GENERAL FLOW PROBLEMS AND
GRAPH GRAMMARS

Lishing Liu

TR 77-308

Computer Science Department
Cornell University
Ithaca, N.Y. 14853
1. Introduction

A standard approach to compile-time program optimization is to analyze the control flow graph of a program. In the early 70's the interval approach [A, C, AU1] was introduced to solve flow problems. It has been recognized that "reducibility" is a desired property on flow graphs when flow problems are solved. Hecht and Ullman [HU1] give two simple graph grammar rules T_1 and T_2 for reducible graphs. Ullman [HU, U] shows that the common subexpression elimination problem on reducible graphs can be solved in $O(e\log e)$ bit-vector steps, where e is the number of edges in flow graphs.

Another approach is to propagate information through flow graphs until the propagating process converges. General formulation of data flow problems using lattice theoretic framework is also introduced. Representatives of such work can be found in [AU2, FKZ, HU2, KU1, Ke, Ki, U].

Recently Graham and Wegman [GW] present a new algorithm for global flow analysis which combines a modification of interval approach with a modification of the transformations T_1 and T_2 introduced by Hecht and Ullman. The idea is to decompose the graph reduction rules into simpler forms so that a flow analysis problem can easily be reduced into a smaller-sized problem when the flow graph is reduced. It has been shown that a forward information propagation problem on a reducible graph can be solved in $O(e\log e)$ functional steps.

Farrow, Kennedy and Zucconi [FKZ] define a class \mathcal{F}_{SSFG}
of semi-structured flow graphs. The graph grammar for \(\mathcal{F}_{SSFG} \) is an extension of the B-J grammar (named for Böhm and Jacopini). The graph grammar rules are rather simple so that many flow problems on \(\mathcal{F}_{SSFG} \) can be solved in \(O(e) \) functional steps.

In this paper we extend the idea of "acceptable assignment" in [GW] and formulate general data flow analysis problems in terms of lattice theoretic framework. In general data flow analysis problems can be classified into two major classes, the forward information propagation problems and the reverse information propagation problems. Modifying slightly the three transformations \(T_1', T_2', \) and \(T_3' \) introduced in [GW] we show that these data flow problems on reducible flow graphs with "fast" function spaces can be solved in \(O(\text{eloge}) \) functional steps. The generalization of the method in [GW] to general forward information propagation problems is straightforward. For the backward information propagation problems, we don't treat them as forward problems on the reversed graphs and no reverse graph reduction rules are needed. We also define new graph grammars \(SG(k) \). The class \(\mathcal{F}_{SG(k)} \) of flow graphs generated by \(SG(k) \) is wider than \(\mathcal{F}_{SSFG} \). General data flow problems with "fast" function spaces can be solved using \(O(e) \) functional steps on a flow graph in \(\mathcal{F}_{SG(k)} \).

The paper is organized as follows. In section 2 some basic definitions and results on flow analysis are presented. In section 3 we formulate general flow analysis problems and
show how they are solved on reducible flow graphs. In
section 4 new graph grammars $SG(k)$ are defined and examined.
Section 5 is the summary.

2. Preliminaries

A (directed) graph is a pair (N,E) where N is a finite
set of nodes and $E \subseteq N \times N$ is a set of edges. Given a graph
$G = (N,E)$ we say that a non-empty sequence of nodes $P_0,P_1,\ldots
\ldots,P_k$ is a path from P_0 to P_k of length k provided that for
all i between 0 and $k-1$, (P_i,P_{i+1}) is an edge. Let $e=(x,y)$
be an edge, we say that e enters y and leaves x, x is a
predecessor of y and y is a successor of x. Pred(x) will
denote the set of predecessors of x, and Succ(x) will denote
the set of successors of x. An edge (x,x) is called a
self-loop. A path from x to x is called a cycle. A graph
with a single node and no edges is called a trivial graph.

2.1 Reducible Graphs

A flow graph $G = (N,E,n_0)$ is a graph (N,E) together
with a distinguished entry node n_0 such that for all x in N
there is a path from n_0 to x in G.

Reducible graphs were originally defined by Allen and
Cocke in terms of "intervals". We will use an equivalent
definition using the transformations T_1 and T_2 introduced
by Hecht and Ullman [HUL].

Let $G = (N,E,n_0)$ be a given flow graph. Transforma-
tions T_1 and T_2 are defined as follows:
\(T_1 \) — If \(e \) is a self-loop in \(G \) then
\[T_1(G,e) = (N,E\setminus \{e\},n_0). \]

\(T_2 \) — If \(e = (u,v) \in E, v \neq n_0 \) and \(\text{Pred}(v) = \{u\} \)
then \(T_2(G,e) = (N',E',n_0) \), where \(N'=N\setminus \{v\} \)
and \(E' = (E\cap (N'\times N')) \cup \{(u,x) | (v,x) \in E\} \).

\(T_1 \) and \(T_2 \) are depicted in Figure 1.

![Figure 1](image)

Definition: A flow graph \(G \) is reducible if it can be reduced to the trivial graph by successive applications of transformations \(T_1 \) and \(T_2 \).

2.1 Some Results on Reducible Graph Parsing

Hopcroft and Ullman [HU] have shown that a reducible graph with \(e \) edges can be parsed using \(T_1 \) and \(T_2 \) in \(O(\text{eloge}) \) elementary steps.

Graham and Wegman [GW] decompose \(T_1 \) and \(T_2 \) into three transformations \(T_1' \), \(T_2' \) and \(T_3' \). They are defined below and are depicted in Figure 2.
Again let \(G = (N,E,n_0) \) be a flow graph.

T_1' — If \(e=(v,v) \in E \) and there is a unique edge entering \(v \) other than \(e \) then

\[T_1'(G,e) = (N,E-\{e\},n_0). \]

T_2' — If for some \(v \in N-\{n_0\} \), \(\text{Pred}(v) = \{u\} \), \(u \neq v \), and if \((v,w) \in E \), then

\[T_2'(G,e) = (N',E',n_0), \]

where

1. If \(\text{Succ}(v) = \{w\} \) then \(N' = N-\{v\} \)
 and \(E' = (E \cup \{(u,w)\}) - \{(u,v),(v,w)\} \).
2. Otherwise \(N' = N \) and
 \(E' = (E \cup \{(u,w)\}) - \{(v,w)\} \).

T_3' — If all non-looping edges leave \(n_0 \), i.e. \(G \) is a fan graph, and for some \(v \in N \), \(v \neq n_0 \),

\(\text{Pred}(v) = n_0 \), then

\[T_3'(G,e) = (N-\{v\},E-\{e\},n_0). \]

![Figure 2](image-url)
Theorem 2.1 (Graham and Wegman):

Let $G = (N,E,n_0)$ be a reducible flow graph. Then G can be reduced to a graph with single node using no more than $|N| T_1^1$ transformations, $O(|E| \log |E|)$ T_2^1 transformation and $|N| T_3^1$ transformations.

2.3 Finite Church-Rosser (FCR) Property

In general graph reductions are highly ambiguous. That is, there may be many different sequences of transformations by which a given graph can be reduced. It is desirable that any sequence of transformation on a given flow graph will always terminate and that the limit graph is unique independent of the order of reduction sequences.

Definition: Two flow graphs $G = (N,E,n_0)$ and $G' = (N',E',n_0')$ are isomorphic if there exists a function $f: N \to N'$ such that

1. f is one-to-one and onto.
2. $f(n_0) = n_0'$.
3. $(x,y) \in E$ if and only if $(f(x),f(y)) \in E'$.

In graph parsing we treat two flow graphs as equal if they are isomorphic. That is, the names of node and edges are not important.

Definition: Let S be a set and \Rightarrow be a relation on S, i.e. $\Rightarrow \subseteq (S \times S)$. The pair (S, \Rightarrow) is finite if for each p in S there is a constant k_p such that if $p \Rightarrow q$ then
i ≤ k_p, where \(\overset{i}{\Rightarrow}\) is the i-fold composition of \(\Rightarrow\). We say that \((S,\Rightarrow)\) is \textbf{finite Church-Rosser (PCR)} if the following conditions are satisfied:

1. \((S,\Rightarrow)\) is finite, and
2. if \(p \overset{\not\exists}{\Rightarrow} q\) and \(p \overset{\not\exists}{\Rightarrow} r\) and there is no \(t\) with \(q \Rightarrow t\) or \(r \Rightarrow t\) then \(q = r\),
 where \(\overset{\not\exists}{\Rightarrow}\) is the reflexive transitive closure of \(\Rightarrow\).

The following theorem gives a test for PCR property.

\textbf{Theorem [Se]}:

Let \(\Rightarrow\) be a relation on \(S\). Then \((S,\Rightarrow)\) is PCR if and only if

1. \(\Rightarrow\) is finite, and
2. if \(p \Rightarrow q\) and \(p \Rightarrow r\) then there is a \(t\) in \(S\) such that \(q \Rightarrow t\) and \(r \Rightarrow t\).

