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Abstract—Despite the demonstrated value of visualization-based modalities for measuring and mapping science, it remains 
common practice to search and explore the literature via databases that present lists of articles with little, if any, supplementary 
visual information. Identifying the desired item in a list is a familiar information retrieval paradigm with a low cognitive load. 
However, given the rapid emergence of the field of visual text analytics, it is time to challenge the notion that article lists should 
remain the dominant method to search and organize the scientific literature. One reason that visualization methods are applied 
relatively rarely in information retrieval may be that it is difficult to develop useful and user-friendly science mapping systems. This 
article summarizes key workflows for bibliometric mapping, a technique for visually representing information from scientific 
publications, including citation data, bibliographic metadata, and article content. It describes methods and challenges in 
extracting, processing, and normalizing data, reducing dimensionality, modeling topics, assigning labels, and visualizing data. It 
also describes software tools available to support bibliometric analysis and science mapping workflows, outlines methods from 
other domains that have not been widely applied in bibliometric mapping, and considers opportunities for next generation 
bibliometric analysis and mapping software systems. 
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1 INTRODUCTION 
The activity of science mapping has recently been 
described as “complex and unwieldy”[1], as it 
generally involves multiple steps which may require 
numerous software tools with varying levels of 
usability, interconnectivity, and licensing 
requirements. The purpose of this scoping review is to 
chart a way through the fog of complexity, providing 
readers with an overview of science mapping 
workflows, highlighting the strengths of the available 
tools, identifying pitfalls to avoid, and describing 
opportunities for the next generation of bibliometric 
analysis and science mapping software systems. 

2 BACKGROUND 

2.1 Science mapping 
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Science maps are spatial representations of how 
disciplines, fields, specialties, and individual 
documents or authors are related to one another [2]. In 
an effort to understand the structural and dynamic 
aspects of scientific research [3], [4], researchers have 
been creating maps of scientific domains for at least the 
last 50 years [5]. A variety of types of bibliographic 
data may be used as input, including research articles 
and abstracts, authors, journals, grants, and keywords 
or topics. Science maps may be used to convey an 
overview of the cognitive structure of a given field [6], 
[7], to determine key actors [8], to identify areas of 
innovation [9], to support science policy [10], [11], or to 
assess the evolution of scientific disciplines [12]–[16]. 
One type of science map, and the main focus of this 
article, is the bibliometric map2, a graphical summary 
of a set of papers. Bibliometric maps may be derived 
from information about citation data, shared words or 



phrases, or other bibliometric elements [10]. An 
appealing aspect of bibliometric maps is that they 
share some paradigms with geographic maps; as such, 
they have been referred to as “landscapes of science” 
[11], [17]–[20]. In addition to providing an overview of 
the landscape for a given collection of scientific 
information, they also allow viewers to explore by 
zooming in on more information on specific sections of 
the landscape. 
2.2 Bibliometrics 
The literature on science mapping strongly overlaps 
with that of bibliometrics, a field concerned with 
measuring and analyzing science [21]–[23]. 
Bibliometric software systems have their own 
strengths and specializations; no single tool is able to 
support all analytical workflows [24]. Most of the more 
commonly used bibliometric software systems[24], 
[25], including the majority of those covered in this 
review, include features that allow users to convey 
data about science in a visually understandable format 
[5], [26]. 
2.3 Common workflows and 
analytical approaches in science 
mapping 
While workflows used in bibliometric analysis and 
science mapping vary depending on the goals of the 
analyst, most share some common features[4], [24]. 
Two example science mapping analysis workflows are 
described in Fig. 1. Both workflows include the steps 
of data retrieval, pre-processing, information 
extraction, normalization, mapping, analysis, and 
visualization, after which an analyst applies domain 
knowledge to interpret and obtain conclusions from 
the results. 

Three primary types of bibliometric analysis in 
science mapping are citation analysis, co-authorship 
analysis, and co-word analysis. Although more than 
one of these may be employed in a given project, they 
are generally used separately, as they are designed for 
different purposes. Methods used in citation analysis 
(the most common type of bibliometric analysis) [1], 
include bibliographic coupling [27], [28] and co-
citation analysis [24], [29]. Bibliographic coupling is a 
method of assigning a relation between two papers 
which each cite the same reference. Co-citation is the 
frequency with which two documents are cited 
together. 

Co-authorship analysis focuses on the relations 
between authors, and their affiliations, to study the 
social structure of collaborative networks [6], [7], [9]–
[12], [30]. It may be used to assess levels of single-

disciplinary and multiple disciplinary collaboration, 
and more generally, to examine the social and 
environmental factors that influence scientific 
collaborative behavior. 

Among the three primary types of bibliometric 
analysis in science mapping, co-word analysis [31] is 
the only method that considers the semantic content of 
documents [1]. Co-word analysis may be applied to 
document titles, abstracts, or full-text documents. Co-
word analysis considers the most important words or 
keywords in the document set, and how they co-occur, 
to model the conceptual structure of the text collection. 
The methodological foundation of co-word analysis is 
based on the idea that the semantic content of a set of 
documents is described by co-occurrences between 
words in the documents [32]. The term “co-word 
analysis” is used in the bibliometrics literature as a 
blanket term to cover a variety of related approaches 
not based strictly on co-occurrences, including topic 
modeling, which is used in workflow B shown in Fig. 
1. Topic modeling can be used to assign words to 
topics or thematic categories. These categories can in 
turn be used to assign documents and labels to 
clusters. Some topic modeling methods can also 
represent semantic relations between words, based on 
word meaning. Topic modeling is discussed in further 
detail in the Results section. 

