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Decentralized control problems naturally arise in the control of large-scale net-

worked systems. Such systems are regulated by a collection of local controllers

in a decentralized manner, in the sense that each local controller is required to

specify its control input based on its locally accessible sensor measurements.

In this dissertation, we consider the decentralized control of discrete-time, lin-

ear systems subject to exogenous disturbances and polyhedral constraints on

the state and input trajectories. The underlying system is composed of a fi-

nite collection of dynamically coupled subsystems, each of which is assumed

to have a dedicated local controller. The decentralization of information is ex-

pressed according to sparsity constraints on the sensor measurements that each

local controller has access to. In its most general form, the decentralized control

problem amounts to an infinite-dimensional nonconvex program that is, in gen-

eral, computationally intractable. The primary difficulty of the decentralized

control problem stems from the potential informational coupling between the

controllers. Specifically, in problems with nonclassical information structures,

the actions taken by one controller can affect the information acquired by other

controllers acting on the system. This gives rise to an incentive for controllers

to communicate with each other via the actions that they undertake—the so-

called signaling incentive. To complicate matters further, there may be hard con-

straints coupling the actions and local states being regulated by different con-



trollers that must be jointly enforced with limited communication between the

local controllers. In this dissertation, we abandon the search for the optimal de-

centralized control policy, and resort to approximation methods that enable the

tractable calculation of feasible decentralized control policies.

We first provide methods for the tractable calculation of decentralized con-

trol policies that are affinely parameterized in their measurement history. For

problems with partially nested information structures, we show that the opti-

mization over such a policy space admits an equivalent reformulation as a semi-

infinite convex program. The optimal solution to these semi-inifinite programs

can be calculated through the solution of a finite-dimensional conic program.

For problems with nonclassical information structures, however, the optimiza-

tion over such a policy space amounts to a semi-infinite nonconvex program.

With the objective of alleviating the nonconvexity in such problems, we propose

an approach to decentralized control design in which the information-coupling

states are effectively treated as disturbances whose trajectories are constrained

to take values in ellipsoidal “contract” sets whose location, scale, and orienta-

tion are jointly optimized with the affine decentralized control policy being used

to control the system. The resulting problem is a semidefinite program, whose

feasible solutions are guaranteed to be feasible for the original decentralized

control design problem.

Decentralized control policies that are computed according to such convex

optimization methods are, in general, suboptimal. We, therefore, provide a

method of bounding the suboptimality of feasible decentralized control policies

through an information-based convex relaxation. Specifically, we characterize

an expansion of the given information structure, which maximizes the optimal

value of the decentralized control design problem associated with the expanded



information structure, while guaranteeing that the expanded information struc-

ture be partially nested. The resulting decentralized control design problem

admits an equivalent reformulation as an infinite-dimensional convex program.

We construct a further constraint relaxation of this problem via its partial du-

alization and a restriction to affine dual control policies, which yields a finite-

dimensional conic program whose optimal value is a provable lower bound on

the minimum cost of the original decentralized control design problem.

Finally, we apply our convex programming approach to control design to

the decentralized control of distributed energy resources in radial power distri-

bution systems. We investigate the problem of designing a fully decentralized

disturbance-feedback controller that minimizes the expected cost of serving de-

mand, while guaranteeing the satisfaction of individual resource and distribu-

tion system voltage constraints. A direct application of our aforementioned

control design methods enables both the calculation of affine controllers and

the bounding of their suboptimality through the solution of finite-dimensional

conic programs. A case study demonstrates that the decentralized affine con-

troller we compute can perform close to optimal.
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CHAPTER 1

INTRODUCTION

1.1 The Decentralized Control Design Problem

Classical optimal control theory is founded on the assumption of centralized in-

formation structures. That is to say, the system is assumed to be controlled by a

single controller that has access to all sensor measurements. Many real-world

large-scale systems, however, may fail to satisfy this assumption. Typical ex-

amples include the power system, signalized transportation networks, vehicle

platoons, supply chains, and digital communication networks. In such systems,

the sharing of sensor measurements is limited, due to the geographical separa-

tion between different system components, the limited communication capabil-

ity between the local controllers, and the cost of storage and computation for the

local controllers. As a result, the control of such systems is required to be per-

formed in a decentralized fashion, in the sense that each local controller needs

to specify its control input using its locally accessible sensor measurements.

The control actions taken by the local controllers are expected to jointly

achieve a performance objective of the global system without violating global

system constraints. In order to achieve an appropriate coordination between the

local controllers, the local control policies need to be jointly designed through

the solution of a so-called decentralized control design problem. The study of de-

centralized control design problems dates back to the seminal work by Rad-

ner in the early 1960s on team decision problems [81], yet the optimal solu-

tions to most decentralized control design problems have remained unknown

to this day. In this dissertation, we consider a family of decentralized control

1



design problems for discrete-time linear systems that operate over a finite time

horizon. In such problems, the objective is to specify a decentralized control

policy that minimizes the expected value of a convex cost function while guar-

anteeing the robust satisfaction of constraints on the state and input trajecto-

ries. In general, such decentralized control design problems amount to infinite-

dimensional non-convex programs that are known to be computationally in-

tractable [89, 101, 109]. In what follows, we provide an overview of the main

difficulties in the decentralized control design problems considered in this dis-

sertation.

1.1.1 Nonclassical Information Structures

The primary difficulty in decentralized control problems lies in the potential

informational coupling between the controllers. Specifically, in problems with

nonclassical information structures, the actions taken by one controller can af-

fect the information acquired by other controllers. In these problems, there is

an incentive for controllers to communicate with each other through its con-

trol actions—the so-called signaling incentive in decentralized control problems.

As a result of such informational coupling, the optimal decentralized control

policy needs to achieve an appropriate three-way tradeoff between exploration,

exploitation, and communication, and is, in general, intractable to compute. A

typical example to this assertion is the celebrated Witsenhausen’s counterexam-

ple [109], which shows that even a simple two-stage, two-controller decentral-

ized control design problem would be computationally intractable due to the in-

formation coupling between controllers. Specifically, it was shown in [109] that

a two-point quantization policy strictly outperforms the optimal affine control

2



policy when the signal-to-noise ratio (SNR) of communicating through the plant

is large and the cost of communication is low. Such a result clearly exemplifies

the incentive to signal in decentralized control design problems. To this day,

the optimal solution to Witsenhausen’s counterexample remains unknown [93],

indicating that there is little hope in calculating the optimal control policy for

more complicated decentralized control problems.

1.1.2 Satisfaction of Hard Constraints

The difficulty in solving problems of decentralized control is further exacer-

bated by the requirement of enforcing hard constraints on the state and input

of the global system with limited communication between controllers. Specifi-

cally, there are two major sources of difficulty in enforcing hard constraints in

problems of decentralized control. First, the enforcement of such constraints

requires an implicit coordination between the control inputs of different con-

trollers. That is, each controller’s input is required to be constraint admissible

given the “worst-case” realization of other controllers’ inputs. Second, the infor-

mational coupling between different controllers further complicates the speci-

fication of constraint-admissible decentralized control policies. Specifically, a

change in the local control policy of one controller might affect the information

acquired by other controllers and subsequently lead to a change in their con-

trol inputs. Even under the restriction to decentralized affine control policies,

enforcing polyheral constraints on the state and input trajectories amounts to

the enforcement of a multi-linear inequality constraint on the control gains—a

constraint that is, in general, computationally intractable to enforce.

3



The aforementioned discussions on the difficulty in decentralized control de-

sign problems suggests that there might be little hope in obtaining the globally

optimal control policy for the decentralized control of constrained dynamical

systems. In this dissertation, we relax the requirement that the decentralized

control policy be optimal with respect to the broad family of all causal decen-

tralized control policies, and instead search for suboptimal decentralized con-

trol policies that can be efficiently computed via convex optimization methods.

1.2 Summary of Contributions and Organization

In this dissertation, we develop tractable inner and outer approximations of

constrained decentralized control design problems using convex optimization

methods. The primary contributions of this dissertation are two-fold. First, we

derive inner approximations of constrained decentralized control design prob-

lems that can be tractably computed via the solution of finite-dimensional con-

vex programs. Second, as the decentralized control policy we compute is, in

general, suboptimal, we bound the suboptimality of feasible decentralized con-

trol policies via the calculation of a lower bound on the optimal value of a decen-

tralized control problem using convex optimization methods. In what follows,

we summarize the contents and contributions in each chapter of the disserta-

tion.

In Chapter 2, we review the sources of difficulty in constrained decentral-

ized control design problems via an investigation of Witsenhausen’s counterex-

ample and its constrained variants. We first provide a review of the classical

Witsenhausen’s counterexample to unravel the difficulty in decentralized con-

4



trol problems that stems from the incentive to signal between controllers. In

particular, our result shows that affine control policies are close to optimal if the

incentive to signal—as measured according to the signal-to-noise ratio (SNR)

and the cost of “communicating” through the actions—is small, but might be

far from optimal if the incentive to signal is large. Additionally, we investigate

a constrained variant of Witsenhausen’s counterexample, and describe the dif-

ficulty in decentralized control associated that arises from the hard constraints

on the state and input. We show that the optimal linear control policy has an

“assume-guarantee” structure that reflects the implicit coordination between

the controllers. Namely, each controller assumes that the coupling states and

inputs from other controllers behave as disturbances that take value in a given

“contract” set, and constrain its control policy in a manner that guarantees the

consistency between the assumed and actual behaviors of the coupling states

and inputs. We illustrate how such a structure enables the tractable calcula-

tion of feasible control policies for the constrained variant of Witsenhausen’s

counterexample, and discuss the application of this technique to more general

decentralized control design problems.

In Chapter 3, we define the constrained decentralized output-feedback con-

trol design problem that we consider, and discuss how the convexity of the

problem depends on the underlying information structure. We first construct

an equivalent reformulation of the decentralized control design problem using

the classical Youla parameterization. We show that the Youla parameterization

yields an equivalent reformulation of the decentralized control design problem

as a convex program if and only if the information structure is partially nested—

that is, an information structure in which each controller’s local information

cannot be affected by any control input. Under the restriction to partially nested

5



information structures, we show that the calculation of the optimal affine con-

trol policy amounts to a robust convex program and admits an equivalent refor-

mulation as a finite-dimensional conic program.

In Chapter 4, we investigate the design of decentralized control policies that

are affine in the state history for problems with arbitrary (possibly nonclassical)

information structures. In order to alleviate the nonconvexity arising from the

informational coupling between subsystems, we treat the so-called information-

coupling states as disturbances whose trajectories are “assumed” to take values

in a contract set. To ensure the satisfaction of this assumption, we impose a con-

tractual constraint on the control policy that “guarantees” that the information-

coupling states that it induces belong to said contract set. Naturally, this yields

an inner approximation of the original decentralized control design problem,

where the conservatism of the resulting approximation depends critically on

the specification of the contract set. To mitigate this potential conservatism, we

formulate a semi-infinite program to co-optimize the decentralized control pol-

icy with the location, scale, and orientation of the contract set. We establish a

condition on the set of allowable contracts that facilitates the joint optimization

the contract set and control policy via the solution of a semidefinite program.

The decentralized control policies we derive in Chapters 3 and 4 are, in gen-

eral, suboptimal. In Chapter 5, we derive a computationally tractable lower

bound on the minimum cost of the decentralized control design problem to eval-

uation the suboptimality of such policies. Our derivation of the lower bound

consists of two relaxation steps, which together yield a finite-dimensional con-

vex programming relaxation of the original problem. The first step entails an

information relaxation, which eliminates the signaling incentive between con-
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trollers by expanding the set of measurements that each controller has access to.

Specifically, we characterize an expansion of the given information structure,

which ensures its partial nestedness, while maximizing the optimal value of the

resulting decentralized control problem under the expanded information struc-

ture. The relaxed decentralized control problem admits an equivalent refor-

mulation as an infinite-dimensional convex program via the classical Youla pa-

rameterization. Although convex, the resulting optimization problem remains

computationally intractable due to its infinite-dimensionality. In the second re-

laxation step, we obtain a finite-dimensional relaxation of this problem through

its partial dualization, and restriction to affine dual control policies. The re-

sulting problem is a finite-dimensional conic program, whose optimal value is

guaranteed to be a lower bound on the minimum cost of the original decentral-

ized control design problem.

In Chapter 6, we describe an application of the techniques developed in

this dissertation to the decentralized control of distributed energy resources

in power distribution systems. The problem we consider amounts to the de-

sign of a fully decentralized disturbance-feedback controller that minimizes the

expected value of a convex quadratic cost function, subject to robust convex

quadratic constraints on the system state and input. The optimal control policy

for such problems is, in general, intractable to compute. We apply the tech-

niques we developed in Chapter 3 to derive a tractable inner approximation

of the decentralized control design problem. This enables the efficient compu-

tation of an affine control policy via the solution of a finite-dimensional conic

program. As affine control policies are, in general, suboptimal for the family of

systems considered, we apply our results in Chapter 5 to bound their subopti-

mality via the solution of another finite-dimensional conic program. We verify
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that the decentralized controller we derive are close to optimal for the problem

instance considered in the case study.

In Chapter 7, we close the dissertation with a summary of main contribu-

tions and a discussion on directions for future work.

1.3 Notation

Let R and R+ denote the set of real numbers and non-negative real numbers,

respectively. Denote the transpose of a vector x ∈ Rn by xT. For any pair of

vectors x = (x1, .., xn) ∈ Rn and y = (y1, .., ym) ∈ Rm, we define their concate-

nation as (x, y) = (x1, .., xn, y1, .., ym) ∈ Rn+m. For a vector x = (x1, . . . , xN) that

is concatenated from N subvectors x1, . . . , xN and an index set J ⊆ {1, . . . , N},

we denote by xJ the subvector of x that is concatenated from the subvectors xj

for j ∈ J . The subvectors in xJ are ordered in ascending order of their indices.

For example, if J = {1, 3}, then xJ = (x1, x3). Given a process {x(t)} indexed

by t = 0, . . . , T − 1, we denote by xt = (x(0), x(1), . . . , x(t)) its history up until

and including time t, and by xs:t = (x(s), x(s+ 1), . . . , x(t)) its history from time

s until time t.

We consider block matrices throughout the dissertation. Given a block ma-

trix A whose dimension will be clear from the context, we denote by [A]ij its

(i, j)th block. We denote the trace of a square matrix A by Tr (A). We denote

by K a proper cone (i.e., convex, closed, and pointed with an nonempty inte-

rior). Let K∗ denote its dual cone. We write x �K y to indicate that x − y ∈ K.

Given a matrix A, we let A �K 0 denote its columnwise inclusion in K. For a set

S ⊆ Rn and a matrix A ∈ Rm×n, the image of the set S under the linear map A

8



is given by AS = {Ax|x ∈ S}. For two arbitrary sets S, T ⊆ Rn, we denote their

Minkowski sum by S ⊕ T := {x+ y|x ∈ S, y ∈ T }.
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CHAPTER 2

WITSENHAUSEN’S COUNTEREXAMPLE AND ITS VARIANTS

Witsenhausen’s counterexample [109] is a two-stage, two-controller decen-

tralized control problem that reveals the difficulty in decentralized control that

stems from the incentive to signal between controllers. In this chapter, we re-

strict ourselves to Witsenhausen’s counterexample and its constrained variants.

Our investigation of these toy problems reveals the main challenges in solving

constrained decentralized control design problems.

The remainder of this chapter is organized as follows. In Section 2.1, we il-

lustrate how the incentive to signal between controllers leads to the intractability

in solving Witsenhausen’s counterexample. We first show that calculation of the

optimal affine control policy of Witsenhausen’s counterexample requires the so-

lution of a nonconvex program. As affine policies are, in general, suboptimal,

we reproduce the information-theoretic lower bounds in [52] on the optimal

value of Witsenhausen’s counterexample, which provides an upper bound on

the suboptimality of affine policies. The resulting bound quantifies the difficulty

in solving decentralized control design problems that stems from the incentive

to signal—as is measured by the signal-to-noise ratio (SNR) and the cost of com-

municating through the plant. Namely, we show that affine policies are close to

optimal if the SNR of communicating through the plant is small or the cost of

communication is high, but might be far from optimal if neither of the afore-

mentioned conditions are satisfied.

In addition to the incentive to signal, another important source of difficulty

in constrained decentralized control design problems is the requirement of en-

forcing hard constraints on the system state and input with limited communi-
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cation between controllers. In Section 2.2, we investigate a constrained vari-

ant of Witsenhausen’s counterexample and describe the additional difficulty in

solving this problem that stems from the hard constraints on both controllers’

inputs. Specifically, the constraint variant of Witsenhausen’s counterexample

we investigate entails a hard constraint on the inputs from the two controllers

that needs to be enforced without explicit communication. We show that the

optimal linear control policy has an “assume-guarantee” structure that reflects

the implicit coordination between the two controllers. Namely, under the op-

timal linear control policy, the second controller essentially treats the state that

is affected by the first controller’s input as a disturbance that is assumed to take

value in a given “contract set”. The control policy of the first controller, on the

other hand, is constrained in such a way that guarantees the inclusion of the

state it affects in the “contract set”. Such a mechanism of attaining the implicit

coordination between controllers will enable the tractable inner approximation

of a general family of decentralized control design problems. We provide an

illustration of this approximation technique to the constrained variant of Wit-

senhausen’s counterexample.

2.1 Witsenhausen’s Counterexample

In the centralized control of linear systems with quadratic cost and additive

Gaussian disturbances (i.e., the LQG problem), it is well-known in the litera-

ture that the optimal control policy is affine in the history of measured out-

puts [92]. For decentralized LQG problems, however, Witsenhausen provided a

counterexample—later known as Witsenhausen’s counterexample [109]—to the

conjecture that affine policies are also optimal to decentralized control problems.
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Specifically, Witsenhausen’s counterexample is a two-stage, two-controller de-

centralized LQG problem, in which a two-point quantization policy that com-

municates the first controller’s local information to the second controller outper-

forms the best affine control policy. This clearly reveals the potential reduction

in cost that might be attained via the communication of a controller’s local infor-

mation through its control action—the so-called signaling incentive. In what fol-

lows, we leverage on Witsenhausen’s counterexample to describe the difficulty

in decentralized control design problem that stems from the signaling incentive

between controllers.

2.1.1 Problem Statement and the Signaling Incentive

Consider a linear system described according to

x1 = x0 + u0,

x2 = x1 − u1,

where all state and input variables are assumed to be scalars. The initial con-

dition x0 is assumed to be a zero mean Gaussian random variable with vari-

ance σ2, where the scalar parameter σ > 0. The outputs that controller-0 and

controller-1 have access to are given by

y0 = x0,

y1 = x1 + z,

where the measurement noise z is assumed to be a zero mean Gaussian random

variable with variance 1 that is independent of the initial condition x0. The con-

trol input from each controller is specified as a function of its accessible output.
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That is, they are specified according to

ui = γi(yi), i = 0, 1,

where γi(·) is a measurable univariate scalar function for i = 0, 1. Witsen-

hausen’s counterexample is given by the following decentralized control design

problem:

minimize E[λ2u2
0 + x2

2]

subject to ui = γi(yi), i = 0, 1

x1 = x0 + u0,

x2 = x1 − u1,

y0 = x0,

y1 = x1 + z,

(2.1)

where the cost parameter λ > 0. The information structure in Witsenhausen’s

counterexample is nonclassical, in the sense that controller-1’s accessible output

is an affine function of controller-0’s control input—which controller-1 does not

have access to. In Figure 2.1, we provide a cartoon illustration of Witsenhausen’s

counterexample that is taken from [88]. Specifically, one can think of Witsen-

hausen’s counterexample as a problem of regulating the system initial state x0

to be close to zero in two steps with minimum cost using a “weak” controller

and a “blurry” controller. Here, controller-0 is considered to be “weak”, as it is

subject to a quadratic cost on its control inputs; and controller-1 is considered to

be “blurry”, as it only has access to a noisy measurement of the state x1.

The optimal control input of controller-1 is the conditional expectation of

the state x1 given its noisy measurement x1 + z. Consequently, solving problem

(2.1) boils down to specifying the control policy from controller-0 that minimizes
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Figure 2.1: A cartoon illustration of Witsenhausen’s counterexample (taken
from [88]) as the problem of controlling the position of a hypothetical inverted
pendulum over two discrete time periods. The controller that acts first is a
“weak” controller, who has perfect observation of the system state and a high
control cost. The controller that acts second is a “blurry” controller, who has a
noisy measurement of the system state and a control cost of zero. The objective
is to design control policies for both controllers that regulates the system state
close to zero in two steps with a low cost.

the sum of its control cost and the mean squared error (MSE) in estimating the

state x1. In Witsenhausen’s seminal paper [109], it was shown that a nonlinear

control policy, in which controller-0 transmits the sign of the random variable

x0 to controller-1 using a two-point quantization policy, strictly outperforms the

optimal affine control policy in the high “signal-to-noise ratio” regime of the

problem parameters. Such a result clearly reveals the incentive for controllers

to implicitly communicate to each other through their control inputs—the so-

called incentive to signal.

Research on Witsenhausen’s counterexample has since provided profound

insights on the difficulty in decentralized control design problems that arises

from the incentive to signal. In spite of its deceptive simplicity, Witsenhausen’s

counterexample has remained unsolved for 52 years [93]. The hardness for solv-

ing Witsenhausen’s counterexample is not a result of the inadequacy of avail-

able mathematical tools, but in stead, a consequence of its inherent complex-
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ity. Specifically, it was shown in [101] that a discrete version of Witsenhausen’s

counterexample is NP-complete. To this day, the only control policy that is

known to be within a constant factor of the optimum of the problem is a multi-

point quantization policy [52, 53]. There has been a conjecture that the optimal

control policy for Witsenhausen’s counterexample is a slopey quantization pol-

icy [6, 52, 68], but no formal proof has been obtained for this conjecture.

The computational intractability of Witsenhausen’s counterexample sug-

gests that there is little hope in calculating the optimal control policy for more

general decentralized control problems that involve the control of multiple sub-

systems over multiple time periods. In the following subsection, we further

strengthen this argument by showing that the problem of computing the op-

timal decentralized affine control policy requires the solution of a nonconvex

(multilinear) program.

2.1.2 Optimal Affine Policy

Consider the setting in which the control input from controller-0 is given by

u0 = k0x0 + u0. (2.2)

It follows from Eq. (2.2) that the conditional mean E[x1|y1] is affine in y1. This

implies that the optimal affine control policy for controller-1 is given by

u∗1 = E[x1|y1] = u0 +
σ2(k0 + 1)2

1 + σ2(k0 + 1)2
(y1 − u0). (2.3)

The terminal state x2 that results under the control policies in Eqs. (2.2) and (2.3)

is given by

x2 =
(k0 + 1)x0 − σ2(k0 + 1)2z

σ2(k0 + 1)2 + 1
.
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We denote by Ja(k0, u0) the cost that is incurred by the affine control policies

specified in Eqs. (2.2) and (2.3). It is given by

Ja(k0, u0) = λ2(k2
0σ

2 + u2
0) +

σ2(k0 + 1)2

σ2(k0 + 1)2 + 1
. (2.4)

Eq. (2.4) clearly reveals controller-0’s incentive to signal its local information to

controller-1, as the cost Ja(k0, u0) includes one term that is associated with the

MSE in estimating the state x1 given the output y1.

It is straightforward to show that the optimal open-loop control input from

controller-0 is given by u∗0 = 0. The calculation of the optimal feedback control

gain k0, however, requires the solution of a nonconvex program. We have the

following result, which provides a necessary condition that the optimal affine

control policy must satisfy.

Lemma 1. The optimal affine control policy for problem (2.1) satisfies

u0 = k0y0 and u1 =
σ2(k0 + 1)2

1 + σ2(k0 + 1)2
y1,

where k0 satisfies

−1

λ
≤ k0 ≤

1

λ
and λ2k0 = − k0 + 1

(σ2(k0 + 1)2 + 1)2 .

The proof of Lemma 1 is omitted, as it immediately follows from the sta-

tionarity condition ∂Ja/∂k0 = 0. Lemma 1 shows that even for a decentralized

control design problem as simple as Witsenhausen’s counterexample, the op-

timal affine control policy requires the enumeration of all candidate solutions

that satisfy the stationarity condition. Moreover, the difficulty in calculating

the optimal affine control policy only gets further amplified if we consider the

decentralized control of a linear system consisting of multiple local controllers

over multiple time periods. For these problems, the calculation of the optimal
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affine control policy amounts to a multilinear optimization problem and is, in

general, computationally intractable.

2.1.3 Lower Bounds and Performance Guarantees

Affine control policies are, in general, suboptimal for Witsenhausen’s counterex-

ample. In spite of this, they can perform close to optimal in certain parameter

regimes. In this subsection, we bound the suboptimality of the optimal affine

control policy by reproducing the information-theoretic lower bound in [52,53].

Of particular relevance to the difficulty in decentralized control that stems from

the incentive to signal, this bound shows that affine control policies perform

close to optimal when the incentive to signal is small—that is, problem instances

in which the signal-to-noise ratio (SNR) of “communicating through the plant”

is small or the cost of communication is high.

We begin by reproducing the information-theoretic lower bound on the

optimal value of Witsenhausen’s counterexample that was initially presented

in [52, 53]. Specifically, consider the following constrained variant of Witsen-

hausen’s counterexample, in which we impose a power constraint on the control
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input from controller-0:

minimize E[λ2u2
0 + x2

2]

subject to ui = γi(yi), i = 0, 1

E[u2
0] = P

x1 = x0 + u0,

x2 = x1 − u1,

y0 = x0,

y1 = x1 + z,

(2.5)

where the power of controller-0 satisfies P ≥ 0. Let J∗(P ) denote the optimal

value for problem (2.5). The derivation of a lower bound on J∗(P ) is equiva-

lent to deriving a lower bound on the estimation error E[x2
2] under the power

constraint E[u2
0] = P . This follows from the triangular inequality arguments

in [52, Lem. 3]. Specifically, we have that

√
E[(x0 − u1)2] ≤

√
E[(x1 − u1)2] +

√
E[(x0 − x1)2] =

√
E[x2

2] +
√
P .

It follows that E[x2
2] is lower bounded by

E[x2
2] ≥

((√
E[(x0 − u1)2]−

√
P
)+
)2

, (2.6)

where (·)+ := max{·, 0}. In the following lemma, we provide a lower bound

on the estimation error E[(x0 − u1)2] under the power constraint E[u2
0] = P . Its

proof is identical to the information-theoretic arguments in [7, 8, 13]. In spite of

this, we keep the proof in its full details to make this subsection self-contained.

Lemma 2. Let u0 and u1 satisfy all constraints in problem (2.5). It follows that

E[(x0 − u1)2] ≥ σ2(
σ +
√
P
)2

+ 1
.
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Proof: It follows from the triangular inequality in [52, Lem. 3] that E[x2
1] is

upper bounded by

E[x2
1] ≤

(√
E[x2

0] +
√
E[u2

0]

)2

=
(
σ +
√
P
)2

.

