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0. Introduction

In this paper we use techniques developed in [1,2] to prove a
complexity result for first order predicate logic with equality, namely
that deciding validity of positive sentences (those without occurrences
of =) is slog-complete for NP. This result again attests to the
power of negation, as did [3,4] previously, since the general validity
problem, even without equality, is undecidable (this result is originally
due to Church; see [5] for a very elegant proof, due to Floyd).

It is a Vittle surprising that.the problem would be coqpleie for
some level of the'polyno-lal time hierarchy rather than some “even"
class like P or PSPACE, since universal as well as existential quantifi-
cation 1s allowed. This is because universal quantifiers are easy to
eliminate, and existential ones not so easy, as we will see.

In [2], we approached a similar problem, that of deciding truth of
a sentence of the form

Qx. - Qx, s(X) = t(X)
interpreted over a finitely presented algebra, and showed that it was
complete for PSPACE. Here we reduce the validity problem to the problem
of deciding truth of the sentence under a particular interpretation, a
term algebra similar to the algebras of [1,2], so many of the ideas

carry over.

1. Preliminaries '

The definitions and results of this section are standard; see for
example [6,7].

We first describe the language L of first order predicate logic with
equality, but without negation. Sentences of this language will be the
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positive sentences of ordinary first order logic with equality.

Definition 1.0
The language L consists of the following:
S 1s
(1) a countably infinite set of variables XgoXpeeeos
(11) a countably infinite set of function symbols fo".f,",... for
each finite arity m0 (nullary function symbols foo.flo....
will be called constants and denoted lo.l‘....);
(111) a countably infinite set of relational symbols Ilo'.lll.....
for each finite arity m0;
(iv) "an equality symbol =
(v) logical symbols a,v.3,V.
Terms t,.t,.... are defined inductively:
(1) xjea; are terms;
(11) if tyo-.. oty are terms then fj'tl...t. is.
Formulas ¢,¢ are defined inductively:
(1) =, ijt]...t. are atomic formulas;
(i1) 1f ¢,¢ are formulas then
A0 48 AXg4, Vi are.
Sentences are closed formulas, i.e. those with no free occurrences of
variables. |
Definition 1.1
1 = {closed terms (those not containing occurrences of variables))
Sym(t) = (symbol's appearing in term t)
Sym(¢) = (symbols appearing in formula ¢}

Free(y) = (variables with free (unquantified) occurrences in ¢}.

- TEPA e e ———



e

4

We will write ’("I""'xk) to indicate that all the free variables of
¢ are among Xy.....X,, and o(t‘.....tk) to represent the formula ¢ with all
free occurrences of Xy replaced by ti’ 1sisk.
pefinition 1.2

A structure for L is a pair

As Al
where A is a set (the domain), and I fs a map (the interpretation) taking
function symbols f" to functions A™+A of the corresponding arity (con-
stants go to elements of A) and relation symbols ll‘- to m-ary relations
on A.

Ve write f"A for 1(f,") and n,"A for 1(R™). ]

The interpretation extends naturally to the set of closed terms, by
taking

(f'-ti...t.)A = Lty )
Defipition 1.3
A yaluation of variables over A = <A,I> 1s a map v:{variables)+A.
Let 120, yeA. The map v[i\y] 1s defined by
vEy(xg) = vixg) 1F 124,
viivy)(xg) = y. .
v extends naturally to the set of all terms, by taking
viay) = .'A
Vi Petg) = AR (vity)eec v (t))
If t is any term, we denote v(t) by tav Note that for ter, tA.v =t,.

Definition 1.4
A formula ¢ 1s true in A under valuation v (notation: Arvo) if either:

(1) ¢ is of the form sat, s,t terms, and SAwv " tavi

'\« Wt wﬁk}ﬁ%m*?‘:(ﬁ"!’“}“ amit
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(11) ¢ is of the form R, .-ty and

m
. R, (t TN S H
o v

(i11) ¢ 1is of the form yay and
Ak and Ak

(iv) ¢ is of the form yvx and either
Ak or Akvx;

(v) ¢ is of the form 3x,y and for some yeA,

Ahvinyl*

(vi) ¢ is of the form Vx,ﬁ and for all ycA,‘

Al Liny L]

Theorem 1.5
Let A = A,I>, A°= <A, I°> be structures and v,v” be valuations such
that I and 1- agree on Sym(¢) and v and v* agree on Free(4). Then

Abg AfE Ak

Proof
Induction on structure of ¢. |
Corollary 1.6
Let ¢ be closed, v,v~ any two valuations. Then Ak ¢ 1ff A= 4. B
For this reason we may write A4 unambiguously whenever ¢ 1s closed,
and say ¢ is true in A.
Definition 1.7

A sentence ¢ is valid 1f ¢ is true in all structures.

