
EFFECTIVE ONLINE DECISION-MAKING IN
COMPLEX MULTI-AGENT SYSTEMS

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Theodoros Lykouris

August 2019

c© 2019 Theodoros Lykouris

ALL RIGHTS RESERVED

EFFECTIVE ONLINE DECISION-MAKING IN COMPLEX MULTI-AGENT

SYSTEMS

Theodoros Lykouris, Ph.D.

Cornell University 2019

The emergence of online marketplaces has introduced important new dimensions

to online decision-making. Classical algorithms developed to guarantee worst-

case performance often focus strongly on the worst case; in typical inputs one

can perform much better which makes these approaches not practical. Moreover,

these marketplaces serve multiple agents who interact in complex ways; this

adds important facets to designing online decision-making approaches in these

systems. This thesis aims to shed light on both of these issues.

In particular, in the first theme of the thesis, we show how to utilize nice struc-

tures in the data to enhance classical worst-case guarantees without requiring

that these structures are perfectly present. Instead the performance gracefully

degrades as these structures become less present. We discuss how to exploit

three such nice structures: existence of a really good alternative, well-behaved

randomness, and predictability of future requests.

The second theme of the thesis explores the multi-agent aspect of modern

online decision-making which adds important constraints to the classical tasks.

In this direction, we discuss pricing under the existence of network externalities

(such as ones arising in ridesharing systems), outcomes in evolving game settings

with multiple strategic learning agents, and tradeoffs between effective online

decision-making and ethical goals regarding non-discrimination.

BIOGRAPHICAL SKETCH

Theodoros (Thodoris) Lykouris was born and grew up in Athens. He completed

his undergraduate diploma in the Department of Electrical and Computer Engi-

neering in National Technical University Athens. Subsequently he enrolled as

a Ph.D. student to the Department of Computer Science in Cornell University.

During his Ph.D. studies, he had the pleasure of doing internships in Microsoft

Research India, Google Research New York, and Microsoft Research Redmond.

He also spent valuable time as a visiting student at Toyota Technological Institute

at Chicago and at the Simons Institute at Berkeley. After graduating from Cornell,

he will join Microsoft Research New York as a postdoctoral researcher.

iii

ACKNOWLEDGEMENTS

This thesis would have been significantly poorer without the continuous support

of a large number of exceptional individuals. I would like to therefore take the

opportunity to thank each of them for helping me mature as a researcher, serving

as inspirational forces, providing ample technical and emotional support, and

making my graduate years a very pleasant period of my life.

First and foremost, I am deeply grateful to my advisor, Éva Tardos. Beyond

her inherent brilliance, her impressive intuition, and her inspiring work ethic,

what really distinguishes Éva as an advisor is the extent to which she prioritizes

her students’ scientific growth and personal well-being. Éva has been extremely

generous with her time, actively delving into our research pursuits and offering

ample advice regarding both research directions and important career decisions.

Her genuine care towards my success is nicely demonstrated by how ubiqui-

tously available she has been to provide feedback regarding even minor issues

and how supportive and encouraging she has been towards me building external

collaborations. Being mentored by Éva has been an enormous priviledge which

has undoubtedly shaped my research and life perspective.

At Cornell, I was also fortunate to be surrounded by many other faculty who

have had a significant role in my research development. I am very thankful to

Jon Kleinberg, Karthik Sridharan, and Sid Banerjee for serving on my committee.

Jon greatly facilitated my adjustment in Cornell with his very useful feedback on

my undergraduate project (published after I joined) and with his phenomenal

teaching style. Since then, he has provided useful suggestions and, in particular,

his feedback has significantly improved the structure of this thesis. Karthik has

played a pivotal role in familiarizing me with the online learning literature which

is a prominent topic in this thesis. Moreover, a question of his in one of my talks

iv

eventually led to our first joint paper and, since then, we have spent a lot of hours

working together on the whiteboard. Sid also has a profound contribution to my

research life. Our joint paper initiated me to the queueing-theoretic literature,

boosted my confidence in undertaking projects in new areas, and is an exemplary

demonstration of how a class project can lead to a nice research work. Our

discussions also helped me form a more holistic view of online decision-making

in online marketplaces. Outside of my committee, I would like to thank Bobby

Kleinberg and David Shmoys for engaging into intriguing research discussions

and relaxing social activities as well as offering invaluable professional advice.

This thesis greatly benefited from multiple internships and research visits

throughout my Ph.D. studies; I would like to thank my mentors and collaborators

there. In particular, I am grateful to Vahab Mirrokni, Renato Paes Leme, and

Sergei Vassilvitskii for helping make my summer at Google Research NYC

the most productive period of my Ph.D. This internship offered great research

stimulation and enabled me to identify the first theme of this thesis. I am

also thankful to Avrim Blum, Suriya Gunasekar and Nati Srebro for hosting

me at Toyota Technological Institute at Chicago (TTIC) and initiating me to

fairness considerations in maching learning; our joint work figures in the last

chapter of this thesis. Thanks to my mentor during my internship in Microsoft

Research at Redmond, Nikhil Devanur, who helped me advance my expertise

on online algorithms and multi-agent learning dynamics. Finally, I am thankful

to the Simons Institute at Berkeley for inviting me to two semester programs on

Economics and computation and Real-time decision-making that I happily attended.

One of the main reasons I enjoyed my Ph.D. experience is undoubtedly

my collaboration with other students at Cornell. I had the pleasure to have

productive and fun collaborations with Vasilis Syrgkanis, Dylan Foster, Daniel

v

Freund, and Drishti Wali. Having come through a similar background, Vasilis

has been extremely helpful in my adjustment both to Cornell and to research. His

attitude towards tackling projects has heavily influenced my research style and

I am greatly thankful for his guidance and mentorship. Dylan has been really

helpful during my introduction to machine learning research. Daniel has been

my main buddy during my graduate studies and our collaboration is probably

one of the main reasons for that. Last, working with Drishti has helped me

develop mentoring skills; I am very happy with her growth and I am looking

forward to see more from her in the near future.

There are many other people that have been important in keeping me happy,

motivated, and sane during my graduate studies. I would like to thank all the

students in the theory group for creating a very collegial work environment.

In particular, thanks to Hedyeh Beyhaghi, Pooya Jalaly, Rad Niazadeh, Daniel

Freund, Rahmtin Rotabi, Sam Hopkins, Dylan Foster, Rediet Abebe, Manish

Raghavan, Shijin Rajakrishnan, Ayush Sekhari, Drishti Wali, and Makis Arsenis.

Special thanks to Sam, Daniel, and Manish for their feedback in preliminary ver-

sions of this thesis and, in general, for being amazing friends. I would also like

to thank students outside the theory group that made life in Ithaca much more

fun; in particular thanks to Elisavet Kozyri who served as my student mentor

and took her role really seriously making my adjustment to Ithaca seamless and

Steffen Smolka with whom I did most course assignments and shared a roof for

a couple of years. Thanks also to Christoforos Mavrogiannis, Christine Diepen-

brock, Nirvan Tyagi, and Jonathan di Lorenzo, for making parts of my graduate

studies more pleasant. Outside Ithaca, I would like to thank many friends for

making my research visits and internships more fun and social. In particular,

thanks to Haris Angelidakis, Konstantina Mellou, Katerina Sotiraki, Manolis

vi

Zampetakis, Dimitris Tsipras, Thanasis Lianeas, Sepehr Assadi, Eric Balkanski,

Zelda Mariet, Markos Epitropou, Fotis Iliopoulos, and Antonis Papadimitriou.

Finally, my life would have been significantly emptier without the uncon-

ditional love and support of a few people. My parents, Nikos and Dina, have

done everything they could to make sure that I have the tools and opportunities

to discover and follow my passions. Since my early childhood, my father was

always challenging me with riddles and mathematical quizes and this probably

has an effect on my passion to prove theorems. My mother taught me to express

my thoughts, form arguments, and write coherently; a phrase she likes a lot

is: Thought without language is mute; language without thought becomes a cry. My

brother, Yannis, has also been a constant presence in my life. I am thankful to

have kept close contacts with friends from my life before starting my Ph.D. who

know me long enough to point to things I often neglect; in particular, thanks to

Orestis, Marialena, Jenny, Lydia, and Irene for being there for me. Last but not

least, I am happy, proud, and excited to share my everyday thoughts and activi-

ties with Ariadni, who has been a wonderful life companion, and the cornerstone

of my happiness and well-being over my graduate years.

The work of this thesis has been supported by grants from the National

Science Foundation and and fellowships from Google and Cornell University.

vii

TABLE OF CONTENTS

Biographical Sketch . iii
Acknowledgements . iv
Table of Contents . viii

1 Introduction 1
1.1 Overview of results . 2
1.2 Theme I: Exploiting nice data properties in a robust way 3

1.2.1 Contribution I: Mitigating exploration in online learning . 6
1.2.2 Contribution II: Robustness to adversarial corruptions . . 11
1.2.3 Contribution III: Online algorithms with predictions . . . 15

1.3 Theme II: Multi-agent online decision-making 20
1.3.1 Contribution IV: Dynamic pricing in ridesharing 21
1.3.2 Contribution V: Efficiency of dynamic learning outcomes . 24
1.3.3 Contribution VI: A fairness view on online learning 28

1.4 Roadmap of this thesis . 32

2 Mitigating exploration in online learning 33
2.1 Preliminaries on adversarial online learning 34
2.2 Small-loss guarantees with partial feedback 37
2.3 Classical reduction cannot give small-loss guarantees 39
2.4 Main result: General reduction to partial feedback 42
2.5 Optimal small-loss guarantees for bandit feedback 54
2.6 Remarks . 58

3 Robustness to adversarial corruptions 61
3.1 Preliminaries on stochastic multi-armed bandit learning 62
3.2 Stochastic bandits with adversarial corruptions 65
3.3 Click fraud attack against classical bandit algorithms 67
3.4 Warm-up: c-corrupted setting with valid upper bound c 69
3.5 Main result: Multi-layer Active Arm Elimination 70
3.6 Remarks . 78

4 Online algorithms with predictions 81
4.1 Preliminaries on caching and competitive analysis 82
4.2 Caching augmented with a machine learned predictor 83
4.3 Blindly following the predictor is insufficient 87
4.4 Main result: Predictive Marker algorithm 91
4.5 Practical traits of the algorithm . 100
4.6 Remarks . 102

viii

5 Dynamic pricing in ridesharing 104
5.1 Preliminaries on pricing without state 105
5.2 Pricing as a control in queueing-theoretic networks 108
5.3 Network state externalities make pricing more complicated 115
5.4 Main result: Elevated Flow Relaxation framework 117
5.5 Applying the framework to pricing beyond throughput 127
5.6 Remarks . 131

6 Efficiency of dynamic learning outcomes 133
6.1 Preliminaries on efficiency of selfish outcomes 134
6.2 Shifting learning and efficiency of dynamic outcomes 140
6.3 Classical smoothness analysis leads to ineffective results 144
6.4 Robustness of efficiency in dynamic games via stability 147
6.5 Stability in dynamic games via differential privacy 152
6.6 Remarks . 159

7 A fairness view on online learning 161
7.1 Preliminaries on online learing with multiple groups 162
7.2 On combining fair expert advice fairly 166
7.3 Impossibility: Balance of false negative rates unachievable 168
7.4 Main positive result: Balance in accuracy achievable 174
7.5 Balance in accuracy only when learning is not too good 177
7.6 Remarks . 179

A Supplementary material from Chapter 2. 182
A.1 Concentration inequality . 182
A.2 Transforming approximate regret to small-loss guarantees 184

B Supplementary material from Chapter 3. 187
B.1 Active arm elimination with enlarged confidence intervals 187
B.2 Fast-slow active arm elimination race intervals 190
B.3 Multi-layer active arm elimination race 195

C Supplementary material from Chapter 4 196

D Supplementary material from Chapter 5. 198
D.1 Concave reward curves . 198
D.2 Irreducibility of the priced system 200

E Supplementary material from Chapter 6 203
E.1 Smoothness of first-price auctions with discrete bids 203

F Supplementary material from Chapter 7. 205
F.1 Complete proof for group-unaware algorithms 205
F.2 Complete proof for group-aware algorithms 211

ix

CHAPTER 1

INTRODUCTION

The question of how to make effective decisions in complex systems lies at the

heart of machine learning, algorithmic game theory, and optimization. Machine

learning uses past data to develop models for these systems that correctly classify

unseen requests. Algorithmic game theory addresses the system inefficiencies

caused by individual incentives. Optimization provides techniques to maximize

desired objective functions in the resulting models, informing decision-making.

The advent of online marketplaces has added an important dimension to

the decision-making process: decisions need to be made in a sequential manner

in complex multi-agent systems. For example, Google and Facebook need to

sequentially decide regarding the selection and pricing for millions of ads every

second, relying on effective advertising as their main business model. Uber and

Lyft transform transportation in urban centers via dispatch decisions that change

the configuration of their systems, thereby affecting future customers.

This thesis offers a principled approach towards effective and responsible on-

line decision-making in such multi-agent systems, centering around two themes.

The first exploits nice data patterns in a robust way, while the second addresses

complications in multi-agent online decision-making. Concretely we aim to:

Theme I: Provably enhance online decision-making if data have a nice

structure, being robust to this structure not being perfectly present.

Theme II: Address economic and societal issues with online decision-

making in modern applications where multiple selfish agents interact.

1

1.1 Overview of results

In order to achieve provable guarantees in online decision-making, there are

two classical approaches. The more statistical approach involves some strong

assumption on the data (for example, that they are identically and independently

distributed across time). An alternative viewpoint is to make no assumptions

about the underlying distributions and aim for worst-case guarantees that are

robust against even adversarial inputs.

The first theme of this thesis (Section 1.2 and Chapters 2-4) bridges the afore-

mentioned two approaches in online decision-making. We show how to utilize

nice structures in data, arising in modern applications, to enhance performance

guarantees while retaining good performance when these structures are not

perfectly present. In particular, the guarantees we provide smoothly deteriorate

as the corresponding structures become less and less present. Examples of nice

structures in the data we utilize to enhance online decision-making are:

• The existence of an option that is almost perfect; the guarantees degrade

with the loss associated to this best option (Section 1.2.1 and Chapter 2).

• Well-behaved randomness in the performance of available options; bounds

decay with how far from independently and identically distributed (i.i.d.)

data end up being (Section 1.2.2 and Chapter 3).

• Predictability of future requests; the guarantees degrade with the eventual

inaccuracy of these predictions (Section 1.2.3 and Chapter 4).

Subsequently, we move forward to discuss challenges that arise in online

decision-making due to the multi-agent nature of modern online markets. Under-

2

standing the effect of multi-agent interactions in offline settings is widely studied

within operations research, economics, and social sciences. However, classical

optimization approaches diregard the online aspect of these decisions and the fu-

ture externalities they cause to different agents in the resulting ecosystems. More

recently, there has been attention towards incorporating these issues [106, 63]

but there are important challenges that remain uncharted.

The second theme of this thesis (Section 1.3 and Chapters 5-7) addresses chal-

lenges in settings where multi-party interests overlap in a robust and responsible

manner. We tackle three particular instantiations of such challenges:

• Pricing decisions in ridesharing often affect future requests in different

locations, traditionally treated as independent (Section 1.3.1 and Chapter 5).

• Platforms are not the only data-savvy entities; advertisers can also use

data to adapt their behavior towards enhancing their individual utility,

potentially causing system ineffeciencies (Section 1.3.2 and Chapter 6).

• Optimization goals may conflict with ethical concerns such as discrimina-

tion against minority groups; this conflict is exacerbated when decisions

are made online and data are not i.i.d. (Section 1.3.3 and Chapter 7).

Below we expand on all these issues. We briefly illustrate the main questions

targeted, the main results obtained, and the technical highlights from each work.

1.2 Theme I: Exploiting nice data properties in a robust way

In the first theme of this thesis, we show how to enhance online decision-making

via utilizing nice structures that data exhibit in a way robust to these structures

3

not being perfectly present. When all data are available offline, the decision-

maker can perform data analysis, identify desired nice structures, and apply

optimization techniques that actively use them. The online aspect of many ap-

plications makes this task significantly more difficult for multiple reasons. First,

once a structure is eventually identified, the decision-maker may have already

made many suboptimal decisions, irrevocably harming the system’s performance.

More critically, since not all data are available in advance, the decision-maker

may mistakenly identify a non-existing structure early in the process. This may

also arise due to self-interested entities directing the decision-maker towards

such mistakes and can have severe implications on future performance if the

employed optimization techniques are not robust to these mistakes.

To illustrate the complications that arise while making online decisions in

complex systems, let’s introduce a few particular tasks which we use as running

examples. A routing application such as Google Maps or Waze wishes to suggest

to their users routes minimizing their travel time. An online advertising platform

such as Google or Bing Ads wants to identify the most profitable ad to display in

response to a search query. A health care provider aims to offer the most effective

treatment to a patient with particular symptoms. In all of these scenaria, the

platform tries to extract which option is the most effective in order to use it. Since

this information is not known, the platform needs a way to learn it.

The classical machine learning approach (batch learning) is not very suitable

to inform decision-making in the aforementioned tasks. Batch learning consists

of collecting enough samples and subsequently using them to learn models

that perform well on unseen data. This approach works well when data come

from i.i.d. distributions and we can obtain access to clean samples from these

4

distributions, but can be very unreliable in dynamic environments with multiple

self-interested agents such as the tasks we described above. For instance, in rout-

ing, the travel times of different routes can be significantly affected by temporal

and not easily predictable events (an accident in a street causing high congestion,

the end of a baseball game affecting the traffic patterns around the stadium).

Moreover, travel times are also affected by the decisions of all the drivers in the

system who have their own individual goals and assuming that their behavior is

completely unchanging across time is unrealistic.

One approach towards circumventing some of the aforementioned pitfalls is

the literature of online learning that aims to adaptively balance the need of ex-

ploration with exploiting options that have been effective in the past. Initiated by

the seminal works of Robbins [113], Blackwell [25], Hannan [64], and Gittins [58],

the online learning framework formalizes this explore-exploit trade-off under

various modeling assumptions regarding the underlying system. Despite cleanly

capturing the essence of this trade-off, these classical approaches do not provide

very meaningful guidance for the applications we discussed as they suffer from

various issues. They often assume access to an unrealistic amount of information

in the form of knowing accurate priors on the performance of different actions

such as Markovian bandits [58, 126], or in the form of receiving feedback even

for options not selected such as the experts setting [25, 64, 54, 72]. Alternative

approaches that are prior-free and not full-information such as stochastic ban-

dits [113, 86, 11] suffer from an orthogonal issue of relying on the performance

of all options being completely i.i.d. across time. Finally, classical works that

avoid these assumptions such as adversarial bandits [12] tend to employ a com-

pletely worst-case approach and revert to overly cautious exploration to keep an

up-to-date view of the changing world, resulting in ineffective guarantees.

5

In Sections 1.2.1-1.2.2 (and Chapters 2-3), we focus on ways to make online

learning more practical by avoiding shortcomings of classical approaches. In

Section 1.2.3 (and Chapter 4), we extend our scope to the notion of competi-

tive analysis that also captures the notion of state in the underlying systems.

The general philosophy behind our contributions is to design algorithms with

data-dependent guarantees that improve on the worst-case when data exhibit a

nice structure, but do not rely on such a structure being perfectly present and

gracefully degrade as the input becomes less well-behaved.

1.2.1 Contribution I: Mitigating exploration in online learning

To present the first contribution of this thesis, we need to provide a slightly more

formal description of non-stochastic online learning. We have a set of alternatives

(e.g. the paths in the routing example) which are typically referred to as arms.

At every round, the learner (e.g. Google Maps or Waze) selects an arm, possibly

in a randomized way. Then losses are selected for each of the alternatives; since

we do not want to make any i.i.d. assumption in the particular application,

the losses are assumed to be selected adversarially and are only assumed to

be bounded in [0, 1]. The only information that the adversary does not know

is which arm was selected (if the algorithm is randomized, the adversary only

knows the probability that each arm is selected). In most applications, there

is no explicit adversary but this stronger framework enables us to capture the

non-stochasticity of the environment. The learner incurs the loss of the selected

action and observes some feedback, e.g. the losses of all arms regardless whether

they were selected (full information), only the loss of the selected arm (bandit

feedback), or some partial feedback in between (as we discuss below).

6

The learner wishes to minimize the aggregate loss of her selected arms over

time (the average travel time that a user experiences). However, this quantity on

its own does not provide meaningful guidance of whether the learner uses an

effective algorithm: the average travel time may be high because the algorithm

is making suboptimal decisions but it may also be high because there is no route

that has a small travel time. As a result, to evaluate the performance of the

algorithm, online learning literature compares the loss of the algorithm to the

loss of a benchmark. The classical notion of regret uses as comparator benchmark

the fixed action that is best in hindsight (has the smallest ex post aggregate loss).

Typical regret bounds are sublinear in the time horizon, i.e., the average regret

goes to 0 as time goes by. These no-regret guarantees capture the idea that, if there

exists a consistently good action, the algorithm should at some point realize it

and follow that action – the learner should not look back at the end of time and

regret not having followed that action. Note that, despite this property, the regret

may still be the dominant term when there exists a really good action.

Main question. An important issue that arises when employing online learning

while only receiving partial feedback is the need of over-exploration. The natural

tendency to deal with partial feedback is to explore often all arms, including

suboptimal ones, to ensure an up-to-date view on how well all actions behave.

This results in selecting suboptimal arms often which leads to ineffective regret

guarantees and is a big roadblock towards widely employing online learning.

One approach to deal with this problem is to aim for guarantees that, if

satisfied, prohibit this over-exploration. One such category is the small-loss regret

guarantees, which require the algorithm to achieve a regret that is sublinear in the

loss of the best arm. Note that when the best arm has aggregate loss close to 0,

7

the algorithm is not allowed to select suboptimal actions often. Algorithms that

over-explore to keep an up-to-date view on all arms cannot satisfy this guarantee

which means that achieving small-loss guarantees, to a large extent, limits this

excessive exploration. Small-loss guarantees are also a particular way to exploit a

nice structure in data (best arm being almost perfect) while gracefully degrading

as we deviate from it: regret scales with the loss of that arm.

Small-loss guarantees are particularly challenging when one receives partial

feedback, c.f. [3]. With full information, these bounds are easily achieved by

most online learning algorithms such as multiplicative weights [54] or follow

the perturbed leader [72]. This happens because, when the learner receives full

information, she automatically obtains an up-to-date view about how all actions

are behaving without selecting them. On the other hand, for partial feedback,

the landscape is significantly less clear. Outside of the work we present here,

there are only a few such guarantees that focus on restricted feedback settings:

label-efficient prediction [39], pure bandits [5, 53], combinatorial semi-bandits

[104], and (subsequently to our work) contextual bandits [33]. All of them

rely on algorithms tailored to the setting and give guarantees that only hold in

expectation for the weaker notion of pseudoregret that compares to an arm fixed

in advance (not the best in hindsight). As a result, we ask the natural question:

What is a general recipe to derive small-loss bounds with partial feedback ?

Result. To approach this question, we focus on a general combinatorial feed-

back setting, the graph-based feedback introduced by Mannor and Shamir [96].

Before selecting an arm, the learner observes a time-varying undirected graph

determining the feedback structure. In particular, the learner observes the loss

8

of the selected arm but she also observes the loss of all neighboring arms (and

therefore has access to extra information). This model captures full information

(complete graph) and bandit learning (empty graph) as two extremes. Interest-

ingly, it also captures other important partial feedback settings such as contextual

bandits [12, 87, 2, 33] and, with a small modification, combinatorial semi-bandits

[72, 10, 104]. Alon et al. [6] provided regret bounds for graph-based feedback

that scale with the independence number of the graph (the appropriate feedback

dimension in the setting); however their guarantees also scale with the time

horizon and suffer from the over-exploration issue we discussed before.

In joint work with Karthik Sridharan and Éva Tardos [93], we provide a

general way to obtain small-loss regret guarantees for the graph-based feedback

setting. Our algorithm takes as input a full information algorithm with a small-

loss guarantee (these algorithms are ubiquitous in the litarature), and seamlessly

transforms it, in a black-box way, to an algorithm with a small-loss guarantee for

the graph-based feedback. Our guarantee holds with high-probability and scales

with the maximum independence number of the graphs. In a black-box way, the

dependence on the loss L? of the best action is (L?)2/3 but, for particular settings,

we use specific algorithms to derive an optimal
√

L? guarantee. Interestingly,

even for the special case of bandits, our results are the first to provide this

guarantee with high probability. We elaborate on these results in Chapter 2.

Technical highlight. The crux of this general reduction is to ignore low-

performing actions but treat them optimistically, allowing them to recover. This

requires some background. The classical strategy to deal with partial feedback is

to reduce it to full information. However, a full information algorithm expects to

receive the losses of all the actions, which is not available in the partial feedback

9

setting. For this reason, classical approaches create an estimator of the losses,

ensuring that the estimated losses behave as if they were the actual losses (i.e.

the estimator is unbiased and therefore the expected estimated loss is equal to

the actual loss for any arm). In order to have good regret guarantees, partial-

feedback algorithms try to create such an estimator while not pulling suboptimal

arms too often. However, if an arm is not observed often, the variance of an

unbiased estimator for its loss will be relatively high. Since this variance ends

up in the eventual regret bound, the algorithms need a way to control it by

obtaining more information about these arms. Classical algorithms such as EXP3

[12] and EXP3-DOM [6] achieve this via mixing the action distribution with a

uniform distribution, ensuring that each action is selected (and therefore also

observed) with a big enough probability. However, this means that at every

round they select suboptimal arms with big enough probability which results in

regret bounds scaling with the loss of the worst arm (rather than the best).

We follow an alternative approach by temporarily freezing (not selecting) the

low-performing arms. This resolves the variance problem but creates another is-

sue: estimated losses no longer accurately capture the actual losses for the frozen

arms (they may be observed with probability 0). It turns out that, to resolve this,

it suffices to credit these arms optimistically treating them as perfect while we

ignore them. The idea of freezing arms towards small-loss guarantees was ini-

tially suggested by Allenberg et al. [5] who derived pseudoregret guarantees for

pure bandits. We extend this technique by making it black-box, high-probability,

and dealing with the more involved graph-based feedback setting. This setting

poses the extra complication that, when an arm gets frozen, neighboring arms

may lose probability of observation and may need to subsequently also get

frozen. A nice technical contribution is that we control this snowball effect via a

10

double-thresholding technique based on a potential function analysis.

1.2.2 Contribution II: Robustness to adversarial corruptions

Although the environment in online markets is rarely completely i.i.d., there

are important applications where data is mostly i.i.d. As an example, consider

online advertising: when a user arrives in a particular website, a platform such

as Google Ads needs to decide which ad to display. For a particular type of user,

it is important for the platform to display the ad that will be more likely to get

clicked; this ensures that the user receives relevant content and also provides

revenue to the platform which is typically paid per-click. Each ad is associated

with the so called click-through rate, which is the probability that, if displayed,

it will get clicked. The platform does not know this quantity and needs to

explore different alternatives to understand which is the most profitable. This is

a canonical example of stochastic bandit learning where the reward for each of

the alternatives comes from i.i.d. distributions. Recommender systems exhibit

similar issues; the alternatives there correspond to restaurants that, for example,

Yelp needs to recommend in a particular area and the stochasticity relates to the

quality of experience of a typical user as evaluated by the number of stars.

Stochastic bandit learning exploits the fact that, when the input is i.i.d., the

alternative with the highest mean can be learned and subsequently be repeatedly

selected to optimize the performance. This task of learning the most profitable

alternative is easier when the mean of the best arm a? is significantly better

that the means of other arms; the difference between the mean of a? and of

another arm a is typically called the gap of the arm a. The improved guarantees

11

for the stochastic case depend only logarithmically on the time horizon and also

scale with the inverse of these gaps which captures how easily identifiable the

best arm is. Classical algorithms like Upper Confidence Bound (UCB) [11] and

Active Arm Elimination [51] retain empirical means for each arm (based on the

average experienced reward) and confidence intervals around them (helping

them position the actual means of the arms). This enables them to cease selecting

arms that are very unlikely to be the best. Other algorithms such as Thompson

sampling [124] employ a randomized way to capture these empirical means but

they also achieve gap-based guarantees [4].

Main question. The second contribution of this thesis is to address an impor-

tant limitation of these classical stochastic bandit learning approaches: in reality,

data is not completely stochastic and is often corrupted by self-interested ad-

versarial entities. In online advertising, there is the phenomenon of click fraud

where a competing advertiser may try to harm the most profitable alternative

a?, to increase her own displays. One instantiation of click fraud is that the

competing advertiser creates bots that obtain fake impressions and, when a? is

displayed, deliberately not click the ad, misleading the platform to conclude that

a? is not a profitable ad and therefore it should not be displayed often. Similar

attacks can arise in recommender systems with paid fake reviews.

Companies try to detect and mitigate this fraudulent activity, but we cannot

hope that it is completely eliminated. Google spends a lot of resources to try to

identify activity coming from bots and correct for that. Yelp requests users to

report offers for paid fake reviews in order to punish the restaurants that deploy

such strategies. Therefore we can expect that most of the attempted fraudulent

activity is stopped. However, there is no hope that all of the activity will get

12

caught and some corruption will end up in the data.

The problem is that classical methods fail to be robust to even little fraudulent

activity if they utilize the inherent stochasticity in the rewards. Stochastic bandit

approaches are easily fooled even by small amounts of corruption and often

eliminate (or mostly ignore) the most profitable arm a?. The other extreme of

adversarial bandits which we elaborated in the previous subsection is not fooled

by the corruptions but also does not exploit the fact that most of the input is

stochastic. Prior to our work, the best approach towards the problem is the

literature on best of both worlds [34, 120, 14, 119] which designs algorithms that

simultaneously achieve the stochastic guarantee if the input is i.i.d. while also

retaining worst-case guarantees. This line of work does not handle the typical

case where data are not completely i.i.d. but there is only a minimal amount of

corruption in the data. Addressing this limitation, we ask the following question:

Can we make stochastic bandits robust to small amounts of corrupted data?

Result. To tackle this question, in joint work with Vahab Mirrokni and Renato

Paes Leme [92], we introduce a model that slightly modifies the stochastic bandit

learning framework to incorporate corruptions in the data. More precisely, each

arm is associated with a distribution that is fixed across time – this is the classical

stochastic bandit learning assumption. At every round, rewards are drawn from

this distribution and, at the same time, the learner commits to a probability

distribution across the set of k arms. However, unlike stochastic bandit learning,

an adversary subsequently corrupts the feedback that the learner observes and

returns as feedback some corrupted value in [0, 1] instead of the actual realized

reward. If the adversary never changes the feedback then we are in the purely

13

stochastic setting; if she changes it every single time then we are in a heavily

corrupted setting where one cannot hope to exploit the stochasticity in the data.

Our goal is to robustify the design of stochastic bandit learning algorithms so

that they can accommodate a modest amount of corruption in the data without

knowing in advance how much this amount is.

In that direction, we provide an algorithm that achieves this desired robust-

ness. Our guarantees have three very nice properties. First, we obtain (up to a

logarithm) the gap-based guarantee of classical stochastic bandits when there is

no corruption in the data; as a result, the extra penalty that we pay to achieve this

robustness is relatively small. Second, our guarantees degrade gracefully with

the amount of corruption in the data; in particular, the decay in performance

is linear with the total corruption that the adversary injected in the data. We

note that this linear degradation is unavoidable even in simple instances. Third,

our guarantees are agnostic to the amount of corruption: we do not need to

know how much corruption occurs in the data. This is very important in the

applications we discussed as, if our algorithm is tailored to a particular level of

corruption, it may aim for a pessimistic bound that will ruin the stochastic guar-

antee when there is close to no corruption. More importantly, if the algorithm has

a hard-coded level of robustness, it is easily gameable by an adversarial entity

that just needs to add a little more corruption. Finally, our guarantee holds with

high probability instead of weaker notions of expected performance; this helps

to mitigate the effect of such attacks. We elaborate on these results in Chapter 3.

Technical highlight. Our algorithm is based on a multi-layer random sparsi-

fication technique that extends the Active Arm Elimination stochastic bandit

algorithm. Active Arm Elimination selects arms in a round-robin fashion until

14

their empirical means concentrate enough so that the difference in empirical

means gives confidence that the dominated arm is suboptimal; at this point, it

eliminates the dominated arm. This typically takes a logarithmic number of

rounds as then concentration bounds kick in. An adversary can mislead this al-

gorithm by corrupting the feedback of the optimal arm for the initial logarithmic

rounds, leading the algorithm to eliminate the optimal arm and therefore make

mistakes in the remainder of time.

To robustify this algorithm, we run parallel versions of Active Arm Elim-

ination (layers) and, at each round, randomly select a layer with decreasing

probabilities. Our approach applies broadly against any adversary but, to obtain

intuition, consider the adversary who corrupts just the initial rounds. Layers

selected with smaller probhability receive only a few corrupted samples and keep

exploring even when the adversary stops corrupting. As a result, the majority

of their data are not corrupted and they are not fooled by the adversary. Our

technique seamlessly combines the layers ensuring that the first robust layer

corrects the mistakes of all less robust layers. Crucially, we never need to identify

this robust layer which makes our algorithm agnostic to the level of corruption.

1.2.3 Contribution III: Online algorithms with predictions

Although online learning provides a clean framework to reason about online

decision-making, it ignores important externalities among decisions present in

most modern systems. In online learning, the decisions are, to a large extent,

decoupled and are only connected via the information learned regarding the

system. This enables addressing the explore-exploit trade-off which is an impor-

15

tant consideration in online decision-making. However, in most systems, current

decisions also affect the state of the system and alter the available options. For

instance, in two-sided markets such as TaskRabbit, matching customers to a ser-

vice provider may make the latter unavailable for future requests possibly more

amenable to their skill set. Similarly, pricing decisions with limited supply may

have externalities to future customers, affecting the product’s future availability.

Competitive analysis can be thought as the analogue of adversarial online

learning for settings where state is an important consideration. Compared to

online learning, competitive analysis results tend to compare to a stronger bench-

mark (the optimal online algorithm instead of the optimal action in hindsight).

On the other hand, the guarantees are weaker (multiplicative instead of additive).

Despite their fundamental theoretical contributions, works in competitive

analysis suffer from not being very practical, an issue we already discussed with

respect to classical adversarial online learning. Over the last couple decades,

competitive analysis has addressed many important settings where state is an

issue, such as bipartite matching [75, 47], paging [52, 18], and k-server [83, 32].

These works offer valuable paradigms that enhance our understandning of

powerful techniques such as the online primal-dual analysis [36] or online mirror

descent [32]. However, since competitive analysis wants to be robust against the

worst-case, the resulting algorithms suffer again from a need to be conservative

and do not tend to exploit the fact that data may enjoy a nice structure.

Main question. One particular such nice structure that the current data-driven

era arms us with is that the future is often predictable in a relatively accurate

manner. This is enhanced by the rise of machine learning heuristics based on

16

deep learning and data modeling analyses. However, these techniques tend to

not have robust guarantees and are prone to errors, for instance, due to outliers

or adversarial examples. As a result, the empirical success of machine learning

and the robust techniques of competitive analysis pose the natural question:

How can we take advantage of the predictive power of machine learning

without sacrificing the worst-case robustness of competitive analysis?

To understand this trade-off, let’s consider the paging problem. In the classical

(unweighted) paging, there is a cache of size k that can be used to serve future

requests fast, and requests arrive sequentially. If the element requested is in

the cache, this corresponds to a cache hit and the element is served at zero cost.

Otherwise, we have a page fault or cache miss and we need to wait to bring the

element in the cache. We therefore incur a cost (in the unweighted case, a cost of

1) and we need to also decide which element to evict from the cache to load the

requested element. The classical application of caching is in computer systems

where the cache corresponds to physical memory. More recently, the setting has

found important applications in storing, say, Youtube videos for companies such

Akamai, or saving pages in the cloud for companies such as Microsoft.

So how can one approach this problem? If the future sequence can be perfectly

predicted, the simple greedy Bélády algorithm [22], that evicts elements arriving

further in the future, performs optimally. At the absence of this hindsight, the

competitive analysis approach is settled. Almost any reasonable deterministic

scheme such as First In First Out (FIFO) or Least Recently Used (LRU) achieves

a competitive ratio of Θ(k). Surprisingly, reverting to randomized schemes

leads to an exponential improvement in performance of Θ(log(k)) [52]. On the

17

heuristics side, the computer systems community has developed multiple smart

data-mining schemes to better exploit properties such as locality of reference.

Result. To combine the predictive power of these heuristics with the worst-case

robustness of competitive analysis, in joint work with Sergei Vassilvitskii [95],

we incorporate machine learned predictions to the caching task. In particular, we

assume that when an element arrives, we get a prediction about the next time it

will arrive again in the future. We do not make any assumption on the nature of

the predictor and therefore this information may be erroneous; the hope is that it

may also often contain useful predictions. To quantify the error of the predictor,

we can use many metrics; here we focus on the `1 error η of the predictor: total

absolute distance between predicted arrivals and actual arrivals for all elements.

We aim for three important desiderata, which are essential to appropriately

combine predictions and competitive analysis. First, we want almost perfect

performance when the predictor is perfect (consistency). Second, since the predic-

tions will not be perfect, we want graceful degradation in performance with the

error in the prediction (robsutness); ideally in an optimal rate. Finally, regarldess

of how good the predictor is, we want to have performance comparable to the

one of the best online algorithm (worst-case competitiveness).

Our algorithm achieves these desired properties and has multiple other prac-

tical features. Regarding the bound, our algorithm achieves a competitive ratio

of 2 ·min
(
1 +

√
η/OPT, 2 log(k)

)
where OPT refers to the optimal number of cache

misses in the ex-post sequence. This is a factor of 2 worse than both the optimal

offline algorithm (if predictions are perfect, i.e. η = 0) as well as the classical

online algorithm Marker that is 2 log(k)-competitive. At the cost of this extra

18

factor, it allows us to seamlessly interpolate between perfect and completely

inaccurate predictions without knowing in which regime it lies in. Beyond the

particular bound, our approach can provide a more robust version of the Least

Recently Used (LRU) algorithm. Despite its practical empirical performance,

LRU suffers from competitive ratio of k (exponentially worse than the guarantees

of the best randomized algorithms). Through the lens of our framework, we can

take advantage of the predictive power of LRU while at the same time capping its

worst-case performance by Θ(log(k)). We elaborate on these results in Chapter 4.

Technical highlight. Our algorithm, which we term Predictive Marker, is a slight

predictor-based modification of the classical Marker online algorithm. Marker

works in phases; at the beginning of the phase all elements in the cache are

unmarked and when an element comes, it gets marked. At the event of a cache

miss, it never evicts a marked element (to ensure that it evicts elements that have

not arrived very recently) but instead it evicts an element among the unmarked

elements uniformly at random, which leads to the logarithmic competitive ratio.

We only alter the tie-breaking rule across the elements that are unmarked: instead

of evicting unmarked element uniformly at random, we do that according to the

predictions. To achieve the desired trade-off, we keep a blame graph which enables

us to control the error of the predictor with respect to the optimal solution. When

the predictor is locally inaccurate, we locally switch to random evictions among

unmarked elements to guarantee a worst-case competitive ratio.

19

1.3 Theme II: Multi-agent online decision-making

In the second theme of the thesis, we broaden our viewpoint to discuss settings

where the multi-agent nature of modern markets adds an important novel dimen-

sion to online decision-making. In the first theme, we assumed that the system

designer is able to enforce any outcome (a route in Waze, an ad to display in

Google Ads, or a page to evict in caching). The loss of different outcomes and the

feedback observed was affected by the multiple different parties in the system,

but we assumed that the designer can enforce the desired outcome. For example,

in routing, although the travel time experienced was affected by the decisions of

other agents and the resulting congestion they caused, the user could not deviate

from the prescribed strategy and necessarily followed the suggested path.

In modern two-sided markets, platforms may often need to think ahead

about the fact that its selected actions are implemented by and on multiple

different agents. An agent may not follow the recommended suggestions if these

suggestions do not align with her incentives. In fact, having access to past data,

she can also employ online learning techniques to find strategies better serving

her own goals, misreport her true valuations, or even abstain if this better aligns

with her individual objectives. Moreover, algorithmic decisions directly affect

the experience or opportunities of different people. As a result, optimization

methods need to also be thoughtful about societal concerns such as privacy or

fairness, potentially sacrificing effectiveness to avoid compromising such issues.

The second theme of this thesis aims to improve our understanding of how

strategic behavior and societal issues in multi-agent decision-making affect sys-

tems where the decisions are made online. Despite recent focus on multi-agent

20

questions, most works disregard the online aspect of this decision-making which

often introduces novel challenges. In Section 1.3.1 (and Chapter 5), we study

pricing, which is maybe the most basic representative of optimization under

strategic behavior, in the ridesharing context that introduces multiple complex

spatial externalities. In Section 1.3.2 (and Chapter 6), we examine whether the

fact that agents can also employ online learning techniques to adapt their behav-

ior in dynamic environments introduces further inefficiencies in the underlying

systems. Finally, in Section 1.3.3 (and Chapter 7), we discuss whether the online

learning techniques we previously discussed are compatible with different group

fairness notions and whether there are inherent trade-offs between effectiveness

and group fairness in such online decision-making settings.

1.3.1 Contribution IV: Dynamic pricing in ridesharing

Pricing is arguably the most basic setting where the system designer needs to

take the incentives of the agents into consideration. From sports events to airline

tickets, pricing is the simplest revenue management technique and therefore lies

at the heart of many works in economics, operations research, and theoretical

computer science. The simplest online pricing setting is the so called prophet

inequalities [85] where the different agents i arrive online and have values drawn

from distributions Fi known to the designer. The designer wants to set prices in

an online manner aiming to maximize her revenue knowing that the agents are

price-taker, i.e. they will only purchase the good if their value is above the price.

This problem can be formulated as a Markov Decision Process where the goal

is to find the desired stopping time but there are also simple threshold-based

schemes with a single threshold that achieve constant approximation ratios.

21

Main question. The rise of online markets has significantly complicated the

complexity of these online pricing decisions; one of the best examples to illustrate

this is a ridesharing application such as Lyft or Uber. In traditional pricing, there

is a straightforward relation between the price displayed to a user and the

availability of the good in the future: if the price is higher, the user is less likely

to purchase the good and therefore the good is more likely to be available for

future users. In ridesharing, we tend to have users in many different locations

and the good is reusable as it corresponds to a driver providing a ride to the

customer and this driver can be useful for future customers as well. As a result, a

lower price at a location means that the driver is less likely to stay there to serve

future local requests, but may help the driver serve another possibly profitable

request in the destination of the customer – this can propagate throughout

the system (affecting its state). These complex network state externalities of any

single pricing decision makes this setting significantly more complicated than

traditional pricing. Tackling these complexities, we pose the following question:

Can we design effective pricing at the face of network state externalities?

Result. To study this question, in joint work with Siddhartha Banerjee and

Daniel Freund [17], we focus on a queueing-theoretic modeling of the setting

as prominent in the literature of shared vehicle systems. In our model, we

have n discrete locations (nodes) that correspond to the discretizations that such

ridesharing companies employ in all their decisions; we also assume that there

are m drivers (units). To isolate the first-order effect that we wish to study, we

assume that the number of drivers is fixed and that the drivers are not strategic.

For any pairs of nodes (i, j), there is a demand of price-taker customers that want

to get rides; we assume a continuous-time (Poisson) arrival model and fixed

22

value distributions Fi j for any pair of nodes. The designer needs to select prices,

possibly in a state-dependent way (depending on the configuration of drivers

across locations), aiming to maximize some desired objective such as revenue or

social welfare. Since such systems tend to operate in fast timescales, we ignore

the initial mixing time and focus on the steady-state performance of the resulting

processes. In queueing-theoretic terms, the prices create an alternative Markov

Decision Process (MDP) whose arrival rates are thinned via removing part of the

demand; the goal is to create the MDP that optimizes the desired objective.

In this model, we derive a general approximation framework. The approxi-

mation ratio of our approach is 1+n/m: asymptotically optimal as ratio of drivers

per location increases and very close to 1 in the real-system parameters (there are

typically significantly more drivers than locations). Notably, our pricing policy

is state-independent (it outputs only one price for each pair of locations) but the

guarantee stands even against state-dependent policies. Our framework applies

to a large class of objective functions including throughput, welfare, revenue (un-

der a regularity distributional assumption common in the revenue management

literature), Ramsey pricing (max. revenue subject to lower bound on welfare). It

also extends to constrained pricing settings such as cases where the prices need

to come from some discrete set and to various other rebalancing controls such

as deciding which driver to match to a particular customer and allowing for

empty-vehicle rebalancing. Finally, our results apply generally to optimization in

closed queueing networks (where the number of units remains unaltered), even

outside the ridesharing application. We elaborate on these results in Chapter 5.

Technical highlight. Our framework which we term Elevated Flow Relaxation is

based on solving a convex relaxation of the problem and deriving the approxi-

23

mation ratio via a three-step argument. In revenue management, it is easier to

express the objectives in terms of quantiles associated to prices (percentage of de-

mand that has value higher than the price) instead of prices. If there was always

a driver available to serve any request, then the objective would be concave and

as a result we could apply convex optimization techniques to find the optimal

price. However, the difficulty arises due to the network supply externalities:

each pricing scheme induces a Markov chain that has some probability of driver

unavailability in each node. Unfortunately, the resulting system is non-convex

with respect to the quantiles (or the prices) and therefore not easily optimizable.

To tackle this issue, we first drop the dependence on the unavailability prob-

ability from the objective function. This makes our objective concave but now

the solution of the program does not necessarily correspond to some quantiles

derived by some pricing scheme (as it does not deal with unavailability). To

address this, we add flow conservation constraints which is a necessary con-

dition for the solution to be actually achievable as quantiles of some pricing

policy. We finally need to connect the solution of the relaxation to the m-unit

system objectives we are interested in. For that, we show three properties: a) this

solution is no less than the optimal state-dependent solution, b) this solution can

be achieved by an infinite-unit system, and c) the objective of the m-unit system

differs to the one of the infinite-unit system by at most a factor of 1 + n/m.

1.3.2 Contribution V: Efficiency of dynamic learning outcomes

The task of how the agents should behave is often significantly more complicated

than what described in the previous section. In the pricing settings we discussed

24

before, the strategic nature of the agents is very simple: if their value is above the

price then they make the purchase, otherwise they abstain. This simplicity is, in

fact, one of the reasons why pricing is so universally applied. However, in many

situations, the decision of what to do is not that clear. Consider the role of an

advertiser in a first-price auction: each advertiser bids on the item, the highest

bidder is awarded the item, and pays her bid. Let’s assume that the utility of

the advertiser is quasilinear, i.e. it is equal to the value minus the price if she

obtains the item and 0 otherwise. Now clearly, bidding the actual value is not

a good choice as, even if she gets the item, she will get utility of 0. As a result,

deciding how to bid is a more complicated task that has to do with understanding

how other agents behave and what is the price that is needed for her to win.