Additionally, note that x1 is a function of x0, and u1 is a function of x1 + z. It

follows from the data processing inequality [110] that

I(x0;u1) ≤ I(x1;x1 + z), (2.7)

where I(·; ·) denotes the mutual information. The mutual information I(x1;x1 +

z) is upper bounded by the capacity of a Gaussian channel with unit noise vari-

ance and power constraint E[x2
1] ≤

(
σ +
√
P
)2

. That is to say, we have that

I(x1;x1 + z) ≤ 1

2
log

(
1 +

(
σ +
√
P
)2
)
. (2.8)

Additionally, the mutual information I(x0, u1) is lower bounded by the rate dis-

tortion function (cf. [19]), which is given by

I(x0;u1) ≥ 1

2
log

σ2

E[(u1 − x0)2]
. (2.9)

The combination of (2.7)–(2.9) implies that

1

2
log

σ2

E[(u1 − x0)2]
≤ 1

2
log

(
1 +

(
σ +
√
P
)2
)
.

It follows that the expected distortion E[(u1 − x0)2] is lower bounded by

E[(u1 − x0)2] ≥ σ2(
σ +
√
P
)2

+ 1
.

This completes the proof. �

A combination of inequality (2.6) and Lemma 2 implies the following lower

bound on the optimal value of problem (2.5):

J∗(P ) ≥ λ2P +


√√√√ σ2(

σ +
√
P
)2

+ 1
−
√
P


+

2

(2.10)
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Let J∗ be the optimal value of Witsenhausen’s counterexample (2.1). It follows

that J∗ is lower bounded by

J∗ ≥ inf
P≥0

λ2P +


√√√√ σ2(

σ +
√
P
)2

+ 1
−
√
P


+

2
 . (2.11)

We note that the derivation of the lower bound (2.11) relies heavily on the

information-theoretic interpretation of Witsenhausen’s counterexample, and

might not generalize to the decentralized control of arbitrary linear systems over

multiple time periods. In Chapter 5, we provide a computationally tractable

lower bound for a large family of constrained decentralized control problems

that is based on an expansion of each controller’s accessible information.

With the lower bound (2.11) in hand, we have the following result, which

provides an upper bound on the suboptimality of the optimal affine control

policy for Witsenhausen’s counterexample.

Proposition 1. Let J∗a be the cost that is incurred by the optimal affine controller.

We have that

J∗a
J∗
≤

 λ
√
σ2 + 1 + 1(

λ
√
σ2 + 1−

√
σ2 (1 + 1/λ)2 + 1

)+


2

. (2.12)

In Figure 2.2a, we plot the suboptimality upper bound in (2.12) as a function

of the cost parameter λ for different fixed values of σ. The suboptimality upper

bound is decreasing in λ for each fixed value of σ. Moreover, it is straightfor-

ward to show that the suboptimality upper bound converges to 1 as λ → ∞.

This is to be expected, as an increase in the parameter λ leads to an increase in

the cost to signal, and subsequently shrinks the possible reduction in cost that

controller-0 might achieve via its effort to signal through the plant.
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(a) The suboptimality upper bound as a function of the cost parameter λ at different
fixed values of the parameter σ.
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(b) The suboptimality upper bound as a function of the parameter σ at different fixed
values of the cost parameter λ.

Figure 2.2: The suboptimality upper bound in (2.12) at different values of the
parameters σ and λ.

In order to further examine the dependency of the suboptimality upper

bound on the variance of controller-0’s accessible signal x0, we plot the sub-

optimality upper bound in (2.12) as a function of the parameter σ for different

fixed values of the cost parameter λ in Figure 2.2b. The suboptimality upper

bound is insensitive to variations in σ when the cost parameter λ is large. How-

ever, for λ ≤ 2.2, the minimum value of the suboptimality upper bound for

σ ∈ [0, 10] is attained when σ → 0. Moreover, one can show that the subop-

timality upper bound converges to 1 + 2/(λ − 1)+ as σ → 0. This implies the
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possibility that the suboptimality of affine control policies are small when the

“signal-to-noise ratio” (SNR) of communicating through the plant is small. This

is closely related to the classsical result in communication theory that nonlinear

modulation policies are optimal only in the high SNR regime [59].

Finally, both of aforementioned observations hint at the possibility that affine

control policies be highly suboptimal if the SNR of communication through the

plant is high and the cost of communication is low. This is consistent with the

results in Witsenhausen’s seminal paper [109], in which a two-point quantiza-

tion policy is shown to outperform the best linear policy asymptotically as the

SNR becomes large and control cost becomes small.

We complete this subsection with the proof of Proposition 1.

Proof of Proposition 1: First note that J∗ is upper bounded by

J∗ ≤ Ja(0, 0) =
σ2

σ2 + 1
.

Let P ∗ ∈ argminP≥0{J∗(P )}. We have the following upper bound on P ∗:

P ∗ ≤ J∗

λ2
≤ σ2

λ2(σ2 + 1)
.

Inequality (2.10) provides a lower bound on J∗(P ) for each P ≥ 0. In what

follows, we provide a further lower bound on J∗(P ) under the additional as-
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sumption that P ∈ [0, σ2/(λ2(σ2 + 1))]. We have that

J∗(P ) ≥ λ2P +


√√√√ σ2(

σ +
√
P
)2

+ 1
−
√
P


+

2

= λ2P +

(σ −√P

((
σ +
√
P
)2

+ 1

))+
2

(
σ +
√
P
)2

+ 1

≥ λ2P +

((
σ − σ

√
(σ+
√
P)

2
+1

λ2(σ2+1)

)+)2

(
σ +
√
P
)2

+ 1

≥ λ2P +

σ2

(1−

√(
σ
(

1+1/
√
λ2(σ2+1)

))2
+1

λ2(σ2+1)

)+
2

(
σ +
√
P
)2

+ 1

≥ λ2P +

σ2

((
1−

√
(σ(1+1/λ))2+1
λ2(σ2+1)

)+
)2

(
σ +
√
P
)2

+ 1
.

where the third and fourth inequalities both follow from the assumption that

P ≤ σ2/(λ2(σ2 + 1)).

Let J∗a(P ) be the cost associated with the optimal linear control policy that

satisfies E[u2
0] = P . In what follows, we provide an upper bound on J∗a(P )

under the assumption that 0 ≤ P ≤ σ2/(λ2(σ2 + 1)). We have that

J∗a(P ) = min
{
Ja

(√
P/σ2, 0

)
, Ja

(
−
√
P/σ2, 0

)}
≤ λ2P +

(
σ +
√
P
)2

(
σ +
√
P
)2

+ 1

≤ λ2P +
σ2
(

1 +
√

1
λ2(σ2+1)

)2

(
σ +
√
P
)2

+ 1
,
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where the last inequality follows from the assumption that P ≤ σ2/(λ2(σ2 + 1)).

The combination of the lower bound on J∗(P ) and the upper bound on J∗a(P )

implies that

J∗a
J∗

=
infP≥0 J

∗
a(P )

J∗(P ∗)
≤ J∗a(P ∗)

J∗(P ∗)

≤

λ2P ∗ +
σ2
(

1 +
√

1
λ2(σ2+1)

)2

(
σ +
√
P ∗
)2

+ 1

/
λ2P ∗ +

σ2

((
1−

√
(σ(1+1/λ))2+1
λ2(σ2+1)

)+
)2

(
σ +
√
P ∗
)2

+ 1


≤

(1 +

√
1

λ2(σ2 + 1)

)/1−

√
σ2 (1 + 1/λ)2 + 1

λ2(σ2 + 1)

+2

=

 λ
√
σ2 + 1 + 1(

λ
√
σ2 + 1−

√
σ2 (1 + 1/λ)2 + 1

)+


2

.

This completes the proof. �

2.2 Constrained Variants of Witsenhausen’s Counterexample

Our analysis of Witsenhausen’s counterexample in Section 2.1 reveals the dif-

ficulty of decentralized control design problems that arises from the incentive

to signal between controllers. To complicate matters further, there may be hard

constraints coupling the actions and local states being regulated by different

controllers that must be jointly enforced with limited communication between

the controllers. In what follows, we introduce a constrained variant of Witsen-

hausen’s counterexample to describe the conceptual idea of attaining an im-

plicit coordination between controllers through the enforcement of an “assume-

guarantee contract”. In this specific example, the second controller assumes that
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the input from the first controller behave as a disturbance with bounded sup-

port, and the first controller’s control input is constrained in such a way to guar-

antee the consistency between the assumed and actual behavior of its input. De-

spite its simplicity, such a conceptual idea of attaining an implicit coordination

between controllers will serve as the basis of our convex inner approximation

of a large family of constrained decentralized control problems in Chapter 4.

2.2.1 Problem Statement

We consider a variant of Witsenhausen’s counterexample, in which we impose

a capacity constraint on the sum of the inputs from both controllers. Instead of

adopting the Gaussian disturbance model in Witsenhausen’s counterexample,

we assume that the disturbance has a bounded support, and require that the ca-

pacity constraint be satisfied for all realizations of the disturbance. Specifically,

consider the following decentralized control design problem1:

minimize E[λ2u2
0 + x2

2]

subject to ui = γi(yi), i = 0, 1

x1 = x0 − u0,

x2 = x1 − u1,

y0 = x0,

y1 = x1 + z,

|u0 + u1| ≤ c



∀(x0, z) ∈ W.
(2.13)

1Compared to the original Witsenhausen’s counterexample, the state x1 in problem (2.13) is

given by x1 = x0 − u0 instead. Such a modification to the state equation is made to clarify the

interpretation of the constraint |u0 + u1| ≤ c.
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Here, we assume that the disturbance (x0, z) be uniformly distributed on its

support W ⊆ R2, where

W :=
{

(x0, z) ∈ R2 | |x0| ≤ σ, |z| ≤ 1
}
. (2.14)

We assume that the capacity c > 0.

2.2.2 Optimal Linear Policy

In what follows, we derive the optimal linear control policy for problem (2.13).

Specifically, consider decentralized linear controllers of the form

u0 = k0y0, u1 = k1y1. (2.15)

We have the following result, which provides a necessary optimality condition

that the optimal linear control policy is required to satisfy.

Lemma 3. Let (k∗0, k
∗
1) ∈ R2 be an optimal linear control policy for problem

(2.13), and define q∗0 := k∗0σ. It follows that k∗1 satisfies

k∗1 = min

{
(σ − q∗0)2

(σ − q∗0)2 + 1
,

c− q∗0
σ − q∗0 + 1

}
.

Here, q∗0 is a minimizer of the function J0(q0) on the interval [0, min{c, σ}], where

the function J0(q0) is given by

J0(q0) =


λ2q2

0 +
(σ − q0)2

(σ − q0)2 + 1
if
c− σ − 1

σ − q0 + 1
+

1

(σ − q0)2 + 1
≥ 0,

λ2q2
0 +

(σ − q0)2(σ − c+ 1)2 + (c− q0)2

(σ − q0 + 1)2
otherwise.

The structure of the optimal linear control policy reveals the mechanism

through which both controllers coordinate implicitly to guarantee the satisfac-

tion of the capacity constraint that couple their inputs. Specifically, the fact that
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(a) Controller-0’s optimal linear policy
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(b) Controller-1’s optimal linear policy

Figure 2.3: The optimal linear control policy for problem (2.13) as a function of
the ratio c/σ, evaluated at different fixed values of σ.

k∗1 ≤ (c− q∗0)/(σ − q∗0 + 1) implies that the control input u1 effectively has a max

capacity of c − q∗0 . That is to say, controller-1 essentially assumes that the input

from controller-0 behave as a disturbance taking value in the interval [−q∗0, q∗0],

and choose its control policy in a way that ensures the satisfaction of the capac-

ity constraint given the “worst-case” realization of controller-0’s input. On the

other hand, the choice of controller-0’s control policy ensures the consistency

between the assumed and actual behavior of its control input, as controller-0’s

control input is guaranteed to take value in the set [−q∗0, q∗0] under the policy

u0 = k∗0x0. In spite of its simplicity, this mechanism of implicit coordinating

between controllers will enable the derivation of a family of convex inner ap-

proximations to constrained decentralized control problems in Chapter 4.

Additionally, we calculate the optimal linear control policy according to

Lemma 3, and investigate the reduction in the controllers’ incentive to signal

that results from the input capacity constraint. In Figure 2.3, we plot the opti-

mal feedback control gains for both controllers as a function of the ratio c/σ for

different values of the signal magnitude σ. As we tighten the input capacity con-

straint, the input capacity is relocated from controller-1 to controller-0. Once the

ratio c/σ gets below a threshold, the optimal linear control policy will not entail
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any signaling between controllers, as controller-1, the “decoder”, is allocated an

input capacity of 0. Such a result clearly reflects the reduction in the incentive

to signal that results from the tightening of the input capacity constraint.

We close this subsection with the proof of Lemma 3.

Proof of Lemma 3: We first characterize the set of feasible linear control policies

for problem (2.13) and provide a closed-form expression for the cost incurred

by a linear control policy. Given a linear control policy specified in (2.15), the

control inputs u0 and u1 are given by

u0 = k0x0

u1 = k1((1− k0)x0 + z).

It follows that |u0 + u1| ≤ c for all (x0, z) ∈ W if and only if

|k0 + k1(1− k0)|σ + |k1| ≤ c. (2.16)

Additionally, with a slight abuse of notation, let Ja(k0, k1) denote the cost in-

curred by the linear control policy specified in (2.15). It is given by

Ja(k0, k1) = λ2k2
0σ

2 + (1− k0)2(1− k1)2σ2 + k2
1

The remainder of the proof is divided into two parts. In Part 1, we show that

0 ≤ q∗0 ≤ min{c, σ}. In Part 2, we establish the condition that the optimal control

gains satisfy.

Part 1: Proof of the claim that 0 ≤ q∗0 ≤ min{c, σ}. In what follows, we prove

this claim by showing that 0 ≤ k∗0 ≤ min {c/σ, 1}.

Part 1.1: We prove by contradiction that k∗0 ≥ 0. Assume that the linear control

policy (k0, k1) is feasible for problem (2.13) and satisfies k0 < 0. We show that
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there exists another feasible linear control policy for problem (2.13) that incurs

a strictly lower cost. We consider the following cases.

Case 1: k1(1 − k0) + k0 ≤ 0. It is straightforward to verify that the open-loop

control policy u0 = u1 = 0 is feasible and satisfies Ja(k0, k1) > Ja(0, 0).

Case 2: k1(1 − k0) + k0 > 0 and k1 ∈ (1,∞) ∪ (−∞, 0). For the case in which

k1 > 1, it follows from inequality (2.16) that the linear policy (k0, 1) is feasible.

Additionally, we have that

Ja(k0, k1) = λ2k2
0σ

2 + (1− k0)2(1− k1)2σ2 + k2
1 > λ2k2

0σ
2 + 1 = Ja(k0, 1),

which implies that the linear policy (k0, 1) strictly outperforms the policy

(k0, k1). Similarly, one can show that if k1 < 0, then the linear policy (k0, 0)

is also feasible and satisfies Ja(k0, 0) < Ja(k0, k1).

Case 3: k1(1 − k0) + k0 > 0 and k1 ∈ [0, 1]. Define the control gain k′1 :=

k1(1− k0) + k0. It follows that

k′1 − k1 = (1− k1)k0 ≤ 0.

Additionally, our assumption that k1(1 − k0) + k0 > 0 implies that k′1 > 0. We

have the following lower bound on Ja(k0, k1):

Ja(k0, k1) = λ2k2
0σ

2 + (1− k0 − k1(1− k0))2σ2 + k2
1

=
(c)
λ2k2

0σ
2 + (1− k′1)2σ2 + k2

1 >
(d)

(1− k′1)2σ2 = Ja(0, k
′
1),

where (c) follows from the definition of k′1, and (d) follows from the assumption

that k0 < 0 and the fact that 0 < k′1 ≤ k1. Additionally, the feasibility of the

policy (k0, k1) implies that

c ≥ |k0 + k1(1− k0)|σ + |k1| ≥ |k′1|σ + |k′1|,
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where the second inequality follows from the fact that 0 < k′1 ≤ k1. This verifies

that the policy (0, k′1) is feasible, which completes our proof of the claim that

k∗0 ≥ 0.

Part 1.2: We prove by contradiction that k∗0 ≤ min {c/σ, 1}. Specifically,

let (k0, k1) be a feasible linear control policy for problem (2.13), where k0 >

min {c/σ, 1}. We show that there exists another feasible linear control policy

for problem (2.13) whose cost is strictly lower than Ja(k0, k1). Consider the fol-

lowing cases.

Case 1: c > σ. In this case, it is straightforward to verify that Ja(k0, k1) >

Ja(1, 0), and that the linear control policy (1, 0) is feasible.

Case 2: c ≤ σ. It is straightforward to verify that k1 6= 0. Set k′0 := k0 +k1(1−k0).

The feasibility of the policy (k0, k1) implies that

c ≥ |k0 + k1(1− k0)|σ + |k1| > |k0 + k1(1− k0)|σ = |k′0|σ

where the second inequality follows from the fact that k1 6= 0. This implies that

the linear control policy (k′0, 0) is feasible. Additionally, we have that

Ja(k0, k1) = λ2k2
0σ

2 + (1− k0 − k1(1− k0))2σ2 + k2
1

= λ2k2
0σ

2 + (1− k′0)2σ2 + k2
1 > λ2k′0

2
σ2 + (1− k′0)2σ2,

where the last inequality follows from the fact that k0 > c/σ ≥ |k′0|. Con-

sequently, we have that Ja(k0, k1) > Ja(k
′
0, 0), where the linear control policy

(k′0, 0). This finishes the proof that k∗0 ≤ min {c/σ, 1}.

Part 2: Specification of optimal control gains. We first specify the optimal

control gain for controller-1 given a fixed feedback control gain of controller-

0. Assume that the feedback control gain of controller-0 satisfies 0 ≤ k0 ≤
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min {c/σ, 1}. We fix k0, and optimize over the feedback control gain k1 of

controller-1. This amounts to the following semi-infinite program

minimize E[(x1 − u1)2]

subject to u1 = k1(x1 + z),

x1 = (1− k0)x0,

|u1 + k0x0| ≤ c


∀(x0, z) ∈ W,

(2.17)

where the decision variable is the feedback control gain k1. Problem (2.17) is a

convex program. Its optimal solution is given by

k∗1 = min

{
(σ − q0)2

(σ − q0)2 + 1
,

c− q0

σ − q0 + 1

}
,

where q0 := k0σ. We denote the optimal value of problem (2.17) by J∗1 (q0). It is

given by

J∗1 (q0) =


(σ − q0)2

(σ − q0)2 + 1
if
c− σ − 1

σ − q0 + 1
+

1

(σ − q0)2 + 1
≥ 0,

(σ − q0)2(σ − c+ 1)2 + (c− q0)2

(σ − q0 + 1)2
otherwise.

It follows that the optimal q0 is the minimizer of the function λ2q2
0 + J∗1 (q0) over

the interval [0,min{c, σ}]. This completes the proof of Lemma 3. �

2.2.3 Control Design via Assume-Guarantee Contracts

In the previous subsection, our structural characterization of the optimal lin-

ear control policy of problem (2.13) reveals a mechanism of implicit coordina-

tion between controllers. Such a mechanism amounts to the introduction of an

assume-guarantee contract between controllers [4, 67]. Namely, each controller

assumes that the coupling states and inputs of other controllers behave as dis-
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turbances with bounded support, and the decentralized control policy is con-

strained in a manner that guarantees the consistency between the assumed and

actual behavior of the coupling states and inputs. In spite of its simplicity, this

mechanism will enable a convex inner approximation for a large family of con-

strained decentralized control design problems. In this subsection, we restrict

our attention to problem (2.13), and leverage on the aforementioned mechanism

of implicit coordination to derive a family of convex inner approximations.

The specific derivation of the convex inner approximation entails two steps

of reasoning. First, controller-1 assumes that the input u0 and the state x1 behave

as disturbances that are uniformly distributed on their support [−α, α]× [−β, β].

Second, in order to guarantee the satisfaction of such a modeling assumption,

we impose an additional constraint on the controller-0’s input, which requires

that it induces control input u0 and state x1 that are guaranteed to belong to the

rectangle [−α, α]× [−β, β]. This gives rise to the following decentralized control

design problem.

minimize E[λ2u2
0 + x2

2]

subject to u0 = k0x0

u1 = k1(x̃1 + z)

x1 = x0 − u0,

x2 = x̃1 − u1,

|u0| ≤ α

|x1| ≤ β

|ũ0 + u1| ≤ c



∀(x0, z, ũ0, x̃1) ∈ W × [−α, α]× [−β, β],

(2.18)

where the decision variables are the feedback control gains k0, k1. For each pair
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of parameters (α, β) ∈ R2
+, problem (2.18) is a convex program. Additionally,

it is straightforward to show that problem (2.18) is an inner approximation to

problem (2.13). We have the following lemma.

Lemma 4. Let α, β ∈ R+ be a fixed parameter. It follows that the decentralized

control policy

ui = kiyi, i = 0, 1

is feasible for problem (2.13) if (k0, k1) is a feasible solution to problem (2.18).

Proof: It suffices to show that |u0 + k1(x1 + z)| ≤ c for all (x0, z) ∈ W . The

feasibility of (k0, k1) for problem (2.18) implies that

|ũ0 + k1(x̃1 + z)| ≤ c ∀(z, ũ0, x̃1) ∈ [−1, 1]× [−α, α]× [−β, β], (2.19)

|u0| ≤ α ∀x0 ∈ [−σ, σ], (2.20)

|x1| ≤ β ∀x0 ∈ [−σ, σ]. (2.21)

The desired result follows, as (2.20) and (2.21) imply that (z, u0, x1) ∈ [−1, 1] ×

[−α, α]× [−β, β] for all (x0, z) ∈ W . In combination with (2.19), this implies that

|u0 + k1(x1 + z)| ≤ c for all (x0, z) ∈ W . �

Problem (2.18) provides an example on how the introduction of assume-

guarantee contracts enables the tractable calculation of feasible control policies

for decentralized control problems with nonclassical information structures. In

Chapter 4, we formally describe the convex inner approximation of a general

family of decentralized control design problems that is built on this conceptual

idea.

Additionally, we note that the performance of the controller that we obtain

depends heavily on the specification of the contract. In particular, the solution
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of problem (2.18) is exactly the optimal linear control policy for problem (2.13)

if α = k∗0σ and β = (1 − k∗0)σ, where k∗0 is controller-0’s optimal linear control

policy in problem (2.13). Consequently, there is a need to co-design the assume-

guarantee contract with the underlying decentralized control policy. Such a

problem is formally visited in Chapter 4, in which we derive a method of co-

optimize the location, scale, and orientation of the contract set with the under-

lying decentralized control policy via the solution of a semidefinite program.
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CHAPTER 3

CONVEXITY OF DECENTRALIZED CONTROL DESIGN PROBLEMS

In this chapter, we define the constrained decentralized output-feedback

control design problem that we consider in this dissertation, and discuss how

its convexity depends on the underlying information structure. Specifically, we

consider the decentralized output-feedback control of a discrete-time, linear sys-

tem subject to exogenous disturbances and polyhedral constraints on the state

and input trajectories. The underlying system is composed of a finite collection

of dynamically coupled subsystems, where each subsystem is assumed to have

a dedicated local controller. The decentralization of information is expressed ac-

cording to sparsity constraints on the information that each local controller has

access to. We show that the classical Youla parameterization yields an equiva-

lent reformulation of the decentralized control design problem as a convex pro-

gram if and only if the information structure is partially nested—that is, an infor-

mation structure in which each controller’s local information cannot be affected

by control inputs it does not have access to. Given a partially nested informa-

tion structure, we show that the calculation of the optimal affine control policy

amounts to a robust convex program and admits an equivalent reformulation

as a finite-dimensional conic program.
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3.1 Problem Formulation

3.1.1 System Model

Consider a discrete-time, linear time-varying system consisting of N dynami-

cally coupled subsystems whose dynamics are described by

xi(t+ 1) =
N∑
j=1

(
Aij(t)xj(t) +Bij(t)uj(t)

)
+Gi(t)w(t), (3.1)

for i = 1, . . . , N . The system operate for finite time indexed by t = 0, . . . , T − 1,

and the initial condition is assumed fixed and known. We associate with each

subsystem i a local state xi(t) ∈ Rni
x and local input ui(t) ∈ Rni

u . And we denote

by w(t) ∈ Rnw the stochastic system disturbance. We denote by yi(t) ∈ Rni
y the

local measured output of subsystem i at time t. It is given by

yi(t) =
N∑
j=1

Cij(t)xj(t) +Hi(t)w(t), (3.2)

for i = 1, . . . , N . All system matrices are assumed to be real and of compatible

dimension. In the sequel, it will be convenient to work with a more compact

representation of the system Eqs. (3.1) and (3.2) given by

x(t+ 1) = A(t)x(t) +B(t)u(t) +G(t)w(t)

y(t) = C(t)x(t) +H(t)w(t).

Here, we denote by x(t) := (x1(t), .., xN(t)) ∈ Rnx , u(t) := (u1(t), .., uN(t)) ∈ Rnu ,

and y(t) := (y1(t), .., yN(t)) ∈ Rny the full system state, input, and output at time

t, respectively. Their corresponding dimensions are given by nx :=
∑N

i=1 n
i
x,

nu :=
∑N

i=1 n
i
u, and ny :=

∑N
i=1 n

i
y. We will occasionally refer to the tuple

Θ := {A(t), B(t), G(t), C(t), H(t)}T−1
t=0
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as the system parameter when making reference to the underlying system de-

scribed by Eqs. (3.1) and (3.2). Additionally, we denote by x, u, w, and y the

trajectories of the full system state, input, disturbance, and output, respectively.

They are specified according to

x := (x(0), . . . , x(T )) ∈ RNx , Nx := nx(T + 1),

u := (u(0), . . . , u(T − 1)) ∈ RNu , Nu := nuT,

w := (1, w(0), . . . , w(T − 1)) ∈ RNw , Nw := 1 + nwT

y := (1, y(0), . . . , y(T − 1)) ∈ RNy , Ny := 1 + nyT.

Notice that in our specification of the both the disturbance and output trajecto-

ries, w and y, we have extended each trajectory to include a constant scalar as its

initial component. This notational convention will prove useful in simplifying

the specification of affine control policies in the sequel. The system trajectories

are related according to

x = Bu+Gw and y = Cx+Hw.
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Here, the block matrices (B,G,C,H) are given by:

B :=



0

A1
1B(0) 0

A2
1B(0) A2

2B(1) 0

... . . .

... 0

AT1B(0) AT2B(1) · · · · · · ATTB(T − 1)



G :=



A0
0x(0)

A1
0x(0) A1

1G(0)

A2
0x(0) A2

1G(0) A2
2G(1)

...
... . . .

AT0 x(0) AT1G(0) AT2G(1) · · · ATTG(T − 1)



C :=



0

C(0) 0

. . . . . .

C(T − 1) 0


H := diag(1, H(0), . . . , H(T − 1)),

where Ats :=
∏t−1

r=sA(r) for s < t, and Att = I .

We close this subsection by stating a structural assumption on the system

dynamics. Assumption 1, which is assumed to hold throughout the dissertation,

ensures that each subsystem’s local control input can causally affect its local

measured output.

Assumption 1. For each subsystem i ∈ V , there exist time periods 0 ≤ s < t ≤

T − 1 such that the matrix
[
C(t)Ats+1B(s)

]
ii

is nonzero.

38



Here, the matrix
[
C(t)Ats+1B(s)

]
ii

refers to the (i, i)th block of theN×N block

matrix C(t)Ats+1B(s).

