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One tenth of anthropogenic greenhouse gas emissions are caused by heating and cooling

buildings. Efficient electric heat pumps could significantly reduce these emissions, but face

barriers to adoption related to costs, equipment selection and installation, and other factors.

The goal of this thesis is to reduce emissions by lowering barriers to heat pump adoption.

To this end, we investigate heat purchase agreements (HPAs), a new model of heat pump

ownership, and develop supporting methods. In an HPA, users host heat pumps owned by an

aggregator. The aggregator buys the heat pumps’ electricity and sells their heat or cooling

output to the users. We show that HPAs can lower barriers to adoption and benefit both

the aggregator and the users. We also develop a method for fairly pricing heat and cooling.

An HPA aggregator is responsible for selecting an appropriate heat pump for each user

under uncertainty. We develop a data-driven selection method that provides probabilistic

feasibility and optimality guarantees, and illustrate the method through simulations.

An HPA aggregator operates a fleet of heat pumps. If the aggregator invests in sensing,

communication and control capabilities, then they can provide services to the electricity

grid by perturbing the heat pumps’ power use. We develop methods for co-optimizing day-

ahead capacity offers for the two highest-priced services, regulation and spinning reserve.

In simulations, each heat pump offers 285–325 W of combined annual-average capacity and

earns $25–75 of annual revenue. Providing these services could help grid operators integrate

more renewable power, and thereby reduce emissions from electricity generation.
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Chapter 1

Introduction

1.1 Motivations

One tenth of anthropogenic greenhouse gas emissions are caused by heating and cooling

buildings. [1–3] These emissions could increase sharply in the coming decades, as global

demand for heating and cooling is projected to double by 2050. [2, 4] To avoid the worst

consequences of global climate change, deep reductions in greenhouse gas emissions from all

economic sectors, including heating and cooling, will likely be necessary. [5, 6] In this thesis,

we explore one approach to reducing the emissions from heating and cooling: replacing

fossil-fueled or inefficient heating and cooling equipment by efficient electric heat pumps.

As illustrated in Figure 1.2, electric heat pumps use electricity to move heat. In winter,

they provide heating by moving heat from outdoors to indoors. In summer, they provide

cooling by moving heat in the opposite direction. Two broad categories of heat pumps are

air-source heat pumps, which exchange heat with the outdoor air, and ground-source or

geothermal heat pumps, which exchange heat with the ground. Ground-source heat pumps

are typically more efficient, while air-source heat pumps are typically less expensive to install.

In this thesis, we focus primarily on air-source heat pumps, particularly those with variable-
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25%
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Transportation
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Figure 1.1: 2010 anthropogenic greenhouse gas emission shares by economic sector. [1] Total:
49 Gt CO2-equivalent. One tenth of emissions are caused by heating and cooling buildings.
This includes both direct emissions from on-site combustion and indirect emissions from
electricity use. ‘Land use’ refers primarily to agriculture, deforestation and biomass burning.
‘Other energy’ refers to all energy sector activities other than producing electricity and heat.

speed drives, and their use for space heating and cooling in homes and small businesses. We

note, however, that our methods and results extend to many other contexts.

Heat pump technology has advanced significantly in the last decade, in terms of both

efficiency and of heating capacity in cold weather. [7–9] Meanwhile, the greenhouse gas

intensity of electricity has decreased in much of the world, driven by fuel transitions and

rising power plant efficiencies. [10] Due to these technological advances, heat pumps now

have the potential to reduce emissions from heating and cooling by half or more. [8, 11, 12]

While heat pumps can reduce emissions in many applications, they face several barriers

to widespread adoption. Their lifetime costs are not always competitive with incumbent

technologies such as natural gas furnaces. [11] Even when lifetime heat pump costs are

competitive, the initial costs of procuring and installing them can be prohibitive. [13–17]

Additional barriers include finding skilled installers, selecting appropriate heat pump models

and sizes, and identifying and applying for rebates, tax credits or other incentives. [13–15]

The goal of this thesis is to reduce emissions by lowering barriers to heat pump adoption.
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Figure 1.2: Electric heat pumps provide heating or cooling by using electricity to move heat.

1.2 Heat purchase agreements

In the traditional model of heat pump ownership, a user (such as the owner of a home or

business) pays an installer to procure and install a heat pump. The user’s initial capital

cost includes the heat pump, the installation labor, and the installer’s overhead and profit.

The user is responsible for identifying and applying for any rebates, tax credits or other

incentives for heat pump adoption. Over the heat pump’s lifetime, the user also pays for the

electricity the heat pump consumes and any maintenance it requires.

As an alternative to the traditional heat pump ownership model, we investigate a model

of third-party ownership based on heat purchase agreements (HPAs). Figure 1.3 illustrates

this model. Users host heat pumps that are owned and operated by an aggregator, such as a

for-profit or nonprofit business, a utility, a heat pump manufacturer, or a local government

agency. The aggregator buys the electricity the heat pumps consume. Each user pays the

aggregator an agreed-upon price per unit of heat or cooling they use. The aggregator can

also sell the collective flexibility of its heat pump fleet to the power system operator for

ancillary services; we discuss this further in §1.3.

HPAs could lower the barriers to heat pump adoption discussed in §1.1. The aggregator

11
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Figure 1.3: Commodity flows in the HPA model of third-party heat pump ownership.

owns and installs the heat pumps, eliminating the users’ initial capital costs. The aggregator

also assumes responsibility for sizing the heat pumps appropriately and installing them

correctly. As the heat pump owner, the aggregator is the party eligible for any rebates or

tax credits; the aggregator therefore takes on the related burdens and benefits.

HPAs provide the user and aggregator with rational incentives. Because the user pays for

the heat or cooling they use, they are incentivized to maintain an efficient building envelope

and to choose moderate temperature setpoints. Because the aggregator’s profits are tied to

their heat pumps’ lifetime performance, the aggregator is incentivized to invest in quality

heat pumps, size them appropriately, install them correctly, operate them efficiently, and

maintain them well.

When entering into an HPA, the aggregator makes an initial investment in the heat

pump. They expect to recover this investment over time through heat or cooling sales. The

returns on the aggregator’s investment depend on how much heat or cooling is used. If the

user chooses milder temperature setpoints than expected, or makes efficiency improvements

to their building envelope, then the aggregator’s returns could be smaller than expected.
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For this reason, the aggregator might add some form of minimum-use clause to the HPA.

A minimum-use clause could weaken the user’s efficiency incentives; to mitigate this, the

aggregator could offer the user an energy audit and envelope efficiency upgrades before

negotiating the HPA. This could reduce emissions, provide the aggregator with another

revenue stream, and reduce the risk associated with the heat pump investment.

Who should aggregate heat pumps? Two candidates with significant economic advantages

are heat pump manufacturers and electricity distribution utilities. An HPA aggregator’s

business model involves buying heat pumps, buying electricity, and selling heat and cooling.

Initial investments in heat pumps and instrumentation are likely to be smallest for heat pump

manufacturers. Utilities buy electricity wholesale, rather than retail, so their electricity costs

would likely be lowest. Utilities also have existing relationships with energy end-users, and

are experienced with raising capital and investing in energy infrastructure. Of course, social

or political arguments could be made in favor of other entities.

1.2.1 Related ideas

HPAs can be found in the marketing materials of several energy companies [18–20], and in a

small number of academic papers [21, 22]. In both cases, the model arises in the context of

district heating systems, where heat is produced at a central plant and circulated through

a distribution network to many users. To our knowledge, this thesis is the first academic

investigation of HPAs in the context of stand-alone heat pumps serving individual users.

HPAs are closely related to power purchase agreements, a third-party ownership model

prevalent in the United States rooftop solar market. [23, 24] In the solar power purchase

agreement model, a firm owns solar panels hosted by users; the users buy the power that the

panels produce. The primary distinction between HPAs and power purchase agreements is

that in the former, the aggregator draws electricity from the grid and uses it to move heat,
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while in the latter, the firm generates electricity from sunlight on site.

Other models of third-party heat pump ownership could reduce some of the barriers to

adoption discussed in §1.1. For example, users could lease heat pumps from the aggregator.

We focus on HPAs, rather than leases, for two reasons. First, HPAs incentivize efficiency by

tying the aggregator’s profits to the heat pumps’ performance. Under a lease, by contrast,

the aggregator would likely receive fixed monthly payments whether the heat pumps perform

poorly or well. Second, leases are well-understood, while HPAs raise new research questions.

Under what conditions are HPAs mutually beneficial to the user, the aggregator and (by

reducing emissions) society? How should heat and cooling be priced? Chapter 2 of this

thesis addresses these questions.

Another relevant ownership model is property-assessed clean energy financing. [25–27] In

this model, a user borrows money, typically from a local government or a nonprofit agency,

and uses it to buy solar panels, windows, insulation, or other clean energy technologies.

The loan is repaid through the user’s property taxes. If the user moves before the loan

is repaid, the debt transfers with the property to the next owner. Property-assessed clean

energy financing has accelerated adoption of clean energy technologies in California [26, 27]

and Colorado [25]. Adapting this model to heat pumps could lower barriers to adoption,

as it would provide users with a source of capital and reduce risks associated with moving.

An HPA aggregator could likely benefit from a similar contract mechanism tying revenues

to properties, rather than to individual users.

Another innovative ownership model is community purchasing. [28] This model involves a

number of users who want to purchase heat pumps. Rather than purchasing the heat pumps

individually from various installers at full retail prices, the users combine their purchases

into one large order with a single installer. Community purchasing can lower the users’

capital costs by enabling bulk discounts on hardware and installation. It can also lower

other barriers to adoption by, e.g., streamlining the processes of finding installers, selecting
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appropriate heat pumps and applying for rebates, tax credits or other incentives. The

primary difference between community purchasing and HPAs is that community purchasing

can lower users’ capital costs, while HPAs can eliminate them.

In summary, there is a range of innovative models of third-party heat pump ownership

that can lower barriers to heat pump adoption. HPAs are one option. While we argue that

HPAs have certain advantages, we also acknowledge that different options may appeal to

different users, and that all of the options mentioned above have the potential to reduce

greenhouse gas emissions from heating and cooling.

1.3 Heat pumps, renewables and the grid

The central task of power system operation is to continuously balance electricity supply

and demand. This task grows more challenging as power systems integrate more wind and

solar generation, which are intermittent and uncertain. [29] To maintain reliability with

increasing shares of renewable generation, power system operators will likely need more

ancillary services. [30–32]

Ancillary services are commodities that are traded in power system markets and facilitate

the balancing of electricity supply and demand. [33] The adjective ‘ancillary’ indicates that

these services are not directly related to meeting energy demand, but support this activity.

Most ancillary services involve perturbing real power (as opposed to reactive power) at the

system operator’s request. Different system operators define different real-power ancillary

services, but these services can be broadly categorized as regulation and reserve. [33, 34]

Regulation involves perturbing power to track a reference signal with a time step on the

order of one second. System operators use regulation continuously during normal operations.

Some system operators run separate markets for upward regulation (increasing generation or

decreasing load) and downward regulation (decreasing generation or increasing load). Other
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Figure 1.4: Regulation involves perturbing measured power (red curve) away from a baseline
(dashed black line). The power perturbation should track the reference signal (solid black
curve) sent by the power system operator.

system operators run a single market and require symmetric regulation capacity. Regulation

is typically the highest-priced ancillary service. [34]

Figure 1.4 illustrates a resource providing symmetric regulation. In this figure, the dashed

black line is the resource’s power baseline, i.e., the power they would generate or consume

if they were not providing regulation. The red curve is the resource’s measured power. The

power perturbation is the difference between the measured power and the baseline. The

power perturbation should track the reference signal, drawn in solid black beneath the plot.

Reserve is capacity held in reserve in case of a contingency, such as a generator outage,

a power line failure, or a sudden drop in the power output of a wind or solar farm. Unlike

regulation, reserve is not dispatched during normal operations. When a contingency occurs

and reserve is dispatched, resources must deliver a predetermined power perturbation within

a given response time: ∼10 minutes for spinning reserve and ∼30 minutes for non-spinning

reserve. Spinning reserve is typically the next highest-priced ancillary service after regulation.

[34]
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Figure 1.5: To provide spinning reserve, a load must be able to curtail within ∼10 minutes
of dispatch. Spinning reserves are dispatched in response to infrequent contingencies such
as generator outages or power line failures.

Figure 1.5 illustrates a load providing spinning reserve. As in Figure 1.4, the dashed black

line and red curve in Figure 1.5 are the load’s baseline and measured power, respectively.

After receiving a dispatch signal, the load turns off within ∼10 minutes. This curtailment is

sustained for ∼15 minutes, at which point non-spinning reserves come online and the system

operator relieves the load. The load then recovers, e.g., by bringing indoor air temperatures

back to desired levels.

Ancillary services have traditionally been provided by generators, but controllable loads

can also provide them. [35–41] In particular, recent experiments have demonstrated that in-

dividual heat pumps equipped with variable-speed electric motors can rapidly and accurately

track requested power perturbations. [42–47]

Despite variable-speed heat pumps’ technical capabilities, they face a significant barrier

to ancillary service market entry. This barrier is a matter of scale. Total power system

capacities are typically tens to hundreds of GW. To keep operations manageable, power

system operators require a minimum capacity, typically 100 kW or 1 MW, to participate in

ancillary service markets. [34] Most heat pumps, by contrast, have electric power capacities
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on the order of one to ten kW. To participate in ancillary service markets, therefore, heat

pumps likely need to be aggregated by the hundreds or thousands.

The HPA model discussed in §1.2 can overcome this barrier to entry. In this model, the

aggregator owns and operates a fleet of heat pumps. If this fleet is sufficiently large, and

has the necessary sensing, communication and control capabilities, then the aggregator can

sell its collective flexibility in ancillary service markets. The aggregator has an economic

incentive to meet these criteria, as ancillary service markets offer new revenue opportunities.

1.3.1 Related ideas

The idea of loads providing power system services dates back at least to the energy crisis

of the 1970s. [48–53] Throughout the last four decades, utilities have used price signals

or direct load control to reduce peak load, shift load to low-price times, and curtail load

in emergencies. [52, 54–57] Thermal loads such as air conditioners and water heaters have

consistently played a central role in these efforts.

For most of the 20th century, the United States electricity industry involved a small

number of government-sanctioned monopolies that owned the generation, transmission and

distribution infrastructure in their respective service areas. [58] In the late 1990s, the in-

dustry was restructured to allow competition at the wholesale level. [59, 60] Restructuring

paved the way for loads to participate in energy and ancillary service markets. [61, 62]

Meanwhile, due to the proliferation of sensing, communication and computing technologies,

loads became increasingly capable of reliably providing ancillary services. [36, 63, 64]

Recently, two research threads have made significant progress toward controlling heating

and cooling loads for ancillary services. The first focuses on aggregating thermostatically-

controlled loads such as air conditioners, refrigerators and water heaters in residential and

small commercial buildings. [37, 65–70] The second focuses on individual variable-speed
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fans, pumps and compressors in large commercial and industrial buildings. [38–43, 71–74]

In this thesis, we explore a third and complementary thread: aggregating variable-speed

heat pumps in residential and small commercial buildings. Other contributions in this thread

include [44–47]. Our primary contributions are (1) regulation control at the aggregate scale,

rather than the scale of an individual heat pump; (2) co-optimization of regulation and

reserve offers in day-ahead markets; and (3) quantifying the regulation and reserve capacities

and revenues of a heat pump aggregation. We discuss this further in Chapter 5.

1.4 Research contributions

The primary research contributions of this thesis include analysis of the HPA model and

development of methods to support its implementation. More specifically, we claim the

following original and substantial research contributions.

1. In Chapter 2, we analyze the economics of HPAs. In particular, we derive necessary

and sufficient conditions for an HPA to mutually benefit the aggregator and the user.

We also provide a method for fairly pricing heat and cooling.

2. In Chapter 4, we develop a method for selecting an appropriate heat pump for a

given application. The method is data-driven, provides probabilistic feasibility and

optimality guarantees, and applies to both HPAs and traditional ownership.

3. In Chapter 5, we demonstrate the feasibility of providing regulation and spinning

reserve from aggregated variable-speed heat pumps. In particular, we develop a regu-

lation controller at the aggregate scale and quantify its tracking performance. We also

show that the indoor air temperature perturbations caused by providing regulation

and spinning reserve are small.
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4. Also in Chapter 5, we develop new methods for co-optimizing day-ahead regulation

and reserve capacity offers for an aggregation of variable-speed heat pumps under

uncertainty. In simulations, each heat pump can offer 285–325 W of annual-average

capacity and earn $25–75 of annual revenue. These are combined figures from providing

both regulation and spinning reserve in the PJM Interconnection, the largest power

system in the United States.

1.5 Potential impact

The potential impact of this thesis is the self-reinforcing cycle illustrated in Figure 1.6. We

now walk through this cycle, beginning at the top.

1. HPAs could encourage adoption of more heat pumps.

2. An HPA aggregator could use these heat pumps to provide ancillary services, helping

power system operators integrate more renewable generation.

3. New renewables could drive down the prices and greenhouse gas intensities of electricity.

(These effects have been observed in regions with high shares of renewable generation,

such as Germany [75, 76] and Texas [77].)

4. Lower electricity prices and greenhouse gas intensities could make heat pumps more

economically and environmentally attractive, encouraging further heat pump adoption.

This cycle could reduce emissions directly, by replacing fossil-fueled or inefficient heating and

cooling equipment with efficient heat pumps powered by clean electricity. It could also reduce

emissions indirectly, by enabling wind and solar power to displace fossil-fueled generation.
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Figure 1.6: Renewables and heat pumps could form a self-reinforcing cycle, reducing emis-
sions from heating, cooling and electricity generation.

1.6 Organization of this thesis

This thesis is organized into four chapters and two appendices, plus this introductory chapter

and the conclusion in Chapter 6. Chapters 2–5 are intended to be read sequentially, but

readers who are familiar with the emissions and economics of heating and cooling systems can

safely skip Chapter 2. Chapter 3 lays the foundation for Chapters 4–5. Some methodology

discussion in Chapter 5 assumes familiarity with the methods employed in Chapter 4. The

appendices are supplemental.

In Chapter 2, we analyze the emissions and economics of heat pumps and incumbent

heating and cooling technologies. We conduct this analysis at a high level in order to high-

light the important ideas and parameters with a minimum of conceptual and notational

overhead. A particular focus of Chapter 2 is the economics of third-party heat pump own-

ership under HPAs. Notably, the analysis includes (a) conditions under which HPAs are

mutually beneficial to the aggregator and user, and (b) methods for fairly pricing heat and
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cooling.

In Chapter 3, we present mathematical models of heat pumps and thermal loads. By

contrast to the high-level models in Chapter 2, the models in Chapter 3 are sufficiently

accurate to be used for optimization and control of real heat pumps, and we use them for

these purposes in Chapters 4–5. The heat pump discussion starts from basic physics and

builds up to a data-driven heat pump model. The thermal load discussion presents a thermal

circuit model that is simple, accurate, and broadly applicable. We discuss the history of this

model, its recent use in research on optimization and control of heating and cooling systems,

and how its parameters can be fit to high-level energy consumption data.

In Chapter 4, we develop a data-driven method for selecting an appropriate heat pump

for a given application. We discuss existing approaches to this problem in industry and in

the research literature. We then develop a new method, position it relative to a subfield of

Monte Carlo simulation called ranking and selection, and simulate its use in a realistic heat

pump selection example. The new selection method comes with a robustness guarantee that

we prove in Appendix A.

Chapter 5 covers the technical feasibility and economic viability of providing regulation

and spinning reserve from aggregated variable-speed heat pumps. The technical feasibility

sections focus on quantifying the impacts of ancillary service provision on building occupants.

For regulation, this entails the design of a real-time controller at the aggregate level; we

discuss our controller and simulate its performance under historical regulation signal data.

The economic viability section of Chapter 5 focuses on estimating the regulation and spinning

reserve capacity that a heat pump aggregator could offer and the revenue that they could

earn. The estimation procedure involves long-term stochastic simulation of a large heat

pump aggregation.
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Chapter 2

Emissions and economics

In this chapter, we analyze the emissions and economics of heat pumps and competing tech-

nologies. We conduct this analysis at a high level in order to emphasize the key parameters

and relationships between them. Later chapters of this thesis will provide more detailed

analyses and more concrete interpretations of the high-level parameters.

2.1 Emission reductions from heat pumps

We consider a user whose annual heating and cooling loads are Qh (kWht) and Qc (kWht),

respectively. Here the subscript t denotes thermal, rather than electrical, energy. We allow

for the cases where either Qh = 0 or Qc = 0, but we assume that Qh + Qc > 0, meaning at

least one of the annual thermal loads is strictly positive. We compare the emissions of two

scenarios:

1. A reversible electric heat pump with seasonal heating and cooling coefficients of per-

formance (COPs) ηh and ηc, respectively.

2. An incumbent heating and cooling system with seasonal COPs η̃h and η̃c.
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By COP, we simply mean the ratio of the output thermal energy (heating or cooling) to the

energy supplied by the input electricity or fuel. For some equipment, such as fossil-fueled

furnaces and boilers, this ratio is typically called an efficiency, and is always between zero

and one. For heat pumps, by contrast, COPs can be greater than one, and are often in the

range of three to five. [7–9]

The annual electrical energy consumed by the heat pump is

Qh

ηh
+
Qc

ηc
.

Similarly, the incumbent system consumes input energy

Qh

η̃h
+
Qc

η̃c
.

For the incumbent system, the input heating energy could come from natural gas, propane,

heating oil, electricity, etc. We assume that the input cooling energy is electricity.

We define the greenhouse gas intensity of electricity, µ (kg/kWh), as the equivalent mass

of CO2 (in terms of warming potential) emitted per unit of electrical energy. Similarly, we

define the greenhouse gas intensity of the incumbent heating fuel, µ̃ (kg/kWh), as the mass

of CO2-equivalent emitted per unit of chemical potential energy in the heating fuel. With

these definitions, the annual greenhouse gas emission reduction due to the heat pump is

(
µ̃

η̃h
− µ

ηh

)
Qh + µ

(
1

η̃c
− 1

ηc

)
Qc. (2.1)

2.1.1 Typical parameter values

In field studies in cold climates, ductless air-source heat pumps typically achieve seasonal

heating COPs of 2.6 to 2.9. [78–80] Seasonal average cooling COPs are significantly higher:
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typically 3.7 to 4.3. [80] Cooling COPs exceed heating COPs because air-source heat pumps

are more efficient when the temperature difference between the indoor and outdoor air is

smaller. In cold climates, temperature differences are significantly smaller over the cooling

season than the heating season.

Typical fossil-fueled furnace and boiler efficiencies range from 55% for old, propane- or

oil-fueled units to 95% for new natural gas units. [81] By contrast to ductless heat pumps,

most fossil-fueled furnaces and boilers produce heat centrally and distribute it through a

network of ducts or pipes. Distribution entails additional losses. Distribution efficiencies

range from 65% for old steam systems, which operate at high temperatures and pressures, to

95% for new ducts or pipes in conditioned space. [81, 82] Therefore, the combined efficiency

of a fossil-fueled heating system, including the central plant and the distribution network,

ranges from 35% to 90%. A recommended nominal value of the efficiency of a ducted natural

gas furnace in an existing United States home is 70%. [81]

Central air conditioners’ seasonal COPs typically range from 1.9 for old units to 4 for

new units. [81] Like fossil-fueled furnaces, central air conditioners distribute cool air through

ducts, typically with 70% to 95% efficiency. [81, 82] Therefore, the combined seasonal COPs

of ducted central air conditioning systems, including the central plant and the distribution

network, range from 1.3 for old units to 3.8 for new units. Room air conditioners provide

cooling directly to conditioned space, so avoid distribution losses. Room air conditioners’

seasonal COPs typically range from 1.6 for old units to 2.9 for new units. [81]

The greenhouse gas intensities of natural gas, propane and heating oil are 0.18, 0.22 and

0.25 kg/kWh, respectively. [83] The greenhouse gas intensity of electricity depends on the

efficiencies and input fuels of the power plants that generate the electricity. The generation

mix varies over both space and time, so the greenhouse gas intensity of electricity does too.

In the United States, the average greenhouse gas intensity, defined as the ratio of the total

mass of CO2-equivalent emitted to the total electrical energy generated, was 0.46 kg/kWh in
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2017. [84] This metric varied from 0.03 kg/kWh in Vermont to 0.93 kg/kWh in Wyoming.

2.1.2 Data sources

The sources [78–80] are technical reports of field-monitoring studies of cold-climate air-source

heat pumps. The COP values reported in these studies are compiled from long-term measure-

ments of actual heat pumps serving residential buildings in several dozen locations, primarily

in the Northeastern United States. These data include measurements of the specific line of

heat pumps we discuss and model in §3.1.3. These studies are conducted by independent

researchers, rather than heat pump manufacturers, and the data show fair agreement across

studies. For these reasons, we consider the COP values reported in [78–80] to be quite robust.

We use the source [81] primarily for the efficiencies of incumbent heating and cooling

equipment. This source is a technical report that specifies protocols for simulating the energy

consumption of heating and cooling equipment for purposes such as predicting emission

and cost reductions from building retrofits. This report is an official document from the

United States Department of Energy’s Building America program, an industry/government

collaboration aimed at improving the energy efficiency of residential buildings. The efficiency

values reported in [81] were compiled by a team of independent researchers at national

laboratories based on field measurements, review of research literature, and discussion with

industry practitioners. We note that efficiencies vary widely depending on equipment age

and quality; the efficiency ranges in §2.1.1 reflect this variety.

We use the source [84] for greenhouse gas intensities of electricity. This source is a product

of the United States Environmental Protection Agency’s Emissions & Generation Resource

Integrated Database. It contains (among other data) the total equivalent greenhouse gas

intensities of electricity, including emissions of CO2, NOx, SO2 and CH4, for each state. We

use the data from 2016, the most recent year available. The annual greenhouse gas intensities
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Table 2.1: State-independent parameter values used in Figure 2.1.

Parameter ηh ηc η̃h η̃c µ̃
Value 2.75 4 0.7 2.7 0.18 kg/kWh

in [84] are computed by dividing the total equivalent mass of CO2 emitted by all power

plants in each state by the total electrical energy those plants produce. These greenhouse

gas intensities can therefore be viewed as averages over both time and generators. For a

discussion of other greenhouse gas accounting methods, we refer the interested reader to

pages 23–25 of [11].

2.1.3 United States emission reduction potential

Figure 2.1 shows a map of the United States, color-coded by the estimated percent emission

reduction,

100

(
1− λ/ηh + 1/ηc

λµ̃/(µη̃h) + 1/η̃c

)
%,

where

λ :=
Qh

Qc

.

To color-code this figure, we used the parameter values in Table 2.1. In this table, the values

of η̃h and µ̃ represent a ducted natural gas furnace of typical age and efficiency. The value of

η̃c represents a ducted central air conditioner of typical age and efficiency. We adjusted the

heat pump and air conditioner COPs linearly based on the seasonal average temperature in

each state. The heating adjustment was 100% at 0 ◦C with a slope of 1%/◦C. The cooling

adjustment was 100% at 20 ◦C with a slope of −3%/◦C. These values were based on the

manufacturer COP data discussed in §3.1.3.

The parameters λ and µ used in Figure 2.1 vary by state. For each state’s value of λ,

we used the ratio of the average heating load to cooling load from the 2015 survey data in
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[85] for a single-family home in the relevant climate zones. For µ, we used each state’s 2017

electricity greenhouse gas intensity from [84].

With these input data, the percent emission reductions range from -18% (an 18% in-

crease) in Wyoming, the state with µ = 0.93 kg/kWh, to a 95% reduction in Vermont,

the state with µ = 0.03 kg/kWh. The average emission reduction is 38%. The standard

deviation is 25%.

We note that Figure 2.1 shows the estimated emission reduction that could likely be

achieved in each state by replacing a typical natural gas furnace and central air conditioner

with a typical cold-climate air-source heat pump. Actual emission reductions will, of course,

vary with the age, quality and fuel sources of the replaced equipment, the heat pump quality,

and exogenous factors related to weather and occupant behavior. The numerical emission

reductions reported here should be viewed as high-level, ballpark estimates. The main value

of Figure 2.1 is to highlight regions where the emission reduction potential of heat pumps is

particularly strong, such as the Northeast and the Pacific Northwest.

2.1.4 Sensitivity analysis

We now consider the influence of each parameter on the absolute emission reduction in

Equation1 (2.1). To quantify this influence, we first introduce the notion of sensitivity.

Sensitivity definition

We consider a generic output y ∈ R that is a function f : Rn → R of a vector p ∈ Rn

of parameters. We are interested in the change ∆y caused by a small change ∆pi to a

particular parameter pi. In the neighborhood of the nominal parameter values p̄ ∈ Rn, ∆y

1In this thesis, only equations that are referred to in the text are numbered.
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Figure 2.1: Estimated percent emission reductions from replacing a typical natural gas fur-
nace and air conditioner by an efficient electric heat pump. Darker orange shades indicate
larger reductions; blue shades indicate emission increases. Estimates range from an 18% in-
crease in Wyoming to a 95% reduction in Vermont. The national average is a 38% reduction.

is well-approximated by

∆y ≈ ∂f

∂pi

∣∣∣∣
p̄

∆pi.

To allow direct comparison between different parameters’ influences on y, we define the

sensitivity of y to pi in terms of the relative change in y caused by a small relative change

in pi:

sensitivity of y to pi :=
∆y/ȳ

∆pi/p̄i
≈ ∂f

∂pi

∣∣∣∣
p̄

p̄i
ȳ
.

Here ȳ = f(p̄) is the value of y at the nominal parameter values. The sensitivity of y to pi

can be interpreted as the percent change in y caused by a 1% change in pi, with all other

parameters held constant at their nominal values.
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Table 2.2: Emission reduction sensitivities.

Parameter ηh ηc η̃h η̃c µ µ̃
Sensitivity 1.50 0.79 -2.34 -1.18 -1.10 2.34

Emission reduction sensitivities

Table 2.2 shows the sensitivities2 of the absolute emission reduction to the relevant parame-

ters. To compute these sensitivities, we used the nominal parameter values in Table 2.1. We

also used the 2017 United States average greenhouse gas intensity of electricity, µ = 0.455

kg/kWh, and the United States average heating and cooling loads for single-family homes

from [85].

The emission reduction is increasing in ηh, ηc and µ̃ and decreasing in η̃h, η̃c and µ. To

maximize the emission reduction, therefore, we should target inefficient air conditioners and

inefficient heating systems powered by fuels with high greenhouse gas intensities. We should

replace these systems with efficient heat pumps powered by clean electricity.

In the neighborhood of the nominal parameter values, the emission reduction is most

sensitive to η̃h and µ̃. This suggests that the characteristics of the incumbent heating system

have the greatest influence on the potential emission reductions.

2.1.5 Average and marginal greenhouse gas intensities

The emissions analysis above uses greenhouse gas intensity data from [84]. These green-

house gas intensity data are averaged over both time and generators. Another approach to

quantifying the emissions of electrical devices uses the marginal greenhouse gas intensity

of electricity, i.e., the greenhouse gas intensity of electricity generated by the power plant

or plants whose real-time power output changes in response to changes in system load. We

2Sensitivities, as defined in §2.1.4, are dimensionless quantities. They are directly comparable between
variables; each sensitivity can be viewed as the percent change in the output caused by a one percent change
in the input.
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Figure 2.2: A forced-air natural gas heating system. To produce one unit of heat, the ducted
furnace consumes 1/(ηdηf ) units of chemical potential energy.
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Figure 2.3: A point-source heat pump system powered by gas-fueled electricity. To produce
one unit of heat (which is delivered directly to the space, rather than distributed through
ducts), the system consumes 1/(ηhηgηt) units of chemical potential energy.

now illustrate the marginal approach in the case where marginal electricity is generated from

natural gas. For a fuller comparison of different approaches to greenhouse gas accounting,

see pages 23–25 of [11].

To illustrate the marginal approach to greenhouse gas accounting, we consider the two

cases depicted in Figures 2.2–2.3. Figure 2.2 depicts the case where heating is provided by

a ducted natural gas furnace. To produce one unit of heat, this system consumes 1/(ηdηf )

units of input chemical potential energy from natural gas. Here ηd is the duct efficiency and

ηf is the furnace efficiency. Figure 2.3 depicts a heat pump powered by gas-fueled electricity.