Fortunately for the advertisers, the online nature of the setting enables them

to obtain access to past data and see what bids worked well and what did not.

As a result, they can employ online learning techniques, for example the ones

discussed in Section 2, to ensure that they have good performance against the

best possible fixed bidding strategy they could have used in hindsight.

Positing that players perform at least as well as what adversarial online learn-

ing 1 suggests is an easily satisfiable behavioral assumption with nice properties.

It is much weaker than the assumption that they play repeatedly the Nash equlib-

rium of the classical one-shot version [101] which requires them to obtain perfect

beliefs about how other players behave in order to best respond to their actions. It

is empirically supported as advertising actions can be rationalized via this learn-

ing behavioral assumption [102]. Finally, when the same advertisers compete for

the same items, the performance of no-regret learning outcomes compares well

to a socially effective solution for a large class of games [29, 116, 123].

1It is important to use adversarial online learning instead of stochastic as the rewards depend
on actions of other agents; assuming that the latter behave in an i.i.d. manner is unrealistic.

25

Main question. The condition that all players and items remain the same across

time points to a significant issue with all the results establishing efficiency under

strategic behavior: the underlying settings are never the same across time. In

ad-auctions, advertisers may change their value for different keywords based on

recent trends or marketing decisions. In packet routing, when a video conference

ends, the configuration of data transmission alters. In transportation, when

people switch employments or take vacations, similar changes in the routing

patterns arise. The efficiency guarantees for learning dynamics improved the

relevance of the so called Price of Anarchy guarantees (beyond the restricted

notion of Nash equilibria). However, the requirement that the setting is static

across time sheds doubt on the applicability of these quarantees. Addressing this

issue, we pose the following question:

Are the efficiency guarantees under strategic behavior robust to the frequent

changes in dynamically evolving environments?

To tackle this question, in joint work with Vasilis Syrgkanis and Éva Tardos [94],

we introduce a dynamic population model parameterized by how rapid the

churn of turnover is. More concretely, we have a set of n players and, at each

round, every player departs independently with turnover probability p; once

this happens, the player is replaced by a new player with arbitrary valuation.

This means that, at every round in expectation p · n players leave the system.

The challenge is that a particular player’s departure may affect the benchmark

solution of multiple different agents. The analysis behind the static efficiency

guarantees relies on the fact that agents have no regret for not sticking to the

most profitable fixed item (we call this their favorite item). Consider a setting with

unit-demand advertisers in multi-item auctions (advertisers get no additional

26

utility from getting more than one item). If one advertiser a leaves, then another

advertiser b, eyeing for a’s previous item, may switch their focus to that. This

can create a domino effect with another advertiser c wanting to switch to b’s

previous item (augmenting path in a bipartite matching). This example creates

the impression that, when a player departs, all others need to reinitialize their

learning algorithms to target their new favorite items which is problematic for

two reasons. First, advertisers need to learn when departures happen while,

in ad-auctions, they typically do not even know who the other advertisers are.

Second, this reinitialization needs to happen every time that a departure occurs

which means that the previous guarantees would only extend if departures

happen very sporadically (p � 1/n) which is not the case in modern platforms.

Result. Countering these intuitions, we show that the efficiency guarantees

are robust to high rates of turnover where a constant fraction of the population

changes every single round. This result comes through two important techniques.

First, many classical online learning algorithms guarantee a stronger notion than

regret (shifting regret) that compares to a sequence of benchmark actions instead

of the best fixed action; this allows them to seamlessly adapt to changes without

needing to reinitialize their algorithms. Second, in many settings, there exist

benchmark solutions that are approximately optimal and significantly more

stable to agents’ departures. This enables us to obtain efficiency guarantees that

only lose compared to the static case a minor extra factor due to the stability and

gracefully degrade with the turnover probability p allowing for good efficiency

guarantees even if p is a constant independent of the number of agents. Applying

the above framework to online advertising and routing, we show efficiency

guarantees that are robust to the population being dynamically evolving.

27

Technical highlight. The key technical contribution of this work lies in estab-

lishing that the underlying optimization problems of many important game

settings enjoy stable sequences of approximately optimal solutions. We provide

two different techniques on how such sequences can be identified. First, we

show that greedy algorithms with appropriate tie-breaking often come with such

stability properties. In that direction, we show that a sticky version of the greedy

bipartite matching algorithm provides a stable version of an approximately op-

timal solution allowing us to obtain efficiency guarantees for ad-auctions with

unit-demand bidders. Second, we make a connection between stable solution

sequences and joint differentially private solutions. The latter guarantee that

the output for any particular user cannot be drastically altered by a change in

one coordinate of the input. Connecting this to stability, we provide efficiency

guarantees for routing and multi-item auctions.

1.3.3 Contribution VI: A fairness view on online learning

The final facet of this thesis involves the societal context in which platforms

operate. Their decisions affect multiple different entities and it is therefore

important to understand undesired ethical repercussions they may cause. For

instance, targeting ads to particular populations based on irrelevant attributes,

such as race, may reinforce stereotypes harmful to society [122, 8]. Similarly a

routing platform should try to ensure that the exploration that is necessary for

the learning process is not suffered by, say, only minority populations [24, 109].

We focus on group fairness; to obtain a better idea about such notions, we

discuss the equalized odds notion introduced by Hardt et al. [65]. Consider the

28

task of providing loans; a bank ideally wishes to provide loans to people who

will eventually repay them (those with a positive label) rather than to ones who

will default (those with a negative label). However, not having access to the true

labels, the bank makes mistakes in both directions, either giving loans to people

who end up defaulting (false positives) or denying loans to ones who would

have returned them if given the opportunity (false negatives). The notion of

equalized odds, in its simpler form, imposes that, with multiple populations, the

false negative rates (percentage of people with positive label who were denied)

is equal among different populations and the same holds for false positive rates

(defined analogously). This notion was popularized by a recent debate regarding

potential bias of machine learning risk tools for criminal recividism [7, 40, 78, 41].

Although such notions offer a way to reason about the effect of discrimination

in decision-making, they largely disregard that data are acquired in an online

manner and are not i.i.d. Applications such as online advertising, recommender

systems, medical trials, and image classification all require decisions to be made

sequentially. The corresponding labels are not identical across time and are

affected by the economy, recent events, etc. Similarly labels are not independent

across rounds – if a bank offers a loan then this decision can affect whether the

loanee or their environment will be able to repay future loans thereby affecting

future labels [89]. Moving beyond the batch setting introduces important trade-

offs that should be better understood.

Main question. To understand the effect of adaptivity in non-discrimination,

we revert to the classical model for non-i.i.d. adaptive decisions, the adversarial

online learning setting. The most fundamental version of this setting (experts

setting) revolves around the question: Given a class F of predictors , how can we

29

make online predictions that perform as well as the best predictor in F . In Section 1.2.1,

we revisited this setting where predictors corresponded to alternative actions.

To study the effect of adaptivity in online decision-making, in joint work

with Avrim Blum, Suriya Gunasekar, and Nati Srebro [28], we ask the most basic

extension of the above question in settings where non-discrimination is an issue:

Given a class F of individually fair predictors, how can we fairly

combine them adaptively to perform as well as the best predictor in F ?

The assumption that predictors are individually non-discriminatory (or fair)

is a strong assumption and makes the task trivial when the input is i.i.d., e.g.

in the batch setting where the algorithm is given labeled examples and wishes

to perform well on unseen examples drawn from the same distribution. This

happens because the algorithm can learn the best predictor from the labeled ex-

amples and then follow it (since this predictor is individually fair, the algorithm

does not exhibit discrimination). This assumption enables us to understand the

potential overhead that adaptivity introduces and significantly strengthens any

impossibility result. Moreover, we can assume that predictors have been indi-

vidually vetted to satisfy the non-discrimination desiderata – we therefore wish

to understand how to efficiently compose these non-discriminatory predictors

while preserving non-discrimination. Finally, this question does not take position

on what is the right notion of non-discrimination or fairness and can be applied

to any group fairness notion.

Result. We address this question for two different notions of non-

discrimination. Our first result is regarding the notion of equalized odds that

30

we discussed before. Surprisingly, we show that there is a fundamental trade-

off between performance and equalized odds when adaptivity comes to the

picture. We show that no algorithm that achieves the no-regret property, can

guarantee equalized odds even within an approximation factor (of, say, 20%) –

this holds even for algorithms using the group information. In fact, the exam-

ples generating this impossibility result are very simple with just two phases of

i.i.d. distributions. This issue seems to suggest that fairness notions establish-

ing equality among groups defined in a label-specific way may be arbitrarily

disrupted by the order in which the examples arise. Our second result focuses

on achieving this preservation of non-discrimination with respect to the natural

requirement of achieving equal average loss among the two groups (regardless

if this comes from false negative or false positive examples). Despite proving

impossibility results for algorithms that do not use the group information, we

show a group-aware algorithm that does achieve the desired guarantee.

Technical highlight. To obtain the positive result for the notion of equal ac-

curacy, we make an interesting learning-theoretic connection shedding light

on equality-based fairness notions. Generally, no-regret algorithms guarantee

that the average performance of the algorithm is no worse than the average

performance of the best predictor. Interestingly, there is a class of algorithms

(including the classical multiplicative weights algorithm) where the opposite

is also true: the average performance of the algorithm is also no better than

the average performance of the best predictor [59]. As a result, the average

performance of the algorithm at each of the groups is approximately equal to the

average performance of the best predictor at the group. Since we assume that the

predictors are individually non-discriminatory with respect to the average loss,

31

it means that the average performance of the predictor at the one group is the

same across all groups which then establishes the positive result. This property

is, to a large extent, essential – in fact, we show that algorithms with stronger

guarantees (shifting regret algorithms) suffer from impossibility results.

1.4 Roadmap of this thesis

This introduction chapter served as an initial exposition to the context of this

thesis and the main contributions in it. In the following chapters, we elaborate

on each of the contributions in the thesis. The chapters are intended to be

self-contained in order to be able to be read on their own, though we point to

connections to previous chapters where appropriate.

For each chapter x, our aim is to convey the following information in a similar

structure. We first start with an introductory part introducing the reader to the

setting; we advise the reader to also refer to the corresponding subsection in

Chapter 1 as not all points are repeated in this part. Subsequently, in Section x.1,

we provide background technical information that is necessary for the readability

of the chapter. By Section x.2, we provide the details of the particular model

and desiderata that we wish to achieve in the chapter. Section x.3 serves as an

exposition of what can go wrong and why classical approaches fail to address

the question under investigation. Sections x.4 and x.5 describe the main result of

the chapter as well as an additional result (either a warm-up or a follow-up to the

main result). Finally, Section x.6 aims to put the particular work in the broader

context, discusses other works in the area, elaborates on particular assumptions,

and points to important open questions.

32

CHAPTER 2

MITIGATING EXPLORATION IN ONLINE LEARNING

Maybe the biggest bottleneck in online decision-making is related to the in-

sufficient information regarding the system at hand. In complex systems, the

decision-maker often deals repeatedly with a similar task, trying to decide across

a set of different alternatives. The challenge is to make effective decisions despite

not knowing initially any information about the system and only receiving partial

feedback determined by the selected action. We focus on settings where the re-

ward or loss of different alternatives does not follow nice stochastic patterns (e.g.

it is not i.i.d. across time). This non-stochasticity is often due to interactions of

multiple agents whose decisions affect the performance of different alternatives.

Originated by game-theoretic considerations in multi-agent dynamics [25, 64],

adversarial online learning emerged as a way to deal with online decision-making

without imposing any distributional assumption on the input. This powerful

framework provides a robust way to balance exploring different alternatives and

exploiting ones that have been profitable in the past. Surprisingly, even without

any prior information about the system and even when losses are adversarially

selected, these techniques can guarantee performance asymptotically as good as

the one of the best alternative in hindsight. Intuitively, despite the fact that the

learner is initially clueless about different options, she can soon realize that some

actions perform well, and can therefore start selecting them. In Chapter 6, we

will see that this property has important consequences regarding the efficiency

of complex systems with selfish participants.

In this chapter, we address an important limitation in current adversarial

online learning techniques when applied in realistic settings where the learner

33

only has access to partial feedback. In particular, although classical partial-

feedback online learning techniques achieve asymptotically good performance,

the rate in which this is achieved is relatively large, which is ineffective in

practice. This issue arises because these approaches need to revert to over-

exploration to deal with the non-stochasticity of the environment, even when

there exist actions that are really good (and therefore learning to follow them

should occur easier). We will show how to mitigate this phenomenon when there

exists one such good action (with small loss) without significantly sacrificing

the worst-case performance of the system. This is one example of obtaining

data-dependent guarantees for online decision-making that can utilize some well-

behaved structure in the data while being robust to this structure not holding.

In the subsequent two chapters, we will see two more examples where such

data-dependent guarantees can arise.

2.1 Preliminaries on adversarial online learning

Online learning setting. We first introduce the basic online learning setting,

which describes the framework in which the sequential decisions are made. The

decision-maker or learner has access to a set of d alternatives that we will refer to

as arms or actions a = 1, . . . , d. At round t = 1, . . . ,T , the following process occurs:

1. The learner selects a probability distribution pt ∈ ∆(d) over the d possible

arms; this is such that
∑d

i=1 pt
a = 1.

2. The adversary then selects losses `t = (`t
1, . . . , `

t
d) where `t

a ∈ [0, 1] denotes

the loss of action a at round t and is assumed to lie in [0, 1].

34

3. The learner then draws action A(t) ∼ pt from the distribution pt she com-

mitted to and suffers the loss of the selected action `t
A(t).

4. The learner observes feedback about the losses based on a feedback model.

In the full feedback model (experts setting), the learner observes the loss of all

the actions {`t
a}∀a regardless what she selected. In the bandit feedback model,

she only observes feedback only for the selected action `t
A(t). We will focus on a

general feedback model interpolating between these two extremes.

Graph-based feedback model. In this chapter, we focus on a feedback model

suggested by Mannor and Shamir [96] where the learner receives partial feedback

based on an undirected feedback graph G(t) that possibly varies across rounds.

The learner observes the loss `t
A(t) of the selected arm A(t) and, in addition, she

also observes the losses of all arms connected to the selected arm A(t) in G(t).

More formally, she observes the loss `t
a′ for all the arms a′ ∈ N t

A(t) where N t
a denotes

the set containing arm a and all neighbors of a in G(t) at round t. The full feedback

setting and the bandit feedback setting are special cases of this model where the

graphs G(t) are the complete and the empty graph respectively for all rounds t.

We allow the feedback graph G(t) to change each round t, but assume that the

graph G(t) is known to the player before selecting her distribution pt. This model

also includes the contextual bandits problem of [12, 87] as a special case, where

each round the learner is presented with an additional input xt, the context. In

this contextual setting, the learner is offered d policies, each suggesting an action

depending on the context, and each round the learner can decide which policy’s

recommendation to follow. To model this with our evolving feedback graph

model, we use the policies as nodes, and connect two policies with an edge in

35

G(t) if they recommend the same action in the context xt of round t.

Regret. The goal of the learner is to minimize the loss of the algorithm. On its

own, the loss of the algorithm is not providing enough insight of whether the

algorithm is good or not. The loss of the algorithm may be large because the

algorithm selects suboptimal arms, but it may also be large because no arm has

good performance. As a result, to evaluate how well the algorithm is doing, we

typically focus on the so called regret against an appropriate benchmark. The

traditional notion of regret compares the performance of the algorithm to the

best fixed action f in hindsight. For an arm f we define regret as:

Regret(f) =

T∑
t=1

[
`t

A(t) − `
t
f

]
.

To evaluate performance, we consider regret against the best arm:

Regret = max
f

Regret(f)

Note that both Regret(f) and Regret are random variables, depending on the

randomness in the algorithm.

A slightly weaker notion of regret is pseudoregret (c.f. [35]), which compares

the expected loss of the algorithm to the expected loss of any fixed arm f , fixed

in advance and not in hindsight. More formally, this notion of expected regret is:

PseudoReg = max
f

E
A(1)...A(t)

[
Regret(f)

]
This is weaker than the expected regret EA(1)...A(t)

[
Regret

]
= EA(1)...A(t)

[
max f Regret(f)

]
.1.

1To see the difference, consider n arms that are similar but have high variance. Pseudoregret
compares the algorithm’s performance against the expected performance of arms, while regret
compares against the “best” arm depending on the outcomes of the randomness. This difference
can be quite substantial, like when throwing n balls into n bins the expected load of any bin is 1,
while the expected maximum load is Θ(log n/ log log n).

36

We aim for an even stronger notion of regret, guaranteeing low regret with

high probability, i.e. for all δ > 0 with probability 1 − δ, instead of only in

expectation, at the expense of a logarithmic dependence on 1/δ in the regret

bound for any fixed δ. Note that any high-probability guarantee concerning

Regret(f) for any fixed arm f with failure probability δ′ can automatically provide

an overall regret guarantee with failure probability δ = dδ′. A high-probability

guarantee on low Regret also implies low regret in expectation.2

2.2 Small-loss guarantees with partial feedback

Classical regret guarantees with an appropriate feedback dimension. Adver-

sarial online learning aims to achieve the so called vanishing regret. This means

that regret scales sublinearly with the time horizon T . Hence the average regret is

vanishing as time grows large; this is typically referred to as the no-regret property.

In the full feedback case, there are very simple and natural algorithms achieving

this property with the regret scaling as a function of
√

T log(d). Examples include

multiplicative weights [54] and follow the perturbed leader [72].

More recently, this property was satisfied even at the absence of full feedback,

scaling with an appropriate feedback dimension of the feedback model. In bandit

feedback [12] the regret is of the order of
√

dT scaling with the number of arms d.

This dependence on d stems from the fact that, even with i.i.d. losses for each

arm, the learner may need to select all arms enough times to identify the best per-

forming. In the general graph-based feedback setting, the dependence on d can

2If the algorithm guarantees regret at most B log(1/δ) with probability at least (1 − δ) for any
δ > 0, then we can obtain the expected regret bound of O(B) by upper bounding the expected
regret by the integral

∫ ∞
0 x · P(Regret > x)dx.

37

be replaced by the cardinality of the largest independent set α(G) of the feedback

graph G [6], also referred to as independence number. Intuitively, this dependence

is necessary as it is plausible that all arms not lying on the largest independent

set have always high loss. As we cannot select them often, the setting reduces to

bandit feedback on the α nodes lying on the largest independent set.

Small-loss regret bounds. One issue with the above guarantees is that they

scale with the time-horizon T . When the input is not i.i.d. and we do not receive

full feedback, the only way to have an up-to-date view of how different arms

perform is by exploring all of them (including suboptimal ones). However, doing

so, we select suboptimal actions with big enough probability every single round

which, inescapably, leads to regret guarantees that scale with T (this is formally

described in the next section). This is particularly undesirable in settings where

there exist some almost perfect actions with really small loss (that is significantly

less than T) – in that case, the input has a well-behaved structure as this action

is more easily identifiable. However, the effort to keep an up-to-date view of

the world leads to exploring suboptimal actions often despite the existence of an

almost perfect action. This over-exploration is a significant roadblock towards

employing online learning algorithms in practice.

To address this over-exploration, one approach is to aim for regret guarantees

that prohibit it, i.e. any algorithm that over-explores cannot satisfy them. One

such guarantee is the small-loss regret bounds, where the regret of the algorithm

needs to scale with the loss of the best arm instead of the time horizon. To achieve

these guarantees, we first focus on the notion of approximate regret (c.f. [53]),

which is a multiplicative relaxation of the regret notion. We define ε-approximate

38

regret for a parameter ε > 0 and an arm f as

ApxReg(f , ε) = (1 − ε)
T∑

t=1

`t
A(t) −

T∑
t=1

`t
f .

We prove bounds on ApxReg(f , ε) in high probability and in expectation, and

use these to provide small-loss regret bounds by tuning ε appropriately via

an approach that is often used in the literature in achieving classical regret

guarantees and is referred to as self-confidence [13]. In Chapter 6, we will also see

that approximate regret is also often useful in its own sake.

Typically, approximate regret bounds depend inversely on the parameter ε;

to derive small-loss regret bounds, this needs to be appropriately tuned over

time. For instance, in classical full feedback algorithms such as multiplicative

weights [54] or follow the perturbed leader [72], the expected approximate regret

is bounded by O(log(d)/ε) and therefore setting ε =
√

log(d)/T , one obtains

the classical O(
√

T log(d)) uniform bounds. If we knew L?, the loss of the best

arm at the end of round T , one could set ε =
√

log(d)/L? and get the desired

O
(√

L? log(d)
)

guarantee. Of course, L? is not known in advance, and depending

on the model of feedback, may not even be observed either. To overcome these

difficulties, we can make the choice of ε depend on L̂, the loss of the algorithm

instead, and apply doubling trick: start with a relatively large ε, hoping for a

small L̂ and halve ε when we observe higher losses. This combines doubling

trick with the idea of the so called self-confident online learning approach [13].

2.3 Classical reduction cannot give small-loss guarantees

Importance sampling and roadblock with variance. The classical way to

translate such full-feedback small-loss results to partial feedback fails as they

39

rely on observing often the losses of all arms. The full-feedback case is very well

understood and we have many algorithms that achieve approximate regret of

O(log(d)/ε). The natural way to extend these results to partial feedback is to try to

create estimated losses that can be created via the available feedback and behave

as if they were the actual losses. This can be achieved, for example, through what is

called importance sampling or inverse propensity weighting. In classical impor-

tance sampling, the estimated loss of an arm is equal to its actual loss divided by

the probability of it being observed, if the arm is observed, and 0 otherwise. This

makes the estimator unbiased as the expected estimated loss of any arm is equal

to its actual loss. Such estimators lie in the heart of the reductions providing

regret guarantees for bandit feedback [12] as well as graph-based feedback [6]. In

the graph-based feedback model, we acquire information for all arms observed

and not only for the ones played. As a result, importance sampling is applied

via dividing the loss of the arm when observed by its probability of observation:

˜̀t
a =

`t
a∑

a′∈Nt
a

pt
a′

1A(t)∈Nt
a .

Let’s see formally how such a reduction looks like to understand the first road-

block. We wish to show that the approximate regret scales sublinearly to the

loss of the best action
∑

t `
t
f and only depends on the maximum independence

number α across all graphs G(t), having only a logarithmic dependence on the

number of arms d. For bandit feebdack, α = d; the roadblock applies even then.

Suppose that we apply the above reduction with a full information algorithm

Awith approximate regret log(d)/ε for parameter ε. Since the estimated losses

do not lie in [0, 1] and since the algorithm is applied on the estimated losses, the

resulting approximate regret scales with the maximum estimated loss maxa,t ˜̀t
a.

40

Starting from the loss of the algorithm, we can obtain:

(1 − ε)E
∑

t

`t
A(t)

 = (1 − ε)E
∑

t

∑
i

pt
a
˜̀t
a

 as E
[
˜̀t
a

]
= `t

a on all arms played.

≤ E
∑

t

˜̀t
f +

(
max

a,t
˜̀t
a

)
·

log(d)
ε

 by the low approx regret ofA.

≤
∑

t

E
[
`t

f +

(
max

a,t
˜̀t
a

)
·

log(d)
ε

]
as E

[
˜̀t

f

]
= `t

f

As a result, if we could get an upper bound on the quantity maxa,t ˜̀t
a then we

would be able to derive an approximate regret guarantee despite the partial

feedback. Unfortunately, this quantity can be arbitrarily large as the probability

of observing any arm can be aribtrarily low (and it appeears in the denominator of

the estimator). This poses a major roadblock towards in the black-box reduction

from a classical full feedback algorithm.

Mixing uniform action-distribution and new roadblock. To deal with this,

typical partial information algorithms, such as EXP3 [12] or EXP3-DOM [6],

mix the resulting distribution with a uniform action distribution, guaranteeing

a lower bound on the probability of being observed and therefore an upper

bound on the range of estimated losses. More formally, if the full-feedback

algorithm suggests a distribution p̃t, the resulting probability for arm a is pt
a =

(1 − θ) · p̃t
a + θ · (1/d) for a new parameter θ. As a result, this guarantees an upper

bound on maxa,t ˜̀t
a ≤ d/θ.

However, when doing so, the algorithm’s performance suffer from at least an

extra (θ/d) · (maxa
∑

t `
t
a) as with this much probability the algorithm selects the

arm with the highest loss (over-exploration). As a result, the performance of the

algorithm scales with the worst arm which may have loss of 1 every single round

and be linear on θ · T instead of depending on the cumulative loss L? of the best

41

arm which may besignificantly smaller when the input is well behaved. It is

easy to see that when maxa
∑

t `
t
a = T , there is no way to set the mixing parameter

θ that will avoid introducing a dependence on the time horizon T . Intuitively,

since the added mixing makes the algorithm select badly performing arms, this

approach results in uniform regret bounds and not small-loss guarantees.

2.4 Main result: General reduction to partial feedback

Instead of mixing with a uniform action distribution, we use an alternate tech-

nique, first proposed by Allenberg et al. [5] in the context of the Multiplicative

Weights algorithm for bandit feedback. We set a threshold γ and in each round

neither play nor update the loss of arms with probability below this threshold.

We refer to such arms as (temporarily) frozen. We note that frozen arms may get

unfrozen in later rounds, if other arms incur losses, as we update frozen arms

assuming their loss is 0. The resulting estimator for the loss of an arm is no

longer unbiased since the estimated loss of frozen arms is 0. However, crucially

the estimator is unbiased for the selected arms and negatively biased for all arms;

this allows us to extend the regret bound of the full-feedback algorithm. When

freezing arms, we need to normalize the probabilities of other arms so that they

form a probability distribution. To obtain ε-approximate regret guarantees, the

total probability of all frozen arms should be at most ε′ = Θ(ε). Allenberg et al.

[5] guarantee this for the bandit feedback setting by selecting γ = ε′/d resulting

in a dependence on the number of arms in the approximate regret bound.

In this section we extend this technique in three different ways:

• We obtain small-loss learning algorithms for the case of feedback graphs,

42

where the regret bound depends on the maximum independence number

α = maxt α(Gt), instead of d (number of nodes).

• We achieve the above via a black-box reduction using any full information

algorithm, not only via using the Multiplicative Weights algorithm.

• We provide a small-loss guarantee that holds with high probability and not

only in expectation.

Seeking for bounds that are only a function of the size maxt α(Gt), and have no

dependence on the number of arms, we introduce a novel double-threshold

freezing technique. At each round t, we first freeze arms that are observed

with probability less than some threshold γ. We show (Claim 2.1) that the total

probability frozen at this initial step is at most α(Gt)γ. However, freezing an arm

may cause a snowball effect, decreasing the probability that its neighbors are

observed. This can propagate and cause additional arms to be observed with

probability less than γ, violating the upper bound on the estimated loss. To

bound the total probability frozen in the propagation steps as a function of α(Gt)

while maintaining a lower bound on the probability of observation for the played

arms, we recursively freeze all arms with observation probability smaller than

γ′ = γ/3. We show in Claim 2.2 that the total probability frozen in the recursive

process is at most 3 times the total probability frozen in the initial step.

We proceed by providing the algorithm (Algorithm 1), the crucial lemma

that enables improved bounds beyond bandit feedback (Lemma 2.1), and the

black-box guarantee. For clarity of presentation we first provide the approximate

regret guarantee in expectation (Theorem 2.1) and then show its high-probability

version (Theorem 2.2), in both cases assuming that the algorithm has access to an

upper bound of the maximum independence number α as an input parameter.

43

In Theorem 2.3 we provide the small-loss version of the above bound without

explicit knowledge of this quantity.

Algorithm 1: Double-Threshold Freezing Algorithm

Require: Full-feedback algorithmA, an upper bound on the size of maximum

independent sets α, number of arms d, learning parameter ε′.

1: Initialize p̃1
a for arm a based on the initialization ofA and set t = 1.

2: for t = 1 to T do

3: Initial step: Freeze arms whose observation probability is below γ = ε′/(4α)

to obtain: F t
0 =

{
a :

∑
a′∈Nt

a
p̃t

a′ < γ
}
.

4: Propagation steps: Recursively freeze arms if their probability of being

observed by unfrozen arms is below γ′ = γ/3 to obtain F t =
⋃

k≥0 F t
k where:

F t
k =

a <

 k−1⋃
m=0

F t
m

 :
∑

a′∈(Nt
a\

⋃k−1
m=0 Ft

m)
p̃t

a′ < γ
′


5: Normalize probabilities of unfrozen arms so that they form a distribution:

pt
a = 0 if a ∈ F t and pt

a =
p̃t

a
1−

∑
a′∈Ft p̃t

a′
otherwise.

6: Draw arm A(t) ∼ pt and incur loss `t
A(t).

7: Compute estimated losses: ˜̀t
a =

`t
a∑

a′∈Nt
a

pt
a′

if a ∈ N t
A(t)\F

t and ˜̀t
a = 0 otherwise.

8: Update p̃t+1
a using full information algorithmAwith loss ˜̀t for round t.

9: end for

Lemma 2.1. At every round t, the total probability of frozen arms is at most ε′:∑t
a∈Ft p̃t

a ≤ ε
′, and hence any non-frozen arm a increases its probability due to

freezing by a factor of at most (1 − ε′).

The proof of the lemma follows from understanding how much probability is

44

frozen in the initial steps and how much is frozen during the propagation steps.

These are bounded in the two following claims.

Claim 2.1. The total probability frozen in the initial step is
∑

a∈Ft
0

p̃t
a ≤ α(Gt)γ.

Proof. Let S t be a maximal independent set on F t
0. Since the independent set is

maximal, every node in F t
0 either is in S t or has a neighbor in S t, so we obtain:

∑
a∈Ft

0

p̃t
a ≤

∑
a∈S t

∑
a′∈(Nt

a∩Ft
0)

p̃t
a′ < α(Gt) · γ.

where the last inequality follows since there are at most α(Gt) nodes in S t and, as

they are frozen, the probability of being observed is at most γ for each. �

Claim 2.2. The total probability frozen in the propagation steps is bounded by

three times the total probability frozen at the initial step. More formally:

∑
a∈

⋃
k≥1 Ft

k

p̃t
a ≤ 3

∑
i∈Ft

0

p̃t
a.

Proof. The purpose of the lower threshold γ′ in line 4 is to limit the propagation

of frozen probability. Consider an arm a frozen on step k ≥ 1. Since arm a was

not frozen at step 0, the initial probability of being observed by any node of Gt is

at least γ = 3γ′. When this arm becomes frozen, it is observed with probability

at most γ′. Hence 2γ′ of the original probability stems from arms frozen earlier.

Using this, we can bound the probability mass in F t
1 by at most 1.5 times the

mass of F t
0. Further, from these arms at most γ′ of the originally at least 3γ′

probability is newly frozen, and hence can affect non yet frozen arms, creating

further cascade. We show that the total frozen probability is at most 3 times the

probability of nodes in F t
0. The proof of this fact follows in a way analogous of

how the number of internal nodes of a binary tree is bounded by the number of

leaves, as any node can have at most 1 parent, while having 2 children.

45

More formally, we consider an auxiliary function that serves as an upper

bound of the left hand side and a lower bound of the right hand side, proving

the claim. The claim is focused on a single round t. For simplicity of notation,

we drop the dependence on t from the notations, i.e., use F = ∪kFk for the set

of nodes frozen, p̃a for the probability of node a, use G for the graph, and E for

its edge-set. Let F≥1 =
⋃

k≥1 F t
k. We order all nodes in F based on when they are

frozen. More formally, if a ∈ Fm and a′ ∈ Fk with m < k then a ≺ a′. This is a

partial ordering as ≺ does not order nodes frozen at the same iteration of the

recursive freezing. We now introduce the heart of the auxiliary function which

lies in the sum of the products of probabilities p̃a · p̃a′ along edges (a, a′) with

a ≺ a′, such that (a, a′) ∈ E, i.e.

∑
a∈F,a′∈F≥1,a≺a′

(a,a′)∈E

p̃a p̃a′ (2.1)

To lower bound the quantity in (2.1), we sum over a′ first. Node a′ was not in F0

so its neighborhood has a total probability mass of at least γ = 3γ′. By the time

a′ is frozen, the remaining probability mass is less than γ′, so a total probability

mass of at least 2γ′ must come from earlier frozen neighbors.

∑
a∈F,a′∈F≥1,a≺a′

(a,a′)∈E

p̃a p̃a′ =
∑

a′∈F≥1

p̃a′ ·


∑

a∈F,a≺a′
(a,a′)∈E

p̃a

 ≥
∑

a′∈F≥1

p̃a′ · 2γ′

To upper bound the quantity in (2.1), we sum over a first, and separate the sum

for a ∈ F0 and a ∈ F≥1. Nodes a ∈ F0 have total probability of less than γ = 3γ′ in

their neighborhood, as they are frozen in line 3 of the algorithm. Nodes a ∈ F≥1

have at most γ′ probability mass left in their neighborhood when they become

frozen, thus at most this much total probability contributes to the products with

46

neighbors later in the ordering.

∑
a∈F,a′∈F≥1,a≺a′

(a,a′)∈E

p̃a p̃a′ =
∑
i∈F0

p̃a


∑

a′∈F≥1,a≺a′
(a,a′)∈E

p̃a

+
∑

a∈F≥1

p̃a


∑

j∈F≥1,a≺a′
(i, j)∈E

p̃a′

 ≤
∑
i∈F0

p̃a ·3γ′+
∑

a∈F≥1

p̃a ·γ
′

The above lower and upper bounds imply that:

2γ′
∑

a∈F≥1

p̃a ≤ 3γ′
∑
a∈F0

p̃a + γ′
∑

a∈F≥1

p̃a.

Hence we obtain the claimed bound (reintroducing the round t in the notation):∑
a∈

⋃
k≥1 Ft

k

p̃t
a ≤ 3

∑
a∈Ft

0

p̃t
a

�

Proof of Lemma 2.1. We first consider the arms frozen due to the γ-threshold (line

3 of the algorithm). Claim 2.1 shows that the total probability frozen in the initial

step is bounded by
∑

a∈Ft
0

p̃t
a ≤ α(Gt)γ. We then focus on the arms frozen due to

the recursive γ′-threshold (line 4 of the algorithm). Claim 2.2 bounds the total

probability frozen in the propagation processs by three times the total probability

frozen in the initial step. Combining the two Claims, we obtain:∑
i∈Ft

p̃t
i =

∑
i∈Ft

0

p̃t
i +

∑
i∈

⋃
k≥1 Ft

k

p̃t
i ≤ α(Gt)γ + 3α(Gt)γ = 4α(Gt)γ ≤ ε′.

The lemma then follows from the normalization step of the algorithm (line 5). �

Bounding pseudoregret. We are now ready to prove our first result: a bound

for learning with partial feedback based on feedback graphs. We first provide

the guarantee for approximate pseudoregret in expectation. We assume both the

learning rate ε as well as an upper bound α on the size of the independent sets

are given as an input. At the end of this section, we turn these results into regret

guarantees via doubling trick without knowledge of the independence number.

47

Theorem 2.1. Let A be any full-feedback algorithm with an expected approxi-

mate regret guarantee given by: E
[
ApxReg(f , ε/2)

]
≤ 2L · A(d,T)/ε against any

arm f , when run on losses in [0, L]. The Double-Threshold Freezing Algorithm run

with learning parameter ε′ = ε/2 on inputA, α, d, has expected ε-approximate

regret guarantee: E
[
ApxReg(f , ε)

]
= 48α · A(d,T)/ε2.

Proof. The proof follows the classical reduction described in Section 2.3 but uses

freezing to deal with the resulting shortcomings in three ways. First, freezing

guarantees that the maximum estimated loss is L = 1/γ′ (since the probability of

being observed is at least γ′ for any non-frozen arm; else this arm becomes frozen

at step 4 of the algorithm). Second, although the estimator is no longer unbiased

for all arms, it is unbiased for all non-frozen arms a < F t at all rounds t, i.e.

E[˜̀t
a] = `t

a. It is always negatively (optimistically) biased regardless of whether

the arm is frozen or not, i.e. E[˜̀t
a] ≤ `t

a. Finally, the frozen probability is dis-

tributed proportionally to the probabilities of non-frozen arms, hence increases

the algorithm’s loss proportionally. This is in contrast with mixing a uniform

action distribution in which case the extra probability is distributed across all

arms uniformly, resulting to guarantees that scale with the performance of the

worst arm. More formally:

(1 − ε)E
∑

t

`t
A(t)

 = (1 − ε)E
∑

t

∑
a

pt
a
˜̀t
a

 as E
[
˜̀t
a

]
= `t

a on all arms played.

≤
1 − ε

1 − ε/2
E
∑

t

∑
a

p̃t
a
˜̀t
a

 by Lemma 2.1.

≤ E
∑

t

˜̀t
f + L ·

A(d,T)
ε′

 by the low approx regret ofA.

≤
∑

t

E
[
`t

f

]
+

A(d,T)
γ′ · ε′

as estimator is negatively biased

=
∑

t

E
[
`t

f

]
+ 48α ·

A(d,T)
ε2 using definitions of L, γ′, γ and ε′.

48

The second inequality also uses the fact that (1 − ε) ≤ (1 − ε/2)2. �

Notice that, for the result, it was important to be able to use a freezing thresh-

old γ ∝ ε/α instead of γ ∝ ε/d for the above analysis, allowing an approximate

regret bound with no dependence on d.

High probability bound. To obtain a high-probability guarantee (and hence

a bound on the actual regret, not pseudoregret), we encounter an additional

complication since we need to upper bound the cumulative estimated loss of

the comparator by its cumulative actual loss. For this purpose, the mere fact

that the estimator is negatively biased does not suffice. The estimator may, in

principle, be unbiased (if the arm is never frozen), and the variance it suffers

can be high, which could ruin the small-loss guarantee. To deal with this, we

apply a concentration inequality, comparing the expected loss to a multiplicative

approximation of the actual loss. This is inspired by the approximate regret

notion, is a quantity with negative mean, and has variance that depends on 1/ε

as well as the magnitude of the estimated losses which is 1/γ′.

Theorem 2.2. Let A be any full-feedback algorithm with an expected approx-

imate regret guarantee of: E
[
ApxReg(f , ε/5)

]
≤ 5L · A(d,T)/ε, against any arm

f , when run on losses in [0, L]. For any δ > 0 with probability 1 − δ, the Dual-

Threshold Freezing Algorithm run with learning parameter ε′ = ε/5 on inputA, α,

d, has ε-approximate regret: ApxReg(f , ε) = O
(
α·(A(d,T)+log(d/δ))

ε2

)
.

To prove the theorem, we need the following concentration inequality, show-

ing that the sum of a sequence of (possibly dependent) random variables cannot

be much higher than the sum of their expectations conditioned to the past3:
3The conditional expectations are still random variables depending on past realizations.

49

Lemma 2.2. Let (xt)t≥1 be a sequence of non-negative random variables, s.t. xt ∈

[0, 1]. Let Et−1[xt] = E[xt|x1, . . . , xt−1]. Then, for any ε, δ > 0, with probability at

least 1 − δ ∑
t

xt − (1 + ε)
∑

t

Et−1[xt] ≤
(1 + ε) ln(1/δ)

ε

and also with probability at least 1 − δ

(1 − ε)
∑

t

Et−1[xt] −
∑

t

xt ≤
(1 + ε) ln(1/δ)

ε

The proof follows the outline of classical Chernoff bounds for independent

variables combined with the law of total expectation to handle the dependence.

For completeness, the proof details are provided in Appendix A.1.

Proof of Theorem 2.2. To obtain a high-probability statement, we use Lemma 2.2

multiple times as follows:

1. Show that the sum of the algorithm’s losses stays close to the sum of the

expected losses.

2. Show that the sum of the expected losses stays close the sum of the expected

estimated losses used by the full information algorithmA

3. Show that the sum of the estimated losses of each arm f stays close to the

sum of the actual losses.

Starting with the item 1, we use xt = `t
A(t), and note that its expectation conditioned

on the previous losses is mt =
∑

i pt
i`

t
i so we obtain that, for any δ′, ε > 0, with

probability at least (1 − δ′)

∑
t

`t
A(t) − (1 + ε′)

∑
t

∑
i

pt
i`

t
i ≤

(1 + ε′) ln(1/δ′)
ε′

50

Next item 3, for a comparator f we use the lemma with xt = ˜̀t
f and its

expectation mt = `t
f . Now xt is bounded by 1/γ and not 1, so by scaling we obtain

that with probability (1 − δ′)∑
t

˜̀t
f − (1 + ε′)

∑
t

`t
f ≤

(1 + ε′) ln(1/δ′)
γε′

Finally, we use the lower bound in the lemma to show item 2: for xt =∑
i pt

i
˜̀t

i, the expected losses observed by the full information algorithm, and its

expectation mt =
∑

i pt
i`

t
i. Again, since xt ∈ [0, 1/γ], with probability (1 − δ′),∑

t

∑
i

pt
i`

t
i − (1 + ε′)

∑
t

∑
i

pt
i
˜̀t
i ≤

(1 + ε′) ln(1/δ′)
γε′

Using union bound and δ′ = δ/(d + 2), all these inequalities hold simultane-

ously for all δ > 0. To simplify notation, we use B =
(1+ε′) ln((d+2)/δ)

γε′
for the error

bounds above.

Combining all the bounds we obtain that∑
t

`t
A(t) ≤ (1 + ε′)

∑
t

∑
i

pt
i`

t
i + B by item 1 above

≤
1 + ε′

1 − ε′

∑
t

∑
i

p̃t
i`

t
i + B

 by Lemma 2.1

≤
(1 + ε′)2

1 − ε′

∑
t

∑
i

p̃t
i
˜̀t
i + 2B

 by item 2 above

≤
(1 + ε′)2

(1 − ε′)2

∑
t

˜̀t
f + 2B +

A(d,T)
γ · ε′

 by the low approx. regret ofA

≤
(1 + ε′)3

(1 − ε′)2

∑
t

`t
f + 3B +

A(d,T)
γ · ε′

 by 3 applied to f

The theorem then follows as (1+ε′)3

(1−ε′)2 ≤ (1 − ε)−1 for ε′ = ε/5. �

The small-loss guarantee without knowing α. So far, we presented the results

in terms of approximate regret and assuming we have α, an upper bound for

51

the maximum independent set, as an input. Next we show that we can use this

algorithm with the classical doubling trick without knowing α, and achieving

low regret both in expectation as well as with high probability, not only approx-

imate regret. We start with a large ε and small α and halve and double them

respectively, when observing that they are not set right. There are two issues

worth mentioning.

First, observe that computing the maximum independent set is challenging

since this task is NP-hard to approximate. However, if one looks carefully into

our proofs, we just require knowledge of a maximal independent set on the γ-

frozen arms and not one of maximum size. This can be easily computed greedily

at each round and therefore our algorithm can handle changing graphs without

requiring knowledge of the maximum independence number.

Second, unlike full feedback, partial feedback does not provide access to the

loss of the comparator L?. As a result, we apply doubling trick on the loss of

the algorithm instead and then bound the regret of the algorithm appropriately.

Using the loss of the algorithm instead is called self-confident approach [13]. Com-

bined with standard doubling trick arguments, this gives the following lemma

whose proof is provided in Appendix A.2 for completeness.

Lemma 2.3. Suppose we have a randomized algorithm that takes as input any

ε > 0 and guarantees that, for some q ≥ 1 and some function Ψ(·), and any δ > 0,

with probability 1 − δ, for any time horizon s and any comparator f :

(1 − ε)
s∑

t=1

`t
A(t) ≤

s∑
t=1

`t
f +

Ψ(δ)
εq .

Assume using this algorithm over multiple phases (by restarting the algorithm

when a phase ends). We run each phase τ with ετ = 2−τ until ετL̂τ > Ψ(δ)
(ετ)q where

L̂τ denotes the cumulative loss of the algorithm for phase τ. For any δ > 0, the

52

regret for this multi-phase algorithm is, with probability at least 1 − δ:

Regret ≤ O
((

L?
) q

q+1 Ψ
(

δ
log(L?+1)+1

) 1
q+1

+ Ψ
(

δ
log(L?+1)+1

)
+ 1

)

Combining the two observations, we prove the following small-loss bound.

Theorem 2.3. LetA be any full information algorithm with ε-approximate regret

bounded by L · A(d,T)/ε when run on losses in [0, L] and with parameter ε > 0.

If one runs the Dual-Threshold Freezing Algorithm (Algorithm 1) as in Theorem 2.2

and using the doubling scheme as in Lemma 2.3 and tuning α appropriately on

each phase, then for any δ > 0, with probability at least (1 − δ) the regret of this

algorithm is bounded by O
(((

L?
)2/3(αA(d,T))1/3 + αA(d,T)

)
log

(
d log(L?+1)

δ

))
.

Proof. First for simplicity assume that α is known in advance. In this case, using

Theorem 2.2, we can conclude that for any δ, > 0, Algorithm 1 run with A

enjoys an ε-approximate regret guarantee of O
(
α·(A(d,T)+log(d/δ))

ε2

)
. Hence, running

Algorithm 1 while tuning ε-parameter using doubling trick as in Lemma 2.3 with

Ψ(δ) = O
(
α ·

(
A(d,T) + log(d/δ

))
and q = 2 yields the regret guarantee of

O

(((
L?

)2/3(αA(d,T))1/3 + αA(d,T)
)

log
(
d log(L? + 1)

δ

))
If α is not known in advance, we can begin with a guess (say α′ = 1) and double

the guess every time that this is incorrect, i.e. the maximal independent set of the

γ-frozen nodes has more than α′ nodes. We make at most log(α) updates. Within

one phase with the same update, the previous guarantee holds with probability

at least some δ′. At the time of each update we can lose an extra of at most 1.

For the rest of the rounds, the guarantees work additively. Therefore, setting

δ′ = δ/ log(α), we obtain the previous guarantee with an extra log(α) decay in the

guarantee. Since α < d, the dependence on log(α) is dropped in the O notation of

the regret bound. �

53

2.5 Optimal small-loss guarantees for bandit feedback

To achieve optimal dependence on L?, we need to better understand the places

where the inefficiency arises. The first such place is when we apply the bound of

the full-information which, in a black-box analysis, needs to have dependence

both on the magnitude of losses, L ≤ 1/γ′, and on the approximation parameter

ε′. Instead of applying this bound, we provide a refined analysis that relates

the expected estimated loss of the full information algorithm to the sum of the

cumulative estimated losses of all the arms. Using multiplicative weights as a

full-information algorithm guarantees that the cumulative estimated losses of

all the arms are close to each other (Lemma 2.4) which enables us to remove

this inefficiency. This was also used by Allenberg et al. [5] to prove optimal

pseudo-regret guarantees but their analysis did not extend to high-probability.