\textbf{Example}:

Let \(S\) be the set of flow graphs. Define the relation \(\Rightarrow\) on \(S\) as \(G_1 \Rightarrow G_2\) if and only if

\[G_2 = T_i(G_1), \ i = 1,2.\]

It is shown in [HUL] that \((S,\Rightarrow)\) is PCR.

3. \textbf{Global Data Flow Problems}

In this section we are going to generalize the results of [GW]. In 3.1 some lattice algebra is presented. In 3.2 - 3.3 straightforward generalization of data flow
problem definitions will be given. In 3.4 we first state some lemmas and the key constructions in the proofs which are direct abstractions of the results in [GW], then we show how the reverse problems can be handled in a similar fashion without introducing reverse graph transformations.

3.1 Some Lattice Algebra

As flow analysis is a general term, instead of looking at few typical examples we will formulate flow analysis problems using lattice theoretic constructs [Ki,KU2].

Definition: A semi-lattice is a set L together with a binary meet operation \wedge such that for all x, y and z in L

\[
x \wedge x = x \quad \text{(idempotent)}
\]
\[
x \wedge (y \wedge z) = (x \wedge y) \wedge z \quad \text{(associativity)}
\]
\[
x \wedge y = y \wedge x \quad \text{(commutativity)}.
\]

Given a semi-lattice L, for x, y in L we say that $x \leq y$ if $x \wedge y = x$. L is said to have a zero element 0 if $0 \leq x$ for all $x \in L$. L is said to have a one element 1 if $x \leq 1$ for all $x \in L$. Let $f: L \to L$ be a function from L to L. We say that f is monotonic if $x \leq y$ implies $f(x) \leq f(y)$ for all x, $y \in L$. f is distributive if $f(x \wedge y) = f(x) \wedge f(y)$ for all x, $y \in L$. We also extend the "fastness" defined in [GW]. f is fast if for all x in L, $x \leq f(x) \leq (f \circ f)(x)$. A set F of functions from L to L is said to be fast (resp. distributive) if all functions in F are fast (resp. distributive). If g and h are functions from a set S to a semi-lattice L, then
\((g \uplus h)\) denotes the function from \(S\) to \(L\) such that
\[(g \uplus h)(s) = g(s) \land h(s)\] for all \(s \in S\). We say that \(g \leq h\)
if \(g \leq h = g\). \(id_L\) will denote the identity function on \(L\).

Now we are ready to define data flow problems formally
by extending the information propagation problem definition
in [GW].

3.2 Information Propagation Problems

Definition: A monotone information propagation framework is
a tuple \(D = (L, \land, F)\), where \(L\) is a semi-lattice with meet
\(\land\) and \(F\) is a set of functions from \(L\) to \(L\) such that \(F\)
is closed under function composition and function meet. \(D\)
is fast (resp. distributive) if \(F\) is fast (resp. distributive).

The notion of monotone framework was first introduced
in [KU]. Throughout this report we assume that all
problems are defined under a monotone framework. In [KU]
it is shown that the constant propagation problem is usually
formulated under a monotone but non-distributive framework,
and it is observed that it is not quite satisfactory to solve
such problems by finding fixed points of equations.

Definition: An information propagation problem is a tuple
\(IP = (G, D, M, x_0)\) where \(G = (N, E, n_0)\) is a flow graph,
\(D = (L, \land, F)\) is a monotone information propagation framework,
\(M: E \to F\) is a function from \(E\) to \(F\), and \(x_0\) \(L\) is the
boundary information associated with the entry node \(n_0\).
For notational convenience, if $M: E \rightarrow P$ is as in the above definition, then f_e denote $M(e)$ for e in E. If $p = p_0, \ldots, p_k$ is a path in G then f_p will denote the composition of functions $f_{(p_{k-1}, p_k)} \circ \cdots \circ f_{(p_0, p_1)}$. If p is the null path then $f_p = id_L$.

Notice that id_L might not be in the function space F. Actually, if F is fast then adjoining id_L to F might not preserve the "fastness" property.

Definition: Let $IP = (G, D, M, x_0)$ be an information propagation problem where $G = (N, E, n_0)$ and $D = (L, ^\land, F)$. A function $FP: N \rightarrow L$ is a fixed point for IP if $FP(n_0) \leq x_0$ and $FP(n) \leq f_e(FP(m))$ for all $e \in \text{Pred}(n)$. A function $S: N \rightarrow L$ is a safe assignment to IP if $S(n) \leq f_p(x_0)$ for all path p from n_0 to any node n. A function $AA: N \rightarrow L$ is an acceptable assignment to IP if AA is safe and if $FP \leq AA$ for all fixed point FP for IP.

The above definition is a direct abstraction of the information propagation problem definition in [GW]. To solve such a problem is to find an acceptable assignment. An acceptable assignment is an assignment of information to nodes in such a way that the information at each node never exceeds any information propagated from n_0 to that node, while the assignment is at least as good as any fixed point.

A typical example of the information propagation problem is the common subexpression elimination problem. Let $G = (N, E, n_0)$ be any flow graph for a certain program. For
let \(b(n) \) be the computation block represented by \(n \). An expression, say \(A+B \), is said to be available at a node \(n \) if no path from the previous evaluation of \(A+B \) to \(n \) can modify either \(A \) or \(B \). To formulate the problem of finding available expressions at all nodes we first introduce the well-known functions KILL and GEN used for this purpose. KILL and GEN are functions from \(E \) to the set \(\mathcal{E} \) of expressions computed in this program:

For \(e = (m,n) \) in \(E \):

1. \(\text{GEN}(e) \), denoted \(\text{GEN}_e \), is the set of all expressions \(\alpha \) in \(\mathcal{E} \) such that \(\alpha \) is computed somewhere in \(b(m) \) and that none of the variables involved in \(\alpha \) is modified within \(b(m) \) after that computation of \(\mathcal{E} \).

2. \(\text{KILL}(e) \), denoted \(\text{KILL}_e \), is the set of expressions \(\alpha \) in \(\mathcal{E} \) such that some variables involved in \(\alpha \) are modified without recomputing \(\alpha \) within \(b(m) \) afterwards.

Then the common subexpression elimination problem can be formulated as the information propagation problem \(\text{IP} = (G,D,M,x_0) \), where

\[
D = (L, \wedge F) \text{ with } L = 2^E, \wedge = \text{set intersection} \]

\[
F = \text{set of all functions from } L \text{ to } L, \]

\(M \) is defined as \(M(e) = \text{GR}(\text{GEN}_e, \text{KILL}_e) \) for \(e \in E \),
where \(GK: L \times L \to F \) is the function such that \(GK(x,y)(z) = (z-y) \cup z \) for all \(x, y \) and \(z \) in \(L \).

\(\emptyset \) = the empty set.

In implementation, elements of \(L \) can be represented as bit-vectors. And it can be shown [GW] that

\[
GK(x,y) \cup GK(x',y') = GK((x'-y) \cap x, (y'-x) \cap y) \quad \text{and} \quad GK(x,y) \cap GK(x',y') = GK(x' \cap y', y' \cap y').
\]

Hence the functional operations can be carried out efficiently using logical bit-vector operations like AND or OR.

3.3 Reverse Information Propagation Problems

Another class of flow problems requires propagation of information from the end of a program. There are some difficulties in defining this kind of problems on general flow graphs. According to the definition of a flow graph there could be several nodes without edges leaving them. A conditional program return in a basic block may not be located if we simply look at a flow graph without any return message. But fortunately the program return information can be collected when the flow graph is constructed from a program. Therefore, in dealing with reverse propagation problems, we may assume that the flow graph for a program is constructed in the following way:

1. First construct an extra return node \(r \).
2. Construct flow graph as usual. But when a node \(n \) is formed and the block \(b(n) \) has
a return instruction at an exit, we add an edge \((n, r) \).

(3) \(b(r) \) contains no computation at all.

It is easily seen that if the original flow graph for a program is reducible then the new graph constructed as above is still reducible. The return node \(r \) constructed has the property that it is the only node without leaving edges. Hence the above steps give a construction of a "hammock graph" [GW].

The extension of the information propagation problem definition to the reverse information propagation problems is quite obvious now. The reverse problem is just like a mirror image of the forward problem, information is propagated backwards from the return node instead of being propagated from the entry node \(n_0 \). The reason we need a separate definition for the reverse problems is that the reverse of a reducible graph might not be reducible, and hence we do not want to treat the reverse problems as forward problems on the reversed graphs.