3.1.2 Disturbance Model

We model the disturbance trajectory w as a random vector defined according

to the probability space (RNw ,B(RNw),P). Here, the Borel σ-algebra B(RNw)

denotes the set of all events that are assigned probability according to the mea-

sure P. We denote by L2
n := L2(RNw ,B(RNw),P;Rn) the space of all B(RNw)-

measurable, square-integrable random vectors taking values in Rn. Also, we

use E to denote expectation taken with respect to the probability measure P.

With a slight abuse of notation, we occasionally use w to denote a realization of

the random vector w.

In order to ensure the well-posedness of the problem to follow, we require

that the disturbance trajectory satisfy the following conditions. First, we assume

that the disturbance trajectoryw has supportW that is a nonempty and compact

subset of RNw , representable by

W = {w ∈ RNw | w1 = 1 and Lkw �K 0, k = 1, . . . , `},

where K ⊆ RNw is a proper cone and the matrices Lk ∈ RNw×Nw are assumed to

be given for k = 1, . . . , `. In addition to compactness, we require that the linear

hull ofW spans RNw . Such assumption is without loss of generality. If it were

not the case, then there exists a linear transformation of the disturbance trajec-

tory w, which maps w to a lower dimensional subspace of RNw for which this

assumption is satisfied. And, it is straightforward to verify that such assump-

tion ensures that the corresponding second-order moment matrix, defined as
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M := E
[
wwT

]
, is both invertible and positive definite. The fact that the second-

order moment matrix M is finite-valued is a consequence of our assumption

that the disturbance have compact support.

3.1.3 System Constraints

In characterizing the set of feasible input trajectories, we require that the in-

put and state trajectories respect the following linear inequality constraints P-

almost surely,

Fxx+ Fuu+ Fww + s = 0

s ≥ 0

 P-a.s. (3.3)

where Fx ∈ Rm×Nx , Fu ∈ Rm×Nu , and Fw ∈ Rm×Nw . Here, s ∈ L2
m is a slack vari-

able that is required to be non-negative P-almost surely. The almost sure con-

straints in (3.3) requires that the input and the resulting state trajectory satisfy

the corresponding linear constraints for all possible realizations of the distur-

bance, except for a set of probability equal to zero. Under the disturbance model

we consider, this amounts to requiring the satisfaction of an infinite number of

linear constraints.

3.1.4 Decentralized Control Design

We consider information structures that are specified via sparsity constraints on

the information that each controller has access to. More specifically, we describe

the pattern according to which information is shared between subsystems with

a directed graph GI = (V , EI), which we refer to as the information graph of the
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system. Here, the node set V = {1, . . . , N} assigns a distinct node i to each

subsystem i, and the directed edge set EI determines the pattern of information

sharing between subsystems. More precisely, we let (i, j) ∈ EI if and only if

for each time t, subsystem j has access to subsystem i’s local output yi(t). We

let V−I (i) denote the in-neighborhood of each subsystem i ∈ V according to the

information graph GI . We make the following assumption on the structure of

the information graph, which ensures that each subsystem i has access to its

local output yi(t) at each time period t.

Assumption 2. The directed edge set EI is assumed to contain the self-loop (i, i)

for each i ∈ V .

We also assume that each subsystem has perfect recall, i.e., each subsystem

has access to its entire history of past information at any given time. Accord-

ingly, we define the local information available to each subsystem i at time t as

zi(t) := {ytj | (j, i) ∈ EI}. (3.4)

We restrict the local input to subsystem i to be of the form

ui(t) = γi(zi(t), t), (3.5)

where γi(·, t) is a measurable function of the local information zi(t). We define

the local control policy for subsystem i as γi := (γi(·, 0), . . . , γi(·, T−1)). We refer to

the collection of local control policies γ := (γ1, . . . , γN) as the decentralized control

policy and define Γ(GI) as the set of all decentralized control policies respecting

the information structure defined by the information graph GI .

Throughout the dissertation, we consider the following family of con-

41



strained decentralized control design problems:

minimize E
[
xTRxx+ uTRuu

]
subject to γ ∈ Γ(GI), s ∈ L2

m

Fxx+ Fuu+ Fww + s = 0

x = Bu+Gw

y = Cx+Hw

u = γ(y)

s ≥ 0


P-a.s.

(3.6)

Here, the cost matrices Rx ∈ RNx×Nx and Ru ∈ RNu×Nu are both assumed to

be symmetric and positive semidefinite. The tractability of the decentralized

control design problem (3.6) is known to depend critically on its information

structure. In particular, if the information structure if partially nested, then prob-

lem (3.6) can be equivalently reformulated as a convex program via the Youla

parameterization that we introduce in Section 3.2.1. If, on the other hand, the

information structure is nonclassical (i.e., not partially nested), then problem

(3.6) amounts to an infinite-dimensional nonconvex program that is known to

be computationally intractable, in general [76, 89, 101]. In this dissertation, we

develop tractable methods of computing feasible control policies for decentral-

ized control design problems whose information structures are allowed to be

nonclassical. As the decentralized control policies we compute are, in general,

suboptimal, we provide a method of tractably computing a bound on their sub-

optimality via an information-based convex relaxation.
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3.2 Youla Parameterization and Convexity

In what follows, we describe how to equivalently reformulate the decentralized

control design problem (3.6) as a static team problem [56] through a nonlinear

change of variables akin to the Youla parameterization. This reformulation is

shown to result in a convex program if and only if the underlying information

structure is partially nested.

3.2.1 Nonlinear Youla Parameterization

As stated, the decentralized control design problem (3.6) is nonconvex in the

decentralized control policy γ. In what follows, we define the nonlinear Youla

parameterization [112] of the decentralized control policy by parameterizing the

input process as a causal function of the so-called purified output process. This

yields an equivalent reformulation of the decentralized control design problem,

in which the only source of nonconvexity is the potential nonconvexity in the

set of Youla parameters.

We first introduce the concept of output purification as defined in [16–18].

Given an input process u(t) and the corresponding output process y(t), define

the sequence of purified outputs η(t) according to

x̄(0) = 0,

x̄(t+ 1) = A(t)x̄(t) + B(t)u(t),

ȳ(t) = C(t)x̄(t),

η(t) = y(t) − ȳ(t),

43



for t = 0, . . . , T − 1. Similar to the definition of the local information in (3.4), we

define the local purified information available to each subsystem i at time t as

ζi(t) := {ηtj | (j, i) ∈ EI}. (3.7)

In addition, we define the trajectory of the purified output according to η :=

(1, η(0), . . . , η(T − 1)) ∈ RNy . It is straightforward to establish the following

relation, which reveals the purified output trajectory η to be independent of the

input trajectory u. Namely,

η = Pw,

where P := (CG+H) ∈ RNy×Nw .

An important property of the purified output process is that it is a causal

and invertible function of the output process. As a result, one can equivalently

reparameterize the input trajectory as a causal function of the purified output

process via a nonlinear Youla parameterization. Specifically, define the nonlin-

ear Youla parameterization of the decentralized control policy γ ∈ Γ(GI) as

φ := γ ◦ (I − CBγ)−1. (3.8)

Note that the map I − CBγ : RNy → RNy is guaranteed to be invertible, as

the decentralized control policy γ is causal, and the matrix CB is strictly block

lower triangular. The Youla parameter φ satisfies the following two important

properties. First, it is an invertible function of the policy γ over Γ(GI), where its

inverse is given by γ = φ ◦ (I + CBφ)−1. Note that the required inverse exists,

as it is straightforward to verify that I +CBφ = (I −CBγ)−1. Second, given an

input trajectory induced by u = γ(y), it holds that

φ(η) = γ(y) (3.9)
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for every disturbance trajectory w ∈ W . Note that Eq. (3.9) follows from the fact

that the output trajectory y and purified output trajectory η are related according

to

y = CBγ(y) + η,

which in turn implies that y = (I − CBγ)−1(η).

Together, these two properties reveal that problem (3.6) can be equivalently

reformulated as a static team problem by applying the nonlinear change of vari-

ables in (3.8). This yields the following optimization problem:

minimize E
[
xTRxx+ uTRuu

]
subject to φ ∈ Φ(GI), s ∈ L2

m

Fxx+ Fuu+ Fww + s = 0

x = Bu+Gw

η = Pw

u = φ(η)

s ≥ 0


P-a.s.

(3.10)

Here, the set of admissible Youla parameters is given by

Φ(GI) := {γ ◦ (I − CBγ)−1 | γ ∈ Γ(GI)}.

The only potential source of nonconvexity in problem (3.10) is in the set of Youla

parameters Φ(GI). In particular, problem (3.10) is a convex program if and only

if the set Φ(GI) is convex.
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3.2.2 Convexity under Partially Nested Information Structures

In what follows, we show that the static team problem (3.10) is a convex pro-

gram if and only if the information structure is partially nested. Before proceed-

ing, we provide a formal definition of partially nested information structures

using the notion of precedence, as defined by Ho and Chu in [57].

Definition 1 (Precedence). Given the information structure defined by GI , we

say subsystem j is a precedent to subsystem i, denoted by j ≺ i, if there exist

times 0 ≤ s < t ≤ T − 1 and subsystem k satisfying (k, i) ∈ EI , such that[
C(t)Ats+1B(s)

]
kj
6= 0.

Essentially, subsystem j is a precedent to subsystem i, if the local input to sub-

system j can affect the local information available to subsystem i at some point

in the future. In particular, it follows from Assumption 1 that j is a precedent

to i if (j, i) ∈ EI . Equipped with the concept of precedence, we now provide the

definition of partially nested information structures.

Definition 2 (Partially Nested Information). The information structure defined

by GI is said to be partially nested with respect to the system Θ, if j ≺ i implies

that zj(t) ⊆ zi(t) for all times t = 0, . . . , T − 1.

We denote by PN(Θ) the set of information graphs that are partially nested

with respect to the the system Θ. The information structure defined by GI is said

to be nonclassical if GI /∈ PN(Θ). We note that the above definition of partial nest-

edness is tailored to the setting in which controllers are subject to sparsity con-

straints on the measured outputs that each controller can access. A more general

definition of partial nestedness can be found in [50, 56, 57], which applies to the

setting in which controllers are subject to both delay and sparsity constraints on
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information sharing. An important consequence of the partial nestedness of the

information structure is that it guarantees that the local information zi(t) and

the purified local information ζi(t) contain the same information for each sub-

system i and time t. In other words, they generate the same σ-algebra. We have

the following lemma.

Lemma 5. Let γ ∈ Γ(GI) be any decentralized control policy. If GI ∈ PN(Θ),

then the local information zi(t) and local purified information ζi(t) are functions

of each other for each subystem i = 1, . . . , N and time t = 0, . . . , T − 1.

Proof: We prove (by induction in t) that zi(t) and ζi(t) are functions of each

other for all i = 1, . . . , N and t = 0, . . . , T − 1 if GI ∈ PN(Θ).

Base step: For t = 0, we have that y(0) = η(0), so the above claim is true.

Induction step: Assume that the claim is true for times 0, . . . , t − 1. We now

show that the claim is also true for time t. For the sake of brevity, we only show

that zi(t) is a function of ζi(t) for all i ∈ {1, . . . , N}. The proof that ζi(t) is a

function of zi(t) for all i ∈ {1, . . . , N} follows from identical arguments. Recall

that

zi(t) = {ytj | j ∈ N−GI (i)}.

It suffices to show that yk(t) is a function of ζi(t) for all i ∈ {1, . . . , N} and

k ∈ N−GI (i). Using the definition of precedents, one can write yk(t) as

yk(t) =

(
t−1∑
s=0

∑
j: j≺i

[
C(t)Ats+1B(s)

]
kj
uj(s)

)
+ ηk(t),

for all i ∈ {1, . . . , N} and k ∈ N−GI (i). To show that yk(t) is a function of ζi(t), it

suffices to show that uj(s) is a function of ζi(s) for all j ≺ i and s ≤ t − 1. By
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construction, it holds that uj(s) is a function of zj(s). It also holds that zj(s) ⊆

zi(s), since j ≺ i and GI ∈ PN(Θ). It follows that uj(s) is a function of zi(s).

Moreover, by the induction hypothesis, zi(s) is a function of ζi(s) for all s ≤ t−1.

It follows that uj(s) is a function of ζi(s) for all j ≺ i and s ≤ t−1. It follows that

yk(t) is a function of ζi(t) for all i ∈ {1, . . . , N} and k ∈ N−GI (i), thus completing

the induction step of the proof. �

As a result of Lemma 5, one can equivalent reparameterize each subsystem’s

control input in the purified local information without loss of optimality if the

information structure is partially nested. That is to say, if ui(t) = γi(zi(t), t) for

a control policy γ ∈ Γ(GI), then there exist another decentralized control policy

φ ∈ Γ(GI), such that ui(t) = φi(ζi(t), t) for each subsystem i and time t, and

vice versa. In other words, the partial nestedness of the information structure

implies that Γ(GI) = Φ(GI). In the following lemma, we further strengthen this

result by showing that the set of Youla parameters Φ(GI) is convex if and only if

the information structure is partially nested. We omit the proof of Lemma 6, as

it directly follows from existing arguments in [86, Thm. 1] and [69, Cor. 7].

Lemma 6. The following statements are equivalent:

(i) Φ(GI) is a convex set,

(ii) Φ(GI) = Γ(GI),

(iii) GI ∈ PN(Θ).

Lemma 6 implies Ho and Chu’s classical result [56, Thm. 1] showing that

a dynamic team problem with a partially nested information structure can be

equivalently reformulated as a static team problem with the same set of ad-

missible policies. It follows from Lemma 6 that the reformulated decentralized
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control problem in (3.10) is convex if and only if the underlying information

structure is partially nested.1

3.3 Affine Control Design under Partially Nested Information

Structures

In this section, we restrict our attention to finite-dimensional decentralized con-

trol policies that are affine in the measured output, and explore the extent to

which the partial nesting of information might facilitate the efficient optimiza-

tion over such restricted class of policies. We demonstrate how powerful tech-

niques for centralized affine control design [16, 54, 90, 104, 107] can be extended

to decentralized systems to compute optimal affine decentralized policies via

finite-dimensional convex optimization.

1We note that the convexity result in Lemma 6 does not depend on the structure of the

cost matrices or the probability distribution of system disturbance. There is a related literature,

which identifies structural conditions on the system and cost matrices and the probability dis-

tribution of system disturbance, under which the communication of private information from

any controller’s precedent to said controller does not lead to a reduction in cost. Under these

conditions, the optimal solution of problem (3.10) can be computed via the solution of a convex

program when the information structure is nonclassical. See [5, 113–115] for recent advances.
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3.3.1 Decentralized Affine Controllers

Given an information structure GI , we consider affine control policies of the

form

ui(t) = ūi(t) +
t∑

s=0

∑
j∈V−I (i)

Kij(t, s)yj(s), (3.11)

for each subsystem i = 1, · · · , N and time t = 0, · · · , T − 1. Here, ūi(t) ∈ Rni
u

represents the open-loop component of the control and Kij(t, s) ∈ Rni
u×n

j
y the

feedback control gain. One can lift the representation in (3.11) to relate the out-

put trajectory y to the input trajectory u under the linear map

u = Ky, where K ∈ S(GI).

Here, we define S(GI) to be the subspace of causal (lower block triangular)

matrices respecting the information structure defined by GI . That is, for any

K ∈ S(GI), the decentralized control policy defined by γ(y) = Ky satisfies

γ ∈ Γ(GI). We have the following decentralized affine control design problem:

minimize E
[
xTRxx+ uTRuu

]
subject to K ∈ S(GI)

Fxx+ Fuu+ Fww ≤ 0

x = Bu+Gw

y = Cx+Hw

u = Ky


∀ w ∈ W . (3.12)

The affine control design problem (3.12) is known to be nonconvex in the matrix

variable K [17, 54, 90]. However, under the additional assumption of partially

nested information structure, problem (3.12) admits an equivalent reformula-

tion as a semi-infinite convex program via the Youla parameterziation we intro-
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duced in Section 3.2.1. Specifically, such an equivalent reformulation relies on

the following lemma.

Lemma 7. If GI ∈ PN(Θ), then both of the following statements are true.

(i) Let K ∈ S(GI) and define Q = K(I − CBK)−1. Then Q ∈ S(GI) and

Qη = Ky for all w ∈ W .

(ii) Let Q ∈ S(GI) and define K = Q(I + CBQ)−1. Then K ∈ S(GI) and

Ky = Qη for all w ∈ W .

Proof: We only prove part (ii) of the lemma, as part (i) immediately follows

from Lemma 6 and Eq. (3.9). Lemma 6 implies that Φ(GI) = Γ(GI) if GI ∈

PN(Θ). In combination with our assumption that GI ∈ PN(Θ), this implies that

S(GI) ⊆ Φ(GI). Recall that the decentralized control policy γ is related to the

Youla parameter φ according to

γ = φ ◦ (I + CBφ)−1.

It follows that K ∈ Γ(GI), which further implies that K ∈ S(GI). Moreover, the

combination of Eq. (3.9) and the fact that K ∈ Γ(GI) implies that Ky = Qη for

all w ∈ W . �

Lemma 7 builds on Lemma 6 to reveal that if the information structure is

partially nested, then any decentralized affine output feedback controller K ∈

S(GI) can be transformed to an equivalent decentralized affine purified output

feedback controller Q ∈ S(GI) through an invertible nonlinear transformation,

and vice versa. Consequently, one can apply the change of variable specified in

Lemma 7 to equivalently reformulate problem (3.12) as a semi-infinite convex

program. We have the following result.
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Proposition 2. LetQ∗ be an optimal solution to the following optimization prob-

lem,

minimize E
[
xTRxx+ uTRuu

]
subject to Q ∈ S(GI)

Fxx+ Fuu+ Fww ≤ 0

x = Bu+Gw

u = QPw


∀ w ∈ W . (3.13)

Then K∗ = (I +Q∗CB)−1Q∗ is an optimal solution to problem (3.12).

Proof: It follows from Lemma 7 that for any Q ∈ S(GI), K = Q(I + CBQ)−1

satisfies K ∈ S(GI). Let Q∗ be an optimal solution to problem (3.13). It follows

from Lemma 7 that K∗ = Q∗(I + CBQ∗)−1 is the affine output feedback con-

troller that results in the same sequence of control inputs as the affine purified

output feedback controller Q∗. It follows that K∗ is the optimal affine output

feedback controller. �

3.3.2 Conic Programming Reformulation

In the absence of constraints on the state and input trajectories (i.e., Fx, Fu, Fw =

0), problem (3.13) reduces to an unconstrained convex quadratic program. Prob-

lem (3.13) is in general, however, a semi-infinite convex quadratic program, as it

contains infinitely many linear constraints in Q. Given our assumption that the

set W is described by finitely many conic inequalities, one can use techniques

grounded in duality to show that problem (3.13) admits an equivalent refor-

mulation as a finite-dimensional conic optimization problem. The underlying

approach relies on arguments analogous to those in [54, 65].
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Proposition 3. An optimal solution to problem (3.13) can be obtained by solving

the following equivalent finite-dimensional conic optimization problem,

minimize Tr
(
PTQTRQPM + 2GTRxBQPM +GTRxGM

)
subject to Q ∈ S(GI), Z ∈ Rm×Nw , Λk ∈ RNw×m, µ ∈ Rm

+

(Fu + FxB)QP + FxG+ Fw + Z = 0,

Z = µeT1 +
∑̀
k=1

ΛT
kLk,

Λk �K∗ 0, k = 1, . . . , `,

(3.14)

where R = Ru +BTRxB, and e1 = (1, 0, . . . , 0) is a unit vector in RNw .

The proof of Proposition 3 amounts to directly applying Lemma 22 in Ap-

pendix A.2 to equivalently reformulate the robust linear constraints in problem

(3.13) as finite-dimensional conic constraints. It is, therefore, omitted for the

brevity of exposition. We remark that the conic optimization problem (3.14)

can be efficiently solved for a wide range of cones K, including polyhedral and

second-order cones.

Finally, we note that Proposition 3 provides a method of tractably calculating

decentralized control policies that are affine in the purified output via the solu-

tion of a finite dimensional conic program. In principle, one can also generalize

the techniques in [21, 51] for the calculation of centralized control policies that

are polynomial or piecewise affine in the purified output to decentralized control

design problems with partially nested information structures. In this disser-

tation, however, we omit a detailed treatment of such generalizations, as the

focus of this dissertation is the approximation of decentralized control design

problems with nonclassical information structures.
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CHAPTER 4

DECENTRALIZED CONTROL DESIGN VIA ASSUME-GUARANTEE

CONTRACTS

In this chapter, we investigate the design of decentralized control policies

that are affinely parameterized in the state history for decentralized control

design problems with arbitrary (possibly nonclassical) information structures.

In order to alleviate the nonconvexity arising from the informational coupling

between subsystems, we propose an approach to decentralized control design

in which the information-coupling states are effectively treated as disturbances

whose trajectories are constrained to take values in ellipsoidal “contract” sets .

To ensure the satisfaction of this assumption, we impose a contractual constraint

on the control policy that “guarantees” that the information-coupling states that

it induces belong to said contract set. Naturally, this approach yields an inner

approximation of the original decentralized control design problem, where the

conservatism of the resulting approximation depends on the specification of the

contract set. To limit the extent of the suboptimality that may result, we formu-

late a semi-infinite program to co-optimize the decentralized control policy with

the location, scale, and orientation of the contract set. We establish a structural

condition on the space of allowable contracts that facilitates the joint optimiza-

tion of the control policy and the contract set via semidefinite programming.

4.1 Introduction

We consider a special case of problem (3.6), in which the measured output at

each subsystem is given by a perfect measurement of the local state. In systems

with nonclassical information structures, the derivation of the optimal affine
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control policy is, in general, computationally intractable due to the signaling

incentive between controller. We, therefore, abandon the search for the optimal

decentralized affine control policy. Instead, Our objective is to derive subopti-

mal decentralized control policies that can be efficiently computed via convex

programming methods.

Related Literature: There is a large stream of literature that leverages on

techniques derived from centralized model predictive control (MPC) to facili-

tate the design of decentralized controllers for constrained dynamical systems

[15, 26, 40, 41, 44, 55, 60, 64, 75, 82–84, 97–99, 105]. Compared to their centralized

counterparts, the additional challenge in decentralized MPC lies in the need to

implicitly coordinate the control inputs from all subsystems (without commu-

nication) to achieve good performance and guarantee constraint satisfaction for

the full system. Many earlier works on decentralized MPC achieve such a coor-

dination via the sharing of point forecasts of each subsystem’s states and control

inputs in the future [15, 26, 60, 64, 105]. The typical approach to the calculation

of control inputs in these papers is to first decompose the decentralized con-

trol problem into a collection of decoupled local control problems, in which the

coupling states and inputs associated with each subsystem’s “neighbors” are

assumed to be equal to their point forecasts. Each of the resulting local con-

trol problems can be subsequently solved using centralized MPC methods. The

main drawback of this approach, however, is that it cannot guarantee the satis-

faction of input constraints that couple across subsystems and state constraints,

as the point forecast of other subsystems’ states and inputs will, in general, dif-

fer from their true values.

In order to deal with such drawbacks, more recent papers on decentralized
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MPC have adopted a “tube-based” decentralized MPC approach [40, 41, 44, 55,

75, 82–84, 97–99]. Specifically, in constructing the aforementioned decomposi-

tion of the global decentralized control problem, each of the local controllers,

instead, treats the coupling states and inputs as independent exogenous distur-

bances, which are assumed to take values in the given state and input constraint

sets. Given the resulting collection of decoupled local control problems, central-

ized tube-MPC methods can be applied to compute local control policies that are

guaranteed to be feasible for each sub-problem. Although decentralized control

policies calculated according to such decomposition methods are guaranteed to

be feasible for the full problem, they may result in behaviors that are overly

conservative in terms of the cost they incur for a number of reasons. First, the

treatment of the coupling states and inputs as independent disturbances ignores

the potential dynamical coupling between these variables. Second, the over ap-

proximation of the coupling state and input trajectory sets by their correspond-

ing state and input constraint sets will likely be very loose for many problem

instances. More importantly, the over approximation of the coupling state and

input trajectory sets in this manner ignores the fact that these sets depend on

the control policy being used to regulate the system, and, therefore, neglects the

possibility of co-optimizing their specification with the control policy.

Summary of results: We provide a computationally tractable method to

calculate control policies that are guaranteed to be feasible for constrained de-

centralized control problems with nonclassical information structures. Loosely

speaking, the proposed approach seeks to neutralize the nonconvexity aris-

ing from the informational coupling between subsystems by treating the

information-coupling states as disturbances whose trajectories are “assumed”

to take values in a certain “contract” set. To ensure the satisfaction of this as-
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sumption, we impose a contractual constraint on the control policy that “guar-

antees” that the information-coupling states that it induces indeed belong to

said contract set. Naturally, this approach yields an inner approximation of the

original decentralized control design problem, where the conservatism of the re-

sulting approximation depends on the specification of the contract set. To limit

the extent of the suboptimality that may result, we formulate a semi-infinite

program to co-optimize the decentralized control policy with the location, scale,

and orientation of an ellipsoidal contract set. We establish a condition on the set

of allowable contracts that facilitates the joint optimization of the control policy

and the contract set via semidefinite programming.

We note that there are several related papers appearing in the literature

that investigate a similar approach to decentralized control design via the co-

optimization of control policies and contract sets [36, 100]. Importantly, the

techniques developed in these papers only permit the scaling and translation

of a base contract set when co-optimizing it with the control policy. To the best

of our knowledge, the method proposed in this paper provides the first sys-

tematic approach to co-optimize the control policy with the location, scale, and

orientation of the contract set, expanding substantially the family of contracts

that can be efficiently optimized.

Organization: The remainder of this chapter is organized as follows. In Sec-

tion 4.2, we specify the formulation of the decentralized state-feedback control

design problem considered in this chapter.1 In Section 4.3, we provide a decom-

position of the local information available to each subsystem into a partially

1While the state-feedback control design problem is a special case of the decentralized

output-feedback control design problem (3.6), stating a problem formulation that is tailored

to the results in this chapter will substantially improve the clarify of our exposition.
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nested subset and its complement, which enables the isolation of the subset of

each subsystem’s accessible state measurements that give rise to the informa-

tional coupling between subsystems. In Section 4.4, we construct a convex inner

approximation of the decentralized control design problem where the informa-

tion coupling states are “assumed” to behave as disturbances taking value in

a “contract” set and the control policy is constrained in such a way to induce

information coupling states that are “guaranteed” to take value in the afore-

mentioned contract set. In Section 4.5, we describe a method of co-optimizing

the decentralized control policy with the location, scale, and orientation of the

contract set via the solution of a semidefinite program. Section 4.6 concludes

the chapter with a discussion on future work.

Finally, we note that some of the notation introduced in Chapter 3 might be

reloaded in this chapter. The notation convention we introduced in Chapter 3

will be re-inherited in Chapter 5.

4.2 Problem Formulation

4.2.1 System Model

Consider the following variant of the discrete-time, linear time varying system

described in Eq. (3.1), where the state of subsystem i evolves according to

xi(t+ 1) =
N∑
j=1

(Aij(t)xj(t) +Bij(t)uj(t)) + wi(t), (4.1)

for i = 1, . . . , N . For each subsystem i, we denote its local state, local input, and

local disturbance at time t by xi(t) ∈ Rni
x , ui(t) ∈ Rni

u , wi(t) ∈ Rni
x , respectively.
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The system is assumed to evolve over a finite time horizon T , and the initial

condition is assumed to be a random vector with known probability distribu-

tion. In the sequel, we will work with a more compact representation of the full

system dynamics given by

x(t+ 1) = A(t)x(t) +B(t)u(t) + w(t).

