Indexing Across Media

Mats Rooth and Dorit Abusch

Cornell University
Ithaca, New York, USA
mr249@cornell.edu da45@cornell.edu

1 Introduction

Indexing across pictures and language is illustrated in (1). In the first example, the pronoun in the sentence somehow picks up a discourse referent set up by the picture, and the picture and the sentence jointly put constraints on the same individual in a described situation. In (1b) a nominal phrase functioning as a title or caption gives information about an individual depicted in the picture. This paper analyzes indexing in such examples, starting from a dynamic semantics for indexing in pictorial narratives. The current section reviews the semantic framework.

The basic analysis of indexing across media is laid out in Section 2, using a setup involving a formal language and interpretation for it. Section 3 looks at data where in a combination of a picture and some language, the linguistic part is a nominal (such as a title) rather than a sentence. Here a constraint on interpretation is observed, which in the theory is enforced in the syntax of discourse representations. Section 4 looks at data involving definite reference and quantification. Section 5 points out purely linguistic data that are analogous to the data from Section 3. Section 6 wraps up.¹

(1) a.

He’s a sailor. Navy sailor drinking coffee. Openclipart.

b.

A castle owned by a duke Castle on a hill. Public Domain Vectors.

We assume the semantics for pictures and indexing in pictorial narratives employed in previous work (Abusch, 2012, 2014, to appear; Abusch & Rooth, 2017; Rooth & Abusch, 2018; Maier & Bimpikou, 2019). The framework is reviewed briefly here.² A propositional semantics for pictures is based on geometric projection. The basis is a projection function \(\pi \) that maps a world and a viewpoint to a two-dimensional picture, using a mathematical, computational, and/or physically realized procedure such as perspectival projection or orthographic projection. A viewpoint is analogous to a camera position, or the station point in the classical theory of perspective. Where \(w \) is a world and \(v \) is a viewpoint, the function value \(\pi(w, v) \) is the picture that is projected from world \(w \) as observed from viewpoint \(v \). Propositional semantic values are then obtained by inverting projection. The propositional semantic value of a given picture \(p \) is the set of worlds that project to \(p \) via \(\pi \). There are a handful of independent arguments for employing viewpoint-centered semantics values, which are sets of pairs of a world and a

¹The images in the paper that are quoted from books and other sources are used for educational and critical purposes, and are property of their respective owners.

²Abusch (to appear) is a thorough review.
viewpoint. In this option, which is assumed here, the semantic value \([p]\) of picture \(p\) is the set of pairs \((w, v)\) such that \(w\) projects to \(p\) from viewpoint \(v\), \(\pi(w, v) = p\). This is recorded in (2a). (2b) is a variant where times are included in the model, the projection function has a time argument together with a world and a viewpoint, and the semantic value is a set of triples of a world, a time, and a viewpoint.

\[
(2) \quad \text{a. } \ [p] = \{\langle w, v \rangle | \pi(w, v) = p\} \quad \text{b. } [p] = \{\langle w, t, v \rangle | \pi(w, t, v) = p\}
\]

In the analysis of Abusch (2012, to appear) a picture or picture sequence is incremented syntactically with geometric areas, which introduce discourse referents. As an example, (3a) is a three-panel comic of two cubes moving apart. A basic semantics combines the semantics of the individual pictures with homomorphic temporal progression. This basic semantics (in a possible-worlds model with worlds and times) does not entail that in the described situation, the cube corresponding to the gray area in the first frame of the comic is the same as the cube corresponding to the gray area in the second frame (and so on). In order to express these understood identities, Abusch (2012) suggested incrementing pictures with \textit{areas in the picture} that introduce discourse referents. In (4), there is a bounding box around the dark area in the first picture, and similarly in the second picture. These serve to introduce discourse referents for depicted individuals, in this case a discourse referent for the cube depicted in the first picture, and another discourse referent for the cube depicted in the second picture. The identity \(1 = 2\) has the semantics of equality in the model, indicating that the individuals in the model that correspond to the two discourse referents are identical. Bounding boxes serving as proxies for individuals are used in machine learning databases and algorithms. For instance, (5) is an image from the Pascal VOC dataset with a picture of a bus and a bounding box for the bus (Everingham et al., 2012).