The validity problem is the set

o o e e
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{¢]¢ 1s a valid sentence of L). 'l

or .

Let t be any term, and suppose v(x’) =t Then Al-vo(x1) 1ff

v
Abvo(t). provided no. free variables of t becon; bound as a result of the
substitution.
Proot .

Induction on structure of ¢. []
Definition 1.9

Let A and B be structures with domains A and B, respectively. A

map h:A+B is a homomorphism A+B provided for any fl-' Ri.' and yy,.. . p¢As
(1) DA (3yecarg)) = 44 (bl )oeoohlyy). and
(1) R (rgeecnyy) + R" (h(3)s- - ohlyg)). ]

If h:A+B is a homomorphism and v s a valuation over A, then hev is a
valuation over B, and for any term t, h(tA,v’ * tg hey-
Theorem 1.10

Let B be a homomorphic image of A, let ¢ be any formula, and let v

be any valuation over A. Then
Akv. hd Bhl'v.'

Proof
By assumption there 1s a surjective homomorphism h:A+B. Proceeding
by induction on the structure of ¢,

L] n
Abvn' ..ty » Ry A(t'A.v""’t'A,v)

n
UNUCHRRSE LY

e e T Cax s - - v
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+ R® geees
i n(t'n.nov "B.h-v)

* Hpewt

and
Aysit » SAv "ty

+ his, ) = h(ty )
Sg,hov ™ tg,nov

- q;h.vsnt-
The induction step for ¢ of the form yax or wx 1s trivial. Finally,

A NVxg o Vyeh A o 10

* Vyeh Brpo vy

+ yeA Bt (10y) [\ n(y)1*
and since h is onto.l

> VyeB By g y0¥

+ Blpey ijo.

The case of ¢ = 3th is similar. []
Corollary 1.11
If B is a homomorphic image of A and ¢ is closed, then
Ao+ Bhe, ]

Definition 1.12
The Herbrand (or free) structure is the structure T with domain v,
the set of closed terms, and interpretation defined by




a, =a
LV

n n
- xtl...t.[f' t‘...t.]. [ )

n,"r = atg...t[false]. ']

Note that for any ter, tT = t.

2. Main Results .

We wish to give a nondeteministic polynomial time algoritham for
deciding validity of sentences in L. Our plan will be to reduce the
problem of validity of ¢ to truth of ¢ in the Herbrand structure, then
use the techniques of [2] to decide truth of ¢ in this structure in
nondeterministic polynomial time.

Let ¢ be any sentence of L.

Theorem 2.0

¢ is valid iff Thy.

Proof

(+) By definition of validity.
(+) Suppose ¢ is not valid. Then there is a model of 1¢. By the
Lowenheim-Skolem theorem, there is a countable or finite model of ¢,

say U. Let U be the domain of U, and let h:v+U be any map such that
h(li) =a,  for a Sym(¢)
u

and h maps constants not in Sym(¢) onto U. This s possible since Sym(¢)
is finite and U is at most countable. h then extends uniquely to domain
1 by taking

n(f ;. t) = f,"u(h(t,).....h(t.)).

] e e e - e -y W W e v ————
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Thus if we define a new structure U° with domain U and interpretation
defined by

ay = h(ai)

-

£ -fim.uel.

u u
R™® =r", mo,
1. "Ny,

then h:7+U- is a surjective homomorphism. But since the interpretations
of U and U- agree on Sym(y) and U¢, by Theorem 1.5, Uf¢. Since U- 1s
a homomorphic image of T, by Corollary 1.11, Tk¢. (]

We can also restrict our attention to sentences of a special form.
Lemma 2.1

There is a polynomial time algorithm which, given formula ¢, produces
¢~ such that

(1) ¢ is in prenex form,

(i1) al) atomic formulas of ¢- are of the form sxt (i.e. ¢~ contains

no relational symbols), and

(i1i) for any v, va. iff "‘v"'

The standard algorithm for converting any sentence to an equivalent
one in prenex form, which can be found in any logic text (e.g. [6]) is
polynomial in time and will suffice for our purposes. To dispose of the
relational symbols, since every Ri- is interpreted as universally false
in 7, atomic formulas of the form Ri.tl"'tn occurring in ¢ may be replaced
by the formula ag=a,, which is also false in 7. Then (111) may be verified

by induction on the structure of 4. ]

e s ————————
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Henceforth all sentences of L we copsider will be assumed to be. in
this form.

