R (Y )jk+B(R) jkl+ e jklm+Zu

Where Pi and DTAjkl are fixed effects of population and DTA, Yj, R(Y)jk, and B(R)jkl are random effects 

of year, rep, and block, u is the vector of RIL breeding values, and Z is an incidence matrix with 

covariance matrix K.

QTL were then determined by stepwise regression of imputed marker genotypes as predictors of

BLUP value, using F-test of nested models in R to determine significance of marker addition or 

removal. The appropriate p-value threshold for addition or removal was determined by separate 

bootstrapping for each. For 1000 iterations for each trait in each population, BLUPs were randomized, 

F-tests were performed for each marker to determine significance of the addition of adding the marker 

as a predictor to the model with no markers, and the p-value of the most significant marker was 

recorded. The resultant 1000 p-values were then sorted and the 50th smallest p-value was taken as the 

appropriate p-value cutoff for alpha < 0.05.

After QTL were identified by stepwise regression, QTL confidence intervals were determined 

by finding the furthest flanking marker from the initial marker for which, when the initial and flanking 

markers were used as the only predictors in a GLM, the initial marker was no longer significant at the 

appropriate p-value threshold. Left and right boundaries to the confidence intervals were determined 

separately using this method.

RESULTS

As expected, given the fact that they were derived from a single open-pollinated line crossed to an 

inbred line, the P05 and P10 populations inherited identical allele contrasts at roughly half of the 

genome and unique allele contrasts at the other half (Figure 4.2). Most of the regions of identical 
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alleles in both populations spanned across most or all of a chromosome, namely chromosomes 6, 8, 9, 

10.

Figure 4.2: P05 and P10 have unique allele contrasts in roughly half the genome. Lines show 

proportion of SNPs for which P05 and P10 contained unique non-B73 alleles and thus presumably 

inherited different alleles from C432-24. Proportions averaged over 20-site sliding window. Stretches of 0

delineate regions in which P05 and P10 inherited identical haplotypes.

BLUPs for resistance to the three diseases were moderately correlated (Figure 4.3). The 

correlations observed (between r = 0.2 and 0.3) were similar to those observed between NLB, SLB, 

and GLS resistance within individual RIL families of the NAM population (Poland 2010). For each 

disease, between 5 and 8 QTL were identified in each population, explaining 50-75% of the additive 
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variance for resistance to the disease in question (Table 4.1). The confidence intervals of these QTL 

varied widely, with some pericentromeric QTL spanning over 50 Mb and more telomeric QTL 

generally under 5 Mb (Figure 4.4).

Figure 4.3: Correlations and biplots between BLUPs for NLB, SLB, and GLS resistance in both 

populations.
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Figure 4.4: QTL confidence intervals for NLB, SLB, and GLS resistance. Locus effects are negative if 

the non-B73 allele reduces disease relative to B73 allele. Physical positions in Mb shown on left. 

Genomic regions for which P05 and P10 share haplotypes shown in grey on scale bar and genomic 

regions for which they were unique shown in black. For P05 and P10 QTL, effect estimates were 

standardized: β st = β ys marker. In the case of QTL from the NAM panel, QTL effects were not 

standardized and were coded light red if the average allele effect for families in which the marker effect

was significant was negative to B73.

For most QTL, the P05- or P10-derived allele was the more resistant allele relative to that of 

B73. This was to be expected as a general trend, as B73 is a moderately susceptible line (Poland 2011), 

while most individuals of the RS C4 population were fairly resistant. One exception to this trend was 

very notable. Both P05 and P10 bore a QTL with fairly strong effect on chromosome 7, from roughly 

135 Mb to 151-159 Mb. However, in P05, this QTL conferred susceptibility relative to B73, while in 

P10, it conferred resistance relative to B73. Thus, the original C4 line used to generate the populations 

apparently carried both alleles. Other such cases included three SLB QTL in which the P05-/P10-

derived allele was more susceptible and one P10-derived QTL for NLB susceptibility relative to B73 

on chromosome 4, 161-163 Mb. In all of these cases, it cannot be determined at the moment whether 

one parent is donating a susceptibility allele, one parent is donating a resistance allele, or both are true.
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Trait Population # QTL % Variance explained

NLB P05 5 57.5

P10 8 72.2

SLB P05 5 61.3

P10 5 72.1

GLS P05 6 52.4

P10 8 72.7

Table 4.1: Number of QTL identified for each disease in each population and total percent variance 

explained by QTL.

While some of the SSR loci previously identified as candidate resistance loci by selection 

mapping did colocalize with resistance QTL identified in this study (Wisser et al. 2008; Figure 4.4, 

triangles), a Fisher’s exact test found no evidence to reject the null hypothesis of independence between

whether an SSR was identified as positively selected (24 of 151 SSR) and whether it lay in a QTL or 

not for a given population and disease trait (p >= 0.59 in all cases). There were more assayed SSR loci 

inside NLB resistance QTL (19 in P05 QTL; 7 in P10 QTL) than inside SLB resistance QTL (0 in P05, 

2 in P10) or GLS resistance QTL (0 in P05, 6 in P10), but further investigation showed that this was 

due to selection bias when SSRs markers were designed: a large number of SSRs were designed to lie 

near regions in which QTL had already been found in many populations, namely chromosome bins 
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8.06 and 6.05. Thus, on the whole, there was no statistical relationship between the loci identified by 

selection mapping and those identified by biparental QTL mapping.