2.4 Overview of software for science 
mapping 
General-purpose software tools that may be used for 
science mapping analysis and visualization include 
Pajek [33], R [34], UCINET [35], Gephi [36], Graphviz 
[37], Guess [38], Tulip [39], and Cytoscape [40] (which 
has become a general-purpose tool but was originally 
developed for use in bioinformatics research). The 
tools covered in this article have been developed 
specifically for bibliometrics analysis and science 
mapping. Descriptions of the more commonly-used of 
such tools (e.g., BibExcel, CiteSpace, IN-SPIRE, the 
Science of Science tool, the S&T Dynamics Toolbox, 
and VOSViewer) may be found in Borner et al. [25] and 
Cobo et al. [24], as well as in the Results section of this 
article.  

Two types of maps are commonly used in 
bibliometric research, and by extension, software for 
bibliometric mapping: distance-based and graph-based 
maps [20]. In distance-based maps, the distance 
between two elements indicates the strength of the 
relation between them, with a smaller distance 
indicating a stronger relation [17]–[20], [41]. Graph-
based maps employ a network model where elements 



of information (the nodes, or vertices) are assigned links 
or edges when related in some way. For example, in the 
most common type of co-citation network produced 
from a collection of articles, the nodes are articles, and 
pairs of articles are assigned links if frequently cited 
together by other articles in the collection. 

Workflow A 

 
Workflow B 

 
Fig. 1. Two related bibliometric clustering & science 
mapping analysis workflows (adapted from [21]). 
These are two of several common workflows used in 
bibliometric analysis, and are typical of approaches 
involving co-word analysis. In Workflow A, similarity-
based calculation is used to normalize data in 
preparation for clustering. In Workflow B, topic 
modeling, rather than normalization, is used to derive 
clusters of documents based on themes they contain. 
Both of these approaches are described in further detail 
in the Results section. 

The goal of this article is to describe common 
workflows and methods for bibliometric mapping and 
analysis, and to assess opportunities for the next 
generation of scientific software systems for 
bibliometric mapping. 

 

3 METHODS 
We devised a search strategy to identify articles that 
describe software systems capable of extracting 
and/or displaying relationships among journal articles 
or abstracts. We created separate queries for Scopus 
(http://www.scopus.com), Clarivate Analytics Web 
of Science (http://www.webofknowledge.com), IEEE 
Xplore (https://ieeexplore.ieee.org), and Engineering 
Village 2 (https://www.engineeringvillage.com). 
Specific search strategies used for each database are 
available in supplemental online material in Appendix 
A. Queries were run in December 2018. Resulting 
articles were combined into a single list. We performed 
an initial title and abstract screening to exclude articles 
that either did not satisfy the inclusion criteria or met 
one or more of the exclusion criteria (described in 
Table 1). After this initial review we again applied the 
inclusion and exclusion criteria in a review of the full 
text of the remaining publications, arriving at the final 
list of articles for inclusion. All screening was 
conducted using Covidence [42]. 

Table 1. Inclusion and exclusion criteria for 
article selection 

Inclusion 
criteria 

Articles describing software systems 
capable of extracting and/or 
displaying relationships among 
journal articles or abstracts. 

Exclusion 
criteria 

Articles describing software 
prototypes were excluded, as were 
articles covering software whose 
main purpose fell outside the 
domain of bibliometric mapping (for 
example, general-purpose tools for 
visualizing and exploring networks). 
Articles describing software that has 
not been actively supported or 
maintained for more than five years 
were also excluded, as were articles 
describing software mainly designed 
for semantic enhancement (e.g., by 
enriching information in articles 
with annotations from, or links to, 
other databases). 

 



4 RESULTS 
After combining the articles retrieved by the initial 
queries into a single list and removing duplicates, 
there were 728 articles. 572 of these were excluded in 
the initial title and abstract screening process, leaving 
156 articles which were assessed for eligibility for 
inclusion. 126 of these were excluded because they 
either failed to satisfy the inclusion criteria or met one 
or more of the exclusion criteria (Table 1). An 
additional three articles were excluded because they 
could not be obtained either through library database 
subscriptions or through interlibrary loan. The 
remaining 27 articles were selected for inclusion. Based 
on a review of these articles and selected citations from 
among them, we selected 16 software systems for 
inclusion in this article (these appear in Table 2 and are 
summarized under “About the software systems” 
below). 