We have reduced the validity problem to the problem of truth in T
of sentences of a specfal form. One useful consequence of this, which we
will exploit fully, is that the subtle distinction between mention and
use can now be conveniently ignored, since the semantic individuals (closed
terms) are actually syntactic objects as well. More precisely,

Theorem 2.2
(1) Tesat 1ff s=t, s,ter;

(11) T]-Vx‘o(x') iff  for all ter TRe(t);
(114) lfixio(xi) 1ff there is a tex The(t).

Proof

(1) is a direct consequence of the fact that s. = s and t; = t;
(11) and (111) follow from the definition of | and Theorem 1.8. ]
Thus we may write

Qxp.. Q% ’("l""’xk) (*)

for .
Mlxl"'ok"k o(x].....xk)i (**)
Here (**) is an assertion about truth of a sentence of L in T, whereas:
(*) is a metastatement about elements of x. In (*), all ~ have been changed
to =, variables range over 1, and the Qi are no longer symbols of L, but
represent the English “for all® and “there is* in (11) and (i11) of the
previous theorem. Henceforth we shall in general not distinguish between
(*) and the right side of the  in (**).

Now we show how to get rid of leading universal quantifiers.

e g g e <+ e e =
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Theorem 2.3
LalRICRRRTIES JITHR

where ajl Sym(¢).

Proof

Let v be any valuation with v(xi) - aj.
) TRVxe(xg) » Tk 0 (x)
+ Thelay),
by Theorem 1.8.

(+) Let Th(aj). For arbitrary y, define
h(a;) = a; for a3y Sym(e)

h(‘j) =y

~1l-

and let h map (a‘|aic Sym(¢) and i=j)} onto 1. Extend h to a homomorphism

T+T°, where T- is jJust T with some of the a"s not appearing in ¢ reinter-

preted, as in the proof of Theorem 2.0.

Since h is surjective, by Corollary 1.11,
T'kolay).
thus
Thawt )
by Theorem 1.8. By Theorem 1.5,

Thypay1#0%y)-

C e ey
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As y was arbitrary,

Trvxjo(xj)- ]
The above theorem indicates why universal quantiffers are so easy
to eliminate in this setting: there are an infinite number of unused
constant symbols which are ripe for reinterpretation. In [2] this was
not possible, since the number of symbols was finite. The problem
studied in [2], namely the truth of sentences of the form
Qxg---Qx, s(x)=t(x)
in a finitely presented algebra, appears tocorrespond to the validity
problem for sentences in L when a certain kind of bounded quantification
s allowed, but the exact correspondence is unclear (see §3).
Let us further restrict our attention to formulas with conjunctive

matrices. Let ¢ be in prenex form with no relational symbols besides
~ 1.e., ¢ looks like

0%y- - QX B(oy(X)s... 00, (X))

where B is a monotone Boolean tree with leaves ol(i).....on(i). each ¢

an atomic formula s st,, and TR ST A S
Lemwma 2.4
Q%) -0, B¢ (X)s...00,(x))
iff
there s a subset of the 01'5- WLOG say $poeeeobye such that

(1) 8(true,...,trug, false,...,false) = true, and

n-m

-, . . o
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(i) le‘---quk /:\ .i(i)'

Proof
Induction on the number of quantifiers. The basis is easy. The

induction step has two cases:
Case 1 leading existential quantifier.
Ix) Qpxpe--0,x,  Bleg(X),o.. e, (X))

- Aff

for some xjevs QpXy...Qxy B(Ol(i).....on(i))

iff (by induction hypothesis)

for some x et and some subset $oeeeoty of the 01'5-

(i) B(true,...,true, falseq;falsg). and

(1) 0px,...Qu%, z& 4 (%)
iff

for some subset $reenaty of the Qi'S.

(1) a(true..;..true. (alse.;:;.fllse). and

(11) 3)(]()2)(2...Qk)(k i=1 Q](i).
Case 2 leading universal quantifier.
Vi Q% - Q% Blay (X0, (X))

iff (by Theorem 2.3)

13-
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szz. . .Qkxk a(.l (aJ'xZ' cee .Xk’ bese "n('J'xZ" .o 'xk))'
where aJd Sym(¢),
iff (by induction hypothesis)

for some subset $poeee by Of the'oi's.