This case represents a point-source heat pump, such as a ductless mini-split, that delivers

heat directly to the space rather than distributing hot air through ducts. The heat pump

system in Figure 2.3 consumes 1/(ηhηgηt) units of chemical potential energy to produce one

unit of heat. Here ηt is the natural gas turbine efficiency and ηg is the combined efficiency

of transmitting, transforming and distributing electricity over the grid.

The United States Environmental Protection Agency’s Emissions & Generation Resource

Integrated Database [84] contains estimates of ηg for 26 regions in the United States. The

2016 estimates range from 94.7% to 95.8%, with a national average of 95.5%. According to

the United States Energy Information Agency’s Office of Independent Statistics & Analysis,
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the average operating efficiency of United States natural gas turbines in 2016 was 43.4%.

[86] (Modern combined-cycle natural gas turbines can exceed 60% operating efficiencies, but

the United States natural gas fleet also includes many older or single-cycle units.) With

ηt = 0.434, ηg = 0.955 and ηh = 2.75 (cf. the cold-climate heat pump field studies [78–

80]), the heat pump system in Figure 2.3 consumes 1/(ηhηgηt) = 0.87 units of chemical

potential energy to produce one unit of heat. Therefore, this system reduces greenhouse gas

emissions relative to the natural gas heating system in Figure 2.2 whenever 1/(ηdηf ) > 0.87,

or, equivalently, ηdηf < 1.15. As ηd and ηf are both less than one, this inequality always

holds. Assuming ηdηf = 0.7, a typical value for an existing forced-air natural gas furnace

and ducts in a United States home [81], the relative emission reduction from the heat pump

system is 1− ηdηf/(ηhηgηt) = 0.39. In other words, replacing the natural gas heating system

in Figure 2.2 by the heat pump system in Figure 2.3 powered by gas-fueled electricity can be

expected to reduce the greenhouse gas emissions from heating by about 39%. The percent

emission reduction is increasing in ηt, ηg and ηh and decreasing in ηf and ηd.

2.2 Economics of traditional heat pump ownership

In the traditional model of heat pump ownership, the user pays an installer to procure and

install a heat pump. Over the heat pump’s lifetime, the user pays for the electricity the heat

pump consumes and any maintenance it requires. In this ownership model, the net present

cost of the user’s heat pump investment is

c+ γ

[
π

(
Qh

ηh
+
Qc

ηc

)
+m

]
,
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where

γ :=
Y∑
i=1

1

(1 + ρ)i

=
1− (1 + ρ)−Y

ρ
.

In these expressions,

• c ($) is the user’s installed cost, including the heat pump, the installation labor, the

installer’s overhead and profit, and any available rebates, tax credits or other incentives.

• π ($/kWh) is the annual average electricity price.

• m ($) is the annual maintenance cost.

• Y is the number of years in the heat pump’s lifetime.

• ρ is the user’s annual cash flow discount rate.

In deriving these expressions, we assume that the heat pump’s salvage value at the end of

its life is negligible. We also assume that the annual heating and cooling loads, seasonal

COPs, annual average electricity and fuel prices, and annual maintenance costs are constant

over the heat pump’s lifetime. These assumptions can be relaxed (see §2.5); we make them

mainly to keep notation light.

As in §2.1, we compare the heat pump to an incumbent heating and cooling system.

Assuming the lifetime of the incumbent system is equal to the heat pump lifetime, the net

present cost of the incumbent system is

c̃+ γ

(
π̃Qh

η̃h
+
πQc

η̃c
+ m̃

)
.

Here c̃ ($), m̃ ($), and π̃ ($/kWh) are the incumbent system’s installed cost, annual main-

tenance cost, and heating fuel price, respectively. The net present value of the user’s heat
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pump investment is the net present cost reduction, relative to the incumbent system:

c̃− c+ γ

[(
π̃

η̃h
− π

ηh

)
Qh + π

(
1

η̃c
− 1

ηc

)
Qc + m̃−m

]
.

The heat pump investment is attractive if its net present value is nonnegative. This

occurs if and only if

(
π̃

η̃h
− π

ηh

)
Qh + π

(
1

η̃c
− 1

ηc

)
Qc ≥

c− c̃
γ

+m− m̃. (2.2)

The left-hand side of this inequality is the annual energy cost reduction. The right-hand

side is a weighted sum of the increases in the initial capital cost and the annual maintenance

cost. Thus, the investment is attractive if the energy cost savings outweigh the (potentially)

increased capital and maintenance costs.

2.2.1 Typical parameter values

Heating and cooling equipment lifetimes typically range from 10 to 20 years; air-source heat

pump manufacturers typically provide 10 or 12 year equipment warranties. Users’ annual

cash flow discount rates generally depend on their source of capital and the rate of return

they expect from their other investments. Typical discount rates range from 5% to 15%.

Therefore, typical values of the capital-operating cost trade-off parameter γ range from 5 to

12.5.

Electricity prices vary over space and time. In 2016, the United States average residential

electricity price was 0.13 $/kWh. [87] The minimum and maximum 2016 prices were 0.075

$/kWh in Louisiana and 0.239 $/kWh in Hawaii.

The prices of incumbent heating fuels, such as natural gas, propane and heating oil, also

vary over space and time. Between 2015 and 2019, the United States winter average natural
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gas retail price was 0.033 $/kWh. [88] The minimum 2015–2019 winter average natural gas

retail price was 0.023 $/kWh in North Dakota; the maximum was 0.129 $/kWh in Hawaii.

United States 2015–2019 winter average propane and heating oil prices were 0.09 and 0.078

$/kWh, respectively. In other words, propane and heating oil were 2.7 and 2.3 times more

expensive than natural gas, on average.

A heat pump’s installed cost depends on the type and size of the unit; the installer’s labor

costs, overhead and profit margin; and any rebates, tax credits or other incentives for which

the user or installer is eligible. Installed costs are therefore highly variable. As one point of

reference, the unsubsidized installed cost of a high-quality ductless heat pump with one ton

(3.5 kWt) of nameplate cooling capacity typically ranges from $4,000 to $5,000. Installed

costs of incumbent heating and cooling systems also vary substantially across technologies,

capacities, efficiencies, installers, incentives, etc.

Annual heat pump maintenance costs vary from year to year. Some years may involve only

maintenance that can be done by the user at no cost, such as cleaning air filters and washing

outdoor unit coils. Other maintenance, such as periodically checking refrigerant charge,

requires a technician. Warranties typically cover damaged hardware, but not technician labor

for maintenance or repairs. A plausible range of annual maintenance costs, on average over

a heat pump’s lifetime, is $50 to $100. Typical maintenance costs of incumbent technologies

are comparable.

2.2.2 Data sources

We use the source [87] for electricity prices. This source is a product of the United States En-

ergy Information Administration’s Office of Independent Statistics & Analysis. This source

contains (among other data) the weighted-average residential retail price of electricity in

each state, averaged over that state’s utilities and other electricity providers, weighted by
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the total electrical energy produced by each provider. We use the data from 2018, the most

recent year available.

For fossil fuel prices, we use the database [88]. These data are also compiled by the United

States Energy Information Administration’s Office of Independent Statistics & Analysis, and

compiled using similar methods to the electricity price data. Because fossil fuel prices are

significantly more volatile than electricity prices, we average the 2015–2019 prices. We use

the winter residential retail prices for each fuel (natural gas, propane and heating oil).

2.2.3 United States energy cost reduction potential

Figure 2.4 shows a map of the United States, color-coded by the estimated percent energy

cost reduction,

100

(
1− λ/ηh + 1/ηc

λπ̃/(πη̃h) + 1/η̃c

)
%.

To color-code this figure, we used the efficiency parameter values in Table 2.1, adjusted based

on state temperatures. We used the same values to color-code the emission reduction map

in Figure 2.1. These parameters represent replacing a typical ducted natural gas furnace

and central air conditioner in existing construction.

The parameters λ, π and π̃ vary by state. As in the emissions map, for each state’s value

of λ, we used the ratio of the average heating load to cooling load from the 2015 survey

data in [85] for a single-family home in the relevant climate. For π, we used the 2016 state

averages from [87]. For π̃, we used the 2015–2019 state winter average natural gas retail

prices from [88].

With these input data, the percent energy cost reductions range from a 41% increase

in Alaska to a 47% reduction in Arkansas. The average energy cost reduction is 24%. The

standard deviation is 17%.

We emphasize that energy cost reduction is only part of the story. The net present value
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Figure 2.4: Estimated energy cost reductions from replacing a typical natural gas furnace
and central air conditioner by an efficient electric heat pump. Darker orange shades indicate
larger reductions; blue shades indicate cost increases. Estimates range from a 41% increase
in Alaska to a 47% reduction in Arkansas. The national average is a 24% reduction.

of a heat pump investment also depends on the installed costs and maintenance costs of

the heat pump and the incumbent system. As with Figure 2.1, we note that Figure 2.4

shows the estimated cost reduction that could likely be achieved in each state by replacing a

typical natural gas furnace and central air conditioner with a typical cold-climate air-source

heat pump. Actual cost reductions will vary with the age, quality and fuel sources of the

replaced equipment, heat pump quality, weather, occupant behavior, etc. The numerical cost

reductions reported here should be viewed as high-level, ballpark estimates. The main value

of Figure 2.4 is to highlight that (1) compared to the emission reductions in Figure 2.1, the

cost reductions in Figure 2.4 are significantly smaller, and (2) the regions with high emission

reduction potential, such as the Northeast and Pacific Northwest, are not the same as the

regions with high cost reduction potential, such as the Southeast.
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Table 2.3: Energy cost reduction sensitivities.

Parameter ηh ηc η̃h η̃c π π̃
Sensitivity 1.87 0.98 -2.37 -1.47 -1.37 2.37

2.2.4 Sensitivity analysis

We now analyze the sensitivity of the energy cost reduction (the left-hand side of Inequality

(2.2)) to each parameter. Table 2.3 shows the sensitivities. To compute them, we used the

approach discussed in §2.1.4. We used the nominal efficiencies in Table 2.1. We also used

the 2016 United States average residential electricity price, π = 0.103 $/kWh, the 2015–2019

United States average winter natural gas price, π̃ = 0.033 $/kWh, and the United States

average heating and cooling loads for single-family homes from [85].

The energy cost reduction is increasing in ηh, ηc and π̃ and decreasing in η̃h, η̃c and π. To

maximize the energy cost reduction, therefore, we should target inefficient air conditioners

and inefficient heating systems powered by expensive fuels. We should replace these systems

with efficient heat pumps powered by cheap electricity.

In the neighborhood of the nominal parameter values, the energy cost reduction is most

sensitive to η̃h, π̃ and, to a lesser extent, ηh. This suggests that the characteristics of the

incumbent heating system have the greatest influence on the energy cost reductions. The

heat pump’s heating COP is also influential.

2.2.5 Internalizing the cost of emissions

The economic analysis in this section includes the costs of hardware, installation, energy

and maintenance, but leaves out the societal cost of greenhouse gas emissions. The cost of

emissions can be internalized by penalizing emissions at a price πg ($/kg). The economic
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analysis remains the same, with the energy prices redefined:

π ← π + πgµ

π̃ ← π̃ + πgµ̃.

There are also embodied emissions in the heat pump and the incumbent system due to

manufacturing, shipping, etc. These can be internalized by redefining the capital costs:

c← c+ πgM

c̃← c̃+ πgM̃.

Here M (kg) and M̃ (kg) are the masses of CO2-equivalent embodied in the heat pump and

the incumbent system, respectively.

2.3 Economics of heat purchase agreements

In the previous section, we compared an incumbent heating and cooling system to a heat

pump under the traditional ownership model. In this section, we compare the traditional

ownership model to an HPA for the same heat pump.

Under an HPA, the user hosts a heat pump owned by an aggregator. The aggregator

pays for the heat pump and installation labor, and receives any rebates, tax credits or

other incentives. The aggregator also pays for the electricity the heat pump consumes. The

user pays the aggregator an agreed-upon price for each unit of heating or cooling the heat

pump produces, under the user’s chosen temperature setpoints. The aggregator also absorbs

the heat pump maintenance costs and sells the heat pump’s flexibility in ancillary service

markets.
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2.3.1 User benefit

Under the traditional ownership model, the user’s net present cost is

c+ γ

[
π

(
Qh

ηh
+
Qc

ηc

)
+m

]
.

Under an HPA, the user’s net present cost is

γ (πhQh + πcQc) .

Here πh ($/kWht) and πc ($/kWht) are the heating and cooling prices that the user and

aggregator agree upon. The net present value of the HPA to the user is the net present cost

reduction:

vu := c+ γ

[(
π

ηh
− πh

)
Qh +

(
π

ηc
− πc

)
Qc +m

]
.

The HPA benefits the user if and only if vu ≥ 0, or, equivalently,

πhQh + πcQc

Qh +Qc

≤ π, (2.3)

where

π :=
1

Qh +Qc

(
πhQh + πcQc +

vu
γ

)
=

1

Qh +Qc

[
c

γ
+ π

(
Qh

ηh
+
Qc

ηc

)
+m

]
.

2.3.2 Aggregator benefit

We assume, for the sake of simplicity, that the aggregator discounts future cash flows at the

same rate ρ as the user. Under this assumption, the aggregator’s net present cost is

ca + γ

[
π

(
Qh

ηh
+
Qc

ηc

)
+ma

]
,
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where ca ($) and ma ($) are the aggregator’s total installed cost and annual maintenance

cost, respectively. The aggregator’s net present revenue is

γ(πhQh + πcQc + r),

where r is the aggregator’s annual ancillary service revenue for this heat pump. The net

present value of the HPA to the aggregator is the net present profit:

va = −ca + γ

[(
πh −

π

ηh

)
Qh +

(
πc −

π

ηc

)
Qc + r −ma

]
.

The HPA benefits the aggregator if and only if va ≥ 0, or, equivalently,

πhQh + πcQc

Qh +Qc

≥ π, (2.4)

where

π :=
1

Qh +Qc

(
πhQh + πcQc −

va
γ

)
=

1

Qh +Qc

[
ca
γ

+ π

(
Qh

ηh
+
Qc

ηc

)
+ma − r

]
.

2.3.3 Mutual benefit

The HPA is mutually beneficial to the user and the aggregator if and only if the inequalities

(2.3) and (2.4) both hold:

π ≤ πhQh + πcQc

Qh +Qc

≤ π.

A necessary condition is that π ≥ π. It is straightforward to show that

π − π =
vu + va

γ(Qh +Qc)
.
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Thus, π ≥ π if and only if v ≥ 0, where

v := vu + va

= c− ca + γ (m−ma + r)

is the total value of the HPA. We note that v is a weighted sum of three terms: the capital

cost reduction c − ca, the maintenance cost reduction m − ma, and the ancillary service

revenue r. Therefore, the value of the HPA is highest when the aggregator minimizes their

installed and maintenance costs (for example, by buying heat pumps in bulk, hiring efficient

installation and maintenance teams, and minimizing overhead) and maximizes their ancillary

service revenue.

The following theorem summarizes these results.

Theorem 1 (Mutual benefit). The HPA is mutually beneficial if and only if both of the

following conditions hold:

1. v ≥ 0 (or, equivalently, π ≤ π), and

2. πh and πc are chosen such that

π ≤ πhQh + πcQc

Qh +Qc

≤ π.

2.3.4 Pricing heat and cooling

We suppose that the total value of the HPA is nonnegative (v ≥ 0), and that the aggregator

and user negotiate the user’s share φ ∈ [0, 1] of the value:

vu = φv, va = (1− φ)v.

42



To ensure mutual benefit, it follows that πh and πc must satisfy

πhQh + πcQc

Qh +Qc

= φπ + (1− φ)π.

This is one linear equation in the two prices πh and πc. A second equation is needed to

resolve the prices. A simple choice is to make the heating and cooling prices equal:

πh = πc = φπ + (1− φ)π.

Of course, infinitely many other price choices could guarantee mutual benefit. For example,

πh and πc could be chosen such that the aggregator’s revenue from heating and cooling are

equal:

πhQh = πcQc =
(Qh +Qc) [φπ + (1− φ)π]

2
.

In cold climates, this results in a much lower price of heating than cooling.

The following corollary summarizes these results.

Corollary 2 (Thermal prices). Suppose v ≥ 0 and the user and aggregator negotiate the

user’s share φ ∈ [0, 1] of v. Then the HPA is mutually beneficial if and only if πh and πc

satisfy

πhQh + πcQc

Qh +Qc

= φπ + (1− φ)π.

2.3.5 Comparison to incumbent systems

So far in this section, we have considered the case where the user compares an HPA to the

traditional ownership model for the same heat pump. We now consider the case where the

user compares an HPA for a heat pump to a traditionally-owned incumbent heating and

cooling system.
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Theorem 1 and Corollary 2 apply directly to this case; we only need to update the user’s

net present value vu and the terms that depend on it. The user’s net present cost under the

incumbent system is

c̃+ γ

(
π̃Qh

η̃h
+
πQc

η̃c
+ m̃

)
.

The user’s net present value of the HPA is the net present cost reduction:

vu = c̃+ γ

[(
π̃

η̃h
− πh

)
Qh +

(
π

η̃c
− πc

)
Qc + m̃

]
.

Therefore, the upper price threshold is

π :=
1

Qh +Qc

(
πhQh + πcQc +

vu
γ

)
=

1

Qh +Qc

(
c̃

γ
+
π̃Qh

η̃h
+
πQc

η̃c
+ m̃

)
.

Similarly, the value of the HPA is

v := vu + va

= c̃− ca + γ

[(
π̃

η̃h
− π

ηh

)
Qh + π

(
1

η̃c
− 1

ηc

)
Qc + m̃−ma + r

]
. (2.5)

Thus, the HPA is mutually beneficial if and only if

(
π̃

η̃h
− π

ηh

)
Qh + π

(
1

η̃c
− 1

ηc

)
Qc + r ≥ ca − c̃

γ
+ma − m̃ (2.6)

and πh and πc satisfy condition 2 of Theorem 1.

Inequality (2.6) holds if the energy cost reduction and ancillary service revenue outweigh

the (potentially) increased capital and maintenance costs. This is analogous to Inequality
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(2.2), which covers the case where the user compares a traditionally-owned heat pump to an

incumbent system. The differences are the following.

1. The left-hand side of (2.6) includes the aggregator’s ancillary service revenue r.

2. The right-hand side of (2.6) includes the aggregator’s installed and maintenance costs,

ca and ma, rather than the user’s costs c and m as in (2.2).

Thus, the additional value of the HPA, above and beyond the value of a traditionally-owned

heat pump, is maximized under the same conditions discussed in §2.3.3. Namely, when the

aggregator minimizes their installed and maintenance costs and maximizes their ancillary

service revenue.

2.4 Numerical examples

In this section, we analyze the emissions and economics of a heat pump and an incumbent

heating and cooling system through Monte Carlo simulation. We consider an unfavorable

state (Colorado), a typical state (Pennsylvania), and a favorable state (Washington). By

‘favorable’, we mean that the price and greenhouse gas intensity of electricity are relatively

low, while the natural gas price is relatively high.

The basic purpose of this section is to illustrate the analysis developed above. While

the input data reflect our best efforts at accuracy, we acknowledge that there is significant

uncertainty in some parameters, such as the user’s installed and maintenance costs. These

parameters include the contractor’s internal equipment costs, which may differ substantially

from the retail equipment costs available online, as well as their labor costs, overhead and

profit. Installers tend not to share these data, so we resort to Internet sources and conver-

sations with practitioners. This approach is fairly common in similar research; see, e.g., [11,

12]. We discuss the input data further in §2.4.2.
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2.4.1 Scenarios

In all states, we consider a typical two-story home with 200 m2 of conditioned floor area.

We assume that the home has a functioning forced-air natural gas furnace with distribution

ducts in unconditioned space. The heating system is of typical age and efficiency for existing

construction. The user wants to add cooling to their building.

The incumbent cooling system is a new central air conditioner. In the incumbent scenario,

the existing natural gas furnace meets all of the heating load. The new central air conditioner

meets all of the cooling load.

As an alternative, the user also considers installing two ductless mini-split heat pumps,

one per story. Each heat pump consists of one indoor unit and one outdoor unit. In the

heat pump scenarios, the heat pumps meet all of the cooling load and 90% of the heating

load. The remaining 10% of the heating load is met by the natural gas furnace.

2.4.2 Parameter values

We model the parameters as independent, uniform random variables whose distributions

are supported on the intervals discussed in §2.1.1 and §2.2.1. Uniform distributions are

considered appropriate for cases such as this, where the true parameter distributions are

unknown but plausible ranges are available. [89] We base uniform distribution supports on

the sources discussed in §2.1.1–2.1.2 and §2.2.1–2.2.2.

Heating and cooling loads

Colorado, Pennsylvania and Washington all lie primarily in the Cold/Very Cold climate zone.

[90] In all states, therefore, the heating and cooling loads match survey data for single-family

homes in this climate zone. [85] The nominal heating and cooling loads are 11450 kWht and

3500 kWht, respectively. In simulations, we assume that the heating and cooling loads are
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uniformly distributed within ±15% of these nominal values.

The source [85] is a product of the United States Energy Information Agency’s Office

of Independent Statistics & Analysis. The data are obtained from the Residential Energy

Consumption Survey, which periodically collects energy-usage data and related building

characteristics from a nationally-representative sample of United States homes. We use data

from 2015, the most recent year available. In [85], heating and cooling load data are reported

by climate zone; as discussed above, we use the Cold/Very Cold data. The survey data in

[85] are fairly high-fidelity, as they represent the actual usage of existing homes. However,

the only survey data statistics reported are the sample means; no further distributional

information is available. For this reason, we resort to assuming uniform distributions centered

on the sample means with ±15% variation.

Greenhouse gas intensities and prices

We treat the greenhouse gas intensity of natural gas from [83], µ̃ = 0.181 kg/kWh, as

deterministic. The greenhouse gas intensities of electricity vary within ±10% of the nominal

values of 0.67 kg/kWh in Colorado, 0.39 kg/kWh in Pennsylvania, and 0.085 kg/kWh in

Washington. [84] The natural gas prices vary within ±10% of the nominal values of 0.025

$/kWh in Colorado, 0.0396 $/kWh in Pennsylvania, and 0.039 $/kWh in Washington. [88]

The electricity prices vary within ±10% of the nominal values of 0.098 $/kWh in Colorado,

0.102 $/kWh in Pennsylvania, and 0.077 $/kWh in Washington. [87] For more discussion

on the price and greenhouse gas intensity data sources, see §2.1.2 and §2.2.2.

Incumbent system

The installed and maintenance costs of the incumbent system cover the central air conditioner

only, as the heat pumps would displace natural gas fuel use rather than replacing the furnace

outright. The central air conditioner installed cost ranges from $4000–6000. The annual
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maintenance cost ranges from $50–100. The heating system efficiency, including the existing

furnace and ducts, ranges from 60% to 80%. The seasonal cooling COP, including the

new central air conditioner and the existing ducts, ranges from 2.5 to 3.8. The central air

conditioner lifetime ranges from 10 to 20 years, while the user’s discount rate ranges from

5% to 15%; the value of γ, therefore, ranges from 5 to 12.5.

While the incumbent system lifetimes and COPs are based on the fairly rigorous research

underlying [81], we acknowledge that there is significant uncertainty in the cost data. We

estimate the installed and maintenance costs based on homeowner and installer testimony

on websites such as greenbuildingadvisor.com and homewyze.com and our conversations

with practitioners. This approach is consistent with the Rocky Mountain Institute study

[11] (see page 65), which considers heat pump economics and emissions. We resort to this

approach because accurate installer cost data is difficult to find. This difficulty is likely

due to installers’ preference for keeping such data private, as it could adversely affect their

market competitiveness.

Heat pumps

The heat pumps’ seasonal heating COP ranges from 2.6 to 2.9. Their seasonal cooling COP

ranges from 3.7 to 4.3. We assume that the heat pumps’ lifetime equals that of the central

air conditioner. The user’s installed cost c ranges from $8000 to $10000. The aggregator’s

installed cost ca ranges from $6000 to $7500. The user’s annual heat pump maintenance cost

m ranges from $75 to $125. The aggregator’s annual maintenance cost ranges from $50 to

$100. (We recall that c and m include the installer’s profit, while ca and ma do not.) The

aggregator’s annual ancillary service revenue, from the two heat pumps combined, ranges

from $50 to $100. The ancillary service revenue range is based on [68].

We emphasize that, as with the incumbent system costs, there is significant uncertainty

in the heat pump installed and maintenance cost estimates. Following [11], we base these
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estimates on homeowner and installer testimony in websites such as greenbuildingadvisor.com

and homewyze.com and our own conversations with practitioners.

Heat purchase agreement

We assume that the benefit of the HPA is shared equally between the user and aggregator

(φ = 0.5), and that the heat and cooling prices are chosen to be equal. Under these assump-

tions, the heat and cooling prices are πh = πc = (π− π)/2. We emphasize that the choice of

φ = 0.5 models a case where the value of the heat purchase agreement – which includes the

incumbent installer’s profit margin – is shared equally between the user and the aggregator.

In practice, a nonprofit aggregator would likely set φ = 1, allocating all value to the user,

while an aggregator charging as much as the market can bear would set φ = 0, allocating

all value to the aggregator. We also assume that the aggregator’s discount rate equals the

user’s.

2.4.3 Results

We now present the results of 106 Monte Carlo simulations. With this sample size, the

estimated means and quantiles are accurate to within 0.1%. For each state and simulation,

we calculate the annual emission reduction, the net present value of a traditionally-owned

heat pump, and the user’s net present value under a heat pump HPA.

Figure 2.5 shows histograms of the annual emission reduction in each state. The mean

annual emission reductions are 451 kg (11.7%) in Colorado, 1507 kg (43.8%) in Pennsylvania,

and 2659 kg (86.3%) in Washington. For reference, a typical car emits about 400 kg per

thousand miles driven.

Figure 2.6 shows histograms of the net present value of the user’s heat pump investment

in each state, under both the traditional ownership model (top row) and an HPA (bottom

49

https://www.greenbuildingadvisor.com
https://www.homewyse.com


Figure 2.5: Histograms of the annual mass of greenhouse gas emission reduction from adopt-
ing a heat pump instead of the incumbent heating and cooling system. Red lines indicate
mean values.
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Figure 2.6: Histograms of the net present value of the user’s heat pump investment under
the traditional ownership model (top row) and an HPA (bottom row). Red lines indicate
mean values.

row). The key message of this figure is that in the typical and favorable states, the HPA

brings the user’s heat pump investment into the black. In Pennsylvania and Washington,

the HPA increases the net present value of the user’s heat pump investment from −$2,140

and −$1,491 to $439 and $763, respectively.

A second message of Figure 2.6 is that the HPA reduces the risk associated with the user’s

investment. This can be seen from the narrowing of the empirical distributions from the top

row to the bottom row. In Colorado, Pennsylvania and Washington, the HPA decreases the

probability that the user loses money on the heat pump investment from 100%, 97% and

90% to 83%, 22%, and 8%, respectively.
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The value of the ancillary service revenue is small but not insignificant. Without the

ancillary service revenue, the user’s expected net present value of the HPA decreases by

$288. On average, the ancillary service revenue γr makes up 20.2% of the value

v = c− ca + γ(m−ma + r)

of the HPA. The majority of the value (73.4%) is due to the capital cost reduction, c − ca.

The remaining 6.4% of the value is due to the maintenance cost reduction, γ(m−ma). These

values are essentially constant across the three states.

2.5 Generalization of economic analyses

The economic analyses in §2.2–2.3 entail the following simplifying assumptions:

1. The salvage values of the heat pump and incumbent system are negligible.

2. The annual heating and cooling loads, COPs, prices and maintenance costs and ancil-

lary service revenues are constant over the project lifetime.

3. The user and aggregator discount future cash flows at the same rate.

In this section, we relax these assumptions and revisit the economic analyses. We keep

discussion to a minimum, as the definitions and arguments in this section parallel those in

§2.2–2.3. To keep notation light, we still assume that the lifetimes of the heat pump and the

incumbent system are equal, and that efficiencies are constant over the equipment lifetime.

These assumptions can also be relaxed.
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2.5.1 Traditional heat pump ownership

In the general setting, the net present heat pump cost is

c+
Y∑
i=1

1

(1 + ρ)i

[
πi

(
Qhi

ηh
+
Qci

ηc

)
+mi

]
− vs

(1 + ρ)Y
.

Here i = 1, . . . , Y indexes the years of the heat pump’s life. In year i, Qhi (kWht) and Qci

(kWht) are the total heating and cooling loads, πi ($/kWh) is the electricity price and mi

($) is the maintenance cost. The salvage value vs ($) is the remaining value of the heat pump

after year Y . In vector-matrix form, the net present heat pump cost can be written as

c+ γ>
[(

1

ηh
Qh +

1

ηc
Qc

)
π +m

]
− s,

where

γ :=


(1 + ρ)−1

...

(1 + ρ)−Y

 , π :=


π1

...

πY

 , m :=


m1

...

mY

 , s :=
vs

(1 + ρ)Y

Qh :=


Qh1

. . .

QhY

 , Qc :=


Qc1

. . .

QcY

 .
Similarly, the net present cost of the incumbent system is

c̃+
Y∑
i=1

1

(1 + ρ)i

[(
π̃iQhi

η̃h
+
πiQci

η̃c

)
+ m̃i

]
− ṽs

(1 + ρ)Y
.

Here π̃i ($/kWh) and m̃i ($) are the incumbent heating fuel price and maintenance cost in

year i, respectively. In vector-matrix form, the net present incumbent system cost can be
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written as

c̃+ γ>
(

1

η̃h
Qhπ̃ +

1

η̃c
Qcπ + m̃

)
− s̃,

where

π̃ :=


π̃1

...

π̃Y

 , m̃ :=


m̃1

...

m̃Y

 , s̃ :=
ṽs

(1 + ρ)Y
.

The net present value of the user’s heat pump investment under the traditional ownership

model is the net present cost reduction:

c̃− c+ γ>
[
Qh

(
1

η̃h
π̃ − 1

ηh
π

)
+Qc

(
1

η̃c
− 1

ηc

)
π + m̃−m

]
− s̃+ s.

The traditional heat pump investment is attractive if the net present value is nonnegative.

This occurs if and only if the energy cost reductions outweigh the (potentially) increased

installed cost, increased maintenance costs, and decreased salvage value:

γ>
[
Qh

(
1

η̃h
π̃ − 1

ηh
π

)
+Qc

(
1

η̃c
− 1

ηc

)
π

]
≥ c− c̃+ γ>(m− m̃) + s̃− s.

2.5.2 Heat purchase agreements vs. traditional ownership

User benefit

The user’s net present cost under the HPA is

γ> (Qhπh +Qcπc)− s,
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where

πh :=


πhi
...

πhY

 , πc :=


πci
...

πcY

 .
Here πhi and πci are the heating and cooling prices in year i. We assume that ownership

of the heat pump transfers from the aggregator to the user at the end of year Y , so the

discounted salvage value s goes to the user.

The net present value of the HPA to the user is the net present cost reduction, with

respect to traditional heat pump ownership:

c+ γ>
[
Qh

(
1

ηh
π − πh

)
+Qc

(
1

ηc
π − πc

)
+m

]
.

The HPA is attractive to the user if the net present value is nonnegative. This occurs if and

only if the heat and cooling prices are not too high:

γ> (Qhπh +Qcπc) ≤ c+ γ>
[(

1

ηh
Qh +

1

ηc
Qc

)
π +m

]
. (2.7)

Aggregator benefit

The net present value of the HPA to the aggregator is their net present profit:

−ca + γ>a

[
Qh

(
πh −

1

ηh
π

)
+Qc

(
πc −

1

ηc
π

)
+ r −ma

]
,

where

γa :=


(1 + ρa)

−1

...

(1 + ρa)
−Y

 , r :=


r1

...

rY

 , ma :=


ma1

...

maY

 .
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The parameters ρa, rai, and mai are the aggregator’s discount rate, ancillary service rev-

enue in year i, and maintenance cost in year i, respectively. The HPA is attractive to the

aggregator if and only if the heat and cooling prices are not too low:

γ>a (Qhπh +Qcπc) ≥ ca + γ>a

[(
1

ηh
Qh +

1

ηc
Qc

)
π +ma − r

]
. (2.8)

Mutual benefit

The HPA is mutually beneficial to the user and the aggregator if and only if Inequalities

(2.7) and (2.8) both hold. This condition can be simplified further under some additional

assumptions, such as the inequalities holding component-wise, but we do not pursue these

simplifications here. We note only that the mutual benefit condition is structurally similar

to that discussed in Theorem 1. The thermal prices must be chosen to lie in certain poly-

hedral sets determined by the user’s and aggregator’s requirements, and these sets must be

nonempty.