For each disease, roughly two-thirds of QTL identified in P05 and P10 overlapped with QTL 

identified by joint linkage mapping in the NAM population (Figure 4.4). Despite the fact that the 

improved C4 population was also significantly more resistant to both GLS and NLB (Poland 2011), 

pleiotropic (or potentially pleiotropic) QTL were fairly rare. Of the 37 QTL identified for the three 

diseases in both populations, QTL for two diseases overlapped in only 4 instances (Figure 4.4).

DISCUSSION

Overall, the genetic architecture of disease resistance was similar for all diseases in both populations 

and generally comparable to that observed in the maize NAM population, the most relevant population 

with which to compare. For all disease/population combinations, between 5 and 8 QTL were detected, 

explaining between 50 and 75% of genetic variance. That the number of NLB resistance QTL and 

relative effects thereof were similar to those for SLB and GLS in this population was somewhat 

surprising. The original recurrent selection population from which the resistant parent was drawn was 

not selected for GLS or SLB resistance, but resistance to those diseases was higher in the final 

population nonetheless (Poland 2011). One would expect the four cycles of recurrent selection to break 

up the population structure present in the original, non-improved C0 population, leaving pleiotropic or 

closely linked loci as the main cause of MDR observed in the improved C4 population, or at least 

diminishing the effects of unlinked QTL for different resistances. Such pleiotropic loci or closely 

linked loci for different resistances would be apparent as overlapping QTL for different diseases in 

these populations. This did not appear to be the case, however. We found only a potential instances of 
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pleiotropic or closely linked loci, namely large pericentromeric QTL for NLB and GLS resistance on 

chromosome 8 and nearby, but not overlapping, QTL for NLB and GLS resistance in bin 8.06.

The lack of association between the location of the SSR loci identified by selection mapping 

and the QTL identified by linkage mapping in this population was surprising upon first glance. 

However, the nature of the populations used in these two mapping projects explains this fairly well. 

Selection mapping mostly identified loci that went from being relatively rare to being somewhat 

common during the multiple rounds of recurrent selection, rather than common loci that were pushed to

fixation (Wisser et al. 2008). Thus, only a subset of the resistance alleles identified by selection 

mapping will be present in any one line from the improved C4 population, including presumably the  

C432-24 line used as a parent here. The relative precision of biparental mapping via GBS markers vs. that

of selection mapping via SSRs also explains this somewhat. For instance, seven of the 24 SSRs 

identified as positively selected were located near bin 8.06, but outside of the bounds of the large-effect

QTL identified in both populations. The positive selection of markers may very well have been caused 

by selection for this QTL. 

Several of the QTL for NLB resistance lay in known “hotspots” for maize NLB resistance loci 

(Wisser et al. 2006), namely chromosome bins 8.06 (chromosome 8, ~145-165 Mb), 6.05 (chromosome

6, ~ 120-150 Mb), and 1.06 (chromosome 1, ~175-200 Mb). For each disease, roughly one-third of the 

QTL identified had no overlap with QTL identified in the maize NAM population. The number of 

putatively novel QTL identified here demonstrates that, despite the wide genetic basis of the maize 

NAM population, even a single population can provide numerous new promising resistance loci.

194



REFERENCES

Benson JM, Poland JA, Benson BM, Stromberg EL, Nelson RJ. 2015. Resistance to gray leaf spot of 

maize: genetic architecture and mechanisms elucidated through nested association mapping and

near-isogenic line analysis. PLOS Genet. 11:e1005045 

Bukowski R, Guo X, Lu Y, Zou C, He B, Rong Z, Wang B, Xu D, Yang B, Xie C, Fan L. 2017. 

Construction of the third-generation Zea mays haplotype map. GigaScience 7:gix134.

Ceballos H, Deutsch JA, Gutierrez H. 1991. Recurrent selection for resistance to Exserohilum turcicum 

in eight subtropical maize populations. Crop Science. 31:964-71.

Endelman JB, Jannink JL. 2012. Shrinkage estimation of the realized relationship matrix. G3 2:1405-

13.

Glaubitz JC, Casstevens TM, Lu F, Harriman J, Elshire RJ, Sun Q, Buckler ES. 2014. TASSEL-GBS: a 

high capacity genotyping by sequencing analysis pipeline. PloS One 9:e90346.

Mueller DS, Wise KA, Sisson AJ, Allen TW, Bergstrom GC, Bosley DB, et al. 2016. Corn yield loss 

estimates due to diseases in the United States and Ontario, Canada from 2012 to 2015. Pl. 

Health Prog. 17:211–22.

