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The decline in DNA sequencing costs and the increased efficiency of next generation 

sequencing platforms have led to a flood of raw sequence data that taxes the analytical 

capacities of the current bioinformatic and statistical tools. The number of microbiome 

studies and the sequencing depth of each is likely to continue to grow given their 

tremendous potential to uncover important roles in ecosystem and human health. 

Microbiome data is highly complex; it is compositional, multi-dimensional, over-

dispersed, and sparse. For these reasons, the analytical and statistical pipelines used to 

analyze these data should be carefully chosen to address both experimental design and 

the intrinsic features of the expected data. Here, I present three case studies to 

illustrate the use of deep 16S rRNA gene and metagenomic sequence analysis of 

environmental microbiomes. The first study assessed the impact of triclosan with and 

without biochar on soil bacterial communities. The second study used 16S rRNA 

amplicons to examine the effect of a glyphosate-based herbicide on the intestinal 

bacteria of mice. The last study used a shotgun-metagenomic approach to shed light 

on the genetic underpinnings of flurbiprofen degradation in a bacterial consortium 

enriched from active sludge. 
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 1 

CHAPTER 1 

INTRODUCTION TO NEXT GENERATION DNA SEQUENCING AND 

BIOINFORMATIC ANALYSIS 

 

 

1.1 INTRODUCTION TO MICROBIOME DATA 

 

Bacteria contribute to many metabolic processes throughout nature and depending on the type of 

interaction with the ecosystem or with the host, bacteria have been pictured as “good cop-bad 

cop”. Important metabolic pathways are carried out by bacteria such as the synthesis of 

secondary metabolites and short-chain fatty acids (Flint et al., 2012; Nicholson et al., 2012). 

Likewise, bacteria have been used in a wide variety of industrial processes including the 

production of pharmaceuticals (Kieslich, 1986; Sanchez-Garcia et al., 2016). On the “bad cop” 

side of the coin, numerous diseases are caused by bacterial infections (Al-Anazi and Al-Jasser, 

2014; Loch and Faisal, 2015; Rusin et al., 1997), and even bacterial imbalances in the 

gastrointestinal environment have been associated with multiple illnesses like obesity, 

inflammatory bowel disease, and type II diabetes (Hartstra et al., 2015; Huttenhower et al., 2014; 

Turnbaugh and Gordon, 2009). 

Traditional microbiology methods generally refer to culture-dependent assays, but as has 

been widely demonstrated, these approaches are not entirely suitable to recreate relevant 

environmental conditions, revealing only culturable organisms and therefore underestimating the 

complexity of the bacterial communities (Lennon and Locey, 2016; Mallick et al., 2017). Since 

the introduction of DNA-based technologies, however, microbial ecology studies have shifted 

from classical cultured microbes to automated DNA sequencing, starting with Sanger, “first-
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generation” technology, to next-generation sequencing (NGS)  that has increase sequence 

coverage while lower cost per sequenced base   (Cannavan et al., 2016; Metzker, 2010). 

Largely as a result of cheap and cosmopolitan NGS, the study of microbial communities 

from diverse habitats “microbiome” has become part of the common vocabulary, often 

mentioned in various sources from research journals to newspapers to fashion magazines. By 

definition microbiome is a community of microorganisms sharing and living together in a 

particular habitat, which could include commensal, symbiotic, and pathogenic interactions with 

hosts (Bäumler and Sperandio, 2016; Peterson et al., 2009). Microbiome studies typically result 

in lists of microbial taxa, metagenomic or transcriptomic data, and even assembled genomes. As 

a result, there are more lists of taxonomically defined microbial taxa than actual knowledge 

about the role of these microbes in their environment. One of the biggest challenges ahead is to 

translate data from the microbiome studies to defined microbial-associations and causality 

responses (Surana and Kasper, 2017). Insights gained from microbiome studies range from 

associations between the microbiome and the host, whether it is linked to dysbiosis or not, to 

identifying environmental factors and their mechanisms that shape or disturb microbial 

communities (Claus et al., 2016; Huttenhower et al., 2014; Norman et al., 2015; Roh et al., 

2009). 

The decline in DNA sequencing costs and the increased efficiency of NGS platforms has 

led to a flood of raw sequence data, stimulating the development of complex and sophisticated 

bioinformatic and statistical tools to analyze the wealth of data generated (Liu et al., 2012; 

Mataragas et al., 2018). Therefore, a clear understanding of the key concepts required to design, 

execute and interpret NGS experiments on microbiomes is imperative (Jovel et al., 2016). There 

are two main approaches for analyzing the microbiome: 16S ribosomal RNA (rRNA) gene 

sequencing and shotgun metagenomics. 
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1.2 16S rRNA GENE SEQUENCING APPROACH 

The 16S rRNA gene sequencing, a form of amplicon sequencing, refers to the PCR-based 

amplification and sequencing of the conserved 16S rRNA gene, which is used to identify and 

classify microbial taxa (Franks et al., 1998; Lane et al., 1985; Pace, 2009; Schulz et al., 2017).  

The 16S rRNA gene is useful for microbiome characterization due to its ubiquity and 

essential role in cell metabolism (Pace, 2009; Stern et al., 1989). Regardless of the known biases 

of the 16S rRNA gene primers and the PCR process itself, the 16S rRNA gene still offers a fair 

taxonomic coverage for use as a bacterial marker (Kembel et al., 2012; Pace, 2009; Rosselli et 

al., 2016). The 16S rRNA gene sequences that act as unique identifiers correspond to nine 

hypervariable regions (V1-V9). The V1-V3, V4, and V4-V5 regions are the most commonly 

used given its genus-level resolution (Langendijk et al., 1995; Yang et al., 2016) and allow for 

reasonable certainty in the placement of observed bacteria taxa on the tree of life (Pace, 2009; 

Schulz et al., 2017). These highly conserved regions are also optimal for the design of “universal 

primers” to target most, but not all bacteria in a primer-dependent fashion (Fouhy et al., 2016; 

Klindworth et al., 2013; Nübel et al., 1997). The massive parallel sequencing approach of the 

16S rRNA gene was the first to be widely accepted and implemented, and the current databases 

are very well curated allowing accurate taxonomic comparisons. To date, there are three large-

scale curated databases: SILVA (Quast et al., 2013), GreenGenes (McDonald et al., 2012), and 

RDP (Ribosomal Database Project) (Cole et al., 2014). The latter offers web-based tools to 

construct phylogenetic trees and alignments. The SILVA database, on the other hand, has the 

most complete catalogue that not only includes the bacterial small ribosomal subunit sequences 

(16S SSU), but also the eukaryotic large ribosomal subunit sequences (LSU). Using SILVA 
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database requires longer computational time than the smaller database GreenGenes; though, 

GreenGenes has not been updated since 2013. 

 

1.2.1 BIOINFORMATIC ANALYSIS OF 16S rRNA GENE SEQUENCING DATA 

Among the intrinsic variables to consider during processing of 16S rRNA amplicon data are the 

type of sample, sample collection, experimental design, and temporal variability specifically for 

longitudinal studies. As part of the experimental design and library preparation, the variable 

region should be chosen carefully confirming that it has the desired taxonomic resolution to 

distinguish the bacteria taxa of interest in a specific microbiome.  Primers appropriate for one 

environment might underreport on the diversity of another. For example, the phylogenetic 

breadth of a soil, for example, is much broader than that a human fecal sample. Even “good” 

universal primers should be routinely reevaluated to ensure that they are modified to include 

newly characterized taxa identified via other means including metagenomics (Gantner et al., 

2011; Klindworth et al., 2013; Mao et al., 2012; McDonald et al., 2012). Mock communities 

and/or reference data should also be included in the experimental design to ensure correct 

identification and abundance estimation of the bacterial communities (Barb et al., 2016; Egan et 

al., 2018; May et al., 2014).  

Quality control (QC) analysis is the first step in the bioinformatic pipeline of the 16S 

rRNA amplicon sequencing approach. QC is considered a pre-processing step of the raw reads 

and is required to eliminate sequencing artifacts; it prevents overestimation and improves 

accuracy (Kozich et al., 2013; Parks et al., 2015; Xue et al., 2018). First, artificial chimeric 

sequences are removed; then short and low-quality reads are filtered; and lastly error-laden 

sequences considered as noise are separated from true sequence data (Haas et al., 2011; Lee et 

al., 2017; Schloss et al., 2011).  
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Once the reads are pre-processed, a taxonomic classification can be assigned by using an 

existing phylogenetic tree (supervised, taxonomy-dependent approach), or clustering into 

Operational Taxonomic Units (OTUs, unsupervised, taxonomy-independent approach) 

(Goodrich et al., 2014). While in the taxonomy-dependent approach the reads are directly 

assigned to the pre-existing phylogeny (phylotypes); the OTU approach clusters the reads by 

sequence similarity to one another first and only then assigns taxonomic classifications by 

comparing the clusters to a reference database (Berry et al., 2012; Caporaso et al., 2010; Schloss 

et al., 2009). The taxonomy classification tools include the commonly known BLAST (Basic 

Local Alignment Search Tool), the online GreenGenes, and multimer clustering tree-based 

methods (Altschul et al., 1990; Liu et al., 2008; McDonald et al., 2012). The phylotype approach 

is computationally more efficient and relates the sequencing data to previously identified 

bacteria, however the taxonomy assignment depends highly on the reference database and 

requires high accuracy during sequencing. Thus, the phylotype approach might prevent the 

detection of novel sequences of unclassified taxonomic lineages especially in poorly 

characterized microbiomes (Westcott and Schloss, 2015). The OTU approach, on the other hand, 

allows the de novo identification of taxonomic groups and is widely used in microbiome studies 

of habitats that are highly diverse, but is computationally more demanding.  

 

1.2.2 CHALLENGES AND LIMITATIONS OF 16S rRNA GENE SEQUENCING 

Since the 16S rRNA amplicon sequencing approach requires PCR amplification, OTU or 

bacteria taxa could be misidentified or not detected due to PCR-associated biases, e.g. priming or 

mismatch nucleotides, resulting in underestimation of bacterial diversity and richness (Acinas et 

al., 2005; Kennedy et al., 2014; Laursen et al., 2017; Mao et al., 2012). Alternatively, bacterial 

abundance might be overestimated because of the variation of 16S copy number among bacteria 
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species, or due to artifacts during sequencing or read processing like incorrect alignments to the 

reference databases (Kembel et al., 2012; Větrovský and Baldrian, 2013). One main limitation of 

the 16S rRNA amplicon sequencing approach is that the bacterial metabolic functions cannot be 

determined directly, the sequencing data only provide taxonomic composition. Predictive 

functional profiling tools such as PICRUSt and Tax4Fun have been recently developed, which 

infer community function by using the sequenced genomes of organisms whose 16S match those 

in the amplicon library (Aßhauer et al., 2015; Langille et al., 2013). While these demonstrate 

significant correlation with shotgun metagenomic studies of samples from well-characterized 

environments, they are unlikely to work as well using 16S rRNA gene sequencing data from 

poorly characterized environments that include many uncultured bacteria for whom no reference 

genomes are available (Aßhauer et al., 2015; Langille et al., 2013). Recent advances in the field 

of metagenome assembled genomes (discussed below), however, may help to overcome these 

limitations by providing reference genome assemblies that can inform functional predictions 

(Parks et al., 2017; Tully et al., 2018). 

 

1.3. SHOTGUN METAGENOMIC SEQUENCING APPROACH 

In contrast to the 16S rRNA gene sequencing approach, shotgun metagenomic sequencing 

permits analysis of all genomic DNA in the community gaining insights of the metabolism and 

gene function through functional classification. By direct DNA extraction, the genetic 

information of a bacterial community can be independently sequenced and assembled (Sharpton, 

2014). Although the bacterial composition of microbiomes can also be determined from 

taxonomically informative genes (i.e. 16S rRNA, rpoB), metagenomic studies seek to answer 

questions related to functional roles that could be shared or be co-dependent between members 

of the microbiome (Dai et al., 2018; Velsko et al., 2018). Metagenomic studies provide 
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information that allows comparison of functional profiles and community dynamics (including 

growth rates) of microbiomes of such as healthy host versus disease-exposed host, exposure 

versus no-exposure to a specific contaminant, wild-type versus knockout mice, etc. 

Metagenomics is a powerful tool that provides answers to questions including who is there?, how 

do they relate to each other?, what do they do?, and how are they changing?. Hence, through 

shotgun metagenomic sequencing not only the bacterial community composition is described, 

but also the genetic potential at the community and individual level (Bowers et al., 2017; Noyce 

et al., 2016; Pedron et al., 2019). 

 

1.3.1. BIOINFORMATIC ANALYSIS OF SHOTGUN METAGENOMIC DATA 

Similarly to 16S rRNA gene sequencing, sample collection, DNA extraction, and experimental 

design are critical to obtain high-quality reads from the shotgun sequencing data. The extracted 

DNA should be of high quality and sufficient to provide enough reads that would be aligned to 

various genomic locations from the myriad microorganisms present in a sample, thus sampling 

depth is a current limitation for most studies and usually only permits analysis of the numerically 

dominant organisms (>1%) (Bag et al., 2016; Costa et al., 2017; Lagier et al., 2012). A quality 

check (QC) step is also performed with the raw reads of the whole metagenome shotgun 

sequencing. Then, filtered reads are assembled into longer sequences (contigs) that would 

facilitate the final assembly (Parks et al., 2015; Sharpton, 2014). There are two assembly 

approaches: reference-based and de novo. As in the 16S rRNA gene sequencing approach, when 

a reference is used (comparable to the phylotype-approach in 16S amplicon ), the assembly 

depends on the similarity of the metagenome reads to sequences already in a database (Alneberg 

et al., 2018). The reference-based approach performs poorly if there are polymorphisms or large 

deletions or insertions in the genomes. The de novo assembly, however, overcomes these 
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genomic limitations. The biggest disadvantage of the de novo assembly is the large 

computational cost which varies depending on the microbiome complexity and the type of 

assembler (Nurk et al., 2017; Vollmers et al., 2017). A de novo assembly might take weeks to 

run. 

The next step is binning where the assembled contigs are sorted into groups that might 

correspond to an individual genome, or closely related organisms based on distinctive sequence 

features. Several binning algorithms have been recently developed and are mostly based in 

similarity like hierarchical clustering, and compositional-based binning using for instance the 

conserved nucleotide composition such the frequency of pentanucleotide repeats for example 

(Sieber et al., 2018; Wang et al., 2019; Wu et al., 2014). After binning, a quality check is again 

performed evaluating the completeness (base on percent coverage of required single copy genes) 

and purity of the taxon bin (Parks et al., 2015). After another round of assembly, the 

metagenome-assembled genomes (MAG) are annotated using tools like RAST (Rapid 

Annotation using Subsystem Technology) and IMG (Integrated Microbial Genomes system) that 

use gene prediction and functional annotation from previously annotated and characterized genes 

(Keegan et al., 2016; Markowitz et al., 2012; Overbeek et al., 2014; Randle-Boggis et al., 2016). 

 

1.3.2. CHALLENGES AND LIMITATIONS OF SHOTGUN METAGENOMIC 

SEQUENCING 

In comparison to the 16S rRNA gene sequencing, shotgun metagenomic sequencing is more 

expensive, requiring more computational power and data storage. The bioinformatic pipeline is 

more complex and the metagenomic tools (assemblers, binning) are still in development, but 

various tools are become increasingly available that are easy to use and have good accuracy for 
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short-raw-reads like those produced by the most commonly used sequencers from Illumina 

(Ayling et al., 2019; Escobar-Zepeda et al., 2015; Teeling and Glöckner, 2012). 

Genome assembly and binning process have trouble distinguishing between closely 

related genomes and individual heterogeneity which could prevent a true metagenome assembly 

(Ghurye et al., 2016). Sequencing depth is also one of most limiting factors in the shotgun 

metagenomic sequencing analysis, most assemblers required a minimal sequence coverage that 

can be out of reach economically for projects with many samples or those with smaller budgets 

(Nurk et al., 2017; Wu et al., 2014). 

 

1.4. STRUCTURE OF MICROBIOME DATASET 

At the end of the sequencing analysis pipeline, the results are organized in a table format 

reporting OTU’s abundances which could come in the form of 16S rRNA or other gene sequence 

abundances from either the amplicon or the shotgun metagenomic sequencing. The features 

associated with these tables are not only the treatments, conditions, or temporal variabilities of 

the experimental design, there are also features associated to the OTUs or genes which are highly 

dimensional to themselves. For OTUs dimensionality is a function of nested taxonomic levels, 

and for the annotated genes it is a function of the metabolic process they encode. From a 

practical standpoint, this means that it may be more meaningful to compare a group of related 

organisms or metabolic functions rather than individual OTUs or genes. 

 

1.4.1 FEATURES OF MICROBIOME DATA 

Given that the microbiome data is highly dimensional and includes many poorly-defined 

characters (unclassified OTUs or hypothetical proteins), analysis of the microbiome as a whole 

and of microbiome-associations is a statistical and bioinformatics challenge (Jovel et al., 2016).  
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The count data for given characters (OTU or gene) is also over-dispersed, which means 

that the variance of the read count is larger than the predicted by traditional multinomial 

regression models (Sun et al., 2017). Given that this over-dispersion has several sources 

including the randomness of the sequencing process (DNA extraction, PCR, library preparation), 

in addition to the intrinsic variability of the microbiome like between intestinal samples from the 

same individual, it is hard for traditional statistical distributions to control for the variability 

(McMurdie and Holmes, 2014). 

Microbiome data is considered “sparse” because, even though it is typically based on 10s 

or even 100s of thousands of observations (sequences), many environments are highly diverse 

and microbes are seldom normally dispersed in space or time. This results in the detection of 

unique OTUs or rare taxa in some samples but not others and an inflated number of zeros in the 

count tables, especially in bacterial groups at lower taxonomic levels (genus and below). The 

presence of an inflated number of zeros poses a challenge for the statistical analysis affecting 

statistical transformation methods and the variance among replicates, pulling results below that 

of expected data. From a statistical point of view, it is truly challenging to differentiate between a 

sampling zero (as result of data handling) from a structural zero (real zero) (Jonsson et al., 2018; 

Peng et al., 2016).  

 

1.4.2 MODELING MICROBIOME DATA 

When analyzing and modeling microbiome data, the chosen statistical tools in addition to 

accounting for controls and replicates of the experimental design, should address the following: 

(1) the dimensionality of the phylogenetic information associated to the OTUs/bacterial taxa or 

the metabolic processes associated to the annotated genes, (2) the variable’s uniqueness 
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(sparsity) measured by inflated number of zeros (e.g. rare taxa), and (3) the intrinsic variability 

reflected in over-dispersed statistical variance. 

Bioinformatic pipelines that process raw sequence reads such as Mothur and QIIME 

while comparing and grouping the reads by similarity, can also assign phylogenetic or functional 

categories to the groups of reads (Keegan et al., 2016; Kozich et al., 2013; Kuczynski et al., 

2011). Then, depending on the category of interest the count table is agglomerated, and the 

abundances are pulled out. In addition, software like Phyloseq, which is an R package suitable to 

work with output files from Mothur or QIIME, permits handling the assigned categories post-

raw-read-processing (McMurdie and Holmes, 2013). 

The sparsity, over-dispersion, and undersampling of microbiome data challenge statistical 

parametric models since low-abundant taxa and zero inflation especially at lower taxonomic 

levels (genus and below) result in a non-normal skewed distribution of the OTU’s abundances 

and of the OTU’s occurrence probabilities. Thus, parametric models such as normal, binomial, 

and Poisson distribution are not appropriate to model and analyze microbiome data. Negative 

binomial (NB) and zero inflated models, however, are better fit and often applied in microbiome 

count data (McMurdie and Holmes, 2014). Analyses based on NB models have proven to be 

successful finding differentially abundant features via simulation as well as in longitudinal 

studies (Zhang et al. 2018). DESeq2, which was the R package used in Chapter 3 (“Sex-

dependent disturbance effect of glyphosate on gut microbiome”), is based on NB distribution and 

corrects the data variability by using local regression within the dynamics range. In addition to 

16S rRNA amplicon libraries, DESeq2 can also be used to compare sequence counts and 

perform differential analysis of high-throughput RNA-Seq data (Anders and Huber 2010). 

White et al. (2009) also proposed and implemented a non-parametric statistical method 

called Metastats to detect differentially abundant taxa. In this method, the microbiome data is 
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transformed into proportions and the two-sample comparisons are performed using the Storey 

and Tibshirani’s permutation and are corrected for the false discovery rate (2003). In Metastats, 

the differentially abundant sparse counts are compared using a Fisher’s exact test, which has 

shown to outperform the Student’s t-test and log-linear models (White et al. 2009). 

Improvements in the Metastats analysis using a mixed-model zero-inflated Gaussian distribution 

have also showed higher accuracy and reduced intrinsic covariance in simulated data and clinical 

metagenomic samples (Paulson et al., 2011; Jonsson et al., 2016). The Metastats analysis was 

used in Chapter 2 (“Biochar does not attenuate triclosan’s impact on soil bacterial 

communities”, Phandanouvong-Lozano et al., 2018) to compare bacterial abundances given that 

our qualitative analysis suggested that triclosan impacted shared OTUs among the bacterial 

communities, instead of selecting unique OTUs as observed in the glyphosate’s effect in Chapter 

3 (“Sex-dependent disturbance effect of glyphosate on gut microbiome”). High number of 

unique OTUs results in non-normal skewed distributions, which as discussed above are 

implemented in bioinformatic analyses like DESeq2. For this reason, DESeq2 was a more 

suitable tool to compare the bacterial communities in Chapter 3. 

In order to answer questions related to causality and quantify changes in longitudinal 

studies, prospective statistical tools should link the microbiome shifts to the independent 

variables such as to the host status (e.g. health or disease), or to a temporal exposure (short-term 

vs. long-term). The linear mixed-effects model allows for testing the probability of causal and 

temporal relationships with the response variable (microbiome data) adjusting for confounding 

factors like over-dispersion and replicates’ intrinsic variability. The linear mixed-effects model 

was implemented in Chapters 2 and 3 through the lme4 and emmeans R packages (Bates et al. 

2015). Similar linear mixed-models have been used to analyze associations of oral and gut 
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microbiome with temporal and clinical variables such us progression of type 1 diabetes and 

respiratory diseases (Kostic et al., 2015; Tipton et al., 2018). 

Hence based on the challenges inherent to the microbiome data, the analytical and 

statistical pipelines used to analyze next generation sequencing reads should be carefully chosen 

to address both experimental design and the intrinsic features of the expected microbiome data.  

 

1.4.3 ANALYZING MICROBIOME DATA AS COMPOSITIONAL BY NATURE 

As discussed briefly in section 1.4.1 technical limitations on sequencing depth and data 

analytics make the treatment of zeros problematic. From a practical standpoint, non-exhaustive 

sequencing and the arbitrary number of total raw reads per sample mean that each sequencing 

run merely subsamples part of the DNA sequences in a sample rather than performing a true 

census (Gloor et al., 2017). For these reasons, an increasing number of researchers have started 

to analyze microbiome data as compositional in nature (Kurtz et al., 2015; Mandal et al., 2015; 

Rivera-Pinto et al., 2018). The microbiome as compositional count data has two geometric 

properties. First, the library size which is the total number of reads per sample is an artifact of the 

sampling procedure affected by technical and experiment-specific variability. Second, the 

compositional data is proportional to the sequencing capacity of the instrument and to the 

relative abundance underlying in the sample (Tsilimigras and Fodor, 2016). 

Various statistical tools have been recently developed to implement compositional 

analysis on microbiome data. These tools generally use log-ratio transformation to constrain the 

compositional nature of the microbiome data and use proportionality for substituting spurious 

correlations as in the case when estimated relative abundances make independent components 

appear correlated (Aitchison and Egozcue, 2005; Lovell et al., 2011). Since the compositional 

analysis considers the raw reads as proportions, the libraries of the microbiome data are not 
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normalized to a specific size (Gloor et al., 2017). Then, distance metrics such as Aitchison’s and 

ordination analysis such as PCA (Principal Component Analysis) can be implemented to ensure 

correct treatment of the compositional data (Aitchison and Egozcue, 2005; Gloor et al., 2017). 

Currently, there are available two statistical tools to evaluate differential abundances in the 

microbiome data, ANCOM (Analysis of Composition of Microbiomes) and ALDEx2. These 

tools are based on compositional log-ratios and use an ANOVA-like framework (Fernandes et al, 

2013; Mandal et al., 2015; Gloor et al., 2016). 

Although compositional statistical tools have been increasingly incorporated in 

microbiome studies, analysis of compositional data is still a challenge because of the multivariate 

nature of microbiome datasets because there is currently no universally accepted solution for the 

issue of inflated numbers of zeros associated with microbiome features like unique or rare OTUs 

(e.g. log-ratio of zero values) (Knight et al., 2018; Weiss et al., 2017). Some authors argue that 

relative abundance estimates, normalized, or rarefied counts implicitly acknowledged the 

compositional nature of the microbiome (Weiss et al. 2017), however, by rarefying or 

normalizing to an arbitrary library size some microbiome data can be discarded (McMurdie and 

Holmes 2014). Statistical packages like edgeR, metagenomeSeq, and DESeq (explained above) 

which are based on Negative Binomial and mixture models considering raw counts as absolute 

values appear to offer an appropriate method to infer differential abundances in the microbiome 

data (McMurdie and Holmes 2014). 

How much does it really matter? In the end, the relative impact of more traditional 

analytics versus compositional approaches depends on the features of the experimental design 

and the nature of the microbiome that is investigated (Knight et al., 2018). From the 

compositional analysis perspective, microbiome data is handled as proportions, therefore, the 

total sum of the counts is 1 and the research interest is towards the ratios between the 



 

 15 

components more than in the absolute difference between the observations (Fernandes et al. 

2014; Martín-Fernández et al. 2015). When the absolute counts and total sum between the 

components are relevant for the research interest, distance metrics and statistical methods like 

Unifrac, PCoA and DESeq are valid and reproducible (Knight et al., 2018, Weiss et al., 2017). 

It is likely that bioinformaticians and statisticians will continue to argue about the correct 

treatment of microbiome data for years to come, in much the same way as statistical ecologists 

continue to argue about appropriate dissimilarity functions (which themselves remain a topic of 

debate in the microbiome literature). I will therefore leave the reader with this food for thought 

on the topic from Ricotta and Podani (2017) in the hope that it will help them make a justifiable, 

though imperfect choice about their statistical treatment of microbiome data. 

“Although dissimilarity [insert ‘correct statistical model’] may appear an intuitively 
simple concept, there is no single, unequivocal way for its measurement. The literature of 
numerical ecology treats many more, even hundreds of dissimilarity functions and selection 
among them is often arbitrary, dictated by fashion, availability in commercial software or 
personal preference. The choice of a dissimilarity index best suited for a specific ecological 
problem is a complex question which does not have clear and unambiguous answer.”  
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ABSTRACT 

Triclosan, a broad-spectrum antimicrobial, has been widely used in pharmaceutical and personal 

care products. It undergoes limited degradation during wastewater treatment and is present in 

biosolids, most of which are land applied in the United States. This study assessed the impact of 

triclosan (0-100 mg Kg-1) with and without biochar on soil bacterial communities. Very little 

14C-triclosan was mineralized to 14CO2 (<7%) over the course of the study (42 days). While 

biochar (1%) significantly lowered mineralization of triclosan, analysis of 16S rRNA gene 

sequences revealed that biochar impacted very few OTUs and did not alter the overall structure 

of the community. Triclosan, on the other hand, significantly affected bacterial diversity and 

community structure (alpha diversity, ANOVA, p<0.001; beta diversity, AMOVA, p<0.01). 