4.1 Data retrieval 
The first step in bibliometric mapping is data retrieval. 
Mainly due to their broad coverage and availability of 
downloadable publication metadata, the databases 
most commonly used in bibliometrics are Medline 
(https://www.ncbi.nlm.nih.gov/pubmed), Scopus 
(http://www.scopus.com), and Web of Science 
(http://www.webofknowledge.com). Medline, 
compiled by the United States National Library of 
Medicine,  is a freely available journal citation database 
for data on biomedical publications. The NLM 
controlled vocabulary Medical Subject Headings 
(MeSH), are used to index citations. Scopus, Elsevier’s 
multidisciplinary abstract and citation database, 
indexes journals, book series, and trade journals, and 
includes several measures of quality for each title. Web 
of Science, a citation indexing service maintained by 
Clarivate Analytics, is also multidisciplinary and has a 
broad depth of coverage. Google Scholar has been 
described as the world’s largest academic search 
engine, but is used far less frequently for bibliometric 
analysis due to its lack of support for download of 
publication metadata. Additional sources of 
bibliographic data include arXiv (http://arxiv.org), 
CiteSeerX (http://citeseerx.ist.psu.edu), and 
ScienceDirect (http://www.sciencedirect.com). The 
coverage available in these databases varies by journal 

and by field of research, and each has its own set of 
advantages and disadvantages [43]. 

Table 2. Bibliometric mapping software 
systems. Some information adapted from 
Borner(2010) and Cobo (2011). 

Software name Developed by Citation 

BibExcel 

University of 
Umeå 
(Sweden) Persson 2009 

Bibliometrix 
University of 
Naples Aria 2017 

BiblioTools / 
BiblioMaps 

University of 
Lyon Grauwin 2011 

CATAR 

National 
Taiwan Normal 
University Tseng 2013 

CiteSpace 

Drexel 
University 
(USA) Chen 2006 

CitNetExplorer 
Leiden 
University van Eck 2014 

CRExplorer 
Max Planck 
Institute Thor 2016 

Headstart 

Open 
Knowledge 
Maps Team Kraker 2019 

IN-SPIRE 

Pacific 
Northwest 
National 
Laboratory Wise 1999 

RobotReviewer 

Byron Wallace, 
Iain Marshall, 
Joël Kuiper and 
Frank 
Soboczenski Marshall 2016 

S&T Dynam. 
Toolbox 

University of 
Amsterdam 
(The 
Netherlands) 

Leydesdorff 
2019 

Science of 
Science (Sci2) 
Tool 

Indiana 
University 
(USA) Sci2 Team 2009 

SciMAT 

University of 
Granada 
(Spain) Cobo 2012 

Utopia 
Documents 

Lost Island 
Labs Attwood 2010 

VantagePoint 

Search 
Technology, 
Inc. Porter 2004 

VOSViewer 
Leiden 
University van Eck 2009 



Software name Short description 

BibExcel 

System that extracts 
bibliographic data and outputs 
it in a variety of commonly-
used formats (Borner 2010) 

Bibliometrix 
R tool for comprehensive 
science mapping analysis 

BiblioTools / 
BiblioMaps 

Set of scripts that create maps 
of science based on 
bibliographic data 

CATAR 

Software toolkit for 
summarizing document sets for 
research and strategic planning 

CiteSpace 

Tool that supports the use of 
citation patterns to analyze and 
visualize scientific literature 

CitNetExplorer 

Tool for visualizing and 
analyzing citation networks of 
scientific publications 

CRExplorer 

Tool to explore the historical 
roots of a field of research 
through reference publication 
year spectroscopy 

Headstart 

Software to produce 
knowledge maps from text, 
metadata, and references 

IN-SPIRE 

System that uses a landscape 
metaphor to uncover 
relationships, trends, and 
themes hidden within data 

RobotReviewer 

Machine learning system 
designed to support evidence 
synthesis 

S&T Dynam. 
Toolbox 

Tools for organization analysis 
and visualization of scholarly 
data (Borner 2010) 

Science of Science 
(Sci2) Tool 

System that supports the 
temporal, geospatial, topical, 
and network analysis and 
visualization of bibliographic 
collections (Aria and 
Cuccurullo 2017) 

SciMAT 

Tool that uses a longitudinal 
framework to support science 
mapping studies 

Utopia Documents 

PDF reader that semantically 
integrates visualization and 
data analysis tools with 
published research articles. 
(Attwood et al 2000) 

VantagePoint 

Text-mining tool for 
discovering knowledge in 
search results from patent and 
literature databases 