Poland JA, Balint-Kurti PJ, Wisser RJ, Pratt RC, Nelson RJ. 2009. Shades of gray: the world of 

quantitative disease resistance. Trends Plant Sci. 14:21-9.

Poland J. 2010. The Genetic Architecture of Quantitative Resistance in Maize. PhD Thesis, Cornell 

Univ., Ithaca, NY

Swarts K, Li H, Romero Navarro JA, An D, Romay MC, Hearne S, Acharya C, Glaubitz JC, Mitchell 

S, Elshire RJ, Buckler ES. 2014. Novel methods to optimize genotypic imputation for low-

coverage, next-generation sequence data in crop plants. Plant Genome 7.

195



Wiesner-Hanks T, Nelson R. 2016. Multiple disease resistance in plants. Annu. Rev. Phytopathol. 

54:229-252.

Wisser RJ, Balint-Kurti PJ, Nelson RJ. 20016. The genetic architecture of disease resistance in maize: a

synthesis of published studies. Phytopathol. 96:120-9.

Wisser RJ, Kolkman JM, Patzoldt ME, Holland JB, Yu J, Krakowsky M, Nelson RJ, Balint-Kurti PJ. 

2011. Multivariate analysis of maize disease resistances suggests a pleiotropic genetic basis and

implicates a GST gene. Proc. Nat. Acad. Sci. 108:7339-44.

Wisser RJ, Murray SC, Kolkman JM, Ceballos H, Nelson RJ. 2008. Selection mapping of loci for 

quantitative disease resistance in a diverse maize population. Genet. 180:583-599

196



APPENDIX A

THE ETYMOLOGY OF ZEA5

Introduction

As a personal project over the past few years, I have been researching the etymology of the name Zea. 

Though the history of the name is fascinating, I could not find a single summary in the literature of any 

era, and so decided to write one myself. This summary not being suitable for any journal I could think 

of, I submitted it to the Maize Genetics Cooperation Newsletter. This newsletter is a fairly informal 

avenue for distribution, as it does not appear in any academic database searches. I have included my 

summary as an appendix here in the hopes that such a fascinating story might find its way to more 

readers.

Background

In short, the name Zea referred to spelt or emmer for thousands of years. Linnaeus originally named 

maize Thalysia in his very first publication, but he used this name only once, deciding shortly thereafter

to abandon it and requisition the name Zea. Though he gave clear reasons for rejecting the other extant 

names for the genus, his reasons for choosing Zea are unclear, since he knew the genus to be 

exclusively American and that it did not resemble spelt in any way. Given the justifications he made for

similar choices, I believe that he chose Zea not due to any similarity between maize and spelt, but out 

of a desire to preserve a name with a millennia-long history and a prominent place in Greco-Roman 

sources.

5 Wiesner-Hanks, T. 2018. The etymology of Zea. Maize Genetics Cooperation Newsletter 92.
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The Greek word ζεία (zeia) dates back to the oldest known works of Greek literature, appearing 

in Homer’s Iliad and Odyssey and Hesiod’s Works and Days as part of the phrase ζείδωρος ρουραἄ  

(zeidoros aroura, “corn-giving earth”). The etymology of this ancient phrase was thereafter the subject 

of occasional bickering for a few thousand years. Though zeidoros most directly translates to “zeia-

giving” (euphemistically, “corn-giving” or “grain-giving”), it could also be derived from the Greek 

word ζάω (zao, to live) and thus mean “life-giving.” As zeidoros appears before zeia in the written 

record, this would imply that the grain’s name was similarly derived from its life-giving properties. 

Pliny the Elder asserted in Naturalis Historia (77-79 CE) that zeidoros aroura came from the “very 

considerable celebrity” of the hearty grain zeia and most certainly did not mean “life-giving,” as was 

apparently widely believed by his contemporaries. This did not stop the the Greek grammarian 

Hesychius from reiterating the “life-giving” etymology in his Alphabetical Collection of All Words (c. 

5th century CE). Various authors have sided with either authority since then: Leonhard Fuchs repeated 

Pliny’s argument in De historia stirpium commentarii insignes (1542), while the French botanist 

Matthieu Bonafous supported Hesychius’ etymology in his Traité du maïs (1833).

The three core texts of the Greco-Roman botanical canon- Dioscorides’ De Materia Medica, 

Theophrastus’ Historia Plantarum, and Pliny the Elder’s Naturalis Historia- all described zeia as a 

rustic grain similar to wheat, traditionally translated as spelt or, more rarely, emmer. Theophrastus 

described it as the strongest among the grains that were not wheat or barley but one that “exhausts the 

ground,” while Dioscorides noted single-seeded and double-seeded forms, both more nourishing than 

barley but less so than wheat. Pliny distinguished between zea (the Latin spelling) and far, which has 

also been used for both grains.
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The short-lived Thalysia

Linnaeus originally named maize Thalysia, after a festival or harvest offering to the Greek goddess 

Demeter, enshrined in a pastoral poem of the same name by Theocritus. He used this name only once, 

in his very first publication, the first edition of Systema Naturae (1735). Over the next twenty years, 

Linnaeus would revise and expand Systema Naturae into an exhaustive 2300-page tome, the foundation

of zoological taxonomy. This first edition, however, was a scant twelve pages, certainly an ambitious 

length in which to lay out his classification schema for every living thing (and all the world’s minerals 

to boot). Linnaeus was bound to make a few missteps in his first publication, and it seems Thalysia was

one of these. He did not use the name again in any other work, except to include it among other 

deprecated names.