To derive the high-probability guarantee, we address the second inefficiency of

the black-box, where to bound the negative bias of the comparator’s cumulative

estimated loss by its cumulative actual loss, we again had dependence on both

the magnitude of the estimated losses and ε. For that we apply the implicit

exploration idea of Kocák et al. [81] which creates a negative bias to all arms

and not only the arms that are frozen (Lemma 2.5). Although Neu [103] used

implicit exploration to provide high-probability uniform bounds his results did

not extend to small-loss. Combining our framework with both multiplicative

weights and implicit exploration, we obtain an algorithm we term GREEN-IX

(Algorithm 2) that, with high-probability, guarantees regret bound of O(
√

L?).

Theorem 2.4. For any δ > 0, GREEN-IX run with learning parameter ε′ = ε/2

guarantees an ε-approximate regret of O
(

d log(d/δ)
ε

)
with probability at least 1 − δ.

Lemma 2.4 (implied by the proof of Theorem 2 in [5]). When using multiplicative

54

Algorithm 2: GREEN-IX

Require: Number of arms d, learning parameter ε′.

1: Initialize p̃1
a for arm a (p̃t

a = 1/d), their cumulative losses (L̃0
a = 0). Set t = 1.

2: for t = 1 to T do

3: Freeze arm a if its probability p̃t
a is below threshold γ = ε′/d to create the

set F t =
{
i : pt

a < γ
}
.

4: Normalize probabilities of unfrozen arms so that they form a distribution:

pt
a = 0 if a ∈ F t and pt

a =
p̃t

a
1−

∑
a′∈Ft p̃t

a′
otherwise.

5: Draw arm A(t) ∼ pt and incur loss `t
A(t).

6: Compute biased estimate of losses via implicit exploration ζ = ε′/(2d):

˜̀t
a =

`t
a

pt
a+ζ

if a = A(t) and ˜̀t
a = 0 otherwise.

and update the cumulative losses of all arms L̃t
a →= L̃t−1

a + ˜̀t
a.

7: Update p̃t+1
a via multiplicative weights with learning rate η = ε′/(2d):

p̃t+1
a =

exp(−ηL̃t
a)∑

a′ exp(−ηL̃t
a′)

.

8: end for

weights as the full-information algorithm, for any two arms a and a′,

T∑
t=1

˜̀t
a ≤

T∑
t=1

˜̀t
a′ +

1
γ

+
ln(1/γ)
η

Proof. Let Ta be the last round that a is not frozen. Thus its probability (before

normalization) is then greater than γ.

γ ≤ p̃Ta
a =

exp
(
−η

∑Ta−1
t=1

˜̀t
a

)
∑

j exp
(
−η

∑T j−1
t=1

˜̀t
j

) ≤ exp
(
−η

∑Ta−1
t=1

˜̀t
a

)
exp

(
−η

∑Ta′−1
t=1

˜̀t
a′

)

55

As a result:

Ta−1∑
t=1

˜̀t
a ≤

Ta′−1∑
t=1

˜̀t
a′ +

ln(1/γ)
η

⇒

T∑
t=1

˜̀t
a ≤

T∑
t=1

˜̀t
a′ +

1
γ

+
ln(1/γ)
η

,

where the last inequality follows as ˜̀t
a ≤ 1/γ for all arms at all times and the

estimated loss of a is 0 after round Ta by definition of Ta. �

Lemma 2.5 (implied by Corollary 1 in [103]). For any δ > 0, with probability at

least 1− δ, any full information algorithm run on estimated losses ˜̀t with implicit

exploration satisfies for all arms a ∈ [d] simultaneously:

T∑
t=1

(
˜̀t
a − `

t
a

)
≤

log(d/δ)
2ζ

Proof. The lemma essentially follows from Corollary 1 in [103], that proves the

analogous statement when there is just implicit exploration without freezing.

Let’s consider some fictitious losses ¯̀t
a that are equal to the actual losses for all

arms a < F t and 0 for arms a ∈ F t and let ˆ̀t
a be the estimated loss with just

implicit exploration the losses ¯̀t
a. Then Corollary 1 in [103] establishes that:∑T

t=1

(
ˆ̀t
a −

¯̀t
a

)
≤

log(d/δ)
2ζ simultaneously for all a with probability at least 1 − δ. The

lemma follows by noting that the fictitious estimated losses are equal to the true

estimated losses, i.e. ˆ̀t
a = ˜̀t

a, since all the non-frozen arms have the same actual

losses and that the fictitious actual losses are no greater than the true actual

losses, i.e. ¯̀t
a ≤ `

t
a since the only difference occurs on arms with ¯̀t

a = 0 and all the

actual losses are non-negative. �

Lemma 2.6 (see for instance [35]). Multiplicative weights with learning rate η

applied on the estimated losses satisfies:

∑
t

∑
a

p̃t
a
˜̀t
a −

∑
t

˜̀t
f ≤ η

∑
t

∑
a

p̃t
a

(
˜̀t
a

)2
+

log(d)
η

56

Proof of Theorem 2.4. The proof follows the roadmap of the proof of Theorem 2.2

but handles the suboptimal places of the black-box theorem’s proof by applying

Lemmas 2.4 and 2.5. We show that for each arm f , the guarantee holds with

failure probability δ′ = δ/d. Therefore the guarantee holds against all the arms f

simultaneously with probability at least 1 − δ. More formally:

(1 − ε)
∑

t

`t
A(t) = (1 − ε)

∑
t

∑
i

(
pt

a + ζ
)
· ˜̀t

a by definition of ˜̀t
i

≤
1 − ε
1 − ε′

∑
t

∑
a

p̃t
a
˜̀t
a + ζ

∑
t

∑
a

˜̀t
a by Lemma 2.1

≤
1 − ε
1 − ε′

∑
t

˜̀t
f + η

∑
t

∑
a

p̃t
a

(
˜̀t
a

)2

+
log(d)
η

+ ζ
∑

t

∑
a

˜̀t
a by Lemma 2.6

≤
1 − ε
1 − ε′

∑
t

˜̀t
f + (η + ζ)

∑
t

∑
a

˜̀t
a +

log(d)
η

as `t
a ≤ 1 and p̃t

a ≤ pt
a + ζ

≤
1 − ε
1 − ε′

∑
t

˜̀t
f + (η + ζ)

∑
t=1

d ˜̀t
f

+ d(η + ζ)
(
1
γ

+
ln(1/γ)
η

)
+

log(d)
η

by Lemma 2.4

Now we use the strict negative bias of Lemma 2.5 to get that with probability at

least (1 − δ′) we can continue the above inequalities as:

(1 − ε)
∑

t

`t
A(t) ≤

1 − ε
1 − ε′

∑
t

`t
f +

log(d/δ′)
2ζ

+ (η + ζ)
∑
t=1

d`t
f

+ d(η + ζ)
(
1
γ

+
ln(1/γ)
η

+
log(d/δ′)

2ζ

)
+

log(d)
η

≤
∑

t

`t
f +

4d log(d) + 2 log(d2/δ)
ε

+ d
(
1 + 2 ln(2/ε) + log(d2/δ)

)
.

where the final inequality is derived by replacing the parameters γ, ζ, η, and δ′,

and using the fact that 1−ε
1−γd + (η + ζ)d ≤ 1 for the selection of the parameters. �

Corollary 2.1. GREEN-IX applied with doubling trick on parameter ε guarantees

regret of Õ
(√

d log(d/δ) · L? + log(d/δ)
)

with probability at least 1 − δ, and hence

expected regret at most Õ(
√

d log(d) · L? + log(d/δ)).

57

The proof follows similarly to the one of Theorem 2.2 by applying Lemma 2.3

with Ψ(δ) = O
(
d log(d/δ)

)
and q = 1.

2.6 Remarks

More information about the paper. The results presented in this chapter are

joint work with Karthik Sridharan and Éva Tardos [93]. Our reduction can

capture more important partial feedback paradigms such as combinatorial semi-

bandits, contextual bandits, and bandits with dynamically evolving comparators.

In particular, one important additional result in the paper is about combinatorial

semi-bandits where we provide optimal high-probability small-loss guarantees

similar to the results in Section 2.5. The latter result stems from combining

our black-box reduction with a) again the implicit exploration of Kocák et al.

[81], b) a truncated version of follow the perturbed leader of Neu [104], and c)

the geometric resampling idea of Neu and Bartok [105]. Another interesting

additional result is that, for the case where the feedback graph is fixed across

time, the analysis provided in Section 2.5 can be extended to provide guarantees

with optimal dependence on L? that depend on the minimum clique partition,

instead of the number of arms. Extending this result to evolving graphs and

replacing the clique partition by the maximum independence number is a major

open question coming out of our work.

Other small-loss bounds with partial feedback. The work described in this

section is not the first to provide small-loss bounds with partial feedback, how-

ever these guarantees are generally challenging when moving away from full

58

feedback, e.g. see the open problem in [3]. For example, such results existed for

the pure bandit feedback setting: e.g., the paper by Allenberg et al. [5] which we

extended here, as well as my previous joint work with Dylan Foster, Zhiyuan Li,

Karthik Sridharan, and Éva Tardos on online mirror descent with log-barrier reg-

ularizer [53]. Other settings where such small-loss guarantees were analyzed are

the label-efficient prediction setting [39], the combinatorial semi-bandit setting

[104] which we also extend in our work as described in the previous paragraph,

and (subsequently to our work) contextual bandits [33]. All these results rely on

algorithms tailored to the setting and give guarantees that only hold in expec-

tation for the weaker notion of pseudo-regret that compares to an arm fixed in

advance (not the best in hindsight). In contrast, our guarantees are for general

graph-based feedback, hold with high probability against the ex post optimal

arm, and our reduction for the suboptimal rate of (L?)2/3 is black-box.

Other data-dependent guarantees. Small-loss guarantees are a particular form

of data-dependent bounds. These guarantees improve on the worst-case when

the problem has a nice structure but do not rely on this structure to be perfectly

present and the guarantees gracefully degrade as we deviate from it. The nice

structure in our case is the fact that there exists an action that has small aggregate

loss; whenever this happens, we see significantly better performance. Another

important structure that has been employed to provide robust data-dependent

guarantees for adversarial online learning are guarantees that become better if

the variance between the losses in the realized sample path is small [67, 127]. In

the next chapter, we will also discuss an orthogonal version of data-dependent

guarantees that, instead of utilizing a nice structure in adversarial online learning,

aim to make algorithms that rely on a particular assumption (such as data being

59

i.i.d.) robust to this assumption not completely holding.

Beyond the classical regret notion. Although we mostly focus on regret

bounds with respect to the classical benchmark that compares to the loss of

the best fixed action in hindsight, our results extend seamlessly to the stronger

benchmark of shifting regret [69] that compares to a sequence of comparator

arms (not changing too often). This extension is important when we discuss effi-

ciency of learning outcomes in dynamic environments in Chapter 6. We should

mention that there are a variety of other benchmarks considered in adversarial

online learning: for example, sleeping regret [26, 55, 30] allows different arms

to only be available in particular rounds and adaptive regret [91, 43] requires to

have good regret for each time interval; we will come back to those in Chapter 6.

Partial-feedback settings outside of graph-based feedback. In this chapter,

we focused on graph-based feedback, a combinatorial feedback structure where

the losses of different elements are observed separately. Apart from providing a

clean model to obtain intuition on handling side-information, this model captures

important partial feedback settings as special cases as discussed. However, there

are settings not captured in our framework. The most notable examples are

feedback settings that are more continuous such as linear bandits [42, 118] and

metric bandits [80]. Another such feedback setting that is relevant for packet

routing is end-to-end routing [15] where the learner receives feedback for the

whole path and not for all the segments as in combinatorial semi-bandits.

60

CHAPTER 3

ROBUSTNESS TO ADVERSARIAL CORRUPTIONS

The explore-exploit trade-off in online decision-making is often more evident in

settings where the performance of the alternatives has some natural stochasticity.

Unlike adversarial online learning which stems from game-theoretic consid-

erations, the origin of sequential learning when the input is i.i.d. lies in the

design of sequential experiments [113]. Moving beyond the classical statistical

approach where all experiments were initially conducted before analyzing the

data, sequential experiment design allowed to adaptively balance the exploration

needed to identify the most profitable alternative with exploiting it once it is

identified. This gave rise to the stochastic multi-armed bandit setting [11] which

nicely encapsulates this explore-exploit trade-off.

The stochastic multi-armed bandit setting has become more useful due to the

rise of online marketplaces which comes with many opportunities for higher

adaptivity during sequential decision-making. Consider online advertising as

an example where a platform like Google or Facebook needs to select which ad

to display at a particular pageview. Different ads have different propensity to

be clicked; this is expressed by the click-through-rate (probability of a click if

the ad is displayed). The platform aims to select ads with high click-through

rate in order to provide relevant content to the user and revenue to itself (as it is

typically paid per-click). As a result, the crucial task in such an application is to

identify which ad is the most profitable while also making sure that suboptimal

actions are not selected too often. This trade-off also appears in recommender

systems where the different alternatives may correspond to restaurants and the

reward from an action could be associated with the experience of the user. This

61

again is related to a distribution capturing the inherent quality of the restaurants.

In this chapter, we discuss a major roadblock in practically employing stochas-

tic multi-armed bandit algorithms: the input is not completely i.i.d. but may

be subject to the existence of fraudulent data. This is a prominent issue in the

applications of interest. For example, in online advertising, there exists the

phenomenon of click fraud. In one instantiation of click fraud, an attacking ad-

vertiser may try to obtain impressions from a competing ad and deliberatly not

click it. This way the attacking advertiser may manipulate the platform towards

thinking that the latter ad has a low click-throuh-rate and therefore should not be

often selected. Altough platforms actively spend resources to identify when click

fraud occurs, it is unreasonable to assume that it will be completely eradicated.

Similarly, in recommender systems, there are often fake reviews; again platforms

try to penalize such corrupted activity but again one cannot hope that all of it

will be completely eliminated. The challenge we face is that classical algorithms

completely fail even with a very small amount of fraudulent activity as we will

see in Section 3.3. Addressing this challenge, we will suggest a way to make

stochastic multi-armed bandit algorithms robust to such corruptions in the data.

3.1 Preliminaries on stochastic multi-armed bandit learning

Stochastic multi-armed bandits. The framework for stochastic multi-armed

bandits is similar to the one of adversarial online learning described in Section 2.1.

It differs from it in that the losses or rewards are drawn from distributions fixed

in advance instead of being adversarially selected. Since this is more common in

our applications, we switch the presentation to be about rewards in this chapter.

62

More formally, the decision-maker or learner has again access to a set of

k alternatives that we will refer to as arms or actions. Each arm a ∈ {1, . . . , k}

is associated with a distribution F (a) with mean µ(a). The distributions are

assumed to have positive measure only on rewards in [0, 1] and are unknown to

the learner. At round t = 1, . . . ,T , the following process occurs:

1. The learner selects a probability distribution pt ∈ ∆(k) over the k possible

arms, i.e.
∑k

a=1 pt
a = 1.

2. For each arm a, a reward rt
a ∼ F (a) is drawn from the corresponding

distribution where rt
a ∈ [0, 1] is assumed to lie in [0, 1] .

3. The learner then draws action A(t) ∼ pt from the distribution pt she com-

mitted to and gains the reward of the selected arm rt
A(t).

4. The learner observes the reward rt
A(t) only for the selected arm A(t).

Regret notions. If the learner knew in advance the distributions F (a), she

would always select the arm a? = arg maxa µ(a) as it provides the highest expected

reward. However, this information is not known in advance. As a result, the

notion of performane in stochastic bandits captures how costly this lack of

distributional information ends up being for the algorithm. More formally, the

notion of pseudoregret corresponds to the difference between the regret obtained

by the algorithm and the reward of arm a?.

PseudoReg = E
∑

t

[
rt

a? − rt
A(t)

] =
∑

t

E
[
µ
(
a?

)
− µ(A(t))

]
.

A stronger regret notion is that of actual regret that compares the realized

performance of the algorithm to the realized performance of the best arm in

63

hindsight instead of expectation against a?; note that the best arm in hindsight

may be different than the ex-ante optimal arm a?. More formally:

Regret = max
a

∑
t

[
rt

A(t) − rt
a

]
The actual regret is a random variable that depends on the random rewards, the

randomness used by the learner, and the randomness of the adversary. We say

that a regret bound R(T, δ) holds with probability 1 − δ if P
[
Regret < R(T, δ)

]
> 1 − δ

where the probability is taken over all the three sources of randomness described.

Note that by Jensen’s inequality, PseudoReg ≤ E
[
Regret

]
. We can often obtain

improved bounds for pseudoregret since it allows us to offset large positive

regret events with large negative regret events (see discussion in Section 3.6).

Classical guarantees. One can generally exploit the stochasticity in the input to

obtain improved guarantees compared the adversarial online learning guarantees

of
√

T log(k) which we discussed in the previous chapter. The property that the

input is stochastic is more useful when arm a? is more easily identifiable. As a

result, the guarantees tend to scale inversely with the so-called gaps of the arms

a, i.e. ∆(a) = µ(a?) − µ(a), which captures how easily identifiable a? is.1 More

concretely, the guarantees are of the form Θ
(∑

a,a?
log(kT/δ)

∆(a)

)
for actual regret with

probability at least 1 − δ, and Θ
(∑

a,a?
log(kT)

∆(a)

)
for pseudoregret. In Section 3.3, we

show how these bounds are obtained for a classical stochastic bandit algorithm

and then illustrate why such algorithms are not robust to corruptions in the data.

The above guarantees may seem meaningless when there are arms with

∆(a) ≤ 1/
√

T . For those summands, the inverse dependence on the gap may

1We note that a? is one arm with optimal mean and this does not preclude the existence of
other arms with the same mean. If more than one such arms exist, let a? be an arbitrary arm
with optimal mean and the other arms a , a? with optimal mean have gap ∆(a) = 0. To simplify
presentation, we assume that a? is the unique arm with highest mean.

64

initially seem vacuous; for instance, when there are two optimal arms a, a? with

the same mean, the upper bound becomes infinite as ∆(a) = 0. However, the

inverse dependence on the gap can be replaced by ∆(a) · T in the case of pseudo-

regret and
√

T in the case of actual regret.2 For simplicity of exposition, we omit

this from the remaining of the discussion.

3.2 Stochastic bandits with adversarial corruptions

Corrupted model. We now slightly modify the stochastic bandit learning set-

ting described in the previous section to incorporate adversarial corruptions

in the data. We consider an adversary who can corrupt some of the stochastic

rewards. The adversary is adaptive in the sense that the corrupted rewards can

be a function of the realization of the stochastic rewards up to that point and of

the learner’s choices in the previous rounds. More formally, at round t = 1, . . . ,T :

1. The learner selects a probability distribution pt ∈ ∆(k) over the k possible

arms, i.e.
∑k

a=1 pt
a = 1.

2. For each arm a, a reward rt
a ∼ F (a) is drawn from the corresponding

distribution where rt
a ∈ [0, 1] is assumed to lie in [0, 1] .

3. The adversary observes the realizations of rt
a as well as the learner’s choices

pt
a and returns corrupted feedback r̃t

a for all arms a.

4. The learner then draws action A(t) ∼ pt from the distribution pt she com-

mitted to and gains the reward of the selected arm rt
A(t).

5. The learner observes the corrupted feedback r̃t
A(t) only for selected arm A(t).

2If two arms have the same mean, then concentrantion bounds can only establish that the
reward of the algorithm will be at most

√
T worse than the ex-post best arm with high-probability.

65

Delving into the model, steps 1, 2, and 4 are as in the stochastic bandit model.

The only modification is that there exists an extra step 3 in which the adversary

alters the feedback which the learner observes for the selected arm in step 5.

Note that, in the described model, we assume that the reward earned is the

one before corruption and the adversary only corrupts the feedback received.

This makes sense in settings with fraudulent activity such as fake reviews; the cor-

ruption in a review does not improve the user experience (earned reward). Our

algorithm extends to the setting where both the reward earned and the feedback

received are corrupted; we contrast the two settings further in Section 3.6.

Desiderata. We aim for guarantees that gracefully degrade based on how cor-

rupted the setting is. More formally, we quantify the amount of corruption

injected at round t by the maximum difference the adversary injected in any arm:

maxa|rt
a − r̃t

a|. An instance is C-corrupted if the total injected corruption (across

time) is at most ∑
t

max
a
|rt

a − r̃t
a| ≤ C

for all realizations of the random variables. The adversary is assumed to be adap-

tive, in the sense that she has access to all the realizations of random variables

for all rounds τ < t and the realization of rewards at round t but only knows the

player’s distribution at round t and not the arm at.

We aim for algorithms with the following three properties:

1. Stochastic: Retain the stochastic bandit guarantee when C = 0.

2. Robust: Have the guarantee degrade gracefully as a function of C.

3. Agnostic: Do not assume knowledge of parameter C.

66

Note that a linear degradation with respect to C is unavoidable for the robust-

ness property. Consider two arms a and a′ with means µ(a) = 1 and µ(a′) = 0

respectively and an adversary who returns r̃t(a) = r̃t(a′) = 1 for both arms in the

first C rounds. No algorithm can do better than selecting uniformly at random

among these arms for the first C rounds, which leads to a pseudoregret of C/2.

3.3 Click fraud attack against classical bandit algorithms

Active Arm Elimination algorithm. The starting point of our design is the

Active Arm Elimination algorithm [51], which provides a simplified analysis of the

stochastic bandit guarantee compared to the more famous UCB algorithm [11].

This algorithm is based on the following idea: in an initial exploration phase,

we pull arms in a round-robin fashion and compute an estimate µ̃(a) as the

average empirical reward of arm a (average reward of a? when observed). After

n(a) pulls of arm a, usual concentration bounds establish that with probability

at least 1 − 1/T , the difference of the empirical and actual means is at most

wd(a) =
√

log(T)/n(a). We say that
[
µ̃(a) − wd(a), µ̃(a) + wd(a)

]
is the confidence

interval of arm a.

If, at some point, the difference between the empirical means of two arms

a and a′ becomes larger than the widths of the confidence intervals, i.e., µ̃(a′) −

µ̃(a) > wd(a) + wd(a′), then with high probability arm a is not the optimal arm.

Once this happens, the algorithm eliminates arm a by removing it from the

round-robin rotation. After both arm a and the best arm a? are pulled O
(

log(T)
∆(a)2

)
times, the confidence intervals will be small enough that arm a will be eliminated.

67

Eventually all arms but the optimal are eliminated and we enter what is called

the exploitation phase. In this phase we only pull the arm a? which has the highest

mean. Before we enter exploitation, each suboptimal arm a is pulled at most

O(log(T)
∆(a)2) times. Each of those suboptimal pulls incurs regret ∆(a) in expectation

which leads to the pseudo-regret bound of O(
∑

a,a?
log(T)
∆(a)). This bound can also be

converted to a high probability bound for any given failure probability δ > 0 if

we replace log(T) by log(kT/δ).

Click fraud attack. The above algorithm is not robust to corruptions as an

adversary can easily target the exploration phase, manipulating the algorithm to

believe that a? is not the optimal arm.

Consider the case where we only have three arms a and a? with µ(a) = 0.9,

µ(a′) = 0 and µ(a?) = 1. As illustrated in the previous exposition, the algorithm

will realize that arm a′ is really suboptimal after a logarithmic number of rounds

and subsequently remove it from the round-robin rotation. As a result, what the

adversary can do is to make the optimal arm a? look exactly as a′ to provoke its

elimination. This can be easily achieved by modifying the feedback of arm a? to

0 for a logarithmic number of rounds. As a result, a? is then indistinguishable

from arm a′ and will fast get eliminated for the same reason. Subsequently, we

incur a regret equal to the gap ∆(a) = 0.1 for every single round, leading to a

linear regret which violates the robustness property as C = O(log T) in the setting.

This is exactly the click fraud attack that occurs in online advertising. The

advertiser that has ad a may try to get impressions of the optimal ad a? to

manipulate the platform to believe that a? is really not effective and have their

own ad being selected for the remainder of the time.

68

3.4 Warm-up: c-corrupted setting with valid upper bound c

To approach the setting, we first simplify it by assuming that we have access to an

upper bound c on the corruption, i.e. C < c, and aiming for guarantees gracefully

degrading with c. This is not an assumption we wish to make in practice for

various reasons. First, the typical way that such an upper bound may arise is

via setting a pretty loose upper bound to be sure it is a valid upper bound; this

will result in violating the stochastic property as, even if the setting ending up

being uncorrupted (C = 0), we will end up scaling with the loose upper bound c.

Even more damagingly, from a game-theoretic viewpoint, if the alogirhtm has a

hard-coded bound c it is robust to, the adversary needs to just try to add a little

more corruption since the algorithm then only satisfies the robustness property

for C < c. As a result, it is crucial to be agnostic to the amount of corruption.

However, this setting will serve as a useful building block in our framework.

Enlarged confidence intervals. With such an upper bound c, there is a simple

modification of Active Arm Elimination that gracefully degrades with c. In

particular, we can enlarge the confidence intervals to account for this quantity.

More formally, setting wd(a, t) =

√
log(T)
n(a,t) + c

n(a,t) where n(a, t) is the number of times

the arm has been played until time t, the resulting algorithm has performance

O
(∑

a,a?
(

log(kT/δ)+c
∆(a)

))
with probability 1 − δ if the bound c is indeed a valid up-

per bound. This comes from two lemmas that will be useful moving forward;

their proofs follow standard stochastic bandit arguments and are provided in

Appendix B.1 for completeness.

Lemma 3.1. Assume that c is a valid upper bound for the total corruption and we

run active arm elimination with wd(a, t) =

√
log(2kT/δ)

n(a,t) + c
n(a,t) . Then, with probability

69

at least 1 − δ, arm a? never becomes eliminated.

Lemma 3.2. Assume that c is a valid upper bound for the total corruption and

we run Active Arm Elimination with wd(a, t) =

√
log(2kT/δ)

n(a,t) + c
n(a,t) . Then, with prob-

ability at least 1 − δ, all arms a , a? become eliminated after N(a) =
36 log(2kT/δ)+6c

∆(a)2

plays.

3.5 Main result: Multi-layer Active Arm Elimination

We are now ready to provide our approach that combines the stochastic, ro-

bustness, and agnostic properties. To make the presentation more modular, we

first describe the simpler setting where we wish to obtain the usual stochastic

bound of O
(∑

a,a?
log (kT/δ)

∆(a)

)
if the input is purely stochastic while simultaneously

guaranteeing O
(
k · c ·

∑
a,a?

log(kT/δ)2

∆(a)

)
if the input is C-corrupted with corruption

level C ≤ c upper bounded by a known c. Subsequently, we will extend it to the

agnostic case where we will provide the same result with respect to the realized

C without assuming knowledge of any upper bound.

Stochastic or corrupted with known valid upper bound c

To deal with this double purpose (stochastic and c-corrupted when C ≤ c for a

known c), we run in parallel two instances each targeting one of the two goals;

at each round we select the instances with appropriate probabilities described

below. Intuitively, the first instance is selected more often and quickly identifies

the best arm if the input is stochastic, but is not robust to corruptions. The second

instance is slower but more precise, in the sense that it can tolerate corruptions.

70

Since the second instance is more trustworthy, if the second instance decides to

eliminate a certain arm a, we eliminate the same arm in the faster instance.

Decrease experienced corruption by sub-sampling. To keep the regret low if

the input is stochastic, the second instance of active arm elimination cannot pull a

suboptimal arm too many times, therefore enlarging the confidence intervals by c

is not effective. The main idea of the algorithm is to make arm a behave as if it was

almost stochastic in the slower instance even when there exists corruption C ≤ c

in the data, by running the slower instance with low probability. If the learner

selects the slower instance with probability 1/c then, when the adversary adds a

certain amount of corruption at some round, the slower instance observes that

corruption with probability 1/c. Hence, the expected amount of corruption the

learner observes in the slower instance is C · 1
c which is less than 1 in expectation

(as C ≤ c) and less than cS = log(2kT/δ) with high probability (at least 1 − δ).3

This makes the arms behave almost like stochastic arms in the slower instance

despite the potential existence of corruption C via only enlarging the confidence

intervals by cS. The slower instance thus becomes robust to corruption by

randomly sparsifying the corruption it experiences.

Fast-slow active arm elimination race. We obtain our algorithm by combining

this random sparsification idea with enlarging confidence intervals. We have

two instances of active arm elimination which we denote by F (fast) and S

(slow). Each instance keeps, for each arm a and time t an estimate of the mean

µ̃F(a, t) and µ̃S(a, t) corresponding to the average empirical reward of that arm. It

also keeps track of how many times each arm has been pulled in that instance

3The dependence on k and T since we need high-probability guarantees for every arm and at
every time; hence the failure probability needs to allow for a union bound across all bad events.

71

nF(a, t) and nS(a, t). To handle the robustness to different levels of corruption, we

enlarge the confidence intervals similarly to the previous section with cF = 0 and

cS = log(8kT/δ) + 3 respectively. This allows us to define a notion of enlarged

confidence interval in each of the instances as in the previous section with

respective widths wd`(a) =

√
log(8kT/δ)

n`(a) + c`
n`(a) for ` = {F,S}. Also, each instance

keeps a set of eliminated arms for that instance I`.

In each round, with probability 1 − 1/c we make a move in the fast instance:

we choose the next active arm a in its round robin order, i.e., arm a ∈ [k] \ IF

which was played less often, pull this arm and increase nF(a) and update µ̃F(a)

accordingly based on the (potentially) corrupted feedback. As usual, if there are

two active arms a and a′ such that µ̃F(a) − µ̃F(a′) > wdF(a) + wdF(a′) we eliminate

a′ by adding it to IF.

With the remaining probability we make a move in the slow instance by

executing the exact same procedure as described for the other instance. There

is only one difference (which causes the two instances to be coupled): when we

eliminate an arm a in S we also eliminate it in F.

This probabilistic selection of the instance leaves us with a potential problem:

it is possible that all arms in the F instance end up being eliminated. If we reach

that point, we play an arbitrary active arm of the slow instance, i.e., any arm

a ∈ [k] \ IS, without updating anything. Via this, we ensure that, when layer F

failed to find the optimal arm, we select arms that are currently still active in

the more robust slow instance and therefore we can still bound the total regret

each arm causes by the number of rounds it survives in the slower instance.

Crucially we do not update the estimates in this case as we have not subsampled

the corruption in these samples and therefore they are less reliable.

72

The resulting algorithm is formally provided in Algorithm 3; to simplify

notation there, we denote the selected arm as at instead of A(t) and omit the

dependence on t from empirical mean µ̃`(a, t) and number of trials n`(a, t).

Algorithm 3: Fast-Slow Active Arm Elimination

Require: Number of arms k, horizon T , valid upper bound c on corruption.

1: Initialize n`(a) = 0, µ̃`(a) = 0, I` = ∅ for all a ∈ [k] and ` ∈ {F,S}

2: For rounds t = 1, . . . ,T

3: Sample algorithm `: ` = S with probability 1/c. Else ` = F.

4: If [k] \ I` , ∅

5: Play arm at ← arg mina∈[k]\I` n`(a)

6: Update µ̃`(at)← [n`(at) · µ̃`(at) + r̃t
at]/[n`(at) + 1] and n`(at)← n`(at) + 1

7: While exists arms a, a′ ∈ [k] \ I` with µ̃`(a) − µ̃`(a′) > wd`(a) + wd`(a′)

8: Eliminate a′ by adding it to I`

9: If ` = S then eliminate a′ from fast algorithm by adding it to IF

10: Else

11: Play an arbitrary arm in the set [k] \ IS without updating any estimate.

Towards the performance guarantee, Lemma 3.3 bounds the amount of cor-

ruption that actually enters the slow active arm elimination algorithm, which

enables the regret guarantee in Theorem 3.1.

Lemma 3.3. If the total corruption is C ≤ c then the slow active arm elimination

algorithm S observes, with probability at least 1 − δ, corruption of at most

ln(1/δ) + 3 during its exploration phase (when ` = S).

Proof sketch. If one cared just about the expected corruption experienced when

73

` = S, it is at most a constant number since the total corruption is at most C and

it affects S with probability 1/c. To prove a high-probability guarantee we re-

quire a concentration inequality on martingale differences (since the corruptions

can be adaptively selected by the adversary). Since this makes the arguments

notationally heavier, we provide the proof details in Appendix B.2. �

Theorem 3.1. With probability 1 − δ, the fast-slow active arm elimination has

regret O
(∑

a,a?
log(kT/δ)

∆(a)

)
for the stochastic case and O

(
k · c ·

∑
a,a?

(log(kT/δ))2

∆(a)

)
for the

C-corrupted case with C ≤ c.

Proof sketch. The result for the stochastic case follows standard arguments for

stochastic algorithms (since we obtain double the regret of this setting as we run

two such algorithms with essentially the same confidence intervals). For the

C-corrupted case, we establish via Lemma 3.3 an upper bound on the corruption

that will affect the slow active arm elimination algorithm S. Thanks to the sub-

sampling, this upper bound is close to a constant instead of depending on the

upper bound c which allows to not incur dependence on c in the stochastic case.

Having this upper bound, we can utilize Lemma 3.2 to obtain an upper

bound on the number of plays of suboptimal arms in S. Since the algorithms are

coupled, such a bound implies an upper bound on the regret that it can cause in F

as well. This is because in expectation the arm is played at most K ·C times more

in F as it may be selected every single time in F prior to getting eliminated by S

and F is selected c times more often than S. To obtain the above guarantee with

high probability, we lose an extra logarithmic factor. The latter requires upper

bounding with high probability the number of times between two consecutive

times that ` = S. This comes via analyzing the first time that a p-biased coin with

p = 1/c returns heads; the details of the proofs are provided in Appendix B.2. �

74

The general case

Multiple layers of active arm elimination. We previously designed an algo-

rithm with two layers: one is faster but cannot tolerate corruptions and the

second one is slower but more robust. To be agnostic to corruption, we need to

plan for all possible amounts of corruption simultaneously. To achieve this, we

introduce log T layers. Each layer is slower but more robust than the previous

one. We achieve that by selecting the `-th layer with probability 2−`. By the argu-

ment in the last section, if the corruption level is at most C, then each layer with

` ≥ log C will observe O(1) corruption in expectation and at most O(log(kT/δ) cor-

ruption with high probability (probability at least 1−δ). As a result, enlarging the

confidence intervals by a logarithmic amount suffices to make the corresponding

active arm elimination instances behave almost as stochastic.

Global eliminations. We couple the log T instances through what we call

global eliminations. If arm a is eliminated by the `-th layer, then we elimi-

nate a in all layers `′ ≤ `. This is important to prevent us from pulling arm a

too often. If arm a is suboptimal and the adversary is C-corrupted, then arm a

eventually becomes eliminated in the `? = dlog Ce layer after Õ
(
1/∆(a)2

)
plays

in that layer. Since layer `? is selected with probability 2−`
? , it takes Õ

(
C/∆(a)2

)
iterations until arm is eliminated globally, in which case we have total regret at

most Õ(C/∆(a)) from that arm.

Multi-layer active arm elimination race. We now combine these ideas in an

algorithm for the general agnostic case. We call it a race since we view it as

multiple layers racing to pick the optimal arm. The less robust layers are faster

75

so they arrive first and we select (mostly) according to them until more robust

but slower layers correct or confirm the current selection of the best arm.

The algorithm keeps log T different instances of active arm elimination (ex-

tending the two layers of fast-slow active arm elimination). The `-th instance has

as state the empirical means of each arm µ̃`(a), the number n`(a) of times each

arm a was pulled and the set I` of inactive arms. The width of the confidence

interval for arm a in the `-th layer is defined similarly to before as:

wd`(a) =

√
log(4kT · log T/δ)

n`(a)
+

log(4kT · log T/δ) + 3
n`(a)

.

In each round t we sample ` ∈ {1, . . . , log T } with probability 2−` (with the

remaining probability we select layer 1). When layer ` is selected, we make a

move in the active arm elimination instance corresponding to that layer: we

sample the active arm in that layer with the least number of pulls, i.e., arm

a ∈ [k] \ I` minimizing n`(a). In case [k] \ I` is empty, we pull an arbitrary arm

from [k] \ I`
′ for the lowest `′ such that [k] \ I`

′ is non-empty.

To couple different layers, we ensure the following invariant. Once arm a′

is eliminated in layer ` because there is another active arm a in layer ` such

that µ̃`(a) − µ̃`(a′) < wd`(a) + wd`(a′) we eliminate arm a′ in all previous layers,

keeping the invariant that: I1 ⊇ I2 ⊇ I3 ⊇ Figure 3.1 provides an example of

the state of the algorithm, which is formally defined in Algorithm 4. We again

simplify notation there, by using at to denote the selected arm and omitting the

dependence on t from empirical mean µ̃`(a, t) and number of trials n`(a, t).

Subsequently we provide the main result, a regret guarantee for multi-layer

active arm elimination race (Therorem 3.2).

Theorem 3.2. With probability 1 − δ, the multi-layer active arm elimination race

76

µ̃1(1), n1(1) . . .µ̃1(2), n1(2) . . . µ̃1(k), n1(k). . .

arm 1 arm 2 arm k. . .

` = 1

µ̃2(1), n2(1) . . .µ̃2(2), n2(2) . . . µ̃2(k), n2(k). . .

arm 1 arm 2 arm k. . .

` = 2

µ̃3(1), n3(1) . . .µ̃3(2), n3(2) . . . µ̃3(k), n3(k). . .

arm 1 arm 2 arm k. . .

` = 3

µ̃log T (1), nlog T (1) . . .µ̃log T (2), nlog T (2) . . . µ̃log T (k), nlog T (k). . .

arm 1 arm 2 arm k. . .

` = log T

...
...

...
...

Figure 3.1: Example of the state of the algorithm: for each layer ` and arm a
we keep the estimated mean µ̃`(a) and the number of pulls n`(a).
Red cells indicate arms that have been eliminated in that layer.
If an arm is eliminated in a layer, it is eliminated in all previous
layers. If a layer where all the arms are eliminated (like layer 1
in the figure) is selected, we play an arbitrary active arm with
the lowest layer that contains active arms.

has regret in the agnostic C-corrupted case bounded by:

O

∑
a,a∗

k ·C · log(kT/δ) + log(T)
∆(a)

· log(kT/δ)

.
Proof sketch. Similarly to the previous theorem, the final regret guarantee comes

via summing over layers that are essentially stochastic and layers that are not

robust to corruption. All the layers `′ with C ≤ 2`
′ fall into the first category;

similar to Lemma 3.3, with high probability the corruption they experience when

the selected layer ` = `′ is at most c` = log(kT/δ) as this corruption is subsampled.

Each such layer incurs therefore regret of O
(

log(kT/δ)
∆(a)

)
. Since there are at most log(T)

such layers, the second term in the theorem is derived.

The challenge is to bound the regret incurred by layers that are not robust to

the corruption (i.e. 2` < C). However, there exists some layer `? = min ` : C ≤ 2`

that is above the corruption level. By bounding the amount of steps that this level

77

Algorithm 4: Multi-layer Active Arm Elimination Race

Require: Number of arms k, horizon T

1: Initialize n`(a) = 0, µ̃`(a) = 0, I` = ∅ for all a ∈ [K] and ` ∈ {1, . . . , log T }.

2: For Rounds t = 1..T

3: Sample algorithm ` ∈ {1, . . . , log T }with probability 2−`. Else ` = 1.

4: If [K] \ I` , ∅

5: Play arm at ← arg mina∈[K]\I` n`(a)

6: Update µ̃`(at)← [n`(at) · µ̃`(at) + r̃t
at]/[n`(at) + 1] and n`(at)← n`(at) + 1

7: While exists arms a, a′ ∈ [K] \ I` with µ̃`(a) − µ̃`(a′) > wd`(a) + wd`(a′)

8: Eliminate a′ by adding it to I`′ for all `′ ≤ `

9: Else

10: Find minimum `′ such that [K] \ I`
′

, ∅; play arbitrary arm in that set

without updating any estimate.

will require in order to eliminate each suboptimal arm a , a? in the incorrect

layers (via Lemma 3.2), we again obtain a bound on the regret caused by this

arm in those layers. Since we take the minimum such layer and the tolerance

of layers is within powers of 2, the fact that its corruption level does not match

exactly the corruption that occurred only costs an extra factor of 2 in the regret.

The details of the proof are provided in Appendix B.3. �

3.6 Remarks

More information about the paper. The results presented in this chapter are

joint work with Vahab Mirrokni and Renato Paes Leme [92]. So far, we discussed

78

the results with respect to the uncorrupted objective (where we earn the un-

corrupted rewards while observing the corrupted feedback). As we said, this

captures settings where there exists some fraudulent activity that does not count

towards the utility gained by the system, e.g. social welfare objective in online

advertising with click fraud or recommender systems with fake reviews. Our

results extend to the case where we also earn the corrupted rewards since the two

objectives are within C of each other and we anyway have a linear degradation

on C. This captures settings such as the revenue objective in click fraud (the

platform gets the revenue even if it comes from undetected corrupted activity) or

cases where the corruption is not malevolent but actually affects the experience in

a non-i.i.d. manner (e.g. a construction next door affects a restaurant experience

without having to do with the inherent quality of the restaurant).

Although for the uncorrupted objective, the linear degradation on C is unim-

provable as we discussed in Section 3.2, for the corrupted objective the situation

is less straightforward. For the notion of pseudoregret, we provide an improved

dependence for some regimes of C (in fact, follow-up work can obtain an optimal

dependence of
√

C through the technique of Wei and Luo [127]; personal commu-

nication with the authors). On the other hand, for high-probability guarantees we

show a lower bound showing that any algorithm that is optimal in the stochastic

case (as the fast-slow active arm elimination) needs to degrade linearly with

corruption even for the simpler setting where the input is either stochastic or

C-corrupted case with a known level C. Understanding, whether an improved

dependence on C can also be achieved with high probability at the expense of

some logarithmic degradation in the stochastic case is an exciting open direction.

79

Related work regarding corruptions. Our work is one of the first trying to

understand the effect of corruptions in stochastic bandit learning.

Prior to our work, there have been two such attempts. One direction is the

best of both worlds [34, 120, 14, 119] which aims to provide a single algorithm

achieving simultaneously the stochastic guarantee when the input is stochastic

and the worst-case guarantee when it is adversarial. However, most of these

works provide no handling for scenaria that are in between, which is the more

common case. In fact, one of this works [120] has extended the guarantees to the

mildly contaminated case where the input can be corrupted but the corruption

cannot ever significantly alter the performance of different arms; in particular,

the empirical gap between a? and any other a can decrease by at most a factor

of 2. This assumption does not hold in the main motivating applications such

as click fraud where the adversary may completely corrupt the best arm in the

initial rounds. Another approach aimed to add some stochastic corruptions to

the feedback received to make bandit learning differentially private [56]; this is

orthogonal to our main motivation where the corruptions are adversarial.

From the follow-up work, the most directly related is the one of Gupta et

al. [61] who improve the guarantee presented in this chapter by decomposing

the dependence on kC from the dependence on the gaps. This is done via a

randomized scheme which works in phases and uses only samples from the

previous phase at any time to limit the effect that any particular sample can have

to the future. This plays a similar role to our multi-layer construction.

80

CHAPTER 4

ONLINE ALGORITHMS WITH PREDICTIONS

In scenaria where the algorithmic decisions alter the state of the system, the

online learning framework is not directly applicable. For example, in bipartite

matching, when an element is matched to a user, it becomes unavailable for

future users. As a result, the notion of best fixed action in hindsight (of the regret

benchmark) is ill-defined as there one cannot match this item multiple times.

To deal with this state-dependent decision-making, a better approach is to

compare with the ex-post optimal solution (i.e. a benchmark that has the benefit

of hindsight and makes decisions with full knowledge of the future). This is

the classical benchmark that is mostly used in competitive analysis approaches,

which is the prominent approach in the theoretical computer science literature.

Note that it is a much stronger benchmark than the regret benchmark as it

compares to the true ex-post optimal solution. Not surprisingly, it tends to utilize

more structure in the underlying settings and does not allow the costs to change

arbitrarily as in adversarial online learning discussed in Chapter 2.

One nice property of competitive analysis techniques is that they target

worst-case instances without imposing distributional assumptions on the input.

However, this property is often a pitfall of the method as the resulting algorithms

tend to be overly cautious and, as a result, often cannot escape from the worst-

case guarantees even when the input is nicely behaved. In the previous two

chapters, we showed how to adapt online learning techniques to obtain improved

performance when a the input has a nice structure in a way that is robust to

the structure not holding. It is natural therefore to wonder whether something

similar can be achieved for competitive analysis techniques.

81

In this chapter, we provide a way to enhance the performance of competitive

analysis techniques when we have a particular well-behavedness in our input.

In particular, we assume that we have access to a machine learned predictor

(potentially erroneous). We assume that this predictor, when accurate, offers

enough information to achieve offline optimality, i.e. the performance of the

benchmark. Augmented with this predictor, we show how we can use this

predictive power to enhance the performance when the predictor is relatively

accurate, without sacrificing the worst-case robustness of the employed method.

4.1 Preliminaries on caching and competitive analysis

The caching problem. The caching (or online paging) problem considers a

system with two levels of memory: a slow memory of size m and a fast memory

of size k, which we refer to as cache. A caching algorithm is faced with a sequence

of requests for elements. If the requested element is in the fast memory, a cache

hit occurs and the algorithm can satisfy the request at no cost. If the requested

item is not in the fast memory, a cache miss occurs, the algorithm fetches the item

from the slow memory, and places it in the fast memory before satisfying the

request. If the fast memory is full, then one of the items must be evicted. The

eviction strategy forms the core of the problem. The goal is to find an eviction

policy that results in the fewest number of cache misses.

Competitive analysis To obtain worst-case guarantees for an online algorithm

(that must make decisions as each element arrives), we compare its performance

to that of an offline optimum (that has the benefit of hindsight). Let σ be the

82

input sequence of elements for a particular online decision making problem,

costA(σ) be the cost incurred by an online algorithmA on this input, and OPT(σ)

be the cost incurred by the optimal offline algorithm. Then algorithm A has

competitive ratio CR if for all sequences σ, costA(σ) ≤ CR · OPT(σ).

For the caching problem, the optimal offline algorithm at time t evicts the

element from the cache that will arrive the furthest in the future; this is typically

referred in the literature as Bélády’s optimal replacement paging algorithm [22].

On the other hand, without the benefit of foresight, any deterministic caching

algorithm achieves a competitive ratio of Ω(k), and any randomized caching

algorithm achieves a competitive ratio of Ω(log k) (see [100] for a nice exposition).

4.2 Caching augmented with a machine learned predictor

Online with Machine Learned Advice. Before focusing on how to enhance

caching with a machine learned predictor, we specify a general framework to

incorporate predictors in online algorithms. We term this framework Online with

Machine Learned Advice or OMLA for a shortcut.

We first specify the input and the predictions made by the machine learned

predictor h ∈ H from a classH . The online input consists of a set of elementsZ.