Definition: A reverse information propagation problem is a tuple \(RIP = (G_r, D, M, x_0) \), where \(G_r = (N, E, n_0) \) is a flow graph with a return node \(r \) such that \(r \) is the only node in \(N \) without leaving edges, \(D = (L, \lambda, F) \) is a monotone information propagation framework, \(M : E \rightarrow F \) is a function from \(E \) to \(F \), and \(x_0 \in L \) is the boundary information associated with \(r \).
Again we denote $M(e)$ by f_e for $e \in E$. If $p = p_0, p_1, \ldots, p_k$ is a path in G then \tilde{f}_p denotes the function composition $f_{(p_0, p_1)} \circ f_{(p_1, p_2)} \circ \cdots \circ f_{(p_{k-1}, p_k)}$. If p is the null path then let \tilde{f}_p be id_L. Notice that in \tilde{f}_p functions are composed in the reverse order. That is, when \tilde{f}_p is used, $f_{(p_{k-1}, p_k)}$ will be applied first.

Definition: Let $\text{RIP} = (G_x, D, M, x_0)$ be a reverse information propagation problem. A function $FP: N \to L$ is a **fixed point for RIP** if $FP(r) \leq x_0$ and for all $e = (m, n) \in F$, $FP(m) \leq f_e(FP(n))$. A function $S: N \to L$ is a **safe assignment to RIP** if for all path p from a node n to r, $S(n) \leq \tilde{f}_p(x_0)$. A function $AA: N \to L$ is an **acceptable assignment to RIP** if AA is safe and $FP \leq AA$ for all fixed point FP for RIP.

To solve a reverse information problem is to find an acceptable assignment. That is, to find an assignment of information to nodes such that the assignment is no more than any information which can be propagated from r and that it is at least as better as any fixed point solution.

An example of a reverse information problem is the well-known live variable analysis problem. We will follow the notation in [FKZ]. The problem is to determine for each basic block b in a program the set $\text{LIVE}(b)$ of all variables X for which there is a path from the entry point of b to a reference of X such that this path is X-clear (i.e. contains no re-definition of X).
Let $\text{INSIDE}(b)$ be the set of all variables X which are live on entry to block b because there is a use of X within b which is not preceded by any re-definition of X in b. Let $\text{THRU}(b)$ be the set of all variables X for which there exists an X-clear path through b. Both INSIDE and THRU can be computed by local examination of basic blocks and can be implemented as bit-vectors.

Then the live variable analysis problem can be formulated as a reverse information propagation problem $\text{RIP} = (G_r, D, M, x_0)$, where G_r is a flow graph with return node r for a certain program, $D = (L, \Lambda, F)$ where $L = 2^\mathcal{V}$ is the power set of the set \mathcal{V} of all variables used in a program, Λ is the set union operation, and F is the set of all functions $T_{x,y}$ of the form $T_{x,y}(z) = x \cup (y \cap z)$ for $x, y, z \in L$. It can easily be verified that such D is distributive and fast. As no variables can be live at the end of a program, $x_0 = \emptyset$. Notice that \emptyset is the 1 element of L (and hence x_0 is again a trivial information).

Initially if u is a node in G_r representing a basic block b and if (u,v) is an edge in G_r then the propagation function $M((u,v))$ is defined as $T_{\text{INSIDE}(b), \text{THRU}(b)}$. The equation among the live information is

$$\text{LIVE}(b) = \text{INSIDE}(b) \cup \bigcup_{c \in S(b)} (\text{THRU}(b) \cap \text{LIVE}(c)),$$

where $S(b)$ denotes the set of all basic block represented by nodes which are entered by an edge leaving the node.
representing block b. It can be shown that

\[
T_{x', y'} = T_{xu(yx')}(yuy')
\]

and

\[
T_{x, y} = T(xux'), (yuy').
\]

Therefore functional operations can also be implemented efficiently using logical bit-vector operations like AND and OR.

3.4 Solving Flow Analysis Problems on Reducible Graphs

In [GW] Graham and Wegman show that an information propagation problem with boundary information \(x_0 = \emptyset \) and a fast function space can be solved in \(O(\log e) \) functional steps. Their method also has the property that for a nicely structured program without too many exits from loops only \(O(e) \) functional steps are required. In this section we extend their results to problems defined in the previous two sections. The generalization to forward problems is essentially a direct translation of the results in [GW]. The generalization to reverse problems is also straightforward, while we avoid using reverse transformations \(RT_1', RT_2' \) and \(RT_3' \) so that we can use the same rules \(T_1', T_2' \) and \(T_3' \) to solve forward and backward problems simultaneously during a parse. Lemmas will be stated and the key constructions in proofs are also given for later use in section 4.

We generalize their results to forward problems first. In the following let \(IP = (G, D, N, x_0) \) be an information propagation problem, where \(G = (N, E, n_0) \) and \(D = (L, A, F) \).
Lemma 3.4:

Let C' be defined for some $e \in V_0$. Then

$$C' = \gamma'(C,e)$$

for all $e \in V_0$. The rest of the proof is straightforward.

Proof: If $n \neq N$, and $\forall y$, is acceptable to IP, then

function application can be obtained from an acceptable assignment to IP, by one

to IP, and if $n \neq N$, then an acceptable assignment to IP,

then any acceptable assignment to IP, is also acceptable.

Lemma 3.5:

Let C be an in V_0. Then $\gamma'(C, e)$. The rest of the proof is analogous to the proof of Lemma 4.2.

Theorem 3.3:

Let $\gamma(\alpha) = (e, (\alpha'))$. Then,

$$W = \gamma(\alpha)$$

and for all $e \in V_0$,

otherwise

$$(\alpha')W = ((\alpha')\alpha')W = ((\alpha')\alpha')W = ((\alpha')\alpha')W.$$
Ip is also acceptable to Ip.

If a function composition such that any acceptable assignment to
\(|w| \) \(f(n, e, v) \) is acceptable at any point in a function composition
\(\{ (M, v, e) \} \) \(= \{ (M, v, e) \} \) \(\cup \) \(\{ (M, v, e) \)
application we can find an acceptable assignment to IP from an acceptable assignment to IP'.

Proof: For an acceptable assignment AA' to IP' let

$$AA(v) = f_{n_0,v}(AA'(n_0)).$$

The rest of the proof is easy.

When a reducible graph G is finally reduced to a flow graph with single node n_0, an acceptable assignment AA can be defined as

$$AA(n_0) = x_0$$

if $(n_0, n_0) \in E$,

$$= x_0 \land f_{n_0,n_0}(x_0)$$

otherwise.

The following theorem is a straightforward generalization of Theorem 5.3 in [GW].

Theorem 3.1:

Let IP = (G,D,M,x_0) be an information propagation problem, where $G = (N,E,n_0)$ is reducible and D is fast. Then we can find an acceptable assignment to IP in $O(|E|\log|E|)$ functional operations.

In the remainder of section 3 we consider solutions to reverse information propagation problems on reducible graphs. In the following we assume that RIP is a reverse information propagation problem (G_r,D,M,x_0), where $G_r = (N,E,n_0)$ is a flow graph with return node r, and $D = (L,\land,F)$. It is easily seen that, since the return node r
does not have leaving edges, \(r \) will remain as a return
node during reductions and no self loops can be created at
\(r \). Hence \(T_1 \) can never apply to \(r \), and we can always use
\(r \) as the return node for graphs resulted from \(T_1 \) or \(T_2 \).

Lemma 3.5:

Let \(G'_1 = T_1(G_1, e) \) be defined for some \(e = (v, v) \)
in \(E \) such that \(M(e) \) is fast. Let \(W = \text{Succ}(v) = \{v\} \).
Then a reverse information propagation problem \(\text{RIP}' = (G'_1, D, M', x_0) \) can be found using \(|W| \) function meets such
that any acceptable assignment to \(\text{RIP}' \) is also acceptable
to \(\text{RIP} \).

Proof: Define \(M' \) such that for all \(w \) in \(W \),
\(M'((v, w)) = M((v, w)) \wedge (M(e) \neq M((v, w))) \), and for all \((x, y) \)
in \(E \), \(x \neq v \), \(M'((x, y)) = M((x, y)) \). The rest of the proof
is similar to the proof of Lemma 4.1 in [GW]. Notice that
\(v \neq r \).

\(\square \)

The \(2|W| \) functional operations used in the above
lemma seem to be quite costly. But later we will see that
the total number of such functional steps is still
\(O(|E| \log |E|) \).