\[
(3)
\]

\[
(4)
\]

\[
\text{5These arguments include ones based on the semantics of discourse referents (as here), accounting for Necker ambiguities, and the use of perspectival phrases such as \textit{in front of} in sentences describing pictures. See Abusch (to appear) and Rooth & Abusch (2018).}
\]

\[
\text{4A model } M \text{ and parameters } A \text{ of the projection function can be added outside the brackets, } [p]^{M,A} = \{\langle w, v \rangle | w \in M^W \land \pi^A(w, v) = p\}.
\]

\[
\text{5Abusch (2014) discusses temporal progression in visual narratives.}
\]
For simplicity, in this paper we use points in the area of the picture as geometric discourse referents. With the assumption that the first picture in (3) is a unit square, the pair (0.4, 0.4) measures 0.4 along the horizontal axis and 0.4 along the vertical axis to a point within the dark gray area. The pair (0.6, 0.5) measures 0.6 along the horizontal axis and 0.5 along the vertical axis to a point within the light gray area. (6) is a version of (3) that includes geometric discourse referents for all the depicted cubes. At the end there are equalities that use a recency convention. The equality 1 = 3 equates the most recently introduced discourse referent with the ante-penultimate one. This has the effect of equating the light cube in the final picture with the light cube in the middle picture.

Something like (6) is a formula of a formal language with a defined syntax, and a semantics that is stated in type theory and possible worlds semantics. Abusch (to appear) formalized the semantics inductively, using a format similar to (7), where a world (variable w), a time (variable t), a viewpoint (variable v) and a string of individuals (here x₁, x₂) satisfy a formula. v is the viewpoint for the last picture in the formula.

The point of memorizing the viewpoint for the last picture is that this viewpoint is used in the semantics of discourse referents. Given a viewpoint v (understood as the viewpoint for the last picture), and a point d, understood as a point in the two-dimensional area of the last picture, v and d are used to pick out an object by tracing a directed line from v through the point d in the picture plane to the point where it intersects an object. An object that
witnesses the discourse referent is one that the directed line from \(v \) through \(d \) intersects before it intersects any other object. We write this condition as \(\overline{\pi}(w, t, v, d, x) \), or when time is not being considered, as \(\overline{\pi}(w, v, d, x) \).\(^6\)

Let \(P \) be a visual narrative like (6), consisting of a sequence of pictures, with interleaved discourse referents and equalities between discourse referents. By collecting up the tuples that satisfy \(P \), we obtain a semantic value for \(P \), which is a set where each element is a tuple of a world, a time, a viewpoint, and witnesses for discourse referents. This is recorded in (8).

\[
(8) \quad [P] = \{ \{w, t, v, x_1, ..., x_n\}|w, t, v, x_1, ..., x_n \models P\}
\]

This is a set of cases in the sense of Lewis (1975). Lewis introduced case semantics to theorize about indefinite descriptions and anaphora in sentences with adverbs of quantification, such as the Murphy’s law examples (9). He showed that by assuming a case semantics for the two clauses in such sentences (i.e. the if-clause and the main clause) it is possible to arrive at a semantics for the whole compositionally.

\((9)\)

a. If you drop an unbreakable object, it always lands on something more valuable.

b. If two cars are driving in opposite directions on a long road with a one-way bridge, they always meet at the bridge.

To deal with sentences that have free indices (such as the main clauses in (9)), it is necessary to say that a syntactic unit denotes a set of cases relative to a case. Where \(X \) is the syntactic unit and \(c \) is a case, for this we use the notation \(c[X] \).\(^7\) We will always refer to cases that are of the form \(wvO \) or (when time is being ignored) \(wvO \). Here \(O \) is a string of objects that witness discourse referents, \(w \) is a world, \(t \) is a time, and \(v \) is a viewpoint. (10) gives some semantic values in this notation.

\((10)\)

a. \(wvO[[\text{he has a dog}]] = \{c|\exists x.c = wvO \wedge \text{dog}(w, x) \wedge \text{have}(w, O[1], x)\}\)

b. \(wvO[1 = 2] = \{c|c = wvO \wedge O[1] = O[2]\}\)

c. \(wvO = \begin{cases}
\{c|\exists v'.c = wv'O \wedge \overline{\pi}(w, v') = \begin{array}{l}
\text{box}
\end{array}\}\}
\end{cases}\)