VOSViewer 

System that constructs and 
displays maps based on co-
occurrence data 

Software name Web site Platforms 

BibExcel 

https://homepage.u
nivie.ac.at/juan.gorr
aiz/bibexcel/ Windows 

Bibliometrix 
http://www.biblio
metrix.org/ All major 

BiblioTools / 
BiblioMaps 

http://www.sebasti
an-
grauwin.com/biblio
maps/ All major 

CATAR 

http://web.ntnu.ed
u.tw/~samtseng/C
ATAR/Readme.htm
l Windows 

CiteSpace 

http://cluster.cis.dr
exel.edu/~cchen/cit
espace/ All major 

CitNetExplorer 
http://www.citnete
xplorer.nl/ All major 

CRExplorer 
http://andreas-
thor.github.io/cre/ All major 

Headstart 

https://github.com
/OpenKnowledgeM
aps/Headstart All major 

IN-SPIRE 
https://in-
spire.pnnl.gov/ Windows 

RobotReviewer 
http://www.robotre
viewer.net/ 

Online; all 
major 

S&T Dynam. 
Toolbox 

https://www.leyde
sdorff.net/software.
htm Windows 

Science of 
Science (Sci2) 
Tool 

https://sci2.cns.iu.e
du/user/index.php All major 

SciMAT 
https://sci2s.ugr.es
/scimat/ All major 

Utopia 
Documents 

http://utopiadocs.c
om/ All major 

VantagePoint 
https://www.theva
ntagepoint.com/ Windows 

VOSViewer 
http://www.vosvie
wer.com/ All major 



Software name License type Normalization 
measure 

BibExcel Freely available 

Salton’s cosine, 
Jaccard index, 
Vladutz and 
Cook measures 

Bibliometrix Freely available 

Association 
Strength, 
Jaccard, 
Inclusion, Salton 
or Equivalence 
similarity index 

BiblioTools / 
BiblioMaps Freely available 

Kessler's 
similarity 
(bibliographic 
coupling) 

CATAR 

Freely available 
for non-
commercial use Dice 

CiteSpace Freely available 

Salton’s cosine, 
dice, or Jaccard 
strength 

CitNetExplorer 

Freely available 
for non-
commercial use None 

CRExplorer Freely available None 

Headstart Freely available 
Cosine 
similarity 

IN-SPIRE 
Commercial 
software 

Conditional 
probability 

RobotReviewer Freely available N/A 

S&T Dynam. 
Toolbox 

Freely available 
and open 
source Salton’s cosine 

Science of 
Science (Sci2) 
Tool 

Freely available 
and open 
source User defined 

SciMAT 

Freely available 
and open 
source 

Association 
strength, 
equivalence 
Index, inclusion 
index, Jaccard’s 
index, Salton’s 
cosine 

Utopia 
Documents Freely available 

N/A; links 
based on 
citations 

VantagePoint 
Commercial 
software 

Pearson’s r, 
Salton’s cosine 
or the max 
proportional 

VOSViewer Freely available 
Association 
strength 

 

Patent and funding data may also be used in 
bibliometric mapping. Patent data may be retrieved 
from the United States Patent and Trademark Office 
(http://www.uspto.gov), from the European Patent 
Office, or from the Derwent Innovations Index 
provided by Clarivate Analytics Wos. Funding data 
may be downloaded from the National Science 
Foundation (http://www.nsf.gov). 

Most of the systems covered in this review offer 
support for importing data in two or more formats, 
with PubMed, Scopus, and Web of Science offered 
most frequently. However, of the tools covered in this 
review, support for funding data was uncommon, with 
Sci2 and VantagePoint being the notable exceptions, 
offering support for importing NSF funding data. 

4.2 Preprocessing 
Data retrieved from bibliographic sources may contain 
errors and inconsistencies such as variations in how 
data are represented over time. As such, preprocessing 
is one of the most important steps in science mapping 
analysis. Preprocessing methods include 
deduplication, spelling correction, and time slicing 
[44]. Natural language processing (NLP) approaches 
may also be applied in the preprocessing step. These 
include stemming [45], lemmatization, and named 
entity recognition [46]. Among the tools covered in 
this review, SciMAT and VantagePoint are notable for 
the extent of their support for preprocessing. When a 
chosen tool does not support the type of processing or 
data cleanup required for an analysis, it may be 
necessary to carry out these steps manually or in other 
tools. 

4.3 Normalizing data in bibliometric 
mapping 
An essential method in distance-based bibliographic 
mapping is normalization. Normalization is an 
established concept in statistics but has its own distinct 
meaning in bibliometrics, where it refers to calculating 
meaningful similarities between documents [47]. This 
involves first defining the document features and then 
computing similarities between documents based on 
those features [21].  

Similarity measures used to normalize co-
occurrence data may be classified either as indirect and 
direct [47], or as local and global. Indirect similarity 
measures involve the use of co-occurrence profiles: 
Each object is given a vector that contains the number 
of co-occurrences of the object with each other object. 
(In co-word analysis, these objects might be word 
stems, recognized named entities, or multi-word 
phrases.) The similarity between two objects is then 
determined by comparing the co-occurrence profiles of 
the two objects. By contrast, when using direct 
similarity measures, the similarity between two objects 
is derived by calculating the number of co-occurrences 
of the objects, then adjusting for the total number of 
occurrences of each. Direct similarity measures are 
further classified into set-theoretic measures and 



probabilistic measures [47]. Salton’s cosine [48], the 
Jaccard index [49], the Equivalence Index [32], and the 
Ochiai coefficient [50] are set-theoretic measures, while 
association strength [51], [52], also known as the 
proximity index [49], [53], is a probabilistic measure. 
Probabilistic measures have been described as having 
theoretical properties that are more appropriate for 
normalizing co-occurrence data than set-theoretic 
measures [47]. Support for a variety of indirect and 
direct normalization approaches is widespread among 
the tools covered in this review. Details are in Table 2 
and in the descriptions of the individual tools in the 
“About the Software Tools” section below. 