Here, we denote by x(t) := (x1(t), .., xN(t)) ∈ Rnx , u(t) := (u1(t), .., uN(t)) ∈ Rnu ,

and w(t) := (w1(t), .., wN(t)) ∈ Rnx the full system state, input, and disturbance

at time t. The dimensions of the system state and input are given by nx :=∑N
i=1 n

i
x and nu :=

∑N
i=1 n

i
u, respectively.

We define the system state, input, and disturbance trajectories according to

x := (x(0), . . . , x(T )) ∈ RNx , Nx := nx(T + 1), (4.2)

u := (u(0), . . . , u(T − 1)) ∈ RNu , Nu := nuT, (4.3)

w := (w(−1), w(0), . . . , w(T − 1)) ∈ RNx , (4.4)

respectively, where the initial component w(−1) of the system disturbance tra-

jectory is given by w(−1) = x(0). Additionally, we denote byW the support of

the system disturbance trajectory w, which we assume to be a convex and com-

pact subset of RNx . Finally, the input and disturbance trajectories are related to

the state trajectory according to

x = Bu+Gw, (4.5)
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where the matrices B and G are given by

B :=



0

A1
1B(0) 0

A2
1B(0) A2

2B(1) 0

... . . . . . .

... . . . 0

AT1B(0) AT2B(1) · · · · · · ATTB(T − 1)


, G :=



A0
0

A1
0 A1

1

... . . .

AT0 AT1 · · · ATT


.

4.2.2 System Constraints

We consider a general family of polyhedral constraints on the state and input

trajectories of the form

Fxx+ Fuu+ Fww ≤ g ∀w ∈ W , (4.6)

where Fx ∈ Rm×Nx , Fu ∈ Rm×Nu , Fw ∈ Rm×Nx , g ∈ Rm are assumed to be given.

Note that such constraints may couple states and inputs across subsystems and

time periods.

4.2.3 Decentralized Control Design

The information structure we consider in this chapter is identical to the one

considered in problem (3.6). Specifically, let GI = (V , EI) be the information

graph of the system. Under the assumption that each subsystem’s measured

output is a perfect measurement of its local state, the local information of each
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subsystem i at time t as

zi(t) := {x0:t
j | (j, i) ∈ EI}. (4.7)

It follows that the local input to subsystem i at time t is of the form

ui(t) = γi(zi(t), t), (4.8)

where γi(·, t) is a measurable function of the local information zi(t). We define

the local control policy for subsystem i as γi := (γi(·, 0), . . . , γi(·, T−1)). We refer to

the collection of local control policies γ := (γ1, . . . , γN) as the decentralized control

policy, which relates the state trajectory x to the input trajectory u according to

u = γ(x). Finally, we let Γ denote the set of all decentralized control policies

respecting the information constraints encoded in Eq. (4.8).

We consider the following family of constrained decentralized control de-

sign problems:

minimize E
[
xTRxx+ uTRuu

]
subject to γ ∈ Γ

u = γ(x)

x = Bu+Gw

Fxx+ Fuu+ Fww ≤ g


∀w ∈ W .

(4.9)

Here, the cost matrices Rx ∈ RNx×Nx and Ru ∈ RNu×Nu are both assumed to

be symmetric and positive semidefinite. In this chapter, out objective is to de-

velop a tractable method to compute feasible control policies for decentralized

control design problems with arbitrary (and possibly nonclassical) information

structures.
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4.3 Information Decomposition

The primary difficulty in solving decentralized control design problems stems

from the informational coupling that emerges when a subsystem’s local infor-

mation is affected by prior control actions that it cannot access or reconstruct.

With the aim of isolating the effects of these actions on the information available

to each subsystem, we propose an information decomposition that partitions the

local information available to each subsystem into a partially nested subset (i.e.,

an information subset that is unaffected by control actions previously applied

to the system) and its complement. This information decomposition enables

an equivalent reformulation of the decentralized control design problem where

the control policy is expressed as an explicit function of the system disturbance

and the so called information-coupling states. This reformulation will serve as

the foundation for the contract-based approach to decentralized control design

proposed in Section 4.4.

4.3.1 Decomposition of Local Information

We decompose the local information available to each subsystem according to a

partition of its in-neighbors as defined by the given information graph GI . More

specifically, for each subsystem i ∈ V , we let

N (i) ⊆ V−I (i)

denote the set of in-neighboring subsystems such that the information conveyed

by their local state measurements is unaffected by the prior control actions of

any subsystem. This requirement is satisfied if the local information of subsys-

62



tem i is such that it permits the reconstruction of all states and control actions

directly affecting the local states of all subsystems belonging toN (i). We denote

the complement of this set by C(i) := V−I (i) \ N (i) for each subsystem i ∈ V .

With the goal of providing an explicit characterization of these sets, we first

provide a characterization of the physical coupling between different subsys-

tems as reflected by the block sparsity patterns of the system matrices A and B.

We describe this coupling in terms of a pair of directed graphs, GA := (V , EA)

and GB := (V , EB), whose edge sets are defined according to

EA := {(j, i) ∈ V × V | ∃t = 0, . . . , T − 1 s.t. Aij(t) 6= 0},

EB := {(j, i) ∈ V × V | ∃t = 0, . . . , T − 1 s.t. Bij(t) 6= 0}.

We let V−A (i) and V−B (i) denote the in-neighborhoods associated with each node

i ∈ V in GA and GB, respectively.

Building on these representations, we have the following definition that for-

malizes the class of information decompositions considered in this paper. For

each subsystem i ∈ V , define the set

N (i) := {j ∈ V−I (i) | (4.10), (4.11) are satisfied},

where the above conditions are given by

V−A (j) ⊆ V−I (i) (4.10)

and

⋃
k∈V−B (j)

V−I (k) ⊆ V−I (i). (4.11)

Condition (4.10) requires that subsystem i has access to all states that directly af-

fect subsystem j’s state through the system dynamics. Condition (4.11) requires
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that subsystem i has access to the local information of each subsystem whose

control actions directly affect subsystem j’s state. This ensures that subsystem

i is able to reconstruct all control actions that directly affect subsystem j’s state.

Collectively, conditions (4.10) and (4.11) can be interpreted as a requirement on

the local nesting of information, in the sense that if j ∈ N (i), then subsystem i

is assumed to have access to all states and control actions that directly affect

subsystem j’s state through the state equation. As a result, subsystem i can

explicitly reconstruct the local disturbance wj(t − 1) acting on any subsystem

j ∈ N (i) based only on its local information zi(t) as follows:

wj(t− 1) = xj(t)−
∑

k∈V−A (j)

Ajk(t− 1)xk(t− 1)

−
∑

k∈V−B (j)

Bjk(t− 1)uk(t− 1).

The local states of subsystems not belonging toN (i), on the other hand, may

contain information that can be influenced by prior control actions. We refer

to these states as the information-coupling states associated with subsystem i at

stage t, denoting them by xC(i)(t) where

C(i) := V−I (i) \ N (i).

The collection of information-coupling states across all subsystems are denoted

by the xC(t) ∈ RnCx , where

C :=
⋃
i∈V

C(i). (4.12)

The trajectory of information-coupling states is denoted by

xC := (xC(0), . . . , xC(T )) ∈ RNCx ,
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where NCx := nCx(T + 1). Finally, it will be notationally convenient to express the

mapping from the state trajectory x to its subvector xC in terms of the projection

operator ΠC : RNx → RNCx , where xC = ΠCx.

Remark 1 (Partially Nested Information). It can be shown that the given infor-

mation structure is partially nested if and only if the set of information coupling

states is empty, i.e., C = ∅. It is well known that such information structures

permit the equivalent reformulation of problem (4.9) as a convex optimization

problem in the space of disturbance-feedback control policies.

4.3.2 Control Input Reparameterization

The proposed information decomposition suggests a natural reparameteriza-

tion of the control policy in terms of the following equivalent information set.

Lemma 8 (Equivalence of Information). Define the information set ζi(t) accord-

ing to

ζi(t) := {x0:t
j |j ∈ C(i)} ∪ {w−1:t−1

j |j ∈ N (i)}.

The sets zi(t) and ζi(t) are functions of each other for each subsystem i and time

t.

The proof of Lemma 8 is omitted, as it mirrors that of Lemma 5. Lemma 8

implies the following equivalent reformulation of the local control input:

ui(t) = φi(ζi(t), t), (4.13)

where φi(·, t) is a measurable function of its arguments. We let φi :=

(φi(·, 0), . . . , φi(·, T − 1)) and φ := (φ1, . . . , φN) denote the reparameterized con-
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trol policy associated with each subsystem i ∈ V and the full system, respec-

tively. With a slight abuse of notation, we express the input trajectory induced

by the reparameterized control policy φ as

u = φ(w, xC).

Finally, we denote by Φ the set of reparameterized decentralized control policies

that respect the information constraints encoded in Eq. (4.13).

The reparameterization of the control input according to Eq. (4.13) results

in the following equivalent reformulation of the original decentralized control

problem (4.9):

minimize E
[
xTRxx+ uTRuu

]
subject to φ ∈ Φ

u = φ(w, x)

x = Bu+Gw

Fxx+ Fuu+ Fww ≤ g


∀w ∈ W .

(4.14)

Clearly, problem (4.14) remains nonconvex, in general, if the set of information-

coupling subsystems is nonempty, i.e., C 6= ∅. In Section 4.4, we construct a

convex inner approximation to problem (4.14) where the information-coupling

states are assumed to behave as disturbances with bounded support, and the

control policy is constrained in a manner that ensures consistency between the

assumed and actual behaviors of the information-coupling states.
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4.4 Decentralized Control Design via Contracts

In this section, we construct a convex inner approximation of the decentral-

ized control design problem (4.14) via the introduction of an assume-guarantee

contractual constraint on the information-coupling states xC . We do so by in-

troducing a surrogate information structure in which the information-coupling

states are modeled as fictitious disturbances that are “assumed” to take val-

ues in a “contract” set. To “guarantee” the satisfaction of this assumption, we

impose a contractual constraint on the control policy requiring that the actual

information-coupling states induced by the control policy belong to the contract

set. Given a fixed contract set, the resulting problem is a convex disturbance-

feedback control design problem, whose feasible policies are guaranteed to be

feasible for original problem (4.14).

4.4.1 Surrogate Information

We associate a fictitious disturbance ξi(t) ∈ Rni
x with each subsystem i ∈ V and

time t = 0, . . . , T . We let ξ ∈ RNx denote the corresponding fictitious distur-

bance trajectory induced by these individual elements, which we model as a

random vector whose support Ξ ⊂ RNx is assumed to be a convex and compact

set. We also assume that the fictitious disturbance trajectory ξ is independent of

the system disturbance trajectory w.

Letting the collection of fictitious disturbances serve as a surrogates for the

information-coupling states, we define the surrogate local information for subsys-
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tem i as

ζ̃i(t) := {ξ0:t
j |j ∈ C(i)} ∪ {w−1:t−1

j |j ∈ N (i)}.

Given a decentralized control policy φ ∈ Φ, the surrogate local information in-

duces a surrogate control input for each subsystem i defined according to

ũi(t) := φi(ζ̃i(t), t).

Additionally, the surrogate input trajectory induced by the surrogate information

structure is given by

ũ := φ(w, ξC),

where ξC := ΠCξ.

4.4.2 Surrogate Dynamics

The treatment of the information coupling states as fictitious disturbances in-

duces a surrogate system state that evolves according to the following surrogate

state equation:

x̃i(t+ 1) =
∑

j∈V\C(i)

Aij(t)x̃j(t) +
∑
j∈C(i)

Aij(t)ξj(t) +
N∑
j=1

Bij(t)ũj(t) + wi(t), (4.15)

where x̃i(t) denotes the surrogate state of subsystem i at time t. We require

that the initial condition of the surrogate system equal that of the true system

states agree, i.e., x̃i(0) = xi(0) for each subsystem i. Moving forward, it will

be convenient to express the surrogate state dynamics in terms of trajectories as

follows:

x̃ = B̃ũ+ G̃w + H̃ξC. (4.16)
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Here, the matrices B̃, G̃, and H̃ are defined according to

B̃ :=



0

Ã1
1B(0) 0

Ã2
1B(0) Ã2

2B(1) 0

... . . . . . .

... . . . 0

ÃT1B(0) ÃT2B(1) · · · · · · ÃTTB(T − 1)


,

G̃ :=



Ã0
0

Ã1
0 Ã1

1

... . . .

ÃT0 ÃT1 · · · ÃTT


,

H̃ :=



0

Ã1
1H̃(0) 0

Ã2
1H̃(0) Ã2

2H̃(1) 0

... . . . . . .

... . . . 0

ÃT1 H̃(0) ÃT2 H̃(1) · · · · · · ÃTT H̃(T − 1) 0


ΠT
C ,

where Ãts :=
∏t−1

r=s Ã(r) for s < t, and Ãtt = I , and the matrices Ã(t) and H̃(t)

according to

Ãij(t) =


Aij(t) if j ∈ V \ C(i),

0 otherwise,

H̃ij(t) = Aij(t)− Ãij(t),

for i, j = 1, . . . , N .
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We close this subsection with a lemma that establishes conditions for the

equivalence between the surrogate and actual state trajectories. We omit the

proof, as it directly follows from the definition of the surrogate state equation

(4.16).

Lemma 9. Let u ∈ RNu and w ∈ RNx . It holds that x = Bu + Gw if and only if

x = B̃u+ G̃w + H̃xC .

4.4.3 Assume-Guarantee Contracts

Thus far, we have treated the information-coupling states as fictitious distur-

bances that are assumed to take values in a given set Ξ. Leveraging on concepts

grounded in assume-guarantee reasoning [4, 67], we guarantee the satisfaction

of this assumption by imposing a contractual constraint on the control policy,

which ensure that it induces information-coupling states that belong to Ξ. We

formalize the notion of an assume-guarantee contract in the following definition.

Definition 3 (Assume-guarantee Contract). A control policy φ ∈ Φ is said to

satisfy the assume-guarantee contract speficied in terms of the contract set ΞC ⊆

RNCx if

ΠCx̃ ∈ ΞC ∀ (w, ξC) ∈ W × ΞC,

where x̃ = B̃φ(w, ξC) + G̃w + H̃ξC .

Here, the set ΞC is referred to as a contract set, as it specifies the set that

the information-coupling states are both assumed and required to belong to.

The satisfaction of the assume-guarantee contract guarantees that the surrogate
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information-coupling states x̃C := ΠCx̃ belong to the contract set. In the fol-

lowing lemma, we show that the actual information-coupling states that result

under the policy u = φ(w, xC) are guaranteed to belong to the contract set if the

assume-guarantee contract is satisfied.

Lemma 10. Let φ ∈ Φ be a control policy that satisfies the assume-guarantee

contract specified in terms of the contract set ΞC ⊆ RNCx . It follows that ΠCx ∈ ΞC

for all w ∈ W , where x = Bφ(w, xC) +Gw.

Proof: The proof centers on a fixed-point characterization of the state trajectory

x that results under the input trajectory u = φ(w, xC). Using such a fixed-point

characterization, we prove xC ∈ ΞC by induction in time.

We first require several preliminary definitions. Define the projection opera-

tor Π0:t
C according to:

Π0:t
C :=

[
InCx(t+1) 0nCx(t+1)×nCx(T−t)

]
ΠC

for t = 0, . . . , T . It follows x0:t
C = Π0:t

C x for each time t ∈ {0, . . . , T}.

Define the function fφ : RNx ×RNCx → RNx according to

fφ(w, ξC) := B̃φ(w, ξC) + G̃w + H̃ξC. (4.17)

In the following lemma, we show that the function fφ is strictly causal in ξC ,

and establish a fixed-point property that the function fφ satisfies. This lemma is

stated without proof, as it follows directly from the definition of the matrix H̃

and Lemma 9.

Lemma 11. Let φ ∈ Φ, and let x = Bφ(w, xC) +Gw. We have that

(i) For each time t ∈ {0, . . . , T} and each w ∈ RNx ,

Π0:t−1
C (ξ − ξ′) = 0 =⇒ Π0:t

C fφ(w, ξC) = Π0:t
C fφ(w, ξ′C).
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(ii) The state trajectory x satisfies the fixed point condition x = fφ(w, xC) for

all w ∈ RNx .

Fix w ∈ W , and let x = Bφ(w, xC) + Gw. It suffices to prove by induction in

t that x0:t
C ∈ Π0:t

C ΠT
CΞC for each time t ∈ {0, . . . , T}, as the satisfaction of this

condition for t = T implies that xC ∈ ΠCΠ
T
CΞC = ΞC . Our inductive proof

follows.

Base step: Let t = 0. Fix ξ ∈ RNx that satisfies ξC ∈ ΞC . It is straightforward

to verify that

xC(0) = Π0:0
C x = Π0:0

C fφ(w, xC) = Π0:0
C fφ(w, ξC)

= Π0:0
C ΠT

CΠCfφ(w, ξC) ∈ Π0:0
C ΠT

CΞC.

Here, the second equality follows from property (ii) in Lemma 11; the third

equality follows from property (i) in Lemma 11; the fourth equality follows from

the identity that Π0:t
C ΠT

CΠC = Π0:t
C for each time t; and the last inclusion condition

follows from the assumption the policy φ satisfies the assume-guarantee con-

tract specified by the contract set ΞC . It follows that our claim is true for the base

step.

Induction step: Assume that x0:t−1
C ∈ Π0:t−1

C ΠT
CΞC . We now show that x0:t

C ∈

Π0:t
C ΠT

CΞC . Fix ξ ∈ RNx that satisfies ΠCξ ∈ ΞC and x0:t−1
C = Π0:t−1

C ξ (which is

guaranteed to exist by our induction hypothesis). Using arguments analogous

to our proof in the base step, we have that

x0:t
C = Π0:t

C x = Π0:t
C fφ(w, xC) = Π0:t

C fφ(w, ξC)

= Π0:t
C ΠT

CΠCfφ(w, ξC) ∈ Π0:t
C ΠT

CΞC,

where the third equality follows from a combination of property (i) in Lemma
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11 and the fact that x0:t−1
C = Π0:t−1

C ξ. This completes the induction step of the

proof. �

In the following proposition, we provide an inner approximation of the de-

centralized control design problem (4.14) via the introduction of an assume-

guarnatee contractual constraint.

Proposition 4. Let φ ∈ Φ be a feasible control policy for the following problem:

minimize E
[
x̃TRxx̃+ ũTRuũ

]
subject to φ ∈ Φ

ũ = φ(w, ξC)

ΠCx̃ ∈ ΞC

x̃ = B̃ũ+ G̃w + H̃ξC

Fxx̃+ Fuũ+ Fww ≤ g


∀(w, ξC) ∈ W × ΞC,

(4.18)

It follows that φ is also feasible for problem (4.14).

Proof: Let φ be a feasible policy for problem (4.18), and x = Bφ(w, xC) +Gw. It

follows from Lemma 10 that the state trajectory x satisfies

xC ∈ ΞC ∀w ∈ W . (4.19)

Additionally, the feasibility of the policy φ for problem (4.18) implies that

Fxfφ(w, ξC) + Fuφ(w, ξC) + Fww ≤ g (4.20)

for all (w, ξC) ∈ W × ΞC , where the function fφ is defined in Eq. (4.17). In

combination with the fact that xC ∈ ΞC for all w ∈ W , this implies that

Fxfφ(w, xC) + Fuφ(w, xC) + Fww ≤ g ∀w ∈ W . (4.21)
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Finally, it follows from Lemma 11 the trajectory x satisfies the fixed-point con-

dition x = fφ(w, xC) for all w ∈ W . In combination with the satisfaction of the

robust inequality constraint (4.21), this implies that

Fxx+ Fuφ(w, xC) + Fww ≤ g ∀w ∈ W ,

which shows that the policy φ is feasible for problem (4.14). �

Problem (4.18) is a convex disturbance feedback control design problem,

given a fixed contract set ΞC . The choice of the contract set does, however, play

an important role in determining the performance of the control policies that it

gives rise to via solutions to problem (4.18). In Section 4.5, we develop a system-

atic approach to enable the joint optimization of the contract set with the control

policy via semidefinite programming.

4.5 Policy-Contract Optimization

In this section, we provide a semidefinite programming-based method to co-

optimize the design of the decentralized control policy together with the con-

tract set that constrains its design. As part of the proposed approach, we con-

sider a restricted family of control policies that are affinely parameterized in

both the disturbance and fictitious disturbance histories. We also parameterize

the fictitious disturbance process as a causal affine function of a given (primi-

tive) disturbance process—an approach that is similar in nature to the class of

parameterizations that have been recently studied in the context of robust opti-

mization with adjustable uncertainty sets [118]. As one of our primary results

in this section, we identify a structural condition on the family of allowable con-

tract sets that permits the inner approximation of the resulting policy-contract
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optimization problem as a semidefinite program.

4.5.1 Affine Control Policies

We restrict our attention to affine decentralized disturbance-feedback control

policies of the form

ũi(t) = uoi (t) +
∑
j∈N (i)

t−1∑
s=−1

Qw
ij(t, s+ 1)wj(s) +

∑
j∈C(i)

t∑
s=0

Qξ
ij(t, s)ξj(s), (4.22)

for t = 0, . . . , T − 1 and i = 1, . . . , N . Here, uoi (t) denotes the open-loop control

input, and the matrices Qw
ij(t, s + 1) and Qξ

ij(t, s) denote the feedback control

gains. The affine control policy specified in Eq. (4.22) can be expressed in terms

of trajectories as

ũ = uo +Qww +Qξξ, (4.23)

where the gain matrices Qw and Qξ are both T × (T + 1) block matrices, whose

(t, s)-th block is defined according to

[Qw(t, s)]ij =


Qw
ij(t, s) if j ∈ N (i), t ≥ s,

0 otherwise,
(4.24)

[Qξ(t, s)]ij =


Qξ
ij(t, s) if j ∈ C(i), t ≥ s,

0 otherwise.
(4.25)

for i, j = 1, . . . , N . We letQN andQC denote the matrix subspaces respecting the

block sparsity patterns specified according to Eqs. (4.24) and (4.25), respectively.
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4.5.2 Affine Parameterization of the Fictitious Disturbance

We focus our analysis on fictitious disturbances that are expressed according to

affine transformations of a primitive disturbance. Such a parameterization yields

contract sets that have adjustable location, scale, and orientation. Specifically,

we let the random vector v denote the primitive disturbance trajectory, which is

assumed to be an i.i.d. copy of the system disturbance trajectory w. We param-

eterize the fictitious disturbance trajectory affinely in the primitive disturbance

as

ξ := ξ + Zv. (4.26)

Here, the parameters ξ ∈ RNx and Z ∈ RNx×Nx can be adjusted to control the

shape of the resulting contract set ΞC , which takes the form of

ΞC = ΠC
(
ξ ⊕ ZW

)
. (4.27)

Throughout the paper, we will restrict our attention to transformations (4.26)

in which the matrix parameter Z is both lower triangular and invertible. We

denote the set of all such matrices by Z ⊂ RNx×Nx .

The specification of the fictitious disturbance according to Eq. (4.26) induces

the following the surrogate control input:

ũ = uo +Qξξ +Qww +QξZv. (4.28)

We eliminate the bilinear terms in Eq. (4.28) through the following the change

of variables:

u := uo +Qξξ and Qv := QξZ. (4.29)
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This change of variables gives rise to a reparameterization of the surrogate input

trajectory as

ũ = u+Qww +Qvv, (4.30)

where the matrix Qv ∈ RNu×Nx must satisfy the sparsity constraint

QvZ−1 ∈ QC

in order to ensure the satisfaction of the original sparsity constraint that Qξ ∈

QC .

The parameterization of the contract set and control policy in this manner

permits their co-optimization as follows:

minimize E
[
x̃TRxx̃+ ũTRuũ

]
subject to Qw ∈ QN , Qv ∈ RNu×Nx , Z ∈ Z

u ∈ RNu , ξ ∈ RNx ,

QvZ−1 ∈ QC

ξ = ξ + Zv

ũ = u+Qww +Qvv

x̃ = B̃ũ+ G̃w + H̃ξC

ΠCx̃ ∈ ΠC
(
ξ ⊕ ZW

)
Fxx̃+ Fuũ+ Fww ≤ g


∀(w, v) ∈ W2.

(4.31)

where W2 := W × W . Problem (4.31) is a nonconvex semi-infinite program,

where the nonconvexity is due to the sparsity constraint on the matrix QvZ−1

and the contractual constraint on the affine control policy. In what follows, we

provide convex inner approximations of these constraints, which yields an inner

approximation of problem (4.31) as a semidefinite program.
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4.5.3 Restricting the Contract Set

In what follows, we introduce an additional restriction on the set of allowable

matrix parameters Z that guarantees the invariance of the subspace QC under

multiplication by such matrices, thereby allowing the equivalent reformulation

of the bilinear constraint QvZ−1 ∈ QC as Qv ∈ QC .

Specifically, we require that the matrix Z be of the form

Z = λI − Y, (4.32)

where λ ≥ 1 is scalar parameter and Y ∈ RNx×Nx is a (T + 1) × (T + 1) strictly

block lower triangular matrix of the form

Y =



0

Y (1, 0) 0

... . . . . . .

Y (T, 0) · · · Y (T, T − 1) 0


. (4.33)

Furthermore, each block of the matrix Y is an N × N block matrix, whose

(i, j)-th block is of dimension nix × njx. We impose an additional restriction on

the structure of the matrix Y in the form of sparsity constraints (that reflect the

pattern of informational coupling between subsystems) on each of its blocks.

More specifically, we encode the pattern of informational coupling between

subsystems according to a directed graph GC := (V , EC), whose directed edge

set EC is defined as

EC := {(j, i) ∈ EI | j ∈ C(i)}.

We let V+
C (i) denote the out-neighborhood of a node i ∈ V in the graph GC .

Using this graph, we impose a sparsity constraint on each block of the matrix Y
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of the form:

[Y (t, s)]ij = 0 if V+
C (i) * V+

C (j) (4.34)

for all i, j = 1, . . . , N , and t, s = 0, . . . , T . We let Y(GC) denote the subspace of all

matrices that respect the sparsity constraints implied by Eqs. (4.33) and (4.34).

We have the following result establishing the invariance of the subspace QC

under multiplication by matrices Y ∈ Y(GC).

Lemma 12. If Q ∈ QC and Y ∈ Y(GC), then QY ∈ QC .

Proof: Fix Q ∈ QC and Y ∈ Y(GC), and set P = QY . It follows that P is a

T × (T + 1) block matrix, whose (t, s)th block is given by

P (t, s) =


∑t

r=s+1Q(t, r)Y (r, s) if t > s

0 otherwise

We complete the proof by showing that

[P (t, s)]ij 6= 0 =⇒ j ∈ C(i).

The condition that [P (t, s)]ij 6= 0 implies the existence of a time r ∈ {s+ 1, . . . , t}

and a subsystem k ∈ V , such that

[Q(t, r)]ik 6= 0, and [Y (r, s)]kj 6= 0.

The fact that [Q(t, r)]ik is nonzero implies that k ∈ C(i), as the matrix Q satis-

fies Q ∈ QC . The fact that [Y (r, s)]kj is nonzero implies that V+
C (k) ⊆ V+

C (j),

as the matrix Y satisfies Y ∈ Y(GC). It follows from the definition of out-

neighborhoods that i ∈ V+
C (k) ⊆ V+

C (j), which subsequently implies that

j ∈ C(i). The desired result follows. �

We have the following result as an immediate consequence of Lemma 12.
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Lemma 13. Let Y ∈ Y(GC) and λ ∈ [1,∞). It follows that

QC =
{
Qv(λI − Y )−1 |Qv ∈ QC

}
.