2 A Basic Analysis

We have seen that the semantics value of an enriched pictorial narrative (as formulated in Section 1) is the same kind of formal object as the semantics of a sentence of English containing indefinite descriptions and pronouns. In Abusch (2012, to appear); Abusch & Rooth (2017); Rooth & Abusch (2018), this is used to give an analysis of indexing in pictorial narratives, and analyses of additional phenomena, using the toolkit of dynamic natural language semantics. Here we observe that, once we move to the semantics, there is no difference between indexing within a medium and indexing across media. An index that is set up within a pictorial narrative

\(^6\)There are questions about the optimal formulation geometric discourse referents (e.g. points vs. bounding boxes) and the optimal definition of what objects correspond to them. For instance, if the individuals in the model have part-whole structure and we use points, there may be unwelcome multiplicity in the value of \(x \). Consider a point \(d \) in the head-area of a depicted character. Let \(x \) be a person in the model, and let \(x_h \) be that person’s head. If \(\overline{\pi}(w, t, v, d, x) \) holds, then also \(\overline{\pi}(w, t, v, d, x_h) \) holds. See for discussion Abusch (2014).

Bounding boxes can be used to partially alleviate this problem. Ultimately though we are inclined to maintain that predications about the type of depicted objects are accommodated, e.g. \(\text{person}(w, x) \).

\(^7\)Rooth (to appear) presents Lewis’s semantics for indefinites and adverbs of quantification along these lines.
can be picked up later in the pictorial narrative. But equally, it can be picked up with a pronoun in a sentence of natural language.

Consider the left column in (11), which we think of as a scenario where a parent reading a picture book to a child points out a character in a picture, gives some information verbally, continues by pointing at (or touching) the dog in the next picture, and then adds some more verbal information.

(11) a. His name is Dick. He has a dog.

The right column gives a counterpart in our formal language, where the finger-touching gestures are replaced by geometric discourse referents, and equalities between discourse referents are added. This formula has a linear structure with eight parts, which we name p_1 (a picture), a point d_2 introducing a discourse referent, a sentence s_3 containing a pronoun, a sentence s_4 containing a pronoun and an indefinite description, a picture p_5, a point d_6 introducing a

Images from William Gray, *Fun with Dick and Jane*, 1946.
discourse referent, an equality between discourse referents \(e_7\), and finally a sentence \(s_8.\)

The cross-medium narrative (11b) is to be interpreted in the uniform dynamic framework that was reviewed in Section 1. To simplify, in the current discussion we do not include times. (12) gives the semantics of the eight parts of the narrative. A picture \(p_i\) interpreted relative to \(\text{uv}\mathcal{O}\) introduces a new viewpoint \(v'\), and checks that the world from the viewpoint projects to the picture. \(\mathcal{O}\) is not incremented. Thus \(\text{uv}\mathcal{O}[p_i] = \{z|\exists x'.z = \text{uv}\mathcal{O} \wedge \pi(w, v') = p_i\}\), where the new viewpoint is recorded in an output case \(\text{uv}'\mathcal{O}\). A geometric discourse referent \(d_i\) non-deterministically chooses an object \(x\), and checks the geometric constraint \(\pi(w, v, d_i, x)\) that relates the viewpoint \(v\) for the last picture, the point \(d_i\), and the value \(x\) for the discourse referent. \(\mathcal{O}\) is incremented with \(x\) to form \(x\mathcal{O}\). Thus \(\text{uv}\mathcal{O}[d_i] = \{z|\exists x.z = \text{uv}\mathcal{O} \wedge \pi(w, v, d_i, x)\}\). An equality \(m = n\) is semantically a test that checks equality of \(\mathcal{O}[m]\) and \(\mathcal{O}[n]\), see (12g). The three sentences are given standard interpretations in dynamic semantics. Indexed pronouns look up their referents in \(\mathcal{O}\), with indexing into \(\mathcal{O}\) following a recency convention. Thus the index 1 in sentence \(s_3\) (“his name is Dick”) gets the value \(\mathcal{O}[1]\), and \([s_4]\) is a test which checks the name of \(\mathcal{O}[1]\). The indefinite description in sentence \(s_4\) introduces a new value \(x\) that is entered as \(x\mathcal{O}\), which is constrained to be a dog in \(w\), and to be possessed by \(\mathcal{O}[1]\) in \(w\).