For a specific input σ, its elements are denoted by z(σ1), z(σ2), . . . and its length

by |σ|. Formalizing the machine learning task, we assume a feature space X and

a label spaceY. The i-th element z(σi) has features x(σi) ∈ X and a label y(σi) ∈ Y

that represents ground truth. For any element i, the predictor returns a predicted

label h(x(σi)). To ease notation we will also denote this by h(σi). We instantiate

this framework to caching in the end of this section. To ease presentation, we

83

assume that the mapping from features to labels is deterministic; our results

extend to randomized mappings by applications of Jensen’s inequality.

To measure the performance of the predictor h, we first define a loss function

` : Y × Y → R≥0. When the labels lie in a metric space, some examples of loss

functions include absolute loss `1(y, ŷ) = |y− ŷ|, squared loss `2(y, ŷ) = (y− ŷ)2, and

classification loss `c(y, ŷ) = 1y,ŷ. In defining the framework, we are not concerned

with the semantics of the labels, i.e. what is the quantity that h is predicting or

how it was trained – we are only interested in its performance. The error of the

predictor h on a sequence σ with respect to loss function ` is therefore:

η`(h, σ) =
∑

i

`(y(σi), h(σi)).

Instantiated with the absolute loss function for the caching problem, the error of

the predictor is η`1(h, σ) =
∑

i |y(σi) − h(σi)|. We use η1(h, σ) as shorthand for this.

Definition 4.1. The Online with Machine Learned Advice (OMLA) model includes:

• An input σ = {z(σ1), z(σ2), . . . , z(σ|σ|); each z(σi) ∈ Z has features x(σi) ∈ X and

labels y(σi) ∈ Y.

• A predictor h : X → Y that predicts a label h(σi) for each x(σi) ∈ X.

• The error of predictor h at sequence σ w.r.t. loss `, i.e., η`(h, σ).

Our goal is to create online algorithms that, when augmented with a predictor

h, can use its advice to achieve an improved competitive ratio. To evaluate how

well an algorithmA performs with respect to this task, we extend the definition

of competitive ratio to be a function of the predictor’s error. We first define the

set of predictors that are sufficiently accurate.

84

Definition 4.2. For a fixed optimization problem Π, let OPTΠ(σ) denote the value of

the optimal solution on the input σ. We say that a predictor h is ε-accurate with respect

to a loss function ` for problem Π if for any σ,

η`(h, σ) ≤ ε · OPTΠ(σ).

We will useH`(ε) to denote the class of ε-accurate predictors, omitting the quantifier on

Π for notational clarity.

At first glance, it may appear unnatural to tie the error of the prediction to

the value of the optimal solution. However, our goal is to have a definition that

is invariant to simple padding arguments. For instance, consider a sequence

σ′ = σσ, which concatenates two copies of an instance σ, and assume that the

predictor makes the same (relative) predictions within each instance σ. It is

clear that the prediction error of any predictor doubles, but this is not due to the

predictor suddenly being worse. One could instead normalize the prediction

error by the length of the sequence, but in many problems, including caching,

one can artificially increase the length of the sequence without impacting the

value of the optimum solution, or the impact of predictions. Instead, normalizing

by the value of the optimum captures both of these problems.

Call an algorithmA ε-assisted if it has access to an ε-accurate predictor. The

competitive ratio of an ε-assisted algorithm is itself a function of ε.

Definition 4.3. Let CRA(h)(σ) be the competitive ratio of algorithm A, which uses a

ε-accurate predictor h with respect to a loss function `, when applied on sequence σ. The

competitive ratio of an ε-assisted algorithmA is:

CRA,`(ε) = max
σ,h∈H`(ε)

CRA(h)(σ).

85

We are now ready to define the desiderata that we wish our algorithm to

satisfy. In particular, we would like our algorithm to perform as well as the

offline optimum when the predictor is perfect, degrade gracefully with the error

of the predictor, and perform as well as the best online algorithm regardless of

the error of the predictor. More formally:

Definition 4.4. Ah is β-consistent if CRA,`(0) = β.

Definition 4.5. A is α-robust for a function α(·), if CRA,`(ε) = O(α(ε)).

Definition 4.6. A is γ-competitive if CRA,`(ε) ≤ γ for all values of ε.

Our goal is to find algorithms that simultaneously optimize aforementioned

three properties. They are ideally 1-consistent, recovering the optimal solution

when the predictor is perfect. They are α(·)-robust for a slow growing function

α, ideally in the smaller possible rate – these algorithms can seamlessly handle

errors in the predictor. Finally, they are also worst-case competitive and, even if

the predictor completely fails, they perform as well as the best online algorithms

without getting hurt by the predictor’s inaccuracies.

Instantiating the framework to caching. To instantiate the framework for the

caching problem, we need to define the oracle, the label space of the predic-

tions, and their semantics. The element space Z corresponds to the universe

of elements that may be requested. The input sequence σ = σ1, σ2, . . . , σn de-

termines the actual sequence of elements that are requested (fixed in advance

and oblivious to the choices of the algorithm but unknown to it). Each element

z(σi) ∈ Z has corresponding features x(σi) . These can encapsulate everything

that is known about z(σi) at the time i, for example, the times this element arrived

86

in the past. The exact choice of X is orthogonal to our setting, though of course

richer features typically lead to smaller errors.

One of the design choices when adding ML advice to the problem is the ques-

tion of what to predict. For caching problems, a natural candidate is predicting

the next time a particular element is going to appear. When such predictions

are perfect, the online algorithm can recover the best offline optimum [22]. For-

mally, the label space Y is a set of positions in the sequence, Y = N+. Given a

sequence σ, y(σi) = mint>i{τ : x(σt) = x(σi)}. If the element is never seen again, we

set y(σi) = n + 1. Note that y(σi) is completely determined by sequence σ. We use

h(σi) to denote the outcome of the prediction on an element with features x(σi).

4.3 Blindly following the predictor is insufficient

Before describing our algorithm, we show that combining the predictions with

ideas from competitive analysis is to a large extent essential; blindly evicting the

element that is predicted the furthest in the future by the predictor or simple

modifications of this idea can result to poor performance both with respect to

robustness and competitiveness.

Evicting element predicted the furthest in the future. An immediate way to

use the predictor is to treat its output as truth and optimize based on the whole

predicted sequence. This corresponds to the Bélády rule that evicts the element

predicted to appear the furthest in the future. We refer to this algorithm as algo-

rithm B (as it follows the Bélády rule). Since this rule achieves offline optimality,

this approach achieves the consistency desideratum, i.e. if the predictor is perfect,

87

this algorithm is ex-post optimal. Unfortunately this approach does not have

similarly nice performance with respect to the other two desiderata. With respect

to robustness, the degradation with the average error of the predictor is far from

the best possible, while a completely unreliable predictor leads to unbounded

competitive ratios, far from the ones of the best online algorithm.

Theorem 4.1. The competitive ratio of ε-assisted algorithm B is CRB,`1(ε) = Ω(ε).

This means that when the error of the predictor is much worse than the offline

optimum, the competitive ratio becomes unbounded. With respect to robustness,

the rate of decay is far from optimal as we will see in Section 4.4.

Proof of Theorem 4.1. We show that for every ε, there exist a sequence σ and a

predictor h such that the absolute error η1(h, σ) ≤ ε · OPT while the competitive

ratio of algorithm B is (ε − 1)/2. For ease of presentation, assume that ε > 3.

Consider a cache of size k = 2 and three elements a, b, c; the initial config-

uration of cache is a, c. The sequence consists of repetitions of the following

sequence with ε − 1 requests. The actual sequence will be abcbcbc . . . (a appears

once and then b and c appear alternately for (ε − 1)/2 times).

In any repetition, the predictor accurately predicts the arrival time of all

elements apart from two: i) when element a arrives, it predicts it to arrive again

in the next step (instead of in the first step of the next repetition) and ii) when

b arrives for the last time in one repetition, it predicts it to arrive again in the

fourth position of the next repetition (instead of the second). As a result, the

absolute error of the predictor is ε (ε − 2 error in the a-misprediction and 2 error

in the b-misprediction).

88

The optimal solution has two mistakes per repetition (one to bring a in the

cache and one to directly evict it afterwards). Instead, the algorithm never

evicts a as it is predicted to arrive much earlier than the other, and therefore has

ε − 1 cache misses. This means that the competitive ratio of this algorithm is

Ω(η1(h, σ)/OPT(σ)) which completes the proof. �

Evicting elements with proven wrong predictions. The problem in the above

algorithm is that algorithm B keeps too much faith in predictions that have been

already proven to be wrong (as the corresponding elements are predicted to

arrive in the past). It is tempting to ”fix” the issue by evicting any element whose

predicted time has passed, and evict again the element predicted the furthest

in the future if no such element exists. We call this algorithmW as it takes care

of wrong predictions. Formally, let h(j, t) denote the last prediction about z j at

or prior to time t. At time t algorithmW evicts an arbitrary item from the set

S t = { j : h(j, t) < t} if S t , ∅ and arg maxzi∈Cache(t) h(i, t) otherwise. We show that

algorithmW has similarly bad performance guarantees.

Theorem 4.2. The competitive ratio of ε-assisted algorithmW is CRW,`1(ε) = Ω(ε).

Proof. Consider a cache of size k = 3 and four elements a, b, c, d; the initial

configuration of cache is a, b, c and then d arrives. The actual sequence consists

of repetitions of the following sequence with (ε/2) + 1 requests (for ease of

presentation, assume that ε > 6). The actual sequence is dabcabc . . . and is

denoted by σ.

In any repetition, the predictor h accurately predicts the arrival time of ele-

ment d but always makes mistake in elements a, b, c by predicting them to arrive

89

two time steps earlier. As a result, the absolute error of the predictor is ε (error of

2 for any of the appearances of a, b, c).

The optimal solution has two mistakes per repetition (one to bring element

d and one to evict it afterwards). Instead the algorithm always evicts elements

a, b, c because they are predicted earlier than their actual arrival and are therefore

evicted as ”wrong” predictions. This means that the competitive ratio of this

algorithm is also Ω(η1(h, σ)/OPT(σ)) which completes the proof. �

Beyond blindly trusting the predictor. The common problem in both exam-

ples is that there is an element that should be removed but the algorithm is tricked

into keeping it in the cache. To deal with this in practice, popular heuristics such

as LRU (Least Recently Used) and FIFO (First In First Out) avoid evicting recent

elements when some elements have been dormant for a long time. This tends

to utilize nice locality properties leading to strong empirical performance (es-

pecially for LRU and its variant, LRU-2). However, such heuristics impose a

strict eviction policy which leads to weak performance guarantees. Moreover,

incorporating the information provided by the predictor becomes complicated.

Competitive analysis has also built on the idea of evicting dormant elements

via developing algorithms with stronger theoretical guarantees such as Marker.

In Section 4.4, we show how to incorporate predictions in the Marker algorithm to

enhance its performance when the predictions are good while retaining the worst-

case guarantees. Interestingly, via our framework, we can provide improved

guarantees for the aforementioned heuristics such as LRU, improving their worst-

case guarantees while retaining their practical performance (see Section 4.5).

90

4.4 Main result: Predictive Marker algorithm

We now present our main technical contribution, a prediction-based adaptation

of the Marker algorithm [52]. This ε-assisted algorithm gets a competitive ratio

of 2 ·min(O(
√
ε, 2Hk) where Hk = 1 + 1

2 + · · ·+ 1
k denotes the k-th Harmonic number.

Classic Marker algorithm. We begin by recalling the Marker algorithm and

the analysis of its performance. The algorithm runs in phases. At the beginning

of each phase, all elements are unmarked. When an element arrives and is

already in the cache, the element is marked. If it is not in the cache, a random

unmarked element is evicted, the newly arrived element is placed in the cache

and is marked. Once all elements are marked and a new cache miss occurs, the

phase ends and we unmark all of the elements.

For the purposes of analysis, an element is called clean in phase r if it appears

during phase r, but does not appear during phase r − 1. In contrast, elements

that also appeared in the previous phase are called stale. The marker algorithm

has competitive ratio of 2Hk − 1 and the analysis is tight [1]. We use a slightly

simpler analysis that achieves competitive ratio of 2Hk below. The crux of the

upper bound lies in two claims. The first relates the performance of the optimal

offline algorithm to the total number of clean elements Q across all phases.

Claim 4.1 ([52]). Let Q be the number of clean elements. Then the optimal

algorithm suffers at least Q/2 cache misses.

The second comes from bounding the performance of the algorithm as a

function of the number of clean elements.

91

Claim 4.2 ([52]). Let Q be the number of clean elements. Then the expected

number of cache misses of the marker algorithm is Q · Hk.

Predictive Marker. The algorithm of [52] is part of a larger family of marking

algorithms, which never evict marked elements when there are unmarked ele-

ments present. Any algorithm in this family has a worst case competitive ratio of

k. Therefore pairing predictions with a marking style algorithm would avoid the

pathological examples we saw previously.

A natural approach is to use predictions for tie-breaking, specifically evicting

the element whose predicted next appearance time is furthest in the future. When

the predictor is perfect (and has zero error), the stale elements never result in

cache misses, and therefore, by Claim 4.1, the algorithm has a competitive ratio

of 2. On the other hand, by using the Marker algorithm and not blindly trusting

the oracle, we can guarantee a worst-case competitive ratio of k.

We extend this direction to further reduce the worst-case competitive ratio to

O(Hk). To achieve this, we combine the prediction-based tie-breaking rule with

the random tie-breaking rule. Suppose an element e is evicted during the phase.

We construct a blame graph to understand the reason why e is evicted. There are

two cases: either it was evicted when a clean element c arrived, then we add a

directed edge from e to c. Alternatively, it was evicted because a stale element s

arrived, but s was previously evicted. In this case, we add a directed edge from e

to s. Note that the graph is always a set of chains (paths). The total length of the

chains represents the total number of evictions incurred by the algorithm during

the phase, whereas the number of distinct chains represents the number of clean

elements. We call the lead element in every chain representative and denote it by

92

ω(r, c), where r is the index of the phase and c the index of the chain in the phase.

Our modification is simple – when a stale element arrives, it evicts a new

element in a prediction-based manner if the chain containing it has length less

than Hk. Otherwise it evicts a random unmarked element. (Looking ahead to

the analysis, this switch to uniform evictions results in at most Hk additional

elements added to any chain during the course of the phase. This guarantees

that the competitive ratio is at most O(Hk) in expectation; we make the argument

formal in Theorem 4.3. The key to the analysis is the fact that the chains are

disjoint, thus the interactions between evictions can be decomposed cleanly. We

give a formal version of the algorithm in Algorithm 5. For simplicity, we drop

dependence on σ from the notation.

Analysis. To analyze the performance of the proposed algorithm, we begin

with a technical definition that captures how slowly a loss function ` can grow.

Definition 4.7. Let AT = a1, a2, . . . , aT , be a sequence of increasing integers of length

T , that is a1 < a2 < . . . < aT , and BT = b1, b2, . . . , bT a sequence of non-increasing

reals of length T , b1 ≤ b2 ≤ . . . ≤ bT . For a fixed loss function `, we define its spread

S ` : N+ → R+ as:

S `(m) = min{T : min
AT ,BT

`(AT , BT) ≥ m}

The following Lemma instantiates the spread metric for loss metrics we

consider and is proved in the Appendix C.

Lemma 4.1. For absolute loss, `1(A, B) =
∑

i |ai − bi|, the spread of `1 is S `1(m) ≤
√

5m. For squared loss, `2(A, B) =
∑

i(ai − bi)2, the spread of `2 is S `2(m) ≤ 3√14m.

We now prove the main theorem of this chapter.

93

Algorithm 5: Predictive Marker

Require: Cache C of size k initially empty (C ← ∅).

1: Initialize phase r ← 1, unmark all elements (M← ∅), and set round i← 1.

2: Initialize clean element counter qr ← 0 and tracking set S ← ∅.

3: Element zi arrives, receive prediction hi, and save prediction p(zi)← hi.

4: if zi results in cache hit or the cache is not full (zi ∈ C or |C| < k)

5: Add to cache C ← C ∪ {zi} without evicting any element and go to step 22

6: if the cache is full and all cache elements are marked (|M| = k)

7: Increase phase (r ← r + 1), initialize clean counter (qr ← 0)

8: Save current cache (C → S) as set of elements possibly stale in new phase

9: Unmark elements (M← ∅).

10: if zi is a clean element (zi < S)

11: Increase number of clean elements: qr ← qr + 1.

12: Initialize size of new clean chain: n(r, qr)← 1.

13: Evict unmarked element with highest prediction: e = arg maxz∈C−M p(z).

14: if zi is a stale element (zi ∈ S)

15: It is the representative of some clean chain, let c be this chain: zi = ω(r, c).

16: Increase length of the clean chain n(r, c)← n(r, c) + 1.

17: if n(r, c) ≤ Hk

18: Evict unmarked element with highest prediction: e = arg maxz∈C−M p(z).

19: else Evict a random unmarked element e ∈ C −M.

20: Update cache by evicting e: C ← C ∪ {zi} − {e}.

21: Set e as representative for the chain: ω(r, c)← e.

22: Mark new element (M←M∪ {zi}), increase round (i← i + 1), go to step 3.

94

Theorem 4.3. Let a loss function ` with spread bounded by S `. If S ` is concave,

the competitive ratio of ε-assisted Predictive Marker PM is bounded by:

CRPM,`(ε) ≤ 2 ·min (1 + 2S ` (ε) , 2Hk) .

To prove this theorem, we first introduce an analogue of Claim 4.2, which

decomposes the total cost into that incurred by each of the chains individually.

To aid in our analysis, we consider the following marking algorithm, which

we call SM (Special Marking). Initially we simply evict an arbitrary unmarked

element. At some point, the adversary designates an arbitrary element not

in the cache as special. For the rest of the phase, upon a cache miss, if the

arriving element is special, the algorithm evicts a random unmarked element and

designates the evicted element as special. If the arriving element is not special,

the algorithm proceeds as before, evicting an arbitrary unmarked element.

Lemma 4.2. Using algorithm SM, in expectation at most Hk special elements

cause cache misses per phase.

Proof. Consider the unmarked elements in the cache that never reappear during

the phase. If one of these is designated special, it will not cause another cache

miss before the end of the phase. We turn our analysis to elements that will

re-appear during the phase.

Let A denote the subset of these elements that may become special; this set

dynamically shrinks over time as elements appear and become marked. At the

time the first special element causes a cache miss, these are the elements that are

not already marked in the cache that will reappear during the phase, as well as

those outside the cache that will appear before the end of the phase. Order the

95

elements in A in decreasing order of their first arrival time. Observe that at the

outset A contains at most k − 1 elements.

For any i ∈ {1, . . . , k − 1}, we define Ei as the event that an element becomes

special when it is the i-th element in the active ordering. Our goal is to show that:

Pr[Ei] ≤
1

i + 1
. (4.1)

A key to the analysis is the fact that once event Ei occurs, only elements

arriving even later (i.e. those with lower index in the active set) can become

special. Therefore, given Equation (4.1), we can bound the expected number of

misses caused by special elements as:

1 +

k−1∑
i=1

1
i + 1

= Hk,

where the first term is due to the first special element arriving, the the second

term is due to the events E1 through Ek−1.

Consider the last time an element becomes special while there are more than

i elements in the active ordering; let ω be the special element. As we argued

above, until this point Ei could not have occurred.

Now consider the time that ω re-appears. If there are exactly i elements in

the active set, the probability that Ei occurs is bounded by 1
i+1 . We may have

selected either one of the first i active elements, or an element in the cache that

never appears before the end of the phase (at least one such element must exist,

otherwise there are no cache misses during the phase). If there are fewer than i

elements, the probability of Ei occurring is 0. �

We now provide the lemma that lies in the heart of our robustness property.

96

Lemma 4.3. For any loss metric `, any phase r, the expected length of any chain

is at most 1 + S`(ηr,c) where ηr,c is the cumulative error of the predictor on the

elements in the chain and S` is the spread of the loss metric.

Proof. The clean element that initiates the clean chain evicts one of the unmarked

elements upon arrival. Since it does so based on the Belady rule, it evicts the

element s1 that is predicted to reappear the latest in the future. If the predictor

is perfect, this element will never appear in this phase. If, on the other hand, s1

comes back (is a stale element) let s2 be the element it evicts, which is predicted

to arrive the furthest among the current unmarked elements.

Suppose there are m such evictions: s1, s2, . . . , sm. The elements were predicted

to arrive in reverse order of their evictions. This is because elements s j for j > i

were unmarked and in the cache when element si got evicted; therefore si was

predicted to arrive later. However, the actual arrival order is the reverse. If

ηr,c is the total error of these elements, setting the actual arriving times as the

sequence AT and the predicted ones as the sequence BT in the definition of spread

(Definition 4.7), it means that m ≤ S `(ηr,c). �

Combining the two above lemmas, we can obtain a bound on the expected

length of any chain.

Lemma 4.4. For any loss metric `, any phase r, the expected length of any chain is

at most min(1 + 2S`(ηr,c), 2 log k) where ηr,c is the cumulative error of the predictor

on the elements in the chain and S` is the spread of the loss metric.

Proof. The proof follows from combining the two above lemmas. By Lemma 4.2,

if the chain switches to random evictions, it incurs another Hk cache misses in

97

expectation after the switch point (and its length increases by the same amount),

capping the total length by 2Hk ≤ 2 log k. If the chain does not switch to random

evictions, it has Belady evictions and, by Lemma 4.3, it incurs at most S`(ηr,c)

misses from stale elements. �

Proof of Theorem 4.3. Fix an arbitrary sequence of arrivals. Let Q be the number

of clean elements (and therefore also chains). Any cache miss corresponds to

a particular eviction in one clean chain; there are no cache misses not charged

to a chain by construction. By Lemma 4.4, we can bound the evictions from

clean chain c of the r-th phase by min(1 + 2 · S `(ηr,c), 2 log k). Since both S ` and the

minimum operator are concave functions, the way to maximize the length of

chains is to apportion the total error, η, equally across all of the chains. Thus for

a given error η and number Q of clean chains, the competitive ratio is maximized

when the error in each chain is ηr,c = η/Q each. The total number of stale elements

is then: Q ·min(2 · S `(η/Q), 2Hk). By Claim 4.1, Q
2 ≤ OPT(σ), implying the result

since OPT ≤ Q. �

We now specialize the results for the absolute and squared losses.

Corollary 4.1. The competitive ratio of ε-assisted Predictive Marker with respect

to the absolute loss metric `1 is bounded by CRPM,`1(ε) ≤ min
(
2 + 2 ·

√
5ε, 4Hk

)
.

Corollary 4.2. The competitive ratio of ε-assisted Predictive Marker with respect

to the absolute loss metric `2 is bounded by CRPM,`1(ε) ≤ min
(
2 + 2 · 3√14ε, 4Hk

)
.

On the robustness rate of Predictive Marker. We show that our analysis is

tight: any marking algorithm that uses the predictor in a deterministic way

cannot achieve an improved guarantee with respect to robustness.

98

Theorem 4.4. Any deterministic ε-assisted marking algorithmA, that only uses

the predictor in tie-breaking among unmarked elements in a deterministic fash-

ion, has a competitive ratio worse than CRA,`(ε) = Ω(S `(ε)) for all ε < k2.

Proof. Consider a cache of size k with k+1 elements. We will construct an instance

that exhibits the above lower bound. SinceA uses marking, we can decompose

its analysis into phases. Let σ be the request sequence, and assume that we do

not have any repetition of an item inside the phase; as a result the i-th element of

phase r corresponds to element σ(r−1)k+i.

Suppose the predictor is always accurate on elements 2 through k−S `(ε)+1 in

each phase. For the last S `(ε)−1 elements of phase r as well as the first element of

the of the next phase, the elements are predicted to come again at the beginning

of the subsequent phase, at time t = rk + 1. Since the algorithm is deterministic,

we order the elements so that their evictions are in reverse order of their arriving

time. By the definition of spread, the error of the predictor in these elements is

exactly ε and the algorithm incurs a cache miss for each. On the other hand, the

offline optimum has only 1 miss per phase, which concludes the proof. �

Theorem 4.4 establishes that the analysis of Predictive Marker is tight with

respect to the rate of robustness, and suggests that algorithms that use the

predictor in a deterministic manner may suffer from similar rates. However, a

natural question that comes up is whether a better rate can be achieved using

by a randomized marking algorithm better utilizing the predictor. Note that our

algorithm uses randomization only once a competitive ratio of log k is already

incurred. We conjecture that a rate of log(1 +
√
ε) with respect to the absolute loss

is possible, similar to the exponential improvement randomized schemes obtain

99

over the deterministic guarantees of k with respect to worst-case competitiveness.

4.5 Practical traits of the algorithm

In this section, we discuss some traits that make the algorithm more practical.

In particular, we prove that our algorithm makes the errors of the predictor

only have local negative effect and prevent them from propagating further.

Subsequently, we show that common heuristic approaches, such as LRU, can be

used as predictors in our framework. This allows us to combine their predictive

power with robust guarantees when they fail.

Locality. The guarantee in Theorem 4.3 bounds the competitive ratio as a

function of the quality of the prediction. One potential concern is that if the

predictions have of a small number of very large errors, then the applicability of

Predictive Marker may be quite limited.

Here we show that this is not the case. Due to the phase-based nature of

the analysis, the algorithm essentially “resets” at the end of every phase, and

therefore the errors incurred one phase do not carry over to the next. Moreover,

the competitive ratio in every phase is bounded by O(Hk).

Formally, for any sequence σ, we can define phases that consist of exactly

k distinct elements. Let CL(r, σ) be the number of clean elements in phase r of

sequence σ, and let η`,r(h, σ) denote the error of predictor h restricted only to

elements occurring in phase r.

Theorem 4.5. Consider a loss function ` with spread S `. If S ` is concave, the

100

competitive ratio of Predictive Marker PM at sequence σ when assisted by a

predictor h is at most:

CRPM,` ≤

∑
r CL(r, σ) ·min

(
1 + 2S `(η`,r(h, σ), 2Hk

)∑
r CL(r, σ)

Proof. The proof follows directly from Lemma 4.4 and applying Jensen’s inequal-

ity only within the chains of the phase (instead of also across phases as we did in

Theorem 4.3). �

This theorem illustrates a very nice property of our algorithm. If the predictor

h is really bad for a particular chunk of time (has big locality in its errors) then

the clean chains of the corresponding badly predicted phases will contribute

the second term (the logarithmic worst-case guarantee) but the other phases

will provide enhanced performance utilizing the predictor’s advice. In this way,

the algorithm adapts to the quality of the predictions, and bad errors do not

propagate beyond the end of a phase. This quality is useful in caching where most

patterns are generally well predicted but there are few unforeseen sequences.

Robustifying LRU. Another practical property of our algorithm is that it can

seamlessly incorporate heuristics known to perform well in practice. In particular,

the popular Least Recently Used (LRU) algorithm can be expressed within the

Predictive Marker framework. Consider the following predictor h: when an

element σi arrives at time i, h predicts next arrival time h(σi) = −i.1

Note that, by doing so, at any point of time, among the elements that are in

the cache, the element predicted the furthest in the future is exactly the one that

1If we prefer positive numbers in the predictions, we can select h(σi) = T − i where T is the
number of requests.

101

has appeared the least recently. Also note that any marked element needs to have

arrived later than any unmarked element. As a result, if we never switched to

random evictions (or had k in the RHS of line 17 in Algorithm 5), the Predictive

Marker algorithm assisted with the LRU predictor is exactly the LRU algorithm.

The nice thing that comes from this observation is that we can robustify the

analysis of LRU. LRU, and its variants like LRU(2), tend to have very good

empirical performance as using the recency of requests is a good predictor about

how future requests will arise. However, the worst-case guarantee of LRU is

unfortunately of the order of k since it is after all a deterministic algorithm. By

expressing LRU as a predictor in the Predictive Marker framework and using

a switching point of Hk for each clean chain, we exploit most of this predictive

power while also guaranteeing a logarithmic worst-case bound on it.

4.6 Remarks

More information about the paper. The results presented in this chapter are

joint work with Sergei Vassilvitskii [95]. In the paper, we also discuss further how

to trade off worst-case competitiveness for enhanced robustness by adapting

the switching threshold. Moreover, we show a general construction that can

combine an algorithm that is robust with one that is worst-case competitive

via multiple restarts of the algorithm. Although this construction is not very

practical, it suggests that the biggest bottleneck in designing algorithms with

our aforementioned desiderata lies in deriving algorithms that are robust, i.e.

gracefully degrade with the error of the predictor. Finally, we show that our

algorithm has good empirical performance, outperforming both LRU and Marker

102

even without any modification in very simple datasets.

More generally on online algorithms with predictions. Our work has initi-

ated a line of work that studies the design of online algorithms that are aided

with a machine learned predictor and want to obtain improved guarantees when

the prediction is accurate while being robust to imperfections. Follow-up works

focus on dealing with such imperfections in predictions in online settings such

as ski rental or job scheduling by Purohit et al. [107] and Mitzenmacher [99].

Beyond online algorithms, there have been a few works nicely injecting pre-

dictions in decision-making tasks. Medina and Vassilvitskii [97] show how to

use such predictions in revenue optimization. Kraska et al. [84] demonstrate em-

pirically that introducing machine learned components to classical algorithms (in

their case index lookups) can result in significant speed and storage gains. Finally,

Rakhlin and Sridharan [110] show how to enhance online learning guarantees

when the losses can be predicted in a relatively accurate way.

103

CHAPTER 5

DYNAMIC PRICING IN RIDESHARING

Another place where state becomes important is ridesharing. When Uber or Lyft

match a particular driver to a customer, the driver moves with the customer to

her desired destination. This changes the underlying state of the system and

may create an undesired spatial mismatch between supply (drivers) and demand

(customers). To deal with this mismatch, the platforms have at their disposal

some control levers such as pricing that can help them modulate the process.

Classical competitive analysis paradigms can apply in the above scenario but

often disregard crucial complexities that are first-order effects in these systems.

One such paradigm is the k-server problem (it extends the caching problem

which we discussed in the previous chapter). There, requests arrive in different

locations and the platform needs to send servers to deal with them aiming to

minimize the aggregate delay. This captures the spatial component of ridesharing

systems but optimizes a largely irrelevant objective: platforms typically do not

aim to serve all users under high stress. Instead they care about objectives such

as throughput (how many customers got served), social welfare (how much

value their service created to society), or revenue (how much money the platform

gained). Another classical competitive analysis paradigm is bipartite matching

which also captures an important effect: matching a customer to a driver makes

the latter unavailable to future requests. However, this paradigm ignores future

network effects as the driver will eventually become again available to serve

demand possibly in a different location. Finally, most competitive analysis results

target worst-case arrival sequences, while in a ridesharing system there is much

well-behaved stochasticity.

104

In this chapter, we depart from competitive analysis and develop a general

queueing-theoretic framework capturing the stochasticity in user requests. Fo-

cusing on the steady-state performance of the system, we obtain approximation

guarantees in such ridesharing systems via appropriately pricing different rides.

Our queueing-theoretic approach for the setting is motivated by classical works

on controls in state-dependent stochastic processes. This approach allows us

to model most of the first-order effects in these systems such as the ones we

discussed in the previous paragraph. Interestingly, our guarantees are also

parametric and become better as the ratio of drivers to locations increases; they

achieve asymptotic optimality and provide effective approximation guarantees

for the real parameters of the systems. In particular, consider a ridesharing

system with m drivers and n distinct locations (for instance, corresponding to

Uber’s Hexagonal Hierarchical Spatial Index). In this system, the approximation

guarantee of our approach is 1 + (n − 1)/m, which is typically very close to 1 as

there are significantly more drivers than locations in these systems.

5.1 Preliminaries on pricing without state

Myopic agents. The classical way to think about pricing is via assuming distri-

butional knowledge about the values of the customers (demand elasticity). In

the simplest setting, we wish to sell a digital good to a customer; this allows us to

not care about future effects as digital goods have infinite supply. Let’s assume

that the customer has a value V drawn from a distribution F(·). Upon arrival, we

can quote a price p and the customer is myopic, i.e. buys the good if her value is

above the price (V ≥ p) or leaves the system otherwise.

105

In the next section, we will extend this scenario in the settings where this

decision may also impose future network state externalities to other users. In

particular, we will assume that riders behave as myopic agents. They have a value

to go from a source location to a destination. When quoted a price lower than

their value, they pay it and perform the ride. The network externality component

comes from the fact that this can only happen if there exist an available vehicles

in the source location; this complicates the setting as we see in Section 5.2.

Revenue management without state. Coming back to the simpler setting, a

natural question is: What is the price that optimizes our expected revenue? To answer

the above question, we need to consider the two opposite forces that arise in this

process. On the one hand, putting a higher price p increases the likelihood that

we end up disswaying the customer from making the purchase – the purchase

only happens with probability 1 − F(p). On the other hand, condtioned on him

buying, a higher price means more revenue as we cash the price p. As a result, to

optimize revenue, we need to find the price p that optimizes p · (1 − F(p)).

Pricing for other objectives. Similarly, if we wanted to optimize throughput,

we would need to select the price that optimizes 1 · (1 − F(p)) and clearly this

corresponds to the smallest possible price so that all users want to buy the

good at this price. Last, if we wanted to optimize social welfare, we would

want to select the price that would optimize the expected value of the customer

EV∼F[V1V≥p] = E[V |V ≥ p] · (1−F(p)). Again, in this case this is trivially optimized

in the smallest possible price as it allows more users to buy. More generally,

all these reward functions have the form: R̃(p) = Ĩ(p) · (1 − F(p)), where Ĩ(p)

corresponds to the expected reward from a customer conditioned on selling and

106

is instantiated as following for different objectives:

• Throughput: ĨT (p) = 1.

• Social welfare: ĨW(p) = EV∼F
[
V |V ≥ p

]
.

• Revenue: ĨR(p) = p.

Quantiles and concave reward assumption. It is easier to express this quantity

with respect to the inverse demand or quantile q = 1−F(p). This denotes the fraction

of customers who accept price p. For ease of presentation we assume that the

density of F is positive everywhere in its domain (for which we only assume

that it is contiguous and intersects with (0,∞)), implying that there is a 1-1

mapping between prices and quantiles. As F is therefore invertible, we can write

p = F−1(1 − q). This allows us to abuse notation throughout this chapter by using

prices and quantiles interchangeably. Further, we define F(∞) = 1, that is, we

assume we can set a price high enough so that an arbitrarily small (or even 0)

fraction of customers is willing to pay it.

The reward function that the platform optimizes can be rewritten as a function

of quantiles as: R(q) = q · I(q) where I(q) is the quantile-equivalent of Ĩ(p) and

corresponds again to the expected reward from a customer conditioned on selling.

For the previous objectives, it is instantiated as:.

• Throughput: IT (q) = 1.

• Social welfare: IW(q) = EV∼Fi j

[
V |F(V) ≥ 1 − q

]
.

• Revenue: IR(q) = F−1(1 − q).

107

We refer to R(q) as the reward curve of the function for its reward objective

of interest (analogous to the notion of revenue curves; cf. [66]). Our framework

applies generally to any objective that satisfies the condition that R(q) are concave

in q, implying that I(q) are non-increasing in q. Note that this always holds for

throughput and welfare; for revenue, distributions fulfilling the condition are

referred to as regular distributions (cf. Appendix D.1)).

5.2 Pricing as a control in queueing-theoretic networks

In ridesharing, pricing decisions are more complex as they affect each other

through network supply externalities. In particular, a customer wishing to move

between locations i to j does not only contribute to the objective directly but may

also help future customers at j by moving the driver there (if the ride occurs).

Model. We therefore consider a system with m units (drivers or vehicles) and n

nodes (locations or stations). Customers traveling between nodes i and j arrive

at node i according to a Poisson process of rate φi j. As in the previous section,

each customer traveling from i to j has a value drawn independently from a

distribution Fi j(·). We assume that Fi j has a density and that each customer has

a positive value with some probability, i.e. Fi j(0) < 1; all the other assumptions

made in the previous section continue to hold for the value distributions. Upon

arrival at i, a customer is quoted a price pi j, and engages a unit to travel to j if her

value exceeds this price, i.e. with probability 1 − Fi j(pi j), and if at least one unit

is available at node i; else she leaves the system immediately. If a ride occurs, the

unit moves to j and the customer leaves the system thereafter.

108

A continuous-time Markov chain tracks the number of units across nodes.

At time t ≥ 0, the state of the Markov chain X(t) = (X1(t), . . . , Xn(t)) contains the

number of units Xi(t) present at each node i. The state space of the system is

denoted by Sn,m =
{
(x1, x2, . . . , xn) ∈ Nn

0|
∑

i xi = m
}
. Throughout the chapter we use

X(t), Xi(t) to indicate random variables, and x, xi to denote specific elements of the

state space. Note that the state-space is finite and |Sn,m| =
(

m+n−1
n−1

)
= Ω(mn).1 Since

our focus is on the long-run average performance, i.e. system performance under

the steady state of the Markov chain, we henceforth suppress the dependence

on t for ease of notation. For ease of presentation, we assume that rides between

nodes occur without delay.2 In the context of our model, this translates into an

instantaneous state transition from X to X − ei + e j when a customer engages a

unit to travel from i to j (where ei denotes the ith canonical unit vector).

Pricing policies and objectives. We consider pricing policies that select point-

to-point prices pi j as a function of the overall state X. Formally, given arrival

rates and demand elasticities {φi j, Fi j(·)}, we want to design a pricing policy

p(·) = {pi j(·)}, where each pi j : Sn,m → R ∪ {±∞}maps the state to a price for a ride

between i and j. Equivalently, we want to select quantiles q(·) = {qi j} where each

qi j : Sn,m → [0, 1]. For a fixed pricing policy p with corresponding quantiles q,

the effective demand stream from i to j (i.e. customers traveling from node i to j

with value exceeding pi j) thus follows a (state-dependent) Poisson process with

rate φi jqi j(X). This follows from the notion of probabilistic thinning of a Poisson

process – the rate of customers wanting to travel from i to j is a Poisson process

of rate φi j, and each customer is independently willing to pay pi j with probability

1Every state corresponds to a placement of n − 1 stripes in between m circles with the number
of units at node k corresponding to the number of circles in between the (k−1)-th and k-th stripe).

2In the paper we drop this assumption as we discuss in Section 5.6.

109

qi j = 1 − Fi j(pi j). State-dependent prices also allow us to capture unavailability

by defining qi j(x) = 0 if xi = 0 (i.e. a customer with origin i is always turned away

if there are no units at that station; recall we defined Fi j(∞) = 1). Thus, a pricing

policy p, along with arrival rates and demand elasticities {φi j, Fi j(·)}, determines

the transitions of the Markov chain. Note that this is a finite-state Markov chain,

and furthermore, is irreducible under weak assumptions on the prices and the

demand (cf. Appendix D.2); hence, it has a unique steady-state distribution π(·)

with π(x) ≥ 0∀ x ∈ Sn,m and
∑

x∈Sn,m
π(x) = 1.

Our goal is to design a pricing policy p to maximize the steady-state perfor-

mance under various objectives. In particular, we consider objective functions

that decompose into per-ride reward functions Ii j : R→ R, which correspond to

the reward obtained from a customer engaging a ride between stations i and j at

price pi j. This can be instantiated for canonical objectives such as throughput,

social welfare and revenue as in the previous section. For a given objective, our

aim is to select a pricing policy p, equivalently quantiles q, that maximizes the

steady-state rate of reward accumulation, given by

OBJm(q) =
∑

x∈Sn,m

π(x)·
(∑

i, j

φi j·qi j(x)·Ii j
(
qi j(x)

))
=

∑
x∈Sn,m

π(x)·
(∑

i, j

φi j·Ri j
(
qi j(x)

))
. (5.1)

Intuitively, Equation (5.1) captures that at any node i, customers destined for j

arrive via a Poisson process with rate φi j, and find the system in state x ∈ Sn,m

with probability π(x). They are then quoted a price pi j(x) (corresponding to

quantile qi j(x)), and engage a ride with probability qi j(x). The resulting ride

then contributes in expectation Ii j(qi j(x)) to the objective function. Recall that

unavailability of units is captured by our assumption that qi j(x) = 0 whenever

xi = 0. Notice that the component of Equation (5.1) that captures the flow of units

110

traveling from i to j can be written as

fi j,m(q) =
∑

x∈Sn,m

π(x) · φi j · qi j(x). (5.2)

State-independent pricing and closed queueing models. The Markov chain

described in Section 5.2 has the structure of a closed queueing network (cf. [121, 77]),

a well-studied class of models in applied probability (closed refers to the fact

that the number of units remains constant; in open networks, units may arrive

and depart from the system). Our analysis crucially relies on some classical

results from the queuing theory literature, which we review in this section. Our

presentation here closely resembles that of Serfozo [121]. One particular class of

pricing policies is that of state-independent policies, wherein we set point-to-point

prices {pi j}which do not react to the state of the system. As a consequence, we

have a constant rate of units departing from any node i (at any time t when

Xi(t) > 0); this rate is independent of the network state. The resulting model is a

special case of a closed queueing model proposed by Gordon and Newell [60].

Definition 5.1. A Gordon-Newell network is a continuous-time Markov chain on

states x ∈ Sn,m, in which for any state x and any i, j ∈ [n], the chain transitions from x

to x − ei + e j at a rate Pi jµi1{xi(t)>0}, where µi > 0 is referred to as the service rate at node

i, and P ≥ 0 as the routing probabilities satisfying
∑

j Pi j = 1.

In other words, if units are present at a node i in state x, then departures from

that node occur according to a Poisson distribution with rate µi > 0; conditioning

on a departure, the destination j is chosen according to state-independent routing

probabilities Pi j.

The Markovian dynamics resulting from state-independent pricing policies

111

fulfill the conditions of Gordon-Newell networks: fixing a price pi j (with corre-

sponding qi j) results in a Poisson process with rate φi jqi j of arriving customers

willing to pay price pi j. These customers engage a unit only if one is available, else

leave the system. Thus, given quantiles q, the time to a departure from node i

is distributed exponentially with rate µi =
∑

j φi jqi j when Xi > 0 and with rate 0

otherwise. Further, conditioned on an arriving customer having value at least

equal to the quoted price, the probability that the customer’s destination is j, is

Pi j = φi jqi j/
∑

k φikqik, independent of system state.

Unlike state-dependent policies that can be very complex, state-independent

policies are easier to reason about. In particular, one advantage of consider-

ing state-independent policies (and drawing connections with Gordon-Newell

networks) is that the resulting steady-state distribution
{
πp,m(x)

}
x∈Sn,m

can be ex-

pressed in product form, as established by the Gordon-Newell theorem.

Theorem 5.1 (Gordon-Newell Theorem [60]). Consider an m-unit n-node Gordon-

Newell network with transition rates µi and routing probabilities Pi j. Let {wi}i∈[n]

denote the invariant distribution associated with the routing probability matrix{
Pi j

}
i, j∈[n]

, i.e. wi =
∑n

j=1 Pi jw j, and define the traffic intensity at node i as ri = wi/µi.

Then the stationary distribution is given by:

π(x) =
1

Gm

n∏
j=1

(
r j

)x j
, (5.3)

where the Gordon-Newell normalization constant is Gm =
∑

x∈Sn,m

∏n
j=1

(
r j

)x j
.

To obtain some intuition for the form of Equation (5.3), consider a system

with just one unit. If µi is equal to 1 for all i, then wi exactly captures the stationary

distribution of a simple random walk with routing matrix P. Further, changing

µi at a node i does not affect how frequently the unit visits i, but it affects how

112

much time the unit spends at i before departing again. The distribution above

can now be seen to be the occupancy distribution induced by m independent

random walks. For a formal proof of how this stationary distribution arises in

the case of the Gordon-Newell network, we refer the reader to Serfozo [121].

We now show how the Gordon-Newell theorem can simplify the objective in

Equation (5.1). Recall that for an m-unit system with state-independent policy p

(and corresponding quantiles q), we obtain a Gordon-Newell network with ser-

vice rate
∑

j φi jqi j and routing probabilities φi jqi j/
∑

k φikqik at node i. Let {π(x)}x∈Sn,m

be the corresponding steady-state distribution. Since q is no longer a function

of the system state, we can no longer set qi = 0 when Xi = 0. Instead, we define

Ai,m(q) =
∑

x∈Sn,m
π(x)1{xi>0} as the steady-state availability of units at node i (i.e.

the probability in steady-state that at least one unit is present at node i). From

Equation (5.2), the state-independent steady-state rate of units moving from i to j

then simplifies to fi j,m(q) = Ai,m(q) · φi jqi j. Further, from Equation (5.3), one can

derive (see e.g. Proposition 1.33 and Equation 1.31 in [121])

Ai,m(q) = (Gm−1(q)/Gm(q)) · ri(q). (5.4)

Notice that ri(q) denotes the traffic intensity at node i under q. To see how

this is derived, note that the probability of at least one unit at i is given by

1
Gm(q)

∑
x∈Sn,m:xi>0

∏n
j=1

(
r j

)x j
. Now since each term in the summation has at least one

factor ri(q), we can pull that out, whereby the remaining summation corresponds

to configurations of m − 1 units over n nodes, thus adding up to Gm−1(q). Again,

we refer the reader to Serfozo [121] for a detailed proof. Now, the objective in

Equation (5.1) can be written as

OBJm(q) =
∑

i

Ai,m(q) ·

∑
j

φi jqi j · Ii j(qi j)

 =
∑

i

fi j,m(q)Ii j(qi j). (5.5)

To ease notation, we omit the explicit dependence on m when clear from context.

113

The infinite-unit limit: The stationary distribution described above (for state-

independent pricing policies) holds for any finite m. Moreover, it can be shown

(cf. Theorem 3.18 in [121]) that as m → ∞, the stationary distribution of the

m-unit system (as specified in Equation (5.3)) converges in distribution to a

limiting distribution. The exact form of this limiting system is well understood

(cf. Section 3.7 in [121]), but not consequential for our work; one important fact to

note about the limiting distribution is the existence of a node with availability 1.

This captures the fact that in an infinite-unit system, at least one node must have

an infinite number of units. While an analytical proof of this result can be found

in Section 3.7 of [121], Lemma 5.6 can be interpreted as providing a combinatorial

proof. Combined with Equation (5.4), this gives the following proposition.

Proposition 5.2. Recall that given q = {qi j}, the quantities wi(q) and ri(q) are

independent of m. Then, given a policy with quantiles q, in the infinite-unit limit,

the steady-state availability of each node i is given by ri(q)/max j r j(q).

Proof. To see this note that for any m, the maximum availability node i? obeys

ri?(q) = max j r j(q). Recall that Gm(q) is the Gordon-Newell normalization constant

of Theorem 5.1 and also recall the relation describing the availability of a node

from Equation 5.4. As m→ ∞, the availability of the maximum availability node

goes to 1, i.e. (Gm−1(q)/Gm(q)) · ri?(q) → 1. We thus obtain that Gm−1(q)/Gm(q) →

1/r?i (q), which in turn implies that, as m→ ∞,

Ai,m(q) = (Gm−1(q)/Gm(q)) · ri(q)→ ri/ri?(q).

�

114

5.3 Network state externalities make pricing more complicated

Before describing our analysis in Section 5.4, we take a step back to consider the

complications that these network externalities pose to the pricing task.