Proof: Fix λ ∈ [1,∞) and Y ∈ Y(GC). Define the finite-dimensional linear map

F : RNu×Nx → RNu×Nx according to

F (Q) := Q(λI − Y )−1.

It suffices to show that F (QC) = QC . The invertibility of the linear map F , in

combination with the fact that the subspace QC is finite-dimensional, implies

that F (QC) = QC if and only if F−1(QC) ⊆ QC . Note that the inverse of the

linear map F is given by

F−1(Q) = Q(λI − Y ).

The desired result follows, as Lemma 12 implies that QY ∈ QC for each Q ∈ QC

and Y ∈ Y(GC). �

It follows from Lemma 13 that the constraint QvZ−1 ∈ QC is equivalent to

Qv ∈ QC if Z = λI − Y , where Y ∈ Y(GC) and λ ≥ 1.

We conclude this subsection with a discussion on the family of correlations

in the fictitious disturbances that can be adjusted under the sparsity constraint

Y ∈ Y(GC). First note that the block lower triangular structure of the matrix Y

enables one to adjust the inter-temporal correlation in the fictitious disturbance

process. Such a property is desirable, as the information coupling states will, in

general, couple across time. Additionally, the sparsity constraint in Eq. (4.34)

imposes the restriction that one is allowed to adjust the correlation between the

fictitious disturbances from two subsystems if and only if the out-neighborhood

of one subsystem in the graph GC is contained in that of the other. This sparsity
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constraint is a technical condition that is required to guarantee the invariance

of the subspace QC under multiplication with any matrix belonging to the set

Y(GC). However, such a requirement might be restrictive, as the aforementioned

containment condition on two subsystems’ out-neighborhoods might not be sat-

isfied by two subsystems that are dynamically coupled through the system A

and B matrices. The question as to how one might address such a drawback

remains an important direction for future work.

4.5.4 Semidefinite Programming Approximation

In this section, we require an additional assumption on the support of the dis-

turbance trajectory2.

Assumption 3. The disturbance trajectory w is a zero-mean random vector

whose support is an ellipsoid given by

W :=
{
z ∈ RNx

∣∣ zTΣ−1z ≤ 1
}
,

where the matrix Σ is symmetric and positive definite.

In the remainder of this section, we illustrate how Assumption 3 enables

both the equivalent reformulation of the robust linear constraint in problem

(4.31) as second order cone constraints and the inner approximation of the con-

tractual constraint in problem (4.31) as linear matrix inequality constraints.

2The assumption that the disturbance trajectory w be zero mean and have support centered

at the origin is made to simplify the statement of our subsequent results in this section. The

relaxation of this assumption only requires additional algebraic manipulations, and is omitted

to facilitate exposition.
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To lighten notation, we write the surrogate state trajectory x̃more compactly

as

x̃ = x+ Pww + P vv,

where x := B̃u+ H̃ξ, Pw := B̃Qw + G̃, and P v := B̃Qv + H̃(λI − Y ).

We first address the robust linear constraints in problem (4.31). The fol-

lowing result provides an equivalent reformulation as second-order cone con-

straints. Its proof is omitted, as it is an immediate consequence of the identity

supw∈W c
Tw = ‖Σ1/2c‖2 for all c ∈ RNx .

Lemma 14. The semi-infinite constraint Fxx̃+Fuũ+Fww ≤ g for all (w, v) ∈ W2

is satisfied if and only if

∥∥Σ1/2eTi (FxP
w + FuQ

w + Fw)
∥∥

2
+
∥∥Σ1/2eTi (FxP

v + FuQ
v)
∥∥

2

≤ eTi (g − Fxx− Fuu), i = 1, . . . ,m, (4.35)

where ei is the ith standard basis vector in Rm.

We now address the nonconvexity that stems from the contractual constraint

in problem (4.31). First, notice that the contractual constraint is equivalent to the

following set containment constraint

ΠC (x⊕ PwW ⊕ P vW) ⊆ ΠC
(
ξ ⊕ ZW

)
. (4.36)

The set containment constraint (4.36) amounts to requiring that the Minkowski

sum of two ellipsoids be contained within another ellipsoid. It follows from

[42][Theorem 4.2] that this class of set containment constraints can be approxi-

mated from within by a quadratic matrix inequality. We first state [42][Theorem

4.2] in the following lemma.
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Lemma 15. Let Assumption 3 hold, and let L1, L2, L3 ∈ Rm×Nx , where m ≤ Nx.

We have that L1W ⊕ L2W ⊆ L3W if there exist a scalar α ∈ [0, 1] such that

α−1L1ΣLT
1 + (1− α)−1L2ΣLT

2 � L3ΣLT
3 . (4.37)

The outer approximation of the Minkowski sum in Lemma 15 is tight. That is

to say, there exists a scalar α ∈ [0, 1] for which the boundary of the ellipsoid L3W

intersects the boundary of the Minkowski sum L1W⊕L2W . A direct application

of Lemma 15 implies that the set containment constraint (4.36) is satisfied if there

exists α ∈ [0, 1] such that

ΠC(ξ − x) = 0 (4.38)

ΠC
(
α−1PwΣPwT + (1− α)−1P vΣP vT

)
ΠT
C � ΠC(λI − Y )Σ(λI − Y )TΠT

C . (4.39)

The quadratic matrix inequality (4.39) is still non-convex in the decision vari-

ables λ and Y . We have the following result, which leverages on Schur’s Lemma

to construct a further inner approximation of the matrix inequality (4.39) as a

linear matrix inequality.

Lemma 16. Let Assumption 3 hold. The set containment constraint (4.36) is

satisfied if there exists a scalar β ∈ [0, λ] such that

ΠC
(
x− ξ

)
= 0, (4.40)

ΠCΣ̃ΠT
C ΠCP

w ΠCP
v

PwTΠT
C βΣ−1 0

P vTΠT
C 0 (λ− β)Σ−1

 � 0, (4.41)

where Σ̃ = λΣ− Y Σ− ΣY T.

Proof: It suffices to show that the matrix inequality (4.39) is satisfied if the LMI

(4.41) is satisfied. Define β := αλ, and divide both sides of the matrix inequality
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(4.39) by λ. It follows that the matrix inequality (4.39) is satisfied if and only if

there exists β ∈ [0, λ], such that

β−1ΠCP
wΣPwTΠT

C + (λ− β)−1ΠCP
vΣP vTΠT

C

� ΠC(λΣ− Y Σ− ΣY T + λ−1Y ΣY T)ΠT
C . (4.42)

Recall that the matrix Σ is positive definite. Consequently, it follows from

Schur’s Lemma that the matrix inequality (4.42) is satisfied if and only if
ΠC(Σ̃ + λ−1Y ΣY T)ΠT

C ΠCP
w ΠCP

v

PwTΠT
C βΣ−1

P vTΠT
C (λ− β)Σ−1

 � 0, (4.43)

where the matrix Σ̃ = λΣ − Y Σ − ΣY T. The fact that λ−1Y ΣY T � 0 implies

that the matrix inequality (4.43) is satisfied if the linear matrix inequality (4.41)

is satisfied. This completes the proof. �

By applying Lemmas 13, 14, and 16, one can approximate the nonconvex

semi-infinite program (4.31) from within as the following finite-dimensional

semidefinite program.
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Proposition 5. Each feasible solution to the following semidefinite program is

feasible for problem (4.31):

minimize Tr
(
P vTRxP

vM + PwTRxP
wM

)
+ xTRxx

+ Tr
(
QwTRuQ

wM +QvTRuQ
vM
)

+ uTRuu

subject to Qw ∈ Q(GN), Qv ∈ Q(GC), Y ∈ Y(G),

u ∈ RNu , ξ, x ∈ RNx , λ, β ∈ R+, P
w, P v ∈ RNx×Nx ,

λ ≥ max{1, β},

x = B̃u+ H̃ξ

Pw = B̃Qw + G̃

P v = B̃Qv + H̃(λI − Y )

(4.35), (4.40), (4.41),

(4.44)

where M := E[wwT] is the second moment matrix of the disturbance trajectory

w.

The decision variables for problem (4.44) are the matrices Qw, Qv, Y , Pw,

P v, the vectors u, v, x, and the scalars λ and β. Problem (4.44) is a convex

inner approximation of the reformulated decentralized control design problem

(4.14), in the sense that each feasible solution of problem (4.44) can be mapped

to a feasible affine control policy for problem (4.14) via the change of variables

specified in (4.29).

4.6 Conclusion

We provide a method to compute feasible control policies for constrained de-

centralized control design problems via the introduction of assume-guarantee
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contracts. At the heart of this approximation is the treatment of information-

coupling states as a fictitious disturbances that are “assumed” to take values in a

contract set. We “guarantee” the inclusion of the information-coupling states in

the contract set by imposing an assume-guarantee contractual constraint on the

control policy. The introduction of such assume-guarantee contracts gives rise

to an inner approximation of the decentralized control design problem, whose

quality depends on the specification of the contract set. We provide a method

of co-optimizing the decentralized control policy with the location, scale, and

orientation of the contract set via semidefinite programming.

We conclude this chapter with a discussion on several interesting directions

for future work. First, one potential drawback of the proposed technique is

its explicit reliance on the assumption that the system under consideration op-

erates over a finite time horizon. It would be of interest to explore the pos-

sibility of guaranteeing the recursive feasibility of the controller we design by

imposing additional constraints on the terminal state, in a similar spirit to sev-

eral existing work on tube-based decentralized model predictive control (MPC)

[75, 97, 100]. Second, our semidefinite programming inner approximation to the

policy-contract optimization problem relies explicitly on the assumption that

the support of the disturbance trajectory is an ellipsoid having non-empty in-

terior. In the future, it would be of interest to accommodate other family of

disturbance trajectories whose supports are convex polyhedra or product of el-

lipsoids. Finally, the techniques developed in this paper are tailored to the set-

ting in which each subsystem’s state is perfectly observed by some other sub-

systems. It would be of interest to generalize our proposed technique to the

decentralized control of partially observed linear systems.
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CHAPTER 5

CONVEX INFORMATION RELAXATION AND PERFORMANCE

BOUNDS

The decentralized control policies we derive in Chapters 3 and 4 are, in gen-

eral, suboptimal. In this chapter, we provide a method of bounding the subop-

timality of such policies via the derivation of a computationally tractable lower

bound on the optimal value of the original decentralized control design prob-

lem. Specifically, given a decentralized control problem with nonclassical infor-

mation, we characterize an expansion of the given information structure, which

ensures its partial nestedness, while maximizing the optimal value of the result-

ing decentralized control problem under the expanded information structure.

The resulting decentralized control problem is cast as an infinite-dimensional

convex program, which is further relaxed via a partial dualization and restric-

tion to affine dual control policies. The resulting problem is a finite-dimensional

conic program whose optimal value is a provable lower bound on the minimum

cost of the original constrained decentralized control problem.

5.1 Introduction

We provide a method of tractably bounding the suboptimality of a feasible de-

centralized control policy. Our approach is to derive a tractably computable

lower bound on the optimal value of the original decentralized control design

problem. In order to state our result in its full generality, we resort to the general

formulation of decentralized output-feedback control design problems specified

in problem (3.6). Specifically, we restate the decentralized control design prob-
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lem we consider as follows:

minimize E [x′Rxx+ u′Ruu]

subject to γ ∈ Γ(GI), s ∈ L2
m

Fxx+ Fuu+ Fww + s = 0

x = Bu+Gw

y = Cx+Hw

u = γ(y)

s ≥ 0


P-a.s..

We denote the optimal value of problem (3.6) by J∗(GI), where we have made

explicit the dependence of the optimal value of problem (3.6) on the underlying

information graph GI . Our objective in this chapter is to provide a non-trivial

and tractably computable lower bound on J∗(GI).

Related Work: As the tractable computation of optimal policies for the major-

ity of decentralized control problems with nonclassical information structures

remains out of reach [76], there is a practical need to quantify the suboptimality

of feasible policies via the derivation of lower bounds on the optimal values of

such problems. Focusing on Witsenhausen’s counterexample [109] and its vari-

ants, there are several results in the literature, which establish lower bounds

using information-theoretic techniques (e.g., using the data processing inequal-

ity) [7,52,66], and linear programming-based relaxations [61]. However, looking

beyond Witsenhausen’s counterexample, it is unclear as to how one might ex-

tend these techniques to establish computationally tractable lower bounds for

the more general family of decentralized control problems considered in this

note. More closely related to the approach adopted in this note, there is an-

other stream of literature that investigates the derivation of computationally
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tractable lower bounds via information relaxations that increase the amount of

information to which each controller has access to ensure the partial nested-

ness [5, 29, 77, 91, 113] or quadratic invariance [87] of the expanded information

structure.

Summary of Results: In this chapter, we develop a tractable approach to

the computation of tight lower bounds on the minimum cost of constrained

decentralized control problems with nonclassical information structures. The

proposed approach is predicated on two relaxation steps, which together yield

a finite-dimensional convex programming relaxation of the original problem.

The first step entails an information relaxation, which eliminates the signal-

ing incentive between controllers by expanding the set of measurements that

each controller has access to. Specifically, we characterize an expansion of the

given information structure, which ensures its partial nestedness, while maxi-

mizing the optimal value of the resulting decentralized control problem under

the expanded information structure. The relaxation is also shown to be tight, in

the sense that the lower bound induced by the relaxation is achieved for sev-

eral families of decentralized control problems with nonclassical information.

The relaxed decentralized control problem is then recast as an equivalent con-

vex, infinite-dimensional program via the classical Youla parameterization. Al-

though convex, the resulting optimization problem remains computationally in-

tractable due to its infinite-dimensionality. As part of the second relaxation step,

we obtain a finite-dimensional relaxation of this problem through its partial du-

alization, and restriction to affine dual control policies. The resulting problem

is a finite-dimensional conic program, whose optimal value is guaranteed to be

a lower bound on the minimum cost of the original decentralized control de-

sign problem. To the best of our knowledge, such result is the first to offer an
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efficiently computable (and nontrivial) lower bound on the optimal cost of a

decentralized control design problem with multiple subsystems, multiple time

periods, and polyhedral constraints on state and input. If the gap between the

cost incurred by an admissible policy and the proposed lower bound is small,

then one may conclude that said policy is near-optimal.

5.2 A Convex Information Relaxation

In what follows, we provide a method of convexifying decentralized control de-

sign problems with nonclassical information structures via information-based

relaxations. Specifically, we characterize an expansion of the given information

graph that guarantees the partial nestedness of the relaxed information struc-

ture, while maximizing the optimal value of the relaxed problem. It is given by

the optimal solution to:

maximize
G⊇GI

J∗(G) subject to G ∈ PN(Θ). (5.1)

Here, the main difficulty in solving problem (5.1) is the requirement that any

feasible solution both induce a partially nested information structure and be a

supergraph of GI . We require a few definitions before stating the solution to

problem (5.1).

Definition 4 (Precedence Graph). We define the precedence graph associated with

the system Θ and the information graph GI as the directed graph GP (Θ,GI) =

(V , EP (Θ,GI)) whose directed edge set is defined as

EP (Θ,GI) := {(i, j) | i, j ∈ V , i ≺ j with respect to (Θ,GI)}.
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Essentially, the precedence graph provides a directed graphical representa-

tion of the precedence relations between all subsystems, as specified in Defini-

tion 1.

Definition 5 (Transitive Closure). The transitive closure of a directed graph G =

(V , E) is defined as the directed graph G = (V , E), where (i, j) ∈ E if and only if

there exists a directed path in G from node i to node j.

The transitive closure of a directed graph can be efficiently computed us-

ing Warshall’s algorithm [108]. Equipped with these definitions, we state the

following result, which provides a ‘closed-form’ solution to problem (5.1).

Theorem 1 (Information Relaxation). An optimal solution to (5.1) is given by

GP (Θ,GI), the transitive closure of the precedence graph.

Theorem 1 implies the following lower bound on the optimal value of the

original decentralized control problem (3.6):

J∗
(
GP (Θ,GI)

)
≤ J∗(GI). (5.2)

Moreover, this lower bound can be computed via the solution of the convex

infinite-dimensional optimization problem (3.10) that we specified in Section

3.2.1. In Theorem 2, we provide a finite-dimensional relaxation of problem (3.10)

to enable the tractable approximation of the corresponding lower bound.

It is also worth noting that the transitive closure of the precedence graph

induces an information structure under which each subsystem is guaranteed

to have access to the information of those subsystems whose control input can

directly or indirectly affect its information. This implies that the information re-

laxation GP (Θ,GI) yields a partially nested information structure—a result that
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was originally shown in [29]. Theorem 1 improves upon this result by establish-

ing the optimality of such a relaxation, in the sense that it is shown to yield the

best lower bound among all partially nested information relaxations.

Remark 2 (Tightness of the Relaxation). We also note that the information relax-

ation in Theorem 1 is tight. That is, J∗
(
GP (Θ,GI)

)
= J∗(GI) for certain families

of nonclassical control problems. In particular, it is known that signaling is per-

formance irrelevant if the partially nested information relaxation only introduces

additional information that is superfluous in terms of cost reduction—i.e., the

additional information does not contribute to an improvement in performance.

For such problems, one can establish the existence of an optimal policy under

the partially nested information relaxation that also respects the original (non-

classical) information structure—implying the tightness of the relaxation. We

refer the reader to [77], [113], [114, Sec. 3.5] for a rigorous explication of such

claims. It can also be shown that the lower bound (5.2) is achieved by nonclas-

sical LQG control problems that satisfy the so-called substitutability condition.

See [5, Sec. 3] for a formal proof of this claim.

In Lemma 17, we present an alternative characterization of partially nested

information structures that will prove useful in the proof of Theorem 1.

Lemma 17. G ∈ PN(Θ) if and only if G = GP (Θ,G).

The graph theoretic fixed-point condition in Lemma 17 implies that an infor-

mation structure is partially nested if and only if the given information graph is

equal to the transitive closure of the precedence graph that it induces. We also

note that Lemma 17 is closely related to the graph theoretic necessary and suf-

ficient condition for quadratic invariance presented in [95], which requires that
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the information graph be equal to its transitive closure, and be a supergraph of

the transitive closure of the so-called plant graph.

Proof of Lemma 17: The proof of the “if” direction is straigthforward, and

is omitted for brevity. We prove the “only if” direction of the statement. Let

G = (V , E). Assume that G ∈ PN(Θ). It follows from Assumption 1 that j ≺ i

if (j, i) ∈ E . This implies that G ⊆ GP (Θ,G), which in turn implies that G ⊆

GP (Θ,G).

To finish the proof, we will show that G ⊇ GP (Θ,G). This amounts to show-

ing that (j, i) ∈ EP (Θ,G) implies that (j, i) ∈ E . Note that (j, i) ∈ EP (Θ,G)

implies that j is path connected to i in the corresponding precedence graph

GP (Θ,G). That is, there exist m ≥ 1 distinct vertices v1, . . . , vm ∈ V that sat-

isfy j = v1 ≺ v2 ≺ · · · ≺ vm = i. Since G ∈ PN(Θ), it also holds that

zv1(t) ⊆ zv2(t) ⊆ · · · ⊆ zvm(t) for each time t. In particular, it holds that

zj(t) ⊆ zi(t) for each time t. This nesting of information, in combination with

Assumption 2, implies that (j, i) ∈ E . It follows that G ⊇ GP (Θ,G), which com-

pletes the proof. �

We have the following Corollary to Lemma 17 showing that any graph,

which is feasible for problem (5.1), must also be a supergraph of the transitive

closure of the precedence graph. In other words, this result precludes the exis-

tence of feasible information graph relaxations that do not contain GP (Θ,GI) as

a subgraph.

Corollary 1. If G ∈ PN(Θ) and G ⊇ GI , then G ⊇ GP (Θ,GI).

Proof of Corollary 1: Lemma 17 implies that G = GP (Θ,G). The result follows,

as G ⊇ GI implies that GP (Θ,G) ⊇ GP (Θ,GI). �
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Proof of Theorem 1: Corollary 1 implies that J∗
(
GP (Θ,GI)

)
≥ J∗(G) for every

graph G that is feasible for problem (5.1). Hence, to prove the result, it suffices to

show that the graph GP (Θ,GI) is also feasible for problem (5.1). We previously

showed in the proof of Lemma 17 that GP (Θ,GI) ⊇ GI . We complete the proof

by showing that GP (Θ,GI) ∈ PN(Θ). It is not difficult to show that

GP (Θ,GI) = GP
(

Θ,GP (Θ,GI)
)
. (5.3)

This follows from the observation that each precedence relation i ≺ j induced

by GP (Θ,GI) necessarily corresponds to an edge (i, j) ∈ EP (Θ,GI). It follows

from (5.3) and Lemma 17 that GP (Θ,GI) ∈ PN(Θ), which completes the proof.

�

5.3 A Dual Approach to Constraint Relaxation

The information relaxation developed in Section 5.2 provides a convex pro-

gramming relaxation of the original decentralized control design problem (3.6).

Despite its convexity, the resulting optimization problem remains computa-

tionally intractable due to its infinite-dimensionality. In what follows, we em-

ploy a general technique from robust optimization [51, 54, 65] to obtain a finite-

dimensional relaxation of this problem through its partial dualization, and

restriction to affine dual control policies. The resulting problem is a finite-

dimensional conic program, whose optimal value is guaranteed to be a lower

bound on the minimum cost of the original decentralized control design prob-

lem (3.6).

For the remainder of this section, we assume that the given information

structure is partially nested, i.e., GI ∈ PN(Θ).
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5.3.1 Restriction to Affine Dual Control Policies

The derivation of our lower bound centers on a partial Lagrangian relaxation

of problem (3.6). We do so by introducing a dual control policy v ∈ L2
m, and

dualizing the linear equality constraints on the state and input trajectories. This

gives rise to the following min-max problem, which is equivalent to problem

(3.6):

minimize sup
v∈L2m

E
[
xTRxx+ uTRuu

+ vT(Fxx+ Fuu+ Fww + s)
]

subject to γ ∈ Γ(GI), s ∈ L2
m

x = Bu+Gw

η = Pw

u = γ(η)

s ≥ 0


P-a.s.

(5.4)

In presenting the equivalent min-max reformulation of problem (3.6), we have

used the fact that problem (3.6) is equivalent to problem (3.10); and Lemma 6,

which implies that Φ(GI) = Γ(GI) if GI ∈ PN(Θ).

In order to obtain a tractable relaxation of problem (5.4), we restrict ourselves

to dual control policies that are affine in the disturbance trajectory, i.e., v = V w

for some V ∈ Rm×Nw . With this restriction, it is possible to derive a closed-

form solution for the inner maximization in problem (5.4). This yields another

minimization problem, whose optimal value stands as a lower bound on that of

problem (5.4). We have the following result, which clarifies this claim.

Proposition 6. The optimal value of the following problem is a lower bound on
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the optimal value of problem (5.4):

minimize sup
V ∈Rm×Nw

E
[
xTRxx+ uTRuu

+ wTV T(Fxx+ Fuu+ Fww + s)
]

subject to γ ∈ Γ(GI), s ∈ L2
m

x = Bu+Gw

η = Pw

u = γ(η)

s ≥ 0


P-a.s.

(5.5)

Moreover, the optimal value of problem (5.5) equals that of the following opti-

mization problem:

minimize E
[
xTRxx+ uTRuu

]
subject to γ ∈ Γ(GI), s ∈ L2

m

E
[
(Fxx+ Fuu+ Fww + s)wT

]
= 0

x = Bu+Gw

η = Pw

u = γ(η)

s ≥ 0


P-a.s.

(5.6)

Proof of Proposition 6: The fact that the optimal value of problem (5.5) lower

bounds that of (5.4) is straightforward, since any dual affine control policy

v = V w is feasible for the inner maximization problem in (5.4). To see that
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the optimal values of problem (5.5) and (5.6) are equal, we note that

sup
V ∈Rm×Nw

E
[
wTV T(Fxx+ Fuu+ Fww + s)

]
= sup

V ∈Rm×Nw

E
[
Tr
(
V T(Fxx+ Fuu+ Fww + s)wT

) ]

=


0, if E

[
(Fxx+ Fuu+ Fww + s)wT

]
= 0,

+∞, otherwise.

�

5.3.2 Relaxation to a Finite-dimensional Conic Program

Problem (5.6) appears to be intractable, as it entails the optimization over an

infinite-dimensional function space. In what follows, we show that it admits

a relaxation in the form of a second-order conic program under the additional

assumption that the disturbance trajectory has an elliptically contoured distri-

bution.

Assumption 4 (Elliptically Contoured Disturbance). The disturbance trajectory

w is assumed to have an elliptically contoured distribution.

In Appendix B, we provide a formal definition of elliptically contoured dis-

tributions and discuss its properties that are useful in optimal control problems.

Note that Assumption 4 guarantees that the support of the disturbance trajec-

tory w admits a representation of the form

W = {w ∈ RNw | w1 = 1 and Lw �K2 0},

where L ∈ RNw×Nw , and K2 denotes a second order cone of compatible dimen-

sion.
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The family of elliptically contoured distributions is broad. It includes the

multivariate Gaussian distribution, multivariate t-distribution, their truncated

versions, and uniform distributions on ellipsoids. If w has an elliptically con-

toured distribution, then the conditional expectation of w given a subvector of

w is affine in this subvector. And any linear transformation of w also follows

an elliptically contoured distribution [25]. Such properties will play an integral

role in the derivation of our relaxation of problem (5.6) as a second-order conic

program.

Additionally, we require a formal definition1 of the subspace of causal affine

controllers respecting the information structure defined by GI .

Definition 6. Define S(GI) ⊆ RNu×Ny to be the linear subspace of all causal

affine controllers respecting the information structure defined by GI .

In other words, for allK ∈ S(GI), the decentralized control policy defined by

γ(y) := Ky satisfies γ ∈ Γ(GI). Equipped with this definition, we state the fol-

lowing result, which provides a finite-dimensional relaxation of problem (5.6) as

a conic program. We note that the proposed conic relaxation is largely inspired

by the duality-based relaxation methods originally developed in the context of

centralized control design problems [54,65]. We provide a proof of Theorem 2 in

the next subsection, which extends these techniques to accommodate the added

complexity of decentralized information constraints on the controller.

1Note that the subspace S(GI) has been previously defined in Section 3.3.1. We redefine this

subspace in this chapter in order to guarantee that this chapter is self-contained.
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Theorem 2. Let Assumption 4 hold. If GI ∈ PN(Θ), then the optimal value of

the following problem is a lower bound on the optimal value of problem (3.6):

minimize Tr
(
PTQTRQPM + 2GTRxBQPM +GTRxGM

)
subject to Q ∈ S(GI), Z ∈ Rm×Nw

(Fu + FxB)QP + FxG+ Fw + Z = 0,

LMZT �K2 0,

eT1MZT ≥ 0,

(5.7)

where R = Ru +BTRxB, and e1 = (1, 0, . . . , 0) is a unit vector in RNw .

Let Jd(GI) denote the optimal value of the finite-dimensional conic program

(5.7). Theorem 2 states that Jd(GI) ≤ J∗(GI) if GI ∈ PN(Θ). The following

result—an immediate corollary to Theorems 1 and 2—provides a computation-

ally tractable lower bound for problems with nonclassical information struc-

tures.