Although they have not been cited widely in the 
bibliometrics literature, neural network based 
approaches may also be used to normalize data. These 
approaches, which operate on word vectors, include 
Word2vec [54], doc2vec [55], fastText [56], [57], and 
GloVe [58]. Word2vec and doc2vec are neural network 
models that represent sentences or whole documents 
as a vector, respectively. These methods allow for sets 
of articles to be clustered by similarity, based on the 
learned context of words and their relationships within 
sentences and paragraphs. Word vectors, for instance, 
capture the meaning of the corpus’ vocabulary. Vector 
algebra then allows for calculation of analogous 
relationships between words. This can allow for 
surprisingly accurate computational inferences: when 
asked for the result of the operation “King” - “man” + 
“woman”, one system provided the output “Queen” 
[59]. By extension, entire documents can also be 
represented and compared as vectors. The distance 
between documents can be found using metrics such 
as word mover’s distance (WMD) [60], which 
calculates the minimum distance words needs to shift 
in their learned contextual space to match the words in 
another document. The context of the training corpus, 
and the type of inference being attempted, are critical 
factors in the quality of the outcome. Some more 
intriguing results are demonstrated at 
https://graceavery.com/word2vec-fish-music-bass/.  

FastText [57] is a library designed to support 
scalable text classification. It employs a hierarchical 
classifier that organizes categories into a tree rather 
than a list, which improves algorithm running 
efficiency. FastText also employs several best practices 
in machine learning and natural language processing, 
including supplementing a bag-of-words model with 
subword information, and using a hidden 
representation to share information across classes. 
Another algorithm that has been shown to be effective 
in document clustering is GloVe [58], an unsupervised 

learning algorithm for obtaining vector 
representations for words. 

Several common challenges in normalizing data 
must be addressed when conducting bibliometric 
analysis. The polysemy problem occurs when one 
term or phrase is used to represent two or more 
different concepts in different contexts, such as in 
different scientific fields (the term “normalization”, as 
discussed above, is one such example). If this fact is not 
taken into account, then articles that contain these 
words may incorrectly be assigned a higher degree of 
relatedness [61]. A converse problem is the synonymy 
problem, where a single concept is expressed using 
two or more keywords; this may result in two articles 
receiving an artificially low similarity score [21]. 

Given the significant differences between various 
similarity measures, it is important to use the measure 
most appropriate for the task at hand. A detailed 
comparison of methods that have been applied for 
normalizing co-occurrence data is presented by Van 
Eck et al. [47]. 

4.4 Clustering in distance-based 
bibliometric analysis 
In bibliometrics, article clustering refers to assigning 
articles into groups based on similarity. Depending 
upon the goals of the analyst, clustering may occur at 
various points in the workflow. A common approach 
in distance-based analysis is to use the distances 
calculated in the normalizing step above to group 
articles based on similarity[61]. Some clustering 
methods involve multiple stages and are thereby able 
to display hierarchical relationships among objects in 
a dataset. Hierarchical clustering [62], a common 
approach to multi-stage clustering, is notable in the 
context of science mapping, as it results in a data 
structure compatible with displaying topical 
information at varying scales. In this method, each 
article is at first considered a singleton cluster. The 
most similar pair of articles is then assigned to a 
cluster, in succession, until no clusters can be merged. 
This results in a dendrogram, which can be translated 
into visual cues to help with the interpretation of 
document groupings. Silhouette indexes can be used 
to determine the optimal threshold for separating 
groups, which can in turn improve the visual 
distinction between groups [63], [64]. 



4.6 Clustering in network-based 
bibliometric analysis 

Data clustering algorithms for network-based 
approaches [51], [65]–[68], some of which are also used 
for distance-based approaches, include k-means 
clustering [69], Infomap [70], Louvain [71], and the 
Smart Local Moving Algorithm [72], [73]. Subgroup 
detection methods based on graph theory, such as a 
widely-used approach by Girvan and Newman [74], 
can also be used to assign clusters in graph-based 
maps. To avoid a result that includes many small 
clusters (e.g., clusters of just one or two articles), a 
minimum cluster size can be specified [61], [72]. 

4.7 Topic modeling 
Another approach that can be applied in bibliometric 
analysis is topic modeling, used to discover the latent 
topics in a set of documents. Algorithms for topic 
modeling include latent semantic indexing [75], 
probabilistic latent semantic analysis [76], [77], and 
latent Dirichlet allocation (LDA) [78]. Topic analysis 
using LDA has been shown to improve machine 
learning methods for identification of relevant articles 
[79]. LDA assumes articles are composed of a number 
of “topics”, and that a set of words, (e.g., a set of words 
within a given abstract), are representative of those 
topics. It can be used as an alternative to the 
normalization approaches described above, by 
forming clusters of documents based on the topics they 
contain. Yet despite its demonstrated utility, LDA still 
does not account for the contextual or semantic value 
of words: “cardiac”, “heart” and “university” are all 
equally weighted and independent during analysis. 
This shortfall can be overcome using vector-based 
approaches, such as Word2vec and related methods 
described in the section on normalizing data, above. 

Text normalization may be applied to label 
detected clusters of articles. Labels indicate the most 
important of the terms in the cluster. Text 
normalization assigns a weight to each term or multi-
word phrase to indicate its relative importance.  