(1) B(true,...,true, false,...,false), and
1 n-m

JLLLD IS PR W A #(ag0x00 000y
iff

for some subset ooty of the ’l"'

(1) B(true,...,true, false,...,false), and
n-a

(11) LU VS PR % M ’i(i)' B

Lenma 2.4 is not as trivial as it first may appear; some of the variables
are universally quantified, and different valuations of these variables could
cause different atomic formulas of the matrix to be true. The object of the
lemma s to uniformize the set of atomic formulas which can be true, so that
our nondeterministic polynomial time algorithm can initially guess this set
of atomic formulas, verify that B is true with those formulas true, and then

verify the conjunctive formula
[ ]

Qxy-- Qe 1/-\1 4 (%)

The following definitions and lemmas are simplified versions of ones

e - ~wopyi ey ——.prn P —p e e A ——————— v -

-
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appearing in [2], which the reader may consult for a more tharough treat-
ment.

Definition 2.5
Let oc(f'nk | 1sksm)* be a string of symbols on a path through the

tree representation of a term. E.g. 1f s,t are terms,
P P 4 2 1.1
s f| fl 'l‘zfl '3‘4‘] fl Xg
1
t= f| Xge

then their tree representation are

3
f
2 .2 L1
s= OR
2| 2 1
a 1
1 t
3, 33 l‘ 1
Xg
1
f
t= 1
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and the path from the root of s to the root of t is

P
a fl3fll.

We write sat to indicate that term t appears as ’I subterm of term s at the
position specified by a.
The empty string is denoted A; thus sAt {1ff s=t. s
As in [2], we will allow terms to be represented by dags instead of

trees, by “factoring out" common subterms; e.g.

fx /A
VANYANEVANYON

can be represented more concisely by

/\

The reason for this representation, as opposed to a tree representation,
is that sometimes we will want to replace all occurrences of some variable
with some term; the dag representation allows us to do this by readjusting
edges, so that the representation does not grow any bigger.

Let the sentence

o e e —ni wmovTLY, s e e ewo—— - o

TR TR L R PRSP T e e e
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Q]"]“'Qk"k ('\‘ si‘ti
be so represented. Extra undirected edges between terms may be used to

represent ~. E.g., the sentence
1 1 2
vxgx, fl xoafl X A f] XgX] a3 A XgaKy

could be represented by

1 5 1 2 ~
f] ——————f] fl ———ee l3
onax] 1 1
1
Xg ~ X
X
0

In the following, let
n

¢ Q]X]---kak ‘I_\ sjnt'

be given.
Definition 2.6

~ {s the smallest equivalence relation on terms satisfying
(1) sy~ty, 1sisn
i o u. vy, then
ugvy, 1sism. [ |

Lemma 2.7
1f jex¥ 1s such that j=1 54(¥) = t;(¥), and if u-v, then u(y) = v(y).

Proof

Induction on definition of ~. ]
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nglnit]on_ .ng
Let x‘.xj be variables. Define xng if either

(1) 3u xp~u & Uaxy, or

(1) 3x .8,y =8y, Xi8X)s & XXy

A varfable X is principal if X{9x; implies a=A. B
Levma 2.9 n

I § = <ypeead? e such that 1/-\1 $4(3)=t(5), and 1f xjax;, then
’iay"'
Proof

Induction on definition of Xqlxg. |

Definition 2.10
R* = (subterms of 54 and g, cign}.

R = R, |
Lesma 2.11

If X4 is not principal then there is a proper term ueR’ (a proper term
1s one that is not a variable or a constant) such that xy~u. Moreover,
there 1s a polynomfal tipe algorithm to determine whether X4 is principal,
and 1f not, supply a proper ucR? such that Xy~u.
Proof

The first part follows from the definition of x@xg. For the second

part, construct the relatfon ~ inductively on the dag representation of

f=1 514 s

Lesma 2.12

If X is principal, y]aR. and zlm. then

Ty e e = % e Yvwe Sy, o e R
’ . - R

e g PSR T T e e



n
szz...oklk 'A' s‘(,yl.lzn---.xk) = t'(.yl.XZ.-oo'lk)

iff
n

Qpx,- .- Q% (,\ si(zl’xZ"“"‘k) - t'(ll.xz.....xk)-
n

Suppose x, s principal, iuk with y,{R, and /_\‘ s‘(i)-ti(i). Let z,la be
arbitrary. For 1sisk, define g‘(y') = y; with all occurrences of " in