The usage of Zea for maize has no precedent before Linnaeus’ Hortus Cliffortianus and Genera

Plantarum, both published in 1737. In 1735, Linnaeus took a post as curator at the estate of the wealthy

Dutch banker George Clifford. Clifford’s estate boasted an extensive herbarium and several 

greenhouses, replete with species from across the world. For the next two years, Linnaeus cataloged 

and categorized the plant genera therein and refined his system of generic and specific names, 

ultimately producing Hortus Cliffortianus and Genera Plantarum. The two texts work in concert, with 

Hortus Cliffortianus furnishing each genus with a list of pre-existing names, justification for the name 

Linnaeus settled on, and a cross-reference to its entry in Genera Plantarum. That entry in turn 

describes the morphology of the genus’ flowers (the foundation of Linnaeus’ classification schema) in 

great detail. In both works, and in every Linnaean work that followed, the genus of maize was listed as 

Zea.
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Dated correspondence shows that Linnaeus decided at the last possible minute to drop Thalysia 

in favor of Zea. From 1735 to 1737, he corresponded frequently with Johan Frederik Gronovius, a 

Dutch botanist who was his friend and benefactor, to discuss the printing progress of Genera 

Plantarum. The work was printed in batches as Linnaeus completed the entries, and most of 

Gronovius’ letters from this time revolve around updates on printing and additions or edits to be made. 

From the dates on these letters, we have a fairly detailed timeline of Linnaeus’ writing process, one that

shows that Linnaeus renamed maize Zea very shortly before printing.

In a 1736 letter, Gronovius asked Linnaeus to make some final edits so that another batch could 

be printed. He noted that Linnaeus had left blank space for Thalysia (entry 702), but still had not 

written the entry itself, and so requested that he send the text to be inserted. Though this letter was not 

dated, the entries discussed therein fall between those mentioned in two other letters, both dated. Thus 

Linnaeus decided to rename maize Zea between 15 June, when Gronovius had just received the 

manuscript for entries up to 507, and 26 September, when the entries up to number 717 had been 

printed. From the numbering, Linnaeus most likely made the decision to drop Thalysia and reassign 

Zea very shortly before printing. At the risk of overly dramatizing history, I find some comfort in the 

fact that history’s most eminent botanist, when under a deadline, makes last-minute decisions.

Rejecting the alternatives

In the entry for maize in Hortus Cliffortianus, Linnaeus noted a bevy of extant names. To understand 

why he rejected these, we must look to his rules for nomenclature, which he laid out (in true Linnaean 

fashion) in painstaking detail. Each decision to accept, reform, or reject a name was ultimately founded

on Fundamenta Botanica (1736), a collection of 365 aphorisms giving a philosophical framework for 
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why and how living things should be classified, as well as criteria for dividing bad names (lengthy, 

difficult to pronounce, based on color or size) from good ones (succinct, describing some consistent 

morphological feature, Greek or Latin root). When rejecting or accepting names in Hortus 

Cliffortianus, he often cited the relevant aphorism(s) from Fundamenta Botanica, occasionally 

clarifying with brief comments. For example, when he retracted Thalysia, his own name for maize, he 

made no explanation apart from citing aphorism 244: “New generic names should not be contrived, so 

long as adequate synonyms are readily available.”

Most of the extant names noted in Hortus Cliffortianus fell into two groups: derivatives of the 

Taíno word mahiz and demonyms such as Frumentum indicum (Indian corn) or Triticum turcicum 

(Turkish wheat). Two of Linnaeus’ most notable predecessors, Cesalpino and Tournefort, used 

derivatives of mahiz (Mays and Maiz) for the genus as a whole. Linnaeus, however, rejected these 

under aphorism 229 of Fundamenta Botanica: “Generic names that do not have a root in the Greek or 

Latin languages are to be rejected.” No such rule existed for specific names, towards which Linnaeus 

took a much more lax view, and so he relegated mays to a mere species name.

Many of the demonyms used for maize correctly noted the American origin of the crop, though 

using the adjective “Indian,” e.g. Milium indicum (Indian millet) or Triticum indicum (Indian wheat). 

Others, such as Frumentum turcicum (Turkish corn), purported an Asian origin, as discussed below. 

Linnaeus cited no specific reasons for rejecting these, though he used Triticum and Milium for other 

genera in Hortus Cliffortianus and disliked demonyms as a rule (see Philosophia Botanica 235).