2.5.3 Heat purchase agreements vs. incumbent systems

When comparing an HPA for a heat pump to a traditionally-owned incumbent system, the

net present value of the HPA to the user is the net present cost reduction:

c̃+ γ>
[
Qh

(
1

η̃h
π̃ − πh

)
+Qc

(
1

η̃c
π − πc

)
+ m̃

]
+ s− s̃.

In this setting, the HPA is attractive to the user if and only if

γ> (Qhπh +Qcπc) ≤ c̃+ γ>
(

1

η̃h
Qhπ̃ +

1

η̃c
Qcπ + m̃

)
+ s− s̃. (2.9)

The HPA is mutually beneficial if and only if Inequalities (2.8) and (2.9) both hold.
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Chapter 3

Physical modeling

In this chapter, we discuss physical modeling of heat pumps and thermal loads. This dis-

cussion is relevant to defining several parameters used in the high-level analyses of emissions

and economics in Chapter 2. It is also relevant to Chapters 4 and 5, where we consider

the problems of heat pump selection and control. The two purposes of this chapter are to

provide background on the physics of heat pumps and thermal loads, and to develop heat

pump and thermal load models for use in optimization and control in the sequel.

3.1 Heat pumps

As illustrated in Figure 3.1, a heat pump moves heat from a cold thermal reservoir at

temperature Tcold (◦K) to a hot one at temperature Thot > Tcold (◦K). More specifically, a

heat pump operates a thermodynamic cycle that uses work W > 0 (kWh) to extract heat

Qcold > 0 (kWht) from the cold reservoir and inject heat Qhot > 0 (kWht) into the hot

reservoir. The cold and hot thermal reservoirs have different interpretations depending on

whether the heat pump is used for heating or cooling. Table 3.1 provides some concrete

examples.
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Figure 3.1: A heat pump uses work W to extract heat Qcold from a cold thermal reservoir
and inject heat Qhot into a hot one.

Table 3.1: Interpretations of the cold and hot reservoirs for some common devices.

Heat pump device Cold reservoir Hot reservoir
Refrigerator Refrigerator air Kitchen air
Air-source heat pump (summer) Indoor air Outdoor air
Air-source heat pump (winter) Outdoor air Indoor air
Heat pump water heater Outdoor air Indoor water
Chiller Indoor water Outdoor air
Geothermal heat pump (winter) Ground Indoor air
Geothermal heat pump (summer) Indoor air Ground

3.1.1 Efficiency, capacity and temperature

A heat pump’s energy efficiency is characterized by its coefficient of performance (COP) η,

defined as the ratio of the output heating or cooling, Q > 0 (kWht), to the input work:

η =
Q

W
.
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The COP is a dimensionless positive real number. The interpretation of Q depends on

whether the heat pump is used for heating or cooling:

Q =


Qhot for heating

Qcold for cooling.

By the first law of thermodynamics,

Qcold +W = Qhot.

Since W > 0, we have Qhot −Qcold > 0, so the COP can be written as

η =
Q

Qhot −Qcold

=


Qhot/(Qhot −Qcold) for heating

Qcold/(Qhot −Qcold) for cooling.

(3.1)

The Carnot limit

A heat pump’s COP depends fundamentally on the temperatures of the cold and hot thermal

reservoirs. For any (Tcold, Thot) pair, the theoretical upper limit on the COP, called the Carnot

limit and denoted by η?, is given by an ideal heat pump. The Carnot limit is unattainable in

practice, but provides useful intuition into the temperature dependence of a real heat pump’s

COP. An ideal heat pump generates no entropy, so by the second law of thermodynamics,

Q?
hot

Thot

− Q?
cold

Tcold

= 0.
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Substituting this expression into into Equation (3.1) gives the Carnot limit,

η? =


Q?

hot/(Q
?
hot −Q?

cold) = Thot/(Thot − Tcold) for heating

Q?
cold/(Q

?
hot −Q?

cold) = Tcold/(Thot − Tcold) for cooling.

Temperature dependence in the Carnot limit

For both heating and cooling, η? →∞ as |Thot − Tcold| → 0. This means that an ideal heat

pump is more efficient when the driving temperature difference is smaller. For both heating

and cooling, we also have
∂η?

∂Tcold

=
Thot

(Thot − Tcold)2
> 0

∂η?

∂Thot

=
−Tcold

(Thot − Tcold)2
< 0.

Therefore, η? is always increasing in Tcold and decreasing in Thot. This implies, for example,

that space heating with an (ideal) air-source heat pump is more efficient when the outdoor air

is warmer (Tcold ↑), and when the indoor air temperature setpoint is lower (Thot ↓). We will

now show that the COPs of non-ideal heat pumps exhibit similar temperature dependence.

Temperature dependence of non-ideal heat pumps

Only an ideal heat pump attains the Carnot limit. Any real heat pump generates entropy

S > 0 (kWht/
◦K) in the system (i.e., inside the dashed gray rectangle in Figure 3.1). By

the second law of thermodynamics, for a non-ideal heat pump,

Qhot

Thot

− Qcold

Tcold

= S.

Rearranging this equation gives

Qcold

Qhot

= (1 + γhot)
Tcold

Thot
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Figure 3.2: Heating COP of a hypothetical, non-ideal heat pump. Left: COP vs. cold
reservoir (e.g., indoor air) temperature. Right: COP vs. hot reservoir (e.g., outdoor air)
temperature. Performance approaches the Carnot limit as γhot → 0.

15 20 25

0

1

2

3

4

5

6

7

8

25 30 35 40 45

0

1

2

3

4

5

6

7

8

Figure 3.3: Cooling COP of a hypothetical, non-ideal heat pump. Left: COP vs. hot
reservoir (e.g., indoor air) temperature. Right: COP vs. cold reservoir (e.g., outdoor air)
temperature. Performance approaches the Carnot limit as γcold → 0.
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and

Qhot

Qcold

= (1− γcold)
Thot

Tcold

,

where

γhot =
SThot

Qhot

, γcold =
STcold

Qcold

.

Substituting these expressions into Equation (3.1), we have

η =


Thot/(Thot − (1− γhot)Tcold) for heating

Tcold/((1 + γcold)Thot − Tcold) for cooling.

(3.2)

These formulas suggest that the COP η of a non-ideal heat pump exhibits similar temperature

dependence to the Carnot limit.

The parameters γhot and γcold are always positive, since S > 0, and vanish as S → 0. In

this limit, the heating and cooling COPs in Equation (3.2) approach their respective Carnot

limits. For a modern heat pump, γhot and γcold are typically on the order of 0.1. [91] Figures

3.2 and 3.3 illustrate the dependence of the heating and cooling COPs, respectively, on Thot,

Tcold, γhot and γcold over typical operating ranges. As the parameters γhot and γcold grow, the

COPs become smaller and less sensitive to temperature changes.

Capacity

A heat pump’s capacity Q̇ (kWt) is its thermal power output. Assuming the heat pump’s

thermodynamic cycle lasts a duration ∆t > 0 (h), and that Tcold, Thot, Qcold, Qhot and W

are constant, the heat pump provides the (steady-state) thermal power

Q̇ =
Q

∆t
=
ηW

∆t
.
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This equation suggests that a heat pump’s capacity should depend on the hot and cold

reservoir temperatures through the COP η. Empirical data show that this is indeed the

case, as we discuss in §3.1.3.

3.1.2 Heat pumps in practice: vapor compression

In the preceding discussion, we took an abstract view of heat pumps. We now discuss heat

pumps in more concrete terms, with an eye toward implementation in hardware. We present

empirical data from heat pump manufacturers in §3.1.3. As a prelude to the empirical data,

we first briefly review the most common heat pump hardware implementation. This is the

vapor compression cycle illustrated in Figure 3.4.

Vapor compression heat pumps move heat by circulating a refrigerant between the warmer

and cooler thermal reservoirs. The main components of a vapor compression heat pump

are the evaporator, compressor, condenser and expansion valve. In the evaporator, the

refrigerant changes phase from liquid to gas. This phase change absorbs heat from the

cooler reservoir, just as boiling water absorbs heat from a stove. The compressor increases

the refrigerant’s pressure and temperature. In the condenser, the refrigerant changes phase

from gas to liquid, releasing heat to the warmer reservoir. The refrigerant then flows through

an expansion valve, which decreases its pressure and temperature, and the cycle repeats.

Energy use

Vapor compression heat pumps use energy primarily in the compressor. They may also use

energy in fans or pumps at the evaporator or condenser. These fans or pumps circulate

air or water over the heat exchangers to accelerate transfer. In electric heat pumps, the

compressors, fans and pumps are driven by electric motors.
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Figure 3.4: The vapor compression cycle of a typical heat pump.

3.1.3 Manufacturer data

In this section, we present empirical data published by the manufacturer of a popular line

of heat pumps. [9, 92] We discuss the data primarily in the captions of Figures 3.7–3.12.

First, we discuss the hardware scope, the relevant terminology, the input data, and the key

take-away points.

Hardware scope

Each heat pump in the product line presented here can be described as follows.

• Reversible. The heat pump can provide both heating and cooling.

• Air-to-air. The heat pump moves heat between the indoor and outdoor air.

• Electric. The compressor and fan motors are powered by electricity.

• Variable-speed. The compressor and fan motors can modulate continuously, rather

than operating in an on/off manner.
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Figure 3.5: The indoor and outdoor units of a ductless mini-split heat pump. Refrigerant
lines connect the units through a roughly 8 cm (in diameter) hole in the wall. Photo credit:
greenbuildingadvisor.com.

• Ductless. The heat pump delivers conditioned air directly to the space, rather than to

a network of distribution ducts.

• Mini-split. The heat pump consists of a small indoor unit and a small outdoor unit,

connected by refrigerant lines through a roughly 8 cm (in diameter) hole in the wall.

Figure 3.5 shows the indoor and outdoor units.

Terminology

By capacity, we mean thermal power output. By nameplate capacity and nameplate COP, we

mean the capacity and COP that the manufacturer reports at the standard test conditions

of 16 ◦C indoor air temperature and 8 ◦C outdoor air temperature (for heating), and 27 ◦C

indoor/35 ◦C outdoor (for cooling). By size, we mean the heat pump’s nameplate cooling

capacity. By rated capacity, we mean the capacity measured at a given pair of indoor and
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outdoor air temperatures. Rated capacity depends on the boundary temperatures, and is

typically 50–80% of maximum capacity. By minimum capacity, we mean the lowest capacity

at which the heat pump can modulate continuously; if thermal load is below minimum

capacity, the heat pump cycles off and on rather than modulating.

By rated COP, we mean the COP measured at rated capacity at given boundary temper-

atures. Rated COP is usually the highest COP the heat pump achieves at given boundary

temperatures. In other words, rated capacity is an efficiency ‘sweet spot’.

Input data

The input data in this section come from two sources. The first, [9], is a publicly-available

spreadsheet containing cold-climate air-source heat pump data compiled by the Northeast

Energy Efficiency Partnerships. For each heat pump model, the data in [9] include measure-

ments of rated capacity, maximum capacity and minimum modulating capacity at a range

of boundary temperatures. They also include the COP measurements at the same boundary

temperatures and several part-load ratios. For reversible units, [9] includes both heating and

cooling data. The measurements themselves are obtained from heat pump manufacturers.

The second data source is a set of manufacturer specification sheets downloadable at [92].

These data contain capacity and COP measurements at a more granular set of boundary

temperatures and load levels, but are structurally similar to the data in [9]. To obtain the

best possible statistical fits, we combined all available data from [9] and [92] on one popular

manufacturer’s full line of cold-climate single-zone units.

The heat pump data have two basic limitations. The first is that the data in both [9]

and [92] are voluntarily reported by heat pump manufacturers. To our knowledge, these

data have not been validated in an independent, third-party laboratory. The only such

independent validation of heat pump manufacturer data that we are aware of is [93], which

dates back to 2011. In [93], Winkler conducts a range of independent laboratory tests of the
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2009 units from the same line of heat pumps considered in this thesis. Winkler concludes that

“experimental test data aligned with manufacturer reported values.” While this conclusion

applies to the 2009 units, not the 2019 units studied in this thesis, it does build confidence

in the fidelity of empirical data reported by the manufacturer whose units we study.

The second limitation of [9] and [92] is that they do not contain data on COP while

cycling. This is significant because field and laboratory studies report that cycling can

degrade COPs. [93, 94] In [93], Winkler conducts laboratory tests on COP while cycling

for the same line of heat pumps considered in this thesis. He finds that cycling degrades

COPs by 12–45% (see Table 4 of [93]). Winkler attributes this degradation to the transient

behavior of the heat pump control systems, which “overshoot the minimum load by running

the compressor at a higher speed than required for a short period of time” before settling

into steady operation at minimum capacity.

COP and cycling

A fully-specified model of a variable-speed heat pump must define the heat pump’s COP

for all values of thermal load between zero and maximum capacity. To the best of our

knowledge, no manufacturers report data on their variable-speed heat pumps’ COPs for

loads below minimum modulating capacity. Third-party laboratory data on COP below

minimum modulating capacity is extremely sparse. Therefore, any fully-specified model of

a variable-speed heat pump that is based on published empirical data must entail some

assumption or assumptions about COP for loads below minimum modulating capacity.

To meet loads below their minimum modulating capacities, variable-speed heat pumps

cycle off and on. Cycling is a qualitatively different behavior than continuous modulation.

The limited laboratory data in [93] suggest that COPs can degrade significantly while cy-

cling. To capture this degradation, we assume that cycling COP decreases with load below

minimum modulating capacity. We further assume that this decrease is linear. The linear-
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ity assumption is based on Occam’s razor: a linear COP function is the simplest function

that allows variation of COP with load. Among the family of polynomials, for example,

a constant function is simpler than a linear function but does not allow for variation with

load, while a quadratic function allows for variation with load but is more complex than a

linear function. A quadratic model would entail an additional parameter and a curvature

assumption.

To fix the slope and intercept of the COP line below minimum modulating capacity, we

require two points. The first point follows naturally from continuity: the line should intersect

the part-load curve at minimum modulating capacity. For a second point, we assume that the

worst-case COP degradation (which necessarily occurs at the lowest nonzero load) is 25%,

relative to rated COP. This assumption of 0-25% COP degradation while cycling is optimistic

relative to the available empirical data, which include COP degradation measurements of

12-45% (see Table 4 of [93]).

In summary, the model of COP while cycling used in this thesis is our best effort at

representing all available empirical data. Still, we acknowledge that there is significant

uncertainty in these data. Further laboratory testing of the COPs of variable-speed heat

pumps while cycling at low load is an important area for future research.

Take-aways

We now summarize the salient features of the manufacturer heat pump data considered in

this section and illustrated in Figures 3.6–3.12.

1. Heating and cooling capacities are linearly related. (See Figure 3.6.)

2. Bigger models are less efficient. (See Figure 3.7.)

3. Capacity and efficiency depend on the indoor and outdoor air temperatures. Capacity

and efficiency are higher in milder conditions. (See Figures 3.8 and 3.9.)
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Figure 3.6: Nameplate heating and cooling capacities are linearly related. Data sources: [9,
92]. R2 = 0.97.

4. Maximum capacity is significantly higher than rated capacity. For heating, maximum

capacity is typically 150–185% of rated capacity; for cooling, 110–150%. (See Figure

3.10.)

5. Variable-speed heat pumps have minimum capacities, below which they start cycling off

and on rather than modulating continuously. Minimum capacity varies by model. For

heating, minimum capacity is typically 15–30% of rated capacity; for cooling, 20–40%.

(See Figure 3.11.)

6. At any given boundary temperatures, efficiency depends on how hard the heat pump

is working. Efficiency degrades at very low load, when the heat pump starts cycling,

and at very high load. (See Figure 3.12.)
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Figure 3.7: Nameplate heating and cooling efficiencies decrease with heat pump size. Data
sources: [9, 92]. Heating R2 = 0.98; cooling R2 = 0.97.
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Figure 3.8: Rated efficiencies vary with both indoor and outdoor air temperature. Over the
typical operating ranges shown here, efficiencies are linear in indoor air temperatures but
curved in outdoor air temperatures. For reference, Figure 3.7 shows each model’s nameplate
efficiencies. Data sources: [9, 92]. Heating R2 = 0.98; cooling R2 = 0.997.
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Figure 3.9: Rated capacities vary linearly with both indoor and outdoor air temperatures.
Rated capacities are lower in more extreme conditions. Data sources: [9, 92]. Heating
R2 = 0.999; cooling R2 = 0.999.
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Figure 3.10: Maximum capacities are significantly larger than rated capacities, for both
heating and cooling. Percentages (vertical axes) are relatively consistent across to heat
pump sizes (horizontal axes), but differ substantially for heating vs. cooling. For heating,
maximum capacity is typically 150–185% of rated capacity; for cooling, 110–150%. Data
sources: [9, 92]. Heating R2 = 0.60; cooling R2 = 0.60.
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Figure 3.11: Variable-speed heat pumps have minimum capacities, below which they cycle
off and on instead of modulating continuously. Minimum capacities vary both with heat
pump size and for heating vs. cooling. Typically, minimum capacity is 20–30% of rated
capacity. Data sources: [9, 92]. Heating R2 = 0.70; cooling R2 = 0.50.
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Figure 3.12: Variable-speed heat pump efficiencies depend on how hard the heat pump is
working. Efficiencies degrade at very low capacities, when the heat pump cycles on and off
rather than modulating continuously, and at very high capacities. The linear portion at the
low end of the part-load curves represents COP degradation due to cycling, as opposed to
continuous modulation. The intercepts correspond to the 25% worst-case degradation. These
curves are somewhat optimistic; in [93], Winkler measured up to 45% COP degradation due
to cycling. Data sources: [9, 92, 93]. Heating R2 = 0.59; cooling R2 = 0.53.
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3.1.4 Modeling heat pumps for optimization and control

The empirical data in §3.1.3 show that a heat pump’s capacity and efficiency can depend

nontrivially on the indoor and outdoor air temperatures. Efficiency also varies with how

heavily the heat pump is loaded. The variation of efficiency with load is typically referred

to as part-load performance.

Computer-based optimization and control of heat pumps require mathematical models

that can accurately predict the response of a heat pump’s electrical power use and thermal

power output to the air temperatures and thermal load. It is possible to derive device-

specific physical models from first principles, but these models tend to be quite complex.

The first-principles compressor model in [95], for example, includes about twenty equations,

some highly nonlinear, and sixty input parameters. Specifying some of the input parameters

requires manufacturer-level knowledge of hardware details.

Complex first-principles heat pump models are generally not well-suited to optimization

and control. The optimization or control engineer may not have access to the proprietary

hardware details required to define all of the input parameters. Additionally, high-order

nonlinear models often lead to slow or inaccurate computation. For these reasons, it is

common to develop low-order models and fit their parameters to empirical data. [44, 96–98]

We adopt this approach here.

Literature review

In state-of-the-art research on optimization and control of heat pumps, it is very common

to model both thermal capacities and COPs as constant, i.e., as independent of boundary

temperatures and part-load ratios. Examples include [11, 12, 37, 38, 65, 67–69, 99–102] and

many other highly-cited recent papers in selective, peer-reviewed journals. The ubiquity of

the constant capacity/COP heat pump model is likely due to its simplicity and the facts (a)
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it can be embedded in otherwise convex numerical optimization problems without breaking

convexity, and (b) the data required for more sophisticated heat pump models can be difficult

to obtain.

As discussed in the preceding sections, heat pump thermal capacities and COPs are

generally not constant. In [96], Verhelst et al. show that the constant-COP assumption, when

applied to a realistic heat pump with non-constant COP, can degrade controller performance

by 7–16% relative to a similar control method with a non-constant-COP model. For more

discussion of the limitations of constant-COP/constant-capacity heat pump models, we refer

the interested reader to §5.2 of the review paper [97].

There is a small literature on control-oriented heat pump models that capture important

effects such as temperature- and part-load-dependence. In [103], Zakula et al. develop a data-

driven model that captures the dependence of a heat pump’s COP on boundary temperatures

and its part-load ratio. A key feature of this work is modeling the inverse COP (rather than

the COP itself) as a polynomial function of the predictors; Zakula et al. find that this leads

to more better statistical fits.

In [44], Kim et al. develop a data-driven model of a variable-speed heat pump. They view

the angular speed of the compressor shaft as the control input. Rather than modeling the

COP directly, they model the thermal and electrical power as affine functions of the boundary

temperatures and compressor shaft speed. This results in an affine thermal capacity model

and a nonlinear COP model. In [98], Lee et al. augment this model with a binary variable

that indicates its on/off state. The introduction of the binary variable prevents heat pump

operation at very low compressor speeds, which can lead to undue equipment wear and tear.

[104]

In the remainder of this section, we present the model we use to represent heat pump

behavior at relatively slow time scales (i.e., with time steps on the order of 15 minutes or

longer). This is the temporal scope of models such as those in [44, 98, 103]. For faster
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time scales, we use a different model that includes the closed-loop behavior of the heat

pump manufacturer’s low-level control system; see §5.2 for more details. The slow-time-scale

model presented below is suitable for reversible, variable-speed heat pumps. It captures the

dependence of thermal capacities on boundary temperatures, the dependence of COPs on

boundary temperatures and part-load ratios, and the fact that variable-speed heat pumps

typically cycle off and on, rather than modulating, at very low loads in order to avoid undue

compressor wear and tear.

We develop our own heat pump model simply because we are aware of no other model

that meets our needs. The models in [44, 98] come close, but treat compressor speed as a

control input. This assumption is inappropriate for our purposes because heat pumps on the

market today do not allow end-users to manipulate compressor speeds without voiding their

warranties, and we do not assume that manufacturer-level hardware access is available.

Capacity and COP functions

For optimization and control purposes, we characterize a reversible variable-speed electric

heat pump by four capacity functions and two COP functions:

Q̇max
h : R2 → R

Q̇max
c : R2 → R

Q̇min
h : R2 → R

Q̇min
c : R2 → R

ηh : R3 → R

ηc : R3 → R.

We explain these functions through the example of providing thermal power Q̇ (kWt) when

the indoor and outdoor air temperatures are Ta (◦C) and T∞ (◦C), respectively. We frame
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this example in terms of heating, but the discussion also applies to cooling.

In this example, the thermal power output must satisfy

Q̇ ≤ Q̇max
h (Ta, T∞).

The heat pump consumes electrical power

P =
Q̇

ηh(Ta, T∞, Q̇)
.

We allow the heating coefficient of performance function ηh to depend on Q̇ in order to

model the part-load performance depicted in Figure 3.12. If Q̇ is near the heat pump’s rated

capacity at (Ta, T∞), then ηh will be close to the rated COP at (Ta, T∞). If Q̇ is far above or

below the rated capacity at these temperatures, then ηh will likely be lower than the rated

COP.

If the thermal power is above the heat pump’s minimum capacity,

Q̇ ≥ Q̇min
h (Ta, T∞),

then the heat pump can modulate continuously. On the other hand, if

0 < Q̇ < Q̇min
h (Ta, T∞),

then the heat pump must cycle on and off periodically in order to deliver Q̇ on average over

time. For example, the heat pump can provide thermal energy Q̇∆t over a duration ∆t (h)

by providing thermal power Q̇min
h (Ta, T∞) for a fraction

Q̇

Q̇min
h (Tcold, Thot)
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of the duration ∆t, and turning off for the remaining fraction. The ‘off’ times need not be

contiguous; the heat pump could cycle off and on multiple times during the duration ∆t.

Under typical control schemes, on/off cycles get shorter as Q̇ gets further below Q̇min
h (Ta, T∞).

Model fitting

For a given heat pump, statistical models of the capacity and COP functions can be fit to

data published by manufacturers. For a comprehensive set of manufacturer data, see [9].

For the line of heat pumps discussed in §3.1.3, we fit the coefficients of polynomial capacity

and COP functions using multiple linear regression. For details on fitting polynomial models

using multiple linear regression, we refer the interested reader to [105] or any other statistics

textbook on linear models.

We use first-order polynomials (i.e., affine functions) for the thermal capacities Q̇max
h

and Q̇max
c and the minimum modulating capacities Q̇min

h and Q̇min
c . We use second-order

polynomials for the COPs ηh and ηc. We find that only the quadratic term in Ta (in addition

to the constant and linear terms) is necessary for accurate COP fits; the coefficients of the

other quadratic terms can be set to zero without reducing goodness of fit.

The fits are the dashed lines in Figures 3.6–3.12. In the fits in Figures 3.8–3.9, values of

the R2 statistic are close to unity, indicating good fit. The R2 values in Figures 3.10–3.12 are

lower. This is due primarily to the fact that less manufacturer-reported data are available for

these fits, and that the available data are noisier. Fit quality could be improved by obtaining

more data by instrumenting a heat pump in a research laboratory, or by adding higher-order

polynomial terms to the fits. The latter approach runs the risk of overfitting, however.
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3.2 Thermal loads

The primary purpose of a heat pump is to meet thermal load. In this thesis, we assume

that all thermal loads represent conditioned space in buildings. We note, however, that heat

pumps can serve other thermal loads. The thermal load served by a heat pump water heater,

for example, is a tank storing hot water for showers, dish-washing, etc.

In this section, we present one method for modeling thermal loads that represent condi-

tioned space in buildings. This method is one option among many; we present it because

we feel it strikes a good balance between fidelity, simplicity, and physical interpretability.

We note, however, that the methods developed in Chapters 4–5 are agnostic to the thermal

load model. They simply require the output of a thermal load model – i.e., a time series of

thermal power demand – as input data. Such data can be generated from a wide variety of

sources, such as historical measurements from real buildings, pseudorandom number gener-

ators, simple quasi-steady-state models, physics-based building simulators, thermal circuit

models of arbitrary order, autoregressive processes, artificial neural networks, support vector

machines, regression trees, random forests, ensemble models, etc. A practitioner interested

in implementing a method in Chapter 4 or 5 could use any of the aforementioned thermal

load models.

This section is organized as follows. In §3.2.1, we briefly review literature on thermal

modeling of buildings. We present our chosen thermal model in §3.2.2 and demonstrate its

use for load prediction in §3.2.3. We discuss the interpretations and typical values of the

model parameters, states and input signals in §3.2.4. In §3.2.5 and §3.2.6, we provide two

methods for instantiating model parameters based on load and weather data. We develop

an analogy between our chosen load model and thermal energy storage in §3.2.7.
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3.2.1 Literature review

Thermal modeling of buildings is a mature topic. Good textbooks on the subject include

[106, 107]. Two recent review papers on control-oriented building modeling are [108] and

[109]. The user manuals of EnergyPlus [110] and TRNSYS [111], the current state-of-the-art

in building simulation software, also provide a wealth of useful information.

Building thermal modeling techniques can loosely be categorized into those based on first

physical principles (termed ‘white-box’ models in [108, 109]), those that are entirely data-

driven (‘black-box’ models), and semi-physical models based on a mix of data and simplified

physics (‘grey-box’ models). White-box models use laws of physics, such as Fourier’s Law,

Newton’s Law of Cooling and the Stefan-Boltzmann Law, to derive differential equations

that govern the evolution of the building’s state. EnergyPlus and TRNSYS use a white-

box approach. Examples of black-box models are autoregressive processes, artificial neural

networks, regression trees and support vector machines. [108, 109] The typical grey-box

model structure is a thermal circuit, analogous to an electrical resistor-capacity circuit. [108,

109] In this thesis, we focus on grey-box modeling, specifically using thermal circuits. We

choose this approach because it is conceptually simple, is amenable to efficient computation,

and has been applied successfully in many recent studies on optimization and control of

heating and cooling systems. [112–117]

The fundamental idea that the dominant thermal dynamics of a building can be captured

by a low-order thermal circuit model dates back at least to Laret’s 1975 thesis. [118] Early

publications on this theme include [119–124], where the authors explore the behavior and

predictive accuracy of thermal circuit models of various structures and orders. The second-

order model we adopt in this thesis is developed in detail by Crabb, Murdoch and Penman in

the 1987 paper [125]. The series of papers [126–129] develop techniques for fitting the model

parameters to experimental data, and empirically demonstrate the use of a fitted model for
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T∞
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Ca CmQ̇+ Q̇e

Figure 3.13: A thermal circuit connects the indoor air, thermal mass and surroundings,
denoted by subscripts a, m and ∞, respectively.

real-time control in an occupied building. More recent work confirmed the suitability of the

second-order model structure in the contexts of houses [130], thermal zones in commercial

buildings [113, 131], and individual thermostatically-controlled loads such as refrigerators

and window-mounted air conditioners [66, 132]. Other recent developments are reviewed in

[133].

3.2.2 Model

Figure 3.13 illustrates our chosen load model. It has the form of a second-order resistor-

capacitor thermal circuit. The model includes two energy storage elements: indoor air with

thermal capacitance Ca (kWht/
◦C) and temperature Ta (◦C), and thermal mass with capac-

itance Cm (kWht/
◦C) and temperature Tm (◦C). The indoor air and thermal mass exchange

heat through the effective thermal resistance Ram (◦C/kWt), which models combined heat

transfer through convection, conduction and (linearized) radiation. The indoor air and ther-

mal mass also exchange heat with the outdoor air through the effective resistances Ra∞ and

Rm∞ (◦C/kWt), respectively. The outdoor air temperature is T∞ (◦C). Mechanical systems

inject thermal power Q̇ (kWt) to the indoor air. Similarly, a thermal power Q̇e (kWt) is
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injected by exogenous sources such as the sun, appliances, lights, occupants’ bodies, etc.

In this model, the system states Ta and Tm are governed by two coupled linear ordinary

differential equations:

CaṪa(t) =
Tm(t)− Ta(t)

Ram

+
T∞(t)− Ta(t)

Ra∞
+ Q̇(t) + Q̇e(t)

CmṪm(t) =
Ta(t)− Tm(t)

Ram

+
T∞(t)− Tm(t)

Rm∞
.

(3.3)

This model entails several simplifying assumptions:

• The indoor air is well-mixed.

• The thermal mass is lumped, i.e., heat transfers within the thermal mass much faster

than across its boundary.

• The indoor air and outdoor air are relatively dry.

• Radiation is well-represented by a linearized model.

• Convection coefficients are independent of temperature and wind speed.

Despite these simplifications, this model has shown good predictive accuracy in many appli-

cations. [66, 112–117, 126–132]

3.2.3 Load prediction

Steady-state load prediction

In steady state, the governing equations reduce to

0 =
T ss
m − T ss

a

Ram

+
T ss
∞ − T ss

a

Ra∞
+ Q̇ss + Q̇ss

e

0 =
T ss
a − T ss

m

Ram

+
T ss
∞ − T ss

m

Rm∞
.
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Solving the second equation for T ss
m (◦C), we see that in steady state, the thermal mass

temperature is a weighted average of the indoor air and outdoor air temperatures:

T ss
m =

Rm∞T
ss
a +RamT

ss
∞

Ram +Rm∞
.

Substituting this expression into the first equation gives

Q̇ss + Q̇ss
e =

T ss
a − T ss

∞
R

,

where the effective thermal resistance R (◦C/kWt) satisfies

1

R
=

1

Ra∞
+

1

Ram +Rm∞
.

Therefore,

Q̇ss =
T ss
a − T ss

∞
R

− Q̇ss
e . (3.4)

Equation (3.4) predicts thermal load in steady state, where all temperatures and thermal

powers are constant. The model can also predict the transient response of load to time-

varying T∞ and Q̇e, as we now discuss.

Dynamic load prediction

Given forecasts of the outdoor temperature T∞ and exogenous thermal power Q̇e, the load

dynamics (3.3) can predict the thermal power Q̇ required to maintain the indoor air tem-

perature at a (possibly time-varying) setpoint Ta (◦C). The first step is to simultaneously
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discretize both equations. The continuous-time equations can be written as

 Ṫa(t)
Ṫm(t)

 =

− (1/Ram + 1/Ra∞) /Ca 1/(CaRam)

1/(CmRam) − (1/Ram + 1/Rm∞) /Cm


Ta(t)
Tm(t)



+

1/Ca 1/(Ra∞Ca) 1/Ca

0 1/(Rm∞Cm) 0



Q̇(t)

T∞(t)

Q̇e(t)



= Ac

Ta(t)
Tm(t)

+Bc


Q̇(t)

T∞(t)

Q̇e(t)

 .

Assuming a zero-order hold on Q̇, T∞ and Q̇e, this continuous-time linear system can be

exactly discretized to

Ta(k + 1)

Tm(k + 1)

 = A

Ta(k)

Tm(k)

+B


Q̇(k)

T∞(k)

Q̇e(k)

 ,

where

A = eAc∆t, B =

∫ ∆t

0

eAcτdτBc.