Dirichlet multinomial mixtures (DMM) modeling and complete linkage clustering (CLC) 

revealed a dose-dependent impact of triclosan. Non-Parametric Metastats (NPM) analysis 

showed that 150 of 734 OTUs from seven main phyla were significantly impacted by triclosan 

(adjusted p<0.05). Genera harboring opportunistic pathogens such as Flavobacterium were 
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enriched in the presence of triclosan, as was Stenotrophomonas. The latter has previously been 

implicated in triclosan degradation via stable isotope probing. Surprisingly, Sphingomonads, 

which include well-characterized triclosan degraders were negatively impacted by even low 

doses of triclosan. Analyses of published genomes showed that triclosan resistance determinants 

were rare in Sphingomonads which may explain why they were negatively impacted by triclosan 

in our soil. 

 

Keywords: biodegradation, xenobiotic, biosolid, pollutant, metagenome 

 

2.1. INTRODUCTION 

Triclosan is a broad-spectrum antimicrobial that interrupts fatty acid biosynthesis. It has been 

widely used in industrial, medical, and personal care products (Bhargava and Leonard, 1996; 

Jones et al., 2006; Singer et al., 2002). Some studies, however, have shown that triclosan does 

not enhance the antibacterial activity of products like hand soaps, dish soaps, or plastics (Aiello 

et al., 2007; Faoagali et al., 1995; Junker, 2004). Since its introduction in the 1960s, triclosan has 

been extensively discharged into the environment. It is commonly found in wastewater effluents 

and the aquatic environments that receive them (Higgins et al., 2011; Kolpin et al., 2002; Miller 

et al., 2008). Triclosan and its O-methylated derivative have also been detected in fish, human 

plasma, urine, and breast milk (Adolfsson-Erici et al., 2002; Balmer et al., 2004; Dann and 

Hontela, 2011). The potential toxicity of triclosan has not been fully investigated, but once in the 

environment it can be transformed into more toxic metabolites like chlorodioxins and 

chlorophenols (Latch et al., 2005). In vitro studies have shown that triclosan interferes with the 

detoxification activity of enzymes in the human liver (Wang et al., 2004), and acts as an 
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endocrine disruptor (Helbing et al., 2011; Hinther et al., 2011; Raut and Angus, 2010; Zorrilla et 

al., 2009). 

Given the concern over triclosan’s effectiveness, its bioaccumulation, its reported 

contribution to antibiotic resistance, and potential negative effects on human health, the Food 

and Drug Administration (FDA) recently banned the use of triclosan in over-the-counter 

antiseptic products (Voelker, 2016). This ban, however, did not include other products such as 

toothpastes, fabrics, and plastic goods, which suggest that triclosan’s release into wastewaters 

will continue. 

Though triclosan is removed with biosolids during wastewater treatment, trace amounts 

remain in treated effluent that is discharged to the environment where it may persist, especially 

in oligotrophic and anaerobic environments (Bester, 2003; Heidler and Halden, 2007; Ogunyoku 

and Young, 2014; Pycke et al., 2014; Singer et al., 2002). Triclosan residues in treated 

wastewater are degraded in constructed wetlands, though triclosan has an impact on the bacterial 

communities in those systems (Liu et al., 2016). 

Triclosan has been widely reported in biosolids at concentrations ranging from 0.09-61 

mg Kg-1 (Andrade et al., 2015; Cha and Cupples, 2009; Xia et al., 2010). Most of the triclosan in 

biosolids-amended soils has been reported to remain near the surface (Edwards et al., 2009; 

Sabourin et al., 2009), though Xia et al. (2010) found 49-64% of extractable triclosan between 

30-120 cm depth in soils that had annually received biosolids for 33 years. Biodegradation has 

been reported to be the main mechanism of triclosan removal from soils, though rates may vary 

(Dhillon et al., 2015; Ying et al., 2007). A year after a single “sewage sludge” application, Butler 

et al. (2012b) recovered less than 20% of the initial triclosan. Similar results have been reported 

in other studies, with up 94% of triclosan dissipating from the surface of biosolid-amended soil 
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over two years (Cha and Cupples, 2009). Such dissipation has also been observed in soils 

receiving multiple applications (Lozano et al., 2010). 

The impact of triclosan on soil biology is poorly understood. It has been reported to 

decrease microbial biomass and affect microbial respiration (Butler et al., 2011; McNamara et 

al., 2014; Zaayman et al., 2017). Even a low concentration of triclosan (4 mg Kg-1) has been 

found to negatively affect microbial populations (Svenningsen et al., 2011), though subsequent 

re-dosing might lead to microbial acclimation and growth on triclosan as a carbon source (Butler 

et al., 2012a). Still, few studies have evaluated the effect of triclosan on bacterial community 

composition and structure (Guo et al., 2016; Harrow et al., 2011). 

The goal of this study was to assess the impact of triclosan on bacterial communities in 

an agricultural soil with and without biochar. Biochar has been used as a soil amendment to 

modify xenobiotic bioavailability and enhance soil biodiversity (Anderson et al., 2011; Jenkins et 

al., 2017; Maurathan et al., 2015; Watzinger et al., 2014; Xu et al., 2016), yet, its ability to 

reduce the negative impact of antimicrobials like triclosan is unknown. 

Although phylum level characterization of triclosan impacts on soil microbes have 

previously been reported (Guo et al., 2016; Zhao et al., 2015), little is known about its impact at 

the genus level or about the soil-relevance of organisms known to degrade triclosan in pure 

culture (Kagle et al., 2015; Lee et al., 2012). Here we report on the results of mineralization 

assays and Illumina deep 16S sequencing in soils exposed to 0-100 mg Kg-1 over the space of 42 

days. 

 

2.2. MATERIALS AND METHODS 

2.2.1. Experimental Design 



 

 28 

The soil was an Arkport silty clay cloam that had not been previously exposed to triclosan. It was 

taken from Dilmun Hill Student Farm at Cornell University, was dried, sieved, and then dosed 

with sufficient triclosan in ethyl acetate to generate soils contaminated at the desired levels. The 

ethyl acetate was allowed to evaporate in a fume hood. Soils with and without triclosan also 

received 1% (g biochar/g of dry soil x 100) of a hardwood biochar that had been pyrolysed at 

450°C. Soil without either triclosan or biochar was considered as the primary control. Additional 

controls had either no biochar or no triclosan. Experimental groups and controls were monitored 

over 42 days.  

 

2.2.2. Mineralization of Triclosan 

Triclosan mineralization was measured at 1, 2, 4, 7, 14, 21, 28, 35, and 42 days as previously 

described (Hay et al., 2001). Briefly, 25 000 dpm of 14C radiolabeled triclosan was spiked into 

soils with and without unlabeled triclosan (Ciba Specialty Chemicals) in order to obtain triclosan 

concentrations of 1, 10, and 100 mg Kg-1. 14C radiolabeled triclosan (14C-TCS) was uniformly 

labeled only in the dichloro ring, and had a specific activity of 5.2 Mbq/mg. To capture 14CO2 

released as result of triclosan mineralization, the soil microcosms contained an internal vial with 

1M NaOH, which was replaced at each sampling. The recovered NaOH was added to 10 ml of 

scintillation cocktail (ScintiSafeTM Econo F cocktail, Fisher Scientific) and its 14CO2 content was 

measured using a Beckman Coulter LS6500 multi-purpose scintillation counter. Experimental 

controls without triclosan were used to calculate the background 14CO2 content, which averaged 

4-9 cpm with no obvious temporal trend. In all cases background was less than <5% of the 14CO2 

measured in the radiolabeled triclosan treatments and in most cases was approximately 1% of the 

labeled treatments. After subtracting the background 14CO2 content in the radiolabeled 
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treatments, the cumulative recovered 14CO2 was compared between treatments using analysis of 

variance (ANOVA, aov function) and the emmeans package 1.2.1 for R (R version 3.4.4 and 

RStudio 1.1.442). 

 

2.2.3. DNA Extraction and 16S rRNA Gene Illumina Sequencing 

Samples taken at 0, 7, 21, and 42 days were used for 16S rRNA gene amplification and Illumina 

sequencing. DNA was extracted from 0.25 g of soil using the PowerSoil DNA isolation kit (Mo 

Bio) following the manufacturer’s instructions, and then stored at -20°C. Concentration and 

quality of the extracted DNA were measured using a NanoDrop ND-1000 spectrophotometer 

(Thermo Fisher Scientific). 

The V6 region of the 16S rRNA gene was PCR amplified using the barcoded primers: 

forward primer 902F 5’- ACA CTC TTT CCC TAC ACG ACG CTC TTC CGA TCT-barcode-

ACT YAA AKG AAT TGA CGG G -3’ and reverse primer 1078R 5’- CGG TCT CGG CAT 

TCC TGC TGA ACC GCT CTT CCG ATC T-barcode-ACR ACA CGA GCT GAC GAC -3’. 

PCR was performed using a Peltier Thermal Cycler PTC-200 (MJ Research) with an initial 

denaturation at 95°C for 2 min; followed by 29 cycles of denaturation at 95°C for 20 s, annealing 

at 50°C for 15 s, and extension at 72°C for 5 min. PCR products were purified using PureLink 

Quick Gel Extraction Kit (Invitrogen). Then, the forward adapter 5’-AAT GAT ACG GCG ACC 

ACC GAG ATC TAC ACT CTT TCC CTA CAC GA- 3’ and the reverse adapter 5’-CAA GCA 

GAA GAC GGC ATA CGA GAT CGG TCT CGG CAT TCC TGC TGA AC -3’ were added 

via PCR with an initial denaturation at 95°C for 2 min; followed by 9 cycles of denaturation at 

95°C for 20 s, annealing at 60°C for 15 s, and extension at 72°C for 5 min. PCR products were 

pooled in equimolar concentrations to generate the amplicon library. The library was spiked with 
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10% PhiX (Illumina) and sequenced on an Illumina MiSeq instrument, implementing V2 

chemistry, with paired-end 250 nt reads according to the manufacturer's protocol at Cornell’s 

Institute of Biotechnology. 

 

2.2.4. Sequence Processing 

The 16S rRNA gene sequences were processed using Mothur v1.39.5 following the Mother SOP 

(Mothur, 2013, https://www.mothur.org/wiki/MiSeq_SOP) and the recommendations of 

Kozich et al. (2013). Briefly, forward and reverse sequence reads were aligned and joined into 

contigs based on quality scores, and trimmed to 275 bp. Then, quality filtered sequences were 

aligned to the Silva 16S rRNA gene reference database (Glöckner et al., 2017; Quast et al., 2013; 

Yilmaz et al., 2014). Aligned sequences were preclustered by abundance having a maximum 2 

bp difference over 250bp. By using the abundant sequences as reference and the VSEARCH 

algorithm (Rognes et al., 2016), chimeric sequences were removed. Sequences were then 

classified and annotated into Operational Taxonomic Units (OTUs) using the Ribosomal 

Database Project, RDP, release 9 (Cole et al., 2014), and following the methodology of Wang et 

al. (2007) with 100 bootstrap iterations and 80% confidence cutoff. 

 

2.2.5. Bacterial Community Analysis 

After processing the sequence reads, the final dataset contained 2,950,386 quality-filtered 

sequences ranging from 7,651 to 130,357 per sample. All bacterial community analyses were 

carried out using Mothur v1.39.5. The plots were generated with R version 3.4.4 and RStudio 

1.1.442, and the gplot package 3.0.1 for R was used for the heatmaps. 
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Prior to further analysis, the samples were rarefied with 1,000 randomizations to the size 

of the smallest library (7,651 reads). Samples coverages were all above 99%, indicating that each 

library contains a sufficient number of sequences to adequately represent the diversity present in 

each sample. Alpha diversity was estimated with the Inverse Simpson Index, which accounts for 

the probability that two randomly drawn individuals from the same sample belong to different 

species, or in our case OTUs (Simpson, 1949). Inverse Simpson Indexes and phylum relative 

abundances were analyzed with the statistical model of linear mixed-effects from the lme4 

package 1.1-17 for R, which corrected for the replicate effect given by the sampling times (Bates 

et al. 2015). Differences between groups were determined using the ANOVA function of the 

lme4 and emmeans packages in R. 

The bacterial communities among the groups were compared by using the Yue and 

Clayton distance metric, ϴYC, (Yue and Clayton, 2005), which measures dissimilarity between 

two communities based on the membership and abundance of each OTU. Distance matrices 

generated by ϴYC coefficients were visualized using non-metric multidimensional scaling 

(NMDS). To test whether the spatial separation among the groups in the NMDS plots was 

statistically significant an Analysis of Molecular Variance (AMOVA) was performed, and the 

car package 2.1-5 for R was used to generate the ellipses and centroids. The ellipses predict the 

space in which 95% of new observations would occur. 

In addition, the data clustered into distinct bacterial community types when using  

Dirichlet multinomial mixtures (DMM) (Holmes et al., 2012). The Laplace approximation was 

used to select the number of community types that best fit the data. The significance of pairwise 

differences in OTU abundances between the groups were determined with the Non-Parametric 

Metastats (NPM) analysis as incorporated in Mothur v1.39.5 (White et al., 2009). Heatmap.2 

function of the gplot package 3.0.1 for R was used to generate a heatmap and dendrogram (with 
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complete linkage clustering (CLC)) for those OTUs identified as significant via NPM analysis. A 

volcano plot was used to visualize the fold change of OTUs that differed significantly between 

treatments. 

Discreet NPM analyses were also performed on OTUs within each triclosan 

concentration and control in the absence (0%) and presence of biochar (1%), yielding a 

presence/absence ratio for significantly affected OTUs. A ratio of 1 indicated no effect of 

biochar, <1 that biochar negatively affected the population, and >1 that biochar had a positive 

effect. Relative abundances of OTUs were summed at the phylum level, then compared between 

biochar treatments using the Wilcoxon test in R. 

 

2.2.6. Predictive Gene Profile 

The functional gene profile of each sample was predicted using Tax4Fun package 0.3.1 for R 

(Aßhauer et al., 2015). The program infers function by comparing the sequenced genomes of 

organisms whose 16S rRNA genes match OTUs found in any given sample. We compared 

significant OTUs (NPM, adjusted p<0.05) differing by 2-fold or more. The program BLASTed 

16S rRNA gene data of these OTUs against the SILVA seed 123. The 16S rRNA gene copy 

numbers were normalized with the copy numbers obtained from the NCBI genome annotations 

(Aßhauer et al., 2015). Then, functional gene profiles were generated using ultrafast protein 

classification (UproC) tool (Meinicke, 2015) assigning sequencing reads to KEGG Ortholog 

(KO) profiles from the KEGG database release 86.0. 

Triclosan-resistance associated genes corresponding to: i) enoyl-acyl carrier reductases 

(ENRs) FabI, FabK, FabL, and FabV (Heath et al., 2000; Heath and Rock, 2000; Massengo-

Tiassé and Cronan, 2008; McMurry et al., 1998a; Yazdankhah et al., 2006), ii) metagenome-
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derived 7-a hydroxysteroid dehydrogenase (HSDH) ENR (Khan et al., 2016), iii) multidrug 

efflux pump AcrAB (McMurry et al., 1998b), and iv) aromatic degradation genes (Kagle et al., 

2015; Lee et al., 2012; Lee and Chu, 2013; Meade et al., 2001; Mulla et al., 2016) were selected 

from the predicted functional gene profiles using the KO numbers associated by Tax4Fun. 

 

2.2.7. Triclosan-Resistant Determinants in Bacterial Genomes  

NCBI BLASTp analyses were carried out on bacterial taxa positively impacted by triclosan 

addition to determine the presence of putative triclosan-resistant genes in their genomes. We 

used the triclosan-resistant genes in the database described by Khan et al. (2018) as queries, 

which include the ENRs FabI, FabK, FabL, FabV, and the metagenome-derived 7-a HSDH 

homologue, as well as the AcrB efflux pump subunit (NCBI accession numbers: NP_415804.1, 

NP_357973.1, NP_388745.1, NP_233170.1, AOO54602.1, and AAC73564.1, respectively). 

Annotated genes with ³ 27% predicted amino acid sequence identity with the queries were 

considered to be evidence of triclosan-resistance determinants in the genomes (Khan et al., 

2018). When BLASTp analyses did not return any hit, tBLASTn analyses were conducted with 

the same % sequence identity cutoff. 

 

2.2.8. Triclosan Sensitive ENRs in Sphingomonas 

Predicted enoyl-acyl carrier reductases (fabIs) from published Sphingomonas genomes were 

aligned to the triclosan-sensitive FabI sequence of Escherichia coli K12 MG1655 (GenBank: 

AAC74370.1) using the BLAST tool in Geneious 11.0.2. The predicted FabIs from 

Sphingomonas species were characterized as either sensitive or resistant based on the presence of 
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nonsynonymous single point mutations in amino acids 23, 159, or 203 which have been shown to 

confer triclosan resistance on E. coli’s FabI (Jiten Singh et al., 2011; Khan et al., 2016; McMurry 

et al., 1998a; Stewart et al., 1999). 

 

2.3. RESULTS AND DISCUSSION  

2.3.1. Mineralization of Triclosan  

Triclosan concentration significantly impacted the amount of 14CO2 released (Fig 1, ANOVA, 

p=3.66x10-6). In the absence 

of biochar, the mineralization 

in 100 mg Kg-1 was 

significantly different from 1 

and 10 mg Kg-1 (t-test, 

adjusted p<0.01), though the 

latter did not differ 

significantly from each other. 

Conversely, in the presence of 

biochar, we observed no 

significant difference in 

mineralization between 10 

and 100 mg Kg-1, though both 

were different from 1 mg Kg-1 

(t-test, adjusted p<0.01). 

Biochar can impact the 

 
Fig. 1. Triclosan mineralization. Cumulative recovery of 14C-CO2 from 
14C-radiolabeled triclosan added to soil over time (A), and at the end of the 
study (B: 42 days). Biochar significantly reduced triclosan mineralization 
(*** t-test, p<0.001). Different letters indicate significant within-treatment 
differences in mineralization with (1%, grey bars) and without (0%, white 
bars) biochar, respectively (t-test, adjusted p<0.01). Error bars represent 1 
S.D. of the mean, for n=3. 
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bioavailability of organic compounds by sorbing them; but may not be able to completely mask 

the effects of some compounds (Bair et al., 2016; Lehmann et al., 2011). The impact of biochar 

on cumulative mineralization was significant at all tested concentrations of triclosan after 42 

days (Fig 1B, ANOVA, p=1.59x10-10). In the absence of biochar, the cumulative recovery of 

14CO2 ranged from 5.8% to 6.5%, while, in presence of biochar it ranged from 3.8-4.9% (Fig 

1B). Since biochar lowered the cumulative recovery of 14CO2, we expected that it would affect 

the microbial community as had been previously reported in other studies in which biochar was 

applied to soil (Watzinger et al., 2014; Xu et al., 2016). We therefore assessed the impact of 

triclosan on the bacterial communities in both the presence and absence of biochar. 

 

2.3.2. Relative Abundance of Bacteria Phyla 

The 16S rRNA gene sequence analysis revealed 734 OTUs across all soil samples. The triclosan 

treatments (1, 10, and 100 mg Kg-1) and control (0 mg Kg-1) shared more than half of the total 

OTUs, and had few unique OTUs (Fig S1). These unique OTUs constituted less than 0.15% of 

the total relative abundance. Alpha diversity and community structure differed significantly with 

time (ANOVA p=2.12x10-9, AMOVA p<0.01). The AMOVA analysis, however, showed that 

the bacterial communities on days 21 and 42 were not different from each other (Fig S2a, 

p=0.216). These results suggested that the communities in microcosms had stabilized by 21 days 

so further analyses combined days 21 and 42 when analyzing triclosan impacts. 

Independent of biochar-addition, triclosan significantly affected the relative abundances 

of the four most abundant phyla (Fig 2A ANOVA, p<0.01): Firmicutes (22-26%), 

Proteobacteria (20-27%), Actinobacteria (18-22%), and Bacteroidetes (3-7%). In contrast, 
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Bacteroidetes was the only phylum positively affected by biochar-addition in the control and in 

the 1 mg Kg-1 triclosan treatment (Fig 2A, t-test, adjusted p<0.01). 

 

2.3.3. Effect of Biochar on Bacterial Communities 

Numerous studies on biochar-amended soils have demonstrated that biochar provides a diverse 

niche for microorganisms resulting in increases in microbial biomass and metabolism (Jenkins et 

 
Fig. 2. A. Biochar impacts on the relative abundances of the four most abundant phyla in each treatment. 
Different letters indicate within-phylum differences as a function of triclosan concentration with (upper 
case = 1%, grey bars) and without (lower case = 0%, white bars) biochar (t-test, adjusted p<0.01). Error 
bars represent 1 S.D. of the mean, for n=3. B. Bacterial alpha diversity by treatment with (grey boxes) and 
without (white boxes) biochar measured using the Inverse Simpson Index. **: t-test, p<0.01, and ***: t-test, 
adjusted p<0.001. 
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al., 2017; Maurathan et al., 2015; Watzinger et al., 2014; Xu et al., 2016). The bacterial response, 

however, is widely different depending on the soil fraction, soil type, quality of biochar and 

application time (Chen et al., 2015; Lehmann et al., 2011; Noyce et al., 2016). 

Biochar only affected the alpha diversity in the 1 mg Kg-1 triclosan treatment (Fig 2B, t-

test, adjusted p<0.01), and did not significantly impact beta diversity (Fig S2b, AMOVA, 

p=0.678). Nonetheless, NPM analyses revealed that some OTUs were significantly impacted by 

biochar in a triclosan-concentration dependent manner (control: 32 OTUs, 1 mg Kg-1: 43 OTUs, 

10 mg Kg-1: 18 OTUs, and 100 mg Kg-1: 32 OTUs). 

When the mean abundance of biochar-impacted OTUs was summed at the phylum level, 

the amount of Bacteroidetes in the control and the 1 mg Kg-1 triclosan treatment more than 

doubled. No impact, however, was observed on Bacteroidetes at 10 mg Kg-1 or 100 mg Kg-1 

(Table S1). Other studies have reported that Bacteroidetes increased more than four-fold in 

biochar-amended soils (Kolton et al., 2011; Zhang et al., 2017). Yet, Bacteroidetes were found to 

be sensitive to triclosan in sediments by Guo et al. (2016). Consistent with their report, our data 

confirms that triclosan negated the positive effects of biochar on Bacteroidetes and did so at a 

lower concentration (10 mg Kg-1) than the 60 mg Kg-1 that was assessed by Guo et al (2016). 

Conversely, Proteobacteria, many of which are known to be resistant to triclosan (Guo et 

al., 2016; Kagle et al., 2015; Mulla et al., 2016), were the only phylum positively affected by 

biochar at triclosan concentrations of 10 mg Kg-1 and 100 mg Kg-1, though this phylum was not 

affected by biochar in the control or 1 mg Kg-1 triclosan (Table S1). Biochar is known to 

immobilize some organic compounds and reduce their rate of degradation, although in some 

cases it has been reported to increase overall degradation (Atkinson et al., 2010; Smebye et al., 

2016). Among the Proteobacterial OTUs positively impacted by biochar-addition (NMP 
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analysis, p<0.05) were two taxa that include known xenobiotic degraders Propionivibrio and 

Variovorax, though no reports could be found detailing their ability to degrade triclosan.  

 

2.3.4. Bacterial Diversity and Structure Affected by Triclosan  

Regardless of the presence or absence of biochar, alpha diversity differed significantly by 

triclosan concentration (ANOVA p=7.9x10-7). Samples exposed to 10 mg Kg-1 triclosan showed 

the greatest decrease in alpha diversity (Fig. 2B). Beta diversity, as measured by qYC 

dissimilarity distances and 

visualized via NMDS, 

showed statistically 

significant clustering of 

bacterial communities by 

triclosan concentration (Fig 

3). The AMOVA confirmed 

these results, finding that 

samples exposed to triclosan 

(1, 10, and 100 mg Kg-1) 

were significantly different 

from one another (p<0.001), 

and from the control 

(p<0.01). The Dirichlet 

Multinomial Mixtures (DMM) model and the dendrogram generated via complete linkage 

clustering (CLC) were in agreement that community composition was driven by triclosan 

 
Fig 3. NMDS analysis of the bacterial community structures using qYC 
dissimilarity distances. Distances between symbols on the NMDS plot 
reflect relative dissimilarities in the community structures. The 2 axes 
represent 95% of the variance. The lowest stress is 0.104 with an R2 value 
of 0.97. Ellipses represent the 95% confidence intervals around the 
centroid for each cluster. The ellipse centroids are indicated by  . The 
spatial distances of the bacteria communities exposed to triclosan 
concentrations (1, 10, and 100 mg Kg-1) differed significantly from one 
another (p<0.001) and from the control (0 mg Kg-1) (p<0.01) as 
determined by AMOVA. 
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concentration, though the DMM model separated samples into three community types while 

CLC clustering further resolved the 10 mg Kg-1 and 100 mg Kg-1 treatments from one another 

(Fig. 4). A summary of the results from the analyses mentioned above is provided in 

Supplementary Table S2 and clearly demonstrates the statistical significance of triclosan addition 

on bacterial community structure, regardless of the analysis employed. 

 
Fig 4. Three different multivariate statistical analyses support the same conclusion: triclosan significantly impacted the soil 
communities in a dose dependent fashion. A. Dendrogram with complete linkage clustering (CLC) shows four significant 
nodes as indicated by the dotted lines in the heat map and named at the bottom in bold. B. The boxes around the branches 
indicate the community types identified using DMM modeling: Type I: all treatments at time zero, Type II: 10 mg Kg-1 and 
100 mg Kg-1, and Type III: control and 1 mg Kg-1. C. Heat map showing the differential relative abundance of 150 OTUs 
significantly impacted by triclosan based on the NPM analysis (adjusted p<0.05), but collapsed to the order level for ease of 
visualization. The treatment conditions are indicated in the imbedded table: + and – indicates the presence or absence of 
biochar, respectively. Sampling times are indicated by Day: 0, 7, 21, and 42. Triclosan concentrations are indicated 0, 1, 10 
and 100 mg Kg-1. 
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Several studies have demonstrated triclosan’s dose-dependent effect on microbial 

communities; reporting decrease in microbial diversity, biomass and respiration (Butler et al., 

2011; Harrow et al., 2011; Zaayman et al., 2017). Even soils irrigated with low concentrations of 

triclosan (2 mg Kg-1) showed shifts in the relative abundance of numerous phyla and overall 

structure of the communities (Harrow et al., 2011). At higher doses, triclosan affected the 

bacterial communities very rapidly: Butler et al. (2011) found a reduction in the basal respiration 

of clay soils after only 16 hours of exposure to 10 mg Kg-1 and 100 mg Kg-1 triclosan. This rapid 

effect is consistent with the CLC dendrogram results which grouped all of the 100 mg Kg-1 

samples together including that of day zero (Fig 4A). These results suggest that triclosan was 

able to impact the bacterial communities in our sample during the few hours it took to process 

them on the first day of our study. 