Lemma 3.6:

Let \(v \) be a node in \(N - \{n_0\} \) such that \((v, v) \notin E \)
and let \(U = \text{Pred}(v) \). Let \(G'_1 = (N, E', n_0) \), where for some
\(w \in \text{Succ}(v) \) such that \((v, w) \) is not the only edge leaving \(v \),
a function application.

found using one function application and, if \((0_u, 0_v, 0_w) e R\), it is fast then an acceptable assignment to \(RIP\) can be

\((0_u, 0_v, 0_w)(u, v, w) e R\). Let \(u\) and \(v\), \((u', v') e (W') \), be the only edge

Lemma 3.8:

Lemma 3.6: If \(u \not\in R\), then the function follows from \(R\).

\[(\forall \lambda, \forall u \neq \lambda, \forall v, v \neq u, v, u \neq \lambda) ((u, v, w) e R) \]

The rest of the proof is easy.

Proof: If \(u \not\in R\), then the function follows from \(R\).

an acceptable assignment \(v\) to \(RIP\) using one function application \(v\) to \(RIP\) can be obtained from an acceptable assignment \(v\) to \(RIP\) has the property that is in \(R\), one function meet. \(RIP\) has the property that can be found using one function composition and, if \((u, v, w) e R\), then the function composition meets. \(A\).

\[(\forall x, (\forall x, (x, y, z) e R)) \]

Corollary 3.7:
The rest of the proof is simple.

\[\forall \Delta \neq \emptyset \quad (\forall (u) (v) \forall (u') \forall (v') (\Delta, u, v) \in \Delta, (\Delta, u', v') \in \Delta \implies (\Delta, u, v') \in \Delta) \]

\[\forall \Delta \text{ is constructed such that if } \]
\[\text{IF } \forall \Delta \text{ is an acceptable assignment to RIP, then } \]
\[\{ (\Delta, u, v) \mid (\Delta, u, v) \in \Delta \} - \{ (\Delta, u, v) \mid x \in \Delta \} \text{ for all } x \in \Delta \text{ in } \]
\[\text{otherwise, } \]
\[\{ (\Delta, u, v) \mid (\Delta, u, v) \in \Delta \} \]
\[\text{Define } \omega, \text{ such that for all } u \text{ in } \]
\[\text{are depicted in the picture below.} \]

Proof: The situation of \(\Delta \) and \(\omega \) in G, and \(\Gamma \) and \(\omega \) and \(\Delta \) using one function meet and one function application. RIP can be obtained from an acceptable assignment \(\forall \Delta \) to compositions such that an acceptable assignment \(\forall \Delta \) using at most \(\forall \) function meets and \(\forall \) function application. \(\Gamma \) can be found (0), then a reverse inference.
Proof: If \((n_0, n_0) \notin E\) then define \(\AA(r) = x_0\) and
\(\AA(n_0) = f(n_0, r)(x_0)\). If \((n_0, n_0) \in E\) then we define
\(\AA(r) = x_0\) and \(\AA(n_0) = f(n_0, r)(x_0) \wedge f(n_0, n_0)(f(n_0, r)(x_0))\).
The rest of the proof is easy.

Now we are ready to look at the running-time of reverse
information propagation problem solution on reducible
graphs.

Theorem 3.2:

Let \(RIP = (G_r, D, M, x_0)\) be a reverse information
propagation problem, where \(G_r = (N, E, n_0)\) is reducible and
\(D\) is fast. Then an acceptable assignment to \(RIP\) can be
found using \(O(|E| \log |E|)\) functional operations.

Proof: Combining Theorem 2.1, Lemma 3.5, Lemma 3.6,
Corollary 3.7 and Lemma 3.8, the theorem will follow if
we can show that the total number of functional operations
used on \(T_1\) reductions in Lemma 3.5 is \(O(|E| \log |E|)\).

Following the notation in Lemma 3.5, let us consider the case when \(W\) is non-empty. Since \(v \notin n_0\), \(v\)
will eventually be eliminated from \(N\). Before \(v\) is
eliminated there must be \(|W|\) \(T_2\) reductions applied to
the unique edge entering \(v\). Since \(T_1\) can apply to each
node at most once, the total number of functional opera-
tions spent on \(T_1\) reductions is bounded by twice the
number of \(T_2\) applications. Then the theorem follows by
Theorem 2.1.
4. Data Flow Analysis on Other Classes of Flow Graphs

In this section we are interested in subclasses of reducible graphs on which flow analysis problems can be solved efficiently. In 1966 Böhm and Jacopini [BJ] showed that three control structures — sequencial statements, conditional statements and while loops — are sufficient to program any computation. Together with the "repeat-until" loop structure suggested by Wirth [Wi] a simple graph grammar, the B-J grammar, can generate the flow graph for usual "structured" programs. Kennedy [Ke] has shown that certain flow analysis problems can be solved in linear steps using node listing techniques.

Recently Farrow, Kennedy and Zucconi [FKZ] proposed a new graph grammar G_{SSPG} which extends the B-J grammar to cover bigger class of flow graphs. They also show that certain flow analysis problems can be solved in linear bit-vector steps on this class of flow graphs.

The reduction rules in B-J grammar and G_{SSPG} are rather simple, allowing at most two edges leaving each node, so that flow analysis problems can be reduced very easily. In the remaining of this section we propose new graph grammars $SG(k)$ which can cover bigger classes of flow graphs and still allow flow problems be solved efficiently.

4.1 Graph Grammars $SG(k)$

For $k \geq 1$ we define $SG(k)$ using five graph
The five transformations are depicted in Figure 3.

From u to v.

Determining e and then creating a new edge if then E, v is obtained by first
t $\{e\}$ - E if v has no edge leaving v, and if v is the only edge entering v and has at most one leaving edge then

Let $e = (v',u)$ if $v \neq u$.

If $v = \lambda$, let $e = (v',u')$ and $v \neq u$.

and v.

n will not increase after collapsing n. Hence ρ is a special case of τ such

$\{ (s - e(n)) \equiv (A',n) \} \cap (\{x,N(x,N(x,E)) = E \}$ and

$\{ \lambda \} - N = N$. Where ρ is $\{ (0,e',e^2,n) \} = (e,e') \rho^2$ edges leaving u and $\lambda \neq S - e(n)$ if λ then

If there are no more than k non-looping

$\{ A \neq u, e \in A',n \} \equiv (A',n) \}$ and $\exists e \in (A',A) \} = S - e(n)$

and

$\{ A \neq u, e \in (A',A) \} = S - e(n)$

duplicate leaving edges. Let

$A \neq u$, and neither $e \in A',n$ nor $\lambda \neq \lambda$, and neither of u or v has an e entering v. Let $e = (v',u)$ if $v \neq u$.

ρ^2 where ρ^2 is the only edge entering v and has at most one leaving edge then

ρ^2. If e and λ are duplicate and $e' = e$.

26
Instead

Let's assume a new edge which leaves

city each edge which could have duplicates

formed by first detaching and then replacing

then \(R^n (\varepsilon, \varepsilon, \varepsilon, (\lambda, \varepsilon)) = (\varepsilon, \varepsilon, \varepsilon, (\lambda, \varepsilon)) \)

and \(e \neq 0 \) and \(e \neq 0 \neq 0 \)

if \(e \neq 0 \) and \(e \neq 0 \neq 0 \)

have other duplicates.

Therefore \(R^n \) is almost the same as \(R^n \)

\(R^n (\varepsilon, \varepsilon, \varepsilon, (\lambda, \varepsilon)) = (\varepsilon, \varepsilon, \varepsilon, (\lambda, \varepsilon)) \)

If \(e \neq 0 \) and \(e \neq 0 \neq 0 \)

The live graph reduction rules of \(SK(k) \) are:

- The live graph reduction will be done unless it is specifically stated.
- No new edges, but the new name will make it a new edge and no old.
- New edge can be added to the same edge.
- A new edge is created and a new name will be assigned.
- Searching is required.
- In the live graph reduction rules, when-

satisfy or when it will not cost too much, e.g., when no
tiny duplicates are extracted only when it is necessary.

In actual graph parsing, if we want to implement live extraction,

In defining \(SK(k) \), but we need to keep duplicates of edges

different names might enter the same node and leave the same
cased (or parallel) edges in graphs, i.e., two edges with
transformation rules. In defining the rules we allow dupli-
Figure 3 SG(2) Rules
One thing worth mentioning is that among the five reduction rules in $SG(k)$, R_5 is the only one which can create new duplicated edges. R_2 might preserve duplicated edges, but it will never increase the number of duplicated edges. The reason we do not allow duplicated edges in R_4 is that we can easily check if there are more than k non-duplicated edges leaving a certain node.

Definition: $\mathcal{F}_{SG(k)}$ is the family of all flow graphs which can be reduced to the trivial graph by repeated application of the five transformations in $SG(k)$.

It is easily seen that $\mathcal{F}_{SG(k)}$ get bigger as k increases and $\mathcal{F}_{SSFG} \subseteq \mathcal{F}_{SG(1)}$. Furthermore, since G_{SSFG} allows at most two edges to leave each node, the structure of the flow graphs in $\mathcal{F}_{SG(3)}$ is richer. An example is the graph given in Figure 4.