If Ac is invertible, then the second equation simplifies to

B = A−1
c (A− I)Bc.

The discrete-time system equations give an exact expression for the load required to drive
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the air temperature from Ta(k) to Ta(k + 1), given Tm(k), T∞(k) and Q̇e(k):

Q̇(k) =
1

b11

(
Ta(k + 1)− a11Ta(k)− a12Tm(k)− b12T∞(k)− b13Q̇e(k)

)
.

The next mass temperature is

Tm(k + 1) = a21Ta(k) + a22Tm(k) + b21Q̇(k) + b22T∞(k) + b23Q̇e(k).

3.2.4 Model interpretation

The load model presented in §3.2.2 is defined by five parameters: Ca, Cm, Ram, Ra∞ and

Rm∞. Its state is fully characterized by the indoor air and thermal mass temperatures, Ta

and Tm. The dynamics are driven by the outdoor air temperature T∞ and the thermal powers

Q̇ and Q̇e. Due to the many simplifying assumptions underlying the model, interpreting its

parameters, states and disturbances is not straightforward. It is also not straightforward to

define the model parameters for a given building, zone or appliance. We now discuss these

issues.

States

The state Ta has a relatively clear physical interpretation as the spatial average temperature

of the indoor air. The interpretation of the thermal mass temperature depends on the

building type. For a building with heavy exterior construction but light interior walls, Tm

might represent the spatial average temperature of the exterior walls. For a building with

significant interior mass, such as a heavy stone fireplace or dense interior walls, Tm might

represent the temperature of the interior mass, or a weighted average temperature of the

interior mass and the exterior construction.
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Disturbances

For a whole-building model, T∞ is the outdoor air temperature. For a zone inside a larger

building, T∞ might represent a weighted average of the temperatures of the outdoor air

and the surrounding zones. The exogenous thermal power Q̇e models the combined effects

of body heat, appliances, lights, electrical plug loads, and the sun. This term can also be

viewed as a catch-all for unmodeled dynamics. This term is generally difficult to define a

priori, but can be be fit to data.

Capacitances

It is tempting to define the capacitance Ca as the product of the density, specific heat capacity

and volume of the indoor air, ρacaV . When fitting Ca to data, however, one typically finds

that the best-fit value exceeds ρacaV by a factor of 10 to 20. [124–130] This can be explained

(loosely) by noting that (1) most buildings contain some thermally light material that is

strongly coupled to the indoor air, such as ducts, dampers, etc., and (2) the assumption

that the indoor air is well-mixed neglects slower physical processes related to mixing. The

unexpected additional capacitance in Ca can be attributed to these effects. [126] This gives

a rough estimate of the indoor air capacitance:

Ca ≈ (10 to 20)ρacaV.

For reference, ρaca = 3.42× 10−4 kWht/(◦C·m3).

The interpretation of the thermal mass capacitance Cm varies from load to load. An

order-of-magnitude estimate can be obtained by multiplying the volume, density and specific

heat capacity of some representative material, such as the wood and concrete in a building.

Assuming the mass occupies about ten percent of the volume occupied by the indoor air, for
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example,

Cm ≈
ρmcmV

10
≈ ρmcm

ρaca

Ca
100 to 200

.

For materials such as fir, concrete, steel and brick, ρmcm/(ρaca) ranges between about 1000

and 2000. Therefore, a rough estimate of the mass capacitance is

Cm ≈
(

1000 to 2000

100 to 200

)
Ca = (5 to 20)Ca.

This rough estimate agrees fairly well with best-fit estimates from real buildings. In [126,

127], for example, Cm/Ca varies between 8 and 16.

Resistances

The interpretations of the resistances Ram, Ra∞ and Rm∞ depend on the interpretation of

the thermal mass temperature, and hence on the type of load. Regardless of the load type,

however, an estimate of the effective thermal resistance between the indoor and outdoor air,

given by

1

R
=

1

Ra∞
+

1

Ram +Rm∞
,

can often be obtained (see §3.2.5).

Under some simplifying assumptions, an estimate of R can provide estimates of Ram,

Ra∞ and Rm∞. We now discuss two simple cases.

1. Exterior mass. If the mass is interpreted as the exterior walls, then the thermal resis-

tance between the mass and indoor air is similar to the thermal resistance between the

mass and outdoor air. Both resistances represent convection in series with conduction

through the insulated walls. The indoor and outdoor air, by contrast, are coupled

through the faster pathways of conduction through window panes, and infiltration of

outdoor air through gaps in the building envelope.
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In this case, it is reasonable to assume that

Ram ≈ Rm∞ � Ra∞.

If a fraction c ∈ [0, 1] of the steady-state heat transfer between the indoor and outdoor

air happens via the fast heat transfer pathway, then Ra∞ = R/c. Given R, this defines

Ra∞. If the building is drafty with well-insulated walls, then c will be close to one. On

the other hand, if the building envelope is tight but the walls are poorly insulated, then

c will be close to zero. It remains to resolve Ram and Rm∞. Assuming Ram = dRm∞

for some d ≥ 0, we have

Rm∞ =
R

(1− c)(1 + d)
.

Because exterior wall surfaces are often subject to forced convection, a faster heat

transfer mechanism than natural convection at interior wall surfaces, we would expect

d to be somewhat greater than one.

2. Interior mass. If the mass is interpreted as the material inside a building (e.g., furniture

and interior walls), then the mass is weakly coupled to the outdoor air. In this case,

it is reasonable to assume that

Rm∞ � Ra∞ ≈ Ram.

Letting Rm∞ = cRa∞ = dRam for some choices of c, d > 1 gives

Ra∞ =

(
1 +

d

c(d+ 1)

)
R.

Perhaps the best-documented examples in the literature on empirical parameter iden-

tification in real buildings are in [126, 127]. In these examples, the average parameter
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values over all of the fits satisfy c = 3.6, d = 27.7.

3.2.5 Estimating effective resistance from data

The methods described in this section are not used elsewhere in this thesis; we present them

here simply because we find them interesting and useful.

A thermostat timing experiment

This experiment requires a single-stage central heating system with known capacity, con-

trolled by a thermostat. It should be conducted on a winter night, when the sun is down

and the thermal power from exogenous sources is small.

The first step in the experiment is to record the thermostat’s ‘on’ time for several hours.

The duty cycle, meaning the ratio of ‘on’ time to total time, is then computed. The product

of the duty cycle and the heating system capacity gives an estimate of the average thermal

power output of the heating system during the experiment. If the heat distribution system

is in unconditioned space, this value is multiplied by an estimated efficiency of the heat

distribution system (e.g., 80–90% for typical forced-air ducts). This gives an estimate of the

heat load of the space, Q̇ss. The steady-state temperatures (T ss
a , T

ss
∞) are then estimated by

their respective averages over the experiment runtime. This gives an estimate of the effective

resistance:

R =
T ss
a − T ss

∞

Q̇ss + Q̇ss
e

.

The exogenous thermal power Q̇ss
e can be estimated by taking an inventory of the lights,

appliances and people present during the experiment. An adult body produces about 50 to

100 Watts, depending on activity level. A refrigerator produces about 150 Watts. Lights

and electronics typically have rated electrical capacities; most of their power draw ends up

as heat. As a sanity check, the total thermal power intensity from internal heat sources is
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typically on the order of five Watts per square meter of floor area.

Fitting historical usage data

In this method, based on [134], we suppose a measurement of the total heating fuel usage

is available, for example from a natural gas bill. We call this measurement ηQh, where η

is the heating system efficiency (including the distribution system, if it is in unconditioned

space) and Qh (kWht) is the total space heating load over the measurement period. We also

assume that measurements of the outdoor air temperature T∞ are available at each hour of

the measurement period. If such measurements are unavailable, heating degree-days may be

used instead.

The method requires assuming a heating balance-point temperature T hbal (◦C), defined

as the outdoor air temperature at which the steady-state conductive heat loss through the

building envelope equals the average thermal power from exogenous sources during heating

season, Q̇h
e (kWt). In other words, T hbal satisfies

T hset − T hbal

R
= Q̇h

e .

Here T hset (◦C) is the indoor air temperature setpoint in heating season. For a typical U.S.

home, the heating balance-point temperature is in the range of 15 to 20 ◦C. [134] Better-

insulated buildings with lower heating temperature setpoints, more internal heat sources,

and stronger solar forcing have lower balance-point temperatures.

We recall that the steady-state heating load is

Q̇ss =
T hset − T ss

∞
R

− Q̇h
e .
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This equation suggests a quasi-steady-state approximation of the instantaneous heating load:

Q̇h(t) ≈
(
T hset − T∞(t)

R
− Q̇h

e

)
+

=

(
T hset − T∞(t)

R
−
[
T hset − T hbal

R

])
+

=

(
T hbal − T∞(t)

R

)
+

.

Here (·)+ = max {0, ·} is the positive part function. Forward Euler integration of this quasi-

steady model gives

Qh =

∫
t

Q̇h(t)dt

≈ ∆t
∑
t

Q̇h(t)

≈ ∆t

R

∑
t

(
T hbal − T∞(t)

)
+
.

Here ∆t (h) is the measurement time step. This gives an estimate of the effective thermal

resistance,

R ≈ ∆t

Qh

∑
t

(
T hbal − T∞(t)

)
+
.

The term

∆t
∑
t

(
T hbal − T∞(t)

)
+

is the number of heating degree-days at base temperature T hbal over the measurement period,

converted into units of degree-hours. If outdoor air temperature data is unavailable, heating

degree-days can be used instead:

R ≈
(

24 h

1 d

)
HDDTh

bal

Qh

.
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3.2.6 Tuning a model to survey data

We now describe a method for tuning the effective thermal resistance R and a solar suscepti-

bility parameter α to survey data on annual loads. The input parameters are the following.

• The total annual heating and cooling loads, Qh (kWht) and Qc (kWht).

• The ratio of sensible cooling load to total cooling load, σ.

• The sets H and C of heating and cooling time indices.

• The floor area A (m2) and time step ∆t (h).

The following input signals are defined at each time step k of a one-year horizon.

• The indoor and outdoor air temperatures, Ta(k) (◦C) and T∞(k) (◦C).

• The global solar irradiance on a horizontal surface, I(k) (kW/m2).

• The thermal power from internal heat sources, Q̇in(k) (kWt). (For typical U.S. homes,

the annual average of Q̇in(k) per unit of floor area is about 4.5 to 6 W/m2. [135])

The model consists of two equations:

Qh = ∆t
∑
k∈H

Ta(k)− T∞(k)

R
− Q̇in(k)− αAI(k)

σQc = ∆t
∑
k∈C

T∞(k)− Ta(k)

R
+ Q̇in(k) + αAI(k).

The term αAI(k) represents the solar heat gain at stage k. The unknowns in these equations

are R and α. Solving for α, we have

α =

(∑
k∈H Ta(k)− T∞(k)

) (
σQc

∆t
−
∑

k∈C Q̇in(k)
)
−
(∑

k∈C T∞(k)− Ta(k)
) (

Qh

∆t
+
∑

k∈H Q̇in(k)
)

A
[(∑

k∈H Ta(k)− T∞(k)
) (∑

k∈C I(k)
)

+
(∑

k∈C T∞(k)− Ta(k)
) (∑

k∈H I(k)
)] .
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Given α, the effective thermal resistance is

R =

∑
k∈H Ta(k)− T∞(k)

Qh

∆t
+
∑

k∈H Q̇in(k) + αAI(k)
.

These values of α and R are obviously not exact, as they are based on a quasi-steady-state

assumption and forward Euler integration, but they can provide useful ballpark estimates.

3.2.7 Thermal storage analogy

Thermal loads can be viewed as thermal storage devices, similar to the insulated tanks of hot

water or ice that are sometimes used for load shifting in commercial and industrial buildings.

We now develop this analogy in part for future use in §5.2.2, and in part because we feel

that readers may find it interesting and potentially useful. This analogy is not new; similar

developments can be found in [67, 69, 136, 137] and elsewhere in the research literature.

Forecasts and baselines

We suppose that forecasts T̂∞ (◦C) and ˆ̇Qe (◦C) of the outdoor air temperature and exogenous

thermal power trajectories, respectively, are available. We also suppose that a reference

indoor air temperature trajectory T̂a (◦C) is available. This reference trajectory could be

specified by occupants or obtained from a smart thermostat or building automation system.

We define the mass temperature baseline T̂m (◦C) as the trajectory the mass temperature

would follow, assuming perfect forecasts and perfect tracking of the indoor air temperature

reference trajectory. By definition, the mass temperature baseline solves

Cm
ˆ̇Tm(t) =

T̂a(t)− T̂m(t)

Ram

+
T̂∞(t)− T̂m(t)

Rm∞
.

The forecasts, air temperature reference, and mass temperature baseline determine the ther-
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mal load baseline,

ˆ̇Q(t) = Ca
ˆ̇Ta(t)−

(
T̂m(t)− T̂a(t)

Ram

+
T̂∞(t)− T̂a(t)

Ra∞
+ ˆ̇Qe(t)

)
.

We will work with the following perturbations:

δa(t) = Ta(t)− T̂a(t)

δm(t) = Tm(t)− T̂m(t)

δ∞(t) = T∞(t)− T̂∞(t)

δ(t) = Q̇(t)− ˆ̇Q(t)

δe(t) = Q̇e(t)− ˆ̇Qe(t)

We define the thermal energy stored in the indoor air and mass, respectively, as

Qa(t) = Caδa(t), Qm(t) = Cmδm(t).

Combining these definitions with the governing equations gives the thermal energy dynamics:

Q̇a(t) = − 1

Ca

(
1

Ram

+
1

Ra∞

)
Qa(t) +

Qm(t)

CmRam

+
δ∞(t)

Ra∞
+ δ(t) + δe(t)

Q̇m(t) =
Qa(t)

CaRam

− 1

Cm

(
1

Ram

+
1

Rm∞

)
Qm(t) +

δ∞(t)

Rm∞
.

(3.5)

Time scale separation

As the thermal energy dynamics (3.5) show, the indoor air and thermal mass are coupled.

In this section, we treat them as approximately decoupled. More specifically, we assume

that the indoor air dynamics are much faster than the thermal mass dynamics. Viewed

from the fast time scale, the thermal mass temperature is approximately constant. Viewed

from the slow time scale, the air dynamics are approximately instantaneous. We make this
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assumption in order to clarify the thermal storage analogy.

Time scale separation is a reasonable assumption in many buildings, where air temper-

ature dynamics typically have time constants on the order of minutes, while mass temper-

ature dynamics have time constants on the order of hours or tens of hours; see, e.g., the

τ = RC values for the indoor air and thermal mass states in [124–130]. Because thermal

mass time constants are typically much larger than indoor air time constants, the thermal

mass temperature responds to changing boundary conditions much slower than the indoor

air temperature.

Indoor air

To analyze the indoor air separately from the thermal mass, we assume that the thermal

mass temperature approximately equals its baseline:

Qm(t) ≈ 0 for all t.

With this approximation,

Q̇a(t) ≈ −
Qa(t)

τa
+ δ(t) + wa(t), (3.6)

where

τa =
CaRamRa∞

Ram +Ra∞

wa(t) =
δ∞(t)

Ra∞
+ δe(t).

Equation (3.6) has the form of a thermal storage model, where Qa is the stored energy, δ

is the charging power, and wa (kWt) is a disturbance caused by forecast error. The charging

efficiency in this model is equal to one. The time constant τa (h) determines how quickly

stored thermal energy dissipates: Assuming no charging or disturbances, 95% of the energy
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stored at t = 0 dissipates by t = 3τa. The dissipation rate decreases (τa increases) as Ca

increases, meaning the volume of enclosed air grows, and as Ram and Ra∞ increase, meaning

the indoor air becomes better insulated from the thermal mass and the outdoor air.

We assume that the indoor air temperature perturbations must satisfy the constraints

δa ≤ δa(t) ≤ δa.

These constraints model occupants’ thermal comfort requirements. They translate directly

into constraints on the thermal energy stored in the air:

Caδa ≤ Qa(t) ≤ Caδa.

In light of these constraints, we define the thermal energy storage capacity of the indoor air

as

Ca(δa − δa).

Thermal mass

To analyze the thermal mass separately from the indoor air, we consider a quasi-steady-state

model of the air thermal energy dynamics:

Q̇a(t) ≈ 0 for all t.

We assume that this holds for all but a countable number of instants, when Qa undergoes

step changes and Q̇a is undefined. In this limit,

Qa(t) ≈
CaRamRa∞

Ram +Ra∞

(
δ(t) +

Qm(t)

RamCm
+
δ∞(t)

Ra∞
+ δe(t)

)
.
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Substituting this approximation into the mass dynamics in (3.5) yields

Q̇m(t) ≈ −Qm(t)

τm
+ ηmδ(t) + wm(t), (3.7)

where

τm =
CmRm∞(Ram +Ra∞)

Rm∞ +Ram +Ra∞

ηm =
Ra∞

Ram +Ra∞

wm(t) =
Cmδ∞(t)

τm
+ ηmδe(t).

Like the air dynamics in (3.6), Equation (3.7) has the form of a thermal storage model,

where Qm is the stored energy, δ is the charging power, and wm (kWt) is a disturbance

caused by forecast error. The time constant τm (h) determines how quickly stored thermal

energy dissipates. The charging efficiency ηm ∈ [0, 1] determines the fraction of charging

power that gets stored in the thermal mass; the remaining fraction 1 − ηm is stored in the

indoor air or lost to the surroundings.

The thermal storage approaches ideal performance (ηm → 1 and τm →∞) in the following

limits. First, ηm → 1 as Ram/Ra∞ → 0, meaning heat transfer between the indoor air and

mass is much faster than heat transfer between the indoor and outdoor air. In this limit,

τm →
Cm

1/Rm∞ + 1/Ra∞
.

For fixed resistances, τm → ∞ as Cm → ∞, meaning the mass is large and dense with a

high specific heat capacity. For fixed capacitance, τm → ∞ as Ra∞, Rm∞ → ∞, meaning

the indoor air and mass are very well insulated from the outdoor air.

We define the thermal energy storage capacity of the mass in terms of the energy that can

be stored under sustained, extreme perturbations to the indoor air temperature, assuming
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perfect forecasts. If δ∞(t) = 0 and δa(t) = δa for all t, then as t→∞,

δm(t)→ Rm∞δa
Ram +Rm∞

.

This gives an upper limit on the energy that can be stored in the thermal mass. Similarly,

if δ∞(t) = 0 and δa(t) = δa for all t, then as t→∞,

δm(t)→ Rm∞δa
Ram +Rm∞

.

This gives a lower limit. We define the mass thermal energy storage capacity as the difference

between the upper and lower limits,

CmRm∞(δa − δa)
Ram +Rm∞

.

Therefore, the combined thermal storage capacity of the air and mass is

(
Ca +

CmRm∞

Ram +Rm∞

)
(δa − δa).

Thermal power limits

We assume that the thermal equipment has capacity constraints of the form

g(Ta(t), T∞(t)) ≤ Q̇(t) ≤ h(Ta(t), T∞(t)).

The temperature dependence in g and h models the variation of heat pump capacities with

the condenser and evaporator temperatures. Thermal equipment constraints translate into
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constraints on the transient thermal power perturbations:

g(Ta(t), T∞(t))− ˆ̇Q(t) ≤ δ(t) ≤ h(Ta(t), T∞(t))− ˆ̇Q(t).

We define the transient thermal power capacity as the difference between the upper and

lower limits,

h(Ta(t), T∞(t))− g(Ta(t), T∞(t)).

In addition to the transient limits, the thermal power perturbations that can be sustained

for long periods are limited by the indoor air temperature constraints. If δ∞(t) = 0 and

δa(t) = δa for all t, then as t→∞,

δ(t)→ δa
R
.

This gives an upper limit on the steady-state thermal power. Similarly, if δ∞(t) = 0 and

δa(t) = δa for all t, then as t→∞,

δ(t)→ δa
R
.

This gives a lower limit. We define the steady-state thermal power capacity as the difference

between the upper and lower limits,

δa − δa
R

.

We note that transient power perturbations may exceed these steady-state limits.
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Chapter 4

Data-driven heat pump selection

In this chapter, we consider the problem of selecting an appropriate heat pump for a given

application. Solving this problem is fundamental to the analyses of heat pump emissions

and economics in Chapter 2. Several parameters in these high-level analyses, such as capital

costs and seasonal average coefficients of performance (COPs), vary significantly across heat

pump models and sizes. The heat pump selection problem is also of current practical interest,

as field studies report that heat pumps are often inappropriately sized, and that this can

significantly degrade performance. [94, 138]

4.1 Background

4.1.1 Heat pump usage cases

Heat pumps are typically used either as stand-alone systems or in cooperation with other

heating or cooling equipment. A heat pump may be used differently in heating and cooling

seasons. For example, a heat pump could be installed in a building with a working furnace

but no cooling system. In this case, the heat pump would be a cooperative heating system

but a stand-alone cooling system.
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Stand-alone operation: ‘Replacement’

Stand-alone heat pumps are expected to meet their entire thermal load, unassisted, in all but

the most extreme conditions. Stand-alone heat pumps may be installed in new construction

– new buildings, or new additions to existing buildings – or in existing construction. In

new construction, stand-alone heat pumps are typically installed instead of incumbent sys-

tems such as furnaces, boilers, air conditioners, and distribution ducts or pipes. In existing

construction, stand-alone heat pumps are typically installed to replace equipment that is

aging, inefficient or broken. In industry, stand-alone operation is called replacement usage,

as stand-alone heat pumps often replace other equipment.

Cooperation: ‘Displacement’

Cooperative heat pumps operate with other heating or cooling equipment. In this setting,

the heat pump is typically the most efficient system. Its operation is therefore prioritized;

the other equipment serve as backups. The heat pump is not expected to meet peak thermal

loads, but rather to operate efficiently in typical conditions. In extreme conditions, backup

equipment trips on, providing the additional capacity needed to meet peak loads. In industry,

cooperation is called displacement usage, as cooperative heat pumps often displace some of

the fuel used by an existing furnace or boiler, rather than replacing the furnace or boiler

entirely.

Cooperation between a heat pump and backup equipment is typically arranged as follows.

The heat pump’s thermostat is set to whatever temperature the user prefers. The backup

thermostat is set several degrees cooler in winter, or several degrees warmer in summer.

In typical conditions, the heat pump maintains the desired indoor air temperature and the

backup system is off. In extreme conditions, when the heat pump’s capacity is insufficient to

meet the entire load, the indoor air temperature drifts past the backup thermostat setpoint.
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This causes the backup system to trip on and assist the heat pump.

4.1.2 Heat pump selection in current practice

The document [138] describes current industrial best practices for selecting heat pumps in

new construction, new additions to existing buildings, and existing construction. It discusses

both replacement and displacement usage cases. It was published by the Northeast Energy

Efficiency Partnerships, and draws on that group’s experience supporting the installation of

about 75,000 air-source heat pumps per year in New York and New England. [139] We now

briefly summarize its recommendations.

The first recommended step is to estimate thermal loads in design conditions. The

recommended load calculation method is detailed in the Air Conditioning Contractors of

America’s Manual J. [140] Manual J involves steady-state heat transfer calculations. The

input data include surface dimensions and thermal properties, outdoor air infiltration rates,

and heat gains from the sun and internal sources. The heating design temperature is the

highest outdoor air temperature that is exceeded in the location at least 99% of the hours

per year. Similarly, the cooling design temperature is the lowest outdoor air temperature

that is exceeded in the location at most 1% of the hours per year. As thermal load is highly

correlated with outdoor air temperature, designing heating and cooling systems to meet load

at the 99% and 1% outdoor air temperature ensures that load will be met in all but the most

extreme conditions.

The second step recommended in [138] is to select the heat pump size. For stand-alone

heat pumps, the recommended sizing method is detailed in the Air Conditioning Contractors

of America’s Manual S. [141] The primary sizing consideration in Manual S is the ability to

meet design heating and cooling loads. For heating, Manual S selects any heat pump with a

maximum heating capacity in design conditions that is 100% to 140% of the design heating
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load. For cooling, Manual S selects any heat pump with a maximum cooling capacity –

including both sensible and latent heat removal – in design conditions that is 100% to 115%

of the design cooling load, and that provides sufficient air flow.

For displacement usage, the ability to meet design loads is not the primary sizing con-

sideration. Rather, [138] notes that “the main tradeoff is between initial cost vs. savings.”

Therefore, Manual S is not an appropriate selection tool. The sizing recommendation in

[138] is the following.

Heating capacity of system at or near outdoor design temperature is a secondary

concern. Undersizing somewhat for heating should improve efficiency and reduce

overall heating costs, even though central system may be used slightly more in

colder weather. High efficiency at predominant winter outdoor temperatures will

reduce operating cost.

While these are useful guidelines for selecting a heat pump for displacement usage, they

leave many details ambiguous. For example, what degree of undersizing is ‘undersizing

somewhat’? How do the guidelines vary between very cold climates, where heating loads

dominate cooling loads, and moderate or hot climates? One goal of this chapter is to resolve

ambiguities such as these.

4.1.3 Heat pump selection in the research literature

The heat pump selection problem has been approached from several directions in the research

literature. [142–148] Most studies consider the context of air-to-water heat pumps providing

joint space and water heating. [142–146] In this context, the heat pump charges a hot

water storage tank. Water from the tank is circulated through emitters to heat space, or

withdrawn for showers and other domestic uses. Due to this broader context, the studies

[142–146] consider the heat pump selection problem alongside the coupled problems of sizing
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the storage tank and scheduling heat pump operation. The sizing of solar photovoltaic

systems is also considered in [144–146]. In [142–146], the selection problem is formulated as

a linear program or mixed-integer linear program and solved via numerical optimization.

Fewer studies consider the heat pump selection problem in the context of reversible heat

pumps that provide space heating and cooling. [147, 148] In [147], Dongellini et al. analyze

the influence of an air-to-air heat pump’s size on how efficiently it serves a given building.

They consider single-stage and variable-speed heat pumps in a variety of European climates.

While they do not develop an explicit selection method, Dongellini et al. find that efficiency

is sensitive to the heat pump’s size relative to the load it serves. They conclude that different

sizing methods are likely needed for different climates and heat pump types.

In [148], Zhang et al. compare a reversible air-to-air heat pump to incumbent heating and

cooling technologies. They develop an explicit method for selecting the best option from a

finite set of candidate heating and cooling systems. Their method involves simulating each

system’s operation over a typical year. The systems are then ranked according to their simple

payback periods, i.e., their ratios of capital cost to annual operating cost. The system with

the shortest simple payback period is selected.

4.1.4 Our contributions to heat pump selection

The methods developed in this chapter are conceptually similar to those in [148]. Following

Zhang et al., we formulate the heat pump selection problem as one of ranking and selection.

[149] In other words, rather than treating heat pump capacity as a continuous decision

variable as in [142–146], we suppose that the designer has a finite set of options from which

to choose. We develop methods for ranking those options and choosing between them.

We prefer the ranking and selection formulation because in practice, the number of avail-

able heat pump models that may be appropriate for a given application is always finite,
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and rarely exceeds a few tens. Treating thermal capacity as a continuous variable is gen-

erally not a good approximation; with the possible exception of heat pump manufacturers,

heating and cooling practitioners cannot procure a heat pump with arbitrary thermal ca-

pacity. This problem is compounded when multiple heat pump parameters, such as heating

and cooling capacities and COPs, are treated as decision variables. In this case, the odds

that a practitioner can find a heat pump on the market with the parameters generated by

solving a continuous optimization problem are vanishingly small. The ranking and selection

formulation, by contrast, naturally includes in the selection process all such parameters of

all candidate heat pumps.

The key difference between this chapter and [148] lies in the treatment of uncertainty.

In [148], candidate systems are ranked according to their performance in a single nominal

scenario. This deterministic approach does not account for the uncertainty introduced by

weather, occupant behavior, imperfect thermal models, etc. Our approach, by contrast,

explicitly handles uncertainty through the use of a large number of scenarios obtained from

historical data, pseudorandom number generation, or both. Using the theory developed in

[150], we derive probabilistic guarantees on the selected heat pump’s performance in unseen

scenarios that may arise in the future. This scenario approach is substantially more robust

than the deterministic approach, and therefore reduces the risk of selecting an inappropriate

heat pump.

In addition to providing a new, more robust method for heat pump selection, we conduct

several numerical investigations. These investigations suggest that over-sizing variable-speed

heat pumps can significantly increase emissions and costs. This is because over-sized heat

pumps spend more time cycling, which degrades COPs.
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4.1.5 Constrained ranking and selection in the research literature

The field of ranking and selection deals with the general problem of choosing between a finite

number of candidate systems under uncertainty. Study of this problem dates back at least to

the contributions of Bechhofer in 1954 [151] and Gupta in 1956 [152]. Until recently, the field

dealt primarily with systems whose performance was evaluated through the expected value of

a single objective function, typically representing a cost or profit, with no constraints. [153–

158] In the last decade, however, researchers have begun to investigate constrained ranking

and selection problems. [159–162] The general heat pump selection problem considered in

this chapter involves constraints on unmet thermal loads, so we focus this literature review

on constrained ranking and selection.

In [159], Andradottir and Kim consider the problem of selecting the system with the

best expected objective function value while restricting the expected value of a constraint

function. This paper is among the first contributions to the constrained ranking and selection

literature. The solution procedure in [159] involves a feasibility screening stage followed by

a selection stage. As is typical in the ranking and selection literature, Andradottir and

Kim assume that the objective and constraint functions are observed through stochastic

simulation. They further assume that the simulation outputs are normally distributed and

independent across systems.

In [160], Healey et al. relax the independence assumption in [159] to allow for the use of

common random numbers across systems, a variance reduction technique that can signifi-

cantly improve computational efficiency. [163] Healey et al. also broaden the setting of [159]

to include multiple constraint functions. The normality assumption of [159] remains in [160],

however.

In [161], Hong et al. consider a somewhat narrower problem than [159, 160]. By contrast

to [159, 160], which consider expectation constraints, [161] consider chance constraints, i.e.,
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constraints on the probability of constraint satisfaction. (A probability can always be viewed

as the expectation of an indicator function, so the setting in [161] specializes that in [159,

160].) Restricting attention to this structured special case, Hong et al. develop a solution

procedure with rigorous guarantees of statistical validity. Hong et al. also partially relax

the normality assumption of [159, 160]: the constraint observations may be arbitrarily dis-

tributed, but the objective observations are assumed to be normal. As in [160], the setting

of [161] accommodates multiple constraint functions.

To our knowledge, the only existing method for constrained ranking and selection with

arbitrary objective and constraint distributions is in [162]. In [162], Monks and Currie

develop a heuristic two-stage method based on bootstrapping. By contrast to [159–161],

the problem in [162] is to identify a subset of feasible systems (with respect to expectation

constraints) whose expected objective values are within a user-specified percentage of the

optimal expected objective value. While the heuristic procedure in [162] has no guarantees

of statistical validity, it applies to a very general class of constrained ranking and selection

problems, and performs well in a real-world problem involving the design of a hospital’s

elder-care ward.

A key assumption underlying the guarantees of statistical validity in [159–161] is that

the expected objective value of the best system is better than that of all other systems by

at least a given threshold. This indifference zone assumption on the problem data dates

back to Beckhhofer’s original 1954 paper. [151]. It facilitates validity proofs. In practice,

however, the expected objective values of the candidate systems are not known a priori, so

the requisite threshold is difficult to specify. As the validity guarantees are contingent upon

this assumption, an incorrect threshold invalidates the guarantees in [159–161]. For more

discussion of the indifference zone assumption, we refer the interested reader to §2.2.1 of

[164].
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4.1.6 Our contributions to constrained ranking and selection

For the purposes of heat pump selection, we seek a ranking and selection procedure that

1. accommodates multiple chance constraints,

2. makes no distributional assumptions, and

3. provides a rigorous performance guarantee.

The first condition reflects the facts that the heat pump selection problem may include con-

straints on both unmet heating and cooling loads, and that chance constraints are sufficiently

expressive for our purposes. The second condition reflects the fact that the distributions in

our problem are not normal. For example, building codes often specify that heating and

cooling equipment be sized such that the temporal frequencies of unmet heating and cooling

load are below certain thresholds. [165, 166] The temporal frequencies are random variables

supported on [0, 1], so are not well-modeled by normal distributions. The third condition

reflects our preference for proven methods over heuristics.