4.9 Determining spatial position of 
visual elements 
One of the steps in visualizing a bibliographic map is 
to determine the spatial position of visual elements. 
Because the calculation of similarities results in high-
dimensional data that cannot readily be represented 
using a Cartesian coordinate system, a dimensionality 
reduction approach must be applied. Dimensionality 
reduction techniques such as principal component 

analysis (PCA), multiple correspondence analysis, 
multidimensional scaling[20], [41], [80], t-Distributed 
Stochastic Neighbor Embedding (t-SNE) [81], uniform 
manifold approximation and projection (UMAP), and 
pathfinder networks [82], [83] are widely used [1], [4], 
[24]. Another is the visualization of similarities 
mapping technique (VOS) [84], [85], which was 
specifically developed for use with the  VOSViewer 
software. 

Map layout for graph-based maps is typically 
achieved through the use of a force-directed placement 
technique such as the Fruchterman-Reingold [86] or 
Kamada-Kawai [87] algorithm. These techniques are 
based on physics simulations where all nodes repel 
one another, but linked nodes are drawn spatially 
proximate to one another. Another such algorithm, 
OpenOrd [88], is designed for networks that contain a 
large number of nodes (e.g., several hundred 
thousand). OpenOrd is open source and 
computationally efficient, and conveys both global and 
local structure. 

4.10 Graphical representation of 
bibliometric maps 
Once the spatial position of the elements of the map are 
determined, the map may then be rendered visually. 
Placing data in a visual context can help people 
understand its significance, revealing patterns and 
trends that may be more difficult to recognize in text-
based data. Although significant research has focused 
on similarity measures [47], [89], [90] and mapping 
techniques [52], [91], [92], there have been fewer 
articles published focusing on the graphical 
representation of bibliometric maps [20]. 

Complementing map-based visualization 
approaches, a variety of other types of visualization 
approaches, such as helicocentric maps [93] and 
geometrical models [94] have also been applied to 
science maps. Additionally, some visualization 
approaches are designed to highlight the evolution of 
clusters in successive time periods, including cluster 
string [95]–[97], rolling clustering [67], alluvial 
diagrams [68], the ThemeRiver visualization [98], and 
thematic areas [16]. These methods are not restricted to 
a “map-like” visual paradigm, and can supplement 
science maps by conveying changes in areas of 
research focus over time. 



4.11 Analytical methods applied to 
bibliometric maps 
Applying analytical methods can allow for the 
discovery of useful information from data, networks, 
and maps [24]. Methods applied in science mapping 
include network analysis [6], [15], [99]–[101], temporal 
or longitudinal analysis [102], [103], geospatial 
analysis [104]–[106], and performance analysis [16], 
which aims to quantify the importance, impact, and 
quality of different elements of the map (e.g., the 
clusters) through bibliographic measures and 
indicators [44]. 

5 ABOUT THE SOFTWARE PROGRAMS 
Table 2 contains a summary of all identified software 
tools that perform the bibliometric mapping and 
analysis described above. ([[Table 2 is formatted as 
landscape; due to limitations of Google Docs, it 
appears in a separate file in this folder]]). The vast 
majority of the systems were developed by groups at a 
single institution. The systems are described here 
alphabetically. 

BibExcel [107] supports the analysis of 
bibliographic data, including citation and co-word 
analysis. It takes as input data from Web of Science, 
Scopus, and Procite. It  supports export of data in a 
variety of formats, including general-purpose network 
analysis and visualization tools such as Pajek. 
Preprocessing functions include stemming, document 
deduplication, and elimination of low frequency items. 
It supports several measures for normalizing data, 
including Salton's cosine and Jaccard's index. 

Bibliometrix [1] is a library for R that supports 
science mapping and bibliometrics analysis. It accepts 
input from Scopus and Web of Science and supports 
several types of citation analysis, as well as co-word 
analysis. Bibliometrix supports the input of data from 
Scopus, Web of Science, PubMed, and the Cochrane 
Database of Systematic Reviews. A unique feature of 
Bibliometrix is a plot that displays author productivity 
over time. It also includes support for calculating 
statistical measures of network structure, including 
average path length and various measures of 
centralization. 

BiblioTools [108] is a set of python scripts that 
transforms Web of Science data to bibliometric maps, 
including maps based on both citation and co-word 
analysis. It includes functions for parsing and filtering 
data and requires the prior installation of several 
python code libraries. 

CATAR [21] is a software toolkit for bibliographic 
clustering and mapping. It includes functions to 
import Web of Science data and to parse and 
standardize it in preparation for analysis, including 
deduplication. It also supports stemming, removal of 
stop words for co-word analysis, and document 
clustering and topic analysis, with document 
similarities calculated based on the Dice coefficient. 

Citespace [109]–[111] is a Java-based system for 
visualizing and analyzing patterns in the scientific 
literature. It focuses on identifying points at which a 
significant innovation, such as an emerging trend or 
intellectual turning point, occurs in a field or domain. 
Although the primary import source is Web of Science 
data, it also reads data from PubMed, and arXiv, as 
well as certain grants and patent data. It supports the 
creation of citation-based as well as co-word networks, 
including automatically labeling networks using terms 
from articles. Supported normalization metrics include 
Salton's cosine, Dice, and Jaccard's index. Citespace 
also supports geographic maps based on the locations 
of authors; these are viewable in Google Earth. 