Ignoring state externalities can be problematic. As stressed before, the pricing

decisions in the aforementioned setting have a double effect. On the one hand,

they affect the reward we are getting from the current customer. On the other

hand, they may alter the state of the system (configuration of units across nodes).

Ignoring this second effect can lead to very suboptimal decisions even in very

simple examples. Consider a simple network with n = 3 nodes A, B,C and m = 1

unit. There is no demand between nodes A and C. The demand between most

other pairs of nodes is pretty high (φAB = φBA = φBC = 1). However, there is one

pair of nodes where this does not happen: demand wishing to move from C to

B is more anemic and is only φCB = ε for some arbitrarily small ε > 0. This is

shown in the following figure (where the weights of the edges correspond to the

demand that wants to move across the edges).

Suppose that we are interested in maximizing throughput. If we ignore the

network effect of the decisions, we should set a very low price to ensure that

any user that wants to move has value above the price. Hence, we would set

qAB = qBA = qBC = qCB = 1. We now quantify the throughput of the system under

this policy. The unit moves to C half the times it departs from B and, when this

115

happens it remains there for a long time. Sending the unit to C is therefore a

suboptimal decision as it would have been much better to set a large price in the

direction B→ C to ensure that the unit never goes to C and get stuck there. As

a result, ignoring the network effects can lead to arbitrarily ineffective pricing

schemes.

Non-concavity of objective function. To make things worse, the objective func-

tion that takes into account the network effect is not concave in quantiles (or

prices) despite the fact that the reward curves are concave.

The intuition of the non-concavity can be seen in the same figure and comes

from the following three observations. (i) The throughput is small (of order ε)

when all quantiles are equal to 1. (ii) It is still almost as small when qBC = 1+ε
2 and

the other quantiles are 1. (iii) It is large when qBC = ε and the other quantiles are

1. This contradicts concavity as the objective at qBC = 1+ε
2 is smaller than the mean

of the objectives at qBC = 1 and qBC = ε (keeping the other quantiles constant).

Explaining in more detail, when qBC = 1, the single unit moves from B to C

about half the times it departs from B; the expected time before an arrival at C is

then equal to (1/ε), so it is not serving any rides for a long time. When qBC = 1+ε
2

the unit still moves to C about one out of every three times it departs from B and

then spends a lot of time waiting for an arrival at C. However, if qBC = ε, it only

moves to C a fraction ε
1+ε

of the times it departs from B, canceling out the wait of

length 1/ε at C. In that case, the throughput is equal to 2+ε
3 (this also happens to

be the solution our Algorithm 6 in Section 5.4 returns). Note that this also implies

non-concavity in prices (e.g., if all passengers have uniform value distributions).

116

5.4 Main result: Elevated Flow Relaxation framework

In this section, we introduce our approximation framework which provides

strong finite-unit performance guarantees. To convey the main ideas of our

analysis, we first apply it to the most vanilla setting: using pricing as a control

to maximize throughput. This is the only setting in which a finite guarantee

exists in the literature (due to Waserhole and Jost [125]); we reprove this result

with a different technique in order to illustrate the ingredients of our framework.

In the next section, we show two more results showing the applicability of our

framework. In fact, the framework is more widely applicable as we discuss in

Section 5.6; we refer the interested reader to the paper [17] for other applications

so that we do not confuse the presentation with many different models.

Even for the vanilla setting, there are two fundamental technical hurdles.

First, we want to compare against state-dependent pricing policies in which the

number of potentially distinct prices can be exponential in the number of units.

Second, even if we restrict to state-independent pricing policies, the resulting

problem is non-convex in the resulting quantiles as discussed in Section 5.3. We

circumvent these hurdles by introducing a convex relaxation that restricts the

policy search; in this setting the relaxation is the same as in [125]. The crux of

our technical contribution is a novel approximation framework consisting of

three steps. First, we bound the optimal objective by the objective of the convex

relaxation. Next, we relate the convex relaxation to a system with infinitely many

units. Finally, we compare the objective of a policy in the finite-unit system with

its performance in the infinite-unit system.

117

Elevated Objective Function. We restrict our attention to state-independent

pricing policies which reduces the output of the program from an exponential

to a quadratic number of distinct prices (one for each source-destination pair).

Recall from Equation (5.5) that the steady-state objective for state-independent

policies can be written as

OBJm(q) =
∑

i, j

fi j,m(q) · Ii j(qi j)

where fi j,m(q) = Ai,m(q) · φi jqi j are the resulting steady-state rates of units, which

we also refer to as steady-state flows. For throughput, the objective is significantly

simplified as IT
i j(qi j) = 1. Similarly, for a state-dependent policy, the objective is:

OBJm(q) =
∑

x∈S n,m

∑
i, j

fi j,m(q(x)) · Ii j(qi j(x))

Turning back our attention to state-independent policies, we first make

a distinction between actual quantiles qi j = 1 − Fi j(pi j) and effective quantiles

q̂i j = fi j,m(q)/φi j = Ai,m(q) · qi j. Whilst actual quantiles are in one-to-one corre-

spondence to prices, effective quantiles incorporate thinning both due to the

demand elasticity and due to the unavailability of units. Note that q̂i j ≤ qi j;

moreover, although any qi j ∈ [0, 1] can be induced via an appropriate price, not

all q̂i j can be realized by prices as effective quantiles (e.g., if m < n, not all effective

quantiles can be equal to 1). Since we assume that the per-ride rewards Ii j(·) are

non-increasing on the quantile space, we have Ii j(qi j) ≤ Ii j(̂qi j); for throughput

this holds with equality, since IT
i j(·) = 1.

We now define the elevated objective function as

ÔBJ(q) =
∑

i, j

φi jqi jIi j(qi j) =
∑

i, j

φi jRi j(qi j). (5.6)

The elevated objective is essentially the objective of state-independent quantiles

q ignoring demand thinning due to unavailability. It has two useful properties:

118

i) for all m and q, the elevated objective upper bounds the true objective function,

i.e. ÔBJ(q) ≥ OBJm(q), and ii) it is a concave function of q (since we focus on

objectives corresponding to concave reward curves Ri j(·)).

The Flow Polytope. To make the elevated objective function relevant, we need

to reinstate the effect of network externalities that we completely disregarded

by ignoring unavailability. Therefore we impose a set of necessary (though not

sufficient) properties that the steady-state rate of flows { fi j,m(q)} and the effective

quantiles q̂ must satisfy in order to be realizable. These properties form a linear

polytope on these variables, which we refer to as flow polytope as it relates to flow

conservation and capacity constraints. We begin by proving that both properties

are indeed necessary.

Proposition 5.3 (Demand bounding). For actual quantiles q under any state-

dependent policy, the steady-state rate of flows fulfill the capacity bounding

property fi j,m(q) ≤ φi j.

Proof. The proof follows immediately from qi j(·) ≤ 1 which implies∑
x∈Sn,m

π(x)qi j(x) ≤ 1. �

Proposition 5.4 (Supply Circulation). For actual quantiles q under any state-

independent policy, the steady-state rate of flows obey flow conservation∑
k fki,m(q) =

∑
j fi j,m(q) for every i, even for infinite-unit systems. Under

state-dependent policies, flow conservation holds for any finite-unit system:∑
x∈S n,m

π(x) ·
∑

k fki,m(q(x)) =
∑

x∈S n,m
π(x) ·

∑
j fi j,m(q(x))

Proof. We first consider state-independent policies. Recall that wi(q) is defined

to be the leading left eigenvector of {P(q)}i, j, where Pi j(q) = φi jqi j/
∑

j φi jqi j. From

119

this we get for all i:∑
j

w j(q)
φ jiq ji∑
k φ jkq jk

= wi(q) =
wi(q)∑
k φikqik

∑
k

φikqik

⇒∑
j

r j(q)φ jiqi j =
∑

k

ri(q)φikqik

Multiplying both sides by (Gm−1(q)/Gm(q)), and using our previous formula for

the node availability (cf. Equation 5.4), we get
∑

j A j,m(q)φ jiqi j =
∑

k Ai,m(q)φikqik.

Moreover, by Proposition 5.2 this also holds in the infinite-unit limit.

For state-dependent policies, we prove the claim via contradiction. Suppose

that this does not hold. Then there exists a node that has incoming flow that is

in steady-state less than the outgoing flow. As the system has finite number of

units, this means that, after finite number of time, this node will have 0 units and

then this can no longer be true which establishes the claim. �

Interpreting the demand bounding and supply circulation properties in terms

of effective quantiles of state-independent policies, we find the linear constraints

q̂i j ∈ [0, 1] and
∑

k

φkîqki =
∑

j

φi ĵqi j.

Actual quantiles need not fulfill the supply circulation property, but any (state-

independent) quantiles induce flows (effective quantiles) that fulfill it.

Pricing via the Elevated Flow Relaxation. Combining the elevated objective

and the flow polytope, we obtain the elevated flow relaxation program (cf. Algo-

rithm 6). For the case of maximizing throughput, this is a linear optimization

problem since both objective function and polytope are linear. Recall from above

that the supply circulation property implied flow conservation of the effective

quantiles at each node. Algorithm 6 drops the availability term in the objective

but imposes, as a constraint, the same demand bounding and flow conservation

properties on the actual quantiles.

120

Algorithm 6: Elevated Flow Relaxation with Pricing for Throughput

Require: arrival rates φi j, value distributions Fi j

1: Find
{̃
qi j

}
that solve the following relaxation:

maxq
∑

(i, j) φi jqi j∑
k φkiqki =

∑
j φi jqi j ∀ i

qi j ∈ [0, 1] ∀ i, j.

2: Output state-independent prices p̃i j = F−1
i j (1 − q̃i j) and respective quantiles q̃i j.

It is important to notice the distinction between the above constraint on

actual quantiles and the supply circulation property of effective quantiles. The

actual quantiles q̃i j returned by the algorithm are constrained to satisfy
∑

k φkiq̃ki =∑
j φi jq̃i j at every node i. They then give rise to effective quantiles q̂ (with q̂i j =

Ai,m(̃q) · q̃i j) which obey the supply circulation property
∑

k φkîqki =
∑

j φi ĵqi j (as

proven for any effective quantiles in Proposition 5.4). In other words, the linear

program above restricts our pricing policy to induce actual quantiles which obey

the flow circulation property, thereby mirroring a feature of effective quantiles.

Henceforth, for any actual quantile q, we refer to the property
∑

k φkiqki =
∑

j φi jqi j

as the demand circulation property, in order to distinguish it from the supply

circulation property for the effective quantiles.

The approximation guarantee. Our analysis relies on the three following lem-

mas. Lemma 5.1 shows that the solution of the elevated flow relaxation upper

bounds the true objective of any state-depedendent pricing policy. Lemma 5.3

then shows that the true (non-elevated) objective of the pricing policy returned

by our program is equal to the solution of the program, when applied to an

121

infinite-unit system. Finally, Lemma 5.6 enables us to connect this solution to

the true objective of the finite-unit system by showing that the true objective of

any policy in the m-unit system is within a factor of m
m+n−1 of the objective in the

infinite-unit system.

Lemma 5.1 (from finite-unit state-dependent to the elevated flow relaxation).

The value of the objective function of the optimal state-dependent policy is upper

bounded by the value of the elevated objective function of the pricing policy q̃

returned by the elevated flow relaxation program:

ÔBJ(̃q) ≥ OPTm.

Proof. The optimal state-dependent pricing policy q?(·) induces a steady-state

distribution π?(·). Based on that distribution we define, analogously to the effec-

tive quantiles of state-independent policies, the average-fraction of customers

that receive service for each origin-destination pair: q =
∑

x∈S n,m
π?(x) · q?(x). Then

OPTm =
∑

x∈S n,m

π?(x)
∑

i, j

φi jq?i j(x) =
∑

i j

φi jqi j = ÔBJ(q).

We complete the proof by showing that ÔBJ(̃q) ≥ ÔBJ(q). To do so, we demon-

strate that q is a feasible solution of the elevated flow relaxation program; this

suffices as q̃ maximizes the elevated objective over the feasible set. We thus

only need to show that q satisfies the demand bounding and demand circulation

properties. The first holds trivially since q is a convex combination of q?(·). The

second holds true because q? induces steady-state flows that obey the supply

circulation property (Proposition 5.4); hence, at every node i we have∑
k

φkiqki =
∑

k

∑
x∈Sn,m

π?(x) · q?ki(x)φki =
∑

j

∑
x∈Sn,m

π?(x) · q?i j(x)φi j =
∑

j

φi jqi j,

122

which shows that q fulfills the demand circulation property. Hence q is a feasible

solution to the elevated flow relaxation program and the result follows. �

For the second step of our analysis, we use the following auxiliary lemma.

Lemma 5.2 (demand circulation property implies equal availabilities). For any

m (including ∞) if a state-independent pricing policy q satisfies the demand

circulation property then, at all nodes i, the availabilities Ai,m(q) are equal.

Proof. Consider i? ∈ arg max Ai,m(q). Then the demand circulation and supply

circulation properties imply

Ai?,m(q)
∑

j

φ ji?q ji? = Ai?,m(q)
∑

j

φi? jqi? j =
∑

j

A j,m(q)φ ji?q ji?

and thus
∑

j
(
Ai?,m(q) − A j,m(q)

)
φ ji?q ji? = 0. By choice of i?, each summand is

nonnegative, so for each j such that φ ji?q ji? > 0 we obtain A j,m(q) = Ai?,m(q). All

availabilities being equal then follows inductively using the assumption that our

system is irreducible (cf. Appendix D.2). �

Next we connect the elevated flow relaxation to the infinite-unit system. In

fact, we show a stronger statement, that holds for any policy satisfying demand

circulation and thus also for the solution of the elevated flow relaxation program.

Lemma 5.3 (from elevated flow relaxation to infinite-unit state-independent).

For any pricing policy q satisfying the demand circulation property, the value of

the elevated objective function of q is equal to the value of its objective function

in the infinite-unit system

OBJ∞(q) = ÔBJ(q).

123

Proof. Since q satisfies the demand circulation property, by Lemmas 5.2 and

Proposition 5.2, the availability at all nodes is equal to 1. This means that (i) the

value of the objective function in the infinite-unit limit for pricing policy q is

equal to its elevated value (since no term was increased), and (ii) the flow of

customers on each edge is equal to φi j · qi j. �

For the third step of our framework, we introduce two auxiliary lemmas.

Lemma 5.4 (approximation of finite-unit equals maximum availability). For any

state-independent pricing policy q, let Am(q) = maxi
(
Ai,m(q)

)
denote the maximum

steady-state availability across all nodes. Then the objective function of q in the

m-unit system is related to the infinite-limit objective as

OBJm(q)
OBJ∞(q)

= rmax(q) ·
Gm−1(q)
Gm(q)

= Am(q).

Proof. Let Bi(q) =
∑

j φi jqi j · Ii j(qi j) denote the contribution of node i to the

objective per unit of time in which station i is available. By substituting

Ai,m(q) = (Gm−1(q)/Gm(q)) · ri(q), Ai,∞(q) = ri(q)/rmax(q), and Bi(q) into the defi-

nition of the objectives in Equation (5.5), we obtain

OBJm(q)
OBJ∞(q)

=

∑
i Ai,m(q)Bi(q)∑
i Ai,∞(q)Bi(q)

=

Gm−1(q)
Gm(q) ·

∑
i ri(q)Bi(q)

1
rmax(q) ·

∑
i ri(q)Bi(q)

= rmax(q) ·
Gm−1(q)
Gm(q)

= Am(q),

where the last equality follows from the characterization of the availabilities

in Equation (5.4). Note that the argument relies on OBJ∞(q) , 0 which holds

for all policies/settings we consider. In particular, there is always a policy that

charges ε > 0 for every price and achieves a positive objective (since we assumed

Fi j(0) < 1). �

Lemma 5.5 (weighted bipartite graph among state space of different-unit sys-

tems). We call y ∈ Sn,m−1 a neighbor of y + ei ∈ Sn,m∀i ∈ {1, n}. There exists a

124

weighted bipartite graph on Sn,m∪Sn,m−1 such that i) an edge has non-zero weight

only if it is connecting neighboring states , ii) for any vertex corresponding to a

state in Sn,m−1 the total weight of incident edges is equal to m+n−1
m , and iii) for any

vertex corresponding to a state in Sn,m the total weight of incident edges is equal

to 1.

Proof. Our construction is shown in the following figure. Each state x ∈ Sn,m is

adjacent to y = x − ei ∈ Sn,m−1 for all i with xi > 0. On these edges, the weight

is ωxy = xi
m . Thus, the total weight incident to x is

∑
y ωxy =

∑
i

xi
m = 1. On the

other hand, each state y ∈ Sn,m−1 is adjacent to the states x = y + ei ∀i ∈ [n].

The respective weight incident on y is
∑

x ωxy =
∑

i
yi+1

m = m−1+n
m . Finally, there is

positive weight on edges only between neighboring states. This concludes the

proof of the lemma. �

(a) Graph between
S2,3 and S2,2

(b) Construction for general n,m

Lemma 5.6 (from infinite-unit to finite-unit state-independent). For any state-

independent pricing policy q, the value of the objective of the policy q in the

m-unit system is at least m/(m + n − 1) times the value of the objective of the same

policy in the infinite-unit system.

OBJm(q) ≥
m

m + n − 1
OBJ∞(q).

125

Proof. By Lemma 5.4, we have:

OBJm(q)
OBJ∞(q)

= rmax(q) ·
Gm−1(q)
Gm(q)

.

In order to uniformly bound the above expression, we apply the weighted

bipartite graph, between the states in Sn,m−1 and the states in Sn,m, described

in Lemma 5.5. Following the same notation as before, we denote the weight

between states x ∈ Sn,m and y ∈ Sn,m−1 by ωxy. Recall that non-zero weights

only exist between neighboring states, i.e. when x = y + ei ∈ Sn,m for some i;

further, the total weight of edges incident to any state in x ∈ Sn,m is equal to∑
y ωxy = 1, and the total weight of edges incident to any state in y ∈ Sn,m−1 is

equal to
∑

x ωxy = m+n−1
m .

OBJm(q)
OBJ∞(q)

= rmax(p) ·
Gm−1(q)
Gm(q)

= rmax(q)

∑
y∈Sn,m−1

∏n
j=1

(
r j(q)

)y j∑
x∈Sn,m

∏n
j=1

(
r j(q)

)x j

= rmax(q) ·

∑
y∈Sn,m−1

∏n
j=1

(
r j(q)

)y j∑
x∈Sn,m

(∑
y∈Sn,m−1

ωxy
)∏n

j=1

(
r j(q)

)x j

= rmax(q) ·

∑
y∈Sn,m−1

∏n
j=1

(
r j(q)

)y j

∑
(x,y)∈Sn,m×Sn,m−1

ωxy
∏n

j=1

(
r j(q)

)y j+(x j−y j)

≥

∑
y∈Sn,m−1

∏n
j=1

(
r j(q)

)y j∑
y∈Sn,m−1

(∑
x∈Sn,m

ωxy
)∏n

j=1

(
r j(q)

)y j

=

∑
y∈Sn,m−1

∏n
j=1

(
r j(q)

)y j(
m+n−1

m

)∑
y∈Sn,m−1

∏n
j=1

(
r j(q)

)y j
=

m
m + n − 1

The third equality holds as
∑

y ωxy = 1; the second-to-last follows from
∑

x ωxy =

m+n−1
m . Crucially, ωxy > 0 only holds for neighboring states x ∈ Sn,m and y ∈ Sn,m−1

implying the inequality. �

Theorem 5.5 (approximation guarantee for pricing with throughput objective).

Consider the throughput objective function OBJT
m for the m-unit system with

concave reward curves Ri j(·). Let q̃ be the pricing policy returned by Algorithm 6

126

and OPTm be the value of the objective function for the optimal state-dependent

pricing policy in the m-unit system. Then

OBJT
m(̃q) ≥

m
m + n − 1

OPTm. (5.7)

Proof. The proof follows by direct applications of Lemmas 5.1, 5.3, and 5.6. �

5.5 Applying the framework to pricing beyond throughput

We now apply our framework to objectives beyond throughput. We first show

how to maximize general objectives satisfying the concave reward curves as-

sumption such as social welfare unconditonally and revenue with concave rev-

enue curves (Appendix D.1). We then move our attention to multi-objective

settings where we wish to maximize one objective function subject to a lower

bound on another one, as is the case in Ramsey pricing [112].

General objectives with concave reward curves. We first provide the ele-

veated flow relaxation program for pricing with general objectives (Algorithm 7).

To extend our guarantee to objectives beyond throughput, we need a stronger

version of Lemma 5.1 that does not rely on the linearity of the objective.

Lemma 5.7 (from finite-unit state-dependent to the elevated flow relaxation).

For objectives with concave price-setting reward curves Ri j(·), the value of the

objective function of the optimal state-dependent policy is upper bounded by

the value of the elevated objective function of the pricing policy q̃ returned by

127

Algorithm 7: Elevated Flow Relaxation with Pricing for General Objective

Require: arrival rates φi j, value distributions Fi j, reward curves Ri j.

1: Find
{̃
qi j

}
that solve the following relaxation:

maxq
∑

(i, j) φi jRi j(qi j)∑
k φkiqki =

∑
j φi jqi j ∀ i

qi j ∈ [0, 1] ∀ i, j.

2: Output state-independent prices p̃i j = F−1
i j (1 − q̃i j) and respective quantiles q̃i j.

the elevated flow relaxation Program:

ÔBJ(̃q) ≥ OPTm.

Proof. Using the same notation as in the proof of Lemma 5.1, we have:

OPTm =
∑

x∈S n,m

π?(x)
∑

i, j

φi jRi j

(
q?i j(x)

)
≤

∑
i j

φi jRi j

(̂
qi j

)
= ÔBJ(̂q)

where the inequality holds by Jensen’s inequality due to the concavity of the

price-setting reward curves Ri j(·). The rest of the proof is identical to the proof of

Lemma 5.1. �

Theorem 5.6 (approximation guarantee for pricing with general objective). Con-

sider any objective function OBJm for the m-unit system with concave reward

curves Ri j(·). Let q̃ be the pricing policy returned by Algorithm 7 and OPTm be

the value of the objective function for the optimal state-dependent pricing policy

in the m-unit system. Then

OBJm(̃q) ≥
m

m + n − 1
OPTm. (5.8)

128

Proof. The proof copies the one of Theorem 5.5 replacing Lemma 5.1 by

Lemma 5.7. �

Multi-objective settings. We now discuss how to derive bicriterion approxi-

mations in multi-objective optimization settings, in which one objective is maxi-

mized subject to a lower bound on another. Formally, the problem is as follows:

we are given a m-unit system, a requirement c ≥ 0, and objectives Φm(·) and Ψm(·);

the goal is to maximize Φm(q) subject to Ψm(q) ≥ c. We again assume that both

objectives can be expressed by concave reward curves
{
RΨ

i j

}
and

{
RΦ

i j

}
respectively.

Similarly to Equation (5.6), we first elevate both objectives to obtain Φ̂(̂q) =∑
i, j φi jRΦ

i j (̂qi j) and Ψ̂(̂q) =
∑

i, j φi jRΨ
i j (̂qi j). Since per-ride rewards are non-increasing

on the quantiles, this can only increase the values of the objectives. We then

impose the supply circulation and demand bounding constraints to create the

flow polytope constraints. This mathematical program (Algorithm 8) is the

elevated flow relaxation program for our multi-objective setting; we argue below

that this is indeed a relaxation. It can be efficiently optimized since the objective

is concave while the polytope is convex: the convex combination of any two

feasible quantiles is feasible since Ψ̂(·) is concave.

Theorem 5.7 (approximation guarantee for multi-objective pricing). Let Φm and

Ψm be objectives for the m-unit system with concave reward curves. Then the

solution q̃ returned by Algorithm 8 is a (γ, γ) bicriterion approximation for the

multi-objective pricing problem where γ = m/(m + n − 1), i.e. Φm(̃q) ≥ γOPTm and

Ψm(̃q) ≥ γ · c.

Proof. Let q̂ denote the optimal solution of an auxiliary program where we only

elevate the objective Φ (but not Ψ), i.e. we maximize Φ̂(·) subject to Ψm(·) ≥ c as

129

Algorithm 8: Elevated Flow Relaxation with Multi-objective Pricing

Require: arrival rates φi j, value distributions Fi j, reward curves RΦ
i j and RΨ

i j,

requirement c.

1: Find
{̃
qi j

}
that solve the following relaxation:

maxq Φ̂(q)∑
k φkiqki =

∑
j φi jqi j ∀ i

qi j ∈ [0, 1] ∀ i, j.

Ψ̂(q) ≥ c

2: Output state-independent prices p̃i j = F−1
i j (1 − q̃i j) and respective quantiles q̃i j.

well as the demand circulation and demand bounding constraints. Moreover,

let q? denote the optimal state-dependent solution of the original (non-elevated)

problemW. Then, for the first guarantee, we have:

Φm(̃q) ≥ γΦ̂(̃q) ≥ γΦ̂(̂q) ≥ γΦ(q?) = γOPTm

The first inequality is a simple application of Lemmas 5.3 and 5.6, since q̃ satisfies

demand circulation and we can thus apply the lemmas to the objective Φm(·). The

second inequality holds since any solution of the auxiliary program is a feasible

solution of the elevated flow relaxation. In particular, since the elevated objective

Φ̂(·) is pointwise no less than the original objective Φm(·), the corresponding

constraint in the auxiliary program is tighter. The last inequality holds by the

same argument as in Lemma 5.7.

Regarding the second guarantee, we have:

Ψm(̃q) ≥ γΨ̂(̃q) ≥ γc

130

The first inequality is again an application of Lemmas 5.3 and 5.6, while the

second holds since q̃ is a feasible solution of the elevated flow relaxation and

therefore satisfies its last constraint. �

Note that the same approach yields multicriterion approximation algorithms

for settings in which more than one constraint of the form Ψm(·) ≥ c is given.

5.6 Remarks

More information about the paper. The results presented in this chapter are

joint work with Sid Banerjee and Daniel Freund [17]. In this work, we also

show that the approximation framework described in this chapter goes beyond

the simple pricing setting described in this chapter and can extend to multiple

different directions. For example, it can capture different rebalancing controls

(beyond pricing) such as empty-vehicle rebalancing and matching customers to

drivers. It can also extend to incorporate travel-times (instead of assuming that

all travels are instantaneous). Finally, it can address constrained settings such

as pricing that is only origin-based. All these results stem from the three-step

approach described in Section 5.4.

On the approximation ratio. Our main result is an approximation framework

that provides a state-independent policy with a m/(m+n−1) approximation guar-

antee in steady-state. Our guarantee holds for a large class of objectives (revenue,

throughput, welfare), controls (pricing, matching, empty-vehicle rebalancing),

and constraints (multi-objective settings, prices coming from discrete price sets,

travel-times). We note, that for the special case of maximizing throughput via

131

pricing without constraints, Waserhole and Jost [125] provide the same guarantee

although their analysis cannot extend more generally; our policy is the same

as theirs for the special case. They also showed that, for this special case, the

approximation ratio for a policy based on this relaxation is tight.

Our work shows the first universal performance bounds for a wide variety

of controls and settings, and has inspired follow-up work that tries to improve

the bounds in specific settings. Notable among these are two works. The first

due to Qian et al. [108] shows how to obtain stronger guarantees, approximation

ratio of 1 − e−Θ(m), for the matching control in settings obeying an additional

complete resource pooling condition (a relaxed version of Hall’s condition) via

reverting to state-dependent policies. The second due to Balseiro et al. [16]

demonstrates how to achieve better dependence on n, approximation ratio of

1 − o(1) competitive ratio when n = θ(m), for particular networks (star networks).

However, understanding the limits and relative strenghts of different algorithms

for particular controls and settings still remains an exciting open direction.

132

CHAPTER 6

EFFICIENCY OF DYNAMIC LEARNING OUTCOMES

In multi-agent systems, the platform is not the only entity that utilizes data

in a way to enhance its decision-making. This data is also available to the

other participants of the system who can learn from it and adapt their behavior.

Consider online advertising as an example. Advertisers repeatedly bid for ad

opportunity in various queries, observe their overall allocation and payment.

This enables them to adapt their future bidding to better adjust to the competition.

To analyze agents’ behavior in such complex systems, we ideally wish for

a behavioral assumption that is easily achievable and weak enough so that it

does not prescribe strict behavioral rules. One such behavioral assumption is

that agents perform not much worse than what they would have had if they

committed to a fixed strategy throughout all rounds. This is natural as, if agents

repeatedly perform worse than the best fixed strategy, they can soon realize

this fact and follow the better strategy. It is also easily satisfiable by multiple

online learning algorithms such as the ones we described in Chapter 2; crucially

though this assumption does not require agents to use any particular algorithm

but rather just to satisfy the no-regret guarantee. Finally, empirical evidence

supports this behavioral assumption in settings such as online advertising [102].

In this chapter, we aim to understand the efficiency of these dynamic learn-

ing outcomes, with respect to the total happiness of all participating entities,

referred to as social welfare. Quantifying the inefficiency that selfish behavior

causes to these systems, measured by the so called Price of Anarchy, is one of the

cornerstones of algorithmic game theory. When the game is completely static

and agents have converged to the so called Nash equilibrium of the one-shot

133

game we now have a good understanding of this effect which, in many cases,

is only a small deterioration [117, 37, 123]. Recently, these results have been

extended to learning outcomes assuming that all agents employ online learning

algorithms via extensions theorems based on a property referred to as smoothness

[29, 116, 123]. However, these results still make an unrealistic strong assumption,

requiring that the game played is completely identical across rounds. This is

clearly not the case in applications like online advertising where there is signifi-

cant turnover both in the player set and in their valuations of different outcomes.

This chapter provides a general theory to make the aforementioned extension

theorems robust even in settings where such population churn is present and

very frequent.

6.1 Preliminaries on efficiency of selfish outcomes

Games and mechanisms. We consider game settings played repeatedly, where

the population of players is evolving over time (as described in Section 6.2). Let

G be an n-player normal form stage game and assume that game G is played

repeatedly for T rounds.1 Each player i has a strategy space S i, with maxi |S i| = N,

a type vi ∈ Vi and a cost function ci(s; vi) that depends on the strategy profile

s ∈ ×iS i, and on her type. We denote with C(s; v) =
∑

i∈[n] ci(s; vi) the social cost,

where s is a strategy profile and v a type profile. Our main application described

in this chapter concerns the case when the stage game is a utility maximization

mechanism M, which takes as input a strategy profile and outputs an allocation

Xi(s) for each player and a payment Pi(s). We assume that players have quasi-

1Although the game rules remain unaltered across rounds, the changes in participants affect
the payoff matrix.

134

linear utility ui(s; vi) = vi(Xi(s)) − Pi(s) and the welfare is the sum of valuations

(sum of utilities of bidders and revenue of auctioneer): W(s; v) =
∑

i∈[n] vi(Xi(s)).

Disregarding the selfish behavior of the participants, we can define the op-

timal solution of the underlying optimization problem. Let Xn be the “feasible

solution space” of the setting without incentives. In combinatorial auctions (the

application in this chapter), this corresponds to the set of feasible partitions of

items to bidders, while in network routing games it is the set of feasible integral

flows. We overload the social cost and welfare notations and, for a feasible

solution (or allocation) x ∈ Xn, use C(x; v) and W(x; v) to denote the social cost or

welfare of the solution2. We denote the optimal social cost or welfare for a type

profile v as OPT(v) = minx∈Xn C(x; v) and OPT(v) = maxx∈Xn W(x; v) respectively.

Application: Simultaneous first-price auctions. The application we discuss in

this chapter concerns simultaneous first-price auctions. There are m items (e.g.

ad opportunity) that the n players compete for. Players repeatedly participate

in item auctions for each such item by submitting individual bids. The item

gets assigned to its highest bidder and this player pays her bid (first-price) – ties

are broken arbitrarily. Our results also extend to other auction formats such as

second-price as well as hybrid auctions.

Each player cares about her individual utility which, as discussed before, is

assumed to be quasilinear: equal to her valuation from acquiring items minus the

price she pays. We use vt
i(A) to denote the valuation of the i-th player at time t if

she obtains all items in set A; her valuation when not obtaining items is vt
i(∅) = 0.

Valuations are additive across time but, at each round, users are unit-demand:
2Overloading the notation does not create ambiguity assuming the strategy sets S i are disjoint

from the possible solutions X.

135

if they get more than one item in a single round, their valuation is equal to the

maximum value they have among these items while they still pay the price for

all. We denote by vt
i(j) the value of an item j for buyer i at time t; as a result, the

player’s value for a set A is vt
i(A) = max j∈A vt

i(j). While we mostly focus on the

unit-demand assumption, some of our results extend to more general valuation

functions (see Section 6.5). We also assume that valuations are normalized to be

in [0, 1] and all non-zero valuations are at least ρ > 0 for some small constant ρ.

Regarding the players’ bidding, we assume that the bids on each item comes

from a sufficiently fine discrete bidding spice. We assume that the bids are always

multiples of δ · ρ for some small δ > 0, where ρ is the minimum value from an

item defined in the previous paragraph. Finally, we assume that players never

bid for more than one item. As a result, the number of strategies available to

each player is N = m
δ·ρ

(deciding whict item to target and how much to bid).

No-regret learning in games. In settings like the above it is clear that bidding

the true valuation is not a good idea since this can only lead to utility 0: either

the player wins the item and pays her valuation as a price, or she loses and

gets again utility 0. Instead, we assume that the players employ strategies that

provide them a good performance in the long run. In particular, we assume that

they satisfy the no-regret learning properties described in Section 2.1. Recall the

definition of ε-approximate regret from Section 2.2 (defined for a fixed ε > 0):

ApxReg(f , ε) = (1 − ε)
T∑

t=1

`t
A(t) −

T∑
t=1

`t
f ,

where `t
A(t) denotes the loss of of the learner with respect to the selected action

A(t) and `t
f denotes the loss with respect to a comparator f respectively.

Instantiated to a game setting, the ε-approximate regret of player i com-

136

pared to a fixed strategy s?i will be shorthanded as ApxRegi

(
s?i , ε

)
= (1 −

ε)
∑T

t=1 ci(st; vi) −
∑T

t=1 ci(s?i , s−i; vi) for a cost minimization game. Respectively,

for a utility-maximization mechanism, we define approximate regret as:

ApxRegi

(
s?i , ε

)
=

T∑
t=1

ui(s?i , s−i; vi) − (1 + ε)
T∑

t=1

ui(st; vi).

Solution-based Smoothness in Games and Mechanisms. Smooth games

were introduced by Roughgarden [116] as a general framework bounding the

price of anarchy in games. He also showed that smoothness based price of anar-

chy bounds extend to outcomes in repeated games where the set of players is

fixed throughout the period and all players use no-regret learning.

We require a somewhat more general variant of smooth games, that compares

the cost or utility resulting from a strategy choice to the social welfare of a specific

solution, rather than comparing to the social optimum. For two strategy vectors

s and s? we use (s?i , s−i) to denote the vector where player i uses strategy s?i and

all other players j use their strategy s j.

Definition 6.1 (Solution-based smooth game). A cost-minimization game G is

solution-based (λ, µ)-smooth for λ > 0 and µ < 1, if for any feasible solution x ∈ Xn, any

type profile v and any player i, there exists a strategy s?i ∈ S i depending only on her type

vi and her part of the solution xi such that for any strategy profile s

∑
i

ci(s?i (vi, xi), s−i; vi) ≤ λC(x; v) + µC(s; v)

This means that, when players satisfy the no-regret property (as described

in Section 2.1), the average social cost of these no-regret learning outcomes is

bounded by λ
1−µOPT as time grows large.

137

In particular, we present this result for ε-approximate regret learners as

this allows us to extend it in the next section. We assume that learners have

expected ε-approximate regret of order O
(
log(NT)/ε

)
which is the case for almost

all adversarial online learning algorithms. For simplicity, we omit the O-notation.

Proposition 6.1. If a game is solution-based (λ, µ)-smooth expected ε-

approximate regret of E
[
ApxRegi(s?i , ε)

]
≤

log(NT)
ε

for all s?i , the average expected

cost is at most λ
1−µ−ε ·C(x; v) + 1

1−µ−ε ·
n log(NT)

ε·T for all feasible solutions x.

Proof. Let st be the strategy vector at round t. Adding the ε-approximate regret

inequalities for each player, and applying the smoothness property:

1
T

∑
t

E
[
C(st; v)

]
=

1
T
·

1
1 − ε

∑
t

∑
i∈[n]

(1 − ε) · E
[
ci(st; vi)

]
≤

1
T
·

1
1 − ε

· E
∑

t

∑
i

ci(s?i (vi, xi), st
−i; vi) +

∑
i

ApxRegi(s?i (vi, xi), ε)


≤

1
1 − ε

·

λC(x; v) + µ ·
1
T

∑
t

E
[
C(st; v)

]
+

1
T
·

n log(NT)
ε


The claimed bound follows by rearranging terms. �

Note that it was crucial that strategy s?i was fixed across rounds since we

used that player i does not regret not deviating to it. Since s?i is a function of the

underlying optimization problem, this will no longer be the case in an evolving

population as departures of players change the underlying optimization problem

and may affect s?i . We tackle this in the next section.

The application of this chapter is about mechanisms. For mechanisms we use

the version of the smoothness definition of Syrgkanis and Tardos which assumes

that all players have quasi-linear utilities. We again define a mechanism smooth

with respect to a solution x, and allow the choice of strategy s? to depend only on

the player’s part of the solution xi and her type vi. More formally:

138

Definition 6.2 (Solution-based smooth mechanism). A mechanismM is solution-

based (λ, µ)-smooth for λ, µ ≥ 0, if for any feasible solution x ∈ Xn, any valuation profile

v and any player i, there exists a deviating strategy s∗i ∈ S i depending only on vi and xi

such that for any strategy profile s,∑
i

ui(s∗i (vi, xi), s−i; vi) ≥ λW(x; v) − µREV(s).

where REV(s) =
∑n

i=1 Pi(s).

Syrgkanis and Tardos [123] proved that a (λ, µ)-smooth mechanism has price

of anarchy bounded by max(µ, 1)/λ, and the average social welfare of no-regret

learning outcome is also at least (λ/max(µ, 1))OPT(v). For example, simultaneous

first-price auctions are (1
2 , 1)-smooth implying efficiency of 2. Analogously:

Proposition 6.2. If a mechanism is solution-based (λ, µ)-smooth and players sat-

isfy expected ε-approximate regret of E
[
ApxRegi(s?i , ε)

]
≤

log(NT)
ε
∀s?i , the average

expected social welfare is at least λ
max(µ,1+ε) ·W(x; v)− 1

max(µ,1+ε) ·
n log(NT)

ε·T for all feasible

solutions x ∈ Xn.

Proof. Let st be the strategy vector at round t and U(st; vt) denote the welfare

that comes from the players’ utilities (and not the designer’s revenue which

is denoted by REV(st)). Adding the ε-approximate regret inequalities for each

player, and applying the smoothness property:

1
T

∑
t

E
[
U(st; v)

]
=

1
T
·

1
1 + ε

∑
t

∑
i∈[n]

(1 + ε) · E
[
ui(st; vi)

]
≥

1
T
·

1
1 + ε

· E
∑

t

∑
i

ui(s?i (vi, xi), st
−i; vi) −

∑
i

ApxRegi(s?i (vi, xi), ε)


≥

1
1 + ε

·

λW(x; v) − µ ·
1
T

∑
t

E
[
REV(st)

]
−

1
T
·

n log(NT)
ε


The claimed bound comes from rearranging terms and noting that W(st; v) =

U(st; vt) + REV(st) �

139

6.2 Shifting learning and efficiency of dynamic outcomes

Dynamic population model. We focus on repeated game settings when the

population evolves over time. Our model is formalized in the next definition.

Definition 6.3 (Repeated game/mechanism with dynamic population). A re-

peated game with dynamic population consists of a stage game G played for T

rounds. Let Pt denote the set of players at round t, where each player i ∈ Pt has a private

type vt
i. After each round, every player independently exits the game with a (small)

probability p > 0 and is replaced by a new player with an arbitrary type. The utility

of players is additive across rounds. This repeated game is denoted by Γ = (G,T, p);

similarlyM = (M,T, p) denotes a corresponding mechanism.

Our model of dynamic population assumes that after each round every player

independently exits the game with a turnover probability p > 0; each player is

expected to participate in 1/p rounds. To keep our model simple, we assume

that when a player exits, she is replaced by a new participant. This assumption

guarantees that there are exactly n players in each iteration, with a p fraction of

the population changing each round in expectation. We make no assumption on

the types of the new arriving players which can be selected adversarially.

To simplify notation, we use player i to denote the current i-th player, where

this player is replaced by a new i-th player with probability p each round. An

alternate view of the dynamic player population is to think of players as changing

types after each iteration with a small probability p. We refer to such a change as

player i switches or turns over.

140

Approximate regret with shifting comparators. To deal with a shifting envi-

ronment, online learning guarantees against a comparator fixed throughout

the whole time horizon are not strong enough to provide meaningful efficiency

guarantees. Instead, we make a slightly stronger behavioral assumption, requir-

ing that players have, for each time interval, low approximate regret against

a comparator fixed within this interval. This allows us to have different com-

parators for different intervals. More formally, in utility settings, the adaptive

approximate regret for interval [τ, τ′) is defined as:

AdApxReg
(
s?i , ε, τ, τ

′) =

τ′−1∑
t=τ

ui(s?i , s
t
−i; vi) − (1 + ε)

τ′∑
t=τ

ui(st; vt
i).

When τ = 1 and τ′ = T , this recovers the original approximate regret notion

but it allows flexibility to have different comparators for different intervals; if

the number of these comparators is not too large, the resulting guarantees are

strong. This robustness against changing comparators dates back to Herbster

and Warmuth [69]. The adaptive regret guarantee that compares to inteval-based

fixed comparators was introduced by Hazan and Seshadhri [68] and further

studied by Luo and Schapire [91] and Daniely et al. [43]. For the approximate

regret version of the question, which will be useful in our setting, the bounds

for each interval are of the form: E
[
AdApxReg

(
s?,1:T

i , ε, τ, τ′
)]

= O
(

log(Nτ′)
ε

)
. This is

satisfied by many full-feedback algorithms, e.g. sleeping experts algorithms such

as the one of Blum and Mansour [30] for loss settings, or variants of multiplicative

weights such as Noisy Hedge [9, 53] for both utilities and losses. We will again

omit the O-notation from the bound to simplify notation and we will refer to the

behavioral assumption that imposes that this is satisfied as: the players satisfy the

adaptive approximate regret property.

141

Efficiency of dynamic learning outcomes. We now provide an efficiency result

for learners that satisfy the adaptive approximate regret property. We also require

the underlying game to satisfy one more property, which is satisfied for example

in simultaneous first-price auctions when players do not bid over their value.

This property establishes that players with no items in the feasible allocation will

have literally no regret against a deviating strategy that attempts to “win” the

empty allocation and not only a regret that vanishes over time on average.

Property 1. The utility of any player i who is not allocated a resource is always nonneg-

ative, i.e. ui(s; vi) ≥ 0 for any strategy that is used by the players.

Under this property, we provide the efficiency guarantee which we instantiate

in the remainder of the chapter. Let x1, . . . , xT denote a sequence of benchmark

solutions. To denote the number of times that either the solution of player i

changes, or her type changes when she is previously allocated a resource, we use

Ki(x1:T
i) = 1 +

T∑
t=2

1
[(

xt
i , xt−1

i

)
or

(
xt−1

i , ∅ and vt
i , vt−1

i

)]
.

Unlike Proposition 6.2, we compare against a β-approximately optimal bench-

mark instead of the optimal one, for reasons that become clear in the next section.

Note that the optimal solution is now changing with time as a function of player

turnover. With no turnover and β = 1, Theorem 6.3 reverts to Proposition 6.2.

Theorem 6.3. Consider a repeated mechanism with dynamic populationM =

(M,T, p), such that the stage mechanism M is solution-based (λ, µ)-smooth, satis-

fies Property 1, and utilities are in [0, 1]. Suppose that there exists a randomized

sequence (v1:T , x1:T) such that xt is feasible (pointwise) and β-approximately opti-

mal (in-expectation) for each t, i.e. β · E
[
W(xt; vt)

]
≥ E

[
OPT(vt)

]
. If players satisfy

142

the adaptive approximate regret property:

∑
t

E
[
W(st; vt)

]
≥

λ

β ·max(µ, 1 + ε)

∑
t

E
[
OPT(vt)

]
−

∑
i

E
[
Ki

(
x1:T

i

)]
· log(NT)

max(µ, 1 + ε) · ε

where m is such that for any feasible allocation x, |{i : xi , ∅}| ≤ m.

Proof. In a dynamic population game, the underlying optimization problem is

changing over time. Therefore the smoothness analysis described in the proof

of Proposition 6.2 requires a stronger learning property. To deal with this, we

define time-dependent deviating strategies that are related to the underlying

optimization problem of the round. We then use the adaptive learning property

to show that the players do not regret any sequence of such deviating strategies.

Let s?,ti be the deviation s?i (vt
i, x

t
i) defined by the smoothness property and s?,1:T

i

be the sequence of these deviations. Since the deviating strategy s?,ti is determined

by the allocation and type of the player, Ki(x1:T
i) is an upper bound on the number

of times that s?,1:T
i changes. Let ri(s?,1:T

i , s1:T ; v1:T) be the approximate regret that

player i has compared to selecting s?,ti at every round, i.e.:

ri(s?,1:T
i , s1:T ; v1:T) =

T∑
t=1

ui(s?,ti , st
−i; vt) − (1 + ε)

T∑
t=1

ui(st; vt) (6.1)

For shorthand, we denote this with r?i in this proof.

Let τi,r be the round that the strategy s?,ti of player i changes for the r-th time or

her type changes while being allocated a resource. For any period [τi,r, τi,r+1) that

the strategy s?,ti is fixed, the adaptive approximate regret property guarantees

that the player’s expected regret Ri(τr, τr+1) = E
[
AdApxReg(s?,1:T

i , ε, τr, τr+1)
]

with

respect to this strategy is at most

Ri(τr, τr+1) ≤
log(NT)

ε
.

143

Moreover, if in period r, xt
i = ∅, then by Property 1 we have that: Ri(τr, τr+1) ≤ 0.

Thus, if we denote with Xi,r the indicator of whether in period r, xt
i = ∅, we obtain:

Ri(τr, τr+1) ≤ Xi,r ·
log(NT)

ε
.