The existing methods that most nearly meet our specifications are those in [161] and

[162]. As discussed in §4.1.5, the heuristic procedure in [162] accommodates multiple con-

straints and admits arbitrary distributions, but comes with no performance guarantees. The

procedure in [161] very nearly meets our requirements, except that (a) it assumes normality

in the objective and (b) its performance guarantee is contingent on the indifference zone

assumption1, which we find unsatisfactory.

As we are aware of no existing methods that meet our specifications, in this chapter

we develop a new constrained ranking and selection procedure. Appendix A expands on

1Corrollary 1 of [161] attempts to remove the indifference-zone assumption, but the proof is incorrect; it
does not “properly account for the possibility that a good system can eliminate the best system early on
and then be eliminated by a bad system” during the selection stage. See [164], §2.3.4 for more discussion.
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this procedure and proves an associated performance guarantee. The procedure probabilisti-

cally guarantees that the selection is feasible and approximately optimal. The selection and

suboptimality threshold are computed by solving an optimization problem with constraints

enforced sample-wise. The robustness level of the probabilistic guarantee is computed after

solving this problem, and depends on the observed structure of the feasible region. Most

of the computation involved can parallelized over systems or scenarios. The use of common

random numbers is accommodated. The proof of the probabilistic guarantee is a straightfor-

ward application of the recent theory in [150]. The guarantee holds for arbitrary distributions

and does not require the indifference-zone assumption.

It is worth noting that our approach entails two conceptual departures from established

conventions in the ranking and selection literature. First, we adopt a risk-averse approach

that emphasizes performance under unfavorable scenarios. Second, rather than viewing the

input data as something to be generated internally in order to guarantee good selection

at a user-specified robustness level, we use what data is available and derive a posterior

performance guarantee. While unconventional, this approach may be appealing to risk-averse

decision-makers, or in settings where input data or computational resources are limited.

4.2 Deterministic problem statement

In this section, we formulate the heat pump selection problem in a deterministic setting. We

assume that all input data, such as future weather and loads, are known exactly. We begin

in the deterministic setting in order to introduce the physics, objectives and constraints in

a relatively simple context. In §4.3, we will adapt the deterministic problem statement to a

more general context where uncertainty is explicitly considered.

Throughout this chapter, we assume that the selected heat pump is evaluated relative

to an incumbent system. In replacement applications, the heat pump must be large enough
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to meet load in all but the worst conditions. In displacement applications, the amount of

load displaced, and therefore the energy cost savings, depend on the heat pump’s thermal

capacity. We also assume that the following data are available: coincident air temperatures,

loads and prices; estimates of each heat pump’s installed cost, annual maintenance cost, and

lifetime; and mathematical models of each heat pump’s thermal capacity and coefficient of

performance under varying temperatures and loads.

The problem we consider is to select one of a finite set of candidate heat pumps in order

to maximize the net present value of installing the heat pump and operating it over its

lifetime, possibly subject to constraints on the frequencies of unmet heating or cooling load.

This problem arises under two distinct ownership models. In the first model, a user owns the

heat pump and pays for its maintenance and input electricity over its lifetime. In the second

model, an HPA aggregator owns the heat pump, pays for its maintenance and electricity,

sells its thermal output to the user, and earns revenue from providing ancillary services.

In the HPA ownership model, we assume that the aggregator and user negotiate the

HPA using the process discussed in §2.3.4–2.3.5. In this process, the total value of a heat

pump HPA (see Equation (2.5)) is determined by comparing the heat pump to an incumbent

system. The aggregator and user negotiate the user’s share φ ∈ [0, 1] of the total value. The

net present value of the aggregator’s heat pump investment is 1 − φ times the total value.

Therefore, maximizing the aggregator’s net present value is equivalent to maximizing the

total value. The total HPA value in Equation (2.5) is structurally identical to the user’s net

present value under traditional ownership, as shown in Equation (2.2). For this reason, it

suffices to consider only net present value expressions of the form of Equations (2.2) and

(2.5).
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4.2.1 Physics

We consider a one-year discrete time span indexed by k = 1, . . . , K with time step ∆t (h).

We also consider a finite set of heat pumps indexed by j = 1, . . . , J . At each stage k, the

thermal power output of heat pump j is Q̇j(k) (kWt). If Q̇j(k) is positive, then heat pump

j provides heating at stage k. If Q̇j(k) is negative, then it provides cooling.

Capacity, modulation and cycling

The thermal power output of heat pump j must satisfy

Q̇cap
cj (Ta(k), T∞(k)) ≤ Q̇j(k) ≤ Q̇cap

hj (Ta(k), T∞(k)). (4.1)

Here Ta(k) (◦C) and T∞(k) (◦C) are the indoor and outdoor air temperature, respectively,

at stage k. The function Q̇cap
hj : R2 → R gives the heating capacity of heat pump j under

varying indoor and outdoor air temperatures. Similarly, Q̇cap
cj : R2 → R gives the cooling

capacity of heat pump j.

We assume that heat pump j modulates continuously throughout stage k if

Q̇mod
hj (Ta(k), T∞(k)) ≤ Q̇j(k) ≤ Q̇cap

hj (Ta(k), T∞(k))

or

Q̇cap
cj (Ta(k), T∞(k)) ≤ Q̇j(k) ≤ Q̇mod

cj (Ta(k), T∞(k)).

On the other hand, if

Q̇mod
cj (Ta(k), T∞(k)) < Q̇j(k) < Q̇mod

hj (Ta(k), T∞(k)),

then heat pump j cycles off and on during stage k. Here the functions Q̇mod
hj : R2 → R
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Figure 4.1: A variable-speed heat pump cycles off and on if the load is smaller than its
modulating threshold Q̇mod

h (in heating mode) or Q̇mod
c (in cooling mode). Otherwise, it

modulates continuously. A single-speed heat pump, by contrast, never modulates; its mod-
ulating thresholds equal its capacities Q̇cap

h and Q̇cap
c .

and Q̇mod
cj : R2 → R give the minimum modulating capacity when heating and cooling,

respectively. If heat pump j has a single-speed motor, then Q̇mod
hj = Q̇cap

hj , Q̇mod
cj = Q̇cap

cj ,

and the modulating ranges reduce to singletons. In this case, heat pump j either cycles or

saturates at every stage. Figure 4.1 illustrates the modulation behavior.

Load and thermal power

We denote the load at stage k by L(k) (kWt). If L(k) is positive, then heating is required

at stage k. If L(k) is negative, then cooling is required. We assume that each heat pump j

is controlled such that if it has sufficient capacity to meet load, then it meets load exactly;

otherwise, its thermal power output saturates at its capacity. Mathematically,

Q̇j(k) = max
{
Q̇cap
cj (Ta(k), T∞(k)),min

{
L(k), Q̇cap

hj (Ta(k), T∞(k))
}}

. (4.2)

Figure 4.2 shows a plot of thermal power output vs. load for fixed indoor and outdoor air

temperatures.

By construction, the thermal power output (4.2) respects the equipment constraints (4.1).

Load is not necessarily met, however. The unmet heating load by heat pump j at stage k is

Uh
j (k) := (L(k)− Q̇j(k))+,
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L
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Q̇cap
c

Q̇cap
h

Figure 4.2: The thermal power output Q̇ is equal to the thermal load L whenever L ∈
[Q̇cap

c , Q̇cap
h ]. Otherwise, the thermal power output saturates at the heating capacity Q̇cap

h or
cooling capacity Q̇cap

c . The heating and cooling capacities vary across heat pumps and with
the indoor and outdoor air temperatures.

where (·)+ = max {0, ·} is the positive part function. Similarly, the unmet cooling load is

U c
j (k) := (Q̇j(k)− L(k))+.

Electrical power

We denote the electrical power consumed by heat pump j at stage k by

Pj(k) :=
|Q̇j(k)|

ηj(Ta(k), T∞(k), Q̇j(k))
.

The function ηj : R3 → R gives the COP of heat pump j under various operating conditions.

The dependence of ηj on Q̇j accounts for the heat pump’s part-load performance. It also

allows ηj to distinguish between heating and cooling COPs based on the sign of Q̇j.

We define the electrical power capacity of heat pump j at stage k as the power it would
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consume if operated at its current thermal capacity:

P cap
j (k) :=


Q̇cap
hj (Ta(k), T∞(k))/ηj(Ta(k), T∞(k), Q̇cap

hj (Ta(k), T∞(k))) Q̇j(k) ≥ 0

−Q̇cap
cj (Ta(k), T∞(k))/ηj(Ta(k), T∞(k), Q̇cap

cj (Ta(k), T∞(k))) Q̇j(k) < 0.

We also define the electrical power modulation threshold

Pmod
j (k) :=


Q̇mod
hj (Ta(k), T∞(k))/ηj(Ta(k), T∞(k), Q̇mod

hj (Ta(k), T∞(k))) Q̇j(k) ≥ 0

−Q̇mod
cj (Ta(k), T∞(k))/ηj(Ta(k), T∞(k), Q̇mod

cj (Ta(k), T∞(k))) Q̇j(k) < 0.

If Pj(k) < Pmod
j (k), then heat pump j cycles off and on at stage k.

4.2.2 Constraints

When sizing for equipment stand-alone operation, building codes and industry standards

such as [140, 141, 165, 166] typically require that the frequencies of unmet heating and

cooling load, fhj and f cj , satisfy

fhj :=
1

K

K∑
k=1

I+(Uh
j (k)) ≤ εh

f cj :=
1

K

K∑
k=1

I+(U c
j (k)) ≤ εc.

(4.3)

Here I+ : R → R is the indicator function of the positive real numbers; it returns one if

its argument is strictly positive and zero otherwise. The unmet load frequencies fhj and f cj

always lie between zero and one.

The parameters εh, εc ∈ [0, 1] could be specified by the designer, the building owner or

occupants, an industry standard or a building code. As discussed in §4.1.2, the typical value

of εh and εc for stand-alone operation is 0.01. In cooperative heating usage, however, the
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backup system meets any unmet heating load. In this case, the frequency of unmet load is

unconstrained (or, equivalently, εh = 1). The same applies for cooperative cooling usage.

4.2.3 Objectives

Energy

The electrical energy cost of heat pump j at stage k is

∆tπ(k)Pj(k),

where π(k) ($/kWh) is the electricity price at stage k. We also consider the avoided energy

cost of heating or cooling with an incumbent system. In heating mode (Q̇j(k) ≥ 0), the

avoided energy cost is

∆tπ̃h(k)Q̇j(k)

η̃h(Ta(k), T∞(k), Q̇j(k))
,

where π̃h(k) ($/kWh) is the incumbent heating fuel price at stage k and η̃h : R3 → R gives

the incumbent heating COP or efficiency. In cooling mode (Q̇j(k) < 0), the avoided energy

cost is

−∆tπ(k)Q̇j(k)

η̃c(Ta(k), T∞(k), Q̇j(k))
,

where η̃c : R3 → R gives the incumbent cooling COP. For brevity, we consolidate the

incumbent heating and cooling energy costs into one term:

π̃(k)Ẽj(k).

Here

π̃(k) =


π̃h(k) Q̇j(k) ≥ 0

π(k) Q̇j(k) < 0
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and

Ẽj(k) =


∆tQ̇j(k)/η̃h(Ta(k), T∞(k), Q̇j(k)) Q̇j(k) ≥ 0

−∆tQ̇j(k)/η̃c(Ta(k), T∞(k), Q̇j(k)) Q̇j(k) < 0.

We note that the avoided energy costs vary from heat pump to heat pump. This is because

the avoided load equals the load met by the heat pump, which depends in general on the

heat pump capacity.

Ancillary services

We consider the joint provision of two ancillary services: reserve and regulation. Reserve

is the capacity to curtail load at the power system operator’s request. We restrict our

attention to so-called spinning or synchronous reserve, which requires the fastest responses

(typically within ten minutes of receiving the request) and has the highest prices of the

various reserve products. Reserve is infrequently dispatched (typically once or twice per

month), and dispatch durations are rarely more than ten minutes.

Regulation involves continuously perturbing electrical power in order to track a reference

signal sent by the power system operator. Some power system operators define two regulation

products, distinguished by the direction of the power perturbation. Other power system

operators define regulation as the ability to perturb power symmetrically in either direction.

To keep notation relatively light, we restrict our attention to symmetric regulation markets,

but asymmetric regulation can easily be accommodated.

Regulation prices are significantly higher than reserve prices, so we assume that regulation

is prioritized. If heat pump j provides regulation at stage k, then it earns revenue

∆tπreg(k)P reg
j (k),

where πreg(k) ($/kWh) is the regulation price at stage k. We define the regulation capacity
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(a) High power case
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P reg P regP res

(b) Low power case

Figure 4.3: Regulation and reserve capacities in the cases where the heat pump’s nominal
power consumption P is near its (a) maximum capacity P cap, and (b) minimum modulating
capacity Pmod. In case (a), the regulation capacity is determined by the upward flexibility.
In case (b), the regulation capacity is determined by the downward flexibility. In both cases,
the reserve capacity is the downward flexibility that remains when the heat pump modulates
to P − P reg.

as

P reg
j (k) :=


min

{
P cap
j (k)− Pj(k), Pj(k)− Pmod

j (k)
}

Pj(k) ≥ Pmod
j (k)

0 Pj(k) < Pmod
j (k).

With this definition, a variable-speed heat pump can provide no regulation while cycling.

Reserve capacity depends on regulation capacity:

P res
j (k) :=


Pj(k)− P reg

j (k) Pj(k) ≥ Pmod
j (k)

0 Pj(k) < Pmod
j (k).

(No reserve capacity can be offered when Pj(k) < Pmod
j (k), because a heat pump cannot

curtail load during ‘off’ periods while cycling.) If heat pump j provides reserve at stage k,

then it earns revenue

∆tπres(k)P res
j (k),

where πres(k) ($/kWh) is the reserve price at stage k. Figure 4.3 illustrates the regulation

and reserve capacity definitions.

Power system operators typically require a minimum capacity on the order of 100 kW

to 1 MW to enter ancillary service markets. Individual heat pumps typically have electrical
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capacities on the order of 1 kW. To earn ancillary service revenue, therefore, heat pumps

need to be aggregated by the hundreds or thousands. Aggregation can significantly increase

the capacity that can be offered for ancillary services, as well as the associated revenues. We

discuss this further in §5.3. In this chapter, however, we assume for simplicity that the heat

pump provides ancillary services independently.

Installed and maintenance costs

Each heat pump has an installed cost cj ($) that includes rebates or tax credits, hardware and

labor costs, the installer’s overhead and profit, and all other related expenses and incentives.

Each heat pump also has an annual maintenance cost mj, again including hardware, labor,

overhead and profit. We denote the lifetime of heat pump j by Yj. Similarly, the incumbent

system has capital cost c̃ ($) and annual maintenance cost m̃ ($).

Emissions

As discussed in §2.2.5, the cost of greenhouse gas emissions caused by consuming electricity

can be internalized by redefining the electricity price to

π(k)← π(k) + πgµ(k),

where µ(k) (kg/kWh) is the greenhouse gas intensity of electricity at stage k and πg ($/kg) is

the price of greenhouse gas emissions. Similarly, the cost of the incumbent heating system’s

greenhouse gas emissions can be internalized by redefining

π̃h(k)← π̃h(k) + πgµ̃(k),
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where µ̃(k) (kg/kWh) is the greenhouse gas intensity of the incumbent heating fuel at stage

k.

To internalize the cost of greenhouse gas emissions due to manufacturing and shipping,

cj can be redefined to

cj ← cj + πgMj,

where Mj (kg) is the mass of CO2-equivalent embodied in heat pump j. Similarly, the

incumbent system’s capital cost can be redefined to

c̃← c̃+ πgM̃,

where M̃ (kg) is the mass of CO2-equivalent embodied in the incumbent system.

Net present value

The net present value of heat pump j includes its installed cost, its avoided installed cost

(for stand-alone usage), and the discounted annual maintenance and operating costs over its

lifetime:

NPVj := c̃− cj

+ γj

[
m̃−mj +

K∑
k=1

π̃(k)Ej(k) + ∆t
(
πreg(k)P reg

j (k) + πres(k)P res
j (k)− π(k)Pj(k)

)]
.

Here the parameter

γj :=

Yj∑
y=1

1

(1 + ρ)y

governs the trade-off between installed cost and operating costs over the the lifetime of heat

pump j, with future cash flows discounted at rate ρ ≥ 0. As discussed in §2.5, this expression

for the net present value assumes that the loads, temperatures and prices will be similar from
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year to year over the heat pumps’ lifetimes. This assumption can be relaxed; we make it

mainly for notational convenience.

4.2.4 Summary

In summary, the deterministic formulation of our heat pump sizing problem is to

maximize
j∈{1,...,J}

NPVj

subject to fhj ≤ εh

f cj ≤ εc.

(4.4)

This optimization problem has one discrete scalar decision variable and two constraints. If

the heat pump is installed for heating displacement, then εh = 1 and the first constraint can

be deleted. The same applies for εc and the second constraint if the heat pump is installed

for cooling displacement. Problem (4.4) can be solved by simulating all candidate systems

and computing their net present values and unmet load frequencies. A feasible heat pump

with maximal net present value is optimal.

4.3 Scenario framework

In §4.2, we assumed that all of the input data – loads, temperatures, prices, etc. – were

known exactly. We now relax this assumption. We first discuss the input data, then formu-

late a scenario-based version of the deterministic heat pump sizing problem (4.4). Solving

this problem and implementing a post-processing step yields a heat pump selection with

probabilistic feasibility and optimality guarantees. As this selection method is original and

potentially of interest in broader applications, we discuss it in more detail and a more general

setting in Appendix A. The appendix also includes a proof of the probabilistic guarantee.
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4.3.1 Input data

The input parameters to the method discussed in §4.2 are J , ∆t, K, ρ, εh, εc, c1, . . . , cJ ,

c̃1, . . . , c̃J , m1, . . . ,mJ , m̃1, . . . , m̃J , and Y1, . . . , Yj. We assume that J , ∆t, K, ρ, εh, εc are

known at decision time, as they are specified by the designer or occupants. The remaining

parameters could be random. The installed costs cj, for example, could depend on fluctuating

hardware prices and unforeseen installation complications.

The input signals, each defined for k = 1, . . . , K, are L(k), Ta(k), T∞(k), πreg(k), πres(k)

and π(k). All of these signals could be random. The load L(k), for example, depends on

the weather and occupant behavior. The indoor air temperature Ta(k) depends on occupant

preferences. The electricity price π(k) could be tied to a market clearing price.

In this section, we denote the stacked vector of all of the uncertain input data by δ ∈ ∆,

where ∆ is a probability space equipped with a σ-algebra and probability measure. The

dimension of δ could be very large, as δ contains all uncertain input parameters and all

uncertain input signals at all time steps. We emphasize, however, that the results in this

section do not depend on the dimension of δ.

4.3.2 Stochastic problem statement

In the stochastic framework, the net present values and the frequencies of unmet heating

and cooling load are random due to their dependence on δ. (Going forward, we emphasize

this dependence by writing NPVj(δ), f
h
j (δ) and f cj (δ).) The goals of minimizing NPCj(δ)

and constraining fhj (δ) and f cj (δ) are therefore ambiguous.
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To resolve this ambiguity, we specify the following optimization problem:

minimize τ

subject to Prob


NPV?(δ)− NPVj(δ) ≤ τ

fhj (δ) ≤ εh, f
c
j (δ) ≤ εc

 ≥ 1− α,
(4.5)

where NPV? : ∆→ R gives the optimal value under uncertainty δ,

NPV?(δ) = max
j=1,...,J

{
NPVj(δ)

∣∣ fhj (δ) ≤ εh, f
c
j (δ) ≤ εc

}
.

The probability in Problem (4.5) refers to the joint distribution of δ.

The decision variable in Problem (4.5) is (j, τ) ∈ {1, . . . , J} × R. A solution (j?, τ ?)

provides a probabilistic guarantee that the selection j? will be feasible and that its net

present value will be within τ ? of the maximum achievable under whatever value of δ is

realized. The smaller the robustness level α ∈ (0, 1) and suboptimality threshold τ ?, the

stronger the guarantee. In the extreme case of τ ? = 0, we obtain a probabilistic guarantee

that j? will be optimal.

4.3.3 Approximate solution by scenario optimization

As the distribution of δ may not be known, Problem (4.5) is intractable in general. We

therefore resort to approximate solution by scenario optimization. In this approach, we sup-

pose that an independent, identically distributed sample (δ1, . . . , δN) from the distribution

of δ is available. We refer to the δi as scenarios.
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Given δ1, . . . , δN , we form a scenario version of Problem (4.5):

minimize τ

subject to NPV?(δi)− NPVj(δ
i) ≤ τ, i = 1, . . . , N

fhj (δi) ≤ εh, f
c
j (δ

i) ≤ εc, i = 1, . . . , N.

(4.6)

As in Problem (4.5), the decision variable in Problem (4.6) is (j, τ) ∈ {1, . . . , J} × R. A

solution (j?N , τ
?
N) to Problem (4.6) can be computed by exhaustive search as follows.

1. Feasibility screening:

(a) Compute fhj (δi) and f cj (δ
i) for each j = 1, . . . , J and i = 1, . . . , N .

(b) Set J =
{
j ∈ {1, . . . , J}

∣∣ fhj (δi) ≤ εh, f
c
j (δ

i) ≤ εc, i = 1, . . . , N
}

.

2. Minimization:

(a) Compute NPVj(δ
i) for each j ∈ J and i = 1, . . . , N .

(b) Compute NPV?(δi) = maxj {NPVj(δ
i) | j ∈ J } for each i = 1, . . . , N .

(c) Compute τj = maxi {NPV?(δi)− NPVj(δ
i) | i = 1, . . . , N} for each j ∈ J .

(d) Compute τ ?N = minj {τj | j ∈ J } and set j?N to a corresponding minimizer, using

a tie-break rule if there are multiple minimizers.

This procedure is a function that takes a sample (δi, . . . , δN) as its input and outputs a

selection j?N and suboptimality threshold τ ?N . We denote this function by AN : ∆N →

{1, . . . , J} ×R and write

(j?N , τ
?
N) = AN(δ1, . . . , δN).

We also define functions Am : ∆m → {1, . . . , J}×R for m = 1, . . . , N . Each Am implements

the above procedure on a sample of cardinality m.
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4.3.4 Robustness guarantee

The recent theory in [150] allows a solution (j?N , τ
?
N) to the scenario problem (4.6) to be eval-

uated with respect to the chance constraint in Problem (4.5). Given a confidence parameter

β ∈ (0, 1), this theory guarantees with 100(1− β)% confidence that

Prob


NPV?(δ)− NPVj?N

(δ) ≤ τ ?N

fhj?N (δ) ≤ εh, f
c
j?N

(δ) ≤ εc

 ≥ 1− α?N . (4.7)

To compute the robustness level α?N , we must find a support subsample. A support

subsample is a sequence of scenarios (δi1 , . . . , δik) with i1 < · · · < ik such that {i1, . . . , ik} ⊆

{1, . . . , N} and

Ak(δi1 , . . . , δik) = AN(δ1, . . . , δN).

In other words, optimizing over a support subsample yields the same selection and subopti-

mality threshold as optimizing over the full sample. Given a support subsample of cardinality

s?N , a robustness level α?N for which the guarantee (4.7) holds is given by

α?N =


1 if s?N = N

1−
[
β
/
N
(
N
s?N

)]1/(N−s?N )

otherwise.

(4.8)

The right-hand side of (4.8) is an increasing function of s?N . To strengthen the guarantee

(4.7), therefore, we would like to find a small support subsample. The following procedure,

adapted from [150], can be shown to yield an irreducible subsample (though not necessarily

one of minimal cardinality).

1. Initialize S ← (δ1, . . . , δN).

2. For i = 1, . . . , N ,
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(a) Set Si = S \ δi.

(b) If A|Si| (Si) = AN(δ1, . . . , δN), set S ← Si.

When this procedure terminates, the final sample S is an irreducible support subsample. Its

cardinality s?N can be used in (4.8) to compute a robustness level α?N valid in the probabilistic

guarantee (4.7).

4.4 Numerical example

In this section, we numerically investigate various aspects of the heat pump selection problem

through Monte Carlo simulation. We focus on heating displacement and cooling replacement

in a typical United States building and location. In all simulations, we use a time step of

∆t = 1 h, horizon K = 8760, and sample size of N = 1000 scenarios.

The simulation input data include ρ, εh, εc ∈ R, Y, c, c̃,m, m̃ ∈ RJ , and L, Ta, T∞,

πreg, πres, π ∈ RK . The annual cash flow discount rate ρ ranges from 5% and 15%, while

the heat pump lifetimes Yj range from 10 to 20 years. The parameters ρ and Yj are sam-

pled independently from uniform distributions over these ranges. The maximum allowable

frequency of unmet cooling load is set at εc = 0.01, in keeping with international building

energy codes. [165, 166] The heat pumps are used for heating displacement, so εh = 1.

The electrical energy price π, ancillary service prices πreg, πres, and the outdoor air tem-

perature T∞ are discussed in the relevant subsections of §4.4.1. The thermal load L and

indoor air temperature Ta are discussed in §4.4.2. The installed and maintenance costs

c, c̃,m, m̃ are discussed in §4.4.3.
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4.4.1 Setting

We locate simulations in Philadelphia. We consider this city to be representative, in the

sense that its weather, electricity price and greenhouse gas intensity, and natural gas price

are close to the United States averages. See §2.1.1–2.1.2 and §2.2.1–2.2.2 for more discussion

of these parameter values and their variation across the United States. Simulations include

hourly historical weather and price data for the last six years (January 1, 2013 through

December 31, 2018). This is the longest recent period for which all data, notably including

ancillary service prices, are available.

Weather

Philadelphia is located at sea level and 40◦ north latitude. The 99% heating design tem-

perature and 1% cooling design temperatures are −9.4 ◦C and 31.7 ◦C, respectively. [140]

Between 2013 and 2018, the average annual heating and cooling degree-days at base 18

◦C were 2410 ◦C-days and 910 ◦C-days, respectively. Figure 4.4 shows the hourly aver-

age outdoor air (dry bulb) temperature and global horizontal solar irradiance between 2013

and 2018. The weather data source is [167], a compendium of historical weather data in

Pennsylvania maintained by meteorology researchers at Pennsylvania State University.

Electrical energy

We simulate heat pump operation under a residential rate plan of the largest utility company

in Philadelphia. [168] This rate plan includes both a monthly fixed charge and a variable

charge based on electrical energy consumption. The electrical energy price π is 0.1335

$/kWh from June through September and 0.1167 $/kWh from October through May. The

discounted winter energy price reflects the fact that this rate plan is designed for customers

with electrical heating. The source [168] details the utility’s electricity rate plan for residen-
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Figure 4.4: Hourly average outdoor air temperature (left) and global horizontal solar irradi-
ance (right) in Philadelphia from 2013–2018.

tial customers with electric heating systems. The electricity prices are deterministic.

Ancillary services

Philadelphia lies in the service territory of the PJM Interconnection, the largest power sys-

tem in the United States. PJM operates wholesale markets for both energy and ancillary

services. [169] We restrict our attention to the regulation and synchronized reserve ancillary

service markets. Figure 4.5 shows histograms of the 2013–2018 regulation and synchronized

reserve market clearing prices. The synchronized reserve capacity price is typically about

one order of magnitude less than regulation capacity price, which in turn is about one order

of magnitude lower than the Philadelphia retail electricity price. The data source is [170], an

online database of historical data from PJM’s ancillary service markets. We use all available

regulation and synchronous reserve price data, and note that this data is geographically and

temporally coincident with the historical weather data used in simulations.

PJM’s regulation market requires symmetric capacity. In other words, resources provid-

ing regulation must be capable of upward and downward power perturbations of the same
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Figure 4.5: Histograms of the PJM market clearing prices of regulation (left) and reserve
(right) from 2013–2018. The mean regulation and reserve prices are 0.0265 $/kWh and
0.0029 $/kWh, respectively.

magnitude. The PJM regulation signal is filtered into two components: RegA and RegD.

RegA is a lower frequency, nonzero-mean signal. RegD is a higher frequency signal that is

designed to be approximately zero-mean over any 15-minute period. We focus on RegD, as

experiments have shown that variable-speed heat pumps can track the RegD signal without

causing noticeable perturbations to indoor air temperatures. [45, 46] We discuss this further

in §5.2.

Regulation payments include both capacity and performance components. The former is

based on commitments cleared in advance, while the latter is based on the actual tracking

of power perturbations requested by PJM during operations. We consider both components.

The left plot in Figure 4.5 shows a histogram of the 2013–2018 total (capacity plus perfor-

mance) regulation prices, πreg. In simulations, we treat the regulation prices as deterministic.

Synchronized reserve is the fastest and highest-priced of PJM’s reserve ancillary services.

Synchronized reserve involves the ability to curtail load (or increase generation) within ten

minutes of PJM’s request. Synchronized reserve is primarily a capacity service. As shown

in Figure 4.6, synchronized reserve resources are typically deployed about one to four times
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Figure 4.6: PJM synchronous reserve deployment data for 2013–2018. Left plot: monthly
average deployment counts, with error bars indicating ± one standard deviation. Right plot:
deployment duration histogram. On average, reserves were deployed 22 times per year for
12 minutes per deployment.

per month. Deployments typically last eight to twelve minutes. This suggests that heat

pumps can provide synchronized reserve with only infrequent, brief interruptions of service.

We discuss this further in §5.1.

Like regulation payments, PJM synchronized reserve payments include both capacity and

performance components. The former is based on commitments cleared in advance, while

the latter is based on actual load curtailment during deployment events. We restrict our

attention to the capacity component, which is the bulk of the total synchronous reserve

payment. The right plot in Figure 4.5 shows a histogram of the 2013–2018 synchronized

reserve capacity prices, πres. In simulations, we treat the reserve prices as deterministic.

4.4.2 Thermal load

In this section, we discuss the thermal load L ∈ RK used in the simulations reported in

the sequel. We discuss one method for producing L. We stress, however, that L could be
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produced from any source. The methods in this chapter are completely agnostic to the

thermal load model; only scenarios of L are needed. For example, L could be produced from

measurements in a real building, a first-principles building simulator such as EnergyPlus

or TRNSYS, a thermal circuit model of arbitrary order and structure, an autoregressive

process, an artificial neural network, a support vector machine, a decision tree, a random

forest, an ensemble model, etc.

In the subsequent simulations, we consider one story of a stand-alone single-family home

of typical size and envelope efficiency. We model the temperature dynamics of this space us-

ing a 3R2C thermal circuit model. For more discussion of this model, including its widespread

use in state-of-the-art research on heating and cooling systems, see §3.2.2.

We do not assume that the thermal properties of the space are known exactly. Rather,

we suppose that the annual heating and cooling loads are known to lie within ±10% of

assumed nominal values. In each simulated scenario, we randomly generate annual heating

and cooling loads from the corresponding uncertainty sets, then fit the model parameters

using the methods discussed in §3.2.4, Capacitances and Resistances – Exterior mass, and

§3.2.5, Tuning a model to survey data. The model parameters depend on the random annual

loads, so they are also random.

We base the nominal heating and cooling loads on the survey data in [85] for detached

single-family homes in Philadelphia’s climate zone. The nominal heating and cooling load

intensities used in simulations are 58.6 kWht/m2 and 18.8 kWht/m2, respectively. For more

discussion of the data source [85], see §2.4.2.

Once the model parameters are tuned to survey data using the methods discussed above,

thermal load is calculated using the method discussed in the Dynamic load prediction sub-

section of §3.2.3. These thermal load calculations also require trajectories of the outdoor

air temperature, indoor air temperature, and exogenous thermal power from the sun and

internal sources. As discussed above, we use historical outdoor air temperature and so-
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Figure 4.7: Input signals on January 18 in N = 1000 scenarios. The historical outdoor air
temperature data (top left) are resampled with replacement. The indoor air temperature
setpoints (top right) follow a discrete uniform distribution with increments of 1 ◦F. The
exogenous thermal power (bottom left) from the sun and internal heat sources is also random.
The thermal load (bottom right) depends on these random inputs, as well as uncertain model
parameters.
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Figure 4.8: Histograms of hourly thermal load during heating (left) and cooling (right)
seasons.

lar irradiance data from [167]. We randomly generate thermal power gained from internal

sources based on the parameters recommended in [135] for residential building prototypes.

We randomly generate indoor air temperature trajectories, Ta ∈ RK , based on the thermo-

stat setpoint survey data in [85]. These data include thermostat setpoints during different

operating modes: day vs. night, occupied vs. unoccupied, and heating vs. cooling. The

data include both constant setpoints and setpoint adjustments during off-peak hours. In the

simulations presented here, we use the constant setpoint data from [85].