The fascinating misnomer “Turkish corn” warrants a digression. Several other American species

bore such misnomers in European sources in the 1500s, e.g. Cucurbita pepo (called “Turkish 

cucumber” or “Turkish melon” in several prominent herbals of the time) and the eponymous meaty 
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bird. A putative Turkish origin for maize was repeated by numerous sources. The first European herbals

to describe maize, Tragus’ Kreüter Buch (1546) and Rembert Dodoens’ Cruyde Boeck (1554), both 

referred to it as a Turkish crop. The extreme similarity of their illustrations and several phrases in the 

text suggests that Dodoens borrowed heavily from Tragus’ entry, likely repeating this false origin in the

process. Caspar Bauhin’s Pinax Theatri Botanici (1623) documented over twenty names for maize, 

many purporting an origin in Turkey or elsewhere in western Asia, such as Frumentum asiaticum 

(Asiatic corn) or Triticum bactrianum (Bactrian wheat).

Judging from successive editions and translations of Dodoens’ highly influential Cruyde Boeck, 

the myth of a Turkish origin of maize was dispelled some time in the late 1500s. The original Dutch 

editions (1554, 1563) called maize Frumentum turcicum or Bled sarrazin (“Saracen wheat,” Saracen 

being a generic term for Arab, Middle-Eastern, or Muslim) but did not mention its provenance. A later 

English translation by Henry Lyte (1578) added the name “Indian wheate,” but maintained that it 

“groweth in Turkie.” Not long after this, the first Latin translation (1583) correctly recognized that 

maize was “by no means from Asia” (haudquaquam ex Asia), but rather from the Americas, ostensibly 

Hispaniola. This misnomer has nevertheless survived as the modern grano turco, a colloquial Italian 

name for maize.

Linnaeus’ justification for Zea

So, having ruled these other names out, why did Linnaeus choose Zea for an American genus that looks

very little like spelt or emmer, the historical bearers of the name? His explanation in Hortus 

Cliffortianus is terse:
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Zea, peculiaris frumenti species a veteribus adscriptum nomen, huc usque vagum, recepimus ad

designandum hoc genus loco Barbari istius vocabuli Mays. F.B. 229. Thalysia F.B. 244. Zea 

F.B. 242

We have accepted this genus to be designated Zea, the name given by the ancients given to a 

specific species of grain, hitherto vague, in place of that barbarian name Mays. F.B. 229. 

Thalysia F.B. 244. Zea F.B. 242

The relevant aphorism, Fundamenta Botanica 242, states:

Nomen genericum antiquum (241) antiquo generi convenit.

An ancient (241) generic name is appropriate for an ancient genus.

What exactly did Linnaeus mean by “ancient”? The cited aphorism 241 discusses names given by the 

Greek and Roman “fathers” of botany (nomina generica Patrum Botanices graeca vel Latina), whom 

Linnaeus revered. It is reasonable to think that “ancient genus” would have a similar connotation, i.e. 

ancient Greek or Roman, not simply old. However, with Zea, Linnaeus gave an ancient Greek/Roman 

name to a genus he knew to be American and thus unknown to ancient Greek and Roman sources.

To resolve this apparent contradiction, we can look to Linnaeus’ Critica Botanica (1737), which

clarifies and expands on many of his aphorisms. Though he did not mention Zea in his discussion of 

aphorism 242, he discussed Cactus at great length, a genus with many relevant parallels to Zea. Both 

genera were of American origin, but widely known in Europe in the 1700s, and both names were 

originally Latin names for plants that were placed into genera named after their more famous relatives 

(Zea into Triticum spelta, Cactus into Cynara cardunculus), leaving the names unused. Several eminent

botanists had named the genus of cacti Opuntia, a name Linnaeus rejected. This gave him the option to 
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devise some new name, one which conveyed the very distinctive physical characteristics of cacti. 

However, the genus was widely known in Linnaeus’ day as Melocactus (loosely, “melon thistle”), and 

in order to not upset the “common people” (ne vulgo displicerem), he decided to simply repurpose the 

ancient name Cactus, used by the ancient Romans for the similar-looking cardoon. The contradiction is

thus resolved by a double standard: while an “ancient name” is strictly one from the ancient Greeks or 

Romans, a genus widely known for only a few hundred years can qualify as an “ancient genus.”

Though this explains why Linnaeus had no problem repurposing an ancient Greek/Latin name 

for an American genus, the question remains as to why he chose Zea in particular, given that maize and 

spelt look quite different. Given the frequently poetic dimension to his work (partitioning his system 

into exactly 365 rules was certainly more of an aesthetic choice than a scientific one), I believe that his 

choice was not founded in morphology, but rests more on his esteem for the name itself. His main 

justifications for reassigning Cactus, which had been left unused after Linnaeus placed the cardoon 

with artichokes in the genus Cynara, were that it was both very ancient (antiquissimum) and very 

widely-known (vulgatissimum). This outweighed the fact, noted by Linnaeus himself, that designing a 

new name that was unambiguous and founded on invariant morphological features (the ideal 

construction according to Philosophia Botanica) would be very easy. In the case of Cactus, Linnaeus 

felt that the cultural and historical considerations of leaving an ancient Latin name unused outweighed 

his own scientific criteria. Given the ancient history of the name Zea, I believe this was also his 

sentiment when renaming maize Zea.