Corollary 2. Let J∗(GI) denote the optimal value of the decentralized control

design problem (3.6). It follows that

Jd(GP (Θ,GI)) ≤ J∗(GI),

where GP (Θ,GI) refers to the transitive closure of the precedence graph associ-

ated with problem (3.6).

5.3.3 Proof of Theorem 2

The crux of the proof centers on the introduction of new finite-dimensional de-

cision variables, which enable the removal of the infinite-dimensional decision

variables in problem (5.6). Consider the following result.
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Lemma 18. Let Assumption 4 hold. For each s ∈ L2
m, there exists a matrix

Z ∈ Rm×Nw that satisfies

ZM = E
[
swT

]
. (5.8)

For each γ ∈ Γ(GI), there exists a matrix Q ∈ S(GI) that satisfies

QPM = E
[
uwT

]
, (5.9)

where u = γ(η).

Proof: This proof extends arguments originally developed in [54, Lem 4.4] to

accommodate the more general setting considered in this note, where the affine

controller Q is subject to a decentralized information constraint.

Proof of the first part: Fix s ∈ L2
m. The matrix M is invertible, since it is

assumed to be positive definite. Setting Z = E[swT
]
M−1 yields the desired

result in (5.8).

Proof of the second part: We first introduce the notion of a truncation opera-

tor. Given a nonempty set of indices J ⊆ {1, . . . , Ny} we define the truncation

operator ΠJ : RNy → R|J | as the mapping from a vector x to its subvector xJ , i.e.,

xJ = ΠJx.

Now, fix γ ∈ Γ(GI), and let u = γ(η). The following Lemma will prove useful

in establishing the existence of a matrix Q ∈ S(GI) satisfying Eq. (5.9).

Lemma 19. Let Assumption 4 hold. Let z ∈ L2
1 be random variable that is a

(possibly nonlinear) function of the random vector ηJ = ΠJη, where {1} ⊆ J ⊆

{1, . . . , Ny} is a given index set. Then, there exists another random variable
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z̃ ∈ L2
1, which is an affine2 function of ηJ , and satisfies E

[
z̃ηT
]

= E
[
zηT
]
.

Proof: Define the vector r ∈ R|J | according to

rT := E
[
zηTJ
](
PJMPT

J

)†
, (5.10)

where PJ := ΠJP , and (·)† denotes the Moore-Penrose pseudoinverse of a ma-

trix. We first show that the vector r satisfies

E
[
zηTJ
]

= rTPJMPT
J . (5.11)

Define the matrix Ψ := PJM
1/2, where M1/2 is the unique square root of the

symmetric positive definite matrix M . Note that the matrix M1/2 is symmetric

and positive definite (and hence invertible). It holds that

rTPJMPT
J = E

[
zηTJ
](
PJMPT

J

)†
PJMPT

J

= E
[
zwT

]
PT
J

(
PJMPT

J

)†
PJMPT

J

= E
[
zwT

]
M−1/2M1/2PT

J

(
PJMPT

J

)†
PJMPT

J

= E
[
zwT

]
M−1/2ΨT

(
ΨΨT

)†
ΨΨT

= E
[
zwT

]
M−1/2Ψ†ΨΨT

= E
[
zwT

]
M−1/2ΨT = E

[
zwT

]
PT
J = E

[
zηTJ
]

The second and the last equalities both follow from the fact that ηJ = ΠJPw =

PJw. The fourth equality follows from the definition of the matrix Ψ and the

symmetry of the matrix M1/2. The fifth equality follows from the fact [12, Prop.

3.2] that ΨT
(
ΨΨT

)†
= Ψ†. The sixth equality follows from the fact [12, Prop. 3.1]

that Ψ†ΨΨT = Ψ
T . It follows that the vector r satisfies Eq. (5.11).

2As a matter of notational convenience, we have required that 1 ∈ J . This enables one to

represent affine functions of ηJ as linear functions of ηJ , since η1 = 1 by construction.
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Now, define the random variable z̃ := rTηJ . Clearly, z̃ is an affine function of

ηJ . We complete the proof by showing that z̃ satisfies

E
[
z̃ηT
]

= E
[
zηT
]
. (5.12)

First note that the combination of Assumption 4 and Lemma 25 in Appendix B

implies that the random vector (w, η) = (w,Pw) has an elliptically contoured

distribution. Hence, it follows from Proposition 11 that the conditional expecta-

tion of η given ηJ is affine in ηJ . The assumption that 1 ∈ J guarantees that the

first entry of ηJ equals 1. Hence, there exists a matrix YJ ∈ RNy×|J |, such that

E [η |ηJ ] = YJηJ P-a.s.. (5.13)

It holds that

E
[
zηT
]

= E
[
E
[
zηT
∣∣ηJ]] = E

[
zηTJ
]
Y T
J = rTPJMPT

J Y
T
J

Here, the first equality follows from the law of iterated expectations. The second

equality follows from a combination of Eq. (5.13) and the assumption that z is a

function of ηJ . The third equality follows from Eq. (5.11). It also holds that

rTPJMPT
J Y

T
J = rTE

[
ηJη

T
J

]
Y T
J = rTE

[
E
[
ηJη

T
∣∣ηJ]] = rTE

[
ηJη

T
]

= E
[
z̃ηT
]
,

which completes the proof. �

Stated in other words, Lemma 19 asserts the existence of a vector q ∈ RNy

that satisfies

E
[
qTηηT

]
= E

[
zηT
]
, (5.14)

where the vector q respects the sparsity pattern encoded by the index set J , i.e.,

q = ΠT
JΠJq. It follows that one can apply Lemma 19 to each row of the matrix

E[uηT] to establish the existence of a matrix Q ∈ S(GI) that satisfies

E
[
QηηT

]
= E

[
uηT

]
. (5.15)

102



Consider a matrix Q ∈ S(GI) that satisfies Eq. (5.15). We complete the proof by

showing that this matrix also satisfies Eq. (5.9). First recall that we have argued

in the proof of Lemma 19 that (w, η) admits an elliptically contoured distribu-

tion. Hence, it follows from Proposition 11 that the conditional expectation of

w given η is an affine function of η. The definition of the matrix P ensures that

η1 = 1. Hence, the conditional expectation can be expressed as

E[w|η] = Y η P-a.s. (5.16)

for some matrix Y ∈ RNw×Ny . It holds that

E
[
uwT

]
= E

[
E
[
uwT

∣∣η]] = E
[
uηT

]
Y T = QE

[
ηηT
]
Y T.

Here, the first equality follows from the law of iterated expectations; the second

equality follows from the fact that u = γ(η) and a direct application of Eq. (5.16);

and the third equality follows from Lemma 19. It also holds that

E
[
ηηT
]
Y T = E

[
ηE
[
wT
∣∣η]] = E

[
E
[
ηwT

∣∣η]] = E
[
ηwT

]
= PM,

which completes the proof. �

With Lemma 18 in hand, we obtain an equivalent reformulation of problem

(5.6) as the following optimization problem—via the introduction of the finite-

dimensional decision variables Z and Q through the constraints (5.8) and (5.9),

respectively.
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minimize E
[
uTRu

]
+ Tr

(
2GTRxBQPM +GTRxGM

)
subject to γ ∈ Γ(GI), s ∈ L2

m, Q ∈ S(GI), Z ∈ Rm×Nw

(Fu + FxB)QPM + FxGM + FwM + ZM = 0

QPM = E
[
uwT

]
ZM = E

[
swT

]
η = Pw

u = γ(η)

s ≥ 0


P-a.s.

(5.17)

where R = Ru +BTRxB.

We now introduce two technical Lemmas that permit us to construct a finite-

dimensional relaxation of problem (5.17).

Lemma 20. Fix the matrix Q ∈ S(GI). It follows that γ(η) = Qη is an optimal

solution to the following optimization problem:

minimize E
[
uTRu

]
subject to γ ∈ Γ(GI)

QPM = E
[
uwT

]
η = Pw

u = γ(η)

 P-a.s.

We omit the proof of Lemma 20, as it is an immediate corollary of [54, Lem.

4.5]. A direct application of Lemma 20 yields the following equivalent reformu-
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lation of problem (5.17) as:

minimize Tr
(
PTQTRQPM + 2GTRxBQPM +GTRxGM

)
subject to s ∈ L2

m, Q ∈ S(GI), Z ∈ Rm×Nw

(Fu + FxB)QP + FxG+ Fw + Z = 0

ZM = E
[
swT

]
s ≥ 0 P-a.s.

(5.18)

Note that, in reformulating problem (5.17), we have eliminated the second-order

moment matrix M from the equality constraint (Fu + FxB)QPM + FxGM +

FwM + ZM = 0, as M is assumed to be positive definite, and, therefore, invert-

ible.

Lemma 21 provides a conic relaxation of the constraints in problem (5.18)

involving the infinite-dimensional decision variable s ∈ L2
m.

Lemma 21. If s ∈ L2
m and Z ∈ Rm×Nw satisfy ZM = E[swT] and s ≥ 0 P-a.s.,

then LMZT �K2 0 and eT1MZT ≥ 0.

Proof: It follows from the symmetry of the matrix M that MZT = (ZM)T =

E[wsT]. It, therefore, holds that

eT1MZT = eT1E[wsT] = E[eT1ws
T] = E[sT] ≥ 0.

The last equality follows from the fact that eT1w = 1 P-almost surely. To show

that LMZT �K2 0, it suffices to show columnwise inclusion in the second-order

cone, i.e.,

LE[siw] �K2 0, for i = 1, . . . ,m,

where si ∈ L2
1 is the ith element of the random vector s. By definition, we have

that Lw �K2 0 for all w ∈ W . Also, since si ≥ 0 almost surely, we have that
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L(siw) �K2 0 almost surely. It follows from the convexity of the second-order

cone that LE[siw] �K2 0. �

We complete the proof with the following string of inequalities and equali-

ties relating the optimal values of the various optimization problems formulated

thus far.

(5.7) ≤
(a)

(5.18) =
(b)

(5.17) =
(c)

(5.6) ≤
(d)

(5.4) =
(e)

(3.10) = (3.6)

Inequality (a) follows from Lemma 21, which implies that problem (5.7) is a

relaxation of problem (5.18). Equality (b) follows from Lemma 20. Equality

(c) follows from Lemma 18. Inequality (d) follows from Proposition 6. Finally,

Equality (e) follows from Lemma 6, as the assumption of a partially nested infor-

mation structure implies equivalence between the optimal values of problems

(5.4) and (3.10). The equivalence between (3.10) and (3.6) is argued in Section

3.2.1.
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CHAPTER 6

DECENTRALIZED CONTROL OF DISTRIBUTED ENERGY RESOURCES

In this chapter, we describe an application of the techniques developed in

this dissertation to the decentralized control of distributed energy resources in

power distribution systems. We consider the decentralized control of radial dis-

tribution systems with controllable photovoltaic inverters and energy storage

resources. For such systems, we investigate the problem of designing fully de-

centralized controllers that minimize the expected cost of balancing demand,

while guaranteeing the satisfaction of individual resource and distribution sys-

tem voltage constraints. Employing a linear approximation of the branch flow

model, we formulate this problem as the design of a decentralized disturbance-

feedback controller that minimizes the expected value of a convex quadratic cost

function, subject to robust convex quadratic constraints on the system state and

input. The optimal control policy for such problems is, in general, intractable

to compute. We apply the techniques we developed in Chapter 3 to derive

a tractable inner approximation of the decentralized control design problem,

which enables the efficient computation of an affine control policy via the so-

lution of a finite-dimensional conic program. As affine control policies are, in

general, suboptimal for the family of systems considered, we apply our results

in Chapter 5 to bound their suboptimality via the solution of another finite-

dimensional conic program. A case study of a 12 kV radial distribution system
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demonstrates that decentralized affine controllers can perform close to optimal.

6.1 Introduction

The increasing penetration of distributed and renewable energy resources in-

troduces challenges to the operation of power distribution systems, including

rapid fluctuations in bus voltage magnitudes, reverse power flows at distribu-

tion substations, and deteriorated power quality due to the intermittency of

supply from renewables. These challenges are exasperated by the fact that tra-

ditional techniques for distribution system management, including the deploy-

ment of on-load tap changing (OLTC) transformers and shunt capacitors, can-

not effectively deal with the rapid variation in the power supplied from renew-

able resources [28]. In this chapter, we illustrate how the decentralized control

design techniques developed in this dissertation might be applied to address

such challenges in the operation of power distribution systems. Specifically,

our objective is to develop a systematic approach to the design of decentralized

feedback controllers for distribution networks with a high penetration of dis-

tributed solar and energy storage resources, which minimizes the expected cost

of meeting demand over a finite horizon, while respecting network and resource

constraints.

Related Work: Although current industry standards require that photo-

voltaic (PV) inverters operate at a unity power factor [1], the latent reactive

power capacity of PV inverters can be utilized to regulate voltage profiles

[45,47,70,85,102,119], and reduce active power losses [14,22,32–35,46,62,94,116]

in distribution networks. A large swath of the literature on the reactive power

management of PV inverters prescribes the solution of an optimal power flow
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(OPF) problem to determine the reactive power injections of PV inverters in

real time [22, 32–34, 45–47, 70, 85, 94, 102, 116, 119]. The resulting OPF problem

must be repeatedly solved over fast time scales (e.g., every minute) to accom-

modate the rapid fluctuations in the active power supplied from the PV re-

sources. In the presence of a large number of PV resources, the sheer size of

the resulting OPF problem that needs to be solved, and the communication re-

quirements it entails, gives rise to the need for distributed optimization meth-

ods [22, 33, 34, 47, 70, 85, 94, 116, 119]. In particular, there has emerged a recent

stream of literature developing distributed optimization methods, which enable

the real-time control of reactive power injections of PV inverters using only local

measurements of bus voltage magnitudes [47,70,85,119]. Under the assumption

that the underlying OPF problem being solved is time-invariant, such meth-

ods are guaranteed to asymptotically converge to the globally optimal reactive

power injection profile. There is, however, no guarantee on the performance

or constraint-satisfaction of these methods in finite time. The aforementioned

methods can be interpreted as being fully decentralized, in that they do not re-

quire the explicit exchange of information between local controllers. Instead, the

local controllers can be interpreted as communicating implicitly through the dis-

tribution network, which couples them physically. There exists another class of

distributed optimization methods, which rely on the explicit exchange of infor-

mation between neighboring controllers through a digital communication net-

work [22, 33, 34, 94, 116]. Additionally, there exists a related stream of literature,

which aims to explicitly treat uncertainty in renewable supply and demand by

leveraging on methods grounded in stochastic optimization [14, 35, 62].

In addition to the reactive power control of PV inverters, one can imag-

ine a future power system in which a broader class of distributed energy re-
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sources with storage capability (e.g., electric vehicles, standalone battery packs)

are actively controlled to mitigate voltage fluctuations and distribution system

losses [27, 28, 31, 37, 49, 74, 78, 96, 106]. As the set of feasible power injections

to and withdrawals from energy storage systems are naturally coupled across

time, the problem of managing their operation amounts to a multi-period, con-

strained stochastic control problem [27, 28, 31, 37, 49, 74, 106]. In the presence of

network constraints and uncertainty in demand and renewable supply, the cal-

culation of the optimal control policy is, in general, computationally intractable.

These computational difficulties in control design are underscored by a recent

report from the U.S. Department of Energy pointing to an apparent lack of ef-

fective control methods capable of “integrating [PV] inverter controls with con-

trol of other DERs or the management of uncertainty from intermittent gen-

eration” [103][p. 31]. The development of computational methods to enable

the tractable calculation of feasible control policies with computable bounds on

their suboptimality is therefore desired, and stands as the primary subject of

this chapter.

Contribution: The setting we consider entails the decentralized control of

distributed energy resources spread throughout a radial distribution network,

subject to uncertainty in demand and renewable supply. The power flow equa-

tions over the radial network are described according to a linearized branch

flow model. Our objective is to minimize the expected amount of active power

supplied at the substation required to meet demand, while guaranteeing the

satisfaction of network and individual resource constraints. For the setting con-

sidered, this is technically equivalent to minimizing the expected active power

losses plus the terminal energy stored in the distribution network. The deter-

mination of an optimal decentralized control policy for such problems is, in
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general, computationally intractable, due to the presence of stochastic distur-

bances and hard constraints on the system state and and input. Our primary

contributions are two-fold. First, we develop a convex programming approach

to the design of decentralized, affine disturbance-feedback controllers. Second,

as such control policies are, in general, suboptimal, we provide a technique to

bound their suboptimality through the solution of another convex program. We

verify that the decentralized affine policies we derive are close to optimal for

the problem instance considered in our case study.

Organization: The remainder of this chapter is organized as follows. Section

6.2 describes the architecture of the controllers that might be used in the con-

trol of distributed energy resources in a large-scale power distribution network.

Section 6.3 describes our models of the distribution network and the distributed

energy resources. Section 6.4 formally states the decentralized control design

problem. Section 6.5 describes an approach to the computation of decentral-

ized affine control policies via a finite-dimensional conic program. Section 6.6

describes a method to implement the decentralized affine control policy over a

time-scale that is more fine-grained that the one used in the control design. Sec-

tion 6.7 describes an approach to the tractable calculation of guaranteed bounds

on the suboptimality incurred by these affine control policies via another finite-

dimensional conic program. Section 6.8 demonstrates the proposed techniques

with a numerical study of a 12 kV radial distribution network. Section 6.9 con-

cludes this chapter.
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6.2 The Controller Architecture

In this section, we describe a two-layer control architecture that fulfills sev-

eral (possibly conflicting) requirements on the control of distributed energy re-

sources in power distribution systems. We start with a summary of such re-

quirements. First, the control actions need to be performed in real-time, as ac-

tive power supply from distributed energy resources and load might change at

a fast time-scale (seconds to minutes). Second, the controller is required to have

provable guarantees on constraint satisfaction, in the sense that the controller

we design should induce control inputs that are guaranteed to respect individ-

ual resource capacity and network voltage magnitude constraints. Finally, the

controller is expected to have close-to-optimal performance. That is to say, the

cost that is incurred by the controller we design should be close to the minimum

cost that can be attained by a feasible controller.

In Figure 6.1, we describe a two-layer controller architecture that fulfills the

aforementioned requirements. We assume that the model parameters of the

power distribution network under consideration is known exactly. Given the

model parameters, the task of the optimization layer is to solve a decentralized

control design problem, which amounts to computing a decentralized control

policy that minimizes the expected amount of active power that is supplied at

the substation, while guaranteeing the satisfaction of individual resource capac-

ity and network voltage magnitude constraints. On the other hand, the task of

the direct control layer is to deploy and implement the decentralized control pol-

icy that is computed at the optimization layer over a fast time-scale (seconds

to minutes). Specifically, the direct control layer directly interacts with the dis-

tributed energy resources that are located at the “grid-edge”, and specifies their
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Figure 6.1: A two-layer architecture for the control of distributed energy re-
sources in power distribution systems.

active and reactive power injections in real-time based on the local sensor mea-

surements.

We note that one potential limitation of this two-layer controller architecture

is the assumption that the system model parameters are known exactly. Such

an assumption is not necessarily satisfied in the control of power distribution

networks. For example, the topology of many practical power distribution net-

works might be unknown [38]. Even if the network topology is known, the

impedance of the distribution lines might be unknown or inexact. The question

as to how one might attain a proper tradeoff between learning the system pa-

rameters (exploration) and controlling the system based on current information

(exploitation) is left as an important direction for future work—see Chapter 7

for some initial thoughts.
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6.3 Network and Resource Models

6.3.1 Branch Flow Model

Consider a radial distribution network whose topology is described by a rooted

tree G = (V , E), where V = {0, 1, .., n} denotes its set of (nodes) buses, and E its

set of (directed edges) distribution lines. In particular, bus 0 is defined as the

root of the network, and represents the substation that connects to the external

power system. Each directed distribution line admits the natural orientation,

i.e., away from the root. For each distribution line (i, j) ∈ E , we denote by

rij + ixij its impedance. In addition, define Iij as the complex current flowing from

bus i to j, and pij + iqij as the complex power flowing from bus i to j. For each bus

i ∈ V , let Vi denote its complex voltage, and pi + iqi the complex power injection at

this bus. We assume that the complex voltage V0 at the substation is fixed and

known.

We employ the branch flow model proposed in [10, 11] to describe the steady-

state, single-phase AC power flow equations associated with this radial distri-

bution network. In particular, for each bus j = 1, . . . , n, and its unique parent

i ∈ V , we have

−pj = pij − rij`ij −
∑

k:(j,k)∈E

pjk, (6.1)

−qj = qij − xij`ij −
∑

k:(j,k)∈E

qjk, (6.2)

v2
j = v2

i − 2(rijpij + xijqij) + (r2
ij + x2

ij)`ij, (6.3)

`ij = (p2
ij + q2

ij)/v
2
i , (6.4)

where `ij = |Iij|2 and vi = |Vi|. We note that the branch flow model is well
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defined only for radial distribution networks, as we require that each bus j (ex-

cluding the substation) have a unique parent i ∈ V .

For the remainder of the chapter, we consider a linear approximation of the

branch flow model (6.1)-(6.4) based on the Simplified Distflow method devel-

oped in [9]. The derivation of this approximation relies on the assumption that

`ij = 0 for all (i, j) ∈ E , as the active and reactive power losses on distribution

lines are considered small relative to the power flows. According to [45, 58],

such an approximation tends to introduces a relative model error of 1-5% for

practical distribution networks. Under this assumption, Eq. (6.1)-(6.3) can be

simplified to

−pj = pij −
∑

k:(j,k)∈E

pjk, (6.5)

−qj = qij −
∑

k:(j,k)∈E

qjk, (6.6)

v2
j = v2

i − 2(rijpij + xijqij). (6.7)

The linearized branch flow Eq. (6.5)-(6.7) can be written more compactly as

v2 = Rp+Xq + v2
01. (6.8)

Here, v2 = (v2
1, .., v

2
n), p = (p1, .., pn), and q = (q1, .., qn) denote the vectors of

squared bus voltage magnitudes, real power injections, and reactive power in-

jections, respectively, and 1 = (1, .., 1) is a vector of all ones in Rn. The matrices

R,X ∈ Rn×n are defined according to

Rij = 2
∑

(h,k)∈Pi∩Pj

rhk,

Xij = 2
∑

(h,k)∈Pi∩Pj

xhk,

where Pi ⊂ E is defined as the set of edges on the unique path from bus 0 to i.
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In the sequel, we will consider the control of the distribution system over

discrete time periods indexed by t = 0, · · · , T − 1. Each discrete time period t

is defined over a time interval of length ∆. We require the vector of bus voltage

magnitudes v(t) = (v1(t), .., vn(t)) ∈ Rn at each time period t to satisfy

v ≤ v(t) ≤ v, (6.9)

where the allowable range of voltage magnitudes is defined by v, v ∈ Rn.

6.3.2 Energy Storage Model

We consider a distribution system consisting of n perfectly efficient energy stor-

age devices, where each bus i (excluding the substation) is assumed to have

an energy storage capacity of bi ∈ R. The dynamic evolution of each energy

storage device i is described according to the state equation

xi(t+ 1) = xi(t)−∆pSi (t), t = 0, . . . , T − 1, (6.10)

where the state xi(t) ∈ R denotes the amount of energy stored in storage device

i just preceding period t, and pSi (t) ∈ R denotes the active power extracted

from device i during period t. For ease of exposition, we assume that the initial

condition xi(0) of each storage device is fixed and known.1 We impose state and

input constraints of the form

0 ≤ xi(t) ≤ bi, t = 0, . . . , T (6.11)

pS
i
≤ pSi (t) ≤ pSi , t = 0, . . . , T − 1. (6.12)

1We emphasize that all results presented in this chapter are easily generalized to the setting

in which the initial condition xi(0) is modeled as a random variable with known distribution.

In particular, one can treat the initial condition as an additive disturbance to the state equation

at time period t = 0. We refer the readers to [72] for a detailed treatment of such systems.
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for i = 1, .., n. The interval [pS
i
, pSi ] ⊂ R defines the range of allowable inputs

for storage device i at each time period t.

6.3.3 Photovoltaic Inverter Model

We assume that, in addition to energy storage capacity, each bus i (excluding

the substation) has a photovoltaic (PV) inverter whose reactive power injection

can be actively controlled. We denote by wIi (t) ∈ R the active power injection,

and by qIi (t) ∈ R the reactive power injection from the PV inverter at bus i

and time t. Due to the intermittency of solar irradiance, we will model wIi (t)

as a discrete-time stochastic process, whose precise specification is presented in

Section 6.3.5. Additionally, we require that the reactive power injections respect

capacity constraints of the form

∣∣qIi (t)∣∣ ≤√sIi
2 − wIi (t)

2
, i = 1, . . . , n, (6.13)

for t = 0, . . . , T − 1. Here, sIi ∈ R denotes the apparent power capacity of PV

inverter i. Clearly, it must hold that wIi (t) ≤ sIi .

6.3.4 Load Model

Each bus in the distribution network is assumed to have a constant power load,

which we will treat as a discrete-time stochastic process. Accordingly, we de-

note by wpi (t) ∈ R and wqi (t) ∈ R the active and reactive power demand, respec-

tively, at bus i and time t. It follows that the nodal active and reactive power

117



balance equations can be expressed as

pi(t) = pSi (t) + wIi (t)− w
p
i (t), (6.14)

qi(t) = qIi (t)− w
q
i (t), (6.15)

where pi(t) ∈ R and qi(t) ∈ R denote the net active and reactive power injec-

tions, respectively, at each bus i = 1, . . . , n and time period t = 0, . . . , T − 1.

6.3.5 Uncertainty Model

As indicated earlier, we model the active power demand, reactive power de-

mand, and PV active power supply as discrete-time stochastic processes. Ac-

cordingly, we associate with each bus i a disturbance process defined as wi(t) =

(wpi (t), w
q
i (t), w

I
i (t)) ∈ R3. We define the full disturbance trajectory as

w = (1, w(0), . . . , w(T − 1)) ∈ RNw , (6.16)

where Nw = 1 + 3nT and w(t) = (w1(t), . . . , wn(t)) ∈ R3n for each time period t.

Note that, in our specification of the disturbance trajectory w, we have included

a constant scalar as its initial component. Such notational convention is made

for simplifying the specification of affine control policies.

We assume that the disturbance trajectory w has support W that is a

nonempty and compact subset of RNw , representable by

W = {w ∈ RNw | w1 = 1 and Hw �K 0},

where the matrix H ∈ R`×Nw is known. It follows from the compactness ofW

that the second-order moment matrix

M = E
[
wwT

]
,
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is finite-valued. We assume, without loss of generality, that M is a positive defi-

nite matrix. We emphasize that our specification of the disturbance trajectory w

captures a large family of disturbance processes, including those whose support

can be described as the intersection of polytopes and ellipsoids.

6.4 Decentralized Control Design

6.4.1 State Space Description

In what follows, we build on the individual resource models developed in Sec-

tion 6.3 to develop a discrete-time state space model describing the collective

dynamics of the distribution network. We partition the system into n subsys-

tems, where each subsystem i ∈ {1, . . . , n} encapsulates the dynamics of re-

sources connected to bus i. For each subsystem i, we let the energy storage state

xi(t) be its state at time t, and define its input according to

ui(t) =

pSi (t)

qIi (t)

 .
The corresponding state equation for each subsystem i is therefore given by

Eq. (6.10). We define the full system state and input at time t by x(t) =

(x1(t), .., xn(t)) ∈ Rn and u(t) = (u1(t), .., un(t)) ∈ R2n, respectively. The full

system state equation admits the following representation

x(t+ 1) = x(t) +Bu(t).