![Graph Image](image-url)
or

These two operations are obviously equivalent.

R1 - R1
Possible Interacting Reductions

Let's such interaction by considering the diagrams of nodes and edges which overlap. We will exhaust all possibilities and assume that the reductions of G_1 to G_0 and G_2 apply to G_0. Therefore we decrease the number of edges and each of the flow reduction rules, and there is only a finite number of edges and each of the flow graphs has only a finite number of edges by the property (a).

Proof: By Theorem 2.2, we need only to show that then there is a flow graph G_0 such that G_1 and G_3 are finite. Let $G_0 = G_1$, then there is a flow graph G_0 such that G_1 and G_3 are finite.

Theorem 2.4:

This property can be generalized to show the PCT property for all G_0. The proof is only prove the PCT property for G_0 (2). This can be important for a graph grammar design. For simplicity we will explain in Section 2.2 the PCT property as

4.2 Finite Church-Rosser Property for G_0 (x)
$R_2 - R_5$:

$R_3 - R_3$: This case is obvious.

$R_3 - R_4$: This case is also obvious because of the non-duplicate restriction on R_4.

$R_3 - R_5$: This case is clear.

$R_4 - R_4$:

$R_4 - R_5$:

$R_5 - R_4$:

$R_5 - R_5$:

4.3 Parsing for $F_{SG(k)}$

Our goal is to find a sequence of $SG(k)$ reduction transformations which can apply to a given flow graph, and we want to do this in $O(e)$ steps for a flow graph with e edges.

First we introduce the data structures we use in performing $SG(k)$ parsing. Let $G = (N,E,n_0)$ be a flow graph. We first do a depth-first search [7] starting at n_0. Then we number the nodes with integers $1, 2, \ldots, |N|$ in such a way as to form an acyclic order, i.e. if (u,v) is
not a backedge then the number at \(u \) is less than the number at \(v \). This step can easily be done in \(O(|E|) \) steps. Each node \(n \) in \(E \) has two pointers \(\text{PIN}(n) \) and \(\text{POUT}(n) \) pointing to two linear lists \(\text{IN}(n) \) and \(\text{OUT}(n) \) respectively. \(\text{IN}(n) \) is a list of all edges entering \(n \), and \(\text{OUT}(n) \) is a list of all edges leaving \(n \). Notice that both \(\text{IN} \) and \(\text{OUT} \) lists might contain duplicates of edges. And for each edge \(e = (m,n) \) in \(E \), the elements representing \(e \) in \(\text{IN}(n) \) and \(\text{OUT}(m) \) are double-linked so that insertion and deletion of edges can be handled efficiently.

When \(R_1 \) or \(R_3 \) applies to a certain edge, we only need to perform an edge deletion. When \(R_2 \) applies to \(e = (m,n) \) we simply point \(\text{POUT}(m) \) to \(\text{OUT}(n) \). When \(R_4 \) applies to \(e = (m,n) \) the lists can be updated in a bounded amount of time because none of \(m \) and \(n \) has more than \(k+1 \) leaving edges. When \(R_5 \) applies, at most one insertion and two deletions will update the structures.

To implement \(R_1 \) and \(R_3 \) efficiently in parsing, we do them only when we need to verify the applicability of other reduction rules. Also we must ensure that execution of \(R_1 \) and \(R_3 \) do not "waste" steps. Algorithm 1 which follows is designed to satisfy these requirements. When a node \(n \) is passed to Algorithm 1 the first \(k+1 \) edges in \(\text{OUT}(n) \) are examined. If the first \(k+1 \) edges in \(\text{OUT}(n) \) are all "distinct" non-looping edges then neither \(R_2 \) nor \(R_4 \) can apply to edges in \(\text{OUT}(n) \), and hence
Algorithm 1:

Input:
(1) A flow graph $G = (N, E, n_0)$,
(2) a node n in N,
(3) a partial parse P which is a list of all reductions made so far.

Output:
(1) A flow graph $G' = (N, E', n_0)$ resulted from some R_1 and R_3 reductions on G. G' has the following properties:
(a) There are no duplicates or self-loops among the first $k + 1$ edges in $\text{OUT}(n)$.
(b) Analogous property for $\text{IN}(n)$ as in (a).
(2) P updated by all successive reductions.

Method:

```
begin
  while there are duplicates or self-loops among the first $k + 1$ edges in $\text{OUT}(n)$ (or all edges in $\text{OUT}(n)$ if there are less than $k + 1$ left) do
    begin
      eliminate all those duplicates and self-loops by $R_1$ or $R_3$;
      update $P$ by successive reductions applied;
    end
  do same steps as above to $\text{IN}(n)$;
end
```

Figure 5
Algorithm 1 simply quits. On the other hand, if there are self-loops or duplicates among the first \(k+1\) edges in \(\text{OUT}(n)\) then the self-loops and duplicates are eliminated by \(R_1\) and \(R_3\) and the process is repeated to the new \(\text{OUT}(n)\) list. The elimination of edges assures the efficiency of Algorithm 1.

Lemma 4.2:

Algorithm 1 works correctly and terminates in \(O(s)\) steps, where \(s\) is the number of edges eliminated.

Proof: Easy induction on \(|E|\).

Now we are ready to look at \(SG(k)\) parsing. Due to the PCR property the order of reduction rule applications is not important. \(R_1\) and \(R_3\) are performed only in the execution of Algorithm 1 calls. Applicability of \(R_2\) and \(R_4\) on an edge \(e = (m,n)\) can easily be verified at either \(m\) or \(n\). Applicability of \(R_5\) can always be checked efficiently at node \(n\).

The \(SG(k)\) parsing algorithm is described in Figure 5. Algorithm 2 contains calls to two subroutines \(UP\) and \(DOWN\) which are described in Figure 6 and Figure 7. \(DOWN(n)\) will collapse edges leaving \(n\) as far as possible. \(UP(n)\) is used basically for detecting candidates of reductions on edges in \(\text{IN}(n)\). At the beginning all nodes of \(G\) are on a list \(L\) in an acyclic order. Nodes are chosen from \(L\) successively. For each node chosen, if some reduc-
tions can apply to a region involving \(n \), then Algorithm 2 tries to perform a chain of interacting reductions.

Algorithm 2: \(SG(k) \) parsing.

Input: A flow graph \(G = (N,E,n_0) \) with nodes numbered in acyclic order \(1,2,\ldots,|N| \).

Output: A parse \(P \) for \(G \) if \(G \) is in \(\mathcal{F}_{SG(k)} \), otherwise a failure report.

Method:

\[
\begin{align*}
&\text{begin} \\
&\quad P := \emptyset; \\
&\quad \text{for } s = 1 \text{ to } |N| \text{ do} \\
&\quad \quad \text{begin} \\
&\quad \quad \quad n := s; \\
&\quad \quad \quad \text{if } n \text{ has not been deleted from } G \text{ yet } \text{ then} \\
&\quad \quad \quad \quad \text{begin} \\
&\quad \quad \quad \quad \quad \text{iterate} := \text{true}; \\
&\quad \quad \quad \quad \quad \text{while} \text{ iterate do} \\
&\quad \quad \quad \quad \quad \quad \text{begin} \\
&\quad \quad \quad \quad \quad \quad \quad \text{call Algorithm 1 on node } n; \\
&\quad \quad \quad \quad \quad \quad \quad \text{call DOWN}(n); \\
&\quad \quad \quad \quad \quad \quad \quad \text{call UP}(n); \\
&\quad \quad \quad \quad \quad \quad \text{end} \\
&\quad \quad \quad \quad \text{end} \\
&\quad \quad \quad \text{end} \\
&\quad \quad \text{if } G \text{ is now the trivial graph } \text{ then } P \text{ is a parse;} \\
&\quad \text{else report failure;} \\
&\text{end}
\end{align*}
\]

Figure 5
procedure DOWN(n)

begin

1 while \(|\text{OUT}(n)| \leq k\) do

2 begin

3 call Algorithm 1 on each node entered by edges in \(\text{OUT}(n)\);

4 if any of \(R_2\) and \(R_4\) can apply to an edge in \(\text{OUT}(n)\) then

5 begin

6 choose an edge \(e\) from \(\text{OUT}(n)\) and a reduction \(R\) from \(R_2\) and \(R_4\) such that \(R\) can apply to \(e\);

7 apply \(R\) to \(e\);

8 update \(P\) by \(R\);