CitNetExplorer [112] is a Java-based system for 
analyzing and visualizing citation networks. It imports 
data from Web of Science and allows users to identify 
the core literature in a given field, as well as the 
influence of a given author's publications on 
publications that are published subsequently. The 
system supports zooming and scrolling functionality 
so that users can drill down into a network to examine 
clusters of closely related publications. CitNetExplorer 
exports data to Pajek to support network-based 
analysis and visualization. 

Cited Reference Explorer (CRExplorer) [113] is a 
Java-based program designed to support the 
identification of highly-cited papers and their 
influence on the historical roots of a field or researcher. 
It takes as input data from Web of Science or Scopus 
and produces time-based visualizations using 
reference publication year spectroscopy (RPYS). 

Headstart [114] is a web-based knowledge 
mapping system that produces maps from text, article 
metadata, and references. It includes features that 
cluster articles and assigns labels based on keywords. 
Headstart is the core technology behind the Open 
Knowledge Maps system 
(https://openknowledgemaps.org). 

IN-SPIRE [115] is a Windows-based visualization 
software system that operates from textual data, which 
may include journal abstracts as well as news reports, 
technical reports, and message traffic. The system 



supports entity extraction for people, includes two 
main visualization approaches. The Galaxy 
visualization uses a metaphor of stars in the sky, with 
each star representing an individual document. The 
ThemeView visualization uses a three-dimensional 
terrain map to provide a high-level view of the data. 

RobotReviewer [116] is a machine learning system 
designed to support evidence synthesis for systematic 
reviews. It takes as input a set of scholarly articles 
describing randomized controlled trials and displays 
information about the population, intervention, 
comparisons made, and the outcomes, as well as 
information on the study design and an assessment of 
risk of bias. 

S&T Dynamics Toolbox [117] is a set of command 
line programs for bibliographic analysis, including 
several types of citation analysis as well as co-word 
analysis. It includes functions to assess collaboration at 
the level of institutions, cities, and countries. The 
toolbox does not include tools for visualization, but 
supports the export of data to Pajek, UCINET, and 
Sci2. 

The Science of Science (Sci2) Tool [118] is a system 
that supports network-based, topical, temporal, and 
geospatial analysis and visualization of bibliographic 
data. It can import data in a wide variety of network-
based and bibliographic formats, including Scopus, 
Web of Science, and NSF grant data. It includes 
functions to extract and preprocess network data and 
supports several types of citation-based and co-word 
analysis. 

SciMAT [44] is a Java-based system which supports 
bibliographic and science mapping analysis and 
visualization. It allows for input of data in Web of 
Science and RIS format, supports both citation-based 
and co-word analysis, and includes several methods 
for normalizing data. It includes three types of 
visualizations: strategic diagrams, cluster networks, 
and evolution maps. SciMAT is noteworthy for its 
support of preprocessing, which features duplicate 
detection, identification of misspelled words, time 
slicing, and data reduction. Another distinguishing 
feature is support for the calculation of a variety of 
bibliometric measures based on citations, including the 
h-index. 

Utopia Documents [119] is a PDF reader that 
enriches scholarly articles with online content. It 
allows readers to annotate documents, search for 
additional information related to article content, and 
view altmetrics for the article. 

VantagePoint [120] is Windows-based commercial 
software for science mapping analysis which supports 
more than 190 different import formats. It supports the 
extraction of bibliographic metadata, including 
functions for data cleanup. The system supports 
citation-based as well as co-word analysis and 
visualization.  

VOSviewer [20], [41] is a Java-based system for 
constructing and visualizing bibliometric networks 
based on co-citation, bibliographic coupling, or co-
authorship. It also supports co-word networks. The 
system can import data from Web of Science, Scopus, 
PubMed, and RIS files. It has a visualization module 
with four views: label view, density view, cluster 
density view, and scatter view. It also supports export 
of data to other network-based visualization tools. 
6 DISCUSSION 
As the size of the base of scientific publications 
continues to increase, there is an ever greater need for 
effective methods and tools to navigate and analyze 
the literature. It has been said that the best we can 
expect from bibliometric models is a partial and 
imperfect reflection [121], or a “faulty mirror” of 
science [122]. At each step in the process of science 
mapping, an analyst’s decisions are influenced not 
only by the goals of the specific analysis, but also by 
the idiosyncrasies of the research domain being 
analyzed. 

That said, some steps in standard bibliometrics 
workflows are supported by a well-established body 
of literature and have coalesced into sets of best 
practices. For example, there is generally a shared 
understanding among bibliometrics practitioners of 
the databases used most commonly, and their main 
strengths and limitations. By contrast, the literature on 
methods to normalize bibliographic data is extensive 
and continues to evolve. The majority of systems 
employ graph-based clustering, with the exception of 
IN-SPIRE [115] and VOSViewer [20], [41], both of 
which use distance-based clustering. As mentioned 
earlier, probabilistic measures have theoretical 
properties that are more appropriate for normalizing 
co-occurrence data than set-theoretic measures [47]. 
Yet many of the tools support set-theoretic approaches 
to normalizing data, and under certain circumstances, 
expert users may have good reasons to apply them. 