We were particularly interested in understanding what was driving the decrease in alpha 

diversity for the 10 mg Kg-1 treatment even though alpha diversity did not appear to be impacted 

in the 100 mg Kg-1 treatment (Fig 2B). As shown qualitatively in the Venn diagram, richness did 

not differ between the triclosan treatments groups (Fig. S1). These findings suggest that triclosan 

disproportionately impacted a few shared OTUs. The NPM analysis revealed that 150 of the total 

734 OTUs were impacted by triclosan (Fig 5A, p<0.05). These 150 OTUs belonged to the phyla 

Acidobacteria, Actinobacteria, Bacteroidetes, Cloroflexi, Firmicutes, Planctomycetes, 

Proteobacteria, and Verrucomicrobia. The heatmap collapses their relative abundances down to 

the order level for ease of visualization (Fig 4C). 
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OTUs that significantly changed by two-fold or more in response to triclosan on days 21 

and 42 were averaged and selected for further analysis since the NMDS plot showed no 

 
Fig 5. Fold change of differentially abundant OTUs in the 100 mg Kg-1 triclosan treatment relative to the control 
for all times points A. The volcano plot shows the fold change (x axis) in OTUs between 100 mg Kg-1 and the 
control for all time points, as well as the statistical significance of that change (y axis) as determined by NPM 
analysis. The relative abundance of OTUs above the dotted line were significantly impacted by triclosan (NPM, 
adjusted p<0.05). Green OTUs increased more than 2-fold in the presence of 100 mg Kg-1 triclosan, while red 
OTUs decreased more than 2-fold. B. Change in abundance of OTUs significantly impacted by triclosan from 
days 21 and 42 in the presence (grey boxes) and absence (white boxes) of biochar. 
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community differences on these days (Fig S2a, AMOVA, p=0.216). Of the nine significant 

OTUs in the 10 mg Kg-1 treatment, seven decreased ≥ 2-fold compared to the control (Fig S3a). 

Only two OTUs, Caulobacteraceae; unclassified, and genus Massilia, showed ≥ 2-fold increase 

in that treatment (Fig S3b). The relative abundance of the latter two OTUs was also higher in the 

100 mg Kg-1 treatment as where the abundances of three other Proteobacteria: Variovorax, 

Janthinobacterium, and Stenotrophomonas (Fig 5B). Other taxa positively affected by triclosan 

belonged to the orders Actinomycetales, Flavobacteriales, and Sphingobacteriales (Fig 4C and 

5). For instance, the genus Flavobacterium increased 5.6-fold at 100 mg Kg-1 compared to the 

control (Fig 5B). Additionally, OTUs from the following five genera were detected in the 100 

mg Kg-1 treatment, but not in the control: Luteibacter, Nocardiopsis, Chitinophaga, 

Actinomycetospora, and Achromobacter. 

Not surprisingly, studies on triclosan-irrigated soils have shown that cultured bacteria 

known to be sensitive are significantly impacted, causing an overall diversity decrease, though 

some tolerant species increased in abundance (Harrow et al., 2011; Svenningsen et al., 2011). 

Triclosan targets some enoyl-acyl carrier protein reductases (ENRs) during fatty acid elongation, 

but not all ENRs are sensitive to triclosan (Heath and Rock, 2000; Zhu et al., 2010). In fact, fabL 

from Bacillus subtilis has been used as a selective marker in a broad host range cloning vector 

that confers triclosan resistance (Kagle and Hay, 2002). Furthermore, recent evidence suggests 

that members of the genus Massilia, which we found to increase in the presence of 10 and 100 

mg Kg-1 triclosan, appear to encode a novel family of triclosan-resistant ENRs (Table S3) (Khan 

et al., 2016). 
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2.3.5. Predicted Impacts of Triclosan on Functional Diversity  

The predicted abundance of presumptive TCS-resistance determinants (ENRs, efflux pumps, and 

aromatic degradation genes) increased 

in the presence of triclosan at the end 

of our study (42 days), as estimated 

using Tax4Fun (Fig 6) (Aßhauer et al., 

2015). Of the well characterized 

ENRs (FabI, FabK, FabL, and FabV) 

and metagenome-derived 7-a-HSDH, 

fabL, which is known for its triclosan 

resistance, was the most abundant at 

10 and 100 mg Kg-1 triclosan (Heath 

et al., 2000; Kagle and Hay, 2002; 

Khan et al., 2016; Massengo-Tiassé 

and Cronan, 2008; McMurry et al., 

1998a). The predicted prevalence of 

fabK decreased in a dose response 

manner and was impacted by even 1 

mg Kg-1 triclosan (Fig 6). Only the 

taxa Flavobacteriaceae and 

Chitinophaga were found to encode fabK by BLASTp analyses (Table S3). Although the fabK 

from Enterococcus faecalis and the metagenome-derived fabK ENR homologue have been 

reported to confer mild resistant to triclosan (Heath and Rock, 2000; Khan et al., 2016), E. coli 

expressing fabL can tolerate triclosan in agar at levels beyond its limit of solubility (Kagle and 

 
Fig 6. Scaled heatmap of the predicted abundance of triclosan-
relevant genes (ENRs, efflux pumps, and aromatic degradation 
genes) in all triclosan treatments at 42 days in the presence (+) 
and absence (-) of biochar, as inferred by Tax4Fun analysis. 
fabI, fabK, fabL: enoyl-acyl-carrier reductase (KEGG#: 
K00208, K02371, and K10780, respectively), marA and soxS: 
AraC family transcriptional regulator (K13632 and K13631, 
respectively), clcA: chlorocatechol 1,2-dioxygenase (K15253), 
catA: catechol 1,2-dioxygenase (K03381), pht3: phthalate 4,5-
dioxygenase (K07519), benA: benzoate 1,2-dioxygenase 
subunit alpha (K05549), nahAc: naphthalene 1,2-dioxygenase 
subunit alpha (K14579), hcaE: 3-phenylpropionate/trans-
cinnamate dioxygenase subunit alpha (K05708) 
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Hay, 2002). The Tax4fun results also showed that fabIs, most of which are known to be triclosan 

sensitive, were less abundant in all triclosan treatments than the control (Fig 6). The ENR fabV 

was not predicted to be present by Tax4fun, which may have resulted from the lack of gene 

annotation and assigned KEGG Ortholog profiles in some of the pre-computed genomes used by 

Tax4Fun like Flavobacterium. Yet, BLAST analyses demonstrated the presence of a FabV-like 

ENR in the genomes of some taxa that increased in those soils exposed to triclosan (Table S3). 

FabV is known to confer triclosan-resistance in opportunistic human pathogens like 

Pseudomonas aeruginosa and Vibrio cholera (Huang et al., 2016; Massengo-Tiassé and Cronan, 

2008; Zhu et al., 2010).	Several studies on triclosan resistance have reported that multidrug 

efflux pumps such as AcrAB-TolC and MexAB-OprM can confer resistance on pathogens like 

Salmonella enterica, E. coli and P. aeruginosa (Chuanchuen et al., 2001, 2003; McMurry et al., 

1998b; Webber et al., 2008). Interestingly, genome analyses showed that AcrAB-TolC efflux 

pumps are also encoded by most of the bacteria whose relative abundances increased in the 

presence of triclosan, many of which have additional types of triclosan-resistant ENRs (Table 

S3, Fig 5B). Tax4fun predicted that AcrAB-TolC efflux pump positive regulators marA and soxS 

were likely to be more abundant in the 10 mg Kg-1 and 100 mg Kg-1 triclosan treatment than in 

the control or 1 mg Kg-1 treatment (Fig 6). Overexpression of these genes in E. coli has been 

associated with modest triclosan resistance (McMurry et al., 1998b). 

 

2.3.6 Higher Triclosan Concentrations Resulted in More Biodegradation 

One explanation for alpha diversity being higher at 100 mg Kg-1 than at 10 mg Kg-1 is the 

possibility that xenobiotic degraders were favored at the highest triclosan concentration. In 

support of that hypothesis, we found that mineralization followed a dose response, being highest 
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at higher concentrations of triclosan (Fig 1A). Additionally, several genes encoding the 

degradation of aromatic compounds such as catechol- and benzoate dioxygenases were predicted 

to be more abundant in the 100 mg Kg-1 treatment by Tax4fun (Fig 6), although the 

phenoxybenzoate dioxygenase hcaE, which has been closely related with the putative triclosan-

degrading dioxygenase tcsA (Kagle et al., 2015), was predicted to be less abundant. 

Stenotrophomonas and Variovorax, which increased in the presence of triclosan (Fig 5B) 

include known xenobiotic degraders (Dejonghe et al., 2003; Lee et al., 2002; Sørensen et al., 

2008), and members of both genera appear to encode the TCS-resistance determinants: FabV and 

AcrAB-TolC efflux pump (Table S3). Interestingly, Stenotrophomonas has recently been shown 

via stable isotope probing to use triclosan as carbon source in sewage sludge enrichments (Lee et 

al., 2014; Lolas et al., 2012). Stenotrophomonas maltophilia is known to overexpress a 

multridrug-efflux pump after triclosan exposure, conferring not only resistance to triclosan but to 

other antibiotics as well (Sanchez et al., 2005). This ubiquitous genus is also home to 

opportunistic human pathogens (Al-Anazi and Al-Jasser, 2014; Brooke, 2012). This is the first 

report, however, of Stenotrophomonas abundance increasing in triclosan amended soils. 

Contrary to expectations based on our earlier work with triclosan degrading bacteria, 

none of the triclosan-enriched OTUs were related to Sphingomonadales (Hay et al., 2001; Kagle 

et al., 2015). In fact, the genera Sphingomonas and Sphingopyxis decreased four to five-fold 

when exposed to all tested triclosan concentrations (Fig 5B, S3b, S4). This was very surprising 

given that members of these genera have been reported to degrade triclosan (Kagle et al., 2015; 

D. G. Lee et al., 2012; Mulla et al., 2016) and Sphingomonadales abundance has been shown to 

increase in sediments receiving 60 mg Kg-1 of triclosan (Guo et al., 2016). In that work, 

however, triclosan disappearance exceeded 80%, thus high degradation correlated with increase 
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Sphingomonadales abundance suggesting that triclosan degrading Sphingomonadales may have 

contributed to triclosan degradation. 

Not all Sphingomonadales, however, are resistant to triclosan or able to degrade it. Kim 

et al. (2011) found that the well-characterized xenobiotic degrader Sphingomonas wittichii RW1 

could not degrade triclosan and was sensitive to it, even at very low doses (<0.01 mg L-1). The 

triclosan sensitivity of members of these genera may be explained by both the gene dosage and 

the nature of the FabI encoded in the genome. The genomes of the known triclosan-degraders 

Sphingomonas sp. RD1 and Sphingomonas sp. YL-JM2C (Kagle et al., 2015; Mulla et al., 2016, 

2015) encode three or more FabI homologs, several of which are predicted to be triclosan 

resistant, whereas their closest relatives encode only one FabI which is predicted to be sensitive 

to triclosan (Table S4).  

The relatively low recovery of 14CO2 (<6.5% of added 14C-triclosan) (Fig 1) from our 

samples, coupled with the decrease in Sphingomonadales in our soil (Fig 5 and S3) is consistent 

with the hypothesis that triclosan resistance and degradation determinants are not universal traits 

among Sphingomonadales (Table S4). This may explain in part why triclosan degradation rates 

vary widely from soil to soil (Lozano et al., 2010; Ying et al., 2007; Butler et al., 2012b; Higgins 

et al., 2011). In addition, abiotic factors like soil pH, texture, moisture content, and organic 

matter have been found to affect triclosan bioavailability and degradation rate in soil (Butler et 

al., 2012b; Chen et al., 2008; Wu et al., 2009). 

In summary, our work with 16S rRNA gene sequencing coupled with predictive 

functional gene profiling suggests that multiple resistant determinants are likely used by soil 

bacteria exposed to triclosan. Additionally, our work implies that aromatic dioxygenases with 

broad substrate specificity, but which have not previously been implicated in triclosan 
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metabolism, may contribute to its degradation in the soil. More work such as stable isotope 

probing, metatranscriptomics, and characterization of triclosan resistant isolates from soil will be 

required to test these hypotheses. 

 

2.4. CONCLUSIONS 

Even though biochar appeared to reduce triclosan bioavailability, biochar could not overcome 

the effect of higher concentrations of triclosan on soil bacterial communities. Triclosan addition 

resulted in large community shifts. Several bacteria taxa increased in presence of triclosan, 

including those home to opportunistic pathogens that encode triclosan resistant ENRs and 

multidrug efflux pumps (Khan et al., 2015; McMurry et al., 1998a). Several aromatic-

degradation genes were predicted to be more abundant in our highest triclosan treatment. 

Xenobiotic degraders like Variovorax and Stenotrophomonas (Dejonghe et al., 2003; Lee et al., 

2002) increased in our soil with triclosan addition, though the relative abundance of 

Sphingomonas, that includes well-characterized triclosan degraders, decreased even at our lowest 

concentration (1 mg Kg-1). Our results suggest that bacterial responses to triclosan addition were 

concentration dependent with resistance being primary at 10 mg Kg-1 and with degradation, by 

uncharacterized triclosan degraders, being more important at 100 mg Kg-1. 

 

2.5. REFERENCES 

Adolfsson-Erici,	M.,	Pettersson,	M.,	Parkkonen,	J.,	Sturve,	J.,	2002.	Triclosan,	a	commonly	
used	bactericide	found	in	human	milk	and	in	the	aquatic	environment	in	Sweden.	
Chemosphere	46,	1485–1489.	

Aiello,	A.E.,	Larson,	E.L.,	Levy,	S.B.,	2007.	Consumer	antibacterial	soaps:	effective	or	just	
risky?	Clin.	Infect.	Dis.	45,	S137–S147.	



 

 48 

Al-Anazi,	K.A.,	Al-Jasser,	A.M.,	2014.	Infections	Caused	by	Stenotrophomonas	maltophilia	in	
Recipients	of	Hematopoietic	Stem	Cell	Transplantation.	Front.	Oncol.	4,	232.	
https://doi.org/10.3389/fonc.2014.00232	

Anderson,	C.R.,	Condron,	L.M.,	Clough,	T.J.,	Fiers,	M.,	Stewart,	A.,	Hill,	R.A.,	Sherlock,	R.R.,	
2011.	Biochar	induced	soil	microbial	community	change:	Implications	for	
biogeochemical	cycling	of	carbon,	nitrogen	and	phosphorus.	Pedobiologia	54,	309–
320.	https://doi.org/10.1016/j.pedobi.2011.07.005	

Andrade,	N.A.,	Lozano,	N.,	McConnell,	L.L.,	Torrents,	A.,	Rice,	C.P.,	Ramirez,	M.,	2015.	Long-
term	trends	of	PBDEs,	triclosan,	and	triclocarban	in	biosolids	from	a	wastewater	
treatment	plant	in	the	Mid-Atlantic	region	of	the	US.	J.	Hazard.	Mater.	282,	68–74.	
https://doi.org/10.1016/j.jhazmat.2014.09.028	

Aßhauer,	K.P.,	Wemheuer,	B.,	Daniel,	R.,	Meinicke,	P.,	2015.	Tax4Fun:	predicting	functional	
profiles	from	metagenomic	16S	rRNA	data.	Bioinformatics	31,	2882–2884.	
https://doi.org/10.1093/bioinformatics/btv287	

Atkinson,	C.J.,	Fitzgerald,	J.D.,	Hipps,	N.A.,	2010.	Potential	mechanisms	for	achieving	
agricultural	benefits	from	biochar	application	to	temperate	soils:	a	review.	Plant	Soil	
337,	1–18.	https://doi.org/10.1007/s11104-010-0464-5	

Bair,	D.A.,	Mukome,	F.N.D.,	Popova,	I.E.,	Ogunyoku,	T.A.,	Jefferson,	A.,	Wang,	D.,	Hafner,	S.C.,	
Young,	T.M.,	Parikh,	S.J.,	2016.	Sorption	of	Pharmaceuticals,	Heavy	Metals,	and	
Herbicides	to	Biochar	in	the	Presence	of	Biosolids.	J.	Environ.	Qual.	45,	1998–2006.	
https://doi.org/10.2134/jeq2016.03.0106	

Balmer,	M.E.,	Poiger,	T.,	Droz,	C.,	Romanin,	K.,	Bergqvist,	P.-A.,	Müller,	M.D.,	Buser,	H.-R.,	
2004.	Occurrence	of	Methyl	Triclosan,	a	Transformation	Product	of	the	Bactericide	
Triclosan,	in	Fish	from	Various	Lakes	in	Switzerland.	Environ.	Sci.	Technol.	38,	390–
395.	https://doi.org/10.1021/es030068p	

Bates,	D.,	Mächler,	M.,	Boelker,	B.,	Walker,	S.,	2015.	Fitting	Linear	Mixed-Effects	Models	
Using	lme4.	J.	Stat.	Softw.	67,	1-48.	https://doi.org/10.18637/jss.v067.i01	

Bester,	K.,	2003.	Triclosan	in	a	sewage	treatment	process—balances	and	monitoring	data.	
Water	Res.	37,	3891–3896.	https://doi.org/10.1016/S0043-1354(03)00335-X	

Bhargava,	H.N.,	Leonard,	P.A.,	1996.	Triclosan:	applications	and	safety.	Am.	J.	Infect.	Control	
24,	209–218.	

Brooke,	J.S.,	2012.	Stenotrophomonas	maltophilia:	an	Emerging	Global	Opportunistic	
Pathogen.	Clin.	Microbiol.	Rev.	25,	2–41.	https://doi.org/10.1128/CMR.00019-11	

Butler,	E.,	Whelan,	M.J.,	Ritz,	K.,	Sakrabani,	R.,	van	Egmond,	R.,	2012a.	The	effect	of	triclosan	
on	microbial	community	structure	in	three	soils.	Chemosphere	89,	1–9.	
https://doi.org/10.1016/j.chemosphere.2012.04.002	

Butler,	E.,	Whelan,	M.J.,	Ritz,	K.,	Sakrabani,	R.,	van	Egmond,	R.,	2011.	Effects	of	triclosan	on	
soil	microbial	respiration.	Environ.	Toxicol.	Chem.	30,	360–366.	
https://doi.org/10.1002/etc.405	

Butler,	E.,	Whelan,	M.J.,	Sakrabani,	R.,	van	Egmond,	R.,	2012b.	Fate	of	triclosan	in	field	soils	
receiving	sewage	sludge.	Environ.	Pollut.	167,	101–109.	
https://doi.org/10.1016/j.envpol.2012.03.036	

Cha,	J.,	Cupples,	A.M.,	2009.	Detection	of	the	antimicrobials	triclocarban	and	triclosan	in	
agricultural	soils	following	land	application	of	municipal	biosolids.	Water	Res.	43,	
2522–2530.	https://doi.org/10.1016/j.watres.2009.03.004	



 

 49 

Chen,	J.,	Liu,	X.,	Li,	L.,	Zheng,	Jinwei,	Qu,	J.,	Zheng,	Jufeng,	Zhang,	X.,	Pan,	G.,	2015.	Consistent	
increase	in	abundance	and	diversity	but	variable	change	in	community	composition	
of	bacteria	in	topsoil	of	rice	paddy	under	short	term	biochar	treatment	across	three	
sites	from	South	China.	Appl.	Soil	Ecol.	91,	68–79.	
https://doi.org/10.1016/j.apsoil.2015.02.012	

Chen,	Z.,	Song,	Q.,	Cao,	G.,	Chen,	Y.,	2008.	Photolytic	degradation	of	triclosan	in	the	presence	
of	surfactants.	Chem.	Pap.	62,	608-615.	https://doi.org/10.2478/s11696-008-0077-
0	

Chuanchuen,	R.,	Beinlich,	K.,	Hoang,	T.T.,	Becher,	A.,	Karkhoff-Schweizer,	R.R.,	Schweizer,	
H.P.,	2001.	Cross-resistance	between	triclosan	and	antibiotics	in	Pseudomonas	
aeruginosa	is	mediated	by	multidrug	efflux	pumps:	exposure	of	a	susceptible	mutant	
strain	to	triclosan	selects	nfxB	mutants	overexpressing	MexCD-OprJ.	Antimicrob.	
Agents	Chemother.	45,	428–432.	https://doi.org/10.1128/AAC.45.2.428-432.2001	

Chuanchuen,	R.,	Karkhoff-Schweizer,	R.R.,	Schweizer,	H.P.,	2003.	High-level	triclosan	
resistance	in	Pseudomonas	aeruginosa	is	solely	a	result	of	efflux.	Am.	J.	Infect.	
Control	31,	124–127.	https://doi.org/10.1067/mic.2003.11	

Cole,	J.R.,	Wang,	Q.,	Fish,	J.A.,	Chai,	B.,	McGarrell,	D.M.,	Sun,	Y.,	Brown,	C.T.,	Porras-Alfaro,	A.,	
Kuske,	C.R.,	Tiedje,	J.M.,	2014.	Ribosomal	Database	Project:	data	and	tools	for	high	
throughput	rRNA	analysis.	Nucleic	Acids	Res.	42,	D633–D642.	
https://doi.org/10.1093/nar/gkt1244	

Dann,	A.B.,	Hontela,	A.,	2011.	Triclosan:	environmental	exposure,	toxicity	and	mechanisms	
of	action.	J.	Appl.	Toxicol.	31,	285-311.	https://doi.org/10.1002/jat.1660	

Dejonghe,	W.,	Berteloot,	E.,	Goris,	J.,	Boon,	N.,	Crul,	K.,	Maertens,	S.,	Höfte,	M.,	Vos,	P.D.,	
Verstraete,	W.,	Top,	E.M.,	2003.	Synergistic	Degradation	of	Linuron	by	a	Bacterial	
Consortium	and	Isolation	of	a	Single	Linuron-Degrading	Variovorax	Strain.	Appl.	
Environ.	Microbiol.	69,	1532–1541.	https://doi.org/10.1128/AEM.69.3.1532-
1541.2003	

Dhillon,	G.S.,	Kaur,	S.,	Pulicharla,	R.,	Brar,	S.K.,	Cledón,	M.,	Verma,	M.,	Surampalli,	R.Y.,	2015.	
Triclosan:	Current	Status,	Occurrence,	Environmental	Risks	and	Bioaccumulation	
Potential.	Int.	J.	Environ.	Res.	Public.	Health	12,	5657–5684.	
https://doi.org/10.3390/ijerph120505657	

Edwards,	M.,	Topp,	E.,	Metcalfe,	C.D.,	Li,	H.,	Gottschall,	N.,	Bolton,	P.,	Curnoe,	W.,	Payne,	M.,	
Beck,	A.,	Kleywegt,	S.,	Lapen,	D.R.,	2009.	Pharmaceutical	and	personal	care	products	
in	tile	drainage	following	surface	spreading	and	injection	of	dewatered	municipal	
biosolids	to	an	agricultural	field.	Sci.	Total	Environ.	407,	4220–4230.	
https://doi.org/10.1016/j.scitotenv.2009.02.028	

Faoagali,	J.,	Fong,	J.,	George,	N.,	Mahoney,	P.,	O’Rourke,	V.,	1995.	Comparison	of	the	
immediate,	residual,	and	cumulative	antibacterial	effects	of	Novaderm	R,	Novascrub	
R,	Betadine	Surgical	Scrub,	Hibiclens,	and	liquid	soap.	Am.	J.	Infect.	Control	23,	337–
343.	https://doi.org/10.1016/0196-6553(95)90263-5	

Glöckner,	F.O.,	Yilmaz,	P.,	Quast,	C.,	Gerken,	J.,	Beccati,	A.,	Ciuprina,	A.,	Bruns,	G.,	Yarza,	P.,	
Peplies,	J.,	Westram,	R.,	Ludwig,	W.,	2017.	25	years	of	serving	the	community	with	
ribosomal	RNA	gene	reference	databases	and	tools.	J.	Biotechnol.	261,	169–176.	
https://doi.org/10.1016/j.jbiotec.2017.06.1198	

Guo,	Q.,	Yan,	J.,	Wen,	J.,	Hu,	Y.,	Chen,	Y.,	Wu,	W.,	2016.	Rhamnolipid-enhanced	aerobic	
biodegradation	of	triclosan	(TCS)	by	indigenous	microorganisms	in	water-sediment	



 

 50 

systems.	Sci.	Total	Environ.	571,	1304–1311.	
https://doi.org/10.1016/j.scitotenv.2016.07.171	

Harrow,	D.I.,	Felker,	J.M.,	Baker,	K.H.,	2011.	Impacts	of	Triclosan	in	Greywater	on	Soil	
Microorganisms.	Appl.	Environ.	Soil	Sci.	2011,	646750.	
https://doi.org/10.1155/2011/646750	

Hay,	A.G.,	Dees,	P.M.,	Sayler,	G.S.,	2001.	Growth	of	a	bacterial	consortium	on	triclosan.	FEMS	
Microbiol.	Ecol.	36,	105–112.	

Heath,	R.J.,	Rock,	C.O.,	2000.	Microbiology:	a	triclosan-resistant	bacterial	enzyme.	Nature	
406,	145–146.	

Heath,	R.J.,	Su,	N.,	Murphy,	C.K.,	Rock,	C.O.,	2000.	The	Enoyl-[acyl-carrier-protein]	
Reductases	FabI	and	FabL	from	Bacillus	subtilis.	J.	Biol.	Chem.	275,	40128–40133.	
https://doi.org/10.1074/jbc.M005611200	

Heidler,	J.,	Halden,	R.U.,	2007.	Mass	balance	assessment	of	triclosan	removal	during	
conventional	sewage	treatment.	Chemosphere	66,	362–369.	
https://doi.org/10.1016/j.chemosphere.2006.04.066	

Helbing,	C.C.,	Van	Aggelen,	G.,	Veldhoen,	N.,	2011.	Triclosan	Affects	Thyroid	Hormone–
Dependent	Metamorphosis	in	Anurans.	Toxicol.	Sci.	119,	417–418.	

Higgins,	C.P.,	Paesani,	Z.J.,	Abbott	Chalew,	T.E.,	Halden,	R.U.,	Hundal,	L.S.,	2011.	Persistence	
of	triclocarban	and	triclosan	in	soils	after	land	application	of	biosolids	and	
bioaccumulation	in	Eisenia	foetida.	Environ.	Toxicol.	Chem.	30,	556–563.	

Hinther,	A.,	Bromba,	C.M.,	Wulff,	J.E.,	Helbing,	C.C.,	2011.	Effects	of	triclocarban,	triclosan,	
and	methyl	triclosan	on	thyroid	hormone	action	and	stress	in	frog	and	mammalian	
culture	systems.	Environ.	Sci.	Technol.	45,	5395–5402.	