9 call Algorithm 1 on \(n\);

end

10 else go to end_of_down;

end

end_of_down:

end

Figure 6

Notice that \(\text{DOWN}(n)\) does not test for \(R_5\) application since \(R_5\) is a special case of \(R_4\) if \(|\text{OUT}(n)| \leq k\).
procedure UP(n)
begin
1 if |IN(n)| > 1 or n = n_0 then return;
2 let e = (m,n) be the unique edge in IN(n);
3 if R_2 or R_4 are applicable to e then
 begin
 apply R_2 or R_4 to e and update P;
 n := m;
 return;
 end
4 if R_5 is applicable to (m,n);
 begin
8 A: apply R_5 to (m,n) and update P;
9 if before applying the R_5 there is a unique
 edge (n,n') in OUT(n), n ≠ n_0 then
 begin
10 call Algorithm 1 on n';
11 if R_5 is now applicable to (m,n') then
 begin
12 n := n';
13 go to A;
14 end
15 else iterate := false;
end of UP

Figure 7
When \(\text{UP}(n) \) is called in Algorithm 2, \(R_2 \) and \(R_4 \) are not applicable to any edge in \(\text{OUT}(n) \), and therefore it tries to apply \(R_2, R_4 \) or \(R_5 \) to collapse a possible edge in \(\text{IN}(n) \). If none of \(R_2, R_2 \) and \(R_5 \) is applicable to edges in \(\text{IN}(n) \) then iterate is set to \text{false} \) so that Algorithm 2 will process the next node \(n \) at statement 2. In UP we need a chain of \(R_5 \) reductions since an \(R_5 \) reduction might create another instance of \(R_5 \) application which might not be easily detected at node \(m \). The situation is illustrated in Figure 8 below.

![Diagram](image)

Figure 8

In Figure 8, after an \(R_5 \) applies to \((m,n)\), it might not be easy to verify the applicability of \(R_5 \) on \((m,n')\) as \(|\text{OUT}(m)| \) could be very large.

Before we prove the correctness of Algorithm 2 we need some observations.

Observation 1: If there are no \(R_2, R_4 \) or \(R_5 \) reductions on edges in \(\text{OUT}(n) \) between two calls of Algorithm 1 on \(n \), then the second call of Algorithm 1 will not change \(\text{OUT}(n) \).
Observation 2: During the execution of a call of UP(n), if none of R_2, R_4 and R_5 is performed then iterate will be set to false, otherwise n will be set to m upon exit of UP, where m is the unique predecessor of n upon entry to UP(n).

Observation 3: In a call of DOWN(n), n is never changed. Just before the exit from a call of DOWN(n), a call of Algorithm 1 on n will be executed.

Lemma 4.3:

Right before n is set to s, $1 \leq s \leq |N|$, at statement 2 of Algorithm 2, for $m = 1, 2, \ldots, s-1$ either m has been eliminated (by R_2, R_4, or R_5) or the following will be true:

(a) OUT(m) cannot be changed by calling Algorithm 1 on m.

(b) IN(m) cannot be changed by calling Algorithm 1 on m.

(c) Neither R_2 nor R_4 is applicable to edges in OUT(m).

(d) None of R_2, R_4 and R_5 is applicable to edges in IN(m).

Proof: The proof is by induction on s.

When $s = 1$ the lemma is clearly true.

Assume that the lemma is true for $s < K$, where $1 \leq K \leq |N|$. We need to show that the lemma is also true when $s = K$.

Let ϕ denote the moment when n is set to K at statement 2 of Algorithm 2. So there is a moment ϕ when
n is about to be set to K-1 at statement 2 of Algorithm 2. Assume that the lemma is violated by some m < K at ψ. Of course m cannot have been eliminated from G before ψ.

First consider (a). Assume that (a) is false at ψ. Let η be the last time before ψ when (a) is changed from true to false for m. By Observation 1, the change of η must be caused by R_2, R_4, or R_5 on some edge $e = (m,n)$ in $\text{OUT}(m)$. But then by Observation 2 and Observation 3, a call of Algorithm 1 on m will be executed at statement 7 of Algorithm 2. Then, by Observation 1, we get a contradiction to the choice of η. Therefore (a) must be true at ψ.

Assume that (b) is false at ψ. Again consider the last moment η before ψ when (b) is changed from true to false for m. By reasoning similar to the above argument the change at η cannot be caused by an Algorithm 1 call or by R_2, R_4, or R_5 on an edge in $\text{OUT}(m)$. The change cannot be caused by an R_2 reduction as the only possible choice of R_2 at η is an R_2 on an edge in $\text{OUT}(m)$. The change cannot be caused by R_4 as in that case the test at statement 1 of DOWN would be true and hence the execution of DOWN would force (b) true at m again. Similarly the change cannot be caused by R_5. Therefore the change at η can never occur and so (b) must be true at ψ.

Assume that (c) is false at ψ. Again consider the last time η before ψ when (c) is changed from true to false for m. The change cannot be caused by R_2 or R_4 as the construction of DOWN and UP would force the reduction to be
carried out before \(n \) is set to \(k \) at statement 2 of Algorithm 2. By Observation 2 the change cannot be caused by \(R_5 \) reduction on an edge in \(OUT(m) \). Therefore the only possible change at \(\eta \) is an \(R_5 \) on an edge in \(OUT(n) \) such that \(n \) is successor of \(m \). But then by construction of \(UP \) (c) has to be true again before \(\psi \), which would violate the choice of \(\eta \). Hence (c) must be true at \(\psi \).

Assume that (d) is false at \(\psi \). If \(R_2 \) or \(R_4 \) are applicable to an edge \((n,m)\) in \(IN(m) \) then \(n < m \) by the choice of acyclic order 1, 2, ..., \(|N| \). Hence, by (a), (b) and (c), the violation must be that an \(R_5 \) can apply to an edge \((n,m)\).

Consider the last time \(\eta \) before \(\psi \) when (d) is changed from true to false for \(m \). By Observation 2 the change cannot be caused by \(R_5 \) reduction on an edge in \(OUT(m) \). Then the only possible change at \(\eta \) is depicted in the picture below.

That is, the \(R_5 \) at \(\eta \) must create a duplicate of an edge from \(n \) to \(m \) such that \(R_5 \) is applicable to \((n,m)\) after \(\eta \). But after the \(R_5 \) reduction at \(\eta \) statements 10 - 13 and statement 8 of \(UP \) would eliminate node \(m \) by an \(R_5 \) reduction which would contradict the assumption that \(m \) has not been eliminated at \(\psi \). Hence (d) must also be true at \(\psi \).
Lemma 4.4:

Algorithm 2 always terminates.

Proof: We will prove that each iteration of the for loop in Algorithm 2 will eventually terminate. Then, since s never gets modified except at statement 1 in Algorithm 2, and hence at most $|N|$ iterations can be executed, Algorithm 2 will finally terminate.

We prove by induction on s that the s-th iteration of the for loop will be executed and will terminate, for $0 \leq s \leq |N|$.

When $s = 0$ the assertion is obviously true.

Assume that the assertion is true for all $s, s < K$, where $K \leq |N|$. Then after the termination of the first $K-1$ for loop iterations n will be set to have value K at statement 2 of Algorithm 2. From this point on iterate will eventually be set to false in UP since the number of possible reductions on G is no more than $|E|$ and hence statement 8 of DOWN and then statement 15 of UP will eventually be executed. And then the K-th iteration of the for loop will also terminate.

Therefore the lemma is proved by induction principle.
Theorem 4.5:
Algorithm 2 terminates with correct output.

Proof: During the execution of Algorithm 2 a reduction can be performed only after being verified applicable, and the parse list P is always updated after each reduction. Therefore, if G is reduced to the trivial graph at the end of Algorithm 2 then P must be a correct parse.

On the other hand, suppose G is not the trivial graph at the end of Algorithm 2. By Lemma 4.3 no further reductions is applicable. Thus by FCR property $G \notin \mathcal{F}_{SG(k)}$. Hence the failure report is correct.

Now let us examine the running time of Algorithm 2.

Theorem 4.6:
Algorithm 2 terminates in $O(|E|)$ steps on a flow graph $G = (N, E, n_0)$.

Proof: From Lemma 4.4 Algorithm 2 will eventually terminate on G. Let A be the number of iterations executed on the for loop and let b be the number of iterations executed on the inner loop of Algorithm 1. Let C be the total amount of work spent on the execution of statements 7 - 9 of Algorithm 2. The total running time of Algorithm 2 on G is $O(A+B+C)$.

Clearly $A = |N|$. B is $O(|E|)$ since in UP(n) iterate is set to false unless an P_5 reduction is performed and the total number of reductions is no more than $|E|$. By Lemma 4.2
the total number of steps spent on statement 7 of Algorithm 2 is $O(|E| + B)$ and hence is $O(|E|)$. The total number of steps spent on statement 8 of Algorithm 2 is clearly bounded by the amount of work spent on R_2 and R_4, and hence is $O(|E| + B)$, or $O(|E|)$. Similarly statement 9 takes $O(|E|)$ steps in total. Therefore C is $O(|E|)$. And hence Algorithm 2 terminates in $O(|E|)$ steps.