Figure 4.7 shows the input signal scenarios (outdoor air temperature, indoor air tem-

perature setpoint, exogenous thermal power from the sun and internal sources, and thermal

load) for a typical winter day. Figure 4.8 shows histograms of the heating and cooling loads

over all time steps and all scenarios.

4.4.3 Heat pumps and incumbent system

We focus on ductless variable-speed air-to-air heat pumps with one indoor unit and one

outdoor unit. We consider one manufacturer’s line of these products, with J = 5 nameplate
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cooling capacities ranging from 1.8 to 5.3 kWt (6000–18000 BTU/h, in evenly-spaced incre-

ments of 3000 BTU/h). These are highly efficient units with wide modulating ranges and

useful heating capacity even in very cold conditions. We fit capacity and COP curves for

these units to manufacturer data, as discussed in §3.1.3 and the Model fitting subsection of

§3.1.4. We recall the following key features of this line of heat pumps.

• Heating and cooling capacities vary strongly with outdoor air temperature.

• Maximum capacities are significantly higher than rated capacities.

• COPs degrades at low load, due to cycling, and at high load.

• Bigger models have lower rated COPs.

We randomly generate installed costs and annual maintenance costs for these units based

on data available from Internet retailers such as hvacdirect.com, as well as conversations

with industry practitioners. Heat pump installed costs c are modeled as linear in nameplate

heat pump capacity with a slope of 275 $/kWt and a (random) intercept of $3100–4100.

Mean installed heat pump costs range from $4000 for the smallest unit to $5000 for the

largest unit. These installed costs are typical of a traditional heat pump contractor; for

an HPA aggregator, installed costs would likely be somewhat lower. The incumbent system

installed cost c̃ range from $2000–3000; this range is intended to represent either the cost of a

number of high-efficiency window air conditioners or the floor-area-weighted cost of a central

air conditioning system. For more discussion of heat pump costs, see §2.4.2. The annual

maintenance costs m and m̃ vary from $50–100 and $25–50, respectively. We do not claim

that this range exactly reflects reality, only that it is plausible based on our conversations

with industry practitioners. In simulations, the random parameters in this paragraph are

drawn independently from uniform distributions over the aforementioned ranges.
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4.4.4 Input data quality and limitations

The key input data underlying the simulations reported in this section are the weather,

energy and ancillary service prices, thermal load, heat pump performance curves, and equip-

ment costs. In our qualitative assessment, we rate the weather and price data fidelity as

excellent, as they are drawn from historical databases maintained by trustworthy sources.

These sources are the meteorology and atmospheric science department of Pennsylvania State

University for weather, the official rate plan documentation of the major electric utility in

Philadelphia for energy prices, and PJM’s online database for ancillary service prices. We

note that the weather and price datasets are both geographically and temporally coincident,

so they accurately capture the statistical dependence between weather and prices.

The thermal load data is generated from a physics-based model that has seen widespread

use in state-of-the-art research on heating and cooling systems; see §3.2.2 for more discussion.

The model parameters are tuned to data from the United States Energy Information Agency’s

Residential Energy Consumption Survey, which collects real heating and cooling data from

a representative sample of residential buildings; see §2.4.2 for more discussion. We therefore

rate the thermal load data fidelity as fair. We acknowledge that the thermal load data is

not as high-fidelity as the weather and price data, which are direct measurements by reliable

sources. We emphasize, however, that the selection method developed in this chapter is

agnostic to the source of the thermal load data. The basic requirement of the method is that

some thermal load time series data are available. These data could come from historical

measurements, from a thermal circuit model such as the one we use here, from a building

simulator such as EnergyPlus [110] or TRNSYS [111], or from a data-driven predictive model

such as an autoregressive process, artificial neural network, regression tree, support vector

machine, etc.

The heat pump performance curves are fit to empirical data reported by a heat pump

133



manufacturer, as discussed in §3.1.3. The overall accuracy of the fits is decent, although

accuracy could be improved if more high-quality data were available. The accuracy of most

of the statistical fits is high, with values of the R2 statistic of 0.97 or above. A few fits

have lower accuracy, however, with R2 in the range of 0.5–0.7. In terms of reliability, we

view manufacturer-reported empirical data as second only to empirical data reported by

an independent third party. Independent, third-party data is unfortunately difficult to ob-

tain. However, the technical report [93] compares the empirical data reported by the heat

pump manufacturer considered in this chapter to empirical data obtained from third-party

laboratory experiments and finds good agreement between the two. (For more discussion,

see §3.1.3.) We therefore rate the fidelity of the heat pump performance curves as fair. In

our opinion, the most important area for improvement in the heat pump model is COP

degradation while cycling; see the COP and cycling subsection of §3.1.3.

The lowest-fidelity input data are the equipment costs. While retail equipment costs are

readily available, total installed equipment costs also include the installer’s labor, overhead

and profit. The latter are generally not reported by installers, so must be estimated. For more

discussion, see §2.4.2, Incumbent system costs and Heat pump costs, and the cost estimates

in [11]. While the equipment costs in the simulations that follow include our best estimates

based on homeowner and installer testimony on the Internet, and our own conversations

with practitioners, we acknowledge that the fidelity of the equipment cost data is poor. To

account for this uncertainty, the distributions we assume on the equipment costs cover wide

ranges. The spread of the net present value estimates that follow are due in large part to

this. We note, however, that the selection method developed in this chapter is agnostic to the

distribution of the input parameters. Furthermore, in practice the method would likely be

employed by an equipment installer with clear knowledge of their own labor costs, overhead

and profit margins.
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Figure 4.9: Histograms of the net present value of the smallest (top) to largest (bottom)
heat pumps. Red lines indicate sample means.

4.4.5 Results

In this section, we present the results of Monte Carlo simulation of each heat pump under

N = 1000 scenarios. We present these results as histograms in Figures 4.9–4.13. The plots

in these figures are ordered vertically by heat pump size, with the smallest heat pump at

the top and the largest at the bottom. We emphasize that these results are the outputs of

computer simulations, not real-world experiments, and their validity is therefore limited by

the fidelity of the input data, as discussed in §4.4.4.

Net present values, unmet loads and selection

Figure 4.9 shows histograms of the candidate heat pumps’ net present values. Two messages

can be taken from this figure. First, net present values decrease with heat pump size. This

is because the smaller heat pumps have lower capital costs and higher COPs. While larger
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Figure 4.10: Unmet load frequency histograms for heating (left), cooling (right), and the
smallest (top) through largest (bottom) heat pumps.

heat pumps displace more heating load, they do so less efficiently. Second, all of the sample-

average net present values are negative. While the smaller heat pumps’ net present values

are positive in some Monte Carlo runs, on average they are all negative. This implies that

none of the heat pumps considered here are economically attractive, at least in the simulated

scenario of displacing natural gas heating and replacing an efficient air conditioner.

Figure 4.10 shows histograms of the temporal frequencies of unmet heating and cooling

load. As expected, larger heat pumps meet load more frequently. Surprisingly, even the

smallest heat pump meets most of the heating load; its sample-average temporal frequency

of unmet heating load is under 5%. For cooling, the four largest heat pumps meet load

even in the most extreme conditions. The smallest heat pump, however, does not meet

the requirement of maintaining the temporal frequency of unmet cooling load under 1% in

all scenarios. Therefore, the selection algorithm deems the first heat pump infeasible. The

algorithm selects the second-smallest heat pump, which has nameplate cooling capacity of
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2.6 kWt (9000 BTU/h).

In this simulation, the cardinality of the support subsample is two. With N = 1000 and

β = 10−4, the selection algorithm returns the following guarantee:

With 99.99% confidence, the probability that the second heat pump is feasible

and no more than $336-suboptimal is at least 97.1%.

We view this robustness level as satisfactory: the chance that the selection is infeasible

is less than 3%. We interpret the returned value of τ ?N = $336 as the 97th percentile of

the distribution of the second heat pump’s optimality gap. The gap reflects the fact that in

almost all scenarios, the smallest heat pump is feasible and attains a higher net present value

than the second-smallest heat pump. The second-smallest heat pump is selected because it

meets load in all scenarios; this robustness comes at a cost of several hundred dollars.

Although the application simulated here is heating displacement, it is worth noting that

only the largest heat pump meets heating load with a frequency above 99%. If the user

required heating replacement, rather than displacement, only the largest heat pump would

be feasible. This would increase the expected net present cost by about $1560.

Emission reductions

Figure 4.11 shows histograms of the annual greenhouse gas emission reductions. The reduc-

tions are relative to the incumbent natural gas furnace and efficient air conditioner. Four

messages can be taken from this figure.

1. The emission reductions come almost entirely from displacing natural gas use for heat-

ing. Emission reductions from cooling are small (∼10%) by comparison.

2. The total emission reductions are larger for smaller heat pumps. This is because the

smaller heat pumps are more efficient (see Figure 4.12). While the larger heat pumps
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Figure 4.11: Emission reduction histograms for heating (left), cooling (right), and the small-
est (top) through largest (bottom) heat pumps. Black lines indicate sample means.

displace more natural gas usage, they do so less efficiently, resulting in a net increase

in emissions. The largest heat pump increases emissions from cooling.

3. The selected heat pump (the second-smallest) maximizes the emission reduction. This

is coincidental; the selection algorithm in these simulations does not explicitly value

reducing emissions. The value of reducing emissions could be internalized through a

greenhouse gas price, as discussed in §4.2.3.

Seasonal performance and cycling

Figure 4.12 shows histograms of the heating and cooling seasonal COPs. The key message of

this figure is that over-sizing hurts efficiency. The heating seasonal COPs decrease relatively

mildly with heat pump size, but for cooling the trend is stark. This is because the simulations

are set in Philadelphia, where winters are significantly more severe than summers. While
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Figure 4.12: Seasonal COPs histograms for heating (left), cooling (right), and the smallest
(top) through largest (bottom) heat pumps. Black lines indicate sample means.

the heat pumps are mostly within a reasonable size range for heating in this climate, they

are all oversized for cooling. The larger units are oversized for heating and severely oversized

for cooling.

Why does oversizing hurt efficiency? Because oversized units spend most of their time

cycling off and on, rather than modulating. (We refer the reader to Figure 3.12 and the

nearby discussion of cycling and efficiency.) This can be seen in Figure 4.13, which shows

histograms of the cycling frequencies over the hours during which the heat pumps provide

heating and cooling. The two larger units spend significant portions of the heating season

cycling; all but the smallest unit cycle for most cooling hours.

We note that the cycling results in this numerical example are based on the part-load

curve depicted in Figure 3.12. As discussed in §3.1.3, the low end of this part-load curve

is subject to significant uncertainty. Empirical data on COP degradation while cycling are

scarce. The only such data we are aware of are reported in [93]. Unfortunately, the number of
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Figure 4.13: Cycling frequency histograms for heating (left), cooling (right), and the smallest
(top) through largest (bottom) heat pumps. Black lines indicate sample means.

cycling data points in [93] is small and the variability in measured COP degradation is high.

Relative to the measured degradation in [93], our model of COP degradation is optimistic in

the heat pump’s favor: our worst-case degradation is 25%, while the worst-case degradation

measured in [93] is 45%.

4.4.6 Potential impact and extensions

The practical value of this chapter is an algorithm for selecting an appropriate heat pump for

a given application. This algorithm applies to both stand-alone operation and cooperative

usage. It is relatively straightforward to implement and comes with probabilistic performance

guarantees. Using it could reduce the rates of heat pump under- and over-sizing, and thereby

improve actual operating efficiencies. [94, 138, 147, 171] This, in turn, could reduce heat

pumps’ greenhouse gas emissions and lifetime costs, improve their value proposition to users,

and accelerate heat pump adoption.
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A drawback of the heat pump selection method developed in this chapter is that it

requires heat pump performance curves. These can be fit to manufacturer data in submittal

sheets, but the process is time consuming and requires some statistical expertise. A useful

extension of this work would be an open compendium of heat pump performance curves

fit to empirical data for various manufacturers and models. A good starting point would

be the manufacturer data compiled by the Northeast Energy Efficiency Partnerships in [9].

These data include manufacturer-reported capacity and COP measurements for heating and

cooling at several boundary temperatures for hundreds of heat pump models.
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Chapter 5

Ancillary services

In this chapter, we consider the provision of ancillary services from an aggregation of variable-

speed heat pumps. We begin by investigating the technical feasibility of providing spinning

reserve and regulation. We then estimate the ancillary service capacities that aggregated

heat pumps could provide and the revenues that they could earn.

5.1 Spinning reserve feasibility

In this section, we consider the feasibility of providing spinning reserve from aggregated heat

pumps. The technical requirements for providing spinning reserve are low: heat pumps only

need the ability to turn off within ∼10 minutes of a dispatch signal. We therefore focus on the

impact of heat pump curtailment on the thermal comfort of building occupants. Specifically,

we estimate how far indoor air temperatures drift away from setpoints in response to heat

pump curtailment during spinning reserve events. We note that the methods in this section

can apply to other heating and cooling equipment and to other curtailment services, such as

price-based demand response.
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5.1.1 Literature review

The technical feasibility of curtailing heat pumps and air conditioners in response to a

spinning reserve dispatch signal was demonstrated in hardware in [172]. In this paper,

Kirby et al. describe experimental provision of spinning reserve from air conditioners and

heat pumps in a 162-room hotel in Tennessee. All rooms’ thermal devices were equipped

with networked on/off controllers capable of responding to commands issued remotely, e.g.,

from the hotel’s front desk or over the Internet. Four spinning reserve dispatch experiments

were conducted over two days in September, 2008. The average outdoor air temperature

during the experiments was 32 ◦C. In all four experiments, load was curtailed to prescribed

levels within 12–60 seconds, much faster than the 10-minute response required by most

power system operators. Curtailments were sustained for 15 minutes, during which time

room temperatures rose by at most 0.9 ◦C. After the curtailment window, equipment was

gradually ramped back up; room temperatures returned to their setpoints within another 15

minutes. Kirby et al. conclude that temperature perturbations during “short curtailments

normally associated with spinning reserve events should not be a significant concern”. [172]

The experiments in [172] demonstrate that, at least for hotel air conditioners on hot

days, brief curtailments for spinning reserve are non-disruptive to building occupants. These

results are somewhat specific, however, as they were conducted only for 15-minute dispatch

durations, hotel rooms, and ∼32 ◦C outdoor air temperatures. In the remainder of this

section, we augment the experimental results of Kirby et al. by simulating all available

historical dispatch durations in PJM (the 2013–2018 data from [170]), a fairly wide variety

of space heating and cooling loads, and outdoor air temperatures from -20 to 35 ◦C. These

simulations build confidence that the results in [172] extend to more conditions than those

under which the experiments were conducted.

We note that other authors have simulated the provision of spinning reserve from heat
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pumps; see, e.g., [173–175] and §3.1 of the review paper [8]. However, indoor air temperature

perturbations are not investigated in these studies. This is likely due to their different

hardware scope, which includes thermal storage that acts as a buffer between the heat pump

and the conditioned space.

5.1.2 Model

We consider the thermal load model discussed in §3.2. As in §3.2.7, we define the state of the

system as the perturbations of the indoor air and mass temperatures about their respective

baselines. The perturbation dynamics are

Caδ̇a(t) = −
(

1

Ram

+
1

Ra∞

)
δa(t) +

δm(t)

Ram

+
δ∞(t)

Ra∞
+ δ(t) + δe(t)

Cmδ̇m(t) =
δa(t)

Ram

−
(

1

Ram

+
1

Rm∞

)
δm(t) +

δ∞(t)

Rm∞
.

For t < 0, we assume that the heat pump and thermal load are in baseline operation; the

heat pump regulates the indoor air temperature at its setpoint. At t = 0, the heat pump is

turned off and the indoor air temperature begins to drift away from its setpoint. Therefore,

δ(t) =


0 t < 0

− ˆ̇Q(t) t ≥ 0,

where ˆ̇Q is the baseline thermal power output of the heat pump. The other perturbations

are identically zero for t ≤ 0. We are interested in the response of the indoor air temperature

perturbation δa to the thermal power perturbation δ.
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Exact solution

Defining the state x = (δa, δm) and input u = (δ, δ∞, δe), the perturbation dynamics can be

written as

ẋ(t) = Ax(t) +Bu(t),

where the matrices A and B are defined as in §3.2.3. The solution to this system of linear

differential equations is

x(t) = eAtx0 +

∫ t

0

eA(t−τ)Bu(τ)dτ. (5.1)

Given an initial state x0 and input signal u, Equation (5.1) gives an exact expression for the

indoor air perturbation after a curtailment duration t. As this expression involves matrix

exponentials and an integral, however, it does not give a clear interpretation in terms of the

basic model parameters. We therefore make a simplifying assumption that allows for a more

informative solution without compromising much accuracy.

Simplification

The basic simplifying assumption we make is that of time scale separation, as discussed in

§3.2.7. More specifically, we assume that

δm(t) ≈ 0 for all t.

In words, we assume that the thermal mass temperature is approximately constant through-

out the curtailment event. This is a reasonable assumption in most buildings, where thermal

mass time constants are typically on the order of ten hours, while most curtailment events

last on the order of ten minutes. In simulations of curtailments lasting up to several hours,

we find that this assumption yields indoor air temperature approximation errors on the order

of 10−6 ◦C. We also assume that the outdoor air temperature and exogenous thermal power
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are known and constant over the curtailment event.

Under these assumptions, it is straightforward to show that the heat pump thermal power

baseline is approximately constant:

δ(t) ≈ − ˆ̇Q(0) for all t ≥ 0.

For t ≥ 0, therefore, the air temperature perturbation dynamics simplify to

Caδ̇a(t) ≈ −
(
δa(t)

R̃
+ ˆ̇Q(0)

)
,

where

R̃ =
RamRa∞

Ram +Ra∞
.

Solving this differential equation, we have

δa(t) ≈ −R̃ ˆ̇Q(0)

[
1− exp

(
−t
CaR̃

)]
for all t ≥ 0. (5.2)

Equation (5.2) gives an approximate expression for the indoor air temperature perturbation

after any curtailment duration t ≥ 0.

5.1.3 Simulation

In this section, we numerically investigate the relationship between curtailment durations

and indoor air temperature perturbations via Monte Carlo simulation. In each simulation

run, we randomly generate thermal model parameters representative of up to 100 m2 of

conditioned floor area1 in a typical United States home. Parameters are generated using the

1According to the field studies reported in [79], 100 m2 is approximately the largest floor area that can
effectively be conditioned by point-source heating and cooling systems such as the ductless mini-split heat
pumps modeled here. For larger spaces, air distribution becomes a limitation and multiple point-source units
(or a central unit with a distribution system) are needed.
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Figure 5.1: Histogram of the maximum absolute indoor air temperature perturbations over
the durations of the 106 simulated curtailment events. The red line is the 95th sample
percentile.

procedure described in §3.2.4–3.2.5 with input data from the survey in [85]; see §2.4.2 and

§4.4.4 for discussion of this data source. This yields Ca and R̃. We then randomly generate an

indoor air temperature setpoint between 18 and 24 ◦C, an outdoor air temperature between

−20 and 35 ◦C, and an exogenous thermal power (from the sun and internal sources) between

0 and 1.5 kWt. We use the steady-state thermal load under those conditions as the initial

(pre-curtailment) load. We then draw a random curtailment duration tc (h) from PJM’s

spinning reserve2 event durations from 2013–2018 [170], and compute δa(tc) using Equation

(5.2). This is all publicly available historical data on PJM spinning reserve deployment

durations. We use uniform distributions throughout, and run 106 simulations. We choose

uniform distributions because we are interested in the system behavior over the full specified

ranges of boundary conditions.

Figure 5.1 shows a histogram of |δa(tc)|, where tc is the curtailment event duration.

Because the right-hand side of Equation (5.2) is a monotone function of t, |δa(tc)| gives

2PJM uses the term synchronous reserve to refer to an ancillary service that most system operators call
spinning reserve. While we adopt the more widely-used term, spinning reserve, the spinning reserve data in
this thesis are from PJM’s synchronous reserve market.
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the maximum absolute indoor air temperature perturbation over the curtailment time span

t ∈ [0, tc]. The key message of Figure 5.1 is that space heating and cooling loads can provide

PJM spinning reserve without causing thermal discomfort to building occupants. This can

be seen from the red line in Figure 5.1, which shows the 95th sample percentile at 1.1 ◦C. We

therefore conclude that with 95% probability, the indoor air temperature will drift no more

than 1.1 ◦C away from its setpoint during a PJM reserve curtailment event. As a typical

thermostat regulates indoor air temperature within a deadband of several ◦C, we view a 1.1

◦C perturbation as essentially unnoticeable.

It is worth noting that the histogram in Figure 5.1 has a fairly heavy tail. Its 99th

percentile is 2.1 ◦C, and its support extends to 4 ◦C. This heavy tail is due to two outlier

deployment events that occurred during the Polar Vortex cold snap of 2014. During the

Polar Vortex, record-low temperatures caused extreme heating demand, leading to shortages

of both natural gas and electricity. We suspect that these shortages stressed the PJM

power system and led to the outlier spinning reserve deployment durations. While the

mean deployment duration over the 130 events that occurred between 2013 and 2018 was

12 minutes, the two outlier events lasted 41 and 56 minutes. To construct the histogram

in Figure 5.1, we uniformly resampled from the historical event durations with replacement.

The two outlier events were therefore drawn with about 2/130 probability, resulting in a

low but nonzero sample frequency of long events and relatively large indoor air temperature

perturbations. For this reason, the results reported here likely over-estimate the risk of

occupant discomfort during reserve deployments.

5.2 Regulation feasibility

In this section, we consider the feasibility of providing regulation from aggregated variable-

speed heat pumps. We begin by reviewing two related research threads. The first thread
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involves aggregated thermostatically-controlled loads. The second thread involves individual

variable-speed heating and cooling equipment. We then develop a regulation controller for

aggregated variable-speed heat pumps, quantify its tracking performance, and evaluate the

impact on building occupants’ thermal comfort.

5.2.1 Literature review

Aggregated thermostatically-controlled loads

A thermostat is a controller that regulates the temperature of thermal loads such as re-

frigerators, water heaters and air-conditioned spaces. Thermostatically-controlled loads are

typically found in residential and small commercial buildings. A thermostat maintains its

load temperature within an acceptable range called a deadband. When regulating the tem-

perature of a heating load, a thermostat switches the heater on when the load temperature

drops below the lower deadband limit and switches it off when the temperature rises above

the upper deadband limit. The load temperature then drifts back down and the cycle repeats.

Thermostats control cooling equipment similarly.

Aggregated thermostatically-controlled loads can provide regulation by coordinating their

switching behavior. Aggregate-level controllers are typically designed to maintain individual

load temperatures within their thermostat deadbands, so can be considered non-disruptive

to building occupants.

In the last ten years, many researchers have worked on the problem of providing regulation

from thermostatically-controlled loads. A few highly-cited papers in this area include [37,

65–67, 70], but there are many more. Simulation results in this area are extensive. Good

tracking performance has been demonstrated under a number of control schemes. [37, 65–

67, 70] Sensing requirements and estimation algorithms were explored in depth in [37, 67].

Problems related to control over networks, including communication delays and bandwidth

149



constraints, were considered in [176].

Experimental results on power system services from thermostatically-controlled loads are

more limited than simulation results. In [177], 26 refrigerators and two electric resistance

space heaters were controlled on an island in the Baltic Sea. Experiment durations varied

from days to months. The devices showed good performance in responding to frequency

deviations; response times varied from seconds to a few minutes. In [178], 25 refrigerators

were controlled in an isolated Danish test system with 12 kW of peak load and a diesel

generator. The refrigerators were used for reserve, rather than regulation, but showed good

performance in returning the system to nominal frequency within about three minutes of a

step change in system load.

While this thesis focuses on variable-speed heat pumps that are not thermostatically-

controlled, the extensive research on thermostatically-controlled, fixed-speed loads builds

confidence in the ability of aggregated variable-speed heat pumps to provide regulation.

Intuitively, a variable-speed machine is more flexible than a fixed-speed machine. If aggre-

gated fixed-speed machines can provide regulation, then aggregated variable-speed machines

probably can, too. In this section, we will provide evidence that supports this intuition.

Individual variable-speed devices

Research on aggregated thermostatically-controlled loads focuses on the collective behavior

of many fixed-speed devices. A second thread of relevant research involves the individual

behavior of variable-speed devices. Many contributions in this area study the provision of

power system services from large equipment, such as supply air fans and chiller compressors,

in industrial and large commercial buildings. [38–43, 71–74] The experimental results in this

area are fairly extensive, relative to experiments with aggregated thermostatically-controlled

loads. This is most likely a matter of scale; it is easier to instrument a single, large device

than many small, thermostatically-controlled loads.
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In the context of this thesis, the most relevant research on individual, variable-speed

devices is in [44–46]. In [46], Cai et al. retrofit a fixed-speed air-source heat pump with after-

market variable-speed compressor and fan drives. Cai et al. develop a regulation controller

that manipulates compressor and fan speeds as control inputs. In laboratory experiments

under steady-state boundary conditions, the controller earned a composite score of 97% in

tracking PJM’s RegD test signal. The resulting indoor air temperature perturbations were

on the order of 0.1 ◦C.

In practice, compressor and fan speeds may not be available as control inputs without

manufacturer-level hardware access. In [44, 45], Kim et al. also develop a regulation controller

for variable-speed air-source heat pumps. The simulations in [44] use compressor speed as

a control input, but the laboratory experiments in [45] use supply temperature instead.

More precisely, the control input in [45] is the supply temperature reference sent to the

manufacturer’s low-level control system.

Whether the control input is compressor speed or supply temperature, the closed-loop

system behaves like a stable first-order linear system that drives the reference power per-

turbation tracking error to zero. (See Figure 10 of [45].) However, Kim et al. show that

manipulating the supply temperature reference, rather than the compressor speed, increases

the closed-loop time constant from less than one second to about ten seconds. This intro-

duces tracking delays and, at times, relatively large tracking errors. In a range of laboratory

experiments, the composite scores in tracking PJM’s RegD test signal varied between 77 and

81%. While these scores are significantly lower than those reported in [46] for compressor

and fan speed control, they are high enough to earn entrance into PJM’s regulation market.

[179]
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Contributions of this section

As discussed above, there is a large body of high-quality work on controlling heating and

cooling equipment for regulation. This body of work spans a variety of devices, control

schemes, information patterns and aggregation levels. Many simulations and a growing

number experiments show promising results. In our view, these results suggest with high

confidence that heating and cooling loads in general, and variable-speed heat pumps in

particular, can reliably provide regulation without disrupting building occupants.

In light of this view, we keep the scope of this section narrow. As in [44–46], we consider

variable-speed air-source heat pumps. Following [45], we do not assume that manufacturer-

level access to hardware is available. For this reason, we choose a temperature reference,

rather than compressor or fan speeds, as our control input. We choose this control input

because it is accessible today on many heat pumps by way of smart thermostats and the

Internet.

In this section, we extend the work in [45], which considers a single variable-speed heat

pump, by considering an aggregation of many variable-speed heat pumps. We assume that

each heat pump is equipped with its own control system that can imperfectly track an

individual power perturbation reference signal. Based on the experimental results in [45], we

model the low-level control system’s closed-loop behavior as a first-order linear system with

a time constant on the order of ten seconds. This approach to modeling the fast dynamics of

a heat pump is conceptually similar to the approach employed in [101], although the details

differ.

We develop an aggregate controller that intelligently splits the aggregate reference signal

received from the power system operator into individual reference signals that are sent to

each heat pump. The aggregate controller achieves accurate tracking despite the use of

supply temperature, rather than compressor or fan speeds, as the control input at each
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heat pump. Accurate tracking is achieved mainly by including a predictive model of the

aggregate reference signal in the controller design process. In simulations, the aggregate

controller earns a composite score of 97% when tracking PJM’s RegD test signal. This is on

par with the score reported in [46] for compressor and fan speed control inputs.

5.2.2 Dynamics

Temperature and power

We consider an aggregation of J heat pumps serving loads modeled as in §3.2. We work with

perturbations about nominal temperature and power trajectories as in §3.2.7. We denote the

indoor air temperature perturbations by θ ∈ RJ (◦C) and the electrical power perturbations

by p ∈ RJ (kW). Under normal, unperturbed operation, θ = p = 0.

We assume that, viewed from the time scale of the indoor air temperature dynamics,

the thermal mass temperatures and the heat pump coefficients of performance η ∈ RJ are

approximately constant. The control input u ∈ RJ (kW) consists of the individual power

perturbation references sent to the heat pumps. We assume that the heat pumps’ individual

control systems behave in closed-loop as decoupled first-order linear systems that drive the

heat pumps’ actual power perturbation p toward u with time constants τ ∈ RJ (h).

With these assumptions, the continuous-time temperature and power dynamics are

ṗ
θ̇

 =

Acp
Acθp Acθ


p
θ

+

Bc
p

u, (5.3)
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where the continuous-time system matrices are

Acp =


−1/τ1

. . .

−1/τJ

 , Bc
p = −Acp

Acθ =


−1/τa1

. . .

−1/τaJ

 , Acθp =


η1/Ca1

. . .

ηJ/CaJ

 .

Here Ca ∈ RJ (kWht/
◦C) contains the indoor air thermal capacitances and τa ∈ RJ (h)

contains the indoor air temperature time constants as defined in Equation (3.6). The discrete-

time temperature and power dynamics are

pt+1

θt+1

 =

Ap
Aθp Aθ


pt
θt

+

Bp

Bθ

ut, (5.4)

where t = 0, . . . , T indexes discrete time. The matrices Ap, Aθp, Aθ, Bp and Bθ are defined

by discretizing the continuous-time dynamics (5.3) with time step ∆t.

Equation (5.4) describes the nominal power perturbation dynamics. While the nominal

dynamics are linear, the true dynamics have saturation nonlinearities at the upper and lower

capacity limits:

pt+1 = min
{
Pmod,max {P cap, Appt +Bput}

}
.

Here P cap, Pmod ∈ RJ are the maximum capacities and minimum modulating capacities of

the heat pumps, and the minima and maxima are interpreted component-wise. We use the

linear dynamics for controller synthesis, but the nonlinear, saturated dynamics in simulating

closed-loop performance. This is a form of plant-model mismatch.
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Aggregate power perturbation reference

The PJM reference power perturbation signal r ∈ R (kW) is highly autocorrelated. Past

reference signal realizations therefore carry significant information about future realizations.

To make use of this information, we fit an autoregressive model to the reference signal. This

model takes the form

rt+1 = a1rt + · · ·+ amrt−m+1 + nt,

where m is the number of stages of memory and the nt (kW) form a Gaussian white noise

sequence with variance σ2 (kW2). We fit the parameters

â =



0.8033

0.3741

0.1209

−0.0289

−0.1063

−0.1699


, σ̂2 = 1.752× 10−3

to 2018 signal data using linear regression and cross-validation. We found that m = 6 gave

an acceptable bias-variance trade-off in the validation data. The reference model adds a new

system state ξt = (rt, . . . , rt−m+1) ∈ Rm with dynamics

ξt+1 = Aξξt + e1nt,
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where

Aξ =



â1 . . . âm−1 âm

1

. . .

1


, e1 =



1


.

Integrators

In order to track the aggregate power perturbation reference signal, we need to penalize

the integral tracking error. To do this, we keep track of the forward-Euler integrals of the

individual power perturbation integrals,

spt = ∆t
t∑

k=0

λt−kpk (kWh),

where λ ∈ [0, 1] is a forgetting factor. The integrator dynamics are

spt+1 = λspt + ∆tpt.

We also keep track of the forward-Euler integral of the aggregate power perturbation refer-

ence,

srt = ∆t
t∑

k=0

λt−krk (kWh).

As rt can be recovered from ξt via

rt = (ξt)1 = e>1 ξt,

the dynamics of the integral state srt can be written as

srt+1 = λsrt + ∆te>1 ξt.
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Full system

We define the full system state as

xt = (pt, θt, ξt, s
p
t , s

r
t ) ∈ R3J+m+1.

The full dynamics are

xt+1 = Axt +But + wt,

where

A =



Ap

Aθp Aθ

Aξ

∆tI λI

∆te>1 λ


, B =



Bp

Bθ


, wt =


e1


nt.

5.2.3 Cost

The control objectives are the following.

• The load temperatures should remain near their baseline values.

• The sum of the measured individual power perturbations should track the aggregate

power perturbation reference signal.

• The power perturbations should remain within the heat pumps’ capacity limits.