There is some debate in the bibliometrics 
community about the practicality of using full-text 
articles for document clustering. Using full-text articles 
involves at least two challenges: first, it may be 
difficult to obtain licences from publishers to do 



research on full-text articles, and second, given their 
high semantic dimensionality and inconsistent 
formatting, it may be impractical from a 
methodological or computational standpoint. Given 
these difficulties, several researchers have 
recommended the compromise of using abstracts for 
short-text clustering [123], [124]. 

Short-text clustering is a recognized problem in 
computer science. The machine learning research 
community has applied a variety of methods to cluster 
short texts [125]–[128], including Dirichlet multinomial 
mixtures, global word co-occurrences, and self-
aggregation [78]. Because most methods developed for 
clustering short texts have been developed and 
applied to non-scientific genres of text, such as such as 
news articles, they are not as effective when applied to 
clustering journal abstracts. As such, additional work 
is needed to optimize short-text clustering applied to 
journal abstracts. 

The systems covered in this review are developed 
and maintained, for the most part, by individual 
groups at institutions, rather than large consortia. With 
the exception of IN-SPIRE and VantagePoint, all 
systems are either freely available, or freely available 
for non-commercial use. It is challenging to fund the 
development and ongoing maintenance of scientific 
software. Some developers have successfully sought 
grant funding for their systems. 

The systems are diverse in terms of their main 
goals, interface types, and operating system support. 
As is common with scientific software, documentation 
may be sparse, and users may need to forgive 
difficulties in installation and unfamiliar user 
interfaces to accomplish tasks successfully. Given that 
each system has its strengths and limitations, it is not 
uncommon for practitioners to use different systems 
for different purposes. One might, for example, use 
one system to import and extract data, another to 
normalize, and another to do analysis and 
visualization. 

To varying extents, the systems offer preprocessing 
tools that help clean up and standardize data. 
However, preprocessing steps are sometimes not 
applied automatically when data are imported, 
requiring the user to take initiative to apply them. In 
terms of user interfaces, although some systems 
produce static maps with little or no added interactive 
functionality, many include controls for examining 
specific parts of the map in additional detail [61], as by 
zooming and panning (moving the image around). 
Several of the systems have interfaces arranged in a 
display with several panels, such as an overview panel, 

a main panel, and an action panel [41]. In such a 
system, the entire map is displayed in a small overview 
panel, while the currently-viewable area of the map is 
displayed in a much larger main panel. Some systems 
that do not support visualization functionality have a 
multi-paneled view that excludes the visualization 
window. Another common user interface feature 
allows users to search within the articles displayed, 
based on title, publication year, author name, or 
journal name [61]. 

There are some well-established taxonomies of 
visualization approaches that can be applied in 
bibliometric mapping [129]–[131], but the coverage of 
visualization approaches, as well as the quality of 
implementation of the visualizations and their 
corresponding user interfaces, vary widely from 
system to system. Among the systems reviewed here, 
CiteSpace and VOSViewer are recognized as having 
visualization functions that are mature and well 
matched to bibliometrics and citation mapping 
workflows. But regardless of the bibliometrics system 
used, it remains common for analysts to export data to 
general-purpose network visualization tools such as 
Pajek [33], Gephi [36], or Cytoscape [40]. 

The next generation of bibliometrics analysis and 
visualization software may benefit by providing 
additional functions to convey changes in areas of 
research focus over time, such that (for example) 
operating a control to move forward or backward in 
time results in an update to the map. These changes 
could also be applied in the process of selecting 
material to include when updating a systematic 
review. However, this interface functionality is 
focused on retrospective data. To help researchers 
connect with important ongoing dialogues in real-
time, there is an opportunity to extend bibliometrics 
software functionality to support emerging 
nontraditional data streams, such as social media and 
blog posts from the scientific community. 

When using software systems to explore 
bibliometric data, analysts may face a high cognitive 
load when large amounts of information are presented 
in the display. A good strategy to limit cognitive load 
is to offer features that dynamically limit the amount 
of information that is allowed to appear in the display; 
expert users may be comfortable increasing the 
maximum number of elements that are shown in one 
view. 

There are also opportunities to enrich bibliometrics 
analysis and visualization software by way of 
additional academic crossover with related fields. For 
example, a review of research on text visualization and 



mining has found that existing text visualization 
research does not cover the majority of available text 
mining techniques [132]. Likewise, with the exception 
of CiteSpace, which displays citation counts [44], few 
software systems have integrated quality and impact 
measures (e.g., bibliographic measures, such as field-
normalized citation impact), into science mapping 
workflows. 

7 CONCLUSIONS 
A wide array of software tools are available to support 
bibliometric analysis and science mapping workflows. 
Because bibliometrics is a well-established field that 
describes sets of methods that tend to remain stable 
and valid over time, it may not always be necessary to 
use the “latest and greatest” software system. With 
some level of expertise, and an awareness of the 
caveats of specific methods, any of the tools described 
in this review can be leveraged to do valid and robust 
bibliometrics. That said, there remain significant 
opportunities for the development of automated and 
semi-automated tools that are approachable by expert 
and non-expert users alike. 
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