Corollary 4.7:

SG(k) parsing on a flow graph $G = (N, E, n_0)$ can be done in $O(|E|)$ elementary steps.

Proof: The proof follows from Theorem 4.5 and Theorem 4.6.

4.4 Information Propagation Problems on $F_{SG(k)}$

We have shown that an SG(k) parser works in $O(|E|)$ time. In this section we present a solution method for information propagation problems on $F_{SG(k)}$.

We cannot apply the problem reduction technique of [GW] directly by decomposing each SG(k) reduction rule into a series of T_1^r, T_2^r and T_3^r transformations, since R_1^r and R_2^r could be very costly. Furthermore, the existence of duplicated edges precludes eliminating edges in a straightforward way. To get around these difficulties we will use a weighting technique to remember information. We perform the problem reduction technique described in section 3 by
manipulating the weighted information properly.

Let $IP = (G, D, M, x_0)$ be any information propagation problem, where $G = (N, E, r_0)$ and $D = (L, A, F)$. Two weighting functions $W_1, W_2: N \rightarrow \mathbb{F}(\text{id}_L)$ will be used. Initially $W_1(n) = W_2(n) = \text{id}_L$ for each node n. The weighting functions are used to mimic another reduction of the information propagation problem. Let $\overline{IP} = (\overline{G}, D, \overline{M}, x_0)$ denote the mimicked problem. When an R_1 reduction eliminates a self-loop at node n, the mimicked problem does not really eliminate the self-loop and the information associated with the self-loop is accumulated in $W_1(n)$. When a reduction R_2, R_4 or R_5 applies to an edge (m, n) in G, the mimicked problem first eliminates the mimicked self-loop at n by applying the reduction technique described in the proof of Lemma 3.1 using the accumulated information $W_1(n)$. W_2 is used to store flow information for edges eliminated by R_2 reductions. When an R_2 reduction applies to an edge $e = (m, n)$ in G we do not update f_e, as $f_e^{*} f_e$ for all edges e' in $\text{OUT}(n)$, as that could be very slow. Instead we store f_e in $W_2(m)$. The invariant relation we maintain between IP and \overline{IP} is that $\overline{M}(e) = M(e) \cdot W_2(m)$ for all edges $e = (m, n)$ in IP. Notice that \overline{G} is the same as G except for several mimicked self-loops which are already eliminated from G by R_1.

The actions on each reduction rule of $SG(k)$ are described below.
R_1: Let $G' = R_1(G, e)$ be defined for a self loop e at node v.

Action: $W_1(v) := W_1(v) \land \overline{M}(e)$;

R_2: Let $G' = R_2(G, e)$ be defined for $e = (u, v), \ u \neq v, \ v \neq n_0$.

Action: $M(e) := M(e) \land (W_1(v) \land M(e))$; \hspace{1cm} (1)

$W_2(u) := W_2(v) \land \overline{M}(e)$;

Notice that the assignment in (1) has the side effect of modifying the value of $\overline{M}(e)$.

Any acceptable assignment AA to the reduced problem can be extended to an acceptable assignment to the original problem by defining

$$AA(v) := \overline{M}(e) \land (AA(u))$$

where $\overline{M}(e)$ is evaluated using the $M(e)$ obtained in (1).

R_3: Let $G' = R_3(G, e, e')$ be defined for e and e'.

Action: $M(e') := M(e') \land M(e)$;

R_4: Let $G' = R_4(G, e)$ be defined for $e = (u, v), \ u \neq v, \ v \neq n_0$.

Action: $M(e) := M(e) \land (W_1(v) \land M(e))$; \hspace{1cm} (2)

\hspace{1cm} if $(v, u) \in E$ then

$W_1(u) := W_1(u) \land (\overline{M}((v, u)) \land \overline{M}(e))$;

\hspace{1cm} for each $(v, w) \in E, \ v \neq w$ do

\hspace{1cm} if $(u, w) \notin E$ then

$M((u, w)) := \overline{M}((v, w)) \land M(e)$;

else

$M((u, w)) := M((u, w)) \land (\overline{M}((v, w)) \land M(e))$;
Any acceptable assignment AA to the reduced problem can be extended to an acceptable assignment to the original problem by defining

$$AA(v) := \overline{M}(e)(AA(u));$$

where $\overline{M}(e)$ is evaluated using the $M(e)$ obtained in (2).

R_5: Let $G' = R_5(G,e)$ be defined for $e = (u,v)$, $u \neq v$, $v \neq n_0$.

Action:

$$M(e) := M(e) \land (W_1(v) * M(e));$$

$$\text{if } (v,w) \in E \text{ then}$$

$$M(e') := \overline{M}((v,w)) * M(e);$$

where e' is the new edge created from u to w.

Any acceptable assignment AA to the reduced problem can be extended to an acceptable assignment to the original problem by defining

$$AA(v) := \overline{M}(e)(AA(u));$$

where $\overline{M}(e)$ is evaluated using the $M(e)$ obtained in (3).

When a flow graph is reduced to the trivial graph we simply define

$$AA(n_0) := W_1(x_0);$$

and this acceptable assignment to the trivial graph can be extended backwards to give an acceptable assignment to the original information propagation problem.

Combining the above with Corollary 4.7 we get
Theorem 4.8:

Let \(G = (N,E,n_0) \) be in \(\mathcal{F}_{SG}(k) \) and let \(IP = (G,D,M,x_0) \) be an information propagation problem on \(G \). If \(D \) is fast then an acceptable assignment to \(IP \) can be found using \(O(|E|) \) functional operations.

4.5 Reverse Information Propagation Problems on \(\mathcal{F}_{SG}(k) \)

To solve reverse information propagation problems on \(\mathcal{F}_{SG}(k) \) we also use weighting technique to solve mimicked problems.

To handle the problem reduction construction in Lemma 3.5 efficiently we eliminate a self-loop at node \(v \) in the mimicked problem only when there are no more than \(k+1 \) edges leaving \(v \). But then we need to handle \(R_2 \) reduction carefully. Another problem is that if \(AA \) is an acceptable assignment to a reduced problem on \(R_2(G_v,e) \) than we want to extend \(AA \) to an acceptable assignment to the original problem efficiently. According to the construction of Lemma 3.6 and Corollary 3.7, if \(e = (u,v) \), in order to extend \(AA \) and to define \(AA(v) \) we need to take the meet of all \(M((v,w))(AA(w)) \) over \(w \)'s such that \(w \in \text{Succ}(v) \) before the \(R_2 \) reduction. But this is quite expensive if \(|\text{Succ}(v)| \) is very large before the \(R_2 \) reduction. To overcome the above two difficulties, when \(R_2 \) applies to an edge \((u,v)\), we collapse \(u \) into \(v \) instead of collapsing \(v \) into \(u \).
Lemma 4.10:

Let \(RIP = (G_r, D, M, x_0) \) be a reverse information propagation problem, where \(G_r = (N, E, n_0) \) is a flow graph with return node \(r \). Let \(e = (u, v), v \neq n_0 \), be the unique non-looping edge entering \(v \) and the only edge leaving \(u \). Then a reverse information propagation problem \(RIP' = (G'_r, D, M', x_0') \), \(G'_r = (N-(u), E', n) \), can be found such that an acceptable assignment to \(RIP \) can be obtained from an acceptable assignment to \(RIP' \) using one function application.

Proof: Let \(W = \text{Pred}(u) \). Define \(G'_r \) such that \(E' = (E - \{(w, u) | w \in W\}) \cup \{(w, v) | w \in W\} \), \(n = n_0 \) if \(u \neq n_0 \), \(n = v \) if \(u = n_0 \). \(M' \) is defined as follows. For all \(w \in W-(v), M'((w, v)) = M((w, u)) \cdot M(e) \). Suppose \((v, u) \in E \) then \(M'((v, v)) = M((v, u)) \cdot M(e) \) if \((v, v) \notin E \), and \(M'((v, v)) = M((v, v)) \cdot M(e) \) if \((v, v) \in E \). For all \((x, y) \in E, y \neq u \), define \(M'((x, y)) = M((x, y)) \). Notice that all function compositions are "backwards" as we are dealing with reverse problems.

Let \(AA' \) be any acceptable assignment to \(RIP' \). Define \(AA \) such that \(AA(u) = f_e(AA(v)) \), and \(AA(z) = AA'(z) \) if \(z \neq u \). We need to show that \(AA \) is acceptable to \(RIP \).