Summing over the Ki(x1:T) periods where strategies are fixed and summing over

players, we can bound the total expected approximate regret across players by:

E
∑

i

r?i

 ≤ E

Ki(x1:T)∑
r=1

Xi,r ·
log(NT)

ε

 ≤∑
i

E
[
Ki(x1:T)

]
·

log(NT)
ε

The rest of the proof follows the arguments of Proposition 6.2. More formally,

using the notation there:∑
t

E
[
U(st; vt)

]
=

1
1 + ε

∑
t

∑
i∈[n]

(1 + ε) · E
[
ui(st; vt

i)
]

≥
1

1 + ε
· E

∑
t

∑
i

ui(s?i (vt
i, x

t
i), s

t
−i; vt

i) −
∑

i

r?i


≥

1
1 + ε

·

λ∑
t

E
[
W(xt; vt)

]
− µ

∑
t

E
[
REV(st)

]
−

∑
i

E
[
Ki(x1:T)

]
· log(NT)

ε


The claimed bound comes again from rearranging terms, noting that W(st; v) =

U(st; vt) + REV(st), as well as applying that β · E
[
W(xt; vt) ≥ E

[
OPT(vt)

]]
. �

6.3 Classical smoothness analysis leads to ineffective results

In the previous section, we made two steps away from the classical smooth-

ness analysis [116, 123]. First, we assumed that the learners apply adaptive

approximate regret guarantees rather than the more classical no-regret against

a benchmark fixed throughout time. Second, instead of taking the optimal so-

lution as the benchmark allocation we wish to compete with, we turned to a

β-approximately optimal solution. We now explain why both these deviations

are essential to provide efficiency guarantees in dynamic environments.

144

Need for adaptive learning. From a player’s perspective, using no-regret learn-

ing against a fixed comparator can be problematic. Consider a toy scenario where

the are m items and a special player has value 1
j for item j ∈ {1, . . . , log(T)}. We

assume that initially she has no competition but at time i·T
m , player i ∈ {1,m − 1}

arrives and this player significantly dominates her in value for all items and has

the same preference order among items. As a result, after the i-th player arrives,

our special player can realistically win only one of the i lower-valued items.

Any fixed benchmark provides a utility to the player of T/m (assuming that

the payments are non-existing). This is because the i-th element is winnable

only in the first i·T
m rounds. In fact, as we will see in the next chapter, classical

algorithms such as vanilla multiplicative weights achieve performance exactly

equal to that of the best fixed benchmark [59] and, if the learner uses something

like that, then their utility will be therefore exactly T/m.

In contrast, adaptive learning guarantees that the learner can obtain reward

from the best shifting benchmark: in this case selecting the i-th item in rounds[
(i−1)·T

m , i·T
m − 1

]
. Since at these items, the learner faces essentially no competition,

the reward she gets there is Hm · T/m. Hence satisfying the adaptive approximate

regret property leads to a multiplicative increase in performance of Hm at the

expense of an additive dependence of m in the regret which vanishes as T grows

large. Fortunately, the player can indeed achieve performance as good as that by

many natural algorithms, which means that the stronger behavioral assumption

is better suited to what players should and can aim in such evolving settings.

Not using the optimum as a benchmark in smoothness analysis. The original

smoothness analysis uses the optimal allocation as the comparator x in the proof

145

of Proposition 6.2; this gives the efficiency guarantee as W(x; v) = OPT. The issue

with this approach in dynamic environments is that the optimal solution can be

significantly unstable: a single change in a random player’s type can significantly

disturb the allocations of most other players. Since the number of these changes

comes in the regret term, having such instability means that, unless the turnover

probability is really small (the types of the players change very rarely), the regret

term may dominate the efficiency term, making the bound vacuous.

To observe this instability, consider a simple setting with m items and n = m

players. Each player i ∈ {1, . . . ,m− 1} has value 1 for the items i and i + 1 and 0 for

all other items, while the m-th player has value 1 for item m. Clearly the optimal

allocation assigns the i-th item to the i-th player. Now consider that a turnover

happens to a random player and the new arriving player has value 1 only for

item 1. If the player who turned over has identity higher than m/2 (this happens

with probability half), the new optimal solution comes from an augmenting path

affecting at least half of the players. This is because the new player gets item 1

and all players (until the player who turned over) switch to the next item. This

means that in expectation at least n/4 players’ allocations in the optimal solution

is affected by a single type change in a random player. Hence the solution is

unstable causing the additive error term in Theorem 6.3 to become really high

(unless the probability of turnover is very small and hardly any changes occur).

In the next two sections, we describe how using approximately optimal

solutions instead of the optimal solution can lead to significant improvement in

stability of the resulting allocations. This implies that the efficiency guarantees

we suggest are robust even to a large population churn (a constant fraction of

the player set turning over) without significant degradation.

146

6.4 Robustness of efficiency in dynamic games via stability

The previous section demonstrates that, for the smoothness analysis to obtain

efficient guarantees with dynamic population, there should exist a sequence of

approximately optimal solutions that is relatively stable: a single change in a

random player does not alter the allocation of most players. In this section, we

demonstrate such a stable solution sequence for our main application (first-price

auctions with unit-demand bidders) and subsequently instantiate the efficiency

guarantee that this leads to. In the next section, we show a general way to achieve

such stability via a connection to differential privacy.

Stability via layered greedy matching. To obtain a stable and approximately

optimal solution sequence, we use a layered version of the greedy matching

algorithm. The greedy algorithm initially does not allocate any item to any player.

Subsequently it considers item valuations vt
i(j) in decreasing order assigning item

j to player i if, when vt
i(j) is considered, neither item j nor player i are matched. To

make this algorithm more stable we define the layered-greedy matching algorithm,

which works as follows. Recall that ρ > 0 denotes the smallest non-zero value

that a player has for any item. For a positive ε ≤ 1/3, we round each player’s

value down to the closest number of the form ρ(1 + ε)` for some integer `, and

run the greedy algorithm with these rounded values. It is well known that the

greedy algorithm guarantees a solution that is within a factor of 2 to optimal. We

lose an additional factor of (1 + ε) by working with the rounded values.

The greedy algorithm will have many ties and we will resolve ties in a way to

make the output stable. In particular, among all player-item pairs with the same

rounded value at round t, we break ties in favor of pairs matched in the previous

147

round t − 1. Note that this neither affects anything in the mechanism nor makes

assumption on how the mechanism breaks ties; it is just inside the proof to show

the existence of an approximately optimal stable solution sequence.

We now provide the key ingredient for our efficiency guarantee, a lemma

showing that the above algorithm provides a sequence of near-optimal and stable

solutions; hence such a sequence exists for the underlying optimization problem.

Lemma 6.1 (Stability via layered-greedy matching). For any ε > 0, there exists

a randomized sequence of solutions for the underlying matching problem (de-

pending on the randomness in the type sequence) such that a) the total welfare

at any round is near-optimal: W(xt; vt) ≥ 1−ε
2 OPT(vt) and b) the expected number

of changes in the allocation of a player is bounded by

E
∑

i

Ki(x1:T)

 ≤ m · (2 + 2pT) · log(1+ε)(1/ρ).

Proof. The solutions in the sequence of the theorem come by applying the layered-

greedy matching algorithm with parameter ε > 0. The approximation result

holds as we lose a factor of 2 due to the greedy algorithm and another factor of

(1 + ε) due to the layers. Since 1
1+ε

> 1 − ε, result (a) follows.

To show the stability let `(vt
i(j)) be the highest integer ` such that vt

i(j) ≥

ρ(1 + ε)`−1, i.e. the rounded down version of vt
i(j) is ρ(1 + ε)`(vi(j))−1, which we call

the layer of this value. For example, any value in the range [ρ, ρ(1 + ε)) is in

layer 1. Let `t(j) denote `(vt
i(j)) if item j is assigned to player i at time t, and let

`t(j) = 0 if item j is not assigned at time t. We will use the potential function

Φ(xt) =
∑

j

`t(j)

to show stability. As all values are upped bounded by 1, the number of possible

values that the potential function can take is m · log(1+ε)(1/ρ).

148

The crux of the proof relies in the following steps. First, we show that changes

in assignments of non-departing players correspond to increases in the potential

function. Moreover, the potential function can decrease only due to departures:

when a player assigned to item j leaves at time t, this immediately decreases

the potential function by `t(j) ≤ log(1+ε)(1/ρ). Ignoring initial steps, the aggregate

increase in the potential function is the same as the aggregate decrease. Hence,

the expected number of changes is upper bounded by bounding the expected

decrease in the potential function. This argument is formalized below.

The allocation of the solution can change only due to a turnover: either a

player that holds an item in the greedy solution departs and leaves her previously

assigned item open for current players, or a new player arrives and gets assigned

to an item. Every time that a player that holds an item departs, she leaves that

item temporarily free in the greedy solution. Unless this is the last time that the

item has a holder in the greedy solution, at some point (either at the same round

or in the future), some player i will get assigned to this item. Due to the layered

version of the greedy algorithm needs to increase the potential function by at

least 1. If player i was previously assigned to another item, this item becomes free

and some other player may move to that item by increasing again the potential

function by at least 1. As a result, the total increase in the potential function,

caused by someone getting an unassigned item is associated to at most 2 changes.

The case where the item remains unassigned for all the future rounds, contributes

in total at most m extra changes in allocation (over the whole time horizon).

Now consider the scenario where an arriving player misplaces another player

from the greedy solution (instead of getting an unassigned item). For this to

happen, her rounded value is higher than the one of the current owner; hence,

149

the potential function increases by 1. This affects the allocation of the previous

holder of the item who may either cease being allocated or replace a player in

another item again increasing the potential function by at least 1 (and this may

propagate across subsequently misplaced players as well). As a result, each

increase in the potential function that is caused by someone getting a previously

assigned item contributes at most 2 changes in the allocation of other players.

Combined with the previous point, the total number of changes is at most:

∑
i

Ki(x1:T) ≤ 2 · Total Increase in Φ + m (6.2)

Since the potential function can only get integer non-negative values and is

bounded by m · log(1+ε)(1/ρ) and taking into account end-game effects, the total

increase in the potential function is:

Total Increase in Φ ≤ Total Decrease in Φ + m · log(1+ε)(1/ρ). (6.3)

We are therefore left to bound the expected total decrease in the potential

function. This can only happen when a player among the ones that hold items

departs. Each such player departs with probability p and hence the expected

number of such players departing at each round is at most m · p (which is

independent of the number of players and depends only on the number of

items). Whenever this happens, the potential function can decrease by at most

log(1+ε)(1/ρ) since this is the maximum layer the corresponding item can be in. As

a result, the expected decrease in the potential function is at most:

E
[
Total Decrease in Φ

]
≤ p · m · T · log(1+ε)(1/ρ) (6.4)

The theorem follows by combining (6.2), (6.3), and (6.4). �

150

Smoothness with discrete bidding spaces. To apply Theorem 6.3, we need to

establish that the mechanism with the discrete bidding space is smooth. (1/2, 1)-

smoothness of the simultaneous first price auction with submodular bidders (a

super-set of unit-demand valuations) and continuous bids was known by [123].

A simple modification of the result of [123] shows that if the discretization is fine

enough, then the mechanism is approximately (1/2, 1) solution-based smooth.

Since the techniques are similar to [123], we defer this proof to Appendix E.

Lemma 6.2 (Smoothness of simultaneous discrete-bidding first price auction).

The simultaneous first price mechanism where players are restricted to bid on

at most d items and on each item submit a bid that is a multiple of δ · ρ, is a

solution-based
(

1
2 − δ, 1

)
-smooth mechanism, when players have submodular

valuations, such that all marginals are either 0 or at least ρ and such that each

player wants at most d items, i.e. vt
i(S) = maxT⊆S :|T |=d vt

i(T).

Efficiency guarantee We now provide the efficiency guarantee that has many

nice properties. First, it is parametric; we get an extra factor of 2 due to the use of

greedy algorithm in the proof but, other than that, the additional error goes to 0

as p→ 0. Second, the turnover probability can be very high without big loss in

efficiency as there is no dependence on the number of players or items, depends

only the range of item valuations. In particular, even if a constant fraction of the

players is changing at every round then we still do not see much loss in efficiency,

which makes the guarantee meaningful even with high player turnover.

Theorem 6.4 (Main theorem for unit-demand bidders). Consider simultaneous

first price auctions with dynamic population, non-overbidding unit-demand

bidders, and discrete bidding space of multiples of δ · ρ for some δ > 0. As-

sume that the average optimal welfare in each round is at least mρ, that is

151

1
T

∑T
t=1 E

[
OPT(vt)

]
≥ mρ (all items can be allocated for the minimum value). If

players satisfy the adaptive approximate regret property and T ≥ 1
p then ∀ε′ > 0:

∑
t E[W(st; vt)] ≥

(
(1−2δ)·(1−ε′)

4·(1+ε) − p ·
(4 log(1+ε′)(1/ρ) ln(NT)

ρ

))
E
[
OPT(vt)

]
where N is the number of different strategies considered by a player.

Proof. We apply Theorem 6.3 with xt being the allocation of the layered-greedy

algorithm with parameter ε′ > 0. We use the (1/2 − δ, 1) solution-based smooth-

ness of the first price auction with discrete bidding space established in Lemma

6.2 and the stability of the solution sequence produced by the layered-greedy

algorithm establised in Lemma 6.1. Using that pT > 1, we obtain:∑
t

E[W(st; vt)] ≥
(1 − 2δ)(1 − ε′)

4 · (1 + ε)

∑
t

E[OPT(~vt)] −m · 4 · p · T · log(1+ε′)(1/ρ) · ln(NT)

The theorem then follows using the lower bound on the optimum solution

1
T

∑T
t=1 E[OPT(~vt)] ≥ mρ. Since we never run the greedy-layered matching, ε′ is

just inside the proof; it only affects the solution xt and not the possible bids, and

therefore it is fine to define this parameter arbitrarily. �

6.5 Stability in dynamic games via differential privacy

In the last technical section of this chapter, we provide a general way to derive

stable approximately optimal solutions (the essential buliding block in the ef-

ficiency guarantees), by stressing a connection of such solutions to differential

privacy. Differential privacy offers a general framework to find solutions that are

close to optimal, yet more stable to changes in the input than the optimum itself.

To guarantee privacy, the output of the algorithm should depend only minimally

on any single player’s input. This is exactly what we need in our framework.

152

Background on differential privacy. Differential privacy has been developed

for databases storing private information for a population. A database D ∈ Vn is

a vector of inputs, one for each user. Two databases are i-neighbors if they differ

just in the i-th coordinate, i.e. only in the input of the i-th user. If two databases

are i-neighbors for some i, they are called neighboring databases. Dwork et al. [50]

define an algorithm as differentially private if one user’s information has little

influence on the outcome. In the setting of a game or mechanism the outcome

for player i clearly should depend on player i’s input (her claimed valuation, or

source destination pair), so cannot be differentially private. The notion of joint

differential privacy has been developed by Kearns et al. [76] to adapt differential

privacy to such settings. We use X to denote the set of possible outcomes for one

player, so an algorithm in this context is a randomized mapping A : Vn → Xn.

The algorithm is jointly differentially private, if for all players i, the output for all

other players is differentially private in the input of player i. More formally:

Definition 6.4 ([76]). An algorithmA : Vn → Xn is (ε, δ)- jointly differentially private

if for every i, every pair of i-neighbors D,D′ ∈ Vn, and every subset of outputs S ⊆ Xn−1.

P[A(D)−i ∈ S] ≤ eε · P
[
A(D′)−i ∈ S

]
+ δ (6.5)

If δ = 0, we say thatA is ε-jointly differentially private.

Over the last years there have been a number of algorithms developed that

solve problems near-optimally in a differentially private way; see the book of

Dwork and Roth [48] for a survey. Via connecting joint different privacy to stable

solution sequences, we provide dynamic efficiency guarantees for settings like

online advertising and routing via taking advantage of algorithms for solving

matching problems [70] and finding socially optimal routing [115] respectively.

153

Stability via differential privacy. We now show that differentially private

solutions imply stability. This is the main building block for efficiency guarantees.

Lemma 6.3. Suppose that there exists an algorithmA : Vn → ∆(Xn) that is (ε, δ)-

jointly differentially private, takes as input a valuation profile v and outputs a

distribution of solutions such that a sample from this distribution is feasible with

probability 1 − γ, and is β-approximately optimal in expectation (for 0 ≤ ε ≤ 1/2,

β > 1, δ > 0, and 0 < γ < 1). Consider a sample v1:T from the distribution of

valuations produced by the adversary in a repeated mechanism with dynamic

populationM = (M, p,T). There exists a randomized sequence of solutions x1:T

for the sequence v1:T , such that a) for each 1 ≤ t ≤ T , xt conditional on vt is a

β-approximation to OPT(vt) in expectation over the randomness of the algorithm:

β ·E
[
W(xt; vt)

]
≤ E

[
OPT(vt)

]
and b) the expected number of changes in the solution

is bounded by

E
∑

i

Ki(x1:T)

 ≤ p · n · T · (1 + n(2ε + 2γ + δ))

To prove this main lemma, we require two auxiliary lemmas. First, we

bound the total variation distance between the outputs of a differentially private

algorithm on two inputs that differ only on one coordinate (the type of one

player). Total variation distance is a general measure for the distance between

distributions. For two distributions µ and η on some finite probability space Ω

the following are two equivalent versions of the total variation distance:

dtv(µ, η) =
1
2
‖µ − η‖1 = max

A⊂Ω
(µ(A) − η(A)), (6.6)

where in the 1-norm in the middle we think of µ and η as a vector of probabilities

over the possible outcomes.

Lemma 6.4. Suppose thatA : Vn → ∆(Xn) is an (ε, δ)-joint differentially private

algorithm with failure probability γ (for 0 ≤ ε ≤ 1/2 , δ > 0, and 0 < γ < 1)

154

that takes as input a valuation profile v and outputs a distribution over feasible

solutions σ. Let σ and σ′ be the algorithm’s outputs on two inputs v and v′

that differ only in coordinate i. Then we can bound the total variation distance

between σ−i and σ′
−i by dtv(σ−i, σ

′
−i) ≤ (2ε + δ).

Proof. Condition (6.5) of joint differential privacy guarantees that if we let S ⊆

Xn
−i be a subset of possible solutions for players other than i, and σ−i(S) and

σ′
−i(S) be the probability that the two distributions assign on S , then for any S :

σ−i(S) ≤ eε · σ′
−i(S) + δ. Since ε ≤ 1/2, we can use the bound eε ≤ 1 + 2ε to get that

σ−i(S) − σ′
−i(S) ≤ 2εσ′

−i(S) + δ ≤ 2ε + δ. Thus by the second definition of the total

variation distance in Equation (6.6) we get that dtv(σ−i, σ
′
−i) ≤ 2ε + δ. �

Second, we use a simple lemma from basic probability theory.

Lemma 6.5 (Coupling Lemma). Let µ and η be two probability measures over

a finite set Ω. There is a coupling ω of (µ, η), such that if the random variable

(X,Y) is distributed according to ω, then the marginal distribution on X is µ, the

marginal distribution on Y is η, and

P[X , Y] = dtv(µ, η),

Proof of Lemma 6.3. Suppose that A : Vn → ∆(Xn) is an (ε, δ)-joint differentially

private algorithm as described in the definition of the lemma. The differentially

private algorithm fails with probability γ. We denote with σ the output distribu-

tion over solutions for an input v, where we use the optimal solution in the low

probability event that the algorithm fails. (EquivalentlyA could be a randomized

algorithm and σ its implicit distribution over solutions).

155

Let σ1, . . . , σT , be the sequence of distributions output by A when run on

a deterministic sequence of valuation profiles v1, . . . , vT with the modification

described in the paragraph above. To simplify the discussion we assume that

only one player changes valuation at each time-step t. Essentially we break every

transition from time-step t to t + 1 into many sequential transitions where only

one player changes at every time step, and then deleting the solutions from the

resulting sequence that correspond to the added steps. Thus the number of steps

within this proof should be thought as being equal to n · p · T in expectation.

By Lemma 6.4, we know that the total variation distance of two consecutive

distributions without the modification of replacing failures with the optimal

solution is at most 2ε + δ. Since, by the union bound, the probability that any of

the two consecutive runs of the algorithm fail is at most 2γ, we can show that the

total variation distance of the latter modified output is at most 2ε + δ + 2γ, i.e. for

any t ∈ [T]: dtv(σt+1
−i , σ

t
−i) ≤ 2ε + δ + 2γ (see Lemma 6.6 for a formal proof).

We can turn the sequence of distributions σ1, . . . , σT into a distribution of

sequences of allocations x1:T by coupling the randomness used to select the

solutions in different distributions σt. To do this, we take advantage of the

coupling lemma from probability theory (Lemma 6.5). If at step t no player

changes values, then σt = σt+1, and we select the same outcome from the two

distributions, so we get P
[
xt
−i , xt+1

−i

]
= 0.

Now consider a step in which a player i changes her private type vi. We use

Lemma 6.5 to couple xt+1
−i and xt

−i so that3

P[xt+1
−i , xt

−i] = dtv(σt+1
−i , σ

t
−i) ≤ 2ε + δ + 2γ. (6.7)

3One can think of it as sampling xt+1 conditional on xt and assuming the joint distribution
of xt and xt+1 is as prescribed by the coupling lemma applied to σt and σt+1. This is to address
concerns that xt is already coupled with xt−1 in the previous step.

156

Note that this couples the ith coordinate xt+1
i and xt

i in an arbitrary manner, which

is fine, as we assumed that the valuation of player i changes at this step.

We have defined a probability distribution of sequences x1:T for every fixed

sequence of valuations v1:T . We extend this definition to random sequences of

valuation in the natural way adding the distribution of valuations v1:T .

We claim that the resulting random sequences of (valuation,solution) pairs

satisfies the statement of the theorem: the β-approximation follows by the guar-

antees of the private algorithm and by the fact that we use the optimal solution

when the algorithm fails. Next we argue about the stability of the sequence.

Consider a player i, and the distribution of her sequence (v1:T
i , x1:T

i). In each step

t her valuation vt
i changes with probability p, contributing pT in expectation to

the number of changes. In a step t when some other value j , i changes, we use

(6.7) to bound the probability that xt
i , xt+1

i by 2ε + δ+ 2γ. Thus any change in the

value of some other player j contributes at most (2ε + 2γ + δ) to the expectation

of the number of changes for player i. The expected number of such changes in

other values is (n − 1)pT over the sequence, showing that

E[Ki] = pT + (n − 1)pT (2ε + 2γ + δ) ≤ pT (1 + n(2ε + 2γ + δ)).

Summing over players, we obtain the lemma. �

Lemma 6.6. Let q and q′ be the output of an (ε, δ)-joint differentially private

algorithm with failure probability γ, on two valuation profiles v and v′ that differ

only in coordinate i. Let σ and σ′ be the modified output where the outcome is

replaced with optimal outcome when the algorithm fails. Then:

dtv(σ,σ′) ≤ 2ε + δ + 2γ

Proof. Consider two random coupled random variables y, y′ that are implied by

157

Lemma 6.5 applied to distributions q and q′, such that y ∼ q and y′ ∼ q′ and

P
[
y , y′

]
= dtv(q, q′) ≤ 2ε + δ (by Lemma 6.4). Now consider two other random

variables x and x′ where x = y except for the cases where y is an outcome of a

failure in which case x is equal to the welfare optimal outcome and similarly

for x′ and y′. Obviously: x ∼ σ and x′ ∼ σ′, thus (x, x′) is a valid coupling for

distributions σ and σ′. Thus if we show that Pr[x , x′] ≤ 2ε + δ + 2γ, then by

properties of total variation distance dtv(σ,σ′) ≤ Pr[x , x′] ≤ 2ε + δ + 2γ, which is

the property we want to show.

Let fail be the event that either y or y′ is the outcome of a failed run of the

algorithm. Then by the union bound P
[
fail

]
≤ 2γ. Thus we have:

P
[
x , x′

]
= P

[
x , x′ | ¬fail

]
· P

[
¬fail

]
+ P

[
x , x′ | fail

]
· P

[
fail

]
≤ P

[
x , x′ | ¬fail

]
· P

[
¬fail

]
+ 2γ

= P
[
y , y′ | ¬fail

]
· P

[
¬fail

]
+ 2γ

≤ P
[
y , y′

]
+ 2γ ≤ dtv(q, q′) + 2γ ≤ 2ε + δ + 2γ

This completes the proof of the Lemma. �

Efficiency guarantee for dynamic games via differential privacy. We can now

provide the resulting efficiency guarantee.

Theorem 6.5. Consider a repeated mechanism with dynamic populationM =

(M,T, p), such that the stage mechanism M is solution-based (λ, µ)-smooth and

T ≥ 1
p . Assume that there exists an (ε, δ)-joint differentially private algorithm

A : Vn → Xn with error parameter γ that satisfies the conditions of Lemma 6.3. If

players satisfy the adaptive approximate regret property then:∑
t

E
[
W(st; vt)

]
≥

λ

βmax(µ, 1 + ε)

∑
t

E
[
OPT(vt)

]
−
∑

i

2pnT (1 + n(ε + γ + δ)) log(NT)
max(µ, 1 + ε) · ε

158

Proof. The proof follows directly by combining Theorem 6.3 and Lemma 6.3. �

Using this theorem, we can obtain efficiency guarantees for simultaneous

auctions where players have submodular valuation functions, assuming the

number of players is large enough. This comes from using the algorithm PAlloc

of Hsu et al. [70] which provide near-optimal differentially private guarantees in

large markets. Similarly, applying the equivalent of the above theorem for cost

games (which is omitted from this thesis), we can provide efficiency guarantees

for routing games via the differenitally private algorthm of Rogers et al. [115].

6.6 Remarks

More information about the papers. The results in this chapter are based

mostly on joint work with Vasilis Syrgkanis and Éva Tardos [94]. The connection

between approximate regret learners and efficiency of outcomes is based on joint

work with Dylan Foster, Zhiyuan Li, Karthik Sridharan, and Éva Tardos [53].

The dynamic population model, the interval-based behavioral assumption, and

the stability results leading to efficiency appear in [94]. In that paper, we also

instantiate the differential privacy framework to simultaneous auctions with

submodular valuations and routing games as hinted in the end of the last section.

Learning as a behavioral assumption. Decentralized dynamics as a model of

player behavior in repeated settings dates back to the seminal work of Brown

on fictitious play in two-player zero-sum games [31] which converges to the

so called min-max value of the game [114]. The rate of this convergence has

been subsequently extensively studied both for fictitious play [114, 45] as well as

159

for other learning dynamics in zero-sum games [44, 111]. Hart and Mas Collel

showed that in more general games, uncoupled dynamics do not converge to

Nash equilibria but provided a dynamic satisfying a stronger notion of regret

(internal regret) that converges to the so called correlated equilibria. Despite that,

Blum et al. [27] showed that in games such as routing, generic decentralized no-

regret learning dynamics do converge to an approximate form of Nash equilibria.

Subsequently, multiple works have aimed to understand the exact topological

trajectories of decentralized dynamics to shed more light on their convergence,

for example [79, 98].

In this chapter, we focus on properties of the outcomes in game settings where

players use generic no-regret learning dynamics instead of analyzing the exact

dynamic. In particular, we analyze the social welfare in this repeated game where

the behavioral assumption for the players is that they use no-regret learning.

Quantifying the inefficiency caused by the selfish behavior of players is due

to the seminal works on price of anarchy by Koutsoupias and Papadimitriou

[82], and Roughgarden and Tardos [117], with Nash equilibrium as a notion

for selfish behavior. Using the learning behavioral assumption to capture the

selfish behavior of the players in this context was initiated by Blum et al. [29].

The smoothness extension theorem of Roughgarden [116] provided a general

framework to make price of anarchy guarantees hold even under this weaker

learning behavioral assumption. Our work goes one step further and provides a

framework to make these results robust to drastically evolving game settings.

160

CHAPTER 7

A FAIRNESS VIEW ON ONLINE LEARNING

In the final facet of this thesis, we expand the focus of online decision-making

beyond a mere optimization perspective and aim to address the greater societal

context of these decisions. Until now, we focused on understanding how online

decision-making techniques can help platforms and other agents adapt to the

optimization complexities of modern systems. Recently, there are emerging

concerns regarding approaches that focus on just optimizing objectives such as

revenue or welfare. Ethical considerations slowly start coming to the picture

with respect to the functioning of online markets as platforms’ decisions affect

multiple different agents. Hence there is a sense of urgency to undertand short-

comings with respect to important considerations such as fairness and privacy,

and mitigate them through either algorithmic or regulatory interventions.

One consideration that has become more and more prominent with respect to

how algorithmic decisions affect people is fairness across different population

groups. Although there is still ongoing debate on what classifies as fair [19,

24, 41], recent works identify morally objectionable practices [46, 7, 8] suggest

operational remedies for particular tasks [49, 65, 71] or point to fundamental

obstacles preventing them [40, 78]. However, most of them focus on analyzing

existing datasets in an offline manner which disregards the fact that decisions

often need to be made in an online manner without the benefit of the complete

dataset. Approaches that incorporate the online nature of modern markets tend

to heavily rely on the input being completely i.i.d. (see Section 7.6). This then

enables them to imitate the offline approaches by initially exploring to find the

best fair policy (for the fairness notion of interest) and then repeatedly use it.

161

In this chapter, we focus on understanding the extra complexities that the

online aspect of this decision-making adds to the picture in settings where

the i.i.d. assumption on the input is not necessarily valid (e.g. because the

input evolves as we discussed in the previous chapter). In particular, for these

settings we wish to understand the interplay between online optimization and

fairness with respect to different notions of group fairness. Our goal is to identify

which group fairness notions are compatible with optimization occurring in an

online manner and point to places where system designers may need to be extra

thoughtful when dealing with non-i.i.d. online datasets.

7.1 Preliminaries on online learing with multiple groups

Before discussing fairness considerations, we first formally describe the online

learning setting with multiple groups; this slightly extends the exposition in

Chapter 2 but all notions are redefined for completeness and notational simplicity.

In particular, unlike that chapter where the losses were treated as abstract, here

we provide more context on their origin, in order to distinguish between different

types of mistakes (e.g. false positives and false negatives, defined in Section 7.2).

Online learning setting with group context. We focus on the full-feedback ad-

versarial online learning setting (also referred to as learning with expert advice).

A learner needs to make sequential decisions for T rounds by combining the pre-

dictions of a finite set F of d hypotheses (also referred to as experts). We denote

the outcome space by Y; in binary classification, this corresponds to Y = {+,−}.

Additionally, we introduce a set of disjoint groups by G which identifies subsets

162

of the population based on a protected attribute (gender, ethnicity, income, etc).

The online learning setting with group context proceeds in T rounds. Each

round t is associated with a group context g(t) ∈ G and an outcome y(t) ∈ Y.

We denote the resulting T -length time-group-outcome sequence tuple by σ =

{(t, g(t), y(t)) ∈ N × G × Y}Tt=1. This is a random variable that can depend on the

randomness in the generation of the groups and the outcomes. We use the

shorthand σ1:τ = {(t, g(t), y(t)) ∈ N × G × Y}τt=1 to denote the subsequence until

round τ. The exact protocol for generating these sequences is described below.

At round t = 1, 2, . . . ,T :

1. An example with group context g(t) ∈ G either arrives stochastically or is

adversarially selected.

2. The learning algorithm or learner L commits to a probability distribution

pt ∈ ∆(d) across experts where pt
f denotes the probability that she follows

the advice of expert f ∈ F at round t. This distribution pt can be a function

of the sequence σ1:t−1. We call the learner group-unaware if she ignores the

group context g(τ) for all τ ≤ t when selecting pt.

3. An adversaryA then selects an outcome y(t) ∈ Y. The adversary is called

adaptive if the groups/outcomes at round t = τ + 1 are a function of the

realization of σ1:τ; otherwise she is called oblivious. The adversary always

has access to the learning algorithm, but an adaptive adversary additionally

has access to the realized σ1:t−1 and hence also knows pt.

Simultaneously, each expert f ∈ F makes a prediction ŷt
f ∈ Ŷ, where Ŷ is

a generic prediction space. For example, in binary classification, the pre-

diction space could simply be the positive or negative labels: Ŷ = {+,−}, or

the probabilistic score: Ŷ = [0, 1] with ŷt
f interpreted as the probability the

163

expert f ∈ F assigns to the positive label in round t, or even an uncalibrated

score like the output of a support vector machine: Ŷ = R.

Let ` : Ŷ×Y → [0, 1] be the loss function between predictions and outcomes.

This leads to a corresponding loss vector `t ∈ [0, 1]d where `t
f = `

(
ŷt

f , y(t)
)

denotes the loss the learner incurs if she follows expert f ∈ F .

4. The learner then observes the entire loss vector `t (full feedback) and incurs

expected loss
∑

f∈F pt
f `

t
f . For classification, this feedback is obtained by

observing y(t).

In this chapter, we consider a setting where all the experts f ∈ F are fair in

isolation (formalized below). Regarding the group contexts, our main impossi-

bility results (Theorems 7.1 and 7.2) assume that the group contexts g(t) arrive

stochastically from a fixed distribution, while our positive result (Theorem 7.3)

holds even when they are adversarially selected.

For simplicity of notation, we assume throughout the presentation that the

learner’s algorithm is producing the distribution pt of round t = τ + 1 determin-

istically based on σ1:τ and therefore all our expectations are taken only over σ

which is the case in most algorithms. Our results extend when the algorithm

uses extra randomness to select the distribution.

Regret notions. The typical way to evaluate the performance of an algorithm

in online learning is via the notion of regret. This has already been discussed in

Chapter 2 but we redefine it here comparing the expected performance of the

algorithm to the one of the best expert in hindsight on the realized sequence σ.

RegretT =

T∑
t=1

∑
f∈F

pt
f `

t
f − min

f?∈F

T∑
t=1

`t
f? .

164

For any fixed loss vector (determined by the groups and outcomes at every

round), the above definition is the same as what we called expected regret in

Chapter 2. In our impossibility results, we assume that the losses come in fact

from particular distributions and we are interested in the expectation of this

regret notion with respect to the randomness in the groups and outcomes (as

we want to argue that even in expectation, the vanishing regret property is not

compatible with particular fairness notions). To facilitate exposition, we therefore

incorporate the algorithm’s expectation inside the regret notion in the above

definition; hence, any additional expectation relates to the groups and outcomes.

An algorithm satisfies the no-regret property (or Hannan consistency) in our

setting if for any losses realizable by the above protocol, the regret is sublinear

in the time horizon T , i.e. RegretT = o(T). This property ensures that, as time

goes by, the average regret vanishes. Many online learning algorithms, such as

multiplicative weights updates satisfy this property with RegretT = O(
√

T log(d)).

We focus on the notion of approximate regret (as in Chapters 2 and 6), which

is a relaxation of regret that gives a small multiplicative slack to the algorithm.

More formally, ε-approximate regret with respect to expert f ? ∈ F is defined as:

ApxRegε,T (f ?) =

T∑
t=1

∑
f∈F

pt
f `

t
f − (1 + ε)

T∑
t=1

`t
f? .

We note that typical algorithms guarantee ApxRegε,T (f ?) = O(ln(d)/ε) simultane-

ously for all experts f ? ∈ F . When the time-horizon is known in advance, by

setting ε =
√

ln(d)/T , such a bound implies the aforementioned regret guarantee.

In the case when the time horizon is not known, one can also obtain a similar

guarantee by adjusting the learning rate of the algorithm appropriately.

165

7.2 On combining fair expert advice fairly

Group fairness in online learning. We now define non-discrimination (or

fairness) with respect to a particular evaluation metricM, e.g. in classification,

the false negative rate metric (FNR) is the fraction of examples with positive

outcome that the algorithm predicts as negative incorrectly. For any realization

of the time-group-outcome sequence σ and any group g ∈ G, metricM induces a

subset of the populationSσg (M) that is relevant to it. For example, in classification,

Sσg (FNR) = {t : g(t) = g, y(t) = +} is the set of positive examples of group g. The

performance of expert f ∈ F on the subpopulation S σ
g (M) is denoted by

Mσ
f (g) =

1
|Sσg (M)|

∑
t∈Sσg (M)

`t
f .

Definition 7.1. An expert f ∈ F is called fair in isolation with respect to metric

M if, for every sequence σ, her performance with respect toM is deterministically the

same across groups, i.e. Mσ
f (g) =Mσ

f (g′) for all g, g′ ∈ G.

Similarly, the learner’s performance on this subpopulation is

Mσ
L(g) =

1
|Sσg (M)|

∑
t∈Sσg (M)

∑
f∈F

pt
f `

t
f .

To formalize our non-discrimination desiderata, we require the algorithm to have

similar expected performance across groups, when given access to fair in isolation

predictors. We make the following assumptions to avoid trivial impossibility

results due to low-probability events or underrepresented populations. First, we

take expectation over sequences generated by the adversaryA (that has access

to the learning algorithm L). Second, we require the relevant subpopulations to

be, in expectation, large enough. Our positive results do not depend on either of

these assumptions. More formally:

166

Definition 7.2. Consider a set of experts F such that each expert is fair in isolation

with respect to metricM. Learner L is called α-fair in composition with respect to

metricM if, for all adversaries that produce Eσ[min(|S σ
g (M)|, |S σ

g′(M)|)] = Ω(T) for all

g, g′ ∈ G, it holds that:

∣∣∣∣Eσ

[
Mσ
L(g)

]
− Eσ

[
Mσ
L(g′)

]∣∣∣∣ ≤ α.
We note that, in many settings, we wish to have non-discrimination with

respect to multiple metrics simultaneously. For instance, the notion of equalized

odds [65] requires fairness in composition both with respect to false negative rate

and with respect to false positive rate (defined analogously). Since we provide

an impossibility result for equalized odds, focusing on only one metric makes

the result even stronger.

Optimizing performance vs preserving fairness. Our goal is to develop on-

line learning algorithms that combine fair in isolation experts in order to achieve

both vanishing average expected ε-approximate regret, i.e. for any fixed ε > 0

and f ? ∈ F , Eσ

[
ApxRegε,T (f ?)

]
= o(T), and also non-discrimination with respect

to fairness metrics of interest. We show that, when the fairness notion requires to

balance false negative rates across groups, satisfying both the aforementioned

guarantees is not possible (Section 7.3). In contrast, we can design effective

algorithms that satisfy an alternate fairness notion: balance of the average perfor-

mance experienced by each group (Section 7.4). Crucially, this requires a specific

property that prevents the algorithm from being very good; at the absence of this

property, impossibility results come back even for the latter notion 7.5).

167

7.3 Impossibility: Balance of false negative rates unachievable

In this section, we study a popular group fairness notion, equalized odds, in

the context of online learning. A natural extension of equalized odds for online

settings would require that the false negative rate, i.e. percentage of positive

examples predicted incorrectly, is the same across all groups and the same also

holds for the false positive rate. We assume that our experts are fair in isolation

with respect to both false negative as well as false positive rate. A weaker

notion of equalized odds is equality of opportunity where the non-discrimination

condition is required to be satisfied only for the false negative rate. We first study

whether it is possible to achieve the vanishing regret property while guaranteeing

α-fairness in composition with respect to false negative rate for arbitrarily small α.

When the input is i.i.d., this is trivial as we can learn the best expert in O(log d)

rounds and then follow its advice; since the expert is fair in isolation, this will

guarantee vanishing non-discrimination.

In contrast, we show that, in a non-i.i.d. online setting, this goal is unachiev-

able. We demonstrate this in phenomenally benign settings where there are

just two groups G = {A, B} that come from a fixed distribution and just two

experts that are fair in isolation (with respect to false negative rate) even per

round – not only ex post. Our first construction (Theorem 7.1) shows that any

no-regret learning algorithm that is group-unaware cannot guarantee fairness in

composition, even in instances that are perfectly balanced (each pair of label and

group gets 1/4 of the examples) – the only adversarial component is the order in

which these examples arrive. This is surprising because such a task is straightfor-

ward in the stochastic setting as all hypotheses are non-discriminatory. We then

study whether actively using the group identity can correct the aforementioned

168

similarly to how it enables correction against discriminatory predictors [65].

The answer is negative even in this scenario (Theorem 7.2): if the population is

sufficiently not balanced, any no-regret learning algorithm will be unfair in com-

position with respect to false negative rate even if they are not group-unaware.

Group-unaware algorithms. We first present the impossibility result about

group-unaware algorithms.

Theorem 7.1. For all α < 3/8, there exists ε > 0 such that any group-unaware

algorithm that satisfies Eσ

[
ApxRegε,T (f)

]
= o(T) for all f ∈ F is α-unfair in compo-

sition with respect to false negative rate even for perfectly balanced sequences. In

particular, for any group-unaware algorithm that ensures vanishing approximate

regret1, there exists an oblivious adversary for assigning labels such that:

• In expectation, half of the population corresponds to each group.

• For each group, in expectation half of its labels are positive and the other

half are negative.

• The false negative rates of the two groups differ by α.

Proof sketch. Consider an instance that consists of two groups G = {A, B}, two

experts F = {hn, hu}, and two phases: Phase I and Phase II. Group A is the group

we end up discriminating against while group B is boosted by the discrimination

with respect to false negative rate. At each round t the groups arrive stochastically

with probability 1/2 each, independent of σ1:t−1.

The experts output a score value in Ŷ = [0, 1], where score ŷt
f ∈ Ŷ can be

interpreted as the probability that expert f assigns to label being positive in
1This requirement is weaker than vanishing regret so the impossibility result applies to

vanishing regret algorithms.

169

round t, i.e. y(t) = +. The loss function is the expected probability of error given

by `(ŷ, y) = ŷ · 1{y = −} + (1 − ŷ) · 1{y = +}. The two experts are very simple:

hn always predicts negative, i.e. ŷt
hn

= 0 for all t, and hu is an unbiased expert

who, irrespective of the group or the label, makes an inaccurate prediction with

probability β = 1/4 +
√
ε, i.e. ŷt

hu
= β · 1{y(t) = −}+ (1− β) · 1{y(t) = +} for all t. Both

experts are fair in isolation with respect to both false negative and false positive

rates: FNR is 100% for hn and β for hu regardless the group, and FPR is 0% for hn

and β for hu, independent of the group. The instance proceeds in two phases:

1. Phase I lasts for T/2 rounds. The adversary assigns negative labels on

examples with group context B and assigns a label uniformly at random to

examples from group A.

2. In Phase II, there are two plausible worlds:

(a) if the expected probability the algorithm assigns to expert hu in Phase

I is at least Eσ

[∑T/2
t=1 pt

hu

]
>
√
ε · T then the adversary assigns negative

labels for both groups

(b) else the adversary assigns positive labels to examples with group

context B while examples from group A keep receiving positive and

negative labels with probability equal to half.

We will show that for any algorithm with vanishing approximate regret

property, i.e. with ApxRegε,T (f) = o(T), the condition for the first world is

never triggered and hence the above sequence is indeed balanced.

We now point to why the above instance is unfair in composition (the complete

proof is provided in Appendix F.1). This stems from the two following claims:

170

1. In Phase I, any ε-approximate regret algorithm needs to select the negative

expert hn most of the times to ensure small approximate regret with respect

to hn. This means that, in Phase I (where we encounter half of the positive

examples from group A and none from group B), the false negative rate of

the algorithm is close to 1.

2. In Phase II, any ε-approximate regret algorithm should quickly catch up

to ensure small approximate regret with respect to hu and hence the false

negative rate of the algorithm is closer to β. Since the algorithm is group-

unaware, this creates a mismatch between the false negative rate of B (that

only receives false negatives in this phase) and A (that has also received

many false negatives before).

�

Group-aware algorithms. We now turn our attention to group-aware algo-

rithms, that can use the group context of the example to select the probability of

each expert and provide a similar impossibility result. There are three changes

compared to the impossibility result we provided for group-unaware algorithms.

First, the adversary is not oblivious but instead is adaptive. Second, we do not

have perfect balance across populations but instead require that the minority

population arrives with probability b < 0.49, while the majority population ar-

rives with probability 1 − b. Third, the labels are not equally distributed across

positive and negative for each population but instead positive labels for one

group are at least a c percentage of the total examples of the group for a small

c > 0. Although the upper bounds on b and c are not optimized, our impossibility

result cannot extend to b = c = 1/2. Understanding whether one can achieve

171

fairness in composition for such values of b and c is an interesting open question.

Theorem 7.2. For any group imbalance b < 0.49 and 0 < α < 0.49−0.99b
1−b , there exists

ε0 > 0 such that for all 0 < ε < ε0 any algorithm that satisfies Eσ

[
ApxRegε,T (f)

]
=

o(T) for all f ∈ F , is α-unfair in composition.

Proof sketch. The instance has two groups: G = {A, B}. Examples with group

context A are discriminated against and arrive randomly with probability b < 1
2

while examples with group context B are boosted by the discrimination and arrive

with the remaining probability 1 − b. There are again two experts F = {hn, hp},

which output score values in Ŷ = [0, 1], where ŷt
f can be interpreted as the

probability that expert f assigns to label being + in round t. We use the earlier

loss function of `(ŷ, y) = ŷ · 1{y = −} + (1 − ŷ) · 1{y = +}. The first expert hn is again

pessimistic and always predicts negative, i.e. ŷt
hn

= 0, while the other expert hp is

optimistic and always predicts positive, i.e. ŷt
hp

= 1. These experts again satisfy

fairness in isolation with respect to false negative and false positive rate. Let

c = 1/1012 denote the percentage of the input that is about positive examples for

A, ensuring that |Sσg (FNR)| = Ω(T). The instance proceeds in two phases.

1. Phase I lasts Θ·T rounds for Θ = 101c. The adversary assigns negative labels

on examples with group context B. For examples with group context A, the

adversary acts as following:

• if the algorithm assigns probability on the negative expert below

γ(ε) = 99−2ε
100 , i.e. pt

hn
(σ1:t−1) < γ(ε), the adversary assigns negative label.

• otherwise, the adversary assigns positive labels.

2. In Phase II, there are two plausible worlds:

172

(a) the adversary assigns negative labels to both groups if the expected

number of times that the algorithm selected the negative expert with

probability higher than γ(ε) on members of group A is less than c · b ·T ,

i.e. Eσ

[
1
{
t ≤ Θ · T : g(t) = A, pt

hn
≥ γ(ε)

}]
< c · b · T .

(b) otherwise she assigns positive labels to examples with group context

B and negative labels to examples with group context A.

Note that, as before, the condition for the first world will never be triggered

by any no-regret learning algorithm (we elaborate on that below) which

ensures that Eσ |S σ
A(FNR)| ≥ c · b · T .

The proof is based on the following claims, shown in Appendix F.2:

1. In Phase I, any vanishing approximate regret algorithm enters the second

world of Phase II.

2. This implies a lower bound on the false negative rate on A, i.e. FNR(A) ≥

γ(ε) = 99−2ε
100 .

3. In Phase II, any ε-approximate regret algorithm assigns large enough prob-

ability to the positive expert hp for group B. This implies an upper bound

on the false negative rate on B, i.e. FNR(B) ≤ 1
2(1−b) . Therefore this provides

a gap in the false negative rates of at least α.