Here, the matrix B is given by

B = In ⊗
[
−∆ 0

]
, (6.17)
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where ⊗ denotes the Kronecker product operator. The initial condition2 and

system trajectories are related according to

x = Ax(0) + Bu, (6.18)

where x and u represent the state and input trajectories, respectively. They are

given by

x = (x(0), . . . , x(T )) ∈ RNx , Nx = n(T + 1),

u = (u(0), . . . , u(T − 1)) ∈ RNu , Nu = 2nT.

And the block matrices (A,B) are given by

A = 1(T+1)×1 ⊗ In, B =



0

B 0

B B 0

...
... . . . . . .

...
... . . . 0

B B · · · · · · B


,

where 1(T+1)×1 is a vector of all ones in RT+1.

6.4.2 Decentralized Control Design

The controller information structure considered in this chapter is such that

each subsystem is required to determine its local control input using only

its local measurements. We therefore restrict ourselves to fully decentralized

2Recall that the initial condition x(0) is assumed fixed and known.
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disturbance-feedback control policies.3 That is to say, at each time t, the control

input to each subsystem i is restricted to be of the form

ui(t) = γi(w
t
i , t),

where γi(·, t) is a causal measurable function of the local disturbance history. We

define the local control policy for subsystem i as γi = (γi(·, 0), .., γi(·, T − 1)); and

refer to the collection of local control policies γ = (γ1, .., γn) as the decentralized

control policy for the system. Finally, we define Γ to be the set of all admissible

decentralized control policies.

We consider the objective of minimizing the expected amount of active

power required to meet demand over the distribution network. For the set-

ting considered, this is technically equivalent to minimizing the expected active

power losses plus the terminal energy stored in the distribution network. In a

similar spirit to [9, 102], we approximate the active power loss on line (i, j) ∈ E

at time period t as4

δpij(t) = rij

(
pij(t)

2 + qij(t)
2

v0(t)2

)
.

By a direct substitution of the linearized branch flow Eqs. (6.5)-(6.6) into the

above approximation, one can represent the total active power losses as a con-

vex quadratic function in the input trajectory u and disturbance trajectory w.

Specifically, one can construct matrices L0
u, L

0
w ∈ R2n×3n, and a positive definite

3For simplicity of exposition, it is assumed in this chapter that each subsystem can perfectly

observe its local disturbance process. We note, however, that all of the results presented in this

chapter can be immediately generalized to the setting in which each subsystem has only partial

linear observations of its local disturbance process. We refer the readers to [72] for a detailed

treatment of such systems.
4Implicit in this approximation is the assumption that the bus voltage magnitudes are uni-

form across the network.
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diagonal matrix Σ0 ∈ R2n×2n, such that

∑
(i,j)∈E

rij (pij(t)
2 + qij(t)

2)

v2
0

=
(
L0
uu(t) + L0

ww(t)
)T

Σ0
(
L0
uu(t) + L0

ww(t)
)

for t = 0, . . . , T − 1. With the matrices L0
u, L0

w and Σ0 in head, we have that

T−1∑
t=0

∑
(i,j)∈E

δpij(t) = (Luu+ Lww)TΣ(Luu+ Lww). (6.19)

where the matrices Σ, Lu, and Lw are defined according to

Σ = IT ⊗ Σ0, Lu = IT ⊗ L0
u, Lw =

[
0 IT ⊗ L0

w

]
.

In addition, the sum of the terminal energy storage states across the network

can be written as a linear function of the state trajectory x. Namely, we have that

n∑
i=1

xi(T ) = cTx, (6.20)

where the vector c is defined as

c =

0nT×1

1n×1

 .
Henceforth, we define the expected cost associated with a decentralized control

policy γ ∈ Γ according to

J(γ) = Eγ
[
cTx+ (Luu+ Lww)TΣ(Luu+ Lww)

]
. (6.21)

Here, expectation is taken with respect to the joint distribution on (x, u, w) in-

duced by the control policy γ.
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We define the decentralized control design problem as

minimize J(γ)

subject to γ ∈ Γ

x ∈ X , u ∈ U(w)

x = Ax(0) + Bu

u = γ(w)


∀w ∈ W ,

(6.22)

where the decision variable is the decentralized control policy γ ∈ Γ. The set

of feasible states X is defined according to inequality (6.11). The set of feasible

control inputs U(w) is defined according to inequalities (6.9), (6.12), and (6.13).

We let J∗ denote the optimal value of problem (6.22).

6.5 Affine Control Design

The decentralized control design problem (6.22) amounts to an infinite-

dimensional convex program, and is, in general, computationally intractable.

We therefore resort to approximation by restricting the space of admissible de-

centralized control policies to be causal affine functions of the measured distur-

bance process. In addition, we approximate the feasible region of problem (6.22)

from within by a polyhedral set. The combination of these two approximations

enables the computation of a decentralized control policy, which is guaranteed

to be feasible for problem (6.22), through solution of a finite-dimensional conic

program.
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6.5.1 Polyhedral Inner Approximation of Constraints

The feasible state space X is clearly polyhedral. The feasible input space U(w)

is not. It can, however, be approximated from within by a polyhedral set by

replacing the quadratic constraint in (6.13) with the following pair of linear con-

straints:

∣∣qIi (t)∣∣ ≤ qIi (t). (6.23)

Here, the deterministic constant qIi (t) is defined according to

qIi (t) = inf

{√
sIi

2 − wIi (t)
2

∣∣∣∣ w ∈ W} .
Essentially, qIi (t) denotes the minimum reactive power capacity that is guaran-

teed to be available at inverter i at time t. We provide a graphical illustration of

this polyhedral inner approximation in Figure 6.2b.

Although an inner approximation of this form may appear conservative at

first glance, several recent studies [62, 102] have observed such approximations

to result in a small loss of performance, as measured by the objective function

considered in this chapter. We corroborate these claims in Section 6.7 by devel-

oping a technique to bound the loss of optimality incurred by this inner approx-

imation. In particular, the suboptimality incurred by such an approximation is

shown to be small for the case study considered in this chapter.

Inequalities (6.9), (6.11), (6.12), and (6.23) define a collection of m = 8nT

linear constraints on the state, input, and disturbance trajectories. We represent

them more succinctly as

Fxx+ Fuu+ Fww ≤ 0, ∀ w ∈ W ,
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where it is straightforward to construct the matrices Fx ∈ Rm×Nx , Fu ∈ Rm×Nu ,

and Fw ∈ Rm×Nw using the given problem data. The following optimization

problem is an inner approximation to the original decentralized control design

problem (6.22):

minimize Eγ
[
cTx+ (Luu+ Lww)TΣ(Luu+ Lww)

]
subject to γ ∈ Γ

Fxx+ Fuu+ Fww ≤ 0

x = Ax(0) + Bu

u = γ(w)


∀ w ∈ W , (6.24)

where the decision variable is given by γ. Although convex, problem (6.24) is an

infinite-dimensional program, and is therefore computationally intractable, in

general. In what follows, we refine this approximation by further restricting the

space of admissible controllers to be affine functions of the disturbance trajectory.

wI
i (t)

qIi (t)

sIi

−sIi

(a)

wI
i (t)

qIi (t)

qIi (t)

−qIi (t)

(b)

wI
i (t)

qIi (t)√
2sIi

−
√
2sIi

√
2sIi

(c)

Figure 6.2: The above plots depict an inverter’s range of feasible reactive power
injections (in gray) at a particular time period t as specified by (a) the original
quadratic constraints (6.13), (b) the inner linear constraints (6.23), and (c) the
outer linear constraints (6.41).
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6.5.2 Affine Control Design via Conic Programming

We restrict our attention to decentralized affine control policies of the form

ui(t) = ui(t) +
t∑

s=0

Qi(t, s)wi(s) (6.25)

for each subsystem i = 1, . . . , n and time t = 0, . . . , T − 1. Here, ui(t) ∈ R2 de-

notes the open loop component of the local control, and (Qi(t, 0), . . . , Qi(t, t)) the

collection of feedback control gains at time t. One can write the decentralized

affine control policy in (6.25) more compactly as

u = Qw.

We enforce the desired information structure in Q by requiring that Q ∈ S,

where S denotes the subspace of matrices that respect the information structure

associated with the set of admissible decentralized control policies Γ. Specifi-

cally,

S =
{
Q ∈ RNu×Nw

∣∣Q ∈ Γ
}
.

The restriction to decentralized affine control policies gives rise to the fol-

lowing semi-infinite program, which stands as a more conservative inner ap-

proximation to the original decentralized control design problem (6.22).

minimize E
[
cTx+ (Luu+ Lww)TΣ(Luu+ Lww)

]
subject to Q ∈ S

Fxx+ Fuu+ Fww ≤ 0

x = Ax(0) + Bu

u = Qw


∀ w ∈ W , (6.26)
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where the decision variable is given by Q. Given our assumption that the un-

certainty set W has a conic representation, one can directly apply Proposition

3 in Chapter 3.3.2 to equivalently reformulate the semi-infinite program (6.26)

as a finite-dimensional conic program.5 In Proposition 7, we present the finite-

dimensional conic reformulation of the semi-infinite program (6.26) implied by

Proposition 3.

Proposition 7. The semi-infinite program (6.26) admits an equivalent reformu-

lation as the following finite-dimensional conic program

minimize Tr

((
QTLT

uΣLuQ+
(
2LT

wΣLu + e1c
TB
)
Q

+ LT
wΣLw

)
M

)
+ cTAx(0)

subject to Q ∈ S

Z ∈ Rm×Nw , Π ∈ R`×m, ν ∈ Rm
+

(Fu + FxB)Q+ FxAx(0)eT1 + Fw + Z = 0,

Z = νeT1 + ΠTH,

Π �K∗ 0,

(6.27)

where the decision variables are given by Q, Z, Π, and ν. Let J in denote the

optimal value of the above program. It stands as an upper bound on the optimal

value of the original decentralized control problem (6.22), i.e., J∗ ≤ J in.

Several comments are in order. First, the specification of the conic program

(6.27) relies on the probability distribution of the disturbance w only through its

5We note that a direct application of Proposition 3 also requires that the information struc-

ture of the underlying decentralized control problem be partially nested. This condition requiring

partial nestedness of the information structure is trivially satisfied for the decentralized control

design problem (6.22) under consideration in this chapter.
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supportW and second-order moment matrixM . Second, the conic program can

be efficiently solved for a variety of cones K, including polyhedral and second-

order cones. For such cones, problem (6.27) amounts to a conic program with

O(n2T 2) decision variables and O(n2T 2) constraints. It can thus be solved in

time that is polynomial in the control horizon T and the number of subsystems

n. Finally, assuming that the decentralized affine controller Q∗ is computed at a

central location, the decentralized implementation of the controller will require

the communication of each local control policy to its corresponding subsystem.

This entails the transmission of 3T 2 + 5T real numbers to each subsystem.

6.6 Fast Time-Scale Implementation of Affine Controller

In practice, the active power generated by a photovoltaic resource may fluc-

tuate over time-scales (e.g., seconds to minutes) that are substantially shorter

than the time-scale being used for control design (e.g., hourly). In what follows,

we propose a method to enable the implementation of controllers designed ac-

cording to Proposition 7 over more finely grained time-scales. The method we

propose is simple. First, we compute an affine control policy for the original

(i.e., slow) time-scale according to Proposition 7. Via a suitable rescaling of the

resulting feedback control gains, we construct an affine control policy that can

be implemented over a more finely grained time-scale. An attractive feature of

the proposed implementation is that, under a mild assumption on the quasi-

stationarity of the support of the underlying disturbance trajectory, the affine

control policy we construct is guaranteed to yield state and input trajectories

that are feasible on this more finely grained time-scale. In what follows, we

provide a precise specification of this fast time-scale controller, and discuss its
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theoretical guarantees.

6.6.1 Fast Time-Scale Processes

We begin with a description of the state, input, and disturbance processes on

the more finely grained time-scale by dividing each original time period t into

K shorter time periods. It will be convenient to index the original time periods

by t, and the more finely grained time periods by (k, t), for k = 0, . . . , K−1, and

t = 0, . . . , T . In particular, each time period (k, t) is defined over a time interval

of length ∆/K, where recall that each original time period t is of length ∆. For

the remainder of this section, we will refer to the original and the more finely

grained time-scales as the slow and fast time-scales, respectively.

We denote the fast time-scale state, input, and disturbance processes by

x(k, t), u(k, t), and w(k, t), respectively. We emphasize that all the fast time-

scale quantities have the same units as their slow time-scale counterparts. It

will prove useful to define a slow time-scale average of the fast time-scale distur-

bance process according to

w(t) =
1

K

(
K−1∑
k=0

w (k, t)

)
, (6.28)

for t = 0, . . . , T − 1. We refer the reader to Fig. 6.3, which offers a graphical

illustration comparing the fast time-scale disturbance process w(k, t) against its

slow time-scale average w(t).

We describe the evolution of the fast time-scale state process over each time

period t according to the state equation:

x(k + 1, t) = x(k, t) +
1

K
Bu(k, t)
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(0, t) (1, t) (2, t)

∆
K

∆
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Figure 6.3: The above plots depicts (one component of) the fast time-scale dis-
turbance process w(k, t) and its slow time-scale average w(t) for K = 3.

for k = 0, . . . , K − 1. We link this process across the slow time-scale periods by

enforcing the boundary conditions

x(K, t) = x(0, t+ 1)

for t = 0, . . . , T − 1. We initialize the fast time-scale state process according to

x(0, 0) = x(0).

6.6.2 Fast Time-Scale Controller

In what follows, we construct a fast time-scale controller based on the slow time-

scale controller computed according to Proposition 7. More specifically, let Q∗

denote the optimal solution to problem (3.14). Since Q∗ ∈ S, it follows that Q∗

is a block lower-triangular matrix of the form

Q∗ =


u∗(0) Q∗(0, 0)

...
... . . .

u∗(T − 1) Q∗(T − 1, 0) · · · Q∗(T − 1, T − 1)

 ,
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where each matrix Q∗(t, s) is block diagonal of the form

Q∗(t, s) =


Q∗1(t, s)

. . .

Q∗n(t, s)


for each t = 0, . . . , T − 1 and s = 0, . . . , t. Using these feedback control gains

embedded in the matrix Q∗, we define the fast time-scale control input at period

(k, t) as

u(k, t) = u∗(t) +Q∗(t, t)w (k, t) +
t−1∑
s=0

Q∗(t, s)w(s), (6.29)

for all t = 0, . . . , T − 1 and k = 0, . . . , K − 1. Recall from Eq. (6.28) that w(t)

denotes the average of the fast time-scale disturbance process over the period t.

6.6.3 Constraint Satisfaction Guarantees

The decentralized affine controller defined according to Eq. (6.29) is said to be

feasible if it induces voltage, input, and state trajectories that are guaranteed to

satisfy their respective constraints at the fast time-scale for all possible realiza-

tions of the fast time-scale disturbance process. That is to say, for each subsys-

tem i ∈ {1, . . . , n}, it must hold that

vi ≤ vi (k, t) ≤ vi, (6.30)

−
√
sIi

2 − wIi (k, t)
2 ≤ qIi (k, t) ≤

√
sIi

2 − wIi (k, t)
2
, (6.31)

pS
i
≤ pSi (k, t) ≤ pSi , (6.32)

for all time periods t = 0, . . . , T − 1, k = 0, . . . , K − 1, and

0 ≤ xi (k, t) ≤ bi, (6.33)
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for all time periods t = 0, . . . , T − 1, k = 0, . . . , K; and all possible realizations

of the fast time-scale disturbance process.

We now make a mild assumption on the support of the fast time-scale distur-

bance process, which ensures that the fast time-scale controller defined accord-

ing to Eq. (6.29) is feasible.

Assumption 5 (Quasi-Stationarity). We assume that

(1, w (k0, 0) , w (k1, 1) , . . . , w (kT−1, T − 1)) ∈ Ξ,

for all kt ∈ {0, . . . , K − 1} and t = 0, . . . , T − 1.

Assumption 5 can be interpreted as an assumption on the quasi-stationarity

of the support of the fast time-scale disturbance process w(k, t). Moreover, As-

sumption 5 is reasonable, as it is always possible to construct a set Ξ such this

assumption is satisfied, given a characterization of the set of all possible realiza-

tions taken by the fast time-scale disturbance process.

Proposition 8 (Fast Time-Scale Feasibility). Let Assumption 5 hold. The fast

time-scale controller specified according to Equation (6.29) is feasible.

Proposition 8 reveals that the slow time-scale controller computed according

to Proposition 3 can be implemented as a feasible fast time-scale controller. We

provide the proof of Proposition 8 in the next subsection.

6.6.4 Proof of Proposition 8

Let the system control input be specified according to Eq. (6.29). The proof

consists of two parts. In Part 1, we show that for any realization of the fast
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time-scale disturbance process, the input constraints specified in inequalities

(6.30)-(6.32) are all satisfied. In Part 2, we show that for any realization of the

fast time-scale disturbance process, the state constraint specified in inequality

(6.33) is satisfied.

Part 1: We will only show that for any realization of the fast time-scale distur-

bance process, the voltage magnitude constraint specified in inequality (6.30)

is satisfied. The proof of the satisfaction of the input constraints specified in in-

equalities (6.31) and (6.32) is analogous. It is thus omitted for the sake of brevity.

It will be convenient to work with the vector of squared voltage magnitudes

v (k, t)2 = (v1(k, t)2, . . . , vn(k, t)2) for the remainder of the proof. We will show

that

v2 ≤ v (k, t)2 ≤ v2,

where v2 = (v2
1, . . . , v

2
n), and v2 = (v2

1, . . . , v
2
n). It follows from the linearized

branch flow model (6.8) that for each time period (k, t), the vector of squared

voltage magnitudes is given by

v (k, t)2 = Vuu (k, t) + Vww (k, t) + v2
01,

where the matrices Vu and Vw are defined according to

Vu = R⊗
[
1 0

]
+X ⊗

[
0 1

]
,

Vw = R⊗
[
−1 0 1

]
−X ⊗

[
0 1 0

]
.

Given the specification of the fast time-scale control input u (k, t) according to
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Eq. (6.29), we have that

v (k, t)2 =Vu

(
u∗(t) +

t−1∑
s=0

Q∗(t, s)w(s)

)

+ (VuQ
∗(t, t) + Vw)w (k, t) + v2

01.

(6.34)

Given Assumption 5 and the convexity of the set Ξ, it holds that

(1, w(0), .., w(t− 1), w(k, t), .., w(k, T − 1)) ∈ W . (6.35)

Condition (6.35), in combination with the guaranteed feasibility of the control

policy Q∗ for the original slow time-scale decentralized control design problem

(3.6), implies that

v2 ≤Vu

(
u∗(t) +

t−1∑
s=0

Q∗(t, s)w(s)

)

+ (VuQ
∗(t, t) + Vw)w (k, t) + v2

01 ≤ v2.

It immediately follows from Eq. (6.34) that v2 ≤ v(k, t)2 ≤ v2. This completes

Part 1 of the proof.

Part 2: We show that for any realization of the fast time-scale disturbance pro-

cess, the system state satisfies 0 ≤ x(k, t) ≤ b for t = 0, . . . , T − 1, k = 0, . . . , K.

Here, b = (b1, . . . , bn) is the vector of energy storage capacities. We fix an arbi-

trary realization of the fast time-scale disturbance process throughout this part

of the proof.

We first consider the case of k = 0, and show that 0 ≤ x(0, t) ≤ b for t =
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0, . . . , T . It holds that

x (0, t) = x(0, 0) +
1

K
B

(
t−1∑
s=0

K−1∑
`=0

u (`, s)

)
(6.36)

=x(0) +B

(
t−1∑
s=0

(
u∗(s) +

s∑
r=0

Q∗(s, r)w(r)

))
, (6.37)

where Eq. (6.37) follows from the specification of the fast time-scale system

control input according to Eq. (6.29).

Condition (6.35), in combination with the guaranteed feasibility of the con-

trol policyQ∗ for the slow time-scale decentralized control design problem (3.6),

implies that

0 ≤ x(0) +B

(
t−1∑
s=0

(
u∗(s) +

s∑
r=0

Q∗(s, r)w(r)

))
≤ b.

It follows from Eq. (6.37) that 0 ≤ x(0, t) ≤ b for t = 0, . . . , T . The enforce-

ment of the boundary condition of the fast time-scale state equation requires

that x(K, t) = x(0, t+1) for t = 0, . . . , T −1. This, in combination with the above

inequality, implies that 0 ≤ x(k, t) ≤ b for t = 0, . . . , T − 1, and k = 0 and K.

Next, we show that 0 ≤ x(k, t) ≤ b for k = 1, . . . , K − 1, t = 0, . . . , T − 1. We

first write x(k, t) as

x (k, t) = x(0, t) +
k

K
B

(
1

k

k−1∑
`′=0

u(`′, t)

)

=
K − k
K

x(0, t) +
k

K

(
x(0, t) +B

(
1

k

k−1∑
`′=0

u(`′, t)

))
,

where x(0, t) is specified according to Eq. (6.36). Recall that we previously es-

tablished that 0 ≤ x(0, t) ≤ b. Thus, to show that 0 ≤ x(k, t) ≤ b, it suffices to

show that

0 ≤ x(0, t) +B

(
1

k

k−1∑
`′=0

u(`′, t)

)
≤ b. (6.38)
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First notice that under the fast time-scale control policy specified by Eq. (6.29),

we have that

1

k

k−1∑
`′=0

u(`′, t) = u∗(t) +Q∗(t, t)w̃(k, t) +
t−1∑
s′=0

Q∗(t, s′)w(s′), (6.39)

where the vector w̃(k, t) is defined according to

w̃(k, t) =
1

k

k−1∑
`′=0

w (`′, t) .

Given Assumption 5 and the convexity ofW , it holds that

(1, w(0), .., w(t− 1), w̃(k, t), w (0, t+ 1) , .., w (0, T − 1)) ∈ W . (6.40)

Condition (6.40), in combination with the guaranteed feasibility of the control

policy Q∗ for the slow time-scale decentralized control design problem (3.6),

implies that

0 ≤ x(0, t) +B

(
u∗(t) +Q∗(t, t)w̃(k, t) +

t−1∑
s′=0

Q∗(t, s′)w(s′)

)
≤ b,

where x(0, t) is specified according to Eq. (6.37). It follows from Eq. (6.39) that

inequality (6.38) is satisfied. This completes Part 2 of the proof.

6.7 Lower Bounds

The restriction to affine policies computed according to Proposition 7 may result

in the loss of optimality with respect to the original decentralized control design

problem. In this section, we develop a tractable method to bound this loss of op-

timality via the solution of a conic programming relaxation–the optimal value

of which is guaranteed to stand as a lower bound on the optimal value of the
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original decentralized control design problem (6.22). With such a lower bound

in hand, one can estimate the suboptimality incurred by any feasible decentral-

ized control policy.

6.7.1 Polyhedral Outer Approximation of Constraints

As an initial step in the derivation of this relaxation, we construct a polyhe-

dral outer approximation of the feasible region of problem (6.22). Specifically,

the quadratic constraint in (6.13) can be relaxed to the following pair of linear

constraints:

∣∣qIi (t)∣∣ ≤ √2sIi − wIi (t). (6.41)

We provide a graphical illustration of this polyhedral outer approximation in

Figure 6.2c.

Inequalities (6.9), (6.11), (6.12), and (6.41) define a collection of m linear con-

straints on the state, input, and disturbance trajectories. We represent them

more succinctly as

Fxx+ Fuu+ Fww ≤ 0, ∀ w ∈ W ,

where it is straightforward to construct the matrices Fx ∈ Rm×Nx , Fu ∈ Rm×Nu ,

and Fw ∈ Rm×Nw using the given problem data. The following optimization

problem is an outer approximation to the original decentralized control design
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problem (6.22):

minimize Eγ
[
cTx+ (Luu+ Lww)TΣ(Luu+ Lww)

]
subject to γ ∈ Γ

Fxx+ Fuu+ Fww ≤ 0

x = Ax(0) + Bu

u = γ(w)


∀ w ∈ W , (6.42)

where the decision variable is given by γ.

6.7.2 Lower Bounds via Conic Programming

Problem (6.42) is, in general, computationally intractable due to the infinite-

dimensionality of its decision space. In what follows, we further relax problem

(6.42) to a finite-dimensional conic program via an application of the constraint

relaxation technique we developed in Chapter 5.3. We first require an additional

assumption on the probability distribution of the disturbance trajectory w.

Assumption 6 (Disturbance Process). There exist matricesH t
i ∈ R3n(t+1)×(1+3(t+1))

and H t ∈ RNw×(1+3n(t+1)) such that

E
[
wt
∣∣wti ] = H t

i

 1

wti

 and E
[
w
∣∣wt ] = H t

 1

wt


almost surely, for all time periods t = 0, . . . , T − 1 and subsystems i = 1, . . . , n.

Although Assumption 6 may appear restrictive, it was shown in [54] to hold

for a large family of distributions. In particular, Assumption 6 holds for all

disturbance processes that possess elliptically contoured distributions. In Ap-

pendix B, we provide a formal definition of elliptically contoured distributions,
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and discuss its properties that are useful in optimal control problems. It is also

straightforward to show that Assumption 6 is satisfied by any disturbance pro-

cess for which the random vectors wi(t) (i = 1, . . . , n, t = 0, . . . , T − 1) are mutu-

ally independent.

With Assumption 6 in hand, a direct application6 of Theorem 2 in Chapter

5.3 yields a conic programming relaxation of problem (6.42). Its optimal value

stands as a lower bound on the optimal value of the original decentralized con-

trol design problem (6.22).

Proposition 9. Consider the following finite-dimensional conic program:

minimize Tr

((
QTLT

uΣLuQ+
(
2LT

wΣLu + e1c
TB
)
Q

+ LT
wΣLw

)
M

)
+ cTAx(0)

subject to Q ∈ S, Z ∈ Rm×Nw

(Fu + FxB)Q+ FxAx(0)eT1 + Fw + Z = 0,

HMZT �K 0,

eT1MZT ≥ 0,

(6.43)

where the decision variables are given by Q and Z. Let Jout denote the optimal

value of the above program. If Assumption 6 holds, then Jout ≤ J∗.

Given Assumption 6, the conic program (6.43) can be used to evaluate the

performance of any feasible control policy. Namely, a policy γ ∈ Γ is close

to optimal (for a given problem instance) if J(γ) is close to Jout. Additionally,

Propositions 7 and 9 imply that the optimal value of the original decentralized

6While Assumption 6 differs from the assumption that Theorem 2 requires, it is straightfor-

ward to generalize the proof of Theorem 2 to the setting in which Assumption 6 is satisfied. We

omit the details of the generalized proof, as it mirrors that of Theorem 2.
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control problem (6.22) satisfies

Jout ≤ J∗ ≤ J in.

Therefore, a small gap between J in and Jout implies that decentralized affine

control policies are close to optimal for the underlying problem instance. Fi-

nally, we note that the conic program (6.43) can be efficiently solved for a vari-

ety of cones K, including polyhedral and second-order cones. For such cones,

problem (6.43) amounts to a conic program with O(nT 2) decision variables and

O(nT ) constraints. It can thus be solved in time that is polynomial in the control

horizon T and the number of subsystems n.