To achieve these control objectives, we seek to minimize a sum of stage costs of the form

x>t Qxt + u>t Rut.
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We define the weighting matrices Q and R so that the stage costs include four terms. The

terms include tunable weights α1, α2, α3 ≥ 0.

1. The first term penalizes indoor air temperature perturbation magnitudes:

α1θ
>
t θt.

2. The second term penalizes instantaneous tracking error:

α2(1>pt − rt)2 = α2(1>pt − e>1 ξt)2.

3. The third term penalizes integral tracking error:

α3(1>spt − srt )2.

4. The final term,

u>t Rut + p>t Rpt,

penalizes the magnitudes of the individual power perturbations (reference and actual).

To penalize perturbation magnitudes in proportion to the tightness of the heat pumps’

upper and lower capacity limits, we define

R =


1/(P cap

1 − Pmod
1 )2

. . .

1/(P cap
1 − Pmod

1 )2

 .
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To incorporate the above terms into the stage cost, we define

Q =



R + α211> −α21e
>
1

α1I

−α2e11
> α2e1e

>
1

α311> −α31

−α31
> α3


,

where 1 denotes a column vector of ones of appropriate dimension.

5.2.4 Controller synthesis

We are interested in designing a state-feedback policy, i.e., functions φ0, . . . , φT−1 : R3J+m+1 →

RJ that map states into control inputs. Our goal is to

minimize
φ0,...,φT−1

1
T

E
[∑T−1

t=0 x
>
t Qxt + u>t Rut

]
subject to xt+1 = Axt +But + wt, t = 0, . . . , T − 1

ut = φt(xt), t = 0, . . . , T − 1.

This is a finite-horizon linear-quadratic optimal control problem that can be solved via

dynamic programming. As the number of stages T is large, however, we instead search for

a stationary policy φ : R3J+m+1 → RJ to

minimize
φ

limT→∞
1
T

E
[∑T−1

t=0 x
>
t Qxt + u>t Rut

]
subject to xt+1 = Axt +But + wt, t = 1, . . . , T

ut = φ(xt), t = 0, . . . , T − 1.
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This infinite-horizon problem can be solved by standard software such as Matlab’s lqr

function. The resulting policy is linear state feedback:

φlq(xt) = Kxt.

Here K ∈ RJ×3J+m+1 is computed by solving an algebraic Riccati equation. We note that

the stationary state-feedback law φlq is not optimal for our problem, as our true dynamics

are nonlinear due to state saturation. Nevertheless, φlq provides closed-loop performance

that achieves our objectives. We demonstrate this through simulation in the next section.

Heuristic policy

We compare φlq to a heuristic policy of allocating the aggregate reference signal among heat

pumps in proportion to constraint slack:

φh(xt) =


(P cap − pt)rt/1>(P cap − pt), rt ≥ 0

(pt − Pmod)rt/1
>(pt − Pmod), rt < 0.

(We recall that pt and rt are components of the state xt, so φh is a [nonlinear] state-feedback

policy.) Under this policy, heat pumps further from their constraints receive larger shares of

the aggregate perturbation. We simulate this policy because it is intuitive, computationally

efficient to implement, and relies only on the tracking capabilities of the low-level heat

pump controllers. Essentially no computation happens at the aggregate scale; the aggregate

controller simply splits the aggregate reference signal proportionally and passes it on to the

individual controllers.
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Figure 5.2: Nominal electrical power (black), maximum capacities (upper red trace) and
minimum modulating capacities (lower red trace) of the J = 200 simulated heat pumps.

5.2.5 Simulation

To evaluate the performance of the state-feedback control law φlq, we simulate the closed-loop

system under PJM’s RegD self-test signal. [179] This is the signal data under which PJM

recommends that prospective regulation market entrants test their hardware. We simulate

J = 200 heat pumps over a 40-minute horizon with time step ∆t = 2 s.

The simulation input data are τ, τa, Ca, η, P, P
cap, Pmod ∈ RJ . The low-level heat pump

control system reference tracking time constants τ are independent and identically dis-

tributed from a uniform distribution supported on [18 s, 22 s]. This support range is tuned

to the empirical data reported in the laboratory experiments in [45]; see Figure 10 of [45]

and the surrounding discussion.

The indoor air temperature time constants τa and thermal capacitances Ca are extracted

from the 3R2C thermal circuit model discussed in §3.2. The model parameters are tuned to

the annual thermal load survey data as discussed in §4.4.2. After this process, the minimum,

mean and maximum of τa are 6.1, 9 and 13.4 h, respectively. The minimum, mean and

maximum of Ca are 0.72, 0.77 and 0.82 kWh/◦C, respectively.

The heat pump COPs η, the nominal power P , maximum capacities P cap and the mini-
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mum modulating capacities Pmod are defined by propagating the weather data discussed in

§4.4.1 through the 3R2C thermal circuit model to generate thermal load, then propagating

the thermal load through the heat pump models discussed in §4.4.3. This process results

in time-varying η, P , P cap and Pmod, defined for each hour in the weather data. In the

simulations reported below, the minimum, mean and maximum of η are 2.5, 3.2 and 3.6,

respectively.

Figure 5.2 shows the heat pumps’ maximum capacity, nominal power, and minimum

modulating capacity. In this figure, the horizontal axis is the index of the loads, j = 1, . . . , J .

The black trace is the nominal electrical power consumption over the current regulation

market time step; this is the power that each heat pump would consume if not providing

regulation. The upper red trace is the maximum electrical power consumption. The lower

red trace is the electrical power consumption at minimum modulating speed (below its

minimum modulating capacity, a heat pump must cycle off and on rather than modulating

continuously). In this figure, the resulting aggregate symmetric regulation capacity from 200

heat pumps is 160 kW.

The simulations reported below use values α1 = 10−2, α2 = J × 10−3 and α3 = J × 104

of the tunable parameters embedded in the state cost weighting matrix Q defined in §5.2.3

and a value of λ = 0.99 for the forgetting factor in the integrator dynamics. These values

are the product of manual tuning.

Heuristic policy performance

Figure 5.3 shows the tracking performance of the heuristic policy φh. The top plot shows the

reference (red) and measured (black) aggregate power perturbations. With perfect tracking,

these curves would be identical. Due to the ∼20-second time constants of the low-level heat

pump controllers, however, the measured perturbation lags the reference perturbation. The

bottom plot in Figure 5.3 shows the instantaneous tracking error, i.e., the difference between
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Figure 5.3: Tracking performance of the heuristic policy φh.

the red and black curves in the top plot. In this simulation, the maximum absolute tracking

error is 97 kW (61% of the committed regulation capacity). The root mean square tracking

error is 25 kW (16%).

Linear-quadratic policy performance

Figure 5.4 shows the tracking performance of the linear-quadratic policy φlq. Comparing

Figure 5.4 to Figure 5.3, we see that the linear-quadratic policy eliminates the tracking lag.

This greatly reduces the tracking error. In this simulation, the maximum absolute tracking

error is 19 kW (12% of the committed regulation capacity) and the root mean square tracking

error is 1 kW (0.6%). The PJM composite score is 97%. We attribute this improvement

in tracking performance primarily to the fact that the linear-quadratic policy includes a

predictive model of the aggregate reference power perturbation signal. In other words, the
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Figure 5.4: Tracking performance of the linear-quadratic policy φlq. This policy eliminates
the tracking lag in Figure 5.3, reducing the root mean square tracking error from 25 kW to
1 kW.
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Figure 5.5: Histogram of the absolute instantaneous indoor air temperature perturbations
of all loads at all time steps under the linear state feedback policy φlq. The red line is the
95th percentile.

linear-quadratic policy uses feed-forward control action.

We simulated the linear-quadratic policy under varying weather conditions and with

varying low-level controller time constants. We found that the tracking performance is

robust on both fronts. In fact, the root mean square tracking error remains below 3 kW

(2%) even with time constants up to 360 s. This suggests that good aggregate tracking

can be achieved even with low-level heat pump controllers that take ∼10 minutes to deliver

requested step changes in indoor air temperature setpoints.

Indoor air temperature perturbations

Figure 5.5 shows a histogram of the absolute instantaneous indoor air temperature perturba-

tions of all loads at all time steps under the linear state feedback policy φlq. The key message

of this figure is that the indoor air temperature perturbations caused by providing regulation

are small. The red line in this figure shows the 95th percentile at 0.55 ◦C. In this simulation,

the maximum absolute perturbation was 0.78 ◦C and the root mean square perturbation was

0.28 ◦C. These temperature perturbations are significantly smaller than thermostat dead-

band widths, which are typically 2 to 5 ◦C. We can therefore conclude that aggregated heat
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pumps can provide regulation without causing thermal discomfort to building occupants

This conclusion is robust to variations in the size of the heat pump aggregation. In

simulations of larger and smaller aggregations, the worst-case temperature perturbations

are similarly small. We attribute this to the facts that (a) the RegD signal is zero-mean,

and (b) the LQR cost function penalizes the power perturbation at each heat pump, both

instantaneously and through their time-integrals. The latter effectively drives all individual

power perturbation signals toward zero, instantaneously and integrated over time, regardless

of the aggregation size. This, in turn, keeps air temperature perturbations small.

5.3 Capacity and revenue estimation

In this section, we investigate how much regulation and spinning reserve capacity a heat

pump aggregator can offer and how much revenue they can earn. Our ultimate goal is to

understand the net present value of providing these services. This involves comparing the

initial cost of developing the necessary sensing, communication and control capabilities to the

discounted lifetime revenue. If the net present value is positive, then a heat pump aggregator

has an economic incentive to provide these services. We focus on estimating the total annual

revenue, which requires modeling loads, heat pumps, and the aggregator’s process of deciding

day-ahead capacity offers.

We begin by reviewing related research. We then develop a method for co-optimizing day-

ahead regulation and spinning reserve capacity offers under uncertainty. We implement this

method in Monte Carlo simulation of a fleet of 1000 heat pumps in the PJM Interconnection.

The Monte Carlo simulations provide estimates of the annual average capacities and annual

revenues from regulation and spinning reserve.
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Table 5.1: Per-device capacity and revenue estimates from [68].

Annual average capacity (W) Annual revenue ($)
Regulation 440 28–52
Spinning reserve 57 1.2–3.2

5.3.1 Literature review

Fixed-speed device capacities and revenues in California

The research literature on joint provision of regulation and spinning reserve from aggregated

heat pumps is sparse. The main contributions in this area are [68, 99].

In [68], Mathieu et al. estimate the capacity and revenue potential in California of aggre-

gations of thermostatically-controlled refrigerators, electric water heaters, central air condi-

tioners, and central heat pumps. Regulation, spinning reserve and non-spinning reserve are

considered. The modeled air conditioners and heat pumps are fixed-speed machines. The

heat pumps provide heating but not cooling. Each device’s thermal capacity, electrical ca-

pacity and COP is modeled as constant. Across devices, electrical capacities vary from 4–7.2

kW; COPs vary from 2–3 for air conditioners and 3–4 for heat pumps. Thermal capacities

therefore vary from 8–21.6 kWt for air conditioners and 12–28.8 kWt for heat pumps.

Table 5.1 summarizes a subset of the capacity and revenue estimates from [68]. While

the estimates in [68] vary by climate zone, we report estimates only for climate zone 3, which

is fairly populous and representative of statewide averages. To allow a fair comparison to

the reversible heat pumps studied in this thesis, we combine the air conditioning and heat

pump estimates from [68]. The estimated revenue ranges are the means plus or minus one

standard deviation.

In [99], Hao et al. also estimate the capacity and revenue potential in California of

aggregated fixed-speed refrigerators, electric water heaters, central air conditioners, and

central heat pumps that provide heating only. By contrast to [68], however, [99] does not
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Table 5.2: Per-device regulation capacity and revenue estimates from [99].

Annual average capacity (W) Annual revenue ($)
460 18–75

consider spinning or non-spinning reserve; attention is restricted to regulation. Like Mathieu

et al., Hao et al. model each device’s thermal capacity, electrical capacity and COP as

constant. Heat pump and air conditioner electrical capacities vary from 4–7.2 kW; COPs

are 2.5 for air conditioners and 3.5 for heat pumps. Thermal capacities therefore vary from

10–18 kWt for air conditioners and 14–25.2 kWt for heat pumps.

Table 5.2 summarizes the regulation capacity and revenue estimates from [99]. As in

Table 5.1, in Table 5.2 we combine the (cooling-only) air conditioner estimates with the

(heating-only) heat pump estimates to allow fair comparison to reversible heat pumps that

provide both heating and cooling. Like Mathieu et al., Hao et al. report capacity and

revenue estimates for different regions of California. The capacity estimate in Table 5.2 is

the average of the regional capacities. The revenue estimate range is the regional-average

revenue estimate from [99] plus or minus one standard deviation.

Variable-speed air conditioner capacities and revenues in PJM

While the California capacity and revenue estimates in [68] provide a useful data point, the

numerical examples in this thesis use prices and market rules from PJM. Prices and market

rules vary between system operators, so we expect our results to differ somewhat from those

in [68]. The simulations in [47] provide a PJM-specific data point. In [47], Cai and Braun

simulate PJM regulation from an individual rooftop air-conditioning unit on a typical July

day in Miami. They simulate this day under energy and regulation prices from 2014–2018.

On the simulated day, the rooftop unit consumes 63 kWh of electrical energy and provides

14.8 kW-h of integrated regulation capacity (a daily average of 617 W).
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Absolute regulation revenue is not reported in [47], but relative regulation revenue is

reported at 12–26% of the energy cost under wholesale energy prices. To estimate absolute

regulation revenue, we assume that the daily average wholesale energy price is between

30 and 50 $/MWh (3 to 5 ¢/kWh), a plausible range for PJM. At these prices, the 63

kWh of electricity used over the simulation day would cost $1.9–3.2. The 12–26% relative

revenue therefore translates to $0.23–0.83 for the day. Alternatively, assuming a daily average

regulation price of 20-50 $/MW-h (another plausible range for PJM), the 14.8 kW-h of

integrated regulation capacity would earn $0.3–0.74 on the simulated day. Extrapolating

the daily revenue ranges over the course of a year yields an order-of-magnitude estimate

of $10–100 annual regulation revenue. This estimate is very rough, but provides at least

one data point suggesting that regulation revenue in PJM could be comparable to that in

California.

Our contributions to capacity and revenue estimation

The work in this section is most similar to that in [68]. Following [68], we consider aggregated

heat pumps providing regulation and reserve. We estimate annual average capacities and

annual revenues using Monte Carlo simulation. The main distinctions of the work in this

section are the following.

• We simulate operation in PJM, rather than California.

• We consider reversible variable-speed heat pumps, rather than fixed-speed air condi-

tioners and fixed-speed heating-only heat pumps.

• Our heat pump capacities and COPs vary with boundary temperatures and (for COPs)

part-load ratios.

• We develop a method for co-optimizing day-ahead regulation and reserve capacity offers
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under uncertainty, and include this method in simulations.

Other approaches to deciding day-ahead capacity offers

To the best of our knowledge, this section contains the first analysis of ancillary service

capacities and revenues that explicitly models the aggregator’s process of deciding day-ahead

capacity offers under uncertainty. This is an important process to model, as an aggregator

must reliably meet any capacity offers that the power system operator accepts, regardless

of the realizations of uncertain influences related to weather and occupant behavior. This

reliability requirement encourages risk-aversion in the aggregator’s decision process. As

the existing literature assumes perfect information [47, 68, 99], it does not capture the

aggregator’s risk-aversion, and so could over-estimate the aggregator’s capacity offers and

the associated revenues.

We are not the first to consider the problem of deciding ancillary service capacity offers

for aggregated heating and cooling systems under uncertainty, only (we believe) the first

to embed a solution to this problem in long-term capacity and revenue estimation. Other

research on deciding day-ahead capacity offers includes [72, 100–102, 180, 181]. This body of

work centers on providing frequency regulation from large equipment in commercial build-

ings, such as fans and chillers. The papers [72, 180, 181] consider individual buildings, while

[100–102] consider building aggregations. As we are interested in deciding ancillary service

capacity offers from building aggregations, we focus this portion of the literature review on

the most relevant papers, [100–102].

In [100, 101], Vrettos et al. develop a three-level control hierarchy for providing regula-

tion from aggregations of commercial buildings. The highest level (termed Level 1 in [100,

101]) decides day-ahead aggregate regulation capacity offers. The lower levels involve model

predictive control of individual buildings (Level 2) with a time step of 15–60 minutes, and

regulation tracking from individual devices (Level 3) with a time step of ∼1 second. Build-
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ings are modeled as linear resistor-capacitor circuits. Thermal equipment capacities and

COPs are assumed to be constant. Prices, weather, setpoints and occupancy are assumed

to be predicted perfectly. The power system operator’s regulation signal is allowed to be

nonzero-mean, as is common in European and some North American power systems.

The paper [100] introduces the control hierarchy and develops methods for deciding

capacity offers when the power and energy content of the regulation signal are uncertain

but lie within known, bounded intervals. The Level 1 problem in [100] is formulated in a

robust framework, while in [101] it is extended to include chance constraints on indoor air

temperatures. In both papers, the Level 1 problem is framed as a large-scale optimization

problem and solved by a single, central computer. In addition to capacity offers, the Level 1

decision variables in [100, 101] include nominal thermal power trajectories for all buildings’

heating and cooling systems. The Level 1 problem dimensions scale approximately linearly

with the number of buildings, making it computationally challenging for large aggregations.

The Level 1 controller requires models of all buildings and all heating and cooling systems.

In [102], Rey et al. propose deciding day-ahead capacity offers via distributed optimization

using the alternating directions method of multipliers [182]. The method shifts much of the

Level 1 computational burden from the central controller to controllers at the individual

buildings, improving scalability to large aggregations. As in [100, 101], in [102] Rey et al.

model buildings as linear resistor-capacitor circuits, assume thermal equipment capacities

and COPs are constant, and assume perfect predictions of prices, weather, and occupant-

driven disturbances.

Our contributions to deciding day-ahead capacity offers

The control architecture we study in this chapter is similar to the control architecture in [100,

101], except that at Level 2 we require each heat pump to accurately track its user-specified

indoor air temperature setpoint. This requirement ensures occupant comfort and simplifies
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Level 1 substantially. We also assume that the power system operator’s regulation reference

signal is approximately zero-mean over any Level 1 time step. This is the case in our current

scope of PJM ancillary services; PJM’s RegD regulation signal is designed to be zero-mean

over any 15-minute interval. [169]

The distinguishing characteristics of the methods in this section, relative to those in

[100–102], are the following.

• We co-optimize regulation and spinning reserve capacity offers, rather than considering

regulation only.

• We accommodate realistic models of heating and cooling equipment, rather than mod-

eling thermal capacities and COPs as constant. (In simulations, we use nonlinear,

temperature-dependent heat pump models fit to empirical data, as described in §3.1.3.)

• Our method combines the robustness of [100, 101] with the scalability of [102]. Our

method explicitly accounts for uncertainty from weather, occupant behavior, and im-

perfect building models. The dimensions of our offer decision problem are independent

of the size of the aggregation.

5.3.2 Co-optimizing regulation and spinning reserve

In this section, we consider the problem of deciding how much aggregate regulation and spin-

ning reserve capacity to offer into the day-ahead market. We suppose that each heat pump

j = 1, . . . , J simulates its operation under N independent, identically distributed scenarios

of its uncertain influences. Example uncertain influences include outdoor air temperatures

and indoor air temperature setpoints. We assume that each heat pump’s local control sys-

tem can obtain scenarios of these influences, e.g., by downloading forecasts from an Internet

weather service, by communicating with a learning thermostat capable of predicting indoor

air temperature setpoints, or by running its own on-board prediction algorithms.
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After simulating its operation under each scenario i = 1, . . . , N , heat pump j reports

its power consumption scenarios Pij ∈ RK . Here K is the number of time steps of length

∆t (h) in the day-ahead planning horizon; most North American power system operators

use ∆t = 1 h and K = 24. Heat pump j also reports planned trajectories P cap
ij ∈ RK and

Pmod
ij ∈ RK of its maximum capacity and minimum modulating capacity, respectively, under

each scenario i = 1, . . . , N .

The day-ahead planning decision variables are the capacity trajectories P reg ∈ RK and

P res ∈ RK to be offered into the day-ahead regulation and reserve markets, respectively. We

decide them by solving the following scenario optimization problem:

maximize ∆tE
[
(πreg)>P reg + (πres)>P res

]
subject to P reg � min

{∑J
j=1 Pij − Pmod

ij ,
∑J

j=1 P
cap
ij − Pij

}
, i = 1, . . . , N

P reg + P res �
∑J

j=1 Pij, i = 1, . . . , N

P reg � 0, Pres � 0,

(5.5)

where the minimum in the first constraint is taken component-wise.

Problem (5.5) is a randomized linear program with 2K decision variables and 2K(N + 1)

inequality constraints. The problem dimension is independent of J , the number of heat

pumps, so this problem can be solved efficiently even for very large heat pump aggregations.

The number of decision variables is independent of N and the number of constraints is affine

in N , so the problem scales fairly well with the number of scenarios.

The objective in Problem (5.5) is to maximize the expected revenue from providing

regulation and reserve over the planning horizon. The expectation is taken with respect to the

conditional distribution of the regulation and reserve prices πreg ($/kW-h) and πres ($/kW-

h), conditioned on the information available at decision time. Assuming the conditional

means π̄reg ($/kW-h) and π̄res ($/kW-h) of πreg and πres are known, the objective simplifies
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to

∆t
[
(π̄reg)>P reg + (π̄res)>P reg

]
.

As Problem (5.5) is convex, probabilistic guarantees on a solution’s generalization properties

can be obtained from the convex scenario theory in [183–185]. In simulations, we found that

a sample size of N = 200 yielded out-of-sample violation frequencies below 1%.

An important feature of the PJM day-ahead regulation and reserve markets is that reg-

ulation prices are almost always higher than reserve prices. This was the case in 98% of the

hours between 2013 and 2018. [170] In this case, Problem (5.5) can be solved analytically.

Regulation prices are always nonnegative, so if π̄reg � π̄res, it is optimal to offer as much

regulation as possible at each time step under each scenario. This can be accomplished by

setting

P reg = min
i=1,...,N

{
min

{
J∑
j=1

Pij − Pmod
ij ,

J∑
j=1

P cap
ij − Pij

}}
.

Reserve prices are also nonnegative, so revenue is maximized by offering any remaining

capacity for reserve:

P res = min
i=1,...,N

{
J∑
j=1

Pij − P reg

}
.

These analytical expressions provide good approximations to the true solutions to Problem

(5.5). They can be useful when computational resources are limited.

5.3.3 Simulation setup

We now illustrate the day-ahead capacity planning method through Monte Carlo simulation.

In each Monte Carlo run, we simulate the operation of J = 1000 heat pumps for one day with

a time step of one hour. Each run consists of two stages: first, optimization of day-ahead

offers under N scenarios, and second, simulation under a different scenario representing the

‘true’ system evolution. We use a sample size of N = 200 and run M = 2190 simulations (6
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years in total).

The input data to each daily simulation are πreg, πres ∈ RK and Pij, P
cap
ij , Pmod

ij ∈ RK ,

i = 1, . . . , N , j = 1, . . . , J . The ancillary service prices πreg, πres are from PJM’s public-

access historical price database. [167] The nominal powers Pij, maximum capacities P cap
ij

and minimum modulating capacities Pmod
ij are defined by propagating weather data through

thermal load models, then propagating the resulting thermal loads through heat pump ca-

pacity and COP models. The simulations in this section use essentially the same weather

data, load and heat pump models, and propagation processes as the simulations in Chapter

4. We therefore refer the reader to §4.4.1–4.4.3 for detailed discussion of the relevant data,

models and processes. We briefly summarize those details here for the sake of readability.

Thermal loads are modeled as 3R2C thermal circuits with parameters tuned to the annual

heating and cooling load data from a survey of United States residential buildings. [85] Each

load represents approximately 100 m2 of conditioned residential floor area. Heat pumps are

modeled via functions describing their maximum thermal capacities, minimum modulating

thermal capacities, and COPs. These functions are low-order polynomials whose parameters

are fit to manufacturer-reported empirical data. The heat pumps are ductless mini-split units

sized for stand-alone cooling and for heating displacement. The median nameplate cooling

capacity of the heat pump fleet is 2.6 kWt (9000 BTU/h). In simulations, we use coincident

hourly 2013–2018 Philadelphia weather and PJM ancillary service price data from [167] and

[170], respectively. The full data set consists of 52560 hours of outdoor air temperatures,

global horizontal solar irradiances, regulation prices and spinning reserve prices.

We refer the interested reader to §4.4.4 for a discussion of the data quality and limita-

tions. To summarize that discussion, in our qualitative assessment, we rank the weather and

ancillary service price data fidelity as excellent, the thermal load data fidelity as fair and

the heat pump model fidelity as fair. In §4.4.4, we also ranked the fidelity of the equipment

installed cost data as poor, but those data are not relevant to the simulations in this section.
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5.3.4 Decision methods

We simulate three methods of deciding day-ahead capacity offers.

1. Local scenario optimization. In this method, each heat pump decides its individual

regulation and reserve offers using only local information. The aggregate offers are

simply the sum of the individual offers.

2. Central scenario optimization. In this method, by contrast to the first, we gather

the individual power and capacity scenarios for each load and optimize centrally over

the full set of data by solving Problem (5.5). Central scenario optimization generally

performs better than local scenario optimization; we refer to the revenue gap as the

value of aggregation.

3. Central prescient optimization. This method assumes perfect foreknowledge at decision

time of all uncertain influences on all heat pumps over the entire planning horizon. This

method is not implementable in practice, as we cannot see the future, but it gives an

upper bound on the achievable revenue. We refer to the revenue gap between central

prescient optimization and central scenario optimization as the cost of uncertainty.

In all methods, we assume that perfect forecasts of ancillary service prices are available.

All electrical power trajectories (i.e., nominal power, maximum capacity, and minimum

modulating capacity), however, are random.

5.3.5 Results

In this section, we present numerical results on ancillary service capacities and revenues. We

emphasize that these are simulation results, and so their validity is limited by the fidelity of

the input data. We discuss these limitations further in §4.4.4 and in Appendix B.
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Figure 5.6: Histograms of daily average day-ahead capacity offers (left) and reserve offers
(right) for J = 1000 heat pumps under local scenario optimization (top), central scenario
optimization (middle), and central prescient optimization (bottom). Red lines represent
sample means.
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Figure 5.6 shows histograms of the daily average regulation and reserve capacity offers

under the three decision methods. In all three methods, the daily average regulation and

reserve capacities are comparable, and relatively small: 135 to 176 Watts per heat pump.

We note that these averages include many hours of zero capacity during mild weather when

no heating or cooling is needed. As expected, more regulation and reserve capacity is offered

under central scenario optimization than local scenario optimization. Surprisingly, central

scenario optimization offers almost as much capacity as central prescient optimization. We

attribute this effect to the attenuation of variability that naturally occurs when summing

weakly correlated random variables across a large number (J = 1000) of heat pumps.

Figure 5.7 show histograms of the daily regulation and reserve capacity revenues under

the three decision methods. In all three methods, regulation revenues exceed reserve revenues

by a factor of four to six. This is because regulation prices are almost always higher than

reserve prices. Revenues are fairly small: $25 to $75 per heat pump per year from providing

both regulation and reserve. Central scenario optimization increases regulation revenue by

about 29% relative to local scenario optimization. Reserve revenue is similar across all

decision methods. As with capacity, the revenue gap between central scenario optimization

and central prescient optimization is quite small.

With a sample size of N = 200, scenario optimization results in high levels of robustness.

We quantify the level of robustness in terms of a violation, i.e., the event that the true

regulation capacity in any hour is smaller than the decided regulation capacity offer in that

hour. Violations represent cases where the aggregator is unable to meet their regulation

commitment. In KM = 52560 simulated hours, no violations were observed for the local

scenario decision method. For the central scenario decision method, the violation sample

frequency was 0.35%.
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Figure 5.7: Histograms of daily day-ahead capacity revenues (left) and reserve revenues
(right) for J = 1000 heat pumps under local scenario optimization (top), central scenario
optimization (middle), and central prescient optimization (bottom). Red lines represent
sample means.
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Table 5.3: Per-heat-pump value of aggregation and cost of uncertainty.

Annual average capacity Annual revenue
Value of aggregation 36± 1 W (13%) $11.2± 5.4 (29%)
Cost of uncertainty 2.71± 0.06 W (1%) $0.54± 0.25 (1%)

5.3.6 Discussion

Table 5.3 shows the estimated value of aggregation and cost of uncertainty. The estimates

are reported in terms of annual average capacity per heat pump and annual revenue per

heat pump. The capacity and revenue estimates include both regulation and reserve. Each

estimate includes the sample mean ± one sample standard deviation. The percent values

of aggregation in Table 5.3 are relative to local scenario optimization. The percent costs of

uncertainty are relative to central prescient optimization. We now discuss two conclusions

that can be drawn from Table 5.3.

Cost of uncertainty

The first conclusion that can be drawn from Table 5.3 is that the cost of uncertainty is not

too large. At least in this example, central scenario optimization delivers capacity offers

and revenues that are close to the limiting case of perfect information (central prescient

optimization). As discussed above, we attribute this to the attenuation of uncertainty caused

by adding many weakly correlated random variables. This is similar in spirit to the Central

Limit Theorem. Loosely, it is easier to predict the aggregate behavior of a large number of

heat pumps than it is to predict the behavior of any particular individual, because random

variations across heat pumps tend to cancel out.
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Value of aggregation

The second conclusion that can be drawn from Table 5.3 is that aggregation substantially

increases both the ancillary service capacities that can be offered and the associated revenues.

We attribute this to two effects. The first effect is the attenuation of uncertainty described

above. The second effect is an artefact of PJM’s requirement that regulation capacity offers

be symmetric.

For clarity, we illustrate the second effect in the simple case of maximizing the regulation

capacity offer for one time step under perfect information. In this case, the largest symmetric

capacity that can be offered individually by heat pump j is the smaller of its upward and

downward flexibilities:

min
{
P cap
j − Pj, Pj − Pmod

j

}
.

The optimal aggregate regulation offer under local optimization is the sum of the maximum

individual symmetric capacities:

J∑
j=1

min
{
P cap
j − Pj, Pj − Pmod

j

}
.

Under central optimization, by contrast, individual flexibilities are first summed, then made

symmetric, resulting in an offer

min

{
J∑
j=1

P cap
j − Pj,

J∑
j=1

Pj − Pmod
j

}
.

It is straightforward to show that for any Pmod � P � P cap,

min

{
J∑
j=1

P cap
j − Pj,

J∑
j=1

Pj − Pmod
j

}
≥

J∑
j=1

min
{
P cap
j − Pj, Pj − Pmod

j

}
.
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In other words, central optimization yields at least as much symmetric capacity as local

optimization. This result can be extended to multiple time steps, but not to asymmetric

regulation markets, which allow separate offers for upward and downward regulation capacity.

We note, however, that the value of aggregation may still be significant in asymmetric

regulation markets due to attenuation of uncertainty.

Influence of assumptions

In this section, we restrict our attention to deciding ancillary service capacity offers. This

restriction is consistent with other recent work in the research literature; see, e.g., [72, 100–

102, 180, 181]. In practice, however, most power system operators require ancillary service

market participants to append a price offer to each of their capacity offers. This is the case

in PJM. [169] The power system operator then clears each market by accepting offers in

(roughly) ascending order of price until the required capacity is procured. The last (i.e.,

highest-priced) offer accepted sets the market clearing price.

Generators typically decide their ancillary service price offers based on the opportunity

cost of withholding capacity from the energy market. [33] For a heat pump aggregator that

provides ancillary services but not energy, however, this opportunity cost is zero. Further-

more, providing ancillary services has negligible impact on the thermal comfort of building

occupants (see §5.1.3 and §5.2.5), so incurs negligible opportunity cost in that respect. There-

fore, such a heat pump aggregator could reasonably append a zero-price offer to each of their

capacity offers. On the other hand, if the heat pump aggregator also participated in whole-

sale energy markets, cf. [69], then their opportunity costs of providing ancillary services

would be nonzero. Deciding ancillary service price offers in this setting is an interesting

direction for future research.

When calculating revenues, we assume that all of the aggregator’s regulation and reserve

offers are accepted. This assumption is optimistic, as the power system operator may not
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need or accept the aggregator’s capacity offers at some times. However, as discussed above,

the aggregator’s capacity offers would likely be paired with low, or even zero, price offers.

As discussed above, low-priced offers are likely to be accepted.