�

173

7.4 Main positive result: Balance in accuracy achievable

The negative results of the previous section give rise to a natural question of

whether fairness in composition can be achieved for some other fairness metric in

an online setting. We answer this question positively by suggesting the equalized

error rates metric EER which captures the average loss over the total number of

examples (independent of whether this loss comes from false negative or false

positive examples). The relevant subset induced by this metric Sσg (EER) is the set

of all examples coming from group g ∈ G. We again assume that experts are fair

in isolation (Definition 7.1) with respect to equalized error rate and show that a

simple scheme where we run separately one instance of multiplicative weights

for each group achieves fairness in composition (Theorem 7.3). The result holds

for general loss functions (beyond pure classification) and is robust to the experts

only being approximately fair in isolation. A crucial property we use is that

multiplicative weights not only does not perform worse than the best expert; it

also does not perform better [59].

The algorithm. We run separate instances of multiplicative weights with a

fixed learning rate η, one for each group. More formally, for each pair of expert

f ∈ F and group g ∈ G, we initialize weights w1
f ,g = 1. At round t = 1, 2, . . . ,T ,

an example with group context g(t) arrives and the learner selects a probability

distribution based to the corresponding weights: pt
f =

wt
f ,g(t)∑

j∈F wt
j,g(t)

. Then the weights

corresponding to group g(t) are updated exponentially: wt+1
f ,g = wt

f ,g · (1−η)`
t
f ·1{g(t)=g}.

Theorem 7.3. For any α > 0 and any ε < α such that running separate instances of

multiplicative weights for each group with learning rate η = min(ε, α/6) guaran-

tees α-fairness in composition and ε-approximate regret of at most O
(
|G| log(d)/ε

)
.

174

Proof. The proof is based on the property that multiplicative weights performs

not only no worse than the best expert in hindsight but also no better. Therefore

the average performance of multiplicative weights at each group is approxi-

mately equal to the average performance of the best expert in that group. Since

the experts are fair in isolation, the average performance of the best expert in all

groups is the same which guarantees the equalized error rates desideratum. We

make these arguments formal below.

We follow the classical potential function analysis of multiplicative weights

but apply bidirectional bounds to also lower bound the performance of the

algorithm by the performance of the comparator. For each group g ∈ G and

every expert f ∈ F , let L f ,g =
∑

t:g(t)=g `
t
f · 1{g(t) = g} be the cumulative loss of

expert f in examples with group context g, and L̂g =
∑T

t=1
∑

f∈F pt
f `

t
f · 1{g(t) = g} to

denote the expected loss of the algorithm on these examples. We also denote the

best in hindsight expert on these examples by f ?(g) = arg min f∈F L f ,g. Recall that

wt
f ,g = (1 − η)

∑
τ≤t:g(τ)=g `

τ
f is the weight of expert f in the instance of group g and let

Wt,g =
∑

j∈F wt
j,g be its potential function.

To show that the algorithm does not perform much worse than any expert,

we follow the classical potential function analysis and, since (1 − η)x ≤ 1 − ηx for

all x ∈ [0, 1] and η ≤ 1, we obtain:

Wt+1,g =
∑
j∈F

wt
j,g(1 − η)`

t
j·1{g(t)=g}

≤
∑
j∈F

wt
j,g(1 − η`t

j · 1{g(t) = g}) = Wt,g(1 − η
∑
j∈F

pt
j`

t
j).

By the classical analysis, for all f ∈ F and g ∈ G:

wT+1
f ,g = (1 − η)

∑T
t=1 `

t
f ·1{g

t=g}
≤ WT+1,g ≤ d ·

T∏
t=1

(1 − η
∑
j∈F

pt
j`

t
j · 1{g(t) = g})

where the left inequality follows since all summands of WT+1,g are positive and

the right inequality follows by unrolling WT+1,g and using that W1,g = d.

175

Taking logarithms and using that −η − η2 < ln(1 − η) < −η for η < 1/2, this

implies that for all f ∈ F :

L̂g ≤ (1 + η) · L f ,g +
ln(d)
η

(7.1)

We now use the converse side of the inequalities to show that multiplicative

weights also does not perform much better than the best expert in hindsight

f ?(g). Using that (1 − η)x ≥ 1 − η(1 + η)x for all x ∈ [0, 1], we obtain:

Wt+1,g =
∑
j∈F

wt
j,g · (1 − η)`

t
j·1{g(t)=g}

≥
∑
j∈F

wt
j,g ·

(
1 − η(1 + η) · `t

j · 1{g(t) = g}
)

= Wt,g ·

1 − η(1 + η)
∑
j∈F

pt
i`

t
i

.
Using that f ?(g) is the best expert in hindsight, we can upper bound

∑
j∈F wt

j,g ≤

d ·max j∈F wt
j,g = d ·max f∈F (1 − η)

∑t
t=1 `

t
f 1{gt=g}. Similarly to before, it follows that:

d · (1 − η)
∑T

t=1 `
t
f?(g)

1{gt=g}
≥ WT+1 ≥ d ·

T∏
t=1

1 − η(1 + η)
∑
j∈F

pt
j`

t
j


which, for η < 1/2, implies that:

L̂g ≥ (1 − 4η) · L f?(g),g (7.2)

The expected ε-approximate regret of this algorithm is at most 6 · |G| times the

one of a single multiplicative weights instance (by summing over inequalities

(7.1) for all g ∈ G and since ε/6 ≤ η ≤ ε). What is left to show is that the α-fairness

in composition guarantee is satisfied, that is there exists T0 (function of α and

ε) such that when the number of examples from each group is at least T0, the

maximum difference between average expected losses across groups is bounded

by α. Let g? be the group with the smallest average expected loss. We will show

that the maximum difference from the average expected loss of any other group

g is at most α for T0 =
6 ln(d)
ηα

. Since the experts are fair in isolation, we know that

176

L f ,g

|{t:gt=g}| =
L f ,g′

|{t:gt=g′}| for all f ∈ F and g, g′ ∈ G. Combining this with inequalities (7.1)

and (7.2) and the fact that the losses are in [0, 1] and η ≤ α/6, we obtain:

L̂g

|{t : g(t) = g}|
−

L̂g?

|{t : g(t) = g?}|
≤

(1 + η)L f?(g),g

|{t : g(t) = g}|
+

ln(d)
η|{t : g(t) = g}|

−
(1 − 4η)L f?(g?),g?

|{t : g(t) = g?}|

≤ 5η ·
L f?(g?),g?

|{t : g(t) = g?}|
+

ln(d)
η · T0

≤ α.

�

Remark 7.1. If the instance is instead only approximately fair in isolation with respect

to equalized error rates, i.e. the error rates of the two experts are not exactly equal but

within some constant κ, the same analysis implies (α + κ)-fairness in composition with

respect to equalized error rates.

7.5 Balance in accuracy only when learning is not too good

The reader may be also wondering whether it suffices to just run separate learning

algorithms in the two groups or whether multiplicative weights has a special

property. In the following theorem, we show that the latter is the case. In

particular, multiplicative weights has the property of not doing better than the

best expert in hindsight. The main representative of algorithms that do not

have such a property are the algorithms that achieve low approximate regret

compared to a shifting benchmark (tracking the best expert), which we already

discussed in the previous chapter. More formally, approximate regret against a

shifting comparator f ? = (f ?(1), . . . , f ?(T)) is defined as:

ApxRegε,T (f ?) =
∑

t

pt
f `

t
f − (1 + ε)

∑
t

`t
f?(t).

177

Typical bounds are E[ApxReg(f ?)] = O(K(f?)·ln(dT)
ε

) where K(f ?) = 1+
∑T

t=2 1{ f
?(t) ,

f ?(t−1)} is the number of switches in the comparator. We show that any algorithm

that achieves such a guarantee even when K(f ?) = 2 does not satisfy fairness

in composition with respect to equalized error rate. This indicates that, for the

metric of equalized error rates, the algorithm not being too good is essential.

Theorem 7.4. For any α < 1/2 and ε > 0, any algorithm that can achieve the

vanishing approximate regret property against shifting comparators f of length

K(f) = 2, running separate instances of the algorithm for each group is α-unfair

in composition with respect to equalized error rate.

Proof. Our instance has two groups G = {A, B}, two experts F = { f1, f2}, and three

phases described below.

1. Phase I lasts for half of the time horizon {1, . . . ,T/2} and during this time,

we receive examples from group A. At round t, the adversary selects

loss `t
f = 1 for the expert f ∈ F that is predicted with higher probability

(pt
f ≥ 1/2) and `t

h = 0 for the other expert h ∈ F − { f }.

2. Phase II lasts
∑T/2
τ=1 `

τ
f1

rounds and involves examples in B. The adversary

selects losses `t
f1

= 1 and `t
f2

= 0.

3. Phase III lasts
∑T/2
τ=1 `

τ
f2

rounds and again involves examples in B. The

adversary now selects losses `t
f1

= 0 and `t
f2

= 1.

The instance is fair in isolation with respect to equalized error rates as the

cardinality of both groups is the same (half of the population in each group) and

the experts make the same number of mistakes in both groups. By construction,

the algorithm has expected average loss at least 1
2 in members of group A.

178

We now focus on group B. By the shifting approximate regret guarantee and

given that there exists a sequence of experts of length 2 that has 0 loss, it holds

that the total loss of the algorithm needs to be sublinear on T and, in particular,

at most (1
2 − α) · T

2 , which implies an expected error rate of 1
2 − α. Subtracting the

two error rates concludes the proof. �

7.6 Remarks

More information about the paper. The results presented in this chapter are

joint work with Avrim Blum, Suriya Gunasekar, and Nathan Srebro [28]. With

respect to the equalized error rates, we also show that group-unaware algorithms

also suffer from impossibility results. Our work opens up a number of interesting

questions with respect to whether other fairness metrics are compatible with

the no-regret property. Additionally, in the impossibility result for group-aware

algorithms, we heavily used that the adversary is adaptive and there was some

imbalance between the two populations; understanding what happens when

this is not the case would be interesting.

On balance across groups as a fairness notion. Our work points to an issue

that balance notions suffer from. If it is difficult to classify correctly a particular

group, balance notions require the decision-maker to jeopardize the performance

in other (possibly easily classifiable) groups. Providing bad treatment despite

enough confidence about the best alternative is arguably immoral and, in cases

such as clinical trials, explicitly illegal. Tackling this concern, in an ongoing joint

work with Avrim Blum, we suggest a group fairness notion for online decision-

179

making that, instead of focusing on equality, aims for accuracy in all (possibly

overlapping) populations and discuss the arising incentive issues.

On fairness in online decision-making. Dealing with fairness issues in online

decision-making has gained much attention over the last few years. One line of

work extends individual notions of fairness which require that similar individuals

(with respect to some similarity metric) should be treated similarly [49] to online set-

tings [90, 57, 62]. Another line of work aims to achieve the so called meritocratic

fairness [71, 73], which says that an individual/group of higher intrinsic quality

should never be selected with smaller probability than less qualified candidates.

Regarding notions targeting discrimination against particular groups, beyond

our work, there have been nice attempts to tackle important considerations of se-

quential decision-making. In particular, a line of work points to counterintuitive

externalities of using contextual bandit algorithms agnostic to the group iden-

tity and suggest that heterogeneity in data can replace the need for exploration

[20, 74, 109]. Other works have focused on designing bandit algorithms that

restrict the probabilities of selecting a particular group to avoid overexposure or

equivalently underexposure [38], or are only given one-sided feedback [21].

One important distinction compared to these works is that we do not assume

that the input is i.i.d. over time. A main complication in most of the above

works is that the algorithm needs to be very pessimistic throughout exploration

to learn the best fair policy but subsequently the algorithm can just use this policy

over time. In non-i.i.d. settings, the fairness consideration does not only affect

an initial stage; the algorithm needs to balance the optimization goal with the

fairness constraint throughout all time. Focusing on the simplest extension of

adversarial online learning with fairness concerns (all experts assumed to be

180

individually fair), our work sheds light on which notions of fairness are amenable

to non-i.i.d. inputs arriving online.

181

APPENDIX A

SUPPLEMENTARY MATERIAL FROM CHAPTER 2.

A.1 Concentration inequality

Lemma 2.2 (restated). Let x1, x2, . . . , xT be a sequence of nonnegative random

variables, each with xt ∈ [0, 1], and let mt = Et−1[xt] = E[xt|x1, . . . , xt−1], the random

variable that is the expectation of xt conditioned on the sequence x1, x2, . . . , xt−1.

Let ε > 0, and X =
∑T

t=1 xt and M =
∑T

t=1 mt. Then, with probability at least 1 − δ

X − (1 + ε)M ≤
(1 + ε) ln(1/δ)

ε

and also with probability at least 1 − δ

(1 − ε)M − X ≤
(1 + ε) ln(1/δ)

ε

Proof. The proof follows the outline of classical Chernoff bounds for independent

variables combined with the law of total expectation to handle the dependence.

First claim. For parameters b, λ > 0 to be set later, it holds:

P[X − (1 + ε)M > b] ≤ e−λb E
[
eλ(X−(1+ε)M)

]
= e−λb E

 T∏
t=1

eλ(xt−(1+ε)mt)

 (A.1)

We will prove by induction on T that the expectation above is at most 1 if we use

λ = ln(1 + ε). Given this fact, we can set b such that e−λb = e− ln(1+ε)b = δ. Using that

ln(1 + ε) ≥ ε/(1 + ε) for all ε ≥ 0, it follows that b =
ln(1/δ)
ln(1+ε) ≤

(1+ε)·ln(1/δ)
ε

.

Base of induction for first claim. Now consider the expectation E
[∏

t=1T eλ(xt−(1+ε)mt)
]

for λ = ln(1 + ε), we prove by induction on T that this expectation is at most 1.

182

For the base case of T = 1 we have a single random variable x1 ∈ [0, 1] and its

expectation m1 = E[x1]. The expectation is E
[
eλ(x1−(1+ε)m)

]
= E

[
eλx1

]
· e−λ(1+ε)m1 .

Note that for any value of x ∈ [0, 1], the following simple inequality holds:

eλx ≤ xeλ − x + 1

This is true as it holds with equality for x = 0 and 1, and the difference is a concave

function (as the second derivative of g(x) = eλx − xeλ + x − 1 is g′′(x) = λ2eλx ≥ 0),

so the inequality is true between the two points. Now write its expectation as:

E
[
eλx1

]
≤ E

[
xeλ − x1 + 1

]
= E

[
x ·

(
eλ − 1

)
+ 1

]
= m ·

(
eλ − 1

)
+ 1 ≤ em·(eλ−1).

Using this in the expectation of (A.1), we obtain:

E
[
eλ(x1−(1+ε)m)

]
≤ em·(eλ−1) · e−λ(1+ε)m = em(eλ−1−λ(1+ε)) ≤ 1

where the last inequality follows from the choice of λ = ln(1 + ε), as the multiplier

of m in the exponent with this choice of λ is

eλ − 1 − λ(1 + ε) = ε − (1 + ε) ln(1 + ε) ≤ ε − (1 + ε)
(
ε − ε2/2

)
= −

ε2(1 − ε)
2

< 0.

Inductive step for first claim. Now we are ready to prove the general case.

Using the law of total expectation, we obtain:

E
 T∏

t=1

eλ(xt−(1+ε)mt)

 = E
T−1∏

t=1

eλ(xt−(1+ε)mt) · eλ(xT−(1+ε)mT)


= E

T−1∏
t=1

eλ(xt−(1+ε)mt) · E
T−1

[
eλ(xT−(1+ε)mT)

]
where Et−1[·] is the random variable taking expectation over the last term con-

ditioned on all the previous terms x1, . . . , xT−1. Note that conditioned on the

183

previous terms, the conditional expectation ET−1

[
eλ(xT−(1+ε)mT)

]
is exactly the base

case, and hence at most 1 by the above, so we can conclude that

E
 T∏

t=1

eλ(xt−(1+ε)mt)

 ≤ E
T−1∏

t=1

eλ(xt−(1+ε)mt)


and the statement follows by the induction hypothesis.

Second claim. To prove the lower bound, we proceed in an analogous way.

For λ = − ln(1 − ε), using that 1/(1 − ε) ≥ 1 + ε, we obtain the equivalent of the

inequality (A.1) with b =
ln(1/δ)

ln(1/(1−ε)) ≤
ln(1/δ)
ln(1+ε) .

P[(1 − ε)M − X > b] ≤ e−λb E
[
eλ((1−ε)M−X)

]
= e−λb E

 T∏
t=1

eλ((1−ε)mt−xt)

 (A.2)

Regarding a bound on the expectation, consider first a single variable m1 = E[x1].

E
[
e−λx1

]
≤ E

[
x1e−λ − x1 + 1

]
= m1

(
e−λ − 1

)
+ 1 ≤ em1(e−λ−1)

We now bound the expectation as

E
[
eλ((1−ε)m1−x1)

]
≤ eλ(1−ε)m1 E

[
e−λx1

]
≤ eλ(1−ε)m1 · em1·(e−λ−1) = em1(λ(1−ε)+(e−λ−1)) ≤ 1

where the last inequality follows from the choice of λ = − ln(1−ε), as the multiplier

of m in the exponent with this choice of λ is

λ(1 − ε) + (e−λ − 1) = −(1 − ε) ln(1 − ε) − ε ≤ (1 − ε)ε − ε = −ε2 < 0.

using the fact that ln(1 − ε) ≤ −ε. The induction then follows as before. �

A.2 Transforming approximate regret to small-loss guarantees

Lemma 2.3 (restated). Suppose we have a randomized algorithm that takes as

input any ε > 0 and guarantees that, for some q ≥ 1 and some function Ψ(·), and

184

any δ > 0, with probability 1 − δ, for any time horizon s and any comparator f :

(1 − ε)
s∑

t=1

`t
A(t) ≤

s∑
t=1

`t
f +

Ψ(δ)
εq .

Assume using this algorithm over multiple phases (by restarting the algorithm

when a phase end). We run each phase τ with ετ = 2−τ until ετL̂τ > Ψ(δ)
(ετ)q where L̂τ

denotes the cumulative loss of the algorithm for phase τ. For any δ > 0, the regret

for this multi-phase algorithm is bounded, with probability at least 1 − δ by:

Regret ≤ O
((

L?
) q

q+1 Ψ
(

δ
log(L?+1)+1

) 1
q+1

+ Ψ
(

δ
log(L?+1)+1

)
+ 1

)

Proof. We denote the loss of the algorithm within phase τ as L̂τ and the loss of

the best arm within the phase as L?τ . Note that on any phase τ, by our premise

about approximate regret on each phase, with probability at least 1 − δ′,

L̂τ − L?τ ≤ ετL̂τ +
Ψ(δ′)
(ετ)q

The term ετL̂τ of the right hand side can be split in two terms, i) all but the last

round of the phase and ii) the last round. The first term is bounded by Ψ(δ′)
(ετ)q due

to the doubling condition. The second term can be upper bounded by ετ since

the losses are in [0, 1]. Hence, for phase τ, with probability 1 − δ′:

L̂τ − L?τ ≤
2 · Ψ(δ′)

(ετ)q + ετ.

185

Letting Γ denote the last phase and summing over the phases, we have:

L̂ − L? ≤
Γ−1∑
τ=0

2Ψ(δ′)
(ετ)q +

Γ−1∑
τ=0

ετ + εΓL̂Γ +
Ψ(δ′)
(εΓ)q

≤ 2Ψ
(
δ′
) Γ∑
τ=0

1
2−qτ +

Γ−1∑
τ=0

2−τ + εΓL̂Γ

≤ 2Ψ
(
δ′
)
·

2q(Γ+1) − 1
2q − 1

+ 2 + εΓL̂Γ

≤ 4Ψ
(
δ′
) 1
(εΓ)q + 2 + εΓL̂Γ Since q ≥ 1

≤ 4
(
Ψ(δ′)
(εΓ)q

)1/(q+1)

·

(
2q Ψ(δ′)

(εΓ−1)q

)q/(q+1)

+
(
εΓL̂Γ

)1/(q+1)
·
(
εΓL̂Γ

)q/(q+1)
+ 2

≤ 2q+2
(
Ψ(δ′)
(εΓ)q

)1/(q+1)

·
(
εPL̂Γ−1

)q/(q+1)
+

(
Ψ(δ′)
(εΓ)q

)1/(q+1)

·
(
εΓL̂Γ

)q/(q+1)
+ 2

Thus we conclude that:

L̂ − L? ≤ O
((

Ψ
(
δ′
))1/(q+1)

·
(
L̂
)q/(q+1)

+ 1
)

To replace the dependence of L̂ by L?, we apply Young’s inequality, the approxi-

mate regret property, and the sub-additivity property. For simplicity of presenta-

tion, we remove the multiplicative and additive constants and use a = q/(q + 1)

so that the analysis is clear for different small-loss powers.

L̂ − L? ≤ Ψ
(
δ′
)1−a
·
(
L̂
)a
≤ (1 − a)Ψ

(
δ′
)

+ aL̂⇒

L̂ ≤
1

1 − a
L? + Ψ

(
δ′
)

Replacing to the previous guarantee and applying the subadditivity property

L̂ − L? ≤ Ψ
(
δ′
)1−a
·
(
L̂
)a
≤ Ψ

(
δ′
)1−a
·

(
1

1 − a
L? + Ψ

(
δ′
))a

≤
1

1 − a
(
L?

)a
Ψ
(
δ′
)1−a

+ Ψ
(
δ′
)

Since there are at most log
(
L? + 1

)
+ 1 phases, setting δ′ = δ

log(L?+1)+1 suffices for

the high probability statements to hold for all phases. �

186

APPENDIX B

SUPPLEMENTARY MATERIAL FROM CHAPTER 3.

B.1 Active arm elimination with enlarged confidence intervals

Lemma 3.1 (restated). Assume that c is a valid upper bound for the total cor-

ruption and we run Active Arm Elimination with wd(a, t) =

√
log(2kT/δ)

n(a,t) + c
n(a,t) .

Then, with probability at least 1 − δ, arm a? never becomes eliminated.

Proof. The crux of the proof lies in establishing that, with high probability, the

upper bound of the confidence interval of a? never becomes lower than the

lower bound of the confidence interval of any other arm a and therefore a? does

not become eliminated. More formally, let θ̃(a, t) be the empirical mean of the

rewards from arm a until time t (that is the uncorrupted part) and µ̃(a, t) be the

empirical mean of the corrupted rewards from the same arm. We also denote by

n(a, t) the number of times we selected arm a till then. Recall that µ(a) is the mean

of arm a. By Hoeffding inequality, for any arm a, with probability at least 1 − δ′:

|θ̃(a, t) − µ(a)| ≤

√
log(2/δ′)

n(a, t)
.

We set δ′ = δ/kT to establish that this holds for all arms and all time steps (after

arm a has been played n(a) times). As a result, for any arm a and any time t:

θ̃(a, t) ≤ µ(a) +

√
log(2kT/δ)

n(a,t) and θ̃(a?, t) ≥ µ(a?) −
√

log(2kT/δ)
n(a?,t) .

Let’s focus now on the actual (corrupted) empirical means. Since c is a valid

upper bound on the total corruption then the (corrupted) empirical means can

be affected by at most absolute corruption c. Hence:

187

µ̃(a, t) ≤ θ̃(a, t) + c
n(a,t) and µ̃(a?, t) ≥ θ̃(a?, t) − c

n(a?,t) .

Combining the above inequalities with the fact that the actual mean of a? is

higher than the one of a, i.e. µ(a?) ≥ µ(a), we establish that µ̃(a, t) − µ̃
(
a?, t

)
≤

wd(a, t) + wd(a?, t) and therefore arm a? is not eliminated. Since this holds for all

times and arms, the lemma follows. �

Lemma 3.2 (restated). Assume that c is a valid upper bound for the total cor-

ruption and we run Active Arm Elimination with wd(a, t) =

√
log(2kTδ)

n(a,t) + c
n(a,t) .

Then, with probability at least 1 − δ, all arms a , a? become eliminated after

N(a) =
36 log(2kT/δ)+6c

∆(a)2 plays.

Proof. The proof stems from the following observations. By Lemma 3.1, arm a? is

with high probability never eliminated. Assume that arm a is played N(a) times

and let τ(a) be the time that arm a is played for the N(a)-th time. We will show

that, with high probability, arm a is dominated by a? at this point, i.e. after N(a)

plays of arm a, with high probability, the lower confidence bound of arm a? is

above the upper confidence bound of arm a.

More formally, let again θ̃(a, t) be the empirical mean of the rewards from arm

a until time t (that is the uncorrupted part) and µ̃(a) be the empirical mean of the

corrupted rewards from the same arm. By Hoeffding inequality, for any arm a,

with probability at least 1 − δ′:

|θ̃(a, t) − µ(a)| ≤

√
log(2/δ′)

n(a, t)
. (B.1)

As a result, setting again δ′ = δ/kT , after N(a) =
36 log(2kT/δ)+6c

∆(a)2 plays of arm a, the

empirical uncorrupted mean of a is, with high probability, at most:

188

θ̃(a, τ(a)) ≤ µ(a) +

√
log(2KT/δ)

N(a) ≤ µ(a) +
∆(a)

6 .

Similarly, the empirical stochastic mean of a? is, with high probability, at least:

θ̃
(
a?, τ(a)

)
≥ µ(a?) −

√
log(2kT/δ)

N(a) ≥ µ(a?) − ∆(a)
6

Since the corruptions are upper bounded by C ≤ c, they can only contribute to a

decrease in the average empirical (corrupted) means by at most ∆(a)
6 which is not

enough to circumvent the gap ∆(a) due to the choice of N(a):

µ̃
(
a?, τ(a)

)
≥ θ̃

(
a?, τ(a)

)
− c

N(a) ≥ θ̃(a
?, τ(a)) − ∆(a)

6

µ̃((a, τ(a)) ≤ θ̃(a, τ(a)) + c
N(a) ≤ θ̃(a, τ(a)) +

∆(a)
6

Finally, at time τ(a), the width of both arms, played N(a) times at this point, is:

wd
(
a?, τ(a)

)
= wd(a, τ(a)) =

√
log(2kT/δ)

N(a) + c
N(a) ≤

∆(a)
3 .

Combining the above, with probability 1− δ, if arm a is not eliminated until then,

it is eliminated at time τ(a), i.e. µ̃(a?, τ(a)) − µ̃(a, τ(a)) ≥ wd
(
a?, τ(a)

)
+ wd(a, τ(a)):

µ̃
(
a?, τ(a)

)
− µ̃(a, τ(a)) ≥ θ̃

(
a?, τ(a)

)
− θ̃(a, τ(a)) − 2 ·

∆(a)
6

≥ µ(a?) − µ(a) − 4 ·
∆(a)

6

≥ µ(a?) − µ(a) − 4 ·
∆(a)

6
− 2 ·

∆(a)
6

+ wd
(
a?, τ(a)

)
+ wd(a, τ(a))

≥ µ(a?) − µ(a) − ∆(a) + wd
(
a?, τ(a)

)
+ wd(a, τ(a))

≥ + wd
(
a?, τ(a)

)
+ wd(a, τ(a))

�

189

B.2 Fast-slow active arm elimination race intervals

In this section, we provide the proof of Theorem 3.1. To handle the corruption, we

bound with high probability the total corruption experienced by the slow active

arm elimination instance S (Lemma 3.3). To deal with an adaptive adversary, we

need a martingale concentration inequality; specifically we apply a Bernstein-

style inequality introduced in [23] (Lemma B.1).

Lemma B.1 (Lemma 1 in [23]). Let X1, . . . , XT be a sequence of real-valued random

numbers. Assume, for all t, that Xt ≤ R and that E[Xt|X1, . . . , Xt−1] = 0 for R > 0.

Also let V =
∑T

t=1 E[X2
t |X1, . . . , Xt−1]. Then, for any δ > 0:

P
 T∑

t=1

Xt > R ln(1/δ) +
e − 2

R
· V

 ≤ δ
Lemma 3.3 (restated). If the total corruption is C ≤ c then the slow active arm

elimination algorithm S observes, with probability at least 1 − δ, corruption of at

most ln(1/δ) + 3 during its exploration phase (when picked with probability 1/c).

Proof. The first observation is that the expected corruption encountered by algo-

rithm S is at most a constant (total corruption of C encountered with probability

1/c). The rest of the proof focuses on bounding the variance of this random

variable (actual corruption encountered by the layer). Crucially, since we want to

allow the adversary to be adaptive, we should not assume independence across

rounds but only conditional independence (conditioned on the history) and this

is why some more involved concentration inequality is necessary. Therefore we

create a martingale sequence (actual corruption minus expected corruption) and

apply a Bernstein-style concentration inequality.

190

Let Zt
a be the corruption that is observed by the exploration phase of the

algorithm if arm a is selected. For every round t, if adversary selects corruption

Ct
a then Zt

a is therefore a random variable equal to Ct
a with probability 1/c and 0

otherwise. Given that the adversary is adaptive and may select the corruptions

based on the realizations of the previous rounds, we need to use an appropriate

concentration inequality. We use a Bernstein-style inequality, introduced in [23]

(Lemma B.1). Initially we resolve the randomness conditioning on ` = S (the slow

algorithm is selected). Since active arm elimination is deterministic, conditioned

on selecting algorithm S, the selected arm is deterministic. Let a(S, t) be the

arm that would be selected if ` = S (which happens with probability 1/c). The

martingale sequence is now

Xt = Zt
a(S,t) − E

[
Zt

a(S,t) | H(1 : t − 1)
]
,

whereH(1 : t) corresponds to the history up to round t. Note that

E
[
X2

t |X1, . . . , Xt−1

]
=

1
c

(
Ca(S,t) −

Ca(S,t)

c

)2

+
c − 1

c

(
Ca(S,t)

c

)2

=

(
Ca(S,t)

)2

c

(
c − 1

c

)2

+
c − 1

c

(
Ca(S,t)

c

)2

≤ 2 ·
Ca(S,t)

c
.

The last inequality holds as Ct
a(S,t) ∈ [0, 1] and Ca(S,t) ≤ c.

Therefore, summing over all the rounds,

V =
∑

t

E
[
X2

t |X1, . . . , Xt−1

]
≤

∑
t

2
Ca(S,t)

C
≤

2
C
·

∑
t

max
a

Ct
a

 ≤ 2.

A trivial upper bound of |Xt| is R = 1, since the rewards are in [0, 1]. Applying

Lemma B.1, we show that, w.p. 1 − δ:

∑
t

Xt ≤ ln(1/δ) + 2(e − 2) ≤ ln(1/δ) + 2

191

The bound of the statement then for the corruption experienced by S then follows

by adding the expected corruption E
[∑

t Za(S,t) | H(1 : t − 1)
]
≤ 1:∑

t

Zt
a(S,t) =

∑
t

Xt + E
∑

t

Za(S,t) | H(1 : t − 1)

 ≤ ln(1/δ) + 3.

�

Theorem 3.1 (restated) With probability 1 − δ, the fast-slow active arm elimina-

tion has regret O
(∑

a,a?
log(kT/δ)

∆(a)

)
for the stochastic case and O

(
k · c ·

∑
a,a?

(log(kT/δ))2

∆(a)

)
for the C-corrupted case with C ≤ c.

Proof. The fast and slow algorithms are run with widths (for ` ∈ {F,S}):

wd`(a) =

√
log(8kT/δ)

n`(a)
+

c`

n`(a)

where cF = 0 for the fast instance and cS = log(8kT/δ) + 3 for the slow instance S.

Stochastic case. Let δst
` = δ/4 be the failure probability of instance ` ∈ {F,S}

when the input is stochastic. If we are in the stochastic case, the total corruption

is 0 and hence less than both cF and cS. By Lemma 3.2 with probability 1 − δst
` for

all arms a, it holds that arm a , a? is eliminated after at most N(a) plays where:

N(a) =
36 log(2kT/δst

`) + 6 log(2kT/δst
`)

∆(a)2 =
42 log(2kT/δst

`)
∆(a)2 . (B.2)

For a pseudoregret guarantee, the result follows directly by multiplying the

number of plays for any suboptimal arm a , a? with its expected contribution

to regret every time it is selected which is ∆(a). Setting δ = 1/T makes the

contribution of the failure probability to regret at most a constant since δ · T = 1.

For a high-probability guarantee, the regret coming from a suboptimal arm

a after N(a) plays may be more than the expected regret N(a)∆(a). We define as

192

in Lemma 3.2, θ̃(a, t) to be the empirical mean of the rewards from arm a until

time t and n(a, t) to be the corresponding number of plays. By the Hoeffding

inequality there, i.e. Eq. (B.1), for any arm a, with probability at least 1 − δst
` (this

corresponds to the same failure probability we have already considered):

|θ̃(a, t) − µ(a)| ≤

√
log

(
2kT/δst

`

)
n(a, t)

.

Hence, the total reward of a , a? after N(a) plays is at most:

√
N(a) · log(2kT/δst

`) = N(a) ·

√
log(2kT/δst

`

N(a)
≤ N(a) · ∆(a).

which implies that the guarantee also holds with high probability.

Corrupted case. The most interesting case is the C-corrupted setting for some

C ≤ c. Let δco
S = δ/4 be the failure probability in Lemma 3.3. By Lemma 3.3,

with probability at least 1 − δco
S , the actual corruption experienced by the slow

active arm elimination algorithm is at most ln(1/δco
S) + 3. Therefore, similar to the

stochastic case, we can obtain a high-probability guarantee on the regret coming

from selecting suboptimal arms in the slow active arm elimination instance S.

What is left is to bound the regret coming from the fast active arm elimination

instance F. Towards this goal, we bound the number of times that a suboptimal

arm is played in the fast instance by the expected time that it remains active at

the slow instance. By Eq. B.2, with probability at least 1− δst
S − δ

co
S , arm a is played

in the slow instance, at most NS(a) times where:

NS(a) =
42 log(2kT/δst

S)
∆(a)2 .

For a pseudoregret, we can directly use this bound of the slow instance to bound

the number of times a is played in the fast instance. In particular, for any play of

193

arm a in the slow instance, there are in expectation at most k ·c ·NS(a) total rounds

as every move in the slow instance occurs with probability 1/c and at least 1/k of

these moves are plays of a while it is still active. Hence, arm a is eliminated in

the fast instance F after k · c · NS(a) rounds and, till then, it contributes ∆(a) to the

regret in expectation when played, which provides the pseudoregret guarantee.

For a high probability guarantee, let δmove
S = δ/4kT and observe that with prob-

ability at least 1 − δmove
S , we make one move at the slow instance S at most every

O
(
c log

(
1/δmove

S

))
moves at the fast instance F. This can be seen by considering the

following process: One tosses coins with bias p = 1/c until she observes heads

for the first time (heads is the p-biased event). After M tosses of the coins the

probability that no heads have arrived is at most (1 − p)M. To ensure that this is

less than δmove
S , we need to wait M ≥

log(1/δmove
S)

log(1
1−p)

, which is achieved by M =
log(1/δmove

S)
p/(1−p) .

By union bound on the failure probabilities for each such draw, we obtain

that, with failure probability δel
S = k · NS(a) · δmove

S ≤ δ/4 (since NS(a) ≤ T), arm a

gets inactivated in F after at most NF(a) plays where:

NF(a) = k · NS(a) · c · log(1/δel
S) =

42 · c · k ·
(
log(8KT/δ)

)2

∆(a)2 .

The last part is to prove that the regret experienced throughout those rounds is

not too large. This follows again by Eq. (B.1) in a way analogous to the stochastic

case. The total failure probability is at most δst
F + δst

S + δco
S + δel

S = δ. �

194

B.3 Multi-layer active arm elimination race

Theorem 3.2 (restated) With probability 1 − δ, the multi-layer active arm elimi-

nation race has regret in the agnostic C-corrupted case bounded by:

O

∑
a,a∗

k ·C · log(kT/δ) + log(T)
∆(a)

· log(kT/δ)

.
Proof. The proof is similar to Theorem 3.1 with layer `? = arg min`

[
2` > C

]
playing

the role of the slow instance S and smaller layers behave as the fast layer F.

Robust layers are essentially stochastic. For layers ` ≥ `?, it holds that the

total corruption they experience is, in expectation, less than 1 since C ·2−` ≤ 1 and,

as in Lemma 3.3, with high probability less than c` = log(4kT · log T/δ) + 3. Hence,

as in the stochastic case of Theorem 3.1, we establish a O
(

log(2KT/δst
`)

∆(a)

)
bound on the

regret caused by any suboptimal arm a, with failure probability δst
` = δ/(2 log T).

Since there are log(T) such levels, the regret coming from these layers is upper

bounded by the second term of the theorem with failure probability δ/2.

Not robust layers eventually corrected by `?. For ` < `?, we treat them simi-

larly to the fast layer F in the corrupted case of Theorem 3.1. In particular, similar

to the proof there, we upper bound the number of times any suboptimal arm

is played in layer `?, as in Eq. (B.2). Then we can bound the number of times

that this arm is played in faster layers as in the proof there with c = 2−`
? . Since,

we do not know the corruption C in advance (and it is adaptively selected), we

need to take a union bound over all the number of layers as well which results to

selecting failure probabilities δco
` = δel

` = δ/(2 log T). Finally, to be agnostic to C,

we use c = 2`
? instead of c = C; this only increases regret by a constant factor. �

195

APPENDIX C

SUPPLEMENTARY MATERIAL FROM CHAPTER 4

In this section, we provide the proof of the lemma connecting spread to absolute

and squared loss. Before doing so, we provide a useful auxiliary lemma.

Lemma C.1. For odd T = 2n + 1, one pair (AT , BT) minimizing either absolute or

squared loss subject to the constraints of the spread definition is A2n+1 = (0 . . . 2n)

and BT = (n . . . n).

Proof. First we show that there exists a BT minimizing the loss with bi = b j for all

i, j. Assume otherwise; then there exist two subsequent i, j with b′i > b′j. Since ai <

a j + 1 by the assumption on spread, minx∈bi,b j{`(ai, b) + `(a j, b)} ≤ `(ai, bi) + `(a j, b j).

Applying this recursively, we conclude that such a BT exists.

Second, we show that there exist an AT that consists of elements ai+1 = ai + 1.

Since the elements of BT are all equal to b, the sequence
∑2n

i=0 `(ai, b) is minimized

for both absolute and squared loss when ai = b + i − n.

Last, the exact value of b does not make a difference and therefore we can set

it to be b = n concluding the lemma. �

Lemma 4.1 restated: For absolute loss, `1(A, B) =
∑

i |ai − bi|, the spread of `1

is S `1(m) ≤
√

5m. For squared loss, `2(A, B) =
∑

(ai − bi)2, the spread of `2 is

S `2(m) ≤ 3√14m.

Proof. It will be easier to restrict ourselves to odd T = 2n + 1 and also assume

that T ≥ 3. This will give an upper bound on the spread (which is tight up to

196

small constant factors). By Lemma C.1, a pair of sequence minimizing abso-

lute/squared loss is AT = (0, . . . , 2n) and BT = (n, . . . , n). We now provide bounds

on the spread based on this sequence, that is we find a T = 2n + 1 that satisfies

the inequality `(AT , BT) ≤ m.

Absolute loss: The absolute loss of the above sequence is:

`(AT , BT) = 2 ·
n∑

j=1

j = 2 ·
n(n + 1)

2
= n(n + 1) =

T − 1
2
·

T + 1
2

=
T 2 − 1

4
.

A T that makes `(AT , BT) ≥ m is T =
√

4m + 1. Therefore, for absolute loss

S `(m) ≤
√

5m, since m ≥ 1

Squared loss: The squared loss of the above sequence is:

`(AT , BT) = 2 ·
n∑

j=1

j2 = 2 ·
n(n + 1)(2n + 1)

6
=

(T 2 − 1) · T
12

=
T 3 − T

12
≥

8T 3

9 · 12
=

2T 3

27

where the inequality holds because T ≥ 3.

A T that makes `(AT , BT) ≥ m is T =
3√14m. Therefore, for squared loss

S `(m) ≤ 3√14m. �

197

APPENDIX D

SUPPLEMENTARY MATERIAL FROM CHAPTER 5.

D.1 Concave reward curves

In this section, we investigate conditions under which throughput, social welfare

and revenue satisfy the conditions of theorem 5.6. In particular, we first show

that the respective reward curves R(q) = qI(q) are concave. We then prove that

the concave reward curves assumption implies the non-increasing (quantiles)

per-ride rewards assumption.

Lemma D.1. Revenue (i) satisfies the assumptions of Theorem 5.6 under reg-

ular value distributions, Throughput (ii) and Social Welfare (iii) satisfy the as-

sumptions under any value distribution.

Proof. We drop the subscripts throughout this proof to simplify notation. We

begin by considering (i) revenue, for which the result holds due to the fact that the

reward curve is concave if and only if the distribution is regular (cf. Proposition

3.10 in [66]). For (ii) throughput, R(q) = q · I(q) = q is a linear function of q for any

value distribution and thus concave.

Lastly, for (iii) social welfare, we use the so-called hazard rate h(y) =
f (y)

1−F(y) of

a distribution F with density f . Given F, denote by p(q) and q(p) a price as a

function of its corresponding quantile and vice-versa. Then, by the definition of

hazard rate:

q(p) = exp
(
−

∫ p(q)

0
h(y)dy

)
(D.1)

198

Taking logarithms and differentiating, we obtain:

−
1

q(p)
= h(p(q))

dp(q)
dq

(D.2)

Hence, as R(q(p)) = q(p) · I(q(p)) and f (p) = (1 − F(p))h(p) = q(p)h(p) we have

R(q) =

∫ ∞

p(q)
v f (v)dv =

∫ ∞

p(q)
vh(v) exp

(
−

∫ v

0
h(y)dy

)
dv

The first derivative dR(q)
dq of R(q) is equal to

−p(q)h(p(q)) exp
(
−

∫ p(q)

y=0
h(y)dy

)
dp(q)

dq
=

p(q) exp
(
−

∫ p(q)

y=0
h(y)dy

)
q(p)

= p(q),

where the first equality comes from Equation (D.2), the second from (D.1).

The second derivative is then given by

d2R(q)
dq2 =

dp(q)
dq

= −
1

qh(p(q))
= −

1 − F(p(q))
f (p(q))q(p)

< 0,

which concludes the proof of the Lemma. �

Lemma D.2. If a function I(·) has the property that qI(q) is concave, then I(·)

is non-increasing. In particular, if some objective satisfies the concave reward

curves assumption, it also satisfies the non-increasing (in quantiles) per-ride

rewards assumption.

Proof. Suppose the statement was not true, then there must exist q1, q2 with

0 < q1 < q2 such that I(q1) < I(q2). Let A =
q1
q2

. Then

q1I(q2) = A · q2I(q2) = A · q2I(q2) + (1 − A) · 0 · I(0)

≤ (A · q2 + (1 − A) · 0)I(A · q2 + (1 − A) · 0) = q1I(q1),

199

where the inequality follows from Jensen’s inequality since the function qI(q)

is a concave function. As q1 > 0, it follows that I(q2) ≤ I(q1) and we therefore

arrive at a contradiction. �

D.2 Irreducibility of the priced system

We justify here our assumption from Section 5.2 that the infinite-unit solutions

we obtain induce a connected graph; to do so, we first need to assume that the

graph created by edges (i, j) on which φi j > 0 is strongly connected, that is, the

directed graph with edge-set
{
(i, j) : φi j > 0

}
contains a path from any node to any

other. We then prove that given any solution to the infinite-unit pricing problem,

there exists a solution with arbitrarily close objective that also induces a strongly

connected graph. For simplicity, we assume that throughput is the objective,

yet the extension to other objectives is immediate. Throughout this section we

work with the flow fi j,∞(q) induced by demands in the infinite-unit system, but

suppress all dependencies on∞ in the notation.

Theorem D.1 (Irreducible Markov Chain). Let ε > 0. Suppose quantiles q

induce a steady-state rate of units fi j,∞(q) on k components; then there exist

quantiles q′ that induce fi j,∞(q′) such that the graph with edge-set {(i, j) : fi j,∞(q′) >

0} is strongly connected and the throughput with q′ is at least (1 − ε) times that

of q in the infinite-unit system.

Proof. Notice first that we may assume without loss of generality that q fulfills

the demand circulation property; indeed, whether an arc has non-zero demand

on it is independent of the number of units and by Lemma 5.1 there is a solution

in the relaxation (with demand circulation) that has an elevated throughput that

200

is no less than
∑

i, j fi j(q). To prove the theorem we repeatedly increase demand

on some edges (i, j) with φi j > 0 and fi j(q) = 0, but also decrease demand on some

edges (ī, j̄) with fī j̄(q) > 0. Equivalently, we increase quantiles qi j and decrease

quantiles qī j̄. To ensure that edges of the second kind do not have their flow

reduced by too much relative to fī j̄(q), we set

δ =
ε

k
×min

{
min

i, j

{
fi j(q) : fi j(q) > 0

}
,min

i, j

{
φi j − fi j(q) : φi j − fi j(q) > 0

}}
.

Whenever we change the demand on an edge, this is done by an additive δ

amount. Reducing flow at most k times to obtain fi j(q′) we guarantee that

φi j ≥ fi j(q′) ≥ (1 − ε) fi j(q) holds which implies that the total throughput cannot

change by more than a factor (1 − ε).

As we assume that our underlying graph with edge-set {(i, j) : φi j > 0} is

strongly connected, it must be the case that the graph with edge set {(i, j) :

φi jqi j > 0} contains a minimal sequence of components C1,C2, . . . ,Cd = C1, d > 2,

and nodes u`, v` ∈ C` such that φu`v`+1 > 0, but fu`v`+1 = 0. In particular, it being

minimal implies that no component other than the first appears repeatedly. Since

each u`, v` are in the same strongly connected component of the graph with edge-

set {(i, j) : fi j(q) > 0}, we know that for each ` there exists a simple path from

u` to v` with positive demand on it. We change the quantiles as follows: for all

pairs (u`, v`+1) we increase the quantiles qu`,v`+1 so that the steady-state rate of units

increases by δ and for each edge along the path from u` to v` we decrease the

quantiles so that the steady-state rate of units decreases by δ. At all other edges

the quantiles remain unchanged.

We first argue that this again gives rise to a demand circulation: Each node

along a path within a component has its in-flow and out-flow (of demand)

reduced by δ, whereas at the nodes ui, vi both the sum of in-flows and the sum of

201

out-flows have remained the same. At all other nodes, nothing is altered. Thus,

flow conservation continues to hold. By choice of δ none of the edge-capacities

are violated. Thus, the resulting demand {phii jqi j} is in the flow relaxation with at

most k − 1 distinct components. Applying this procedure repeatedly, we obtain

a single strongly connected component such that the throughput with q′ in the

infinite-unit limit (by Lemma 5.3) is within (1−ε) of the throughput of fi j,∞(q). �

202

APPENDIX E

SUPPLEMENTARY MATERIAL FROM CHAPTER 6

E.1 Smoothness of first-price auctions with discrete bids

Before providing the proof of smoothness with discrete bidding space, we for-

mally define a submodular valuations. A valuation function vt
i(·) is submodular

if, for any S ,T such that S ⊆ T and any x < T , vt
i(S + {x}) − vi(S) ≥ vt

i(T + {x}).