Genaust’s Hypothesis

204



To my knowledge, only a single author has put forward a hypothesis as to why Linnaeus chose Zea for 

maize. The German lexicographer Helmut Genaust addressed the question in his Etymologisches 

Wörterbuch der Botanischen Pflanzennamen (Etymological Dictionary of Botanical Plant Names, 

1976):

The long unanswered question, why Linnaeus now transferred the pre-Linnaean designation of 

spelt as a generic name to maize, finds its answer in the observation that the variety that is 

likely the oldest, Zea mays convar. tunicata (pod corn), has closed grains, as compared to dent 

corn (convar. dentiformis), today’s most cultivated and highest-yielding variety, in much the 

same way that spelt can be contrasted to the higher-yielding, free-threshing common wheat; 

moreover, the male flowers of maize are only two-flowered.

I find this explanation dubious. Though we now know that Tu1 was a later mutation, the question is 

whether Linnaeus himself believed pod corn to be maize’s ancestral form. This was almost certainly 

not the case. First, it was unlikely that Linnaeus had ever seen pod corn. There are no reliable European

accounts of pod corn predating 1809, when Spanish officer Felix de Azara described a variety called 

abatý-guaicurú in his Voyages dans l'Amérique méridionale. Not long after this, the French botanist 

Auguste Saint-Hilaire announced his discovery of pod corn in an 1829 letter to the French Academy of 

Sciences. Both authors felt they had encountered something unprecedented: de Azara described abatý-

guaicurú as “singular,” while Saint-Hilaire announced his as “a remarkable variety.” Such breathless 

descriptions would be unlikely if pod corn was known to Europe’s most eminent botanist a century 

prior. Second, in Genera Plantarum, Linnaeus describes the calyces and corollae of female maize 

flowers as being especially short (brevissimus), clearly not the long, enveloping structures found on 
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pod corn. The type specimen at Clifford’s estate, of which only the tassel was preserved, was thus 

certainly not pod corn.

Final thoughts

A newly discovered genus had heart-shaped marks on its seeds, and so Linnaeus named it 

Cardiospermum, or “heart-seed.” This etymology is clear, unambiguous, easily summarized, and 

boring. I find the muddled, winding history of the name Zea to be much more fascinating. Greeks and 

Romans debated for centuries whether “zeia-giving earth,” found in the earliest works of Western 

literature, was a metaphor for the life-giving properties of Mother Earth or simply a nod to a useful 

cereal. Europeans compiled a laundry of list of mistaken homelands for maize, from the Arabian 

peninsula to the steppes of central Asia. History’s most eminent botanist, under the gun from his 

publisher, made a last-minute decision to rename the plant which would become the world’s most 

widely cultivated crop. Is the very messy, and thus very human, story of the name Zea not far more 

interesting than what can be said about so many other genera?

As Helmut Genaust said, the question of why Linnaeus transferred the name is a “long 

unanswered question.” The simplest (and most cynical) answer is that if you are Carolus Linnaeus, you 

can name a genus whatever you darn well please. This explanation, however, is not a very satisfying 

one. Linnaeus spent his entire life creating and refining a nomenclature system, one that fused an 

obsession with clarity, poetic notions of a sublimely ordered universe, and a sense of inheritance from 

venerated ancients. His decisions may have had dubious justifications, such as his distaste for 

“barbarian” names, but they had justifications nonetheless. I believe his choice of Zea was not founded 
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in any meaningful parallels between maize and spelt, but rather rested on his notion that names with an 

illustrious history (to Linnaeus, synonymous with a lengthy history in Greek or Latin writing) must not 

be lost.
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APPENDIX B: TRANSCRIPTION AND TRANSLATION OF PASSERINI’S 1876 DESCRIPTION

OF HELMINTHOSPORIUM TURCICUM

The species Exserohilum turcicum, originally called Helminthosporium turcicum, was first described by

Italian pathologist Giovanni Passerini in the October 1876 issue of the Bolletino del Comizio Agrario 

Parmense (Bulletin of the Agrarian Committee of Parma). Though this report is cited frequently 

(indeed, any time the species is described in detail), its contents are not available to the Anglophone 

scientific world. A scan or digital copy is not available in any database of scientific or historical 

publications, and hard copies of the Bolletino, a regional agricultural journal with limited circulation, 

can be found in only a few Italian libraries. I obtained a scan of the report from the Biblioteca Civica 

dell'Ospedale Vecchio in Parma, transcribed it, and made my best attempt to translate it. Because the 

report is now in the public domain under Italian copyright law, and because I could think of no other 

suitable avenue to distribute it, I have included it here as an appendix. Passerini’s observations and 

impressions are fascinating, and I hope that they are of scientific and historical interest to other 

researchers of NLB, S. turcica, or the history of plant pathology and fungal taxonomy in general.
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LA NEBBIA6 DEL GRANO TURCO

Discorrendo nel no. 7 (Luglio 1876) di questo Bolletino sulla Nebbia dei Cereali accennai come

il Grano turco sia soggetto alla ruggine (Puccinia Sorghi Schweinz) la quale ne deturpa e fa seccare 

anzi tempo le foglie.