Proof

Y4 at a position a such that Xiax) replaced by zl. For example, if

/N
ANEAN

and )(:‘(flzz)uI but not :(:’(f‘zl)xl then

2
f
94(y3) = /

Note that g'(yl) = 7. Let <g,(y]).....gk(yk)> be denoted by g(¥).

n
We claim that i/-\] s'(g(i)) = t'(g(i)). WLOG, 1t suffices to show that
whenever s‘(i).;y] and s'(g(i))nll then ti(i)"yl and ti(g(i))nl'. since then



-20-

all the same occurrences of " in si(;) and g'(;) are replaced by z;. Suppose
s'(i)uyI and s'(g(i))uz,. We know t'(i)nyl. since s‘(i) = t'(i). It must
be that a=gy, $18Xg0 Xy0X)s and Yjiye for some BavoXy. If tiaw, wisa

proper terwm, and ucx‘ for some x_, use the definition of ~ to show that

]
xlgx‘. contradicting the principality of Xy If tiuw and weR, then ylcll.
contradicting an assumption. The only possibility remaining is that t'axl
and én=a, for some c.n.x.. A case argument of two cases (one in which &
is a substring of g, the other in which g is a substring of &) shows that
X 4%). thus ¥,0y, by Lemma 2.9. Thgn gl(yl)nzI and ti(g(i))uz]. and the
claim {is verified.

Proceeding by fnduction on quantifiers, suppose for any Yprecor¥g€ts

ol’l’l’l oo -Qk.VO(.Y] seee .y‘-y‘,] seee Jk)

: Ql.]yu.l . 'ok’k'(gl(yl)" -.igl(’l)oy".] seee ..Vk)o
n

where ¢ = A] $ysty. Then
3.Vlol”¥"-|---°kyk.‘¥|----Jlnylﬂ----Jk) (*)

-+

3,0, 11Y547 - Q0 (91 (97) e e a9y (v, ) oypeee )i (**)

the y, satisfying (**) 1s obtained by applying 9, to the y, satisfying (*).
If

U70MRLARTERL R LS, PR AR B PR Y

then 1t cannot be the case that x,ax) for any a, by Lesma 2.9. Thus

. . e

L I
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gl(yl) =y, for all y cx. Then

vqul”yl*l .o 'Qkka(.Y]o- .o 'ylny‘*l seese nyk)

L0 RS APORERL R C 1Y 20 PREREC N0 S ARTRR |

-
VY,0,0%, 01 Qe (9 (0) e a8, 41y, )uypeeeiayy)e

We have shown

Qp%p QX gy si(y].xz.....xk) - t‘(y].xz.....xk)

Qpxy- - QX ﬁ, SI(ZI'XZ"""‘k) = ti(’l'xZ"”'xk)'

and the converse follows from symmetry. [ ]

Now we are ready to show how to eliminate leading existential quantifiers.
Theorem 2.13

There is a nondetemi:istic polynomial time algorithm which, given

RN R N 1/_\] s;(x) = t(x), (*)

p.roduces a true formula of the same size as (*) but with one fewer quantifier
iff (*) is true.
Proof

Given (*), if X is principal, guess whether some yl‘n will satisfy (*)
when substituted for X,- If guessed yes, guess which one, replace all
occurrences of X in ) and t with n (this is done by redirecting all edges

into occurrences of X to the root of I thus the size of the representation

. m i im e s y——
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does not increase) and output

Qp%p- Q% 4 si(’l"‘Z"""‘k) = t'(y‘.xz.....xk).

If guessed no, output

n
szz...(]kxk .i/-\l si(aj.xz.....xk) = t‘(aj.xz.....xk)
for some ajc Sym(¢). This suffices, by Lemma 2.12. If x; is not principal,
Lemma 2.11 guarantees us a proper term mn* such that X"y, Thus (*) is
equivalent to

Ix)Qpxy. - Quxy 1/-\1 s'(i)-ti(i) AX) = u(x),

by Lema 2.7. If X, appears in u, the sentence is false, and we may fmme-
diately reject. Otherwise replace all occurrences of X in sy and t with
u (redirect edges incident to X, to the root of u) and call the resulting

terms s;°, t;°. Now we have the equivalent formula
n
3"1“2"2"'01("1( {.\‘ s"(i) . ti‘(i) AX = u(x). (**)