6.8 Case Study

We consider the control of distributed energy resources in a 12 kV radial dis-

tribution feeder depicted in Fig. 6.4. The distribution feeder considered in this

chapter is similar in structure to the network considered in [119]. Apart from

the substation, the distribution feeder consists of n = 14 buses. We operate the

system over a finite time horizon of T = 24 hours, beginning at twelve o’clock

(midnight).

6.8.1 System Description

We assume that only buses 4 and 8 have storage devices and PV inverters in-

stalled. All PV inverters are assumed to have an identical active power capacity,

which we denote by by θ (MW). As for demand, we assume that only buses 3,
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4, 5, 13, and 14 have loads; and these loads are assumed to have identical distri-

butions. We specify their mean active and reactive power trajectories in Fig. 6.5.

In order to ensure that Assumption 6 is satisfied, we assume that the random

vectors wi(t) (i = 1, . . . , n, t = 0, . . . , T − 1) are mutually independent. In addi-

tion, we assume that the random variables wpi (t), wqi (t), and wIi (t) are mutually

independent for each bus i and time t. Recall that Assumption 6 is necessary

only for the calculation of the performance bound specified in Proposition 9.

Bus 0 1 2 n− 1 n

Figure 6.4: Schematic diagram of a 12 kV radial distribution feeder with n + 1
buses.

In Table 6.1, we present additional notation pertinent to this section. In Ta-

ble 6.2, we specify the parameter values of the distribution network, storage

devices, PV inverters, and load.

Table 6.1: Additional notation.

Notation Description

θ Active power capacity of each PV inverter.
µpi (t) Mean active power demand at bus i and time t .
µqi (t) Mean reactive power demand at bus i and time t.
µIi (t) Mean active power supply from PV inverter i at time t.
Uni [a, b] Uniform distribution on [a, b].

6.8.2 Discussion

We begin by examining the performance of the decentralized controller pro-

posed in this chapter. In Fig. 6.6, we plot both the upper and lower bounds
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Table 6.2: Specification of system data.

Distribution network

Base voltage magnitude 12 kV
Substation voltage magnitude v0 = 1 (per-unit)
Impedance on line (i, j) ∈ E rij = 0.466, xij = 0.733 (Ω)
Voltage magnitude constraints v = 0.95 · 1, v = 1.05 · 1 (per-unit)

Storage at bus i ∈ {4, 8}

Energy capacity bi = 0.5 (MWh)
Power capacity pS

i
= −0.2, pSi = 0.2 (MW)

Initial condition xi(0) = 0 (MWh)

PV inverter at bus i ∈ {4, 8}

Apparent power capacity sIi = 1.25θ (MVA)
Active power supply wIi (t) ∼ Uni [0, 2µIi (t)] (MW)
Mean active power supply µIi (t) = θ ·max

{
0.5 sin

(
t−6
12
π
)
, 0
}

Load at bus i ∈ {3, 4, 5, 13, 14}

Active power demand wpi (t) ∼ Uni [0.7µpi (t), 1.3µpi (t)] (MW)
Reactive power demand wqi (t) ∼ Uni [0.7µqi (t), 1.3µqi (t)] (Mvar)

0 6 12 18 23

t (hours)

0

0.12

0.24

µ
p

i (t) (MW)

µ
q

i (t) (Mvar)

Figure 6.5: Buses i = 3, 4, 5, 13, and 14 are assumed to be identical in terms of
their mean load trajectories. The above figure depicts the mean active power
and reactive power demand trajectories at these buses. Both trajectories are
scaled versions of the load profile DOM-S/M on 07/01/2016 from Southern
California Edison [2].

on the optimal value J∗ of the decentralized control design problem (6.22), as a

function of the PV inverter active power capacity θ. Recall that J in measures the

cost incurred by the decentralized affine control policy computed according to

Proposition 7. Notice that, at low PV penetration levels (i.e., for low values of θ),

the upper and lower bounds nearly coincide. This indicates that the decentral-
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ized affine control policy is nearly optimal for the original decentralized control

design problem. More interestingly, at high PV penetration levels (i.e., for high

values of θ), the gap between the upper and lower bounds remains small. This

reveals that decentralized affine control policies persist in being close to opti-

mal for the system considered, despite the presence of large and unpredictable

fluctuations in PV active power generation. Therefore, for the system under

consideration, there is little additional value to be had in the design of more

sophisticated (nonlinear) control policies.

0.2 1.1 2

 θ (MW)

0.1

0.2

0.3

0.4

Upper Bound J
in

Lower Bound J
out

Figure 6.6: This figure depicts the upper and lower bounds, J in and Jout, re-
spectively, on the optimal value of the decentralized control design problem J∗

(measured in MWh) as a function of the PV inverter active power capacity θ.

In Fig. 6.7, we illustrate the behavior of input and state trajectories gener-

ated by the decentralized affine controller computed according to Proposition

7. We consider the case of high PV penetration at a level of θ = 4 MW. In the first

and third columns of Fig. 6.7, we plot several independent realizations of dis-

turbance, input, and state trajectories associated with bus 4 and 8, respectively.

In the second and fourth columns, we plot the corresponding empirical confi-

dence intervals.7 First, notice that both the sequence of reactive power injections

from PV inverters and the sequence of active power extractions from storage

exhibit large fluctuations during daytime hours. These fluctuations are due in

large part to the underlying variability in the active power supplied by the PV

7The empirical confidence intervals were estimated using 3 × 105 independent realizations

of the disturbance, input, and state trajectories.
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(a) System trajectories and their confi-
dence intervals at bus 4.
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(b) System trajectories and their confidence
intervals at bus 8.

Figure 6.7: The figures in the first and third columns plot independent realiza-
tions of disturbance, input, and state trajectories associated with bus 4 and 8, re-
spectively. The dashed colored lines represent the trajectory realizations, while
the solid black lines denote the mean trajectories. The figures in the second and
fourth columns depict the empirical confidence intervals associated with these
trajectories. They were estimated using 3 × 105 independent realizations of the
disturbance trajectories.

resources. In particular, a large excess of active power supply from PV can man-

ifest in overvoltage in the distribution network. In order to ensure that voltage

magnitude constraints are not violated, the proposed control policy induces re-

active power injections from PV inverters that are negatively correlated with

their own active power supply. Clearly, in the absence of such a feedback con-

trol mechanism, certain realizations of the disturbance trajectory would have

resulted in the violation of the voltage magnitude constraints at certain buses in

the distribution system.
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(a) Bus voltages in a controlled distribu-
tion system.
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(b) Bus voltages in an uncontrolled distribu-
tion system.

Figure 6.8: The above figures depict independent realizations of bus voltage
magnitude trajectories and their empirical confidence intervals for (a) a con-
trolled distribution system operated under the decentralized affine controller, and
(b) an uncontrolled distribution system. The empirical confidence intervals were
estimated using 3× 105 independent realizations of the disturbance trajectories.
The dashed black lines indicate the range of allowable voltage magnitudes.

In Fig. 6.8, we illustrate the effectiveness of the proposed decentralized affine

controller in maintaining bus voltage magnitudes within their allowable range.

In particular, we compare the behavior of bus voltage magnitudes that occur in

the distribution system with and without control. In the first and second columns

of Fig. 6.8, we illustrate the behavior of voltage magnitude trajectories that ma-

terialize in the controlled distribution system operated under the proposed de-

centralized affine controller. In the third and fourth columns of Fig. 6.8, we

illustrate the behavior of voltage magnitude trajectories that materialize in the

uncontrolled distribution system, i.e., under the control policy γ = 0. Notice that,

in the absence of control, the distribution system may realize bus voltage mag-

nitudes that substantially deviate from their allowable range. In particular, the

distribution system appears to suffer from overvoltage when there is an over-
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abundance of active power supply from PV, and undervoltage during hours of

peak demand. However, when operated under the decentralized affine con-

troller, the distribution system is guaranteed to satisfy the bus voltage magni-

tude constraints for any possible realization of the disturbance trajectory.

6.9 Conclusion

There are several interesting directions for future work. For example, one po-

tential drawback of the approach considered in this chapter is the explicit re-

liance of the control policy on the entire disturbance history. Such dependency

may result in the computational intractability of calculating control policies for

problems with a long horizons T . Accordingly, it will be of interest to extend

the techniques developed in this chapter to accommodate fixed-memory con-

straints on the control policy.

It is also worth noting that the class of controllers considered in this chap-

ter are fully decentralized, in that explicit communication between subsystems

is not permitted. It would be of theoretical and practical interest to investigate

the extent to which the introduction of additional communication links between

subsystems might improve system performance. In particular, it would be of in-

terest to explore the problem of designing a communication topology between

subsystems, in order to minimize the optimal control cost, subject to a constraint

on the maximum number of allowable communication links. While such prob-

lems are inherently combinatorial in nature, it is conceivable that regularization

techniques, similar to those proposed in [71, 79], might yield good approxima-

tions.
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Finally, all of our results rely on the assumption that the distribution system

is three-phase balanced. Such an assumption will not always hold in practice.

It would be of interest to extend the techniques in this chapter to accommodate

the possibility of imbalance in three-phase distribution systems.
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CHAPTER 7

CONCLUSION

The decentralized control of constrained linear systems with nonclassical in-

formation structures amounts to an infinite-dimensional nonconvex program

that is, in general, computationally intractable. In this dissertation, we provide

computationally tractable methods to the calculation of feasible decentralized

control policies and the estimation of their suboptimality via the solution of

finite-dimensional convex programs. Our results provide a systematic approach

to the calculation of feasible decentralized control policies that are affine in the

state history for decentralized control design problems with arbitrary informa-

tion structures and arbitrary polyhedral constraints on the state and input trajec-

tories. Additionally, our results also enable the estimation of the suboptimality

of feasible decentralized control policies for the general family of decentralized

control problems considered in this dissertation. In what follows, we conclude

the dissertation with a discussion on potential directions for future work.

Control Design over a Long Time Horizon. Our results in the dissertation en-

able the calculation of decentralized control policies that parameterize the in-

put trajectory as a causal function of the disturbance trajectory using convex

optimization methods. As a consequence of such a parameterization of con-

trol policy, the number of decision variables in the resulting convex problem is

quadratic in the time horizon T . Consequently, an important drawback of our

control design approach is that it does not provide a computationally tractable

method for designing decentralized controllers that operate over a long time

horizon. In order to enable the design of controllers that operate over a long

time horizon, one possible approach is to design the controller in a hierarchical
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fashion—that is to say, we formulate the decentralized control design problem

over a slow time-scale, and impose an additional constraint that the implemen-

tation of the decentralized controller over a fast time-scale would yield state and

input trajectories that are guaranteed to be feasible. In Chapter 6, we provide an

initial result of such a flavor under the additional assumption that the A matrix

of the system be equal to the identity matrix.

Unknown System Model. All results developed in this dissertation rely on

the assumption that the system model is fixed and known. However, as we

discussed in Section 6.2, such an assumption might not hold in the control of

practical large-scale dynamical systems. As a result, one might need to con-

sider an alternative formulation of the decentralized control design problem, in

which the system matrices are assumed to belong to a bounded parameter set

that is known a priori. For such systems, one needs to specify a decentralized

control policy that is guaranteed to induce feasible state and input trajectories

for all system matrices belonging to the parameter set and all realizations of

the disturbance trajectory. More importantly, the control of such systems nat-

urally entails a tradeoff between exploration and exploitation, as one needs to

constantly perturb the control inputs to learn the underlying system matrices.

A Dual Approach to Information Relaxation. The information relaxation we

construct in Chapter 5 can be thought of as a primal approach to the construc-

tion of information relaxations, in the sense that it only entails the expansion of

the information that each controller has access to. An important drawback to

this approach is that it does not penalize the use of the extra information that is

introduced in the information relaxation, which might manifest in the looseness

of the resulting performance lower bound. In [24, 39, 111], the authors provide
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a dual approach to information relaxation in the construction of lower bounds

on the optimal values of centralized Markov decision processes. Such an ap-

proach essentially entails the dualization of the causality constraint on decision

making—that is, we obtain a lower bound by relaxing the causality constraint

and penalizing the use of future information. The question as to whether one

could leverage on such a dual approach to reduce the looseness of the lower

bound we derive in Chapter 5 is an interesting direction for future investiga-

tion.
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APPENDIX A

CONVEX OPTIMIZATION

In this chapter, we review several results in convex optimization that are

useful for problems in optimal control.

A.1 Conic Linear Programs

A large family of convex programs can be described as conic linear programs.

In what follows, we define a conic linear program in a way that is analogous

to [80], and identify families of convex program that can be formulated as conic

linear programs.

Let E be a Euclidean space equipped with the inner product 〈·, ·〉. A set

K ⊆ E is called a cone if for each x ∈ K and each θ ∈ R+, we have that θx ∈ K.

A cone K is said to be pointed if K ∩−K = {0}. We say that a cone K is proper if

it has a nonempty interior and is convex, closed, and pointed. Additionally, the

dual cone associated with the cone K is defined as

K∗ := {y ∈ E | 〈x, y〉 ≥ 0 ∀x ∈ K}.

Let K be a proper cone. A conic linear program in its most general form is

given by

minimize 〈c, x〉

subject to x ∈ E

〈Ai, x〉 = bi, i = 1, . . . ,m

x ∈ K.

(A.1)
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And the dual to problem (A.1) is given by

maximize bTy

subject to z ∈ E, y ∈ Rm

z +
m∑
i=1

Aiyi = c

z ∈ K∗.

(A.2)

Examples of conic linear programs include:

1. Linear programs, where the Euclidean space E = Rn, the inner product is

given by 〈x, y〉 = xTy, and the cone K = Rn
+.

2. Second-order cone programs, where the Euclidean space E = Rn, the inner

product is given by 〈x, y〉 = xTy, and the cone K is the second order cone:

K =

x ∈ Rn

∣∣∣∣∣∣x1 ≥

√√√√ n∑
i=2

x2
i

 .

3. Semidefinite programs, where the Euclidean space E = Sn (i.e., the space

of symmetric n-by-n matrices), the inner product is given by 〈X, Y 〉 =

Tr
(
XTY

)
, and the cone K = Sn+ (i.e., the cone of positive semidefinite

matrices in Sn).
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A.2 Finite-dimensional Reformulation of Robust Linear Con-

straints

Consider a robust linear program of the form

minimize cTx

subject to x ∈ Rn

(Aiξ)
Tx ≤ bi ∀ξ ∈ Ξ, i = 1, . . . ,m,

(A.3)

where the uncertainty set Ξ ⊆ Rd is assumed to be convex and compact.

Problem (A.3) is a semi-infinite program, as its feasible solutions are required

to satisfy an infinite number of linear constraints. Under the additional assump-

tion that the uncertainty set Ξ admits a conic representation, problem (A.3) ad-

mits an equivalent reformulation as a finite-dimensional conic program. Specif-

ically, assume that the uncertainty set Ξ admits a representation of the form

Ξ := {ξ ∈ Rd|Wξ − g ∈ K},

whereK is assumed to be a proper cone in Rp, and the matrixW and the vector g

are both assumed to be known. It follows from the weak duality of conic linear

programs that robust linear constraints of the form ξTy ≤ α for all ξ ∈ Ξ ad-

mits the following inner approximation as a finite-dimensional cone constraint.

Additionally, such an inner approximation is an equivalent reformulation is the

uncertainty set Ξ admits a nonempty interior—a consequence of the strong du-

ality of conic linear programs that have strictly feasible solutions.

Lemma 22. We have that ξTy ≤ α for all ξ ∈ Ξ if there exists x ∈ K∗ that satisfies

gTx+ α ≤ 0 and y +WTx = 0.
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Additionally, the converse is also true if the uncertainty set Ξ admits a

nonempty interior.

It follows from Lemma 22 that the robust linear program (A.3) admits the

following inner approximation as a finite-dimensional conic program:

minimize cTx

subject to x ∈ Rn,

yi ∈ K∗, i = 1, . . . ,m

gTyi + bi ≤ 0, i = 1, . . . ,m

AT
i x+WTyi = 0, i = 1, . . . ,m.

(A.4)

Additionally, problem (A.4) is an equivalent reformulation of problem (A.3) if

the uncertainty set Ξ admits a nonempty interior.

A.3 The S-procedure

The S-procedure provides a method of verifying the satisfaction a quadratic in-

equality constraint given the satisfaction of a finite number of quadratic inequal-

ity constraints. We have the following proposition from [23].

Proposition 10. Let fi : Rn → R be a quadratic function of the form

fi(x) := xTAix+ 2bTi x+ ci,

for i = 0, . . . , p, where Ai = AT
i for i = 0, . . . , p. We have that fi(x) ≥ 0 for

i = 1, . . . , p implies f0(x) ≥ 0 if there exist τ1, . . . , τp ≥ 0 such thatA0 b0

bT0 c0

− p∑
i=1

τi

Ai bi

bTi ci

 � 0.
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Moreover, if p = 1 and there exists x ∈ Rn such that f1(x) > 0, then the converse

of the above statement is also true.

A.4 The Schur Complement

The Schur complement provides a method of converting nonlinear (convex) ma-

trix inequalities into linear matrix inequalities. Specifically, consider a block

matrix A given by

A =

Q S

ST R

 , (A.5)

where Q ∈ Rn×n and R ∈ Rm×m are both symmetric. If the matrix Q is invert-

ible, then the Schur complement of the block Q in the block matrix A is given

by

A/Q = R− STQ−1S.

Additionally, if the matrix R is invertible, then the Schur complement of the

block R in the block matrix A is given by

A/R = Q− SR−1ST.

Building on the concept of Schur complement, the Schur’s lemma provides nec-

essary and sufficient conditions under which the block matrix A is positive def-

inite.

Lemma 23 (Schur’s Lemma). Let the block matrix A be given by Eq. (A.5). Both

of the following statements are true

(i) A � 0 if and only if Q � 0 and A/Q � 0.
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(ii) A � 0 if and only if R � 0 and A/R � 0.

Additionally, Schur’s Lemma can be generalized to provide necessary and

sufficient conditions under which the block matrix A is positive semidefinite.

Specifically, the generalized Schur complement (cf. [117, Chapter 0]) of the block

Q in the block matrix A is defined as R − STQ†S, where Q† denotes the Moore-

Penrose pseudoinverse of the matrixQ. And the generalized Schur complement

of the block R can be defined in an analogous fashion. We have the following

lemma, which provides a necessary and sufficient condition under which A � 0

using the concept of generalized Schur complement.

Lemma 24. Let the block matrix A be given by Eq. (A.5). Both of the following

statements are true

(i) A � 0 if and only if R � 0, Q− SR†ST � 0 and S(I −RR†) = 0.

(ii) A � 0 if and only if Q � 0, R− STQ†S � 0 and ST(I −QQ†) = 0.
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APPENDIX B

ELLIPTICALLY CONTOURED DISTRIBUTIONS

Elliptically contoured distributions are considered to be a natural general-

ization to Gaussian distributions [48, 63, 73], as they inherit many properties

of Gaussian distributions that are useful in problems in optimal control. As a

consequence, many results in optimal control that are established under the as-

sumption of Gaussian disturbance can be generalized to problems whose distur-

bances have elliptically contoured distributions [30]. In this chapter, we briefly

review the definition and main properties of elliptically contoured distributions.

Additionally, we illustrate how classical results that are established under the

assumption of Gaussian disturbance might be generalized to problems with el-

liptically contoured disturbances via the investigation of a linear-quadratic (LQ)

control problem whose disturbance has an elliptically contoured distribution.

B.1 Definition and Properties

The notion of elliptically contoured distributions was introduced in [63] and

thoroughly studied in [25] and [43]. In what follows, we provide a formal def-

inition of elliptically contoured distributions, and state their properties that are

pertinent to the technical results established in this dissertation.

Definition 7 (Elliptically Contoured Disturbance). A random vector ξ taking

value in Rn is said to have an elliptically contoured distribution if there exists a

vector µ ∈ Rn, a symmetric positive semidefinite matrix Σ ∈ Rn×n, and a scalar

function g, such that the characteristic function ϕξ−µ of the random vector ξ − µ

satisfies the functional equation ϕξ−µ(θ) = g(θTΣθ) for every vector θ ∈ Rn.
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The family of elliptically contoured distributions is broad. It includes the

multivariate Gaussian distribution, multivariate t-distribution, their truncated

versions, and uniform distributions on ellipsoids. Such a family of distributions

are considered to be natural generalizations of multivariate Gaussian distribu-

tions, as they inherit several important properties of Gaussian distributions that

are useful in problems in optimal control. We review such properties as follows.

Lemma 25. Let the random vector ξ be distributed according to an elliptically

contoured distribution. It follows that the random vector Aξ + b has an ellipti-

cally contoured distribution for each A ∈ Rm×n and b ∈ Rm.

Lemma 25 shows that any affine transformation of a random vector with

an elliptically contoured distribution remains a random vector with an ellipti-

cally contoured distribution. Apparently, this is a generalization to the property

that any affine transformation of a Gaussian random vector still has a Gaussian

distribution. In the following proposition, we show that the conditional expec-

tation of a random vector with an elliptically contoured distribution given its

subvector is affine in this subvector.

Proposition 11 (Conditional Distribution). Let ξ = (ξ1, ξ2) be a random vector

that has an elliptically contoured distribution and finite-valued second moment

matrix. Additionally, assume that the mean µ and covariance matrix Σ of the

random vector ξ are given by

µ =

µ1

µ2

 Σ =

Σ11 Σ12

ΣT
12 Σ22

 ,
where ξ1, µ1 ∈ Rn1 and Σ11 ∈ Rn1 for an integer n1 < n. We have that

(i) The conditional probability distribution of the random vector ξ1 given the

random vector ξ2 is an elliptically contoured distribution.
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(ii) The conditional expectation of the random vector ξ1 given the random vec-

tor ξ2 is

E[ξ1|ξ2] = µ1 + Σ12Σ†22(ξ2 − µ2),

where Σ†22 denotes the Moore-Penrose pseudoinverse of the matrix Σ22.

Lemma 25 and Proposition 11 both reveal that properties of Gaussian distri-

butions that are useful in optimal control problems also hold for random vectors

with elliptically contoured distributions. This naturally implies the possibil-

ity that results in optimal control that are established under the assumption of

Gaussian noise might be generalized to the setting in which the noise follows

an elliptically contoured distribution. In what follows, we provide an exam-

ple of such a generalization via the investigation of a LQ control problem with

elliptically contoured noise.

B.2 Linear Quadratic Control with Elliptically Contoured

Noise

In what follows, we consider a variant of the linear-quadratic-Gaussian (LQG)

problem, in which the process and measurement noise is distributed according

to an elliptically contoured distribution. We show that all properties that the

optimal control policy of the LQG problem satisfies are also satisfied by the

optimal control policy of a linear quadratic control problem with elliptically

contoured noise. Note that in order to simplify notation, we adopt the notation

convention in [20], in which subscripts denote the time indices.
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Consider a discrete-time, linear time-varying system whose dynamics is de-

scribed according to

xt+1 = Atxt +Btut + wt,

where xt ∈ Rn, ut ∈ Rm, and wt ∈ Rn denotes the system state, input, and

process noise at each time t. The initial state x0, and the process noise wt at

each time t are both assumed to be zero-mean random vectors, whose second

moment matrices are given by S := E[x0x
T
0 ] and Mt := E[wtw

T
t ], respectively.

The system operates over a finite time horizon indexed by t = 0, . . . , T − 1. We

denote by yt ∈ Rp the measured output at each time t. It is given by

yt = Ctxt + vt,

where vt ∈ Rp denotes the measurement noise at time t. We assume that vt

is a zero-mean random vector at each time t, whose second moment matrix

Nt := E[vtv
T
t ] is assumed to be positive definite. The control input at each time t

is specified as a function of the entire history of outputs up until and including

time t. That is, the control input at time t is specified as

ut = γt(y
t),

where the function γt(·) is a measurable function of its argument. Our objective

is to specify a control policy γ := (γ0, . . . , γT−1) which solves the following linear

quadratic control problem:

minimize E

[
xTTQTxT +

T−1∑
t=0

(
xTt Qtxt + uTt Rtut

)]

subject to ut = γt(y
t), t = 0, . . . , T − 1

xt+1 = Atxt +Btut + wt, t = 0, . . . , T − 1

yt = Ctxt + vt, t = 0, . . . , T − 1,

(B.1)
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where the cost matrices Qt and Rt are assumed to be symmetric positive

semidefinite and symmetric positive definite, respectively, for each time t. Our

characterization of the optimal policy for problem (B.1) requires the following

assumption on the process and measurement noise.

Assumption 7. We assume that the random vector (x0, w0, v0, w1, v1, . . . , wT−1, vT−1)

has an elliptically contoured distribution with zero mean and covariance matrix

Σ = diag(S,M0, N0,M1, N1, . . . ,MT−1, NT−1).

In other words, Assumption 7 requires that the random vectors

x0, w0, v0, w1, v1, . . . , wT−1, vT−1 be mutually uncorrelated, and that their joint

probability distribution be elliptically contoured. We have the following result,

which shows that all properties that the optimal control policy of the LQG prob-

lem satisfies are satisfied by the optimal control policy for problem (B.1).

Theorem 3. Let Assumption 7 hold. It follows that the optimal control policy

for problem (B.1) satisfies the following properties

(i) The optimal control input at each time t is linear in the conditional expec-

tation of the system state at time t given the history of outputs yt:

ut = γ∗(yt, t) = LtE[xt|yt].

(ii) The feedback control gain Lt is given by

Lt = −
(
Rt +BT

t Kt+1Bt

)−1
BT
t Kt+1At,

where the matrix Kt can be computed recursively backwards using the

Riccati equation:

Pt = AT
t Kt+1Bt

(
Rt +BT

t Kt+1Bt

)−1
BT
t Kt+1At

Kt = AT
t Kt+1At − Pt +Qt
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for t = 0, . . . , T − 1 with initial condition given by KT = QT .

(iii) The conditional expectation of the system state at time t can be calculated

using the Kalman filter. That is, the

E[xt|yt] =(At−1 +Bt−1Lt−1)E[xt−1|yt−1]

+ Σt|tC
T
t N

−1
t

(
yt − Ct(At−1 +Bt−1Lt−1)E[xt−1|yt−1]

)
where the matrices Σt|t can be computed recursively according to

Σt|t = Σt|t−1 − Σt|t−1C
T
t

(
CtΣt|t−1C

T
t +Nt

)−1
CtΣt|t−1

Σt|t−1 = At−1Σt−1|t−1A
T
t−1 +Mt−1,

for t = 0, . . . , T − 1, with initial conditions given by Σ0|−1 = S and

E[x−1|y−1] = 0.

Theorem 3 provides a concrete example showing that results in optimal con-

trol that are established under the assumption of Gaussian noise can be gener-

alized to the setting in which the noise is distributed according to an elliptically

contoured distributions. Additionally, we note that out of the three properties

stated in Theorem 3, properties (i) and (ii) (i.e., the separation principle and the

optimality of certainty equivalence) hold for a much larger family of LQ con-

trol problems. Specifically, it was shown in [3] that for arbitrary LQ control

problems, in which the process noise and the measurement noise might corre-

late across time, the separation principle holds, and the optimal control policy

is certainty equivalent. However, Assumption 7 is required for the satisfaction

of property (iii), as the ability to recursively estimate the system state using the

Kalman filter follows from a combination of Lemma 25 and Proposition 11.
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