Holmes,	I.,	Harris,	K.,	Quince,	C.,	2012.	Dirichlet	Multinomial	Mixtures:	Generative	Models	
for	Microbial	Metagenomics.	PLOS	ONE	7,	e30126.	
https://doi.org/10.1371/journal.pone.0030126	

Huang,	Y.-H.,	Lin,	J.-S.,	Ma,	J.-C.,	Wang,	H.-H.,	2016.	Functional	Characterization	of	Triclosan-
Resistant	Enoyl-acyl-carrier	Protein	Reductase	(FabV)	in	Pseudomonas	aeruginosa.	
Front.	Microbiol.	7,	1903.	https://doi.org/10.3389/fmicb.2016.01903	

Jenkins,	J.R.,	Viger,	M.,	Arnold,	E.C.,	Harris,	Z.M.,	Ventura,	M.,	Miglietta,	F.,	Girardin,	C.,	
Edwards,	R.J.,	Rumpel,	C.,	Fornasier,	F.,	Zavalloni,	C.,	Tonon,	G.,	Alberti,	G.,	Taylor,	G.,	
2017.	Biochar	alters	the	soil	microbiome	and	soil	function:	results	of	next-
generation	amplicon	sequencing	across	Europe.	GCB	Bioenergy	9,	591–612.	
https://doi.org/10.1111/gcbb.12371	

Jiten	Singh,	N.,	Shin,	D.,	Lee,	H.M.,	Kim,	H.T.,	Chang,	H.-J.,	Cho,	J.M.,	Kim,	K.S.,	Ro,	S.,	2011.	
Structural	basis	of	triclosan	resistance.	J.	Struct.	Biol.	174,	173–179.	

Jones,	G.L.,	Muller,	C.T.,	O’Reilly,	M.,	Stickler,	D.J.,	2006.	Effect	of	triclosan	on	the	
development	of	bacterial	biofilms	by	urinary	tract	pathogens	on	urinary	catheters.	J.	
Antimicrob.	Chemother.	57,	266–272.	https://doi.org/10.1093/jac/dki447	

Junker,	L.M.,	2004.	Effects	of	triclosan	incorporation	into	ABS	plastic	on	biofilm	
communities.	J.	Antimicrob.	Chemother.	53,	989–996.	
https://doi.org/10.1093/jac/dkh196	

Kagle,	J.,	Hay,	A.G.,	2002.	Construction	of	a	broad	host	range	cloning	vector	conferring	
triclosan	resistance.	BioTechniques	33,	490–492.	



 

 51 

Kagle,	J.M.,	Paxson,	C.,	Johnstone,	P.,	Hay,	A.G.,	2015.	Identification	of	a	gene	cluster	
associated	with	triclosan	catabolism.	Biodegradation	26,	235–246.	
https://doi.org/10.1007/s10532-015-9730-9	

Khan,	R.,	Kong,	H.G.,	Jung,	Y.-H.,	Choi,	J.,	Baek,	K.-Y.,	Hwang,	E.C.,	Lee,	S.-W.,	2016.	Triclosan	
Resistome	from	Metagenome	Reveals	Diverse	Enoyl	Acyl	Carrier	Protein	Reductases	
and	Selective	Enrichment	of	Triclosan	Resistance	Genes.	Sci.	Rep.	6,	32322.	
https://doi.org/10.1038/srep32322	

Khan,	R.,	Roy,	N.,	Choi,	K.,	Lee,	S.-W.,	2018.	Distribution	of	triclosan-resistant	genes	in	major	
pathogenic	microorganisms	revealed	by	metagenome	and	genome-wide	analysis.	
PLOS	ONE	13,	e0192277.	https://doi.org/10.1371/journal.pone.0192277	

Kim,	Y.-M.,	Murugesan,	K.,	Schmidt,	S.,	Bokare,	V.,	Jeon,	J.-R.,	Kim,	E.-J.,	Chang,	Y.-S.,	2011.	
Triclosan	susceptibility	and	co-metabolism	–	A	comparison	for	three	aerobic	
pollutant-degrading	bacteria.	Bioresour.	Technol.	102,	2206–2212.	
https://doi.org/10.1016/j.biortech.2010.10.009	

Kolpin,	D.W.,	Furlong,	E.T.,	Meyer,	M.T.,	Thurman,	E.M.,	Zaugg,	S.D.,	Barber,	L.B.,	Buxton,	
H.T.,	2002.	Pharmaceuticals,	Hormones,	and	Other	Organic	Wastewater	
Contaminants	in	U.S.	Streams,	1999−2000: 	A	National	Reconnaissance.	Environ.	Sci.	
Technol.	36,	1202–1211.	https://doi.org/10.1021/es011055j	

Kolton,	M.,	Harel,	Y.M.,	Pasternak,	Z.,	Graber,	E.R.,	Elad,	Y.,	Cytryn,	E.,	2011.	Impact	of	
Biochar	Application	to	Soil	on	the	Root-Associated	Bacterial	Community	Structure	of	
Fully	Developed	Greenhouse	Pepper	Plants.	Appl.	Environ.	Microbiol.	77,	4924–
4930.	https://doi.org/10.1128/AEM.00148-11	

Kozich,	J.J.,	Westcott,	S.L.,	Baxter,	N.T.,	Highlander,	S.K.,	Schloss,	P.D.,	2013.	Development	of	
a	Dual-Index	Sequencing	Strategy	and	Curation	Pipeline	for	Analyzing	Amplicon	
Sequence	Data	on	the	MiSeq	Illumina	Sequencing	Platform.	Appl.	Environ.	Microbiol.	
79,	5112–5120.	https://doi.org/10.1128/AEM.01043-13	

Latch,	D.E.,	Packer,	J.L.,	Stender,	B.L.,	VanOverbeke,	J.,	Arnold,	W.A.,	McNeill,	K.,	2005.	
Aqueous	photochemistry	of	triclosan:	Formation	of	2,4-dichlorophenol,	2,8-
dichlorodibenzo-p-dioxin,	and	oligomerization	products.	Environ.	Toxicol.	Chem.	24,	
517–525.	https://doi.org/10.1897/04-243R.1	

Lee,	D.G.,	Cho,	K.-C.,	Chu,	K.-H.,	2014.	Identification	of	triclosan-degrading	bacteria	in	a	
triclosan	enrichment	culture	using	stable	isotope	probing.	Biodegradation	25,	55–
65.	

Lee,	D.G.,	Chu,	K.-H.,	2013.	Effects	of	growth	substrate	on	triclosan	biodegradation	potential	
of	oxygenase-expressing	bacteria.	Chemosphere	93,	1904–1911.	
https://doi.org/10.1016/j.chemosphere.2013.06.069	

Lee,	D.G.,	Zhao,	F.,	Rezenom,	Y.H.,	Russell,	D.H.,	Chu,	K.-H.,	2012.	Biodegradation	of	triclosan	
by	a	wastewater	microorganism.	Water	Res.	46,	4226–4234.	
https://doi.org/10.1016/j.watres.2012.05.025	

Lee,	E.Y.,	Jun,	Y.S.,	Cho,	K.-S.,	Ryu,	H.W.,	2002.	Degradation	characteristics	of	toluene,	
benzene,	ethylbenzene,	and	xylene	by	Stenotrophomonas	maltophilia	T3-c.	J.	Air	
Waste	Manag.	Assoc.	52,	400–406.	

Lehmann,	J.,	Rillig,	M.C.,	Thies,	J.,	Masiello,	C.A.,	Hockaday,	W.C.,	Crowley,	D.,	2011.	Biochar	
effects	on	soil	biota	–	A	review.	Soil	Biol.	Biochem.,	43,	1812–1836.	
https://doi.org/10.1016/j.soilbio.2011.04.022	



 

 52 

Liu,	J.,	Wang,	J.,	Zhao,	C.,	Hay,	A.G.,	Xie,	H.,	Zhan,	J.,	2016.	Triclosan	removal	in	wetlands	
constructed	with	different	aquatic	plants.	Appl.	Microbiol.	Biotechnol.	100,	1459–
1467.	https://doi.org/10.1007/s00253-015-7063-6	

Lolas,	I.B.,	Chen,	X.,	Bester,	K.,	Nielsen,	J.L.,	2012.	Identification	of	triclosan-degrading	
bacteria	using	stable	isotope	probing,	fluorescence	in	situ	hybridization	and	
microautoradiography.	Microbiology	158,	2796–2804.	

Lozano,	N.,	Rice,	C.P.,	Ramirez,	M.,	Torrents,	A.,	2010.	Fate	of	triclosan	in	agricultural	soils	
after	biosolid	applications.	Chemosphere	78,	760–766.	
https://doi.org/10.1016/j.chemosphere.2009.10.043	

Massengo-Tiassé,	R.P.,	Cronan,	J.E.,	2008.	Vibrio	cholerae	FabV	Defines	a	New	Class	of	
Enoyl-Acyl	Carrier	Protein	Reductase.	J.	Biol.	Chem.	283,	1308–1316.	
https://doi.org/10.1074/jbc.M708171200	

Maurathan,	N.,	Orr,	C.,	Ralebitso-Senior,	T.K.,	2015.	Biochar	adsorption	properties	and	the	
impact	on	naphthalene	as	a	model	environmental	contaminant	and	microbial	
community	dynamics:	A	triangular	perspective.	In:	Lucas	Borja,	M.E.,	editors.	Soil	
Management:	Technological	Systems,	Practices	and	Ecological	Implications.	Nova	
Science	Publishers.	p	64-90.	

McMurry,	L.M.,	Oethinger,	M.,	Levy,	S.B.,	1998a.	Triclosan	targets	lipid	synthesis.	Nature	
394,	531–532.	https://doi.org/10.1038/28970	

McMurry,	L.M.,	Oethinger,	M.,	Levy,	S.B.,	1998b.	Overexpression	of	marA,	soxS,	or	acrAB	
produces	resistance	to	triclosan	in	laboratory	and	clinical	strains	of	Escherichia	coli.	
FEMS	Microbiol.	Lett.	166,	305–309.	

McNamara,	P.J.,	LaPara,	T.M.,	Novak,	P.J.,	2014.	The	Impacts	of	Triclosan	on	Anaerobic	
Community	Structures,	Function,	and	Antimicrobial	Resistance.	Environ.	Sci.	
Technol.	48,	7393–7400.	https://doi.org/10.1021/es501388v	

Meade,	M.J.,	Waddell,	R.L.,	Callahan,	T.M.,	2001.	Soil	bacteria	Pseudomonas	putida	and	
Alcaligenes	xylosoxidans	subsp.	denitrificans	inactivate	triclosan	in	liquid	and	solid	
substrates.	FEMS	Microbiol.	Lett.	204,	45–48.	

Meinicke,	P.,	2015.	UProC:	tools	for	ultra-fast	protein	domain	classification.	Bioinformatics	
31,	1382–1388.	https://doi.org/10.1093/bioinformatics/btu843	

Miller,	T.R.,	Heidler,	J.,	Chillrud,	S.N.,	DeLaquil,	A.,	Ritchie,	J.C.,	Mihalic,	J.N.,	Bopp,	R.,	Halden,	
R.U.,	2008.	Fate	of	Triclosan	and	Evidence	for	Reductive	Dechlorination	of	
Triclocarban	in	Estuarine	Sediments.	Environ.	Sci.	Technol.	42,	4570–4576.	

Mothur,	2013.	https://www.mothur.org/wiki/MiSeq_SOP	(accessed	5	October	2018).	
Mulla,	S.I.,	Hu,	A.,	Xu,	H.,	Yu,	C.-P.,	2015.	Draft	Genome	Sequence	of	Triclosan-Degrading	

Bacterium	Sphingomonas	sp.	Strain	YL-JM2C,	Isolated	from	a	Wastewater	
Treatment	Plant	in	China.	Genome	Announc.	3,	e00603-15.	
https://doi.org/10.1128/genomeA.00603-15	

Mulla,	S.I.,	Wang,	H.,	Sun,	Q.,	Hu,	A.,	Yu,	C.-P.,	2016.	Characterization	of	triclosan	metabolism	
in	Sphingomonas	sp.	strain	YL-JM2C.	Sci.	Rep.	6,	21965.	
https://doi.org/10.1038/srep21965	

Noyce,	G.L.,	Winsborough,	C.,	Fulthorpe,	R.,	Basiliko,	N.,	2016.	The	microbiomes	and	
metagenomes	of	forest	biochars.	Sci.	Rep.	6,	26425.	https://doi.org/10.1038/srep26425 



 

 53 

Ogunyoku,	T.A.,	Young,	T.M.,	2014.	Removal	of	Triclocarban	and	Triclosan	during	Municipal	
Biosolid	Production.	Water	Environ.	Res.	Res.	Publ.	Water	Environ.	Fed.	86,	197–
203.	

Pycke,	B.F.G.,	Roll,	I.B.,	Brownawell,	B.J.,	Kinney,	C.A.,	Furlong,	E.T.,	Kolpin,	D.W.,	Halden,	
R.U.,	2014.	Transformation	Products	and	Human	Metabolites	of	Triclocarban	and	
Triclosan	in	Sewage	Sludge	Across	the	United	States.	Environ.	Sci.	Technol.	48,	
7881–7890.	https://doi.org/10.1021/es5006362	

Quast,	C.,	Pruesse,	E.,	Yilmaz,	P.,	Gerken,	J.,	Schweer,	T.,	Yarza,	P.,	Peplies,	J.,	Glöckner,	F.O.,	
2013.	The	SILVA	ribosomal	RNA	gene	database	project:	improved	data	processing	
and	web-based	tools.	Nucleic	Acids	Res.	41,	D590–D596.	
https://doi.org/10.1093/nar/gks1219	

Raut,	S.A.,	Angus,	R.A.,	2010.	Triclosan	has	endocrine-disrupting	effects	in	male	western	
mosquitofish,	Gambusia	affinis.	Environ.	Toxicol.	Chem.	29,	1287–1291.	

Rognes,	T.,	Flouri,	T.,	Nichols,	B.,	Quince,	C.,	Mahé,	F.,	2016.	VSEARCH:	a	versatile	open	
source	tool	for	metagenomics.	PeerJ	4,	e2584.	https://doi.org/10.7717/peerj.2584	

Sabourin,	L.,	Beck,	A.,	Duenk,	P.W.,	Kleywegt,	S.,	Lapen,	D.R.,	Li,	H.,	Metcalfe,	C.D.,	Payne,	M.,	
Topp,	E.,	2009.	Runoff	of	pharmaceuticals	and	personal	care	products	following	
application	of	dewatered	municipal	biosolids	to	an	agricultural	field.	Sci.	Total	
Environ.	407,	4596–4604.	https://doi.org/10.1016/j.scitotenv.2009.04.027	

Sanchez,	P.,	Moreno,	E.,	Martinez,	J.L.,	2005.	The	Biocide	Triclosan	Selects	
Stenotrophomonas	maltophilia	Mutants	That	Overproduce	the	SmeDEF	Multidrug	
Efflux	Pump.	Antimicrob.	Agents	Chemother.	49,	781–782.	
https://doi.org/10.1128/AAC.49.2.781-782.2005	

Simpson,	E.H.,	1949.	Measurement	of	Diversity.	Nature	163,	688.	
https://doi.org/10.1038/163688a0	

Singer,	H.,	Müller,	S.,	Tixier,	C.,	Pillonel,	L.,	2002.	Triclosan: 	Occurrence	and	Fate	of	a	Widely	
Used	Biocide	in	the	Aquatic	Environment: 	Field	Measurements	in	Wastewater	
Treatment	Plants,	Surface	Waters,	and	Lake	Sediments.	Environ.	Sci.	Technol.	36,	
4998–5004.	https://doi.org/10.1021/es025750i	

Smebye,	A.,	Alling,	V.,	Vogt,	R.D.,	Gadmar,	T.C.,	Mulder,	J.,	Cornelissen,	G.,	Hale,	S.E.,	2016.	
Biochar	amendment	to	soil	changes	dissolved	organic	matter	content	and	
composition.	Chemosphere,	142,	100–105.	
https://doi.org/10.1016/j.chemosphere.2015.04.087	

Sørensen,	S.R.,	Albers,	C.N.,	Aamand,	J.,	2008.	Rapid	Mineralization	of	the	Phenylurea	
Herbicide	Diuron	by	Variovorax	sp.	Strain	SRS16	in	Pure	Culture	and	within	a	Two-
Member	Consortium.	Appl.	Environ.	Microbiol.	74,	2332–2340.	
https://doi.org/10.1128/AEM.02687-07	

Stewart,	M.J.,	Parikh,	S.,	Xiao,	G.,	Tonge,	P.J.,	Kisker,	C.,	1999.	Structural	basis	and	
mechanism	of	enoyl	reductase	inhibition	by	triclosan1.	J.	Mol.	Biol.	290,	859–865.	
https://doi.org/10.1006/jmbi.1999.2907	

Svenningsen,	H.,	Henriksen,	T.,	Priemé,	A.,	Johnsen,	A.R.,	2011.	Triclosan	affects	the	
microbial	community	in	simulated	sewage-drain-field	soil	and	slows	down	
xenobiotic	degradation.	Environ.	Pollut.	159,	1599–1605.	
https://doi.org/10.1016/j.envpol.2011.02.052	

Voelker,	R.,	2016.	Say	Goodbye	to	Some	Antibacterials.	JAMA	316,	1538–1538.	
https://doi.org/10.1001/jama.2016.14612	



 

 54 

Wang,	L.-Q.,	Falany,	C.N.,	James,	M.O.,	2004.	Triclosan	as	a	substrate	and	inhibitor	of	3′-
phosphoadenosine	5′-phosphosulfate-sulfotransferase	and	UDP-glucuronosyl	
transferase	in	human	liver	fractions.	Drug	Metab.	Dispos.	32,	1162–1169.	

Wang,	Q.,	Garrity,	G.M.,	Tiedje,	J.M.,	Cole,	J.R.,	2007.	Naïve	Bayesian	Classifier	for	Rapid	
Assignment	of	rRNA	Sequences	into	the	New	Bacterial	Taxonomy.	Appl.	Environ.	
Microbiol.	73,	5261–5267.	https://doi.org/10.1128/AEM.00062-07	

Watzinger,	A.,	Feichtmair,	S.,	Kitzler,	B.,	Zehetner,	F.,	Kloss,	S.,	Wimmer,	B.,	Zechmeister-
Boltenstern,	S.,	Soja,	G.,	2014.	Soil	microbial	communities	responded	to	biochar	
application	in	temperate	soils	and	slowly	metabolized	13C-labelled	biochar	as	
revealed	by	13C	PLFA	analyses:	results	from	a	short-term	incubation	and	pot	
experiment.	Eur.	J.	Soil	Sci.	65,	40–51.	https://doi.org/10.1111/ejss.12100	

Webber,	M.A.,	Randall,	L.P.,	Cooles,	S.,	Woodward,	M.J.,	Piddock,	L.J.V.,	2008.	Triclosan	
resistance	in	Salmonella	enterica	serovar	Typhimurium.	J.	Antimicrob.	Chemother.	
62,	83–91.	https://doi.org/10.1093/jac/dkn137	

White,	J.R.,	Nagarajan,	N.,	Pop,	M.,	2009.	Statistical	Methods	for	Detecting	Differentially	
Abundant	Features	in	Clinical	Metagenomic	Samples.	PLOS	Comput.	Biol.	5,	
e1000352.	https://doi.org/10.1371/journal.pcbi.1000352	

Wu,	C.,	Spongberg,	A.L.,	Witter,	J.D.,	2009.	Adsorption	and	Degradation	of	Triclosan	and	
Triclocarban	in	Soils	and	Biosolids-Amended	Soils.	J.	Agric.	Food	Chem.	57,	4900–
4905.	https://doi.org/10.1021/jf900376c	

Xia,	K.,	Hundal,	L.S.,	Kumar,	K.,	Armbrust,	K.,	Cox,	A.E.,	Granato,	T.C.,	2010.	Triclocarban,	
triclosan,	polybrominated	diphenyl	ethers,	and	4-nonylphenol	in	biosolids	and	in	
soil	receiving	33-year	biosolids	application.	Environ.	Toxicol.	Chem.	29,	597–605.	
https://doi.org/10.1002/etc.66	

Xu,	N.,	Tan,	G.,	Wang,	H.,	Gai,	X.,	2016.	Effect	of	biochar	additions	to	soil	on	nitrogen	
leaching,	microbial	biomass	and	bacterial	community	structure.	Eur.	J.	Soil	Biol.	74,	
1–8.	https://doi.org/10.1016/j.ejsobi.2016.02.004	

Yazdankhah,	S.P.,	Scheie,	A.A.,	Høiby,	E.A.,	Lunestad,	B.-T.,	Heir,	E.,	Fotland,	T.Ø.,	Naterstad,	
K.,	Kruse,	H.,	2006.	Triclosan	and	antimicrobial	resistance	in	bacteria:	an	overview.	
Microb.	Drug	Resist.	12,	83–90.	

Yilmaz,	P.,	Parfrey,	L.W.,	Yarza,	P.,	Gerken,	J.,	Pruesse,	E.,	Quast,	C.,	Schweer,	T.,	Peplies,	J.,	
Ludwig,	W.,	Glöckner,	F.O.,	2014.	The	SILVA	and	“All-species	Living	Tree	Project	
(LTP)”	taxonomic	frameworks.	Nucleic	Acids	Res.	42,	D643–D648.	
https://doi.org/10.1093/nar/gkt1209	

Ying,	G.-G.,	Yu,	X.-Y.,	Kookana,	R.S.,	2007.	Biological	degradation	of	triclocarban	and	
triclosan	in	a	soil	under	aerobic	and	anaerobic	conditions	and	comparison	with	
environmental	fate	modelling.	Environ.	Pollut.	150,	300–305.	
https://doi.org/10.1016/j.envpol.2007.02.013	

Yue,	J.C.,	Clayton,	M.K.,	2005.	A	Similarity	Measure	Based	on	Species	Proportions.	Commun.	
Stat.	-	Theory	Methods	34,	2123–2131.	https://doi.org/10.1080/STA-200066418	

Zaayman,	M.,	Siggins,	A.,	Horne,	D.,	Lowe,	H.,	Horswell,	J.,	2017.	Investigation	of	triclosan	
contamination	on	microbial	biomass	and	other	soil	health	indicators.	FEMS	
Microbiol.	Lett.	364,	1-6.	https://doi.org/10.1093/femsle/fnx163	

Zhang,	C.,	Lin,	Y.,	Tian,	X.,	Xu,	Q.,	Chen,	Z.,	Lin,	W.,	2017.	Tobacco	bacterial	wilt	suppression	
with	biochar	soil	addition	associates	to	improved	soil	physiochemical	properties	



 

 55 

and	increased	rhizosphere	bacteria	abundance.	Appl.	Soil	Ecol.	112,	90–96.	
https://doi.org/10.1016/j.apsoil.2016.12.005	

Zhao,	C.,	Xie,	H.,	Xu,	J.,	Xu,	X.,	Zhang,	J.,	Hu,	Z.,	Liu,	C.,	Liang,	S.,	Wang,	Q.,	Wang,	J.,	2015.	
Bacterial	community	variation	and	microbial	mechanism	of	triclosan	(TCS)	removal	
by	constructed	wetlands	with	different	types	of	plants.	Sci.	Total	Environ.	505,	633–
639.	https://doi.org/10.1016/j.scitotenv.2014.10.053	

Zhu,	L.,	Lin,	J.,	Ma,	J.,	Cronan,	J.E.,	Wang,	H.,	2010.	Triclosan	Resistance	of	Pseudomonas	
aeruginosa	PAO1	Is	Due	to	FabV,	a	Triclosan-Resistant	Enoyl-Acyl	Carrier	Protein	
Reductase.	Antimicrob.	Agents	Chemother.	54,	689–698.	
https://doi.org/10.1128/AAC.01152-09	

Zorrilla,	L.M.,	Gibson,	E.K.,	Jeffay,	S.C.,	Crofton,	K.M.,	Setzer,	W.R.,	Cooper,	R.L.,	Stoker,	T.E.,	
2009.	The	Effects	of	Triclosan	on	Puberty	and	Thyroid	Hormones	in	Male	Wistar	
Rats.	Toxicol.	Sci.	107,	56–64.	https://doi.org/10.1093/toxsci/kfn225	

	

	

  



 

 56 

SUPPLEMENTARY MATERIALS 

 

Fig S1. Number of shared and unique OTUs at each triclosan treatment (1, 10 and 100 mg Kg-1) 

and control (0 mg Kg-1). The richness was similar for all groups. The number of OTUs at 0 mg 

Kg-1, 1 mg Kg-1, 10 mg Kg-1, and 100 mg Kg-1 were 595, 585, 597, and 576, respectively. The 

total richness was 734 OTUs 
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Fig S2. NMDS analysis of the bacterial community structures using qYC dissimilarity distances. 

Distances between symbols on the NMDS plot reflect relative dissimilarities in the community 

structures. The 2 axes represent 95% of the variance. The lowest stress is 0.104 with an R2 value 

of 0.97. Ellipses represent the 95% confidence intervals around the centroid for each cluster. The 

ellipse centroids are indicated with       . a. AMOVA showed that the bacterial communities 

sampled on days 21 and 42 were not different from each other (p=0.216), but were different from 

day 7 samples (p<0.01). b. The bacterial communities were not significantly impacted by biochar 

(p=0.678).  
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Fig S3. More OTUs decreased (7) in abundance than increased (2) after exposure to 10 mg Kg-1 

triclosan as compared to the control. a. The volcano plot shows the fold change (x axis) in OTUs 

between 10 mg Kg-1 and the control for all time points, as well as the statistical significance of 

that change (y axis) as determined by NPM analysis. OTUs above the dotted line were 

differentially abundant (adjusted p<0.05). Green OTUs increased more than 2-fold in 10 mg Kg-1 

triclosan treatment, while red OTUs decreased more than 2-fold. b. Change in abundance of 

OTUs significantly impacted by triclosan from days 21 and 42 in the presence (grey boxes) and 

absence (white boxes) of biochar. 

  



 

 59 

 

Fig S4. Triclosan exposure negatively affected the relative abundance of Sphingomonas (�) and 

Sphingopyxis (D) at 21 and 42 days by triclosan treatment in presence (+) and absence (-) of 

biochar. The relative abundance of each genus was normalized to the most abundant replicate in 

the control. The maximum relative abundances for Sphingomonas and Sphingopyxis in the 

control were 0.0353% and 0.0004%, respectively.  
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Table S1. Ratio of the relative abundance of OTUs significantly affected by biochar (NPM 

analysis, adjusted p<0.05) summed up at phylum level for each triclosan treatment. A ratio of 1 

indicates no effect of biochar, <1 that biochar had a negative impact, and >1 that biochar 

positively affected the population. 