Let le.....xjr be the variables appearing in u, and suppose n satisfies
(**). H" any of the xj‘ are universally quantified, the sentence is immedfately
false. Otherwise, if uuxji. the only value of xj' which can satisfy (**) is
the subterm of n occurring at position a. As this is uniform in the
universally quantified variables occurring before BxJi in the quantifier 1ist,
the lxji may be moved to the fronf. Thusn (**) implies

TR LT LA ,/_\, s{1%) = 18) » x) = ulE), (+**)

— o — e N~ o o —————
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where G, x- \...Qux; is the quantifier 1ist Qpxp. --Qyx, with all the 3le
removed. Clearly the implication goes the other way as well, since for

any *(x]-xz,u
3"1"‘2 ’hl xp) + szixl o(x‘.xz).
But (***) is equivalent to

ij]...ixjr (3, x, = u(x)]
n

Q;‘f]l;t""qk'i 0] 5'(i) - t'(i) ’ (+)

since x, does not occur in any syor t. But (+) 1s trivially equivalent

to n

3le...axjro;*,x;,l...qlxi §=1 S5(%) = t,(%),

which {s of the desired form. As all manipulatfons took polynomial time,
we are done. [ ]
Theorem 2.14

The validity problem is in NP.
Proof

Given ¢, we need only check that +=¢, by Theorem 2.0. We can eliminate
relational symbols and convert to prenex form in polynomial time, by
Lemma 2.1. By Lenma 2.4, we can convert to a formula with a conjunctive
matrix in nondeterministic polynomial time. Theorems 2.3 and 2.13 allow
us to eliminate quantifiers in nondeterministic polynomial time. Finally, .

we are left with a sentence of the form
n

(gﬁ SiTY
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where s‘.tin, which can certainly be verified in polynomial time. ]
Theorem 2.15
The validity problem is <

Proof
We reduce a well-known NP-complete problem, the satisfiability of

1 og-couplete for NP.

Boolean formulas, to the validity problem.

Let B be a Boolean formula with variables Kyseosaky. Let B° be formed
from B by replacing each 1{teral Xy by Xy~ay and each literal ‘lui by
Xy E.g. {f

B= (x] VTRV xa) A (ul v X, v'us)
then

8 = ("l"l V Xpadg v Xaedy) A ("l"‘l v Xped) v xgeag).
If B 1s satisfiable over (true,false)} then B- is satisfiable over
(lo.I‘) in the obvious way. If B- is satisfiable over t then B- is satis-
fiable over (lo.ll). by reassigning any variable in B~ not assigned to 3
or a, to either 8, or 2. The mnétonicity of B~ guarantees that the new
assignment also satisfies B-. From this we get a satisfying assignment

for B in the obvious way. Thus
B 1s satisfiable over (true,false)
iff
8- {s satisfiable over ¢

1ff (by Theorem 2.2)

T ... 8
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iff .(by Theorem 2.0)

3x;...3x, B” 1s a valid sentence of L. 1
Theorem 2.15 is a special case of a more general result:

Theorem 2.16
Let L be a finite set of sentences of the form s™t, s,tet, and let

¢ be a sentence of L. The problem,

“Is ¢ true in all models of I?"

is slog-complete for NP. [ |

A more extensive use of the techniques of [2] 1s needed, but all the
main ideas are here. The Herbrand domain for the more general case is the
quotient structure T/EL, whose domain is the set of closed terms ¢ wodulo
the congruence relation induced by E.

It is conjectured that Theorem 2.16 holds even if L is allowed to
contain atomic formulas Ri'tl...tn. tier, lsism.

3. Problems

(1) Prove the conjecture at the end of §2. What other generalizations
can be made?

(11) Let T be given. Suppose that in addition to ¥,3 we allow bounded
quantifiers of the form

v m) ng 3 m) "
toeenaty ) e Coand et f ey
"

The meaning of Vy  ,t..f; |

...,fk.k x would be, “for all elements x of

n
the substructure of A generated by t, ,...,t_ under f "!.....f k. see®
L VTR

We apparently now have enough power to force variables to range only over
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the algebra presented by r, instead of all of A, thus the validity problem
is at least PSPACE-hard (see [2]). Use the fact that deciding membership
in a finitely generated substructure is complete for P [2] to show that
this is all the power you get; i.e., show that with bounded quantifiers,
the validity problem for sentences with n alternations of quantifiers, the
outermost a 3(v), is complete for x:(ng). and the validity problem in

general is complete for PSPACE.
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