In quest’ anno, memorabile per le nebbie, ossia per l’invasione de’ fungilli parassiti su quasi 

ogni sorta di piante tanto coltivate che selvatiche, questa Puccinia del Grano turco, benché non abbia 

mancato di mostrarsi qua e là, non ha preso però l’ estensione né spiegato l’ intensità che ebbi altre 

volte ad osservare. Con tutto ciò i lamenti sulla Nebbia del Grano turco si fecero sentire assai per 

tempo, non iscompagnati da timori sulla prosperità della raccolta, quali pur troppo si sono più o meno 

verificati.

Era un fatto del quale molti non sapevano rendersi ragione, che cioè, persistendo pur sempre la 

stagione piovosa, già fino dal mese di Luglio, al tempo della fioritura della pianta, e quindi in quello 

del maggior vigore di essa, le foglie inferiori e gradatamente le successive andassero d’improvviso 

seccando in tutto od in parte, non altrimenti da ciò che sarebbe avvenuto per opera di estrema siccità. E 

ciò accadeva sopratutto nella bassa pianura e nelle località umide ove le piante intere persino ne 

perirono.

Al primo sentore che n’ebbi, stimai che si trattasse della ruggine, ma vedute appena le piante 

affette, conobbi che doveva essere altra cosa, non trovando di ruggine che scarsissime traccie, od anche

nessuna.

6 Nebbia, typically meaning “fog” or “mist,” is an archaic Italian term used for many blights, leaf spots, etc. See Merino-
Rodriguez 2013, Lexicon Of Plant Pests and Diseases
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Cominciava il male con delle macchie giallicce che presto inaridivano, estendendosi a tutta la 

lunghezza della foglia od a gran parte di essa. Alla superficie di tali macchie, pressochè nulla di 

rimarchevole riesciva visibile all’ occhio nudo, e soltanto coll’ aiuto della lente potevasi scorgere una 

fina peluria di colore olivastro, la quale non di rado mancava per qualche tratto od anche per tutta 

quanta l’ estensione della macchia. L’ esame microscropico di tale peluria rendeva poi manifesta la 

presenza di un fungillo microscopico, formato di lunghi fili articolati diritti o flessuosi di color giallo-

bruno e producenti grandi spore fusiformi divise da quattro o più tramezzi, giallo-olivastre e 

trasparenti.

Simigliante struttura è evidentemente quella di un fungillo demaziaceo del genere 

Helminthosporium, nel quale però non trovandosi, per quanto io ne sappia, alcuna specie nota che si 

attagli a questa del Grano turco, debbo di nenecessità [sic] presentarla sotto il nuovo nome di H. 

turcicum. (*)

(*) Gli esemplari che ne conservo nell’ erbario portano la seguente scheda:

Helminthosporium turcicum. Passer. hb. Hyphae longae rectae vel flexuosae articulatae luteo-fuscae, 

sporae magnae fnsiformes [sic, fusiformes] multiseptatae, luteo-olivaceae.

Ad folia languida, mox arescenda Zeae Maydis in campis Provinciae Parmensis. Aestate 1876.

La peluria suaccennata costituisce !a [sic] parte fruttificante del fungo, la cui porzione 

vegetativa nascosta nel tessuto delle foglie è quella che produce in esse le macchie, cagionandone il 

successivo disseccamento. Quanto alle macchie sulle quali non iscorgesi la lanugine, ossia la 

fruttificazione del fungillo, si può ritenere che questo è rimasto sterile, forse per la troppo rapida morte 
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del tessuto, dal quale soltanto può trarre il necessario alimento. È il caso di chi non avendo che una data

provvisione per vivere si trovi ridotto a morire di fame per averla esaurita anzi tempo.

Le macchie sterili però potrebbero anche appartenere ad un altro fungillo che ne produce delle 

somiglianti sulle foglie del Grano turco. È questo l’ Epicoccum neglectum Desmaz. che talvolta ho 

incontrato da solo e tal’altra frammisto coll’ Helminthosporium di cui emula gli effetti.

L’azione pertanto dei due accennati fungilli spiega abbastanza il fatto in apparenza paradossale 

del precoce inaridimento delle foglie ed anche di tutta la pianta, non ostante l’ umidità della stagione; 

nella quale anzi trovano i fungilli medesimi la condizione più favorevole per prosperare e per estendere

il loro influsso nocivo.

Tale essendo quindi la cagione e l’ essenza della Nebbia del Grano turco, vano sarebbe il 

pensare a rimedi finché la causa perduri, mentre col cessare di questa anche il danno può arrestarsi od 

almeno scemare da sè. Questo poi, come facilmente s’ intende, riesce tanto maggiore quanto più 

giovani sono le piante che ne vengono colte.