 

Phylum	
Triclosan	concentration	

0	mg	Kg-1	 1	mg	Kg-1	 10	mg	Kg-1	 100	mg	Kg-1	
Acidobacteria	 0.9	 		0.5*	 NA	 NA	
Actinobacteria	 1.0	 		1.2*	 		0.8*	 		0.8*	
Bacteroidetes	 		2.2*	 		2.3*	 1.4	 0.9	
Firmicutes	 1.2	 1.3	 0.9	 1.0	
Proteobacteria	 1.0	 0.9	 		1.6*	 		1.4*	

* indicates significant difference of relative abundances between the presence (1%) and 

absence (0%) of biochar (Wilcoxon test, p<0.05). NA: no significant impact of biochar 

on any OTU belonging to that phylum (NPM analysis, p>0.05) 
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Table S2. Summary of significant treatments according to different statistical analyses 

 

Analysis	 Time	
zero	

0	mg	Kg-1	 1	mg	Kg-1	 10	mg	Kg-
1		

100	mg	Kg-
1	

NMDS	and	AMOVA	analysis	using	
qYC	distances	

	
A	 B	 C	 D	

DMM	modeling	 I	 II	 II	 III	 III	

CLC	using	relative	abundances	of	
significantly	different	OTUs	found	
by	NPM	analysis	

a	 b	 b	 c	 d	
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Table S3. The “X” indicates NCBI BLAST hits (³ 27% predicted amino acid sequence identity) 

for triclosan-resistance determinants in bacteria taxa that were present in the 100 mg Kg-1 

treatment, but not in the control (0 mg Kg-1), or which increased more than 2-fold in response to 

triclosan. 

 

Bacterial	taxa	 NCBI	taxa	ID	 FabI	 FabK	 FabV	 AcrB	
Stenotrophomonas	 40323	 X	 	 X	 X	
Massilia	 149698	 X	 	 	 X	
Janthinobacterium	 29580	 X	 	 	 X	
Variovorax	 34072	 X	 	 X	 X	
Caulobacteraceae	 76892	 X	 	 X	 X	
Pedobacter	 84567	 	 	 X	 X	
Flavobacteriaceae	 49546	 X	 X	 X	 X	
Gillisia*	 244698	 	 	 	 X	
Flavobacterium*	 237	 	 	 X	 X	
Nakamurellaceae	 85031	 X	 	 	 X	
Frigoribacterium	 96492	 	 	 	 X	
Luteibacter	 242605	 X	 	 X	 X	
Nocardiopsis	 2013	 X	 	 	 X	
Chitinophaga	 79328	 	 X	 X	 X	
Actinomycetospora	 402649	 X	 	 	 	
Achromobacter	 222	 X	 	 	 X	

* results from tBLASTn analyses. No hits were obtained for either FabL or 7-a-HSDH 
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Table S4. Total number of FabIs and their predicted sensitivity to triclosan in the genomes of 

Sphingomonas species, including triclosan degraders (Sphingomonas sp. RD1 and Sphingomonas 

sp. YL-JM2C: grey box). 

 

Organism	
Total	

predicted	
FabI	

potentially	
sensitive	
FabI	

potentially	
resistant	
FabI	

NCBI	Accession	
number	

Sphingomonas	sp.	RD1	 4	 1	 3	 Unpublished	data	
Sphingomonas	sp.	YL-
JM2C	

3	 1	 2	 ASTM00000000	

S.	wittichii	RW1*	 1	 1	 0	 NC_009511	
S.	histidinilytica*	 1	 1	 0	 NZ_FUYM00000000.1	
S.	haloaromaticamans*	 1	 1	 0	 MIPT01000001.1	
Sphingomonas	sp.	NIC1	 1	 1	 0	 NZ_CP015521	
Sphingomonas	sp.	MM-1	 1	 1	 0	 NC_020561	
Sphingomonas	sp.	LM7	 1	 1	 0	 NZ_CP019511	
Sphingomonas	sp.	LK11	 1	 1	 0	 NZ_CP013916	
Sphingomonas	sp.	JJ-A5	 1	 1	 0	 NZ_CP018221	
Sphingomonas	sp.	ABOJV	 1	 1	 0	 NZ_CP018820	
* closest relatives to Sphingomonas sp. RD1 and Sphingomonas sp. YL-JM2C 
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CHAPTER 3 

SEX-DEPENDENT DISTURBANCE EFFECT OF GLYPHOSATE ON THE MOUSE 

GUT MICROBIOME 

 

Vienvilay Phandanouvong-Lozanoa, Alexandra Fabianb, Erin Daugherityb, Anthony G. Haya 

aDepartment of Microbiology, Cornell University, Ithaca, NY, 14853, USA 

bCenter for Animal Resources and Education, Cornell University, Ithaca, NY, 14853, USA 

 

ABSTRACT 

Glyphosate is an herbicide used worldwide to control the growth of weeds and grasses in 

agricultural crops. Although glyphosate specifically targets plants with sensitive a glyphosate 5-

enolpyruvylshikimate-3-phosphate synthase (EPSPS), little is known about its impact on 

intestinal bacteria some of which have EPSPS that are known to be sensitive. Here, we exposed 

male and female mice to two doses of a glyphosate-based herbicide (GBH, 0.07 mg 

glyphosate/L, and 0.7 mg glyphosate/L), and collected fecal samples from infancy to adulthood. 

Male mice receiving 0.07 mg glyphosate/L gained more weight than controls after 8 weeks. 

Analysis of 16S rRNA gene amplicons from mouse feces revealed a sex-dependent impact, with 

GBH only affecting male mice. Higher bacterial diversity and richness were found in male mice 

after 8 weeks of exposure to the low GBH-dose. Faith’s index suggested that the affected 

bacteria were phylogenetically diverse. When compared with the control, 11 out of the 13 

significantly altered OTUs in the low dose showed increased abundance, whereas 8 out of the 11 

significantly altered OTUs in the high dose showed decreased abundance. Furthermore, weighted 
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Unifrac distances compared over time showed that the low GBH-dose appeared to disturb the 

maturation of the mouse microbiome. Our study suggests that low dose exposures to GBH might 

have greater impact on mammals than has previously been considered and suggests that more 

studies with lower glyphosate doses than the maximum contaminant level (MCL) established for 

the drinking water are required. 

 

Keywords: herbicide, 16S rRNA gene deep sequencing, diversity indexes, weighted Unifrac, 

volatility 

 

3.1. INTRODUCTION 

The use of herbicides is a regular practice in agriculture and landscape management to control 

the growth of unwanted weeds and lawns (Gianessi, 2013). Glyphosate is the most widely used 

herbicide in the world and works by inhibiting the 5-enolpyruvylshikimate-3-phosphate synthase 

(EPSPS), which is an essential enzyme in plants for the biosynthesis of aromatic amino acids 

(Benbrook, 2016). Genetically modified crops with a glyphosate-resistant EPSPS from 

Agrobacterium sp. CP4 were introduced in the late 1990s and quickly came to dominate the US 

markets for corn, soy, and cotton (Funke et al., 2006; Myers et al., 2016; Swanson et al., 2014). 

The wide-spread occurrence of glyphosate residues in the environment has raised concerns about 

glyphosate’s impact on ecosystems and human health (Battaglin et al., 2014; Myers et al., 2016). 

In fact, the World Health Organization has recently reclassified glyphosate as a probable 

carcinogen in humans (Bai and Ogbourne, 2016; IARC, 2015), though the carcinogenic risk 

posed by glyphosate is still hotly debated (Tarazona et al., 2017). 
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Although glyphosate-based herbicides were primarily introduced to target sensitive-

glyphosate EPSPS weeds, numerous studies have demonstrated glyphosate’s antimicrobial 

activity on non-target microorganisms (Ackermann et al., 2015; Shehata et al., 2013). The 

shikimate pathway is not exclusively found in plants, many bacterial and fungal species use this 

pathway to synthesize the aromatic amino acids: tyrosine, phenylalanine, and tryptophan (Zhi et 

al., 2014). Based on the molecular weight, sequence homology, and tolerance to glyphosate, the 

EPSPS enzymes can be classified in two phylogenetic clusters: Class I and Class II (Mir et al., 

2015; Zhi et al., 2014). While the Class I enzymes are sensitive to glyphosate and are present in 

all plants and some bacteria like Escherichia coli; the Class II enzymes can tolerate high 

concentrations of glyphosate and can be found in bacteria like Staphylococcus aureus (Funke et 

al., 2006; Priestman et al., 2005). Mammals including humans do not synthesize aromatic amino 

acids de novo and therefore they do not have the shikimate pathway (Mir et al., 2015). For that 

reason, glyphosate was firstly believed to confer minimal risk to mammals; but humans and 

other mammals rely on their diet and on gut bacteria for aromatic amino acids (EFSA, 2015). 

Thus, glyphosate’s impact on non-target organisms including gut microbes is being reevaluated 

(Myers et al., 2016). 

Glyphosate’s effects on non-target organisms range from changing behavioral patterns in 

honey bees to reducing reproduction of soil-dwelling earthworms (Balbuena et al., 2015; Gaupp-

Berghausen et al., 2015; Van Bruggen et al., 2018). Glyphosate has been found responsible for 

inhibiting bacterial growth and disturbing microbial communities from diverse environments 

including soil, rhizosphere, cattle rumen, and poultry gastrointestinal tract (Ackermann et al., 

2015; Nicolas et al., 2016; Shehata et al., 2013; Tsui and Chu, 2003). Furthermore, the bacterial 

response to glyphosate has been found to be species and even strain-specific (Aristilde et al., 
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2017), and thus may be difficult to discern from amplicon based sequencing of different 

microbial communities which typically only provide genus level resolution. 

Gut microbiota play critical roles in the wellbeing of the host by affecting maturation of 

the immune system, niche exclusion of pathogens, fermentation of non-digestible fibers, 

anaerobic metabolism of proteins, and xenobiotic biotransformation (Kho and Lal, 2018). 

Moreover, imbalances in the gut bacterial communities could lead to health disorders like 

inflammatory bowel disease, obesity and diabetes (Frank et al., 2007; Gao et al., 2015; Surana 

and Kasper, 2017). The gut microbiota constantly interacts with environmental chemicals or 

xenobiotics, metabolizing some directly upon ingestion or after metabolism by the liver 

(Björkholm et al., 2009; Claus et al., 2016). Some xenobiotics may inhibit bacterial growth, 

thereby altering the gut microbiome composition and/or interfering with the bacterial metabolic 

activities, which could result in deleterious effects for the host (Claus et al., 2016). Given the 

demonstrated antibacterial activity of glyphosate on intestinal bacteria, it has been hypothesized 

that glyphosate would exert a negative effect on the host if consumed in the diet (Ackermann et 

al., 2015; Shehata et al., 2013).  

The impact of glyphosate on the gut microbiome has not been fully investigated. The few 

papers that have been published on mouse gut microbiome vary with respect to glyphosate 

concentration, formulation, and route of administration (Lozano et al., 2018; Mao et al., 2018; 

Nielsen et al., 2018). Here, we describe changes to the intestinal bacterial communities of mice 

raised on a low glyphosate, high fat diet after consuming a glyphosate-based herbicide (GBH) in 

their drinking water at levels below the Maximum Contaminate Level (MCL) established to 

protect human health in drinking water (US EPA, 2015) 
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3.2. MATERIALS AND METHODS 

3.2.1. Mouse Feed and Chemicals 

C57BI/6/J mice were fed a refined high fat diet (D12450, Research Diets, Inc), which was tested 

for glyphosate content using a glyphosate ELISA kit and following the manufacturer’s 

instructions (Abraxis, Inc). The refined high fat diet contained very low levels of glyphosate 

(111.5 ± 7.8 ng/g), which was approximately nine times less than the standard maintenance diet 

Teklad LM-485 from Envigo (1000.8 ± 216.6 ng/g). GlyStarâ Plus (Albaugh, LLC), a 

commercial glyphosate-based herbicide (GBH), was use as glyphosate source to expose mice 

through the drinking water. 

 

3.2.2. Experimental Conditions 

All mice used in this study belonged to the inbred strain C57BI/6/J obtained from Jackson Labs 

(Bar Harbor, ME). The mice were handled according to the regulations of the Institutional 

Animal Care and Use Committee (IACUC) of Cornell University, and kept in the facilities of the 

Center for Animal Resources and Education (CARE), Cornell University, Ithaca, NY. To 

minimize any potential effects of glyphosate present in the maintenance diet provided by the 

Cornell vivarium, mice were fed with the refined low fat version of the diet mentioned above 

(D12450, Research Diets, Inc), and were bred for two generations. The F2 generation of 

newborn mice stayed with their mothers until weaning, and later were separated by gender and 

treatment group. To minimizing confounding parental effects and mother-to-offspring microbiota 

vertical transmission, mice from each litter were split between treatment groups and the control. 
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Infant six-week old male and female mice received GBH in the drinking water ad libitum 

at 0.07 mg glyphosate/L (low dose) and 0.7 mg glyphosate/L (high dose). New batches of GBH-

supplemented water were prepared weekly. There was no supplementation of GBH in the 

drinking water for the control group. Mouse weights and fecal samples were collected at the 

beginning of GBH supplementation (week 0), and weekly thereafter for eight weeks. Due to 

resource limitations, only week 1 and week 8 samples after GBH supplementation were analyzed 

by deep 16S rRNA gene sequencing. The collected fecal samples were stored at -20°C for further 

analysis. Pellets from five male and five female mice were chosen at random from each 

experimental group for further analysis. 

 

3.2.3. DNA Extraction from Fecal Pellets 

DNA was extracted from fecal pellets using a modified protocol from Yu and Forster (2005). 

Briefly, fecal pellets arrayed in 96-well deep plates were resuspended with lysis buffer [2% 

(wt/vol) SDS, 100 mM Tris HCl, 5mM EDTA, 200 mM NaCl, pH 8.0] and 2 M ammonium 

acetate; and then bead-beaten with 0.1 mm glass beads for 2 min at maximum speed (Mini-

Beadbeater-96, BioSpec Products). Later, the DNA extracts were purified with a 96-well DNA 

Clean and Concentrator kit following the manufacturer’s instructions (Zymo Research). DNA 

concentrations were measured via a fluorescence approach using the Quant-iTTM PicoGreenTM 

dsDNA assay kit and following the manufacturer’s instructions (ThermoFisher Scientific). DNA 

extracts were kept at -20°C for further analysis. 
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3.2.4. 16S rRNA Amplification and Sequencing 

Following the Mothur Wet-lab SOP and recommendations of Kozich et al. (2013), the V4 region 

of the 16S rRNA gene was amplified via PCR using barcoded-primers (Mothur, 2013). The V4-

16S rRNA gene specific primer sequences were: forward primer 515F 5’ – 

GTGYCAGCMGCCGCGGTAA – 3’ and reverse primer 806R 5’ – 

GGACTACNVGGGTWTCTAAT – 3’. Each PCR reaction was performed in triplicate in a 

Peltier Thermal Cycler PTC-200 (MJ Research) and using AccuPrimeTM Pfx DNA polymerase 

(ThermoFisher Scientific) and 2 ng of template DNA. A commercial mock community 

containing DNA from 8 different bacterial species (Zymo Research) was also amplified and 

prepared for sequencing as positive control. The PCR conditions were as follows: initial 

denaturation at 95°C for 2 min; 30 cycles of denaturation at 95°C for 20 s, annealing at 50°C for 

15 s, and extension at 72°C for 5 min; and final extension at 72°C for 10 min. All PCR products 

were combined and visualized with gel electrophoresis. A SequalPrepTM Normalization plate kit 

(ThermoFisher Scientific) was used to clean up and normalize the PCR products. The pooled 

amplicon library was sent to the Institute of Biotechnology at Cornell University to be sequenced 

on an Illumina instrument using a MiSeq V2 kit with paired-end 2x250 bp reads and following 

the manufacturer’s protocol (Illumina). 

 

3.2.5. Sequence Processing 

Raw 16S rRNA gene sequence reads were analyzed using Mothur v1.40.0 according to the 

Mothur MiSeq SOP (Mothur, 2013) and Kozich et al. (2013). Briefly, forward and reverse 

sequence reads were aligned and grouped into contigs based on PANDseq quality scores. All 

sequence reads were screened and trimmed to 275 bp. The quality filtered sequences were 
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aligned to the Silva 16S rRNA gene reference database, release 132 (Quast et al., 2013; Yilmaz 

et al., 2014). Later, the aligned sequences were preclustered allowing up to 2 bp difference 

between sequences over 250bp. Chimeric sequences were removed using the VSEARCH 

algorithm, which identified 5.54% of the sequence reads as chimeras (Rognes et al., 2016). 

Unspecific sequence reads that might correspond to 18S rRNA gene, archaeal, chloroplast or 

mitochondrial DNA were also removed. The final dataset then contained in total 1,226,234 

processed sequences, ranged from 2,138 to 42,595 per sample. Lastly, by using the Ribosomal 

Database Project, release 16 (Cole et al., 2014), and following the protocol of Wang et al., (2007) 

with 100 bootstrap iterations and 97% confidence cutoff, the processed sequences were clustered 

and classified into Operational Taxonomic Units (OTUs). The mock community was processed 

along with the entire amplicon library and was used to assess the error rate of the sequence 

processing. This analysis showed a very low error (<0.0005%).  

 

3.2.6. Bacterial Diversity and Community Analyses 

Bacterial diversity and community analyses were carried out using Mothur v1.40.0. Specific R 

packages for handling phylogenetic sequencing data, plotting data, and performing statistical 

analysis as mentioned below were installed in R version 3.4.4 and RStudio 1.1.442. 

In order to perform comparative analysis, all samples were subsampled to the smallest 

library (2,138 sequences), and prior to each analysis they were rarified with 1,000 

randomizations. Rarefaction analysis showed that under these conditions all samples had a 

coverage above 99%, demonstrating that the number of analyzed sequences was representative 

of the diversity in each sample.  
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Bacterial alpha diversity was assessed using three different diversity indexes: Shannon 

(richness and eveness), Faith (phylogenetic differences), and Chao1 estimator (unique OTUs). 

Results from the diversity analyses were plotted with the ggplot2 package 3.1.0 for R, and the 

Venn diagrams with the VennDiagram package 1.6.20 for R. The statistical analyses were 

performed with a linear mixed-effects model from the lme4 package 1.1-17 for R, which 

corrected for the effect of the intrinsic mouse variability (Bates et al., 2015). 

The bacterial communities between samples were compared by using pairwise similarity 

matrices generated with weighted Unifrac distances. The weighted Unifrac metric not only 

accounts for differential abundance of OTUs between the samples, but it also considers the 

relatedness of the community members by calculating the phylogenetic distances between them 

(Lozupone et al., 2011). The non-metric multidimensional scaling (NMDS) approach was used 

to visualize the Weighted Unifrac distances in ordination plots. The package plot3D 1.1.1 for R 

was used to generate the NMDS plots. The spatial separation between the groupings in the 

NMDS plots was statistically evaluated with the Analysis of Molecular Variance (AMOVA) in 

Mothur v1.40.0. 

 

3.2.7. Differential Bacterial Abundance among Experimental Groups  

The relative abundances of OTUs that were significantly different between the GBH treatments 

and the control were identified using the DESeq2 package 1.18.1 implemented in Bioconductor 

3.9 for R (Bioconductor, 2003). DeSeq2 uses a negative binomial distribution which not only 

considers the mean but also the dispersion of the variance, providing a more balanced selection 

of OTUs differentially abundant while controlling for the probability of false discoveries (Anders 

and Huber, 2010). Fold changes of differentially abundant OTUs were visualized on volcano 
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plots using R and the maptools package 0.9-4 for R. To calculate the fold-change in unique 

OTUs the rarefaction cutoff to the smallest library (2,138 reads) was used to determine the 

detection limit (1/2,138). Then, a minimal fold-change was estimated using the count number of 

sequences for each unique OTUs. 

 

3.2.8. Temporal Volatility Analysis 

The weighted Unifrac distances were also used to evaluate the glyphosate’s effect on the 

temporal volatility of the bacterial communities within treatment groups. By comparing the shifts 

of the bacterial communities over the time, the volatility analysis allows measurement and 

tracking of disturbance and stability stages of the microbiome (DiGiulio et al., 2015; Halfvarson 

et al., 2017). Pairwise comparisons of the weighted Unifrac distances were performed among 

mice at each sampling time, and were plotted using the ggplot2 package 3.1.0 for R. The 

significance of the weighted Unifrac distance shifts over time was tested with a linear mixed-

effects model from the lme4 package 1.1-17 for R, which not only accounted for the intrinsic 

mouse variability, but also for the shift of each pairwise comparison over the time (Bates et al., 

2015). 

 

3.3. RESULTS AND DISCUSSION 

3.3.1. Sex-Dependent Impact of Glyphosate on Mouse Weight and Gut Bacteria 

Both male and female mice gained weight as expected over the course of the experiment (Fig 

1A). Male mice showed higher body weights than females at all sampling times in both GBH 

treatments and in the control (no GBH addition). At the end of this study, however, males 
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exposed to the low GBH-dose (0.07 mg glyphosate/L) had significantly higher weight and higher 

total weight gain than those in either the control or the high GBH-dose (0.7 mg glyphosate/L) 

(Fig 1A and Supporting Information Fig. S1, ANOVA p<0.01, TukeyHSD adjusted p<0.01). The 

female body weights did not show any differences in the GBH treatments at any of the sampling 

times. 

 
Fig 1. Body weight (A) and Faith’s phylogenetic diversity index (B) over time showed significant effect of 
GBH on male mice at low dose (0.07 mg glyphosate/L) compared to higher dose (0.7 mg glyphosate/L) 
and to the control (no GBH addition) after 8 weeks of exposure (week 8) (ANOVA p<0.001, TukeyHSD 
adjusted *p<0.05, **p<0.01, ***p<0.001). f: female, m: male. 
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The low GBH-dose had a sex dependent effect on the bacterial alpha diversity of the 

mouse fecal samples as measured by the Faith’s index which emphasizes phylogenetic breadth 

(Faith and Baker, 2006). Specifically, Faith’s index was higher in male mice after 8 weeks of 

exposure to the low GBH-dose than in either the control or the high dose (Fig 1B, ANOVA 

p<0.001, TukeyHSD adjusted p<0.05). Faith’s index was not significantly different between the 

female controls and either treatment group (Fig 1B). Modest, though significant differences 

between females in the low GBH-dose and the control were observed in the Shannon index 

which integrates the relative abundance and presence/absence of OTUs without respect to 

phylogenetic origin (Hill et al., 2003; Shannon, 1948) (Supporting Information Fig. S2, ANOVA 

p<0.05, TukeyHSD adjusted p<0.05). The traditional Shannon’s calculation depends more on the 

richness and the less abundant species. Therefore, the Shannon’s index is sensitive to small 

diversity changes, regardless of the relatedness of OTUs. The Faith’s Phylogenetic Diversity 

index, on the other hand, considers phylogenetic distances between the species or in this case 

between the OTUs, meaning that samples with more distantly related OTUs would have a higher 

Faith’s score, implying greater diversity (Faith and Baker, 2006). Our findings suggest that the 

GBH used in this study had a sex-dependent effect, and importantly that the low-GBH dose (0.07 

mg glyphosate/L) affected phylogenetically diverse bacteria taxa. 

The total number of unique OTUs and bacterial richness as calculated using the Chao1 

estimator demonstrated that the changes observed in the Faith’s index were likely due to 

proliferation of unique taxa (Fig 2.). The Chao1 estimation for male mice after 8 weeks of 

receiving low GBH-dose was significantly higher than in either the control or the high dose (Fig 

2A, ANOVA p<0.05, TukeyHSD adjusted p<0.001). This was driven by a higher number of 

unique OTUs (Fig 2B). 
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A recent study with male juvenile Sprague-Dawley rats also showed a higher number of 

OTUs in the colon after two weeks of exposure to a commercial glyphosate-based herbicide (25 

mg/Kg of GlyfonovaÒ 450Plus) (Nielsen et al., 2018). Interestingly, in Nielsen’s et al. work 

(2018) male rats exposed to only glyphosate (2.5 mg/Kg and 25 mg/Kg) did not show differences 

in the number of OTUs and neither dose of glyphosate alone had an effect on bacterial diversity. 

 
Fig 2. A. Bacterial richness measured by the Chao1 estimator increased significantly at the end of this study (week 
8) on male mice receiving low dose of GBH (0.07 mg glyphosate/L) in contrast to the high dose of GBH (0.7 mg 
glyphosate/L) and to the control (no GBH addition) (ANOVA, p<0.05, TukeyHSD adjusted ***p<0.001). f: 
female, m: male. B. Male mice receiving low dose of GBH also showed higher number of unique OTUs at the end 
of this study as represented by the Venn diagrams. Numbers in each shared and unshared area indicate the number 
of shared and unique OTUs, respectively. 
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For ease of comparison, based on estimated water consumption of 6 ml/day of 0.07mg 

glyphosate/L (low GBH-dose), our mice would have received 21ug/Kg, or approximately 1000 

times less glyphosate. Some studies have shown that the toxic effects of glyphosate-based 

herbicides depend not only on the glyphosate concentrations, but also on the formulation 

suggesting a combined effect, with some formulations being more toxic that glyphosate alone 

(Kurenbach et al., 2015; Nicolas et al., 2016; Tsui and Chu, 2003). 

In the few studies about glyphosate’s effect on gut bacteria, only two have reported 

bacterial diversity indexes and neither considered the glyphosate’s effect on bacterial diversity 

using phylogenetically sensitive methods (Mao et al., 2018; Nielsen et al., 2018). Our study, in 

contrast, not only investigated GBH’s effect on the phylogenetic bacterial diversity via the 

Faith’s index, but also used the Chao1 estimator to assess bacterial richness. Thus, we observed a 

significant sex-dependent impact of GBH on phylogenetically distant bacteria, driven largely by 

proliferation at levels greater than the control. 

Comparison of bacterial diversity between communities (beta diversity) as a function of 

sex, time, and treatment using weighted Unifrac distances showed, as expected, that the bacterial 

communities grouped in a sex-dependent fashion (Kim et al., 2019; Markle et al., 2013) at all 

times and treatments (Supporting information Fig S3A, AMOVA p<0.05). The pairwise 

similarity matrices were also consistent with our alpha diversity findings of a sex-dependent 

impact of GBH on bacterial diversity and richness. While the pairwise similarity matrices of 

female bacterial communities showed no effect of GBH exposure, males exposed to GBH doses 

grouped separately from each other and from the control (Fig 3 and Supporting information Fig 

S3B and Fig S3C, AMOVA p<0.01 in males). 
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A recent study with a glyphosate-based herbicide also found a sex-dependent impact on 

gut microbiota using Sprague-Dawley rats (Lozano et al., 2018). Their results contrasted with 

ours in that they only found effects on the bacterial communities of female rats long-term 

exposed (2 years) to a glyphosate-based herbicide. In Lozano’s et al. study (2018), the female 

bacterial communities (collapsed at the phylum and family levels) grouped separately from the 

control, but there were no differences between the glyphosate-based herbicide doses (50 ng/L, 

0.1 g/L, 2.25 g/L of estimated glyphosate). Importantly, they only compared the communities of 

three animals, did not report controlling for litter effects, and their low glyphosate-based 

herbicide doses would have been swamped by the levels of glyphosate the same group 

previously found in laboratory mouse chow (Mesnage et al., 2015). The contrasting results 

 
 
Fig 3. Weighted Unifrac distances and NMDS analysis of male mice showed that the bacterial communities 
grouped by treatment group (AMOVA, p<0.01). Control: no GBH addition, Low: 0.07 mg glyphosate /L, 
High: 0.7 mg glyphosate/L. Spatial distances between symbols reflect relative similarities between the 
bacterial communities. The threes axes represent 91% of the variance with a lowest stress of 0.130 and an R2 
value of 0.92. 
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suggest that the sex-dependent effect of glyphosate not only varies among animals, but also 

depends on the dose and time of glyphosate exposure. 

 

3.3.2. Differential Relative Abundance of Glyphosate-Impacted Bacteria Taxa 

Since our results showed a GBH’s effect only on male mice, further analyses of the bacterial 

abundances and changes over the time focused exclusively on males. 

Analysis of 16S rRNA gene amplicons revealed a cumulative total of 712 OTUs in the 

male fecal samples. The most abundant phylum was Firmicutes (67.2 ± 11.1%) followed by 

Verrucomicrobia, Bacteroidetes, and Proteobacteria (16.3 ± 7.2%, 11.8 ± 4.4%, and 3.3 ± 1.4%, 

respectively). Of the 712, 41 OTUs had a significantly differential relative abundance in the 

GBH treatments when compared to the control after 8 weeks of exposure (DeSeq2, Benjamini-

Hochberg correction, adjusted p<0.05), of these 20 OTUs changed more than 2-fold (Fig 4). 

Most of the OTUs with more than 2-fold change in the high GBH-dose showed decreased 

relative abundances (8 out of 11), while in the low dose the majority of the differentially 

abundant OTUs increased in relative abundance (11 out of 13) (Fig 4A and 4B). The 8 OTUs 

with more than 2-fold decreased relative abundance in the high GBH-dose belonged to genera 

from the families: Lachnospiraceae, Ruminococcaceae, and Erysipelotrichaceae (Fig 4C). In the 

low GBH-dose, eight OTUs with more than 2-fold increase relative abundance belonged to the 

family Lachnospiraceae, two to the family Ruminococcaceae, and one to Peptococcaceae (Fig 

4C). These findings are consistent with our bacterial diversity analyses suggesting that the two 

doses of GBH used in this study had different effects on mouse gut bacteria. 
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Fig 4. Pairwise comparisons of OTU relative abundances between the control and the GBH treatments found 20 differentially 
abundant OTUs with more than 2-fold change in male mice after 8 weeks (DeSeq2, Benjamini-Hochberg correction, adjusted p<0.05). 
The volcano plots show the OTU fold changes when the low and high GBH doses (0.07 mg glyphosate/L and 0.7 mg glyphosate/L, 
respectively) were compared against the control (A and B, respectively). OTUs above the dotted line had significant fold change. Up 
green triangles correspond to OTUs that increased more than 2-fold, and down red triangles to OTUs that decreased more than 2-fold 
when exposed to GBH. C. Taxonomic classification of the differentially abundant OTUs with more than 2-fold change. “unclas” and 
“uncul” in the genus name signify unclassified and uncultured, respectively. 
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Given these observations and the bacterial diversity results, we were particularly 

interested in examining the unique OTUs that proliferated in the low GBH-dose. As shown in 

Fig 2B, after 8 weeks of exposure the low GBH-dose had more unique OTUs than the control 

and the high dose. Of the 157 unique OTUs in the low dose, 16 showed more than 2-fold 

estimated change and belonged to diverse taxonomic groups. While all represented less than 

0.5% of the relative abundance (Table 1), when combined, these unique OTUs represented 

approximately 6.5% of the total relative abundance, however, their cumulative impact on the 

host remains unknown. 

Members of the clostridia Lachnospiraceae family have been reported to provide 

protection against colitis and show reduced abundance during inflammatory diseases in mice and 

humans (Frank et al., 2007; Surana and Kasper, 2017). In the bee midgut, on the other hand, 

Lachnospiraceae showed higher relative abundance after a 20 mg/L glyphosate treatment, 

though at lower glyphosate concentrations (0.8 mg/L and 4 mg/L) there was not a significant 

change (Dai et al., 2018). Ruminococcaceae, another clostridia family, also increased in the bee 

midgut after the 20 mg/L glyphosate treatment (Dai et al. 2018). In the rumen of cows, however, 

Ackerman et al. (2015) found that glyphosate had an inhibitory effect on the Ruminococcaceae 

genus Ruminocococcus, which are known to be important for fiber degradation. Several of our 

Ruminococcaceae OTUs that decreased more than 2-fold in the high GBH-dose (0.7 mg 

glyphosate/L) were Ruminiclostridium and other poorly characterized genera (Fig 4B and 4C). 

These contrasting findings suggest that glyphosate’s impact depends on host physiology and 

dose, but are not surprising given that even closely related species have been shown to be 

differentially susceptible to glyphosate (Ackermann et al., 2015; Aristilde et al., 2017; Shehata et 

al., 2013). Minimal inhibitory concentration (MIC) assays with pure glyphosate and glyphosate- 
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Table 1. Taxa and their associated OTUs that occurred at the end of this study (week 8) in the low-dose GBH treatment, but absent in 
the control or vice versa (grey highlighted). For the sake of comparison, minimal estimated fold-change was calculated based on the 
count number of sequences for each unique OTU divided by 1 which would represent a detection limit of 1/2,138 (rarefaction cutoff) 
or 0.04. 
 

Phylum Class Order Family Genus OTUid 
Minimal 

estimated 
fold-change 

Relative 
abundance 

(%) 
Actinobacteria Coriobacteriia Coriobacteriales Eggerthellaceae Parvibacter OTU098 9-fold 0.42 

Bacteroidetes Bacteroidia 

Bacteroidales Muribaculaceae unclas OTU188 4-fold 0.19 
Chitinophagales Chitinophagaceae uncul OTU248 2-fold 0.09 

Cytophagales Cytophagaceae Cytophaga OTU204 3-fold 0.14 
Microscillaceae Chryseolinea OTU175 0.14 

Firmicutes 

Bacilli Bacillales 

Listeriaceae Listeria OTU123 > 10-fold 0.46 
Bacillaceae unclas OTU125 10-fold 0.46 
Staphylococcaceae Staphylococcus OTU099 4-fold 0.19 
unclas unclas OTU118 3-fold 0.14 

Clostridia Clostridiales 

Lachnospiraceae 

A2 OTU368 > 10-fold 0.46 
FCS020_group OTU106 6-fold 0.28 
Lachnoclostridium OTU090 > 10-fold 0.46 
NK4A136_group OTU496 3-fold 0.14 

unclas OTU097 > 10-fold 0.46 
OTU134 0.46 

uncul OTU112 5-fold 0.23 

Ruminococcaceae 
Oscillibacter OTU080 7-fold 0.33 
Ruminococcaceae
_ge OTU021 > 10-fold 0.46 

Erysipelotrichia Erysipelotrichales Erysipelotrichaceae 
Candidatus_ 
Stoquefichus OTU071 > 10-fold 0.46 

Proteobacteria Alpha 
proteobacteria Rhizobiales 

Hyphomicrobiaceae Pedomicrobium OTU227 3-fold 0.14 

Xanthobacteraceae Pseudolabrys OTU105 4-fold 0.19 
uncul OTU155 2-fold 0.09 

Verrucomicrobia Verrucomicrobiae Verrucomicrobiales Akkermansiaceae Akkermansia OTU212 3-fold 0.14 
 
*unclas and uncul in the genus name signify unclassified and uncultured, respectively



 

 83 

-based herbicides have shown, for instance, that Salmonella serovar Typhimurium had higher 

MICs than the serovars Enteritidis and Infantis. Host-specific differences have also been found in 

the glyphosate susceptibility of Salmonella isolates from pigs and poultry (Poppe et al. 2019). 

Several studies have investigated bacterial susceptibility and resistance to glyphosate 

using in vitro assays with pure cultures as well as with samples from the intestinal environment 

(Ackermann et al., 2015; Clair et al., 2012; Shehata et al., 2013). Those results have shown that 

glyphosate’s impact depends not only on the bacteria taxa, but also on the formulation of the 

glyphosate based-herbicide (Clair et al., 2012; Nielsen et al., 2018). For example, the MICs to a 

glyphosate-based herbicide were higher than to pure glyphosate for commensal and pathogenic 

Escherichia coli strains, with pathogenic strains having higher MICs on average (Bote et al. 

2019b). 

We did not see any differential effect of our GBH on Enterobacteria. In our samples only 

two OTUs belonged to the Enterobacteriaceae family; one identified at the genus level as 

Escherichia-Shigella and the other unclassified. The relative abundance of the Escherichia-

Shigella OTU did not change significantly in response to the GBH (0.7 and 0.3 -fold change in 

the low and high GBH treatments, respectively). Neither E. coli nor S. enterica serovar 

Typhimurium were affected by daily exposure to a glyphosate based-herbicide (1mg/L 

glyphosate) after a week of exposure in an in vitro ruminal simulation system (Bote et al. 2019a). 

Those in vitro findings are consistent with our in vivo observations. 

Given that glyphosate inhibits the biosynthesis of aromatic amino acids, some authors 

have proposed to use it to control bacterial infections (Clair et al., 2012; Du et al., 2000; 

Kurenbach et al., 2015). Some pathogenic bacteria, however, are resistant to glyphosate 

(Ackermann et al., 2015; Kurenbach et al., 2015; Priestman et al., 2005; Shehata et al., 2013). 
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Shehata et al. (2013) found that Salmonella and Clostridium from poultry were more resistant to 

glyphosate than beneficial bacteria like Lactobacillus and Bifidobacterium. Clostridia also 

showed increased abundance after glyphosate exposure in the rumen of cows eating fodder from 

glyphosate treated fields (Ackermann et al., 2015).  

Although we did not detect OTUs from the pathogenic bacteria reported above, two of 

the unique OTUs with more than 2-fold estimated change in the low GBH-dose were identified 

at the genus level as Staphylococcus and Listeria (Table 1), to which pathogenic species such as 

Staphylococcus aureus and Listeria monocytogenes belong. To our knowledge, our study is the 

first to report the differential effects of glyphosate on these genera. S. aureus is a commensal 

bacterium responsible for respiratory diseases and bacteremia, while L. monocytogenes is a well-

known foodborne pathogen that causes gastroenteritis and can migrate to other organs triggering 

systemic infections (Aureli et al., 2000; Drevets and Bronze, 2008; Tong et al., 2015). Recent 

studies have demonstrated that commensal bacteria can prevent bacterial infections, providing 

colonization resistance against pathogenic bacteria such as L. monocytogenes and other 

opportunistic pathogens (Becattini et al., 2017; Zhang et al., 2017). Thus, our findings suggest 

that the low GBH-dose used in our work (0.07 mg glyphosate/L) might have disturbed the gut 

commensal microbiome thereby opening up an opportunity for possible proliferation of 

opportunistic pathogens, though no obvious health effects other than weight gain were noted for 

the mice receiving that dose. 

The glyphosate-susceptibility of microorganisms depends on both the sensitivity of the 5-

enolpyruvylshikimate-3-phosphate synthase (EPSPS) to glyphosate inhibition and the organism’s 

ability to scavenge aromatic amino acids from their environment. For instance, Snodgrassella 

alvi of the bee gut microbiome possess a class I EPSPS, which is sensitive to glyphosate, and 

therefore after glyphosate exposure S. alvi abundance significantly decreased, suggesting that 
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there were insufficient aromatic amino acids in the bees’ diet to satisfy S. alvi’s growth demands 

for these compounds (Motta et al., 2018). It has been speculated that disturbance of core 

members of the gut microbiome like S. alvi in bees might allow the colonization of opportunistic 

pathogens and affect bee health (Motta et al., 2018). In contrast, it has been suggested that there 

is sufficient supply of aromatic amino acids in the intestinal environment of rats on conventional 

chow to supplement the loss of endogenous aromatic amino acids by glyphosate-sensitive 

bacteria which may explain the limit impact of glyphosate in the recent work of Nielsen et al. 

(2018). 

We observed that male mice gained weight after 8 weeks of 0.07 mg glyphosate/L of 

GBH supplementation in the drinking water. Though we did not find increased abundances of 

bacteria associated with obesity and inflammatory diseases like the S24-7 Bacteroidetes family 

(Lozano et al. 2018), we were able to identify enriched and unique OTUs in the low GBH-dose 

(Table 1, Fig 2, and Fig 4) whose interactions in the gut microbiome might be affecting male 

mouse physiology and metabolism, though further work is required to elucidate the direct 

impacts of these shifts in the microbial population. 

 

3.3.3. Glyphosate’s Impact on Maturation of Male Mouse Gut Microbiome 

Changes in the bacterial communities are expected as animals and the microbiome matures 

(Koenig et al., 2011). Three sampling times were considered in this study once the mice were 

exposed to GBH: end of weaning (week 0), juvenile (week 1), and adulthood (week 8). Based on 

the NMDS plots and pairwise similarity matrices generated from the weighted Unifrac distances, 

in male mice the control group showed bacterial community shifts over the time (Fig 5), having a 

more stable community composition as it progressed to adulthood (Koenig et al., 2011). In the 
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control the NMDS analysis showed that the bacterial communities of week 1 and week 8 

grouped separately from week 0 (Fig 5A, AMOVA p<0.05). In the GBH treatments, to the 

contrary, there were no significant differences in the bacterial communities over time (Fig 5A). 

These findings suggest that GBH might be interfering with the maturation of the mouse gut 

microbiome. 

By coupling volatility analyses with a linear random-fixed effects model, we were able to 

evaluate how an individual mouse’s microbiome changed over time and corrected for the 

intrinsic variability among male mice at each sampling time. By doing so, we found that in the 

control group the weighted Unifrac distances were significantly higher in week 1 than in week 0 

(Fig 5B, ANOVA, p<0.05, TukeyHSD adjusted p< 0.01). This finding indicates that the 

dissimilarity between bacterial communities in the same animal increased in response to 

maturation from infant to juvenile. A similar response was observed on the high GBH-dose, 

where the weighted Unifrac distances of week 1 were higher than in week 0. Between week 1 

and week 8, although there was no difference in the control, there was a statistically significant 

difference in the bacterial communities of individual mice on the high dose (Fig 5B, ANOVA, 

p<0.05, TukeyHSD adjusted p< 0.05). Of note, there were no differences of the weighted 

Unifrac distances over time in the low-GBH dose (0.07 mg glyphosate/L), consistent with our 

hypothesis that GBH exposure affected maturation of the mouse microbiome, though there 

appeared to be dose-dependent differences in the impact of GBH. 
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Fig 4. A. 3D-NMDS plots of the weighted Unifrac distances from male mice showed that only 
the infant mice (week 0) from the control grouped separately from the rest of the sampling times 
(week 1: juvenile, week 8: adult) (AMOVA p<0.05). In the GBH treatments, there were no 
differential groupings of the bacterial communities with time. Relative spatial distances between 
the symbols represent bacterial community similarities. The three axes show 91% of the variance 
with a lowest stress of 0.130 and R2 value of 0.92. B. Temporal volatility analysis using 
weighted Unifrac distances found significant differences between infant and juvenile mice (week 
0 and week 1, respectively) in the control group and in the high dose-GBH treatment (ANOVA, 
p<0.05, TukeyHSD adjusted *p<0.05, **p<0.01), but there were no differences in the low dose-
GBH treatment. 
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Disruptions of the gut microbiome during the colonization process have proven to be 

detrimental to the host, affecting metabolism and increasing the risk to diseases associated to 

immunologic disorders (Koenig et al., 2011; Penders et al., 2007; Stokholm et al., 2018). 

Sprague Dawley rats exposed to low doses of glyphosate in utero (1.75 mg/Kg/day) showed 

changes in the gut microbiome composition at a very young age. One-month old rat pups 

exhibited higher abundance of the genus Prevotella and decreased abundance of the beneficial 

bacterium Lactobacillus (Mao et al., 2018). Although the long-term effects of glyphosate have 

not been fully investigated, bacterial imbalances in the gut microbiome caused by glyphosate 

have been hypothesized to impact nutritional deficiencies and intestinal diseases like celiac 

disease (Samsel and Seneff, 2013a, 2013b) though there is no direct experiment evidence to 

support this claim to our knowledge. Our temporal volatility analyses do, however, demonstrate 

that the low-GBH dose used in this study (0.07 mg glyphosate/L) altered maturation of the 

mouse microbiome, though the long-term consequences of such changes remain unknown. 

 

3.4. CONCLUSIONS 

There are growing concerns about glyphosate’s potential carcinogenic effect in humans, 

and the U.S. Environmental Protection Agency has published a drinking water Maximum 

Contaminate Level (MCL) for glyphosate of 0.7 mg/L (US EPA, 2015). In our study, mice 

exposed to the low GBH-dose (0.07 mg glyphosate/L) would have received 21 ug/Kg of 

glyphosate (based on 6 ml/day of water consumption). A 70 Kg human consuming 2 L/day of 

water with glyphosate at our low-GBH dose would have been exposed to 10X less glyphosate (2 

ug/Kg) than in mice; however, with a human drinking water at the MCL would have received 

approximately the same glyphosate dose (20 ug/Kg) as the mice in our low dose treatment. 



 

 89 

Our findings, in addition to revealing a sex-dependent effect of glyphosate on mouse gut 

bacteria, showed that the low GBH-dose used in this study (21 ug/Kg of glyphosate) impacted 

the bacterial diversity and richness measured by the Faith’s phylogenetic diversity index and 

Chao1 estimator. In contrast to the control group (no GBH addition), the low GBH-dose did not 

show normal changes in the bacterial communities over time suggesting interference with the 

expected maturation of the gut microbiome as mice transition to adulthood. Specifically, after 8 

weeks, bacteria taxa mostly belonging to Lachnospiraceae and Ruminococcaceae families were 

enriched by exposure to the low GBH-dose (unique OTUs), and most of the differentially 

abundant OTUs increased in this GBH treatment when compared to the control. Since 

glyphosate’s effect is species and even strain-specific, several members of these families should 

be included in future glyphosate-susceptibility assays, especially considering that these families 

harbor commensal bacteria whose imbalances might trigger intestinal illnesses (Koenig et al., 

2011; Penders et al., 2007). 

On aggregate, the evidence presented here demonstrates that low dose exposures to GBH 

had a previously unappreciated impact on microbiome maturation. This work suggests that 

additional studies with larger sample sizes and both glyphosate and GBH doses around or below 

the MCL should be performed. Future work should also consider using fecal transplants to 

unexposed germ-free mice to assess if the changes we measured in the gut microbiome were 

responsible for the observed weight gain in the male mice or whether they were a consequence of 

the weight gain.  
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SUPPLEMENTARY MATERIALS 

 

 
 
Fig S1. Total body weight gain (%) after 8 weeks of GBH exposure showed that male mice 
receiving low dose of GBH (0.07 mg glyphosate/L) gained more total weight than the control (no 
GBH) (ANOVA p<0.01, TukeyHSD adjusted **p<0.01). Female mice did not show differences 
between the treatment groups (ANOVA p>0.05). f: female, m: male. 
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 3 
 4 
Fig S2. Bacterial alpha diversity measured by the Shannon index did not show an evident effect 5 
of GBH on mice. In females, however, there was a modest effect after one week of exposure 6 
(week 1) to the low dose of GBH (ANOVA p<0.05, TukeyHSD adjusted *p<0.05, **p<0.01). 7 
Control: no GBH addition, Low: 0.07 mg glyphosate/L, High: 0.7 mg glyphosate/L. f: female, m: 8 
male. Dotted and continuous lines indicate significant pairwise comparisons among female and 9 
male mice, respectively. 10 
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Fig S3. Weighted Unifrac distances and NMDS analysis showed that the bacterial communities 
grouped significantly by gender (A) (AMOVA, p<0.05). While there was no impact of GBH 
addition in the bacterial communities of female mice (B) (AMOVA, p>0.05); in males the 
bacterial communities grouped by treatment group (C) (AMOVA, p<0.01). Control: no GBH 
addition, Low: 0.07 mg glyphosate /L, High: 0.7 mg glyphosate/L. Spatial distances between 
symbols reflect relative similarities between the bacterial communities. The threes axes represent 
91% of the variance with a lowest stress of 0.130 and an R2 value of 0.92. 
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ABSTRACT 

Flurbiprofen is a nonsteroidal, anti-inflammatory drug (NSAID). No bacterial enrichments or 

pure cultures have been previously reported to grow on flurbiprofen, but in an initial enrichment 

from sewage sludge, named Flur-4, we detected a putative ring-cleavage metabolite as well as 

dihydroxyflurbiprofen (DHF) and 3-fluoro-4-(1-carboxyethyl)benzoic (FCB), consistent with a 

biphenyl-like degradation pathway. We initially isolated a Phenylobacterium strain that appear 

pure when grown on flurbiprofen as a sole source of carbon and energy. Genomic analysis of this 

strain, however, revealed a mixed culture that lacked an obvious biphenyl-like-degradation 

operon. The strain itself was unstable and failed to survive long-term storage at -80°C. The 

frozen stock, however, did yield an Ochrobactrum species we named BC that was able to grow 

on flurbiprofen and produced a ring-cleavage metabolite from it. BC readily gave rise to small 

colony variants we called PZ that could not produce the ring-cleavage metabolite. Although the 

metagenome assembled genomes (MAGs) of both BC and PZ encoded genes for degradation of 
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aromatic compounds, neither encoded genes for an intact biphenyl-like pathway. Both, however, 

encoded a novel putative aromatic ring-hydroxylating dioxygenase (OfdA: putative flurbiprofen 

dioxygenase a-subunit from Ochrobactrum). PZ, however, lacked a benR-like transcriptional 

regulator that may have been required for ofdA expression, which may explain why this variant 

could no longer grow on flurbiprofen. The fact that benR was not contiguous with ofdA may also 

explain why no BC fosmid library clones degraded flurbiprofen. Future work should focus on 

putative function of OfdA in flurbiprofen metabolism and the potential role BenR in expression 

of ofdA. MG-RAST analysis of all the sequenced reads suggested contamination from other 

strains and the presence of a plasmid not included in the MAG assemblies which may also play 

an as yet, undetermined role in flurbiprofen degradation. Though our work has provided some 

insights about a novel flurbiprofen-degrader, the genomic characterization has proven to be 

challenging. Future work should also include reconstruction of plasmids from metagenome data, 

and reexamination of the default annotation parameters that may have mislabeled genes encoding 

potential flurbiprofen-degrading enzymes. 

 

Keywords: nonsteroidal anti-inflammatory drug, NSAID, biodegradation, aromatic ring-

hydroxylating dioxygenase, putative flurbiprofen dioxygenase, metagenome, Ochrobactrum 

 

4.1. INTRODUCTION 

Flurbiprofen (2-(3-fluoro-4-phenyl-phenyl)propanoic acid) is a nonsteroidal anti-inflammatory 

drug (NSAID) routinely prescribed to reduce pain and inflammation associated to osteoarthritis 

and rheumatoid arthritis (Davies, 1995; Richy et al., 2007). NSAIDs are a class of aromatic 

acidic drugs widely used because of their analgesic, antipyretic and anti-inflammatory properties. 
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They accomplish this by inhibiting prostaglandin synthesis by cyclooxygenase-1 (COX-1) and 

cycloxygenase-2 (COX-2) isoenzymes (Gentili, 2007; Gierse et al., 1999; Ricciotti and 

FitzGerald, 2011). Globally, NSAIDs are one of the most-consumed classes of pharmaceuticals 

and have limited removal during wastewater treatment (Camacho-Muñoz et al., 2012; Cycoń et 

al., 2016). While flurbiprofen is currently a prescription-only medication, recent reports suggest 

that flurbiprofen holds promise as cancer therapeutic, and even for anti-obesity purposes 

(Duncan et al., 2012; Hosoi et al., 2016; Wynne and Djakiew, 2010). If such applications prove 

to be highly effective, it is likely that flurbiprofen’s popularity will increase in coming decades 

which will lead to great environmental release.  

Environmental relevant concentrations of other NSAIDs like flurbiprofen such as 

diclofenac and ibuprofen have demonstrated to have toxic effects on several aquatic organisms 

including mussels and fish (Bickley et al., 2017; Gonzalez-Rey and Bebianno, 2014; Mezzelani 

et al., 2018; Parolini et al., 2011). Diclofenac and ibuprofen have also shown to disturb soil 

metabolic activities and associated microbial communities (Cycoń et al., 2016). Based on the 

compiled evidence from ecotoxicity studies, the Global Water Research Coalition (GWRC) 

which gathers research organizations from around the world including the USA and several 

European countries, listed diclofenac and ibuprofen in the top 10 priority water contaminants (de 

Voogt et al., 2009; Richardson and Ternes, 2011). 

More than 95% of orally consumed flurbiprofen is excreted through the kidney within 

24h, with 65% and 85% are glucuronide and sulfate flurbiprofen conjugates (Abdel-Aziz et al., 

2012). From the very few studies that have examined flurbiprofen environmental concentrations, 

flurbiprofen was detected in wastewater treatment plant (WWTP) effluents from France and Italy 

(0.21 and 0.34 µg/L flurbiprofen, respectively); but not in Swedish WWTP effluents (Andreozzi 

et al., 2003; Bendz et al., 2005). Based on flurbiprofen’s poor water solubility (Kow of 4.2), it is 
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likely that flurbiprofen binds to organic matter (Abdel-Aziz et al., 2012). The freely available 

web-based software, PBT profiler (Persistence, Bioaccumulation, and Toxicity assessments) 

developed for the US Environmental Protection Agency (US EPA), predicts flurbiprofen to be 

moderately toxic to fish and to be persistent in sediment (US EPA, 2015). 

Although the fungus Cunninghamella and the bacterium Streptomyces are capable of 

flurbiprofen biotransformation, the resulting metabolites are suggestive of cytochromes P450 

involvement (Amadio et al., 2010; Domaradzka et al., 2015). In fact, Cunninghamella elegans 

DSM 1908 is used as a model of mammalian drug metabolism (Moody et al., 2002). Recently, 

production of a putative ring-cleavage metabolite from flurbiprofen was detected in activated 

sludge exposed to flurbiprofen in the laboratory, but no stable enrichment culture was obtained 

(Yanaç and Murdoch, 2019). Thus, to date, no flurbiprofen-degrading consortium or isolate have 

been identified or characterized. 

Our study sought to investigate the potential capabilities of environmental bacteria to 

degrade flurbiprofen. Through flurbiprofen-enrichments from activated sludge, we were able to 

identify a bacterial enrichment capable of using flurbiprofen as sole carbon source, and 

characterized two bacteria capable of degrading flurbiprofen, though maintaining these bacteria 

in pure culture proved to be difficult. 

 

4.2. MATERIALS AND METHODS  

4.2.1. Enrichment Conditions and Bacterial Isolates 

A 500 mL sample of activated sludge from Ithaca Area Wastewater Treatment Facility (IAWTF, 

Ithaca, NY) was amended with 200 mg/L of flurbiprofen (98% purity, Acros Organics), and 

incubated with shaking (150 rpm) at room temperature. After a week, 20 mL of the enrichment 
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culture were transferred into 80 mL of fresh Minimal Salts Medium (MSM) containing 200 mg/L 

of flurbiprofen. The MSM medium was composed of 1 mM of MgSO4, 10 mM of K2HPO4, 3 

mM of NaH2PO4, 10 mM of (NH4)2SO4, 10 µM of Fe(NO3)3, and 100 µM of Ca(NO3)2 . Five 

weekly serial transfers (1:10) were performed in total. After the fifth transfer, the enriched 

culture was streaked onto MSM agar plates (16 g/L of noble agar) containing 200 mg/L of 

flurbiprofen. Then, bacterial colonies with distinctive morphology were isolated after serial 

transfers onto MSM agar plates containing 400 mg/L of flurbiprofen (Fisher Scientific). 

An apparent isolate we named Flur-4 when grown on flurbiprofen transiently 

accumulated a bright yellow color indicating the appearance of a putative ring fission metabolite. 

Additional isolates eventually obtained from Flur-4 frozen stocks were selected using MSM agar 

plates supplemented with flurbiprofen (400 mg/L) and yeast extract (0.05 g/L) (MSMFY 

medium). Two distinctive colonies were observed, a bigger raised-rounded colony named here 

BC (big colony), and a smaller translucent pinpoint colony named PZ (phantom zone). 

 

4.2.2. Analyses of Flurbiprofen-Amended Cultures 

Flur-4 was grown in triplicate in liquid MSM containing 400 mg/L of flurbiprofen. Growth was 

measured by optical density at 600 nm (OD600) using a SynergyTM HTX Multi-Mode 

Microplate Reader (BioTek instruments). The appearance and accumulation of the yellow color 

was monitored via optical density at 410 nm (OD410, SynergyTM HTX Multi-Mode Microplate 

Reader, BioTek instruments) since it was found to be the wavelength for maximum absorbance 

of this putative ring fission metabolite. The cultures were allowed to grow until late stationary 

phase when the yellow color started to disappear. 
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Flurbiprofen disappearance and putative metabolites were monitored via gas 

chromatography-mass spectrometry (GC-MS). Culture supernatants were harvested by 

centrifugation and subjected to aqueous acetylation before extraction with ethyl acetate (1:1 

vol/vol). Ethyl acetate extracts were dried over sodium chloride, methylated using diazomethane, 

and then subjected to GC-MS analysis as described by Murdoch and Hay (2005). Briefly, GC-

MS analyses were performed in an HP 6890 GC equipped with a HP-5MS column (5 % phenyl 

methyl siloxane, 30 m by 0.25 mm, 0.25 µm film thickness) using helium as the carrier gas at a 

flow rate of 1 mL/min. The injector temperature was 250℃. The initial oven temperature of 

40℃ was held for 1.5 min and ramped at a rate of 5℃/min to 180℃; then ramped up to 200℃ at 

a rate of 10℃/min. The temperature was lastly ramped up to 300℃ at a rate of 20 ℃/min and 

held for 10 min. The detector was an HP 5973 MSD with quadrapole and source set at 150℃ and 

230℃ respectively. 

 

4.2.3. Detection of Metabolites During Flurbiprofen Degradation 

Flur-4 cultures (400 mL) were grown on MSM containing 400 mg/L of flurbiprofen until late 

exponential phase. Cells were harvested by centrifugation at 7000 x g for 15 min, then 

resuspended in 120 mL of MSM containing 400 mg/L of flurbiprofen. The resuspended cells 

were equally divided into 6 glass vials. Three vials received 50 mg/L of 3-fluorocatechol (3-FC, 

98% purity, Acros Organics) and the other three remained as controls (no fluorocatechol 

addition). After incubation for 30 min at room temperature, the cultures were centrifuged at 

12000 g for 15 min, and the supernatants were collected and derivatized for GC-MS analysis as 

described above. 
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4.2.4. 16S rRNA Gene PCR and Metagenome Analysis 

Direct PCR with 16S rRNA gene primers (27F: 5’- GAGAGTTTGATCMTGGCTCA -3’ and 

1492R: 5’- TACGGYTACCTTGTTACGACTT -3’) was performed using colonies grown on 

MSM agar plates containing 400 mg/L of flurbiprofen. PCR products were purified using a 

WizardÒ SV gel and PCR clean-up system (Promega), quantified with a NanoDrop ND-1000 

spectrophotometer (Thermo Fisher Scientific), and sequenced at Cornell’s Institute of 

Biotechnology. The 16S rRNA gene sequences were analyzed using the BLASTn tool from 

NCBI (Basic Local Alignment Search Tool). 

DNA from Flur-4, and from the BC and PZ cultures was extracted following Yu and 

Forster's protocol (2005) with modifications. Briefly, cells harvested from 20 mL cultures grown 

in liquid MSM containing 400 mg/L of flurbiprofen were resuspended with lysis buffer [2% 

(wt/vol) SDS, 100 mM Tris HCl, 5mM EDTA, 200 mM NaCl, pH 8.0] and vortexed vigorously 

with 0.1 mm glass beads. DNA extracts were precipitated with 2 M ammonium acetate and 

purified with isopropanol (1:1 vol/vol). A final DNA clean-up was carried out with 70% ethanol. 

DNA concentrations were determined using the Quant-iTTM PicoGreenTM dsDNA assay kit 

(ThermoFisher Scientific). Then, purified DNAs were prepared by Cornell’s Institute of 

Biotechnology for shotgun sequencing. 

The web-based platform Kbase (The U.S. Department of Energy Systems Biology 

Knowledgebase) was used to process the raw reads and perform further genome/metagenome 

analyses including de novo assembly and binning (Arkin et al., 2018). Raw reads were pre-

analyzed using FastQC v0.11.5 and processed with Trimmomatic v0.36. Later, trimmed reads 

were de novo assembled with metaSPAdes v3.12.0, and the resulting contigs were binned with 

MaxBin2 v2.2.4. CheckM v1.0.8 was used to assess the binned contigs quality (Parks et al., 
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2015). Thereafter, individual assemblies were extracted using BinUtil v1.0.2 and annotated via 

RAST 2.0 (Rapid Annotations using Subsystems Technology) (Aziz et al., 2008). Taxonomic 

classification was performed using KAIJU v1.5.0, which uses protein sequence similarities. 

Additional phylogenetic and functional analysis of the metagenomes were generated via RAST 

2.0  and MG-RAST 4.0.3 (Metagenomic-RAST) (Aziz et al., 2008; Keegan et al., 2016). 

Annotations of the assemblies were examined using Geneious 11.0.2. Nucleotide and 

amino acid sequence alignments of genes and enzymes of interest were generated with ClustalW 

2.1 and blosum62 as cost matrix (Larkin et al., 2007). Phylogenetic trees were constructed with 

Geneious tree builder that uses global alignment with free end gaps and blossum62 to generate a 

distance matrix. The Jukes-Cantor model and neighbor-joining method were used to build the 

tree. BLAST tools from the NCBI (tBLASTn, BLASTn, BLASTp) allowed comparisons of the 

genome annotations against repository databases. 

 

4.2.5. Screening of Flurbiprofen Ring-Fission Metabolism in Fosmid Library 

DNA from the BC isolate was extracted as mentioned above. The fosmid library was created 

using the CopyControlTM Fosmid Library Production Kit with pCC1FOSTM Vector following the 

manufacturer’s instructions and hosted in the provided Escherichia coli EPI300 strain (Epicentre 

Biotechnologies). 

After initial selection on LB plates containing chloramphenicol (12 mg/L), fosmid library 

colonies were grown in ¼ LB (2.5 g/L tryptone, 1.25 g/L NaCl, and 1.25 g/L yeast extract) with 

200 mg/L of flurbiprofen in 96-well plates and screened for the appearance of a yellow ring-

fission metabolite. The fosmid autoinduction solution provided in the CopyControlTM Fosmid kit 

was used to promote high copy number of the fosmids. In separate replicate plates, ferric 
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chloride (1.5 mM) was used to screen for ring dioxygenation due to its reaction with catecholic 

metabolites to produce a brown oxidation product (Murdoch and Hay, 2005; Soloway and Wilen, 

1952). 

 

4.3. RESULTS AND DISCUSSION 

4.3.1. A Bacterial Enrichment Capable of Growing on Flurbiprofen 

Flur-4 culture was selected from the flurbiprofen enrichments based on its ability to use 

flurbiprofen as a sole carbon source. Flur-4 entered exponential growth phase about 30 h after 

inoculation into liquid MSM amended with 400 mg/L of flurbiprofen (MSMF). Stationary phase 

was reached after approximately 60 h with a maximum OD600 of 0.15 ± 0.03 (Fig. 1A). When 

amended with flurbiprofen, Flur-4 cultures accumulated a bright yellow color in the supernatant, 

which is indicative of aromatic ring-cleavage as has been observed during the metabolism of 

other aromatic compounds such as catechols and the NSAID ibuprofen (Murdoch and Hay, 

2005; Riegert et al., 1998). The yellow color produced by Flur-4 was found to absorb maximally 

at 410 nm (OD410). The OD410 was found to peak at the end of the exponential growth phase 

(approximately at 55 h) and then decreased by about 75% after 100 h (Fig. 1A). The yellow color 

disappeared when Flur-4 culture was acidified and reappeared upon neutralization. pH-

dependent yellow coloration that absorbs in the range of 375-425 nm are typical of meta-

cleavage products of aromatic rings, presumptively indicating dioxygenase activity (Harayama 

and Rekik, 1989; Suenaga et al., 2014). Flurbiprofen concentration, as monitored via GC/MS, 

sharply decreased as Flur-4 entered exponential growth phase, with approximately 99% of the 

initial flurbiprofen disappearing by 60 h (Fig. 1B) coincident with maximal yellow color 

accumulation. 



 

 107 

 

 

Fig 1. A. Growth of Flur-4 on flurbiprofen as measured by increased culture density, OD600 (black dot), 
and concomitant accumulation of presumptive yellow ring-fission metabolite measured via OD410 (white 
square). B. Flurbiprofen concentration measured via GC/MS during Flur-4 growth until reaching 
exponential phase. Error bars represent standard deviation.  

 

4.3.2. Flurbiprofen degradation by Flur-4 cultures via a biphenyl-like pathway 

When flurbiprofen-amended Flur-4 cultures were exposed to 3-flurocatechol (3FC), there was no 

accumulation of yellow color; but a new peak for which no standard was available appeared in 

the total ion chromatogram of acetylated and methylated ethyl-acetate supernatant extracts 

during the GC/MS analysis. The mass spectrum of this peak yielded a weak molecular ion of m/z 

374, a fragment of m/z 332 and a base peak at m/z 290 (Fig 2). The consecutive losses of m/z 42 

which yielded these two fragments are consistent with the loss of acetyl groups. Since aqueous 

acetylation is specific for aromatic hydroxyl groups (Boyd, 1994; Fritz and Schenk, 1959; Itoh et 

al., 2005), these losses suggest that the compound detected after 3FC-exposure, referred to as 

compound II (Fig 2), contained two aromatic hydroxyls. In addition, the base peak of m/z 290 is 

m/z 32 heavier than the methylated spectrum of flurbiprofen (m/z 258), which is also consistent 

A. B.
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with the addition of two hydroxyl groups to flurbiprofen methyl ester. These results suggest that 

compound II correspond to dihydroxyflurbiprofen (DHF). 

  

Further evidence in support of compound II being DHF comes from two related 

observations: 1) the compound II GC/MS spectrum was not detected in the absence of 3FC, a 

known poison of meta-cleavage dioxygenases (Dorn and Knackmuss, 1978; Engesser et al., 

1988; Mars et al., 1997); and 2) no meta-cleavage product was detected when 3FC was added. 

Hence, our findings are consistent with flurbiprofen being metabolized via a biphenyl-like 

degradation pathway that begins with initial dioxygenation of the unsubstituted aromatic ring 

followed by ring fission and production of a meta-cleavage metabolite (Compound III in Fig. 3) 

(Mars et al., 1997; Mondello, 1989; Seo et al., 2009). 

 
Fig 2. Mass spectrum of the putative acetylated dihydroxy-flurbiprofen methyl ester (Compound II: DHF) 
identified via GC/MS. This spectrum was only detected after 3-fluorocatechol-poisoning of flurbiprofen-
amended Flur-4 cultures followed by aqueous acetylation and methylation. Ac: acetyl group. 
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Fig 3. Putative pathway of flurbiprofen metabolism by Flur-4 (A) is similar to the biphenyl degradation pathway 
provided for comparison (B) (Mondello 1989). In A, compound II and compound IV were both detected via 
GC/MS. Compound III was inferred due to the transient accumulation of yellow color in the supernatant. I: 
flurbiprofen; II: dihydroxyflurbiprofen (DHF); III: presumptive meta-cleavage product of flurbiprofen; IV: 3-fluro-
4-(1-carboxyethyl)benzoic acid (FCB) 

 

A third observation supporting the hypothesis that Flur-4 employed a biphenyl-like 

pathway for flurbiprofen metabolism, was the accumulation of the putative flurbiprofen 

metabolite referred to as compound IV in Fig 3A. Although there was no standard available for 

compound IV, we were able to characterize its mass spectrum and showed its accumulation in 

the supernatant during Flur-4 growth in liquid MSMF (Fig 4). The mass spectrum of compound 

IV from methylated supernatant extracts showed a molecular ion of m/z 240 and yielded 

fragments with m/z 209 and m/z 181. These losses of m/z 31 and 59 respectively are consistent 

with a compound containing two methyl esters and with the structure of 3-fluro-4-(1-
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carboxyethyl)benzoic acid (FCB). Production of FCB is analogous to the production of benzoic 

acid during biphenyl degradation (Mondello, 1989; Triscari-Barberi et al., 2012) and is in line 

with our detection of DHF and the putative meta-cleavage product (Fig. 3). Importantly, FCB 

was not detected when cells were poisoned by 3FC, providing circumstantial evidence that ring-

cleavage was essential for the production of FCB and its precursor. 

 

 
Fig. 4. A. Mass spectrum of the putative 3-fluro-4-(1-carboxyethyl)benzoic acid metabolite (Compound IV: 
FCB) with two methyl ester groups as result of diazomethane derivatization during GC/MS analysis. B. FCB 
accumulation during Flur-4 growth in flurbiprofen-amended MSM measured via GC/MS 

A.

B.
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The degradation of flurbiprofen thus appears to be analogous to the degradation of 2- and 

4-fluorobiphenyl by Pseudomonas pseudoalcaligenes KF707, which also proceeds via a standard 

biphenyl degradation pathway yielding 2- and 4-fluorobenzoate as end products (Murphy, 2016; 

Murphy et al., 2008). The literature regarding the fate of single-ring fluoroaromatics is somewhat 

sparse. While successful degradation of 2- and 4-fluorobenzoates have been reported in several 

studies, 3-fluorobenzoates have shown to be recalcitrant due to the production of toxic 

intermediates (Engesser et al., 1988; Hughes et al., 2011; Seeger et al., 2001). It is not clear 

whether the apparent dead-end nature of FCB is due to the presence of the fluorine on the ring, 

the presence of the propanoic acid moiety, or both. 

Unlike most popular NSAIDs, flurbiprofen is fluorinated. Fluorine substituents introduce 

many useful properties to pharmaceuticals and are generally incorporated in order to increase the 

pharmaceuticals biological half-lives (Gaye and Adejare, 2009; Shah and Westwell, 2007). On 

the other hand, introduction of fluorine into chemicals creates environmental problems due to 

increased lipophilicity and recalcitrance (Khetan and Collins, 2007; Murphy, 2016). The 

unfluorinated analog of FCB, 4-(1-carboxyethyl) benzoic acid has been previously reported as an 

abiotic degradation product of ibuprofen (Caviglioli et al., 2002), though to the best of our 

knowledge there is no information about 4-(1-carboxyethyl) benzoic acid fate or bioactivity. 

Similarly to our findings about flurbiprofen metabolites, a recent biodegradation study 

using activated sludge reported the transient appearance of an acid-labile yellow color when 

flurbiprofen was added, followed by the accumulation of FCB which was tentatively identified 

via LC/MS (Yanaç and Murdoch, 2019). Similar to our own results, they did not detect any 

further degradation of FCB. An aerobic pathway for the degradation of substituted phenylacetic 

acids via catecholic intermediates has been previously described for the biotransformation of 

ibuprofen and related compounds (Murdoch and Hay, 2013, 2005). Yanaç and Murdoch (2019) 
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hypothesized that FCB might not undergo further biotransformation since organisms doing so 

could produce a toxic fluorinated-catechol (3-fluoro-4-phenylcatechol). Given the structural 

similarity of this theoretical fluorinated-catechol to 3-fluorocatechol, a known ring-cleavage 

poison, an FCB derived fluorinated-catechol would be expected to inhibit flurbiprofen 

metabolism via meta-cleavage, which may explain the apparent dead-end nature of FCB. 

 

4.3.3. Metagenome Analyses of Flur-4 as a Putative Flurbiprofen-Degrading Bacterial 

Consortium 

Initial BLASTn analysis of the 16S rRNA gene sequence revealed that our Flur-4 culture, which 

at the time was believed to be a pure isolate, was 97% identical to Phenylobacterium immobile. 

P. immobile is well known for its eponymous ability to degrade a narrow range of aromatic 

compounds including chloridazon, antipyrin and pyramidon (Eberspächer, 2015; Lingens et al., 

1985). To the best of our knowledge, there is no report of flurbiprofen degradation by P. 

immobile or by other strains belonging to the Phenylobacterium genus. 

Given that our biochemical data suggested that Flur-4 metabolized flurbiprofen through a 

biphenyl-like degradation pathway, we investigated the presence of biphenyl-like degrading 

genes (bph-like genes) in Flur-4 genome assembly. Preliminary analysis of the Flur-4 genome 

annotations showed scattered putative genes involved in biphenyl degradation, but no obvious 

biphenyl-like ring-hydroxylating dioxygenase that could be responsible for metabolizing 

flurbiprofen to dihydroxyflurbiprofen (DHF). The tBLASTn hits to the enzymes of the well-

characterized biphenyl-degrading operon of Pseudomonas furukawaii KF707 (NCBI accession 

number: AJMR01000119.1) showed 32.5% - 44.8% pairwise similarity to translated sequences 

of putative genes in the Flur-4 genome (Supplementary Materials Table S1). None of the hits, 
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however, aligned on the same contig, thus they were not localized in an operon resembling most 

previously described biphenyl-degraders like Burkholderia sp. LB400 and P. furukawaii KF707 

(previously named Pseudomonas pseudoalcaligenes KF707) (Furukawa et al., 2004; Mondello, 

1989; Taira et al., 1992). 

Subsequent metagenome analyses performed through MG-RAST 4.0.3 revealed that 

Flur-4 was not a pure culture as previously believed, but rather was a bacterial consortium 

composed mainly by Phenylobacterium (49.5%), Caulobacter (20.2%), Brevundimonas (3.3%), 

and Sphingomonas (3.2%) (Supplementary Material Fig S1). Thus, the presence of various 

bacterial genomes in Flur-4 sequencing data might explain the scattering of the putative bph-like 

genes and the absence of a single biphenyl-like operon that could be responsible for flurbiprofen 

degradation. 

 

4.3.4. Re-examining Flurbiprofen-Degrading Isolates Using a Metagenomic Approach 

After re-examining our initial Flur-4 frozen stocks by plating them on a flurbiprofen 

minimal medium (MSMFY), we observed colonies with a raised well-defined rounded shape (3-

5 mm), surrounded by smaller translucent pinpoint colonies (~1 mm) (Fig. 5A). Despite the 

multiple attempts to isolate the bigger raised-rounded colonies, the smaller pinpoint colonies 

always appeared in the agar plates even in MSM plates supplemented solely with flurbiprofen. In 

fact, the bigger raised-rounded colonies seemed to grow on top of the smaller translucent 

pinpoint colonies. The bigger raised-rounded colonies were named BC (big colony), and the 

smaller translucent pinpoint colonies PZ (phantom zone). Though we were able to isolate PZ 

colonies on MSMFY agar plates, no yellow color appeared on either agar plates or in liquid 

MSMFY (Fig. 5B). Analysis of the 16S rRNA gene sequences showed that they were identical to 
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each other, but neither BC or PZ were a Phenylobacterium strain; instead, both were closely 

related to Ochrobactrum (97-99% similarity). These findings were surprising, since 

Ochrobactrum constituted a very small component of the initial Flur-4 bacterial consortium at 

the time it was sequenced (0.22%) (Supplementary Materials Fig S1). The reason for this  

discrepancy was unclear, though it may have been the consequence of changes in the consortium 

during prolonged culturing or enrichment after sequencing, but before final storage in the culture 

collection. To gain more insight to the nature of the only flurbiprofen-degrading isolates we 

could recover from the stored consortium, genomic analyses were performed on both BC and PZ 

cultures. 

After processing the raw sequences of BC and PZ with metaSPAdes v3.13.0 and 

 
Fig 5. A. Morphology of the two distinctive colonies selected on MSM agar plates supplemented with 
flurbiprofen (400 mg/L) and yeast extract (0.05 g/L), after re-examining Flur-4 frozen stocks. A bigger raised-
rounded colony (BC: big colony) and a smaller translucent pinpoint colony (PZ: phantom zone). B. Appearance 
of putative ring-fission metabolite (yellow color) in the liquid MSMFY inoculated with BC, but not with PZ. 
MSMFY: liquid MSM supplemented with flurbiprofen (400 mg/L) and yeast extract (0.05 g/L); MSMY: liquid 
MSM only supplemented with yeast extract (0.05 g/L), but no flurbiprofen. 

BC PZ

MSMY MSMFY MSMY MSMFY
A. B.



 

 115 

MaxBin2 v2.2.4, only one metagenome-assembled genome (MAG) was recovered from each 

culture. The two MAGs, one from BC and one from PZ, were both identified as 

Alphaproteobacteria belonging to the genus Ochrobactrum confirming our preliminary analysis 

of the 16S rRNA genes. The two MAGs were named: Ochrobactrum BC and Ochrobactrum PZ. 

CheckM v1.0.8 determined that both Ochrobactrum MAGs were “near-complete” (100% 

completeness), but with a contamination of 15.2% for BC and 12.0% for PZ (Supplementary 

Material Fig S2A). Moreover, analysis using protein sequence similarity via KAIJU v1.5.0 found 

that 66.2% and 63.7% of the BC and PZ genome sequences, respectively, belonged to the genus 

Ochrobactrum (Supplementary Materials Fig S2B). Though this contamination suggested the 

presence of other bacterial genomes, we were not able to reconstruct additional MAGs from the 

raw sequences likely due to sequence depth limitations.  

From the tBLASTn analyses performed on the Ochrobactrum MAGs with the well-

characterized biphenyl-degrading operon from P. furukawaii KF707, the BphA1 enzyme 

(Biphenyl dioxygenase a-subunit) was found to align with 33.1% similarity to the translated 

sequence of a putative gene annotated as benzoate 1,2-dioxygenase (Table 1). This putative gene 

was identical in both Ochrobactrum MAGs. For the purposes of identification in this paper we 

named it: ofdA (putative flurbiprofen dioxygenase a-subunit from Ochrobactrum). Although a 

putative benzoate 1,2-dioxygenase was also found in our preliminary analyses of the Flur-4 

genome assembly (Supplementary Materials Table S1), its alignment to the translated sequence 

of ofdA showed 42.49% similarity. 
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 Interestingly, when the translated sequence of ofdA was compared against the non-

redundant protein database of the NCBI, the tBLASTn hits had more than 90% similarity to 

putative aromatic ring-dioxygenases (ARDs) annotated in genomes of Ochrobactrum and 

Brucella isolates. Yet, no biochemical data has been published to provide clues about substrate 

specificity or to confirm the function of these putative ARDs. The tBLASTn results in the NCBI, 

however, identified the translated sequence of ofdA as part of the 3-phenylpropionate 

dioxygenase family (HcaE). When compared against the well-characterized HcaE from 

Escherichia coli, the translated sequence of ofdA had 48.39% similarity (Fig 6). By comparing 

the translated sequence of ofdA to putative ARDs from Ochrobactrum and Brucella genomes, 

and to functionally-characterized 3-phenylpropionate-, biphenyl- and benzoate- 1,2-

dioxygenases, we found that the translated sequence of ofdA formed a distinctive clade with the 

putative ARDs (Fig 7). While the translated sequence of ofdA was 45-48% similar to well-

characterized dioxygenases, with the putative ARDs the translated sequence of ofdA was almost 

identical in the ClustalW alignment (Fig 6). 

Table 1. Best tBLASTn hits found in the Ochrobactrum BC and PZ metagenome-assembled genomes (MAGs) 
using the bph operon of P. furukawaii KF707 as query (NCBI accession number: AJMR01000119.1). BphA2, 
BphA3, BphC, and BphD did not return any hit when compared against the Ochrobactrum MAGs. 

Bph enzyme Pairwise 
similarity  

Query 
coverage 

Annotation in BC and PZ 
given by RAST 

BphA1 
biphenyl dioxygenase a-subunit 33.1% 37.0% benzoate 1,2-dioxygenase  

BphA4 
ferredoxin reductase 30.2% 98.5% ferredoxin reductase 

BphB 
dihydrodiol dehydrogenase 47.0% 94.0% 3-oxyl-acyl-carrier reductase 
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Fig 6. ClustalW2 alignment (A) and pairwise similarity matrix (B) of the putative flurbiprofen-dioxygenase found in the Ochrobactrum BC and PZ MAGs (OfdA_Och) 
versus putative aromatic dioxygenases annotated in Ochrobactrum and Brucella genomes (ARD_OchCCUG and ARD_BruCCM4915, respectively), and well-characterized 
dioxygenases: 3-phenylpropionate dioxygenase a-subunit from E. coli (Hca_Ecoli), benzoate 1,2-dioxygenase a-subunit from Pseudomonas sp. KT2440 and Rhodococcus 
sp. 19070 (BenA_PseKT2440 and BopX_Rho19070, respectively), and biphenyl 1,2-dioxygenase a-subunit from Burkholderia sp. LB400 and Rhodococcus sp. P6 
(BphA1_BurLB400 and BphA1_RhoP6, respectively).

B. 

A. 
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 Remarkably, the genomic context of ofdA in both Ochrobactrum MAGs was 

highly similar to that of the putative genes encoding the ARDs in the genomes of 

Ochrobactrum and Brucella, with a putative NADH oxidoreductase (named here 

ofdB) next to the putative dioxygenases in all cases (Fig 8). These findings suggest 

that our Ochrobactrum genomes (BC and PZ) encode a novel two-component 

dioxygenase two-component (hydrolase and electron transferase). Although further 

cloning and expression of these genes is required to determine their function, we 

speculate that they might be involved in the dioxygenation of the non-halogenated 

ring as the first step of flurbiprofen metabolism. Though four-component 

dioxygenases have generally been found to be responsible for the metabolism of 

biphenyl to 2,3-dihydroxy-4-phenylhexa-4,6-diene (Taira et al., 1992), two-

component ring-hydroxylating dioxygenases have been reported in the metabolism of 

other aromatic compounds (Furukawa et al., 2004, Kagle et al., 2015).