Lemma 6.2. The simultaneous first price mechanism where players are restricted

to bid on at most d items and on each item submit a bid that is a multiple of δ · ρ,

is a solution-based
(

1
2 − δ, 1

)
-smooth mechanism, when players have submodular

valuations, such that all marginals are either 0 or at least ρ and such that each

player wants at most d items, i.e. vt
i(S) = maxT⊆S :|T |=d vt

i(T).

Proof. Consider a valuation profile v = (v1, . . . , vn) for the n players and a bid

profile b = (b1, . . . , bn). Each valuation vi is submodular and thereby also falls

into the class of XOS valuations [88], i.e. it can be expressed as a maximum over

additive valuations. More formally, for some index set Li:

vi(S) = max
`∈Li

∑
j∈S

a`i j

Furthermore, by the assumption that marginals are either 0 or at least ρ, it can

be easily shown that a`i j is either 0 or at least ρ. Moreover, when the player has

value for at most d types of items, it can also be shown that for any ` ∈ Li at most

d of the (a`i j) j∈[m] will be non-zero.

Consider a feasible allocation x = (x1, . . . , xn) of the items to the bidders, where

xi is the set of types of items allocated to player i (the latter is feasible if each

203

item is never allocated more than its supply). Consider the following deviation

b?i (vi, xi) that is related to the valuation vi of player i and to allocation xi: Let

`?(xi) = arg max`∈Li

∑
j∈xi

a`i j. Then on each item j ∈ xi with a`
∗(xi)

i j > 0, submit⌊
a`
∗(xi)

i j

2

⌋
δ·ρ

.1 On each j < xi, submit a zero bid. This submits at most d non-zero bids.

Now we argue that these deviations imply the solution-based smoothness.

Let p j(b) be the lowest winning bid on item j, under bid profile b. Observe that

for each j, if p j(b) <
⌊

a`
∗(xi)

i j

2

⌋
δ·ρ

, the player wins item j and pays
⌊

a`
∗(xi)

i j

2

⌋
δ·ρ

. Hence:

ui(b?i (vi, xi), b−i; vi) ≥
∑
j∈xi

a`?(xi)
i j −

a`
?(xi)

i j

2


δ·ρ

 · 1
p j(b) <

a`
?(xi)

i j

2


δ·ρ


≥

∑
j∈xi

a`
?(xi)

i j

2


δ·ρ

· 1

p j(b) <

a`
?(xi)

i j

2


δ·ρ


≥

∑
j∈xi


a`

?(xi)
i j

2


δ·ρ

− p j(b)


≥

∑
j∈xi

a`
?(xi)

i j

2
− δ · ρ − p j(b)


≥

(
1
2
− δ

)∑
j∈xi

a`
?(xi)

i j −
∑
j∈xi

p j(b)

=

(
1
2
− δ

)
vi(xi) −

∑
j∈xi

p j(b)

Summing over players and observing that REV(b) ≥
∑

j∈xi
p j(b), we get the lemma.

�

1We denote with bxcδ·ρ the highest multiple of δ · ρ that is less than or equal to x.

204

APPENDIX F

SUPPLEMENTARY MATERIAL FROM CHAPTER 7.

F.1 Complete proof for group-unaware algorithms

Theorem 7.1. For all α < 3/8, there exists ε > 0 such that any group-unaware

algorithm that satisfies Eσ

[
ApxRegε,T (f)

]
= o(T) for all f ∈ F is α-unfair in compo-

sition with respect to false negative rate even for perfectly balanced sequences. In

particular, for any group-unaware algorithm that ensures vanishing approximate

regret1, there exists an oblivious adversary for assigning labels such that:

• In expectation, half of the population corresponds to each group.

• For each group, in expectation half of its labels are positive and the other

half are negative.

• The false negative rates of the two groups differ by α.

Proof. Consider an instance that consists of two groups G = {A, B}, two experts

F = {hn, hu}, and two phases: Phase I and Phase II. Group A is the group we end

up discriminating against while group B is boosted by the discrimination with

respect to false negative rate. At each round t the groups arrive stochastically

with probability 1/2 each, independent of σ1:t−1.

The experts output a score value in Ŷ = [0, 1], where score ŷt
f ∈ Ŷ can be

interpreted as the probability that expert f assigns to label being positive in

round t, i.e. y(t) = +. The loss function is the expected probability of error given

1This requirement is weaker than vanishing regret so the impossibility result applies to
vanishing regret algorithms.

205

by `(ŷ, y) = ŷ · 1{y = −} + (1 − ŷ) · 1{y = +}. The two experts are very simple:

hn always predicts negative, i.e. ŷt
hn

= 0 for all t, and hu is an unbiased expert

who, irrespective of the group or the label, makes an inaccurate prediction with

probability β = 1/4 +
√
ε, i.e. ŷt

hu
= β · 1{y(t) = −}+ (1− β) · 1{y(t) = +} for all t. Both

experts are fair in isolation with respect to both false negative and false positive

rates: FNR is 100% for hn and β for hu regardless the group, and FPR is 0% for hn

and β for hu, independent of the group. The instance proceeds in two phases:

1. Phase I lasts for T/2 rounds. The adversary assigns negative labels on

examples with group context B and assigns a label uniformly at random to

examples from group A.

2. In Phase II, there are two plausible worlds:

(a) if the expected probability the algorithm assigns to expert hu in Phase

I is at least Eσ

[∑T/2
t=1 pt

hu

]
>
√
ε · T then the adversary assigns negative

labels for both groups

(b) else the adversary assigns positive labels to examples with group

context B while examples from group A keep receiving positive and

negative labels with probability equal to half.

We will show that for any algorithm with vanishing approximate regret

property, i.e. with ApxRegε,T (f) = o(T), the condition for the first world is

never triggered and hence the above sequence is indeed balanced.

We now show why this instance is unfair in composition with respect to false

negative rate. The proof involves showing the following two claims:

1. In Phase I, any ε-approximate regret algorithm needs to select the negative

206

expert hn most of the times to ensure small approximate regret with respect

to hn. This means that, in Phase I (where we encounter half of the positive

examples from group A and none from group B), the false negative rate of

the algorithm is close to 1.

2. In Phase II, any ε-approximate regret algorithm should quickly catch up

to ensure small approximate regret with respect to hu and hence the false

negative rate of the algorithm is closer to β. Since the algorithm is group-

unaware, this creates a mismatch between the false negative rate of B (that

only receives false negatives in this phase) and A (that has also received

many false negatives before).

Upper bound on probability of playing hu in Phase I. We now formalize the

first claim by showing that any algorithm with Eσ

[∑T/2
t=1 pt

hu

]
>
√
ε · T does not

satisfy the approximate regret property. The algorithm suffers an expected loss

of β every time it selects expert hu. On the other hand, when selecting expert hn,

it suffers a loss of 0 for members of group B and an expected loss of 1/2 for

members of group A. Hence, the algorithm’s expected loss in the first phase is:

E
σ

 T/2∑
t=1

∑
f∈F

pt
f · `

t
f

 = E
σ

 T/2∑
t=1

pt
hu

 · β + E
σ

 T/2∑
t=1

pt
hn
· 1g(t)=A

 · 1
2

= E
σ

 T/2∑
t=1

pt
hu

 · β +

T
2
− E

σ

 T/2∑
t=1

pt
hu


 · 1

4

=
T
8

+

(
β −

1
4

)
· E
σ

 T/2∑
t=1

pt
hu

 =
T
8

+
√
ε · E

σ

 T/2∑
t=1

pt
hu


In contrast, the negative expert has, in Phase I, expected loss of:

E
σ

 T/2∑
t=1

`t
hn

 =
T
8
.

207

Therefore, if Eσ

[∑T/2
t=1 pt

hu

]
>
√
ε ·T , the ε-approximate regret of the algorithm with

respect to hn is linear to the time-horizon T (and therefore not vanishing) since:

E
σ

 T/2∑
t=1

∑
f∈F

pt
f · `

t
f − (1 + ε)

T/2∑
t=1

`t
hN

 =
T
8

+
√
ε · E

σ

 T/2∑
t=1

pt
hu

 − (1 + ε)
T
8
>

7ε
8
· T.

Upper bound on probability of playing hn in Phase II. Regarding the second

claim, we first show that Eσ

[∑T
t=T/2+1 pt

hn

]
≤ 16

√
ε · T for any ε-approximate regret

algorithm with ε < 1/16. The algorithm’s expected loss in the second phase is:

E
σ

 T∑
t=T/2+1

∑
f∈F

pt
f `

t
f

 = E
σ

 T∑
t=T/2+1

pt
hn

 · 3
4

+

T
2
− E

σ

 T∑
t=T/2+1

pt
hn


 · β.

Since, in Phase I, the best case scenario for the algorithm is to always select expert

hn and incur a loss of T/8, this implies that for ε < 1/16:

E
σ

 T∑
t=1

∑
f∈F

pt
f `

t
f

 ≥ T
8

+
T
2
· β + E

σ

 T∑
t=T/2+1

pt
hn

 · (3
4
− β

)

=

(
1 + 2

√
ε
)
· T

4
+ E

σ

 T∑
t=T/2+1

pt
hn

 · (1
2
−
√
ε

)

>
T
4

+ E
σ

 T∑
t=T/2+1

pt
hn

 · 1
4
.

On the other hand, the cumulative expected loss of the β-inaccurate expert hu is

E
 T∑

t=1

`t
hu

 = β · T =
T
4

+
√
ε · T.

Therefore, if the algorithm has Eσ

[∑T
t=T/2+1 pt

hn

]
> 16

√
ε · T , the ε-approximate

regret of the algorithm with respect to hu is linear to the time-horizon since:

E
σ

 T∑
t=1

∑
f∈F

pt
f `

t
f − (1 + ε)

T∑
t=1

`t
hu

 >
T

4
+ E

σ

 T∑
t=T/2+1

pt
hn

 · 1
4

 − (1 + ε) ·
(T

4
+
√
ε · T

)

≥ E
σ

 T∑
t=T/2+1

pt
hn

 · 1
4
− 3
√
ε · T >

√
ε · T.

208

The last inequality holds since ε · T/4 + ε ·
√
ε · T +

√
ε · T ≤ 3

√
ε · T for ε ≤ 1.

Thus, we have shown that, when ε < 1/16, for any algorithm with vanishing

approximate regret, necessarily we have Eσ

[∑T
t=T/2+1 pt

hn

]
≤ 16

√
ε · T .

Gap in false negative rates between groups A and B. We now compute the

expected false negative rates for the two groups, assuming that ε < 1/16. Since

we focus on algorithms that satisfy the vanishing regret property, we have already

established that:

E
σ

 T/2∑
t=1

pt
hu

 ≤ √ε · T and E
σ

 T∑
t=T/2+1

pt
hn

 ≤ 16
√
ε · T. (F.1)

For ease of notation, let Gt
A,+ = 1{g(t) = A, y(t) = +} and Gt

B,+ = 1{g(t) = B, y(t) = +}.

Since the group context at round t arrives independent of σ1:t−1 and the adversary

is oblivious, we have that Gt
A,+,G

t
B,+ are independent of σ1:t−1, and hence also

independent of pt
hu
, pt

hn
.

Since the algorithm is group-unaware, the expected cumulative probability

that the algorithm uses hn in Phase II is the same for both groups. We combine

this with the facts that under the online learning protocol with group context,

examples of group B arrive stochastically with probability half but only receive

positive labels in Phase II, we obtain:

E
σ

 T∑
t=T/2+1

pt
hn
·Gt

B,+

 =
1
2
· E
σ

 T∑
t=T/2+1

pt
hn

 ≤ 8
√
ε · T. (F.2)

Recall that group B in Phase I has no positive labels, hence the false negative rate

on group B is:

E
σ

[
FNRσ

L(B)
]

= E
σ


∑T

t=T/2+1 Gt
B,+ ·

(
pt

hu
· β + pt

hn
· 1

)
∑T

t=T/2+1 ·G
t
B,+

 = β + E
σ

 (1 − β) ·
∑T

t=T/2+1 Gt
B,+ · p

t
hn∑T

t=T/2+1 Gt
B,+


209

In order to upper bound the above false negative rate, we denote the following

good event by

EB(η) =

σ1:T :
T∑

t=T/2+1

Gt
B,+ > (1 − η)E

 T∑
t=T/2+1

Gt
B,+


.

By Chernoff bound, the probability of the bad event is:

P
[
¬EB(η)

]
= exp

−η2 · E
[∑T

t=T/2+1 Gt
B,+

]
2

.
For ηB =

√
16 log(T)

T , this implies that P[¬EB(ηB)] ≤ 1/T 2 since Eσ[
∑T

t=T/2+1 Gt
B,+] = T

4 .

Therefore, by first using the bound on
∑T

t=T/2+1 Gt
B,+ on the good event and the

bound on the probability of the bad event, and then taking the limit T → ∞, it

holds that:

E
σ

[
FNRσ

L(B)
]

= β + E
σ

 (1 − β) ·
∑T

t=T/2+1 Gt
B,+ · p

t
hn∑T

t=T/2+1 Gt
B,+


≤ β +

1 − β
1 − ηB ·

8
√
ε · T

T/4
· P

[
EB(ηB)

]
+ 1 · P

[
¬EB(ηB)

]
≤ β +

32
√
ε

1 − ηB +
1

T 2 →
1
4

+ 33
√
ε.

We now move to the false negative rate of A:

E
σ

[
FNRσ

L(A)
]

= E
σ


∑T

t=1 Gt
A,+ ·

(
pt

hu
· β + pt

hn
· 1

)
∑T

t=1 Gt
A,+

.
Letting EA(η) =

{
σ1:T :

∑T
t=1 Gt

A,+ < (1 + η)E
[∑T

t=1 Gt
A,+

]}
and, since P[¬EA(η)] =

exp
(
−
η2·E

[∑T
t=1 Gt

A,+

]
3

)
, we obtain that, for ηA =

√
24 log(T)

T , P[¬EA(ηA)] = 1
T 2 .

Recall that for our instance Eσ

[
Gt

A,+

]
= T/4 and Gt

A,+ is independent of pt
hu

.

From our previous analysis we also know that:

E
σ

 T/2∑
t=1

pt
hu

Gt
A,+

 ≤ √ε · T4
and E

σ

 T∑
t=T/2+1

pt
hu

Gt
A,+

 ≤ T
8

(F.3)

210

As a result, using that E
[∑T/2

t=1 Gt
A,+

]
= E

[∑T
t=T/2+1 Gt

A,+

]
= T

8 and Inequalities (F.3),

we obtain:

E
σ

 T∑
t=1

Gt
A,+ ·

(
pt

hu
· β + pt

hn
· 1

) = E
σ

 T∑
t=1

Gt
A,+ · −

T∑
t=1

Gt
A,+ · p

t
hu

(1 − β)


≥

T
4

(
1 − (1 − β) · (

1
2

+
√
ε)

)
.

Therefore, similarly with before, it holds that:

E
σ

[
FNRσ

L(A)
]

= E
σ


∑T

t=1 Gt
A,+ ·

(
pt

hu
· β + pt

hn
· 1

)
∑T

t=1 Gt
A,+


≥

1 − (1 − β) · (1
2 +
√
ε)

(1 + ηA)
· P

[
EA(ηA)

]
+ 0 · P

[
¬EA(ηA)

]
≥

1
2 −
√
ε +

β

2

1 + ηA

(
1 −

1
T 2

)
>

1
2 −
√
ε + 1

8

1 + ηA

(
1 −

1
T 2

)
→

5
8
−
√
ε.

As a result, the difference between the false negative rate in group A and the

one at group B is 3
8 + 34

√
ε which can go arbitrarily close to 3/8 by appropriately

selecting ε to be small enough, for any vanishing approximate regret algorithm.

This concludes the proof. �

F.2 Complete proof for group-aware algorithms

Theorem 7.2. For any group imbalance b < 0.49 and 0 < α < 0.49−0.99b
1−b ,

there exists ε0 > 0 such that for all 0 < ε < ε0 any algorithm that satisfies

Eσ

[
ApxRegε,T (f)

]
= o(T) for all f ∈ F , is α-unfair in composition.

Proof. The instance has two groups: G = {A, B}. Examples with group context

A are discriminated against and arrive randomly with probability b < 1
2 while

examples with group context B are boosted by the discrimination and arrive with

the remaining probability 1 − b. There are again two experts F = {hn, hp}, which

211

output score values in Ŷ = [0, 1], where ŷt
f can be interpreted as the probability

that expert f assigns to label being + in round t. We use the earlier loss function

of `(ŷ, y) = ŷ · 1{y = −} + (1 − ŷ) · 1{y = +}. The first expert hn is again pessimistic

and always predicts negative, i.e. ŷt
hn

= 0, while the other expert hp is optimistic

and always predicts positive, i.e. ŷt
hp

= 1. These experts again satisfy fairness

in isolation with respect to false negative and false positive rate. Let c = 1/1012

denote the percentage of the input that is about positive examples for A, ensuring

that |Sσg (FNR)| = Ω(T). The instance proceeds in two phases.

1. Phase I lasts Θ·T rounds for Θ = 101c. The adversary assigns negative labels

on examples with group context B. For examples with group context A, the

adversary acts as following:

• if the algorithm assigns probability on the negative expert below

γ(ε) = 99−2ε
100 , i.e. pt

hn
(σ1:t−1) < γ(ε), the adversary assigns negative label.

• otherwise, the adversary assigns positive labels.

2. In Phase II, there are two plausible worlds:

(a) the adversary assigns negative labels to both groups if the expected

number of times that the algorithm selected the negative expert with

probability higher than γ(ε) on members of group A is less than c · b ·T ,

i.e. Eσ

[
1
{
t ≤ Θ · T : g(t) = A, pt

hn
≥ γ(ε)

}]
< c · b · T .

(b) otherwise she assigns positive labels to examples with group context

B and negative labels to examples with group context A.

Note that, as before, the condition for the first world will never be triggered

by any no-regret learning algorithm (we elaborate on that below) which

ensures that Eσ |S σ
A(FNR)| ≥ c · b · T .

212

The proof is based on the following claims:

1. In Phase I, any vanishing approximate regret algorithm enters the second

world of Phase II.

2. This implies a lower bound on the false negative rate on A, i.e. FNR(A) ≥

γ(ε) = 99−2ε
100 .

3. In Phase II, any ε-approximate regret algorithm assigns large enough prob-

ability to the positive expert hp for group B. This implies an upper bound

on the false negative rate on B, i.e. FNR(B) ≤ 1
2(1−b) . Therefore this provides

a gap in the false negative rates of at least α.

Proof of first claim. To prove the first claim, we apply the method of contradic-

tion. Assume that the algorithm has Eσ

[
1
{
t ≤ Θ · T : g(t) = A, pt

hn
≥ γ(ε)

}]
< c ·b ·T .

This means that the algorithm faces an expectation of at least (Θ − c) · b · T neg-

ative examples, while predicting the negative expert with probability at most

γ(ε) = 99−2ε
100 ,thereby making an error with probability 1 − γ(ε). Therefore the

expected loss of the algorithm is at least:

E
σ

Θ·T∑
t=1

∑
f∈F

pt
f · `

t
f

 > (Θ − c) · b · T · (1 − γ(ε)) = c · b · (1 + 2ε) · T.

At the same time, expert hn makes at most c ·b ·T errors (at the positive examples)

E
σ

 T∑
t=1

`t
hn

 < c · b · T.

Therefore, if Eσ

[
1{t ≤ Θ · T : g(t) = A, pt

hn
≥ f (ε)}

]
< c · b · T , the ε-approximate

regret of the algorithm with respect to hn is linear to the time-horizon T (and

therefore not vanishing) since:

E
σ

 T∑
t=1

∑
f∈F

pt
f `

t
f − (1 + ε)

T∑
t=1

`t
hn

 > ε · c · b · T.
This violates the vanishing approximate regret property, leading to contradiction.

213

Proof of second claim. The second claim follows directly by the above con-

struction, since positive examples only appear in Phase I when the probability of

error on them is greater than γ(ε).

Proof of third claim. Having established that any vanishing approximate re-

gret algorithm will always enter the second world, we now focus on the expected

loss of expert hp in this case. This expert makes errors at most in all Phase I and

in the examples of Phase II with group context A:

E
σ

 T∑
t=1

`t
hp

 ≤ Θ · T + b · (1 − Θ) · T ≤ Θ · T + 0.49 · (1 − Θ) · T

Since group B has only positive examples in Phase II, the expected loss of the

algorithm is at least:

E
σ

 T∑
t=1

∑
f∈F

pt
f `

t
f

 ≥ E
σ

 T∑
t=Θ·T+1

pt
hn
· 1g(t)=B


We now show that Eσ

[∑T
t=Θ·T+1 pt

hn
· 1g(t)=B

]
≤ (1

2 +ε) ·(1−Θ) ·T . If this is not the case,

then the algorithm does not have vanishing ε-approximate regret with respect to

expert hp since:

E
σ

 T∑
t=1

∑
f∈F

pt
f `

t
f − (1 + ε)

T∑
t=1

`t
hp

 > (
1
2

+ ε

)
(1 − Θ)T − (1 + ε)0.49(1 − Θ)T − (1 + ε)ΘT

≥

(
1
2

+ ε − 0.49 − 0.49ε
)
· (1 − Θ) · T − (1 + ε) · Θ · T

> (0.01 + 0.51ε) ·
100
101
· T −

1 + ε

101
· T ≥

50
101

ε · T

Given the above, we now establish a gap in the fairness with respect to false

negative rate. Since group A only experiences positive examples when expert hn

is offered probability higher than γ(ε) = 99−2ε
100 , this means that:

E
σ

[
FNRσ

L(A)
]
→ 0.99 − 0.02ε

214

Regarding group B, we need to take into account the low-probability event that

the actual realization has significantly less than (1−b)(1−Θ) ·T examples of group

B in Phase II (all are positive examples). This can be handled via similar Chernoff

bounds as in the proof of the previous theorem. As a result, the expected false

negative rate at group B is:

E
σ

[
FNRσ

L(B)
]
→

Eσ

[∑T
t=Θ·T+1 pt

hn
· 1g(t)=B

]
Eσ

[∑T
t=Θ·T+1 ·1g(t)=B

] ≤

(
1
2 + ε

)
· (1 − Θ) · T

(1 − b) · (1 − Θ) · T
=

1
2 + ε

1 − b

which establishes a gap in the fairness with respect to false negative rate of

α→ 0.49−0.99b
1−b selecting ε > 0 appropriately small. �

215

BIBLIOGRAPHY

[1] Dimitris Achlioptas, Marek Chrobak, and John Noga. Competitive analysis

of randomized paging algorithms. Theor. Comput. Sci., 234(1-2):203–218,

2000.

[2] Alekh Agarwal, Daniel Hsu, Satyen Kale, John Langford, Lihong Li, and

Robert Schapire. Taming the monster: A fast and simple algorithm for

contextual bandits. In International Conference on Machine Learning (ICML),

2014.

[3] Alekh Agarwal, Akshay Krishnamurthy, John Langford, Haipeng Luo, and

Robert E. Schapire. Open problem: First-order regret bounds for contextual

bandits. In Proceedings of the 31st Conference on Learning Theory (COLT),

2017.

[4] Shipra Agrawal and Navin Goyal. Near-optimal regret bounds for thomp-

son sampling. Journal of the ACM (JACM), 2017.

[5] Chamy Allenberg, Peter Auer, László Györfi, and György Ottucsák. Han-

nan consistency in on-line learning in case of unbounded losses under

partial monitoring. In Algorithmic Learning Theory (ALT), 2006.

[6] Noga Alon, Nicolo Cesa-Bianchi, Claudio Gentile, Shie Mannor, Yishay

Mansour, and Ohad Shamir. Nonstochastic multi-armed bandits with

graph-structured feedback. SIAM Journal on Computing, 2017.

[7] Julia Angwin, Jeff Larson, Surya Mattu, and Lauren Kirchner. Machine

bias: Theres software used across the country to predict future criminals.

And its biased against blacks. ProPublica, 2016.

216

[8] Julia Angwin and Terry Parris Jr. Facebook lets advertisers exclude users

by race. ProPublica blog, 28, 2016.

[9] Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights

update method: a meta-algorithm and applications. Theory of Computing,

8(1):121–164, 2012.

[10] Jean-Yves Audibert, Sébastien Bubeck, and Gábor Lugosi. Regret in online

combinatorial optimization. Mathematics of Operations Research, 2013.

[11] Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time analysis of

the multiarmed bandit problem. Mach. Learn., 2002.

[12] Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. The

nonstochastic multiarmed bandit problem. SIAM J. Comput., 2003.

[13] Peter Auer, Nicolo Cesa-Bianchi, and Claudio Gentile. Adaptive and

self-confident on-line learning algorithms. Journal of Computer and System

Sciences, 2002.

[14] Peter Auer and Chao-Kai Chiang. An algorithm with nearly optimal

pseudo-regret for both stochastic and adversarial bandits. In Conference on

Learning Theory (COLT), 2016.

[15] Baruch Awerbuch and Robert D Kleinberg. Adaptive routing with end-

to-end feedback: Distributed learning and geometric approaches. In Pro-

ceedings of the thirty-sixth annual ACM symposium on Theory of computing

(STOC), 2004.

[16] Santiago R Balseiro, David B Brown, and Chen Chen. Dynamic pricing of

relocating resources in large networks. In Abstracts of the 2019 SIGMET-

217

RICS/Performance Joint International Conference on Measurement and Modeling

of Computer Systems, pages 29–30. ACM, 2019.

[17] Siddhartha Banerjee, Daniel Freund, and Thodoris Lykouris. Pricing and

optimization in shared vehicle systems: An approximation framework. In

Proceedings of the 18th ACM Conference on Economics and Computation (EC),

2017.

[18] Nikhil Bansal, Niv Buchbinder, and Joseph (Seffi) Naor. A primal-dual

randomized algorithm for weighted paging. J. ACM, 2012.

[19] Solon Barocas and Andrew D. Selbst. Big Data’s Disparate Impact. Califor-

nia Law Review, 2016.

[20] Hamsa Bastani, Mohsen Bayati, and Khashayar Khosravi. Mostly

exploration-free algorithms for contextual bandits. arXiv preprint

arXiv:1704.09011, 2017.

[21] Yahav Bechavod, Katrina Ligett, Aaron Roth, Bo Waggoner, and Zhi-

wei Steven Wu. Equal opportunity in online classification with partial

feedback. arXiv preprint arXiv:1902.02242, 2019.

[22] L. A. Belady. A study of replacement algorithms for a virtual-storage

computer. IBM Syst. J., 5(2):78–101, June 1966.

[23] Alina Beygelzimer, John Langford, Lihong Li, Lev Reyzin, and Robert E.

Schapire. Contextual bandit algorithms with supervised learning guaran-

tees. In Proceedings of the 14th International Conference on Artificial Intelligence

and Statistics (AISTATS), 2011.

[24] Sarah Bird, Solon Barocas, Kate Crawford, and Hanna Wallach. Exploring

or exploiting? social and ethical implications of autonomous experimen-

218

tation in ai. In Workshop on Fairness, Accountability, and Transparency in

Machine Learning (FAT-ML), New York University, October 2016.

[25] David Blackwell et al. An analog of the minimax theorem for vector payoffs.

Pacific Journal of Mathematics, 6(1):1–8, 1956.

[26] Avrim Blum. Empirical support for winnow and weighted-majority al-

gorithms: Results on a calendar scheduling domain. Machine Learning,

26(1):5–23, 1997.

[27] Avrim Blum, Eyal Even-Dar, and Katrina Ligett. Routing without regret:

On convergence to nash equilibria of regret-minimizing algorithms in rout-

ing games. In Proceedings of the 25th Annual ACM Symposium on Principles

of Distributed Computing (PODC), 2006.

[28] Avrim Blum, Suriya Gunasekar, Thodoris Lykouris, and Nathan Srebro.

On preserving non-discrimination when combining expert advice. In In

Proceedings of the 32nd Advances in Neural Processing Systems (NIPS), 2018.

[29] Avrim Blum, MohammadTaghi Hajiaghayi, Katrina Ligett, and Aaron

Roth. Regret minimization and the price of total anarchy. In Proceedings of

the Fortieth Annual ACM Symposium on Theory of Computing (STOC), 2008.

[30] Avrim Blum and Yishay Mansour. From external to internal regret. Journal

of Machine Learning Research, 2007.

[31] G.W. Brown. Iterative solutions of games by fictitious play. In Activity

Analysis of Production and Allocation, 1951.

[32] Sébastien Bubeck, Michael B. Cohen, Yin Tat Lee, James R. Lee, and Alek-

sander Madry. K-server via multiscale entropic regularization. In Proceed-

219

ings of the 50th Annual ACM SIGACT Symposium on Theory of Computing

(STOC), 2018.

[33] Sébastien Bubeck, Michael B. Cohen, and Yuanzhi Li. Sparsity, variance

and curvature in multi-armed bandits. In 29th International Conference on

Algorithmic Learning Theory (ALT), 2018.

[34] Sébastien Bubeck and Aleksandrs Slivkins. The best of both worlds:

Stochastic and adversarial bandits. In Conference on Learning Theory (COLT),

2012.

[35] Sbastien Bubeck and Nicol Cesa-Bianchi. Regret analysis of stochastic

and nonstochastic multi-armed bandit problems. Foundations and Trends in

Machine Learning, 2012.

[36] Niv Buchbinder and Joseph (Seffi) Naor. The design of competitive online

algorithms via a primal: Dual approach. Found. Trends Theor. Comput. Sci.,

3(2–3):93–263, February 2009.

[37] Ioannis Caragiannis, Christos Kaklamanis, Panagiotis Kanellopoulos,

Maria Kyropoulou, Brendan Lucier, Renato Paes Leme, and va Tardos.

Bounding the inefficiency of outcomes in generalized second price auc-

tions. Journal of Economic Theory, 156:343 – 388, 2015. Computer Science

and Economic Theory.

[38] L Elisa Celis, Sayash Kapoor, Farnood Salehi, and Nisheeth K Vishnoi. An

algorithmic framework to control bias in bandit-based personalization.

arXiv preprint arXiv:1802.08674, 2018.

[39] Nicolo Cesa-Bianchi, Gábor Lugosi, and Gilles Stoltz. Minimizing regret

220

with label efficient prediction. IEEE Transactions on Information Theory,

51(6):2152–2162, 2005.

[40] Alexandra Chouldechova. Fair prediction with disparate impact: A study

of bias in recidivism prediction instruments. Big data, 5(2):153–163, 2017.

[41] Sam Corbett-Davies and Sharad Goel. The measure and mismeasure

of fairness: A critical review of fair machine learning. arXiv preprint

arXiv:1808.00023, 2018.

[42] Varsha Dani, Thomas P Hayes, and Sham M Kakade. Stochastic linear

optimization under bandit feedback. In Conference on Learning Theory

(COLT), 2008.

[43] Amit Daniely, Alon Gonen, and Shai Shalev-Shwartz. Strongly adaptive

online learning. In International Conference on Machine Learning, pages

1405–1411, 2015.

[44] Constantinos Daskalakis, Alan Deckelbaum, and Anthony Kim. Near-

optimal no-regret algorithms for zero-sum games. In Proceedings of the

twenty-second annual ACM-SIAM symposium on Discrete Algorithms, pages

235–254. Society for Industrial and Applied Mathematics, 2011.

[45] Constantinos Daskalakis and Qinxuan Pan. A counter-example to karlin’s

strong conjecture for fictitious play. In 2014 IEEE 55th Annual Symposium

on Foundations of Computer Science, pages 11–20. IEEE, 2014.

[46] Amit Datta, Michael Carl Tschantz, and Anupam Datta. Automated exper-

iments on ad privacy settings. Proceedings on privacy enhancing technologies,

2015(1):92–112, 2015.

221

[47] Nikhil R. Devanur, Kamal Jain, and Robert D. Kleinberg. Randomized

primal-dual analysis of ranking for online bipartite matching. In Pro-

ceedings of the Twenty-fourth Annual ACM-SIAM Symposium on Discrete

Algorithms (SODA), 2013.

[48] C. Dwork and A. Roth. The Algorithmic Foundations of Differential Privacy.

Foundations and Trends in Theoretical Computer Science. Now Publishers

Incorporated, 2014.

[49] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and

Richard Zemel. Fairness through awareness. In Proceedings of the 3rd

Innovations in Theoretical Computer Science Conference (ITCS), 2012.

[50] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Cali-

brating noise to sensitivity in private data analysis. In Proceedings of the

Third Conference on Theory of Cryptography, TCC’06, pages 265–284, Berlin,

Heidelberg, 2006. Springer-Verlag.

[51] Eyal Even-Dar, Shie Mannor, and Yishay Mansour. Action elimination

and stopping conditions for the multi-armed bandit and reinforcement

learning problems. Journal of machine learning research, 2006.

[52] Amos Fiat, Richard M. Karp, Michael Luby, Lyle A. McGeoch, Daniel D.

Sleator, and Neal E. Young. Competitive paging algorithms. J. Algorithms,

12(4):685–699, December 1991.

[53] Dylan J. Foster, Zhiyuan Li, Thodoris Lykouris, Karthik Sridharan, and Éva

Tardos. Learning in games: Robustness of fast convergence. In Proceedings

of the 30th Advances in Neural Processing Systems (NIPS), 2016.

222

[54] Yoav Freund and Robert E Schapire. A decision-theoretic generalization

of on-line learning and an application to boosting. Journal of computer and

system sciences, 55(1):119–139, 1997.

[55] Yoav Freund, Robert E Schapire, Yoram Singer, and Manfred K Warmuth.

Using and combining predictors that specialize. In Proceedings of the Twenty-

Ninth Annual ACM Symposium on the Theory of Computing (STOC), 1997.

[56] Pratik Gajane, Tanguy Urvoy, and Emilie Kaufmann. Corrupt bandits for

privacy preserving input. In 29th International Conference on Algorithmic

Learning Theory (ALT), 2018.

[57] Stephen Gillen, Christopher Jung, Michael Kearns, and Aaron Roth. Online

learning with an unknown fairness metric. In Advances in Neural Information

Processing Systems, pages 2600–2609, 2018.

[58] John C Gittins. Bandit processes and dynamic allocation indices. Journal of

the Royal Statistical Society: Series B (Methodological), 41(2):148–164, 1979.

[59] Eyal Gofer and Yishay Mansour. Lower bounds on individual sequence

regret. Machine Learning, 103(1):1–26, 2016.

[60] William J Gordon and Gordon F Newell. Closed queuing systems with

exponential servers. Operations research, 15(2):254–265, 1967.

[61] Anupam Gupta, Tomer Koren, and Kunal Talwar. Better algorithms for

stochastic bandits with adversarial corruptions. In Proceedings of the 33rd

Conference On Learning Theory (COLT), 2019.

[62] Swati Gupta and Vijay Kamble. Individual fairness in hindsight. In

Proceedings of the 2019 ACM Conference on Economics and Computation (EC),

2019.

223

[63] Mohammad Taghi Hajiaghayi, Robert Kleinberg, and David C Parkes.

Adaptive limited-supply online auctions. In Proceedings of the 5th ACM

conference on Electronic commerce, pages 71–80. ACM, 2004.

[64] James Hannan. Approximation to bayes risk in repeated play. Contributions

to the Theory of Games, 3:97–139, 1957.

[65] Moritz Hardt, Eric Price, and Nati Srebro. Equality of opportunity in

supervised learning. In Advances in neural information processing systems

(NIPS), 2016.

[66] Jason D Hartline. Mechanism Design and Approximation. 2014.

[67] Elad Hazan and Satyen Kale. Better algorithms for benign bandits. Journal

of Machine Learning Research, 2011.

[68] Elad Hazan and C. Seshadhri. Adaptive algorithms for online deci-

sion problems. Electronic Colloquium on Computational Complexity (ECCC),

14(088), 2007.

[69] Mark Herbster and Manfred K Warmuth. Tracking the best expert. Machine

learning, 32(2):151–178, 1998.

[70] Justin Hsu, Zhiyi Huang, Aaron Roth, Tim Roughgarden, and Zhi-

wei Steven Wu. Private matchings and allocations. In Proceedings of the 46th

Annual ACM Symposium on Theory of Computing, STOC ’14, pages 21–30,

New York, NY, USA, 2014. ACM.

[71] Matthew Joseph, Michael Kearns, Jamie H Morgenstern, and Aaron Roth.

Fairness in learning: Classic and contextual bandits. In Advances in Neural

Information Processing Systems (NIPS), 2016.

224

[72] Adam Kalai and Santosh Vempala. Efficient algorithms for online decision

problems. J. Comput. Syst. Sci., 2005.

[73] Sampath Kannan, Michael Kearns, Jamie Morgenstern, Mallesh Pai, Aaron

Roth, Rakesh Vohra, and Zhiwei Steven Wu. Fairness incentives for my-

opic agents. In Proceedings of the 2017 ACM Conference on Economics and

Computation, pages 369–386. ACM, 2017.

[74] Sampath Kannan, Jamie H Morgenstern, Aaron Roth, Bo Waggoner, and

Zhiwei Steven Wu. A smoothed analysis of the greedy algorithm for

the linear contextual bandit problem. In Advances in Neural Information

Processing Systems, pages 2227–2236, 2018.

[75] Richard M Karp, Umesh V Vazirani, and Vijay V Vazirani. An optimal

algorithm for on-line bipartite matching. In Proceedings of the twenty-second

annual ACM symposium on Theory of computing, pages 352–358. ACM, 1990.

[76] Michael Kearns, Mallesh M. Pai, Aaron Roth, and Jonathan Ullman. Mech-

anism design in large games: incentives and privacy. In Innovations in

Theoretical Computer Science, ITCS’14, Princeton, NJ, USA, January 12-14,

2014, pages 403–410, 2014.

[77] Frank P Kelly. Reversibility and Stochastic Networks. Cambridge University

Press, 2011.

[78] Jon M. Kleinberg, Sendhil Mullainathan, and Manish Raghavan. Inherent

trade-offs in the fair determination of risk scores. In Innovations of Theoretical

Computer Science (ITCS), 2017.

[79] Robert Kleinberg, Georgios Piliouras, and Eva Tardos. Multiplicative

updates outperform generic no-regret learning in congestion games. In

225

Proceedings of the forty-first annual ACM symposium on Theory of computing,

pages 533–542. ACM, 2009.

[80] Robert Kleinberg, Aleksandrs Slivkins, and Eli Upfal. Multi-armed bandits

in metric spaces. In Proceedings of the Fortieth Annual ACM Symposium on

Theory of Computing (STOC), 2008.

[81] Tomás Kocák, Gergely Neu, Michal Valko, and Rémi Munos. Efficient

learning by implicit exploration in bandit problems with side observations.

In 28th Annual Conference on Neural Information Processing Systems (NIPS),

2014.

[82] Elias Koutsoupias and Christos Papadimitriou. Worst-case equilibria. In

Annual Symposium on Theoretical Aspects of Computer Science, pages 404–413.

Springer, 1999.

[83] Elias Koutsoupias and Christos H. Papadimitriou. On the k-server conjec-

ture. J. ACM.

[84] Tim Kraska, Alex Beutel, Ed H Chi, Jeffrey Dean, and Neoklis Polyzotis.

The case for learned index structures. In Proceedings of the 2018 International

Conference on Management of Data, pages 489–504. ACM, 2018.

[85] Ulrich Krengel and Louis Sucheston. Semiamarts and finite values. Bulletin

of the American Mathematical Society, 83(4):745–747, 1977.

[86] Tze Leung Lai and Herbert Robbins. Asymptotically efficient adaptive

allocation rules. Advances in applied mathematics, 6(1):4–22, 1985.

[87] John Langford and Tong Zhang. The epoch-greedy algorithm for contex-

tual multi-armed bandits. In Proceedings of the 20th International Conference

on Neural Information Processing Systems (NIPS). Citeseer, 2007.

226

[88] Benny Lehmann, Daniel Lehmann, and Noam Nisan. Combinatorial

auctions with decreasing marginal utilities. In Proceedings of the 3rd ACM

Conference on Electronic Commerce, EC ’01, pages 18–28, New York, NY, USA,

2001. ACM.

[89] Lydia T. Liu, Sarah Dean, Esther Rolf, Max Simchowitz, and Moritz Hardt.

Delayed impact of fair machine learning. 35th International Conference on

Machine Learning (ICML), 2018.

[90] Yang Liu, Goran Radanovic, Christos Dimitrakakis, Debmalya Mandal,

and David C. Parkes. Calibrated fairness in bandits. Workshop on Fairness,

Accountability, and Transparency in Machine Learning (FAT-ML), 2017.

[91] Haipeng Luo and Robert E Schapire. Achieving all with no parameters:

Adanormalhedge. In Conference on Learning Theory (COLT), pages 1286–

1304, 2015.

[92] Thodoris Lykouris, Vahab Mirrokni, and Renato Paes Leme. Stochastic

bandits robust to adversarial corruptions. In Proceedings of the 50th ACM

Annual Symposium on Theory of Computing (STOC), 2018.

[93] Thodoris Lykouris, Karthik Sridharan, and Éva Tardos. Small-loss bounds

for online learning with partial information. In Proceedings of the 31st

Annual Conference on Learning Theory (COLT), 2018.

[94] Thodoris Lykouris, Vasilis Syrgkanis, and Éva Tardos. Learning and effi-

ciency in games with dynamic population. In Proceedings of the 27th Annual

ACM-SIAM Symposium on Discrete Algorithms (SODA), 2016.

[95] Thodoris Lykouris and Sergei Vassilvitskii. Competitive caching with

227

machine learned advice. In Proceedings of the 35th International Conference

on Machine Learning (ICML), 2018.

[96] Shie Mannor and Ohad Shamir. From bandits to experts: On the value

of side-observations. In Advances in Neural Information Processing Systems

(NIPS), 2011.

[97] Andrés Muñoz Medina and Sergei Vassilvitskii. Revenue optimization

with approximate bid predictions. In Proceedings of the 31st International

Conference on Neural Information Processing Systems, 2017.

[98] Panayotis Mertikopoulos, Christos Papadimitriou, and Georgios Piliouras.

Cycles in adversarial regularized learning. In Proceedings of the Twenty-

Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2703–

2717. SIAM, 2018.

[99] Michael Mitzenmacher. Scheduling with predictions and the price of

misprediction. arXiv preprint arXiv:1902.00732, 2019.

[100] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cam-

bridge University Press, New York, NY, USA, 1995.

[101] John Nash. Non-cooperative games. Annals of mathematics, pages 286–295,

1951.

[102] Denis Nekipelov, Vasilis Syrgkanis, and Eva Tardos. Econometrics for

learning agents. In Proceedings of the Sixteenth ACM Conference on Economics

and Computation (EC), 2015.

[103] Gergely Neu. Explore no more: Improved high-probability regret bounds

for non-stochastic bandits. In Proceedings of the 28th Annual Conference on

Neural Information Processing Systems (NIPS), 2015.

228

[104] Gergely Neu. First-order regret bounds for combinatorial semi-bandits. In

Conference on Learning Theory (COLT), 2015.

[105] Gergely Neu and Gábor Bartók. An efficient algorithm for learning with

semi-bandit feedback. In 24th International Conference on Algorithmic Learn-

ing Theory (ALT), 2013.

[106] David C Parkes and Satinder P Singh. An mdp-based approach to online

mechanism design. In Advances in neural information processing systems,

pages 791–798, 2004.

[107] Manish Purohit, Zoya Svitkina, and Ravi Kumar. Improving online al-

gorithms via ml predictions. In Advances in Neural Information Processing

Systems, pages 9661–9670, 2018.

[108] Pengyu Qian, Siddhartha Banerjee, and Yash Kanoria. The value of state

dependent control in ridesharing systems. arXiv preprint arXiv:1803.04959,

2018.

[109] Manish Raghavan, Aleksandrs Slivkins, Jennifer Wortman Vaughan, and

Zhiwei Steven Wu. The externalities of exploration and how data diversity

helps exploitation. In Conference on Learning Theory (COLT), 2018.

[110] Alexander Rakhlin and Karthik Sridharan. Online learning with pre-

dictable sequences. In Shai Shalev-Shwartz and Ingo Steinwart, editors,

Proceedings of the 26th Annual Conference on Learning Theory, volume 30 of

Proceedings of Machine Learning Research, pages 993–1019, Princeton, NJ,

USA, 12–14 Jun 2013. PMLR.

[111] Sasha Rakhlin and Karthik Sridharan. Optimization, learning, and games

229

with predictable sequences. In Advances in Neural Information Processing

Systems, pages 3066–3074, 2013.

[112] Frank P Ramsey. A contribution to the theory of taxation. The Economic

Journal, 37(145):47–61, 1927.

[113] Herbert Robbins. Some aspects of the sequential design of experiments.

Bulletin of the American Mathematical Society, 58(5):527–535, 1952.

[114] Julia Robinson. An iterative method of solving a game. Annals of mathemat-

ics, pages 296–301, 1951.

[115] Ryan M. Rogers, Aaron Roth, Jonathan Ullman, and Zhiwei Steven Wu.

Inducing approximately optimal flow using truthful mediators. In Proceed-

ings of the Sixteenth ACM Conference on Economics and Computation, EC’15.

ACM, 2015.

[116] Tim Roughgarden. Intrinsic robustness of the price of anarchy. In Pro-

ceedings of the Forty-first Annual ACM Symposium on Theory of Computing

(STOC), 2009.

[117] Tim Roughgarden and Éva Tardos. How bad is selfish routing? J. ACM,

49(2):236–259, March 2002.

[118] Paat Rusmevichientong and John N Tsitsiklis. Linearly parameterized

bandits. Mathematics of Operations Research, 35(2):395–411, 2010.

[119] Yevgeny Seldin and Gábor Lugosi. An improved parametrization and

analysis of the exp3++ algorithm for stochastic and adversarial bandits. In

Conference on Learning Theory (COLT), 2017.

230

[120] Yevgeny Seldin and Aleksandrs Slivkins. One practical algorithm for both

stochastic and adversarial bandits. In International Conference on Machine

Learning (ICML), 2014.

[121] Richard Serfozo. Introduction to stochastic networks, 1999.

[122] Latanya Sweeney. Discrimination in online ad delivery. Queue, 11(3):10:10–

10:29, March 2013.

[123] Vasilis Syrgkanis and Éva Tardos. Composable and efficient mechanisms.

In Proceedings of the 45th Annual Symposium on Theory of Computing (STOC),

2013.

[124] W. R. Thompson. On the Likelihood that one Unknown Probability Exceeds

Another in View of the Evidence of Two Samples. Biometrika, 1933.

[125] Ariel Waserhole and Vincent Jost. Pricing in vehicle sharing systems:

optimization in queuing networks with product forms. EURO Journal on

Transportation and Logistics, pages 1–28, 2014.

[126] Richard Weber et al. On the gittins index for multiarmed bandits. The

Annals of Applied Probability, 2(4):1024–1033, 1992.

[127] Chen-Yu Wei and Haipeng Luo. More adaptive algorithms for adversarial

bandits. In Proceedings of the 31st Conference On Learning Theory (COLT),

2018.

231