First we show that any fixed point for \(RIP \), if restricted to \(N-(u) \), is also a fixed point for \(RIP' \). So let \(FP \) be a fixed point for \(RIP \). In \(G'_r \), if \((x, y) \in E', x \notin W \), then \(FP(x) < f_{(x, y)}(FP(y)) = f'_{(x, y)}(FP(y)) \). If \(w \in W-(v) \), or if
\(w = v \) and \((v, v) \not\in E \), then \(FP(w) \leq f(w, u)(FP(u)) \) =
\(f(w, u)(f(u, v)(FP(v))) \), hence \(FP(w) \leq f'(w, v)(FP(v)) \). If
\(v \in W \) and \((v, v) \in E \) then \(FP(v) \leq f(v, v)(FP(v)) \) and
\(FP(v) \leq f(v, u)(FP(u)) \leq f'(v, u)(f_e(FP(v))) \), therefore \(FP(v) \leq f'(v, v)(FP(v)) \) is also true. Hence \(FP \), when restricted to
\(N=\{u\} \), is a fixed point for \(RIP' \).

It remains to show that \(AA \) is safe for \(RIP \). Let
\(P = P_0, P_1, \ldots, P_j \) be a path from \(P_0 \) to the return node \(r \) in
\(G_r \). Let \(p' \) be the path obtained from \(p \) by replacing all
consecutive occurrences of \(w, u, v \) with \(w, u, w \), where \(w \) is any
node in \(W \). Then \(p' \) is a path in \(G_r^0 \) if \(P_0 \neq u \). Since
\(\tilde{f}'_{w, u, v} \leq \tilde{f}'_{w, u, v} \) for all \(w \) in \(W \), \(AA(p_0) = AA'(p_0) \leq \tilde{f}'_{P_0}(x_0) \leq \tilde{f}'_{P_1}(x_0) \) if \(P_0 \neq u \). If \(P_0 = u \) then \(P_1 = v \), hence \(AA(u) = f_e(AA(v)) \leq f_e(\tilde{f}'_{P_1, P_2, \ldots, P_j}(x_0)) = \tilde{f}'_{P}(x_0) \). Therefore \(AA \)
is also safe to \(RIP \) and is then acceptable to \(RIP \).

\(\square \)

The possible change of the entry node \(n_0 \) in the above
lemma could be inconvenient if we solve both forward and
reverse problems at the same time. But proper renaming of
nodes can overcome this difficulty easily without maintain-
ing two different flow graphs.

To implement the construction in Lemma 4.10 efficient-
ly we use a weighting function \(W_2 \) to store information on
the edges eliminated by \(R_2 \).

Define two weighting functions \(W_1, W_2 : N \to P_1(id_L) \).
Initially \(W_1(n) = W_2(n) = id_L \) for all nodes \(n \) in \(N \). Let
RIP = (\overline{G}_\tau, D, \overline{H}, x_0) be the mimicked problem. Again \overline{G}_\tau is the same as \overline{G}_\tau except for some self-loops which are already eliminated from \overline{G}_\tau', and the information of these self-loops is stored in W_1. W_2 is used to store information on those edges eliminated by R_2. The invariant relation between RIP and RIP is that \overline{H}(u,v) = M(u,v) * W_2(v) for all edges (u,v) in \overline{G}_\tau'. Notice that the weight W_2(v) above is the weight associated with node v instead of the weight associated with node u in the forward problem case.

It is worth mentioning that, by construction of Algorithm 1, if there are no more than \(k+1\) edges leaving a node n then all self-loops at n will be eliminated if Algorithm 1 is called at n. Therefore before we do reduction R_4 or R_5 on an edge (m,n), all information on self-loops at n has been stored in W_1(n).

The actions taken by each rule of SG(k) are described below.

\[R_1: \text{ Let } G'_\tau = R_1(G_\tau, e) \text{ be defined for a self-loop at } v. \]
\[\text{Action: } W_1(v) := W_1(v) * \overline{H}(e); \]

\[R_2: \text{ Let } G'_\tau = R_2(G_\tau, e) \text{ be defined for } e = (u,v), u \neq v, v \neq n_0. \]
\[\text{Action: } \text{if } v = r \text{ then } ; \quad /* \text{ see the remark after } \]
\[R_5 \text{ actions } */ \]
\[\text{else } /* \text{ node } u \text{ will be eliminated, see } \]
\[\text{Lemma 4.10 } */ \]
\begin{align*}
\text{begin} \\
M(e) &:= W_1(u) \cdot M(e); \\
W_2(v) &:= \overline{M}(e) \cdot W_2(v); \\
\text{end}
\end{align*}

Again notice that the assignment in (4) has the side effect of modifying $M(e)$.

If AA is an acceptable assignment to the reduced problem then we can extend AA to an acceptable assignment to the original problem by defining $AA(u) := \overline{M}(e)(AA(v))$; where $\overline{M}(e)$ is evaluated using the $M(e)$ obtained in (4).

R_3: Let $G'_x = R_3(G_x, e, e')$ be defined for edges e and e' from u to v.

Action: $M(e') := M(e') \land M(e)$;

R_4: Let $G'_x = R_4(G_x, e)$ be defined for $e = (u, v)$, $u \neq v$, $v \neq n_0$.

Action: if $v = r$ then; /* see the remark after R_5 actions */

else

begin

\text{for each } (v, w) \text{ in } E \text{ do}

$M((v, w)) := W_1(v) \cdot M((v, w));$ (5)

if $(v, u) \in E$ then

$W_1(u) := W_1(u) \land (\overline{M}(e) \lor \overline{M}((v, w))));$

end
for each \((v, w) \in E, w \neq u\) do

if \((u, w) \in E\) then

\[M((u, w)) := \overline{H}(e) \cdot M((v, w));\]

else

\[M((u, w)) := M((u, w)) \land \overline{H}(e) \cdot M((v, w));\]

end

If \(AA\) is an acceptable assignment to the reduced problem then we can extended to an acceptable assignment to the original problem by defining

\[AA(v) := \bigwedge_{(v, w) \in E} (\overline{H}((v, w)) \cdot AA(w));\]

where each \(\overline{H}((v, w))\) is evaluated using the \(M((v, w))\) obtained in (5).

R5: Let \(G'_x = R_5(G_x, e)\) be defined for \(e = (u, v), u \neq v, v \neq n_0\).

Action: if \(v = r\) then; /* see remark below */

else /* let \((v, w)\) be the unique edge leaving \(v\) */

begin

\[M((v, w)) := \overline{H}(v) \cdot M((v, w));\] \hspace{1cm} (6)

let \(e'\) be the new edge created from \(u\) to \(w\);

\[M(e') := \overline{H}(e) \cdot M((v, w));\]

end
If A_1 is an acceptable assignment to the reduced problem then we can extend A_1 to an acceptable assignment to the original problem by defining $A_1(v) := \overline{h}((v,w))(A_1(w))$, where $\overline{h}((v,w))$ is evaluated using the $M((v,w))$ obtained in (6).

Remark: If $G_r \in \mathcal{F}_{SG}(k)$ and the return node r has a unique entering edge e then the graph obtained from G_r with r and e eliminated would still be in $\mathcal{F}_{SG}(k)$ and hence can still be reduced to the trivial graph. Therefore we may assume that the parser never tries to collapse the return node r. If $G_r \in \mathcal{F}_{SG}(k)$ then eventually we will get the graph

\[
\begin{array}{c}
n_0 \\
\downarrow e \\
r
\end{array}
\]

and then we simply do the following:

\[
\begin{align*}
M(e) & := W_1(n_0) \cdot M(e) \\
A_1(r) & := x_0 \\
A_1(n_0) & := \overline{h}(e)(x_0)
\end{align*}
\]

Notice that, in the above actions, $M((x,y))$ is updated by $W_1(x)$ only when node x is about to be eliminated by the parser. Therefore the information stored in $W_1(x)$ will be handled properly. Lemma 4.10 enables us to handle W_1 on R_2 reductions efficiently.
Theorem 4.11:

Let \(\text{RIP} = (G_x, D, M, x_0) \) be a reverse information propagation problem. If \(G_x = (N, E, n_0) \in \mathcal{F}_{SG(k)} \) and \(D \) is fast then an acceptable assignment to \(\text{RIP} \) can be found using \(O(|E|) \) functional operations.

Proof: The action on each reduction described above uses only a bounded number of functional operations. Then the theorem follows from Theorem 4.6.

\[\square \]

5 Summary

Extending the results of Graham and Wegman we show how reverse information propagation problems on reducible graphs can be solved without introducing reverse transformations.

The arbitrary boundary formulation of flow problems is quite natural and could be useful in doing flow analysis on subroutines or in assertion search in program proving tools.

The weighting technique used in flow analysis on \(\mathcal{F}_{SG(k)} \) enables us to reduce problems in a non-trivial fashion. With such weighting technique it is possible to design efficient flow analysis methods on different classes of flow graphs if reasonably good graph parsers are available.
ACKNOWLEDGEMENTS

I like to acknowledge Alan Demers for his critical comments on a draft of this paper and his suggestions on the presentation of algorithms.
Bibliography