\[\text{(12) a. } \text{uv}\mathcal{O}[p_1] = \{z|\exists x'.z = \text{uv}'\mathcal{O} \wedge \pi(w, v') = p_1\}\]
\[\text{b. } \text{uv}\mathcal{O}[d_2] = \{z|\exists x.z = \text{uv}\mathcal{O} \wedge \pi(w, v, d_2, x)\}\]
\[\text{c. } \text{uv}\mathcal{O}[s_3] = \{z|z = \text{uv}\mathcal{O} \wedge \text{name}(w, \mathcal{O}[1], \text{"Dick"})\}\]
\[\text{d. } \text{uv}\mathcal{O}[s_4] = \{z|\exists x.z = \text{uv}\mathcal{O} \wedge \text{dog}(w, x) \wedge \text{have}(w, \mathcal{O}[1], x)\}\]
\[\text{e. } \text{uv}\mathcal{O}[p_5] = \{z|\exists x'.z = \text{uv}'\mathcal{O} \wedge \pi(w, v') = p_5\}\]
\[\text{f. } \text{uv}\mathcal{O}[d_6] = \{z|\exists x.z = \text{uv}\mathcal{O} \wedge \pi(w, v, d_6, x)\}\]
\[\text{g. } \text{uv}\mathcal{O}[e_7] = \text{uv}\mathcal{O}[1 = 2] = \{z|z = \text{uv}\mathcal{O} \wedge \mathcal{O}[1] = \mathcal{O}[2]\}\]
\[\text{h. } \text{uv}\mathcal{O}[s_8] = \{z|z = \text{uv}\mathcal{O} \wedge \text{name}(w, \mathcal{O}[1], \text{"Spot"})\}\]

Thus the eight parts of the cross-medium narrative get interpretations in a uniform dynamic semantic framework. This immediately answers the question of how information from different media is combined: such information is combined in the way information in a single medium is combined in a dynamic framework, namely by dynamic conjunction. (13) is a formulation of dynamic conjunction in the current notation. Here \(x, y, \) and \(z\) are cases of the form \(\text{uv}\mathcal{O}\), and the definition essentially expresses relation composition.

\[\text{(13) } x[AB] = \{z|\exists y[y\text{ex}[A] \wedge z\text{ey}[B]]\}\]

Conjoining the parts in (12) using dynamic conjunction results in (14) as the semantics of the cross-medium narrative (11b), relative to a null context \(\text{uv}\) consisting of a world and an (irrelevant) viewpoint.

The phenomenon of touching pictures to set discourse referents connects with the analysis of pointing in O'Madagain et al. (2019), where it is argued that pointing is usually sight-line pointing, and that such pointing is continuous with touching.
Some comments about the mechanics are in order. In a tuple c of the form $wv_2x_3x_2x_1$, x_3 is a witness for the discourse referent that was introduced last. That discourse referent is introduced by d_2, and corresponds to the dog in the second picture. x_2 is a witness for the penultimately introduced discourse referent, which is introduced by the phrase [a dog] in s_4. These discourse referents are distinct, but they are identified by the equation $1 = 2$ in (11b), which equates the ultimately and penultimately introduced discourse referents. This results in $x_3 = x_2$ in the body of (14). v_2 is the viewpoint used for p_5, and it is also used in selecting values for d_6, as expressed in the condition $\tilde{\pi}(w, v_2, d_6, x_3)$. All the conditions in the body of (14) refer to the same world variable w, when they refer to a world at all. This indicates that the eight parts in (11b) are combining extensionally.

3 The Nominal Depiction Constraint

Look at the matrix of data in (15), where each cell has a picture combined with a nominal English phrase, rather than a sentence. The off-diagonal elements are somehow inconsistent or implausible. For instance, the top right combination with the caption “a castle owned by a duke” is intuitively inconsistent because what is depicted looks like a person, and not at all like a castle. Yet both a duke and a castle are mentioned in the phrase.

(15)

\[
\begin{array}{cc}
\text{A duke who owns a castle} & \text{A castle owned by a duke} \\
\text{A castle owned by a duke} & \text{A duke who owns a castle}
\end{array}
\]

Castle on a hill. Public Domain Vectors.
The data in (16) are similar. Even though the righthand combination is to some degree pragmatically coherent—the cat basket is empty because the cat that ordinarily occupies it is lost—this combination of a picture and a nominal caption conveys inconsistent information. In contrast, the combination (17), where the caption conveys similar information but is a sentence rather than a nominal, is slightly disjointed but consistent.