 
Fig 7. Phylogenetic tree with well-characterized dioxygenases showed that the putative flurbiprofen-
dioxygenase from Ochrobactrum BC and PZ MAGs (OfdA_Och) grouped with putative aromatic 
dioxygenases annotated in Ochrobactrum and Brucella genomes (red dashed box) (ARD_OchCCUG and 
ARD_BruCCM4915, respectively). 3-phenylpropionate dioxygenase a-subunit from E. coli (Hca_Ecoli), 
benzoate 1,2-dioxygenase a-subunit from Pseudomonas sp. KT2440 and Rhodococcus sp. 19070 
(BenA_PseKT2440 and BopX_Rho19070, respectively), and biphenyl 1,2-dioxygenase a-subunit from 
Burkholderia sp. LB400 and Rhodococcus sp. P6 (BphA1_BurLB400 and BphA1_Rho). TscA_SphRD1 
(putative triclosan dioxygenase from Sphingomonas RD1) was used as outgroup (Furukawa et al., 2004, 
Kagle et al., 2015) 
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Fig 8. Nucleotide alignment of the putative dioxygenase OfdA (in yellow) and NADH reductase, OfdB (in pink) found in both Ochrobactrum sp. BC and PZ MAGs (OchBC 
and OchPZ, respectively), and their genomic context compared to the putative aromatic ring-dioxygenases and reductases annotated in Ochrobactrum and Brucella genomes 
(GenBank assembly accession: OchCCUG: GCA_003049685.2, BruCCM4915: GCA_000022745.1, BruA2308: GCA_000054005.1). P.: PhnA gene, r.: repeat region (dark 
green), h.: hypothetical protein (white)
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Given that ofdA and ofdB, and their genomic context were identical between both 

Ochrobactrum MAGs, we compared the rest of their genomes in order to explain why PZ could 

not produce the yellow ring-fission product, but BC could (Fig 5). Whole genome comparison 

via RAST found that 124 putative genes in BC were absent in PZ, three of which were annotated 

as encoding proteins involved in aromatic metabolism: a muconate cycloisomerase, a BenR 

transcriptional activator of a benzoate-degrading operon, and a n-hydroxybenzoate hydroxylase 

involved in gentisate degradation (Supplementary Materials Table S2). There were no more 

gentisate-degrading genes annotated in either of the Ochrobactrum MAGs, and the putative n-

hydroxybenzoate hydroxylase was only 75 amino-acids long, which is approximately 4X smaller 

than related enzymes with known activity. Given these findings, we hypothesized that the lack of 

BenR in PZ MAG prevents upregulation of the genes encoding OfdA, resulting in no ring fission 

product from flurbiprofen. Studies in Pseudomonas putida have demonstrated that BenR induces 

the degradation of benzoate and methylbenzoate, and also functions with the regulator XylS 

during toluene degradation (Cowles et al. 2000). Future work, however, needs to be done to test 

BenR’s role in the degradation of flurbiprofen. This should include PCR confirmation of its 

absence in PZ followed by cloning and expression of benR from BC (benR BC) in PZ to 

determine if it restores flurbiprofen degradation. 

We also interrogated the Ochrobactrum MAGs for genes encoding a traditional meta-ring 

cleavage dioxygenase similar to BphC in biphenyl pathways and hydrolase similar to BphD that 

would further metabolize the ring fission intermediate of flurbiprofen to the benzoic acid-

derivative FCB. To our surprise, there were no other tBLASTn hits or annotations to these other 

biphenyl-degrading enzymes, which suggest that neither of the Ochrobactrum MAGs has a 

complete biphenyl-like pathway, or that it is so divergent as to escape detection using the default 

annotation functions in RAST. 
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Since we had previously detected ring hydroxylating and ring-cleaving phenotypes in 

fosmid libraries constructed from aromatic-degraders (Kagle et al., 2015; Murdoch and Hay, 

2013; Porter and Hay, 2007), we carried out a functional screen of a BC fosmid library since BC 

accumulated a yellow color indicative of flurbiprofen ring-cleavage (Fig 5). Unfortunately, after 

the exhaustive screening of our E. coli EPI300 fosmid library (approximately 2,300 colonies in 

total), we were not able to detect any clone exhibiting the expected yellow color. Based on our 

metagenome analyses, Ochrobactrum BC MAG had an estimated size of 5.8Mb. Therefore, our 

fosmid library had an approximate 16X coverage, which is at least three times more than what is 

recommended to ensure 99% probability of getting the genome sequence of interest in the 

library. In fact, we previously used fosmid libraries with 5X-8X coverage to identify novel 

aromatic-degrading operons (Kagle et al., 2015; Murdoch and Hay, 2013; Porter and Hay, 2007). 

In addition to screening for the production of yellow color, we also screened for the 

accumulation of catecholic intermediates via addition of ferric chloride. The latter method has 

proven to be effective for visualizing the accumulation of dihydroxylated metabolites of aromatic 

compounds in 96-well plate format in fosmid libraries of other aromatic degraders (Kagle et al., 

2015; Murdoch and Hay, 2013). Failure to detect flurbiprofen degradation activity in our fosmid 

library could be due to limitations in our detection methods, poor expression, or even because 

another factor encoded in trans was required for expression such as the putative transcriptional 

activator BenR mentioned above in the BC MAG. Unlike the benzoate operon, where benR is 

located contiguously with the genes encoding benzoate-degrading enzymes (Cowles et al. 2000), 

benRBC was not contiguous with ofdA and was located on a separate contig without any genes 

encoding putative aromatic-degrading enzymes next to it. Given our past success with the fosmid 

library approach and the genomic information about ofdA in the Ochrobactrum MAGs, we 

hypothesize that failure to detect flurbiprofen dioxygenase and ring cleave activity in our fosmid 
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library was because benR or some other required gene was not on the same fosmid. 

Alternatively, considering our previous findings with the Flur-4 metagenome (Supplementary 

Materials Fig S1 and Table S1), and the contamination detected in the Ochrobactrum MAGs 

(Supplementary Materials Fig S2), it is also possible that the putative flurbiprofen-degrading 

genes would not all be encoded by a single organism. 

A BphC-like dihydroxy dioxygenase was previously found in the initial Flur-4 genome 

assembly with 42.9% similarity to the BphC from P. furukawaii KF707 (Supplementary 

materials Table S1), but it was 88.9% similar to a putative dihydroxyphenylacetate dioxygenase 

(HpaD) annotated in Phenylobacterium immobile genome (NCBI accession number: 

WP_091743113). This finding made us wonder whether a Phenylobacterium strain might be part 

of the contamination detected in the Ochrobactrum MAGs (Supplementary Materials Fig S2) 

and work in consort with Ochrobactrum BC to metabolize flurbiprofen. 

Further MG-RAST analyses which included not only the binned sequences of the 

Ochrobactrum MAGs, but considered all sequencing reads, found that Ochrobactrum was the 

most abundant genus in the metagenomes (89.8% and 90.2% for BC and PZ, respectively). As a 

process control, we compared this with a genome sequenced in the same run from a 

Pseudomonas putida isolate, IPL5. More than 98% of the ORFs in the assembled genome of the 

IPL5 isolate was annotated as belonging to the genus Pseudomonas. While only 0.03% of the 

ORFs in the BC and PZ metagenomes were annotated as belonging to the genus 

Phenylobacterium, though this was 10X higher than what was detected in the P. putida IPL5 

sequencing library (0.003%). Thus, despite of its low abundance, we cannot completely exclude 

the possibility that a Phenylobacterium strain could have had a functional role in flurbiprofen 

metabolism. We were not able, however, to recover Phenylobacterium isolates from our frozen 

stocks to further evaluate this hypothesis. 
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On the other hand, the MG-RAST analysis of unassembled sequencing reads from both 

BC and PZ (MG-RAST accession number: 4838500.3 and 4838501.3) allowed us to identify 

genes encoding putative biphenyl-like degrading enzymes in the BC and PZ metagenomes which 

were not part of the Ochrobactrum MAGs’ binned sequences (Supplementary Materials Table 

S2). A BphC-like dioxygenase and BphD-like hydrolase that would be responsible for the 

observed ring-cleavage phenotype and benzoic acid-derivative FCB, respectively, were both 

found in the BC and PZ metagenomes, but at very low abundances (<0.001% of the total 

annotations). These findings suggest that although the PZ metagenome apparently encodes genes 

involved in the downstream degradation of flurbiprofen, the lack of benR-like in PZ itself, would 

prevent the production of the DHF that could otherwise be metabolized by a less abundant 

members of the consortium to the ring fission product.  

Furthermore, among the MG-RAST results there were also annotations related to other 

biphenyl-degraders found in the BC metagenome, but not in PZ such as a BphC1-like 

dioxygenase (biphenyl-2,3-diol 1,2-dioxygenase), which has been well-characterized in 

Rhodococcus globerulus (McKay et al. 2003). Therefore, future work should focus on the 

transcriptional profiles of BC and PZ when exposed to flurbiprofen. Through RT-qPCR targeting 

specifically the transcripts of the putative bph-like genes found in this study (e.g. ofdA, bphC, 

bphC1, and bphD), it would be possible to investigate their regulation and contribution to 

flurbiprofen degradation. For instance, transcription of bphC-, bphC1-, and bphD- like genes 

should be confirmed in BC when exposed to flurbiprofen, as well as whether they are induced by 

BenR. Likewise, once benR is expressed in PZ, transcripts of bphC and bphD would be 

expected. Furthermore, genomic constructs carrying bphC-, or bphC1- like genes, or both would 

help to determine whether both or only one of them would be responsible for the production of 

the ring-fission metabolite observed in BC. 
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Numerous genes related to plasmid replication and conjugation were also reported in the 

metagenomic reads by MG-RAST (MG-RAST accession number: 4838500.3 and 4838501.3). 

Thus, it is possible that the presumptive contamination registered previously by CheckM and 

KAIJU (Supplementary Materials Fig S2) would correspond to genes acquired recently by 

Ochrobactrum via HGT (horizontal gene transfer). Then, the putative bph-like genes could be 

located in a plasmid recently acquired from a Phenylobacterium strain. The relative abundance 

of genes related to plasmid replication like repA was, however, 100X more abundant than bph 

genes like bphC (MG-RAST accession number: 4838500.3 and 4838501.3). Hence, our 

hypothesis about bph-like genes transferred via plasmid indeed requires to be tested using 

bioinformatic tools that allow the reconstruction of plasmids from metagenomic reads such as 

metaplasmidSPAdes (Antipov et al., 2019). This type of bioinformatic analysis, however, is still 

in development and the parameters to identify novel traits from poorly characterized 

metagenomes need to be proven. Recovery and isolation of plasmids from our frozen stocks 

would be an additional approach to evaluate our hypothesis. Thus, the presence of bph-like genes 

would be checked by PCR, and their expression in other bacterial strains related to 

Ochrobactrum or Phenylobacterium could be evaluated via plasmid transformation if some 

could be recovered intact, though the likelihood of that seems low. 

Taken together this work highlights some of the challenges facing bioinformatic 

approaches to developing hypotheses about novel traits in poorly characterized genomes. The 

ready availability of easy-to-use genome assembly and annotation pipelines such as K-Base, 

RAST, and MG-RAST can lull the uninitiated into accepting the outputs as unequivocal 

statements of facts, when in reality they are merely predictions based on oft-overlooked 

assumptions including relatively high amino acid similarity cutoffs of 60%. Previous work in the 

Hay lab demonstrated that enzymes responsible for the degradation of aromatic compounds often 
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had less than 40% similarity to proteins performing analogous functions on structure related but 

distinct compound (Kagle et al., 2015; Murdoch and Hay, 2013; Porter and Hay, 2007). These 

platforms also do a surprisingly poor job of dealing plasmids which has only recently begun to 

be fully appreciated and necessitated the development of new bioinformatic tools (Antipov et al., 

2019). 

 

4.4. CONCLUSIONS 

Metabolites detected via GC/MS analysis in our enrichment culture demonstrated that 

flurbiprofen was metabolized via a biphenyl-like pathway (Fig 3), but isolation of a single 

flurbiprofen-degrader was challenging. Through the use of metagenomic tools we were able to 

identify an initial, but unstable, Phenylobacterium strain, and an Ochrobactrum strain named 

BC. The later gave rise to a derivative, PZ, that lost the ring-fission phenotype and its ability to 

grow solely on flurbiprofen. 

Despite the metabolite data, genomic analysis of BC and PZ did not provide evidence for 

genes similar to those encoding biphenyl degradation. Instead, both Ochrobactrum MAGs (BC 

and PZ) carried a novel aromatic-dioxygenase potentially involved in the initial oxidation of 

flurbiprofen (OfdA: putative flurbiprofen-dioxygenase). Whereas genes encoding putative 

BphC-like and BphD-like enzymes that would be needed for ring-cleavage and further 

metabolism of flurbiprofen were present in the metagenomic reads but did not assemble with the 

Ochrobactrum MAGs. This evidence along with the contamination in our metagenomic data 

suggests that flurbiprofen was metabolized by a bacterial consortium instead of a single pure 

culture as initially thought. Unfortunately, we were not able to reconstruct additional MAGs 
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besides Ochrobactrum BC and PZ, or recover other strains from our frozen stocks though 

additional sequencing could help on this front. 

 Given all these uncertainties and the difficulty of generating knockouts in environmental 

isolates, the simplest way forward would be to first check expression levels of ofdA in BC and 

PZ. It they are lower in PZ as expected, then the next step would be cloning benR from BC and 

expressing it in PZ which we hypothesize should enable PZ to grow on flurbiprofen and restore 

the yellow ring-cleavage phenotype. BenR could also be expressed in trans with a fosmid 

containing ofdAB if it could be detected using PCR to screen pooled library fractions. 

Alternatively, it should be possible to heterologously express ofdAB under the control of an 

inducible promoter. The efforts that will be required to confirm or refute these hypotheses serve 

as a sobering reminder that despite the power of genomic technologies, traditional biochemical 

and genetic techniques are essential for full characterizing the vast novel metabolic potential 

encoded by microorganisms. 
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SUPPLEMENTARY MATERIALS 

 

 

 

Fig S1. Bacterial consortium composition of Flur-4 sequencing data provided by MG-RAST 
4.03. analysis showed that Flur-4 was not a pure culture as initially believed. To note, the genus 
Ochrobactrum represented 0.22% of the total relative abundance. 
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A. 	

 Completeness Contamination 

 
100% 15.223% 

 

100% 12.011% 

 

B.  

 

 

 

 

 

 

 

Fig S2. A. CheckM v1.0.8 analysis showed that the Ochrobactrum MAGs: BC and PZ were 

“near complete” with a contamination of 15.2 and 12.0%, respectively. B. Taxonomic 

classification based on protein sequence similarities using KAIJU v1.5.9 found that 66.2% and 

63.7% of the sequences corresponded to the genus Ochrobactrum in BC and PZ, respectively.   
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Table S1. Best tBLASTn hits found in the Flur-4 genome assembly using the bph operon of P. 
furukawaii KF707 as query (NCBI accession number: AJMR01000119.1) 

 

Bph enzyme Pairwise 
similarity  

Query 
coverage 

Annotation in Flur-4 genome given 
by RAST 

BphA1 
biphenyl dioxygenase a-subunit 

36.7% 99.5% benzoate 1,2-dioxygenase a-subunit 

BphA2 
biphenyl dioxygenase b-subunit 

44.8% 88.8% 3-phenylpropionate dioxygenase b-
subunit 

BphA3 
ferredoxin 

35.1% 75.5% ferredoxin 2Fe-2S 

BphA4 
ferredoxin reductase 

36.7% 97.5% ferredoxin reductase 

BphB 
dihydrodiol dehydrogenase 32.5% 90.1% 3-oxyl-acyl-carrier reductase 

BphC 
2,3 -dihydroxybiphenyl 

dioxygenase 
42.9% 95.9% 2,3-dihydroxybiphenyl 1,2-

dioxygenase 

BphD 
2-hydroxy-6-oxo-6-phenylhexa-

2,4-dienoic acid hydrolase 
43.6% 99.0% 2-hydroxy-6-oxo-phenylhexa-2,4-

dienoate hydrolase 
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Table S2. Functional annotation differences found in the metabolism of aromatic compounds 

between Ochrobactrum MAGs BC and PZ (MAG BC vs MAG PZ) resulted from whole-genome 

comparison by RAST 2.0. * shows the differences in biphenyl degradation found by MG-RAST 

4.0.3, which not only included the binned sequences in the MAGs, but considered all the 

metagenome sequences from the BC and PZ cultures. X indicates the presence of the putative 

gene. 
 
 

Subsystem Functional Annotation MAG 
BC 

BC 
Metagenome* 

MAG 
PZ 

PZ 
Metagenome* 

Catechol branch of 
beta-ketoadipate 
pathway 

Muconate cycloisomerase (EC 
5.5.1.1) X X  X 

Succinyl-CoA: 3-ketoacid-
coenzyme A transferase subunit 
A (EC 2.8.3.5) 

 X X X 

Succinyl-CoA: 3-ketoacid-
coenzyme A transferase subunit 
B (EC 2.8.3.5) 

 X X X 

Benzoate 
degradation 

benABC operon transcriptional 
activator BenR X X  X 

Gentisate 
degradation 

Putative n-hydroxybenzoate 
hydroxylase X X  X 

Maleylacetoacetate isomerase 
(EC 5.2.1.2)  X X X 

Biphenyl 
degradation 

2,3-dihydroxybiphenyl 1,2-
dioxygenase  X  X 

2-hydroxy-6-oxo-6-phenylhexa-
2,4-dienoate hydrolase (EC 
3.7.1.-) 

 X  X 

2-keto-4-pentenoate hydratase 
(EC 4.2.1.-)    X 

Acetaldehyde dehydrogenase 
(EC 1.2.1.10)  X   

Biphenyl dioxygenase alpha 
subunit (EC 1.14.12.18)    X 

Biphenyl-2,3-diol 1,2-
dioxygenase (EC 1.13.11.39)  X   

biphenyl-2,3-diol 1,2-
dioxygenase III-related protein  X  X 
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

 

5.1. BIOCHAR DOES NOT ATTENUATE TRICLOSAN’S IMPACT ON SOIL 

BACTERIAL COMMUNITIES 

In our study examining the combined effects of biochar and triclosan additions to soil, we found 

that biochar did not did not significantly impact the soil bacterial communities even though it did 

affect the mineralization of triclosan. The addition of triclosan, at 10 and 100 mg Kg-1 resulted in 

changes to the microbial community independent of biochar addition, though 1 mg Kg-1 had no 

discernable impact on the microbial community. More specifically, we demonstrated 

qualitatively and using Non-Parametric Metastats analyses, that richness did not differ between 

the triclosan treatments, instead, triclosan disproportionally impacted the abundance of a few 

shared OTUs. Importantly, our 16S rRNA gene sequencing results along with a predictive 

functional gene profiling allowed us to infer a concentration-dependent bacterial response with 

enrichment of genes encoding generalized antimicrobial resistance being the primary effect at 10 

mg Kg-1, and enrichment of genes encoding degradation dominating at 100 mg Kg-1. Additional 

work using metatranscriptomics and RT-qPCR is required to evaluate and confirm our 

hypotheses, particularly targeting the triclosan resistance and degradation determinants found in 

our study like the genes related to multidrug efflux-pumps (e.g. soxS and marA), and aromatic 

dioxygenases with broad substrate specificity (e.g. clcA, benA, and nahA) encoding degradation. 

The resulting findings would help to determine the actual difference in resistance and 

degradation genes found in our study and provide insights into triclosan metabolism in the soil. 
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One of the biggest surprises from our study was the apparent sensitivity of soil 

Sphingomonads to triclosan addition, since this genus harbors well-characterized triclosan 

degraders. Further work indicated that the triclosan resistance determinants were rare in that 

bacterial group. To investigate the role of triclosan-degraders in soil, and whether there is an 

effect on the soil bacterial structure, future work could involve soil inoculation of Sphingomonas 

RD1, a well-characterized triclosan degrader isolated and studied in the Hay lab (Hay et al. 2001, 

Kagle et al., 2015). 

Our work also reported the presence of Stenotrophomonas among the genera enriched by 

triclosan addition. Previous studies have shown that Stenotrophomonas maltophilia, an 

opportunistic human pathogen, overexpressed a multidrug-efflux pump after triclosan exposure 

(Sanchez et al., 2005). Moreover, stable isotope probing has shown that Stenotrophomonas can 

use triclosan as carbon source (Lee et al., 2014; Lolas et al., 2012), but a triclosan-degraders 

from this genus have not been identified yet. Thus, future work should address the 

characterization of triclosan resistance and/or degradation by Stenotrophomonas isolates from 

soil using approaches such as direct isolation, metagenomics, metatranscriptomics, as well as, 

biochemical techniques like stable isotope probing and mineralization assays. 

 

5.2. SEX-DEPENDENT DISTURBANCE EFFECT OF GLYPHOSATE ON GUT 

MICROBIOME 

Analysis of mouse gut microbiota via 16S rRNA gene sequencing reveal that the glyphosate-

based herbicide (GBH) used in our study (GlyStarâ Plus) only affected male mice. The low 

GBH-dose used (~21 ug/Kg of glyphosate) significantly impacted the bacterial diversity and 

richness at the end of our study (8 weeks of GBH exposure). Surprisingly, the high GBH-dose 
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(~210 ug/Kg of glyphosate) did not show any impact on gut bacterial communities. To further 

elucidate the impact of GBH, we analyzed shifts in the microbiome of individual mice to control 

for intrinsic interindividual variability of the mouse gut microbiota. By doing so we were able to 

evaluate the bacterial community shifts within individual mice over time. Our analysis showed 

expected microbiome changes as control mice matured (no GBH addition), but not in the low-

GBH dose. These findings suggest that low GBH exposures might have an impact on gut 

microbiome maturation, which has not been previously considered. The concentrations we used 

in this study were based on drinking water standards. At the currently established maximum 

contaminated level (MCL) of glyphosate which is 0.7 mg/L (US EPA, 2015), a 70 Kg human 

consuming 2L/day of water would have ingested the same glyphosate dose (~20 ug/Kg) as the 

mice in our low GBH exposure. Given our results, which admittedly included a small sample 

size and which ran for a short duration, further work seems warranted. We would recommend 

additional animal studies with larger sample sizes of male mice exposed to both glyphosate and 

GBH doses around or below the MCL. With a larger sample size and additional treatments, it 

will be possible to better control for intrinsic individual variation, and also determine if the effect 

we observed was due to glyphosate or the other compounds in the GBH formulation we tested. 

Interestingly, most of the differentially affected bacterial taxa belonged to the families 

Lachnospiraceae and Ruminococcaceae. Considering that glyphosate’s effect has been reported 

to be species- and even strain-specific (Aristilde et al., 2017), and that Lachnospiraceae and 

Ruminococcaceae harbor commensal bacteria with important roles in gut health (Koenig et al., 

2011; Penders et al., 2007), additional work is required to identify specifically the bacterial taxa 

impacted by the low-GBH used in our study. Future work using PCR with specific primers for 

these taxonomic families coupled with single nucleotide polymorphism (SNP) would allow this 
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specific identification. Future glyphosate-susceptibility assays with several members of these 

families should also be considered. 

 

5.3. CHARACTERIZATION OF A FLURBIPROFEN-DEGRADING BACTERIAL 

CONSORTIUM 

Though metabolite data obtained via GC/MS analysis, we demonstrated that a flurbiprofen-

degrading enrichment could grow on Flurbiprofen as a sole source of carbon using a biphenyl-

like degradation pathway. Finding and characterizing biphenyl-like degrading genes (bph-like 

genes) in the metagenomic reads, however, proved to be challenging. The Ochrobactrum MAGs 

(BC and PZ) that were reconstructed from genomes of the only isolates (Ochrobactrum BC and 

PZ) we were able to recover from our frozen stocks, did not encode an intact biphenyl-like 

degrading operon. Both MAGs, however, carried genes for a putative flurbiprofen dioxygenase 

(ofdAB), which might be involved in the initial oxidation of the non-halogenated ring of 

flurbiprofen. The metagenomic tools used in this study allowed for whole-genome comparisons 

of the Ochrobactrum MAGs BC and PZ. PZ was a colony variant that did not show the ring-

fission phenotype and did not grow on sole flurbiprofen. A putative BenR transcriptional 

activator was found to be encoded in BC, but not in PZ, which might explain why PZ lost the 

ability to degrade flurbiprofen. Future work should address the putative function of OfdAB in 

flurbiprofen metabolism and the potential role of BenR in expression of ofdAB. RT-qPCR should 

be used to determine if expression levels of ofdA are different in BC and PZ exposed to 

flurbiprofen. If so, then benR could be cloned from BC (benRBC) and expressed into PZ. 

Restoration of the ring-fission phenotype in PZ would be expected.  
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Genes encoding putative BphC-like and BphD-like enzymes that would be responsible 

for further flurbiprofen metabolism including ring-cleavage, were found in metagenomic reads 

that did not assemble with the Ochrobactrum MAGs. Thus, along with the contamination 

detected by CheckM and KAIJU in the metagenomic reads, our findings suggests that 

flurbiprofen is likely degraded by bacteria working in consort instead of by a single organism. 

Though no other strains besides Ochrobactrum BC and PZ were recovered from our frozen 

stocks that could grow on fluribuprofen on plate, future additional sequencing with deep 

coverage would help to reconstruct additional MAGs and assess our hypothesis. Additional RT-

qPCR assays with genomic constructs assessing the putative bph-like genes found in this study 

(e.g. bphC and bphD) will also contribute to understanding flurbiprofen metabolism by BC, as 

well as whether they are induced by BenR. A similar approach could also be used to screen for 

flurbipofen activity in the fosmid libary of BC since, based on genomic analysis, it is likely that 

no fosmid encoded both benR and ofdAB. 

While our analyses also showed the presence of plasmid-related genes in the 

metagenomic reads that did not assemble with the Ochrobactrum MAGs, their disproportional 

abundance in comparison to the bph-like genes suggested that it is unlikely that Ochrobactrum 

would have been acquired bph-like genes via horizontal gene transfer (HGT). Reconstruction of 

plasmids from metagenomic data using tools as metaplasmidSPAdes or plasmid isolation and 

sequencing from our frozen stocks would be, however, additional approaches to test this 

hypothesis. 
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5.4. FINAL CONSIDERATIONS 

Taken together, my work on these biologically active molecules (triclosan, glyphosate, 

flurbiprofen) in different environments (soil, gut, sewage) has illustrated some of the challenges 

involved in investigating the roles of environmental bacteria that are highly diverse and involved 

in  complex inter- and intra- species interactions. Next generation sequencing (NGS) is an 

excellent tool for helping to characterize such bacterial communities mainly because of its 

capacity to gathering tremendous amount of information about bacterial taxonomy, diversity, and 

even functionality in a single step: a sequencing run. Since traditional culturing and isolation is a 

tedious and often unsuccessful approach, NGS has rapidly replaced the traditional bench work. 

Increasingly, the result of such environmental studies is merely in a list of bacterial species and 

putative functions. The challenge is not only to process and interpret the sequencing data, but to 

move beyond correlations among bacterial species abundance and putative functions in the 

environment, but to prove causation, especially in the characterization of novel traits. 

 Through the analysis of sequence data from three cases studies, my work provides criteria 

and guidelines to use some of the bioinformatic tools currently available to investigate and 

dissect the complex relationships of bacteria with the environment. A dose-dependent effect, but 

with different responses, such as in the case of triclosan’s impact leading to resistance or 

degradation depending on the dose. A gender-dependent effect on selected bacteria taxa, such as 

glyphosate treatment with higher unique OTUs. And, a cooperative function as in the 

presumptive flurbiprofen-degrading consortium. While many questions yet remain, the results of 

these sequence-informed studies lead, however, to hypotheses about causality and inferences that 

need to be confirmed and tested by the traditional biochemical and genetic approaches, which are 

techniques that remain essential to fully characterize and understand bacterial communities. 
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