When computing ancillary service capacities, we assume zero capacity is available from

any heat pump that is (in the simulated time step) cycling off and on rather than modulating

continuously. This assumption biases aggregate capacity and revenue estimates downward;

in reality, an aggregator could perhaps extract some value out of cycling heat pumps. While

pessimistic, this bias is likely small for appropriately-sized heat pumps, which should spend

most of their time modulating.

We also assume that the aggregator is a price-taker. In other words, the aggregator

exerts negligible influence over PJM’s process of clearing the day-ahead ancillary service

markets. This assumption is likely good if the aggregator’s offers are small relative to the

total market size. On the other hand, an aggregator offering many MW of capacity at

relatively high prices might at times set market clearing prices. These market interactions

are nontrivial to model, and could alter the aggregator’s offer decision process. For example,

the aggregator might strategically withhold capacity in some hours, or offer capacity at an

artificially inflated price, in order to promote higher market clearing prices and increase their

ancillary service revenue.

How many heat pumps would an aggregator require to exert significant influence on PJM’s

regulation market clearing process? In our 1000-heat-pump simulations, aggregate capacity

offers are on the order of 100 kW. For comparison, federal rules require PJM to procure 800

MW of regulation capacity during hours when substantial load ramping is expected and 525

MW during non-ramping hours. [169] Assuming ∼150 W of regulation capacity per heat

pump, providing 1% of PJM’s 525 MW capacity procurement during non-ramping hours

would require ∼3.5 million heat pumps. Heat pump adoption rates on the eastern seaboard

are on the order of 105 units per year. [139] Assuming no heat pumps currently participate
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in PJM’s regulation market, and that all newly-installed heat pumps were aggregated to

provide regulation, it would take ∼35 years for heat pumps to provide 1% of PJM’s 525

MW procurement. Therefore, the price-taker assumption will likely remain valid for heat

pumps in PJM over the coming decades. In smaller power systems, however, strategic market

interactions could be significant. Analyzing these interactions is another interesting direction

for future research.

Finally, we note that some power system operators allow ancillary service providers to

submit multiple price/capacity offers at each market time step. For example, an aggregator

might offer the first 100 kW of regulation capacity at zero price, the second 100 kW at

a moderate price, and a final 100 kW at a high price. This market structure would alter

the aggregator’s decision problem. We do not model this market structure in this section

because PJM markets require a single price/capacity offer at each hour. [169] It could be an

important consideration in other power systems, however.

Revenue magnitudes

Perhaps the most important message to take away from this section is that ancillary service

revenues are small: $25–75 per heat pump per year. This finding is specific to PJM, but

is similar to the annual per-heat-pump California estimates of $29–53 based on [68] and of

$18–75 based on [67].

Assuming uniformly-distributed heat pump lifetimes of 8–20 years and annual cash flow

discount rates of 5–15%, the net present value of $25–75 annual revenues is $210–470 (25th–

75th percentile); see Figure 5.8. This range can be interpreted as the largest investment in

sensing, communication and control capabilities for the purpose of providing regulation and

spinning reserve that an aggregator can justify on economic grounds. If the aggregator can

outfit the heat pumps with these capabilities for less than $210–470, then they can expect

the resulting ancillary service revenues to yield an attractive return on that investment. In
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Figure 5.8: Histogram of the net present lifetime revenue per heat pump from providing
regulation and spinning reserve. The solid red line is the sample mean; the dashed red lines
are the 25th and 75th percentiles.

some situations, a heat pump might be outfitted with some or all of these capabilities for

other purposes, such as fault detection, remote monitoring, or control via the Internet. In

these situations, the incremental effort required to enter ancillary service markets could be

relatively small. One such situation is the heat purchase agreement model of heat pump

ownership discussed in §1.2 and §2.3, which requires sensing and communication for billing

purposes. In other situations, the required hardware and software may be prohibitively

expensive.

In any case, the findings in this section suggest that providing ancillary services is unlikely

to generate significant net present profit under current market prices. It appears that a heat

pump aggregator should view ancillary service provision primarily as a public service, rather

than a money-making opportunity. This prognosis could change if ancillary service prices

rise significantly due, e.g., to increased integration of wind and solar generation. On the

other hand, if battery costs continue to fall, batteries could supply more ancillary services

and drive down market prices. Policies, incentives and market rules could also affect the

outlook significantly.
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5.3.7 Comparing scenario and distributionally-robust approaches

In §5.3.2, we formulated the aggregator’s problem of deciding day-ahead regulation and

reserve capacity offers as a randomized linear program. Indeed, Problem (5.5) can be refor-

mulated as

minimize c>x

subject to Ax � bi, i = 1, . . . , N

x � 0,

(5.6)

where

x =

P reg

P res

 , c = −∆t

π̄reg

π̄res

 , A =

I
I I


and b1, . . . , bN ∈ R2K are independent, identically distributed samples from the distribution

of the random vector

b =

min
{∑J

j=1 Pj − Pmod
j ,

∑J
j=1 P

cap
j − Pj

}
∑J

j=1 Pj

 . (5.7)

Here we view Pj, P
mod
j , P cap

j ∈ RK , j = 1, . . . , J , as random vectors. The decision variable

is x ∈ R2K , so Problem (5.6) has 2K variables and 4K inequality constraints.

Problem (5.6) is consistent with the scenario approach to convex programming under

uncertainty developed by Campi, Garatti and Calafiore in [183–186]. Applied to Problem

(5.6), the scenario approach guarantees (at a user-specified confidence level β ∈ (0, 1))

satisfaction of the chance constraint

Prob {Ax � b} ≥ 1− α, (5.8)

where α ∈ (0, 1) represents an acceptable probability of constraint violation. The constraint
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(5.8) is referred to as a joint chance constraint, as it applies jointly to the 2K scalar inequality

constraints contained in the vector inequality Ax � b.

There are other approaches to chance-constrained linear programming; see, e.g., [187–

191]. Of particular interest is [192], wherein Calafiore and El Ghaoui consider the case where

only the mean and covariance of b are known. Calafiore and El Ghaoui develop a method

that guarantees

inf
P∈P`

P
{
a>` x ≤ b`

}
≥ 1− α`, (5.9)

where a>` is the `th row of A:

A =


a>1
...

a>2K

 .
The set P` contains all distributions on R with mean mean b̄` and variance σ2

` .

In words, the method in [192] guarantees that the chance constraint

P
{
a>` x ≤ b`

}
≥ 1− α`

will be satisfied for any distribution P that is consistent with the known mean and variance of

b`. For this reason, Calafiore and El Ghaoui refer to the method in [192] as distributionally-

robust. Distributionally-robust optimization is a broader subject with a growing body of

results; see, e.g., [193–196]. We note that while Inequality (5.8) is a joint chance constraint,

Inequality (5.9) is an individual (distributionally-robust) chance constraint. Even for linear

programs, optimization with distributionally-robust joint chance constraints is strongly NP-

hard for most ambiguity sets3 [196], though tractable conservative approximations exist in

some special cases [193–195]. The conservative approximations typically promote the un-

3In the context of distributionally-robust optimization, an ambiguity set is a set of probability measures
on a given space that satisfy certain properties, such as having known moments or other statistics.
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derlying linear program to a second-order cone program or semidefinite program, increasing

computational complexity. For our current purposes, we prefer the exact individual chance

constraint reformulation in [192] to the approximate joint chance constraint reformulations

in [193–195].

In Theorem 3.14 of [192], Calafiore and El Ghaoui provide an exact reformulation of the

distributionally-robust chance constraint (5.9):

inf
P∈P`

P
{
a>` x ≤ b`

}
≥ 1− α` ⇐⇒ a>` x+ κ`σ` ≤ b̄`,

where κ` =
√

(1− α`)/α`. Therefore, a solution to the distributionally-robust linear program

minimize c>x

subject to infP∈P`
P
{
a>` x ≤ b`

}
≥ 1− α`, ` = 1, . . . , 2K

x � 0

can be generated by solving the deterministic linear program

minimize c>x

subject to Ax+ s � b̄

x � 0,

(5.10)

where

s =


κ1σ1

...

κ2Kσ2K

 .
Problem (5.10) has 2K decision variables and 4K inequality constraints. Like Problem (5.6),

4Theorem 3.1 of [192] applies to the more general case where a` is also random, but we do not need that
generality here.
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the dimensions of Problem (5.10) are independent of J , the number of heat pumps.

Simulation

We now compare the scenario and distributionally-robust approaches outlined above through

1000 Monte Carlo simulations of deciding day-ahead hourly ancillary service capacity offers

for an aggregation of 1000 heat pumps. We generate price, weather and load data as discussed

in §5.3.3. Each simulation involves two stages. In the first stage, we generate sample input

data and solve the scenario and distributionally-robust problems, (5.6) and (5.10). In keeping

with the simulations earlier in this section, we use N = 200 training scenarios in the scenario

problem and use the sample mean and covariance in the distributionally-robust problem. In

earlier simulations, we observed that this sample size yielded individual constraint violation

frequencies under 1%, so we set α1 = · · · = α2K = 0.01 in the distributionally-robust

problem.

In the second simulation stage, we generate a new validation scenario and record for each

approach the realized ancillary service revenue and whether any constraints are violated

under the validation scenario. To explore the value of distributional robustness, we draw the

validation scenario from a ‘true’ distribution whose mean and covariance match the sample

mean and covariance in the training set, but that is Gaussian. This introduces small but

nontrivial distributional mismatch, as the distribution from which the training samples are

drawn is not Gaussian. While the random vector b involves sums of many random variables

(see Equation (5.7)), and so might be expected to be approximately Gaussian due to the

Central Limit Theorem, the first K components of b also involve nonlinear transformations

(specifically, pointwise minima) of those sums.
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Results and discussion

In 1000 Monte Carlo simulations, both the scenario and distributionally-robust approaches

satisfied constraints in the validation data with high frequency. In the scenario approach,

all individual constraint violation frequencies in the validation data were below 0.6%. In

the distributionally-robust approach, no constraint violations were observed. These results

suggest that the distributionally-robust approach is more robust than the scenario approach

in this setting. This aligns with our expectations, since in these simulations the distributions

differ between the training and validation stages, and handling such distributional mismatch

is the key feature of distributionally-robust optimization.

The increased frequency of constraint satisfaction of the distributionally-robust approach

comes at a cost, as shown in Figure 5.9. On average over the sample, the daily ancillary ser-

vice revenue earned under the distributionally-robust approach is about 88% of the revenue

earned under the scenario approach. This result can be interpreted as evidence of a trade-off

between the competing objectives of maximizing revenue and of robustly meeting ancillary

service commitments. The scenario and distributionally-robust approaches strike different

balances between these competing objectives: the scenario approach earns somewhat more

revenue than the distributionally-robust approach, but is somewhat less robust.

We note that the conservatism of the distributionally-robust approach can be controlled

via the parameters α1, . . . , α2K , which are the acceptable probabilities of constraint viola-

tions. Indeed, raising the α` from 0.01 to 0.05 and re-running the Monte Carlo simulations

increases the sample-average revenue earned under the distributionally-robust approach to

95% of the revenue earned under the scenario approach (up from 88% with α` = 0.01). This

change also decreases robustness somewhat, causing a constraint violation frequency of 0.4%

in the validation data, compared to the 0% violation frequency with α` = 0.01.

It is also worth noting that for this problem the distributionally-robust approach is more
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Figure 5.9: Histogram of the daily ancillary service revenue under the distributionally-robust
approach, as a percentage of the daily revenue under the scenario approach, over 1000 Monte
Carlo simulations. The red line indicates the sample mean.

computationally-efficient than the scenario approach. This is because the distributionally-

robust problem has 4K constraints, while the scenario problem has 2K(N+1) constraints. In

1000 Monte Carlo simulations, the sample-average time required to solve the distributionally-

robust problem was about 85% of that of the scenario problem. The difference in computation

time is modest in these simulations because the number of scenarios, N = 200, is relatively

small. In cases where very high robustness levels are required – necessitating very large values

of N – the distributionally-robust approach is likely to require substantially less processing

time than the scenario approach.

In conclusion, both the scenario approach and the distributionally-robust approach of

[192] appear to be reasonable methods for deciding day-ahead ancillary service capacity offers

for an aggregation of heat pumps. The distributionally-robust approach might be preferable

to more risk-averse decision makers, or in situations where computational resources are

limited.
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Chapter 6

Conclusion

6.1 Summary

The goal of this thesis was to reduce greenhouse gas emissions by lowering barriers to adopt-

ing efficient electric heat pumps. To that end, we analyzed the HPA model of third-party

heat pump ownership. We argued that an HPA aggregator could lower barriers to heat pump

adoption by

• eliminating users’ capital costs,

• taking on many of the risks associated with heat pump ownership,

• reducing net present costs by buying heat pumps in bulk, improving the heat pump

selection process, and unlocking ancillary service revenues, and

• reducing users’ ‘hassle factors’ associated with finding skilled installers, identifying and

applying for incentives, etc.

We also developed solution methods for numerous problems that arise in the HPA model.

In Chapter 2, we derived necessary and sufficient conditions for an HPA to mutually benefit
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the aggregator and the user, and provided a method for fairly pricing heating and cooling.

In Chapter 4, we developed a data-driven method for heat pump selection that provides

probabilistic feasibility and optimality guarantees. In Chapter 5, we verified the feasibility

of providing regulation and spinning reserve from an aggregation of reversible, variable-

speed heat pumps. We also developed a method for co-optimizing day-ahead regulation

and spinning reserve capacity offers under uncertainty. We estimated that providing these

services could earn $25–75 of revenue per heat pump per year.

The potential impact of this thesis is a self-reinforcing cycle: HPAs could accelerate heat

pump adoption, providing more ancillary services, facilitating the integration of more wind

and solar power, lowering electricity costs, and further accelerating heat pump adoption. This

cycle could reduce emissions both directly, by replacing fossil-fueled heaters and inefficient

air conditioners with efficient electric heat pumps, and indirectly, by replacing fossil-fueled

generators with wind and solar power plants.

6.2 Extensions

There are many opportunities to extend this work. We now discuss a few.

Experiments. When gathering data for this thesis, we noted several important, open

questions that could be answered through laboratory experiments.

1. Do temperature setbacks overnight or during unoccupied periods save energy with

variable-speed heat pumps? Reducing the temperature difference between the indoor

and outdoor air reduces thermal load, but heat pumps’ efficiencies degrade when they

work near maximum capacity to recover from setbacks. Field studies indicate that

setbacks tend to increase energy use [79, 94], but the answer must depend on the

setback depth and duration. Demonstrating controls that smooth out the recovery
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from setbacks is another area of practical importance.

2. How does cycling off and on, rather than modulating continuously, affect variable-

speed heat pump efficiency? To our knowledge, only a handful of experimental results

in this area have been published. [93] This question is particularly important in cold

(or hot) climates, where a reversible heat pump that is sized appropriately for heating

(or cooling) will likely be oversized for cooling (or heating). As discussed in §4.4,

oversizing leads to cycling and COP degradation, but there is significant uncertainty

in the magnitude of these effects.

Thermal power estimation. For monitoring, fault detection and billing purposes, an

HPA aggregator should be able to accurately estimate the thermal power output of each of

their heat pumps. This task is nontrivial, as it generally requires measuring or estimating

supply and return air temperatures and mass flow rates at the indoor unit. Appendix A of

the field study [80] discusses related implementation issues. We note, however, that good

mathematical models of heat pumps can be developed via system identification techniques

if empirical performance data are available. Could such models be combined with low-

cost sensors and nonlinear filtering techniques to produce accurate, low-cost thermal power

estimates?

Other hardware. Our hardware scope was intentionally narrow; our simulations focused

on one manufacturer’s popular line of air-to-air heat pumps. We maintained this narrow

focus for concreteness, and because an unusual amount of empirical performance data was

available for these heat pumps. The hardware scope could be expanded to include, e.g.,

other air-to-air heat pump manufacturers, ground-source heat pumps, or heat pump water

heaters. The HPA model could be particularly attractive for ground-source heat pumps,

whose high capital costs are a major barrier to adoption. Heat pump water heaters could
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provide energy-intensive power system services due to their large thermal storage capacities.

Other power system services. In this thesis, we considered the two ancillary services

that typically have the highest prices: regulation and spinning reserve. A heat pump aggre-

gator could provide other power system services, such as limiting peak demand, supplying

reactive power in distribution networks, or shifting load based on real-time energy prices or

greenhouse gas intensities. In this thesis, we observed trade-offs between allocating flexible

capacity for regulation and for reserve. A similar tension was observed between limiting

peak demand and price-based load shifting in [197]. The revenues from multiple services

are generally not additive, as the services compete for flexibility. How should an aggregator

allocate flexibility between services, and what are the associated costs and benefits?

Other power system operators. The simulations in this thesis used price and signal

data from PJM’s ancillary service markets. Similar work has been done in the context

of California’s power system operator [68], but there are five other system operators in

the United States and many more worldwide. Different system operators define different

ancillary services, use different market rules, and deploy flexible resources in different ways.

What value could a heat pump aggregator earn in other power systems?
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Appendix A

A scenario approach to constrained
ranking and selection

In this appendix, we consider the problem of selecting one of a finite number of systems.

System performance is evaluated via cost and constraint functions that depend on uncer-

tain parameters. The distribution of the uncertain parameters need not have any particular

structure, but we assume that a number of independent, identically distributed scenarios

drawn from this distribution are available. We develop a selection procedure based on sim-

ulation under these scenarios. The procedure probabilistically guarantees that the selection

is feasible and approximately optimal. The selection and suboptimality threshold are com-

puted by solving an optimization problem with constraints enforced for each scenario. The

robustness level of the probabilistic guarantee is computed after solving this problem, and

depends on the observed structure of the feasible region. Most of the computation involved

in solving the optimization problem can be done in parallel. The proof of the probabilistic

guarantee is a straightforward application of the recent theory in [150]. The guarantee holds

distribution-free.
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Problem statement

We consider the problem of selecting one of a finite number of systems indexed by j =

1, . . . , J . We suppose that the selected system will be subject to uncertain influences rep-

resented by δ ∈ ∆, where ∆ is a probability space equipped with a σ-algebra D and a

probability measure P. We do not assume that the distribution of δ is known or has any

particular structure, but we do assume that an independent, identically distributed sample

(δ1, . . . , δN) from the distribution of δ is available. We refer to the δi as scenarios. Formally,

we view (δ1, . . . , δN) as an element of the probability space ∆N equipped with the product

σ-algebra DN and the probability measure PN = P× · · · ×P (N times).

If we knew with perfect foresight that the realized value of δ would be some δ̂, we would

select a system j ∈ {1, . . . , J} to

minimize f0(j, δ̂)

subject to f`(j, δ̂) ≤ 0, ` = 1, . . . , L,
(A.1)

where f` : {1, . . . , J} × ∆ → R, ` = 0, . . . , L, are given cost and constraint functions.

Because δ is random, however, the goals of minimizing f0(j, δ) and satisfying f`(j, δ) ≤ 0 are

ambiguous.

One approach to resolving this ambiguity is to search for a system that is optimal in the

strictest sense:

find j ∈ {1, . . . , N}

subject to


f0(j, δ) = f ?0 (δ)

f`(j, δ) ≤ 0, ` = 1, . . . , L

 for all δ ∈ ∆.
(A.2)
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Here f ?0 : ∆→ R ∪ {∞} gives the optimal value under δ,

f ?0 (δ) = min
j=1,...,J

{f0(j, δ) | f`(j, δ) ≤ 0, ` = 1, . . . , L} .

We assume that for all δ ∈ ∆, there exists a j ∈ {1, . . . , J} such that f`(j, δ) ≤ 0, ` = 1, . . . , L

(so f ?0 (δ) <∞).

Problem (A.2) is feasible only if one system is robustly optimal, i.e., optimal under all

possible uncertain influences. As a robustly optimal system is unlikely to exist in most

applications, we consider the alternative of searching for a system that minimizes the worst-

case optimality gap:

minimize τ

subject to


f0(j, δ) ≤ f ?0 (δ) + τ

f`(j, δ) ≤ 0, ` = 1, . . . , L

 for all δ ∈ ∆.
(A.3)

The decision variable in Problem (A.3) is (j, τ) ∈ {1, . . . , J} ×R. Given a solution (j?, τ ?),

we say that j? is robustly τ ?-approximately optimal: for any δ ∈ ∆, system j? is guaranteed

to be feasible and to cost at most τ ? more than the system that is optimal under δ. If

it happens that τ ? = 0, then j? is in fact a solution to Problem (A.2), i.e., j? is robustly

optimal.

Unfortunately, Problem (A.3) is intractable in general. A tractable approximation is the

analogous scenario problem:

minimize τ

subject to f0(j, δi) ≤ f ?0 (δi) + τ, i = 1, . . . , N

f`(j, δ
i) ≤ 0, ` = 1, . . . , L, i = 1, . . . , N.

(A.4)
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By assumption, Problem (A.4) is feasible. We denote a solution to Problem (A.4) by (j?N , τ
?
N).

Our main result is that j?N is α?N -probably τ ?N -approximately optimal: with 100(1 − β)%

confidence,

P

δ ∈ ∆

∣∣∣∣∣∣∣
f0(j?N , δ)− f ?0 (δ) ≤ τ ?N

f`(j
?
N , δ) ≤ 0, ` = 1, . . . , L

 ≥ 1− α?N . (A.5)

Here β ∈ (0, 1) is a user-specified confidence level. The robustness level α?N is computed a

posteriori and depends on the (random) structure of the feasible region of Problem (A.4).

The smaller τ ?N and α?N , the stronger the guarantee. If it turns out that τ ?N = 0, then we

conclude with 100(1− β)% confidence that j?N is α?N -probably optimal. The guarantee (A.5)

is based on the recent theory in [150], and holds distribution-free.

Solving the scenario problem

Given (δ1, . . . , δN), a solution (j?N , τ
?
N) to Problem (A.4) can be computed by exhaustive

search as follows.

1. Feasibility screening:

(a) Compute f`(j, δ
i) for each j = 1, . . . , J , ` = 1, . . . , L and i = 1, . . . , N .

(b) Set J = {j ∈ {1, . . . , J} | f`(j, δi) ≤ 0, ` = 1, . . . , L, i = 1, . . . , N}.

2. Minimization:

(a) Compute f0(j, δi) for each j ∈ J and i = 1, . . . , N .

(b) Compute f ?0 (δi) = minj {f0(j, δi) | j ∈ J } for each i = 1, . . . , N .

(c) Compute τj = maxi {f0(j, δi)− f ?0 (δi) | i = 1, . . . , N} for each j ∈ J .

(d) Compute τ ?N = minj {τj | j ∈ J } and set j?N to a corresponding minimizer, using

a tie-break rule if there are multiple minimizers.
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This procedure is a function that takes a sample (δ1, . . . , δN) as its input and outputs a

selection j?N and suboptimality threshold τ ?N . We denote this function by AN : ∆N →

{1, . . . , J} ×R and write

(j?N , τ
?
N) = AN(δ1, . . . , δN).

We also define functions Am : ∆m → {1, . . . , J}×R for m = 1, . . . , N . Each Am implements

the above procedure on a sample of cardinality m. We note that this procedure lends itself

to parallel computation: only steps 1(b) and 2(c) involve coupling across scenarios.

Computing the robustness level

To compute the robustness level α?N , we must find a support subsample. A support subsample

is a sequence of scenarios (δi1 , . . . , δik) with i1 < · · · < ik such that {i1, . . . , ik} ⊆ {1, . . . , N}

and

Ak(δi1 , . . . , δik) = AN(δ1, . . . , δN).

In words, optimizing over a support subsample yields the same selection and suboptimality

threshold as optimizing over the full sample. Given a confidence level β ∈ (0, 1) and a

support subsample of cardinality s?N , a robustness level α?N for which the guarantee (A.5)

holds is given by

α?N =


1 if s?N = N

1−
[
β
/
N
(
N
s?N

)]1/(N−s?N )

otherwise.

(A.6)

The right-hand side of (A.6) is an increasing function of s?N . To strengthen the guarantee

(A.5), therefore, we would like to find a small support subsample. The following procedure,

adapted from [150], can be shown to yield an irreducible subsample (though not necessarily

one of minimal cardinality).
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1. Initialize S ← (δ1, . . . , δN).

2. For i = 1, . . . , N ,

(a) Set Si = S \ δi.

(b) If A|Si| (Si) = AN(δ1, . . . , δN), set S ← Si.

When this procedure terminates, the final sample S is an irreducible support subsample. Its

cardinality s?N can be used in (A.6) to compute a robustness level α?N valid in the probabilistic

guarantee (A.5).

Proof of robustness guarantee

To prove that a solution (j?N , τ
?
N) to the scenario problem (A.4) comes with the probabilistic

guarantee (A.5), we reduce our problem to the case studied in [150]. This involves identifying

terms in [150] with corresponding terms in our problem, and verifying that the assumptions

in [150] hold in our setting.

Our decision space is

Θ = {1, . . . , J} ×R.

A decision θ ∈ Θ is a selection and suboptimality threshold pair (j, τ). Assumption 1 of

[150] associates with each δ ∈ ∆ a constraint set Θδ that contains the admissible decisions

under δ. In our problem,

Θδ = {θ ∈ Θ | f0(θ1, δ)− f ?0 (δ) ≤ θ2, f`(θ1, δ) ≤ 0, ` = 1, . . . , L} .

It is straightforward to show that Assumption 1 of [150] holds, i.e., that for m = 1, 2, . . . , ap-

plying algorithm Am to a sample (δ1, . . . , δm) returns a unique decision θm = Am(δ1, . . . , δm)

such that θm ∈ Θδi for all i = 1, . . . ,m.
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The main result in [150] involves the violation probability

V (θ) = P {δ ∈ ∆ | θ /∈ Θδ} .

In our setting, the violation probability is the probability that f0(θ1, δ) − f ?0 (δ) > θ2 or

f`(θ1, δ) > 0 for some ` ∈ {1, . . . , L}. The main result in [150] is that under assumption 1,

PN {V (θ?N) > ε(s?N)} ≤ β (A.7)

for any confidence level β ∈ (0, 1) and any function ε : {0, . . . , N} → [0, 1] satisfying

ε(N) = 1

N∑
k=0

(
N

k

)
(1− ε(k))N−k = β.

As discussed in [150], the right-hand side of Equation (A.6) (viewed as a function of k

rather than s?N) satisfies this condition. Therefore, the general guarantee (A.7) holds in our

setting. Expanding this guarantee, we conclude with 100(1− β)% confidence (with respect

to PN) that

P {δ ∈ ∆ | θ?N /∈ Θδ} < α?N ,

or, equivalently, that

P

δ ∈ ∆

∣∣∣∣∣∣∣
f0((θ?N)1, δ)− f ?0 (δ) ≤ (θ?N)2

f`((θ
?
N)1, δ) ≤ 0, ` = 1, . . . , L

 ≥ 1− α?N .

This is our robustness guarantee (A.5).
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Appendix B

Discussion of input data and sources

In this appendix, we qualitatively assess the fidelity of the input data used in this thesis.

We also discuss the distributional assumptions and their potential influence on our results.

Data fidelity

To support the simulations and model-fitting in this thesis, we tried to use datasets that were

as large and as high-fidelity as possible. Relative to studies on similar topics in competitive,

peer-reviewed journals such as IEEE Transactions on Power Systems and IEEE Transactions

on Smart Grid, we believe our datasets were of high quality. That’s not to say there weren’t

data limitations – there were, as we discuss below – just that the overall data quality were

high relative to the research state of the art.

We used data from five of tiers of sources, in descending order of fidelity:

1. real data from independent sources,

2. real data from potentially biased sources (e.g. manufacturer-reported heat pump data),

3. simulated data,

4. conversations with industry experts, and
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5. comments from homeowners and practitioners on various websites (primarily the fo-

rums on greenbuildingadvisor.com).

The input data used in this thesis can be broadly categorized as follows.

• Weather: Tier 1.

• Energy and ancillary service prices: Tier 1.

• Thermal load: Tier 3 (with simulation inputs based on a Tier 1 source).

• Heat pump performance: a mix of Tiers 1 and 2.

• Heat pump capital and maintenance costs: limited Tier 1, mostly Tiers 4-5.

To capture statistical dependencies between weather and prices, we needed those datasets

to be coincident in both space and time. The limiting factor was PJM’s ancillary service

prices, for which six years of hourly data were available. This limitation fixed the size of the

weather and thermal load datasets at 6×8760 = 52560 hours. When we needed more than

six years of data, we resampled with replacement from the six-year dataset. We chose the

location of Philadelphia because its electricity and gas prices and heating/cooling degree days

are close to the national averages, because historical weather data from a reputable source

(the meteorology department of Pennsylvania State University) were available, and because

Philadelphia is in PJM. We focused on PJM because PJM is the biggest Independent Service

Operator in the United States and has demand-friendly ancillary service market rules.

We generated hourly thermal load data by propagating weather data through RC net-

work models. We tuned the RC parameters to annual thermal load intensity (kWh/m2/year)

data from the United States Department of Energy’s Residential Energy Consumption Sur-

vey (Tier 1). The tuning process is described in §3.2.6. Because this survey specified only

population means, and provided no further distributional information, we assumed uniform
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distributions over plausible ranges of values around the means (e.g., ±20%). We also ran-

domized the floor area of the simulated space loads using a uniform distribution. The annual

load (kWh/year) was the product of the annual load intensity (kWh/m2/year) and the floor

area (m2), so was not uniformly distributed. Samples drawn from that distribution were used

as inputs to the RC parameter tuning. The tuning involved nonlinear transformations, so

the distributions of the RC parameters were highly nonuniform, as were the hourly thermal

load data.

The heat pump performance data were based on a mix of third-party laboratory data and

manufacturer-reported lab data for a popular line of cold-climate air-source heat pumps. We

would have preferred to use only third-party heat pump performance data, but that data

is extremely limited. In our opinion, the only currently feasible way to fit a good heat

pump model to empirical data that does not come from a manufacturer is to buy a heat

pump, instrument it, and measure its capacity and COP under a wide variety of boundary

conditions in one’s own lab. We did, however, draw on a 2011 NREL report of lab testing

of the same heat pump line. That study found good agreement between their independent

laboratory measurements and the manufacturer-reported data.

The heat pump costs were the weakest input data. We had a hard time pinning these

data down with any precision, as costs vary from market to market, year to year, and installer

to installer. Installers appear to charge what the market will bear, rather than (say) their

internal costs plus a fixed profit margin. Also, contractors seem reluctant to share those

data, presumably for reasons related to competition and profit. We modeled the uncertainty

in these parameters through uniform distributions with wide support (e.g., $4-6000 for the

all-in installed cost of a one-ton mini-split). We based those ranges on Internet sources

(Tier 5), on installers’ quotes (Tier 2), and on conversations with industry experts (Tier 4).

We freely acknowledge that there was a lot of uncertainty in the cost data, and that the

distributions essentially represent our (and the industry experts’) prior beliefs, rather than
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empirical data.

Distributional assumptions

In the stochastic simulations in this thesis, we tried to use historical data wherever possible.

When we had insufficient historical data, at times we resampled with replacement from the

historical data.

We assumed uniform distributions on numerous parameters in the numerical examples in

Chapter 2. We don’t claim that those examples accurately reflect reality; we included them

mainly to illustrate the analytical results in that chapter. Compared to Chapters 3–5, the

analysis in Chapter 2 was simplified; our intention in Chapter 2 was to introduce the basic

parameters and relationships without too much notational or conceptual overhead. The

other places we used uniform distributions were mentioned above: annual load intensities,

floor areas and heat pump costs. Uniform distributions are a common modeling instrument

in situations where full distributional information is not available, but plausible supports

are.

The load data used in scenario optimization in Chapters 4–5 were not uniformly dis-

tributed. While the load data were based on primal uncertain parameters drawn from

uniform distributions, those data were propagated through many transformations, generally

nonlinear. The only uniformly-distributed parameters used directly in scenario optimization

were the heat pump capital and maintenance costs in Chapter 4.

Mis-specified cost distributions could influence net present value estimates and bias heat

pump selection decisions. In practice, however, the scenario-based selection algorithm in

Chapter 4 would most likely be implemented by a heat pump installer, who should have

a clear idea of their relevant cost parameters. They could likely use historical data from

their past installations, either directly or by way of a statistical model. For this reason,
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we do not currently see a clear role for distributionally-robust optimization in the selection

problem. Also, that problem is nonconvex and chance-constrained, and we are not aware of

any distributionally-robust methods for such problems. Distributionally-robust optimization

does appear to be an appropriate solution