Che l’ umidità eccessiva sia stata veramente la causa di questa nebbia lo dimostra anche il modo

con cui si andò estendendo nella nostra Provincia. Nel mese di Luglio limitavasi dessa alla bassa 

pianura ed ai terreni di non facile scolo; soltanto verso la fine d’ Agosto, persistendo sempre le piogge, 

aveva guadagnato l’ alta pianura e le colline; e finalmente nella seconda metà di Settembre era salita 

sulle montagne, ov’ ebbi ad osservarla, sebbene non molto intensa, presso Borgotaro e Bedonia in 

occasione della gita degli Alpinisti al Monte Penna.

Vigheffio 18 Ottobre 1876

Prof. G. PASSERINI
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BLIGHT7 OF MAIZE

While discussing cereal blight in number 7 (July 1876) of this bulletin, I mentioned that maize 

can be subject to rust (Puccinia sorghi Schweinz), which scars the leaves and dries them prematurely.

In this year, notable for blights- that is, for the invasion of parasitic fungi on almost every kind 

of cultivated and wild plant- this Puccinia of maize, although it has not failed to appear here and there, 

has not reached the range nor the intensity that I had observed on previous occasions. Given all this, 

reports8 of maize blight arose in due time, not unaccompanied by fears over the success of the harvest, 

which have so far been more or less verified.

It was a fact of which many were not aware, that is to say, that persisting throughout the rainy 

season, until the month of July, at the time of the plant’s flowering, and hence in the time of its greatest 

vigor, the lower leaves, and gradually those above it, suddenly began withering in whole or in part, not 

unlike what would occur under extreme drought. And this was happening particularly in the lowlands 

and humid areas, where entire plants died.

Upon first impression, I thought that this might pertain to rust, but as soon as I saw the affected 

plants, I realized that it had to have been something else, not finding even the scarcest trace of rust.

The disease began9 with pale yellow spots that soon dessicated, extending down the entire the 

leaf or a large part of it. At the surface of these lesions, nothing remarkable was visible to the naked 

eye, and only with the help of the lens was it possible to see a fine olive-colored down, which was 

rarely lacking for a few parts or all the extent of the extent of the lesions. Microscopic examination of 

this down then revealed the presence of a microscopic fungus composed of long, articulated hyphae, 

7 All instances of nebbia have been translated as “blight,” per footnote above.
8 The original describes “laments” (lamenti), but a literal translation would not fit the tone of a scientific report.
9 Verbs in this paragraph were originally in mostly imperfect tense, but this translates awkardly to English. I have 

changed several verbs to simple past tense, but it must be remembered that Passerini is describing something he 
observed several times, not just once.
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straight or flexuous and of a yellow-brown color, producing large fusiform spores divided by four or 

more septa, yellow-olive in color and transparent.

Such a form is evidently that of a dematiaceous10 fungus of the genus Helminthosporium, which

to my knowledge does not yet contain any known species corresponding to this pathogen of maize, and 

thus I must necessarily present it under the new name of H. turcicum. (*)

(*) The samples I keep in the herbarium bear the following index:

Helminthosporium turcicum. Passer. Hyphae long, erect or flexuous, articulated, yellow-brown. Spores 

large, fusiform, septate, yellow-olive. On diseased leaves, soon afterwards withered, of Zea maydis in 

the field in the Province of Parma. Summer 1876.

The aforementioned down constitutes the reproductive part of the fungus, while the vegetative 

portion concealed in the leaf tissue is the portion which produces lesions, leading to the subsequent 

dessication. As for the lesions on which the down- that is, the fruiting body of the fungus- is not found, 

one might think that the fungus has remained sterile, perhaps because of the overly rapid death of the 

tissue, the exclusive source from which it can extract its necessary nourishment. 

The sterile lesions might instead belong to a different fungus that produces similar symptoms on

maize leaves. This would be Epicoccum neglectum Desmaz., which I have encountered at times by 

itself and at other times intermixed with Helminthosporium, of which it emulates the appearance.

The action of these two fungi thus adequately explains the seemingly paradoxical fact of the 

early dessication of the leaves, and even of the whole plant, in spite of the humidity of the season; in 

10 Of defunct family Dematiaceae.

213



such conditions, these fungi actually find more favorable conditions in which to prosper and extend 

their noxious influence.

This being the cause and the essence of Maize Blight, it would be pointless to think of remedies

as long as the cause persists, whereas if this causal agent is stopped, the damage may stop or at least 

diminish on its own. This then, as is plain to see, is more successful the younger the plants being 

cultivated are.

That excessive humidity was truly the cause of this blight also is also demonstrated by the way 

in which it spread throughout our province. In the month of July it was limited to the lowland plains 

and to soils with poor drainage; only towards the end of August, with constantly persistent rain, did it 

reach the high plains and hills; and finally in the second half of September I climbed the mountains, 

where I observed it, though not very intense, at Borgotaro and Bedonia on the Mountaineers' trip to 

Monte Penna.

Vigheffio, 18 October 1876.
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