These data motivate the *nominal depiction constraint*: roughly, when a picture is accompanied by a nominal, the top-level index in the nominal is co-indexed with a discourse referent pointing into the picture. Or to put it differently, a witness for the top-level index of the nominal is depicted in the picture. For instance, assuming that the semantics of the phrase *a duke who owns a castle* distinguishes a discourse referent for a duke as the top-level index of the nominal, the LF of the top-left combination in (15) should involve a discourse referent pointing into the picture, and this discourse referent should be equated with the top-level index of the caption. This constraint will be imposed syntactically. The syntax of the mixed-medium narratives seen so far can be captured by the context free rules in (18). This creates left-braching trees, consisting of pictures (syntactic category P), sentences (syntactic category S), geometric discourse referents (syntactic category D) and equalities (syntactic category E). M is the syntactic category of cross-medium narratives. A phrase of category S is assumed to be a sentence, as characterized syntactically and semantically by an interpreted grammar of English. So far, this does not introduce any nominal phrases into mixed-medium narratives.

\[
\begin{align*}
(16) & \ a. \quad \text{A lost cat} \\
& \ b. \quad \text{A lost cat}
\end{align*}
\]

\[
\begin{align*}
(17) & \quad \text{A cat got lost and didn’t come home.}
\end{align*}
\]

We treat a picture accompanied by a nominal phrase as a special construction that enforces co-indexing. To express this, we hypothesize that the nominal phrases have a predicative
syntactic and semantic type, here assumed to be NP. The tree shape in (19) enforces the required indexing. T is the syntactic category for the construction as a whole. It has two parts. The first part [p P D] is a combination of a picture and a geometric discourse referent. It introduces a picture with a discourse referent pointing into it. Given the recency convention in the dynamic semantics, that discourse referent is accessed with the index 1. The second part [p e, NP] is a combination of an empty category with index 1 and a nominal predicate with syntactic category NP. It has the effect of applying the nominal predicate to the geometric discourse referent that is introduced in [p P D].

\[(19)\]

\[
\begin{array}{c}
M \\
\downarrow T \\
\downarrow P I \\
P D e_1 NP
\end{array}
\]

The phrase structure rules covering the construction are in (20). The important point in the analysis of the nominal depiction constraint is that nominal phrases are not introduced freely. Rather they are introduced in a construction that stipulates indexing into a picture.

\[(20)\]

\[
\begin{align*}
M &\rightarrow T \\
M &\rightarrow M T \\
T &\rightarrow P I \\
P &\rightarrow P D \\
I &\rightarrow e_1 NP
\end{align*}
\]

4 Quantification and Definite Reference

In (21a,b), the sentences can be conceived of as observations about the information conveyed by the accompanying picture. (22a,b) are combinations of the same form, but where the sentences give independent information of a kind that can not be conveyed by pictures. In (21a) and (22a), the DPs of the form [every cube] can conceivably be read as quantifying all the cubes in the world. But these DPs are more naturally read to quantify the cubes that are depicted. Half of the analysis of this reading is familiar. According to the analysis of Westerståhl (1989) quantificational determiners come with a context variable for a contextually determined domain of quantification. We write this here with a superscripted numerical index. The representation for the sentence in (21a) is then (23a), where the index for the domain of quantification is 1. The value of this index in context should be set in a way that (23a) gets the reading (23b).\(^9\)

\(^9\)The paraphrase needs to be analyzed too. See the next section.
Every cube is dark. The cube is dark.

Every cube belongs to Jack. The cube belongs to Jack.

Every cube is dark.
Every cube that is depicted is dark.

These data lead to the hypothesis that pictures make available or can make available a group discourse referent for the depicted objects. Following the strategy of expressing particular readings syntactically in the discourse representation, we propose an operator \(G \) that introduces a discourse referent for the group of objects that are depicted in the previous picture. \(G \) does not involve a point or a bounding box, because it is supposed to introduce a discourse referent for all the depicted objects. It is simply a syntactic constant. (24) is then the discourse representation for the depiction-restricted reading of (21a). The formula is structured linearly, beginning with a picture. Following that the operator \(G \) introduces a discourse referent for the set of objects depicted in the picture. This discourse referent was introduced last, and so is referenced with the index 1. In the sentence that completes the formula, the index 1 by virtue of its syntactic position contributes the domain of quantification for every.

A semantics for \(G \) is defined as a quantified version of the semantics of geometric discourse referents. Suppose we are given a picture \(p \) with unit dimensions, a viewpoint \(v \), and a world \(w \) such that \(\pi(w, v) = p \). An object \(x \) in \(w \) is depicted in \(p \) if and only if there is a point \(d \) in

\(^{10} \)Abusch (2012) also used group discourse referents in analyzing indexing in pictorial narratives.
such that $\bar{\pi}(w, v, d, x)$. Therefore we can say that x is a member of the group discourse referent created by G (given w and v) if and only if there is some discourse referent d such that x is a witness for d relative to w and v. This leads to the definition of the semantics of G in (25). Where p_{24} is the picture in (24), (26) is the resulting semantics for (24), where the universal quantification is restricted to depicted objects via the conjunct yeX.

\begin{align*}
(25) & \quad wvO[G] = \{c | \exists X. c = wvXO \land X = \{x | \exists d. \bar{\pi}(w, v, d, x)\}\} \\
(26) & \quad wv[p_{24}G[\text{every cube is dark}]] = \left\{ c | \exists X. \exists v_1 \left\{ \begin{array}{c}
\pi(w, v_1) = p_{24} \\
X = \{x | \exists d. \bar{\pi}(w, v_1, d, x)\} \\
\forall y[cube(w, y) \land yX \rightarrow \text{dark}(w, y)]
\end{array} \right\} \right\}
\end{align*}

Examples (21b) and (22b) have sentences with definite descriptions rather universal quantifiers. Here the observation is that the uniqueness presupposition of the definite description is satisfied among objects that are depicted in the picture. For instance in (21b), there is a definite description $[DP \text{the cube}]$, and in worlds compatible with the picture, there is a unique cube that is depicted in the picture. These examples are analyzed in a parallel way, see (27).

\begin{align*}
(27) & \quad G \ [\text{the } 1 \text{ cube is dark}]
\end{align*}

\section{5 Depiction Sentences}

For some of the cross-medium data from Section 3 and Section 4, there are parallel data involving sentences that describe pictures. Recall p_{16a}, the picture of a cat lost in the woods, and p_{16b}, the picture of an empty cat basket. Referring to these pictures, sentence (28a) is true, and sentence (28b) is false, intuitively because it depicts a cat basket rather than a cat.

\begin{align*}
(28) & \quad \text{a. Picture } p_{16a} \text{ depicts a cat.} \\
& \quad \text{b. Picture } p_{16b} \text{ depicts a cat.}
\end{align*}

Sentence (29) is a version of what in Section 4 was cited as a paraphrase of the depiction-restricted reading of a mixed-medium sequence.

\begin{align*}
(29) & \quad \text{Every cube that is depicted in picture } p_{21a} \text{ is dark.}
\end{align*}

These sentences can be used in a discussion among agents who can see the pictures. They can also be used to convey information to an agent who can not see the picture. This makes it implausible that the logical forms of these sentences include particular geometric discourse referents. The reason is that, without access to the picture, a listener can not be expected to accommodate a particular geometric discourse referent. But following the strategy used in the semantics of G, the discourse referent can be quantified in the semantics. This suggests a
semantic paraphrase along the lines of (30) for (28a). It says that there is a discourse referent such that, in every world and viewpoint compatible with the picture, the individual picked out by the discourse referent with respect to the world and viewpoint is a cat.

\[\exists d \forall w \forall v \forall x [\pi(w, v) = p_{160} \land \bar{\pi}(w, v, d, x) \rightarrow \text{cat}(w, x)] \]

This is a formalization of a de dicto reading of the sentence. Although we think this analysis works for pictures of cubes and dodecahedra in a modal space were worlds are occupied only by regular polytopes, cat pictures of the familiar kind do not have information strong enough to entail (30). After all, our own world contains realistic sculptures of cats that are not real cats. Also, depiction sentences have ambiguities along de dicto/de re lines, similar to the ambiguities studied for the verb paint in examples like (31) that are studied in Zimmermann (2006). There is much more to say about (28) and (29). Nevertheless, the connection between these examples and the nominal depiction constraint from Section 3 is intriguing, and that connection does fall out of the formalization (30).

(31) Edlon painted a bridge.

6 Conclusion

The idea proposed here is to theorize about indexing across media by using a uniform dynamic semantic framework for the media. Indexing is analyzed at the semantic level, where the media are not distinguished. We defined a formal language and a semantic interpretation for it. Particular constructions and constraints were treated in the syntax of the formal language. While it would be possible to do the syntactic part without referring to possible worlds semantics and dynamic semantics, in the research strategy pursued here, the two go hand in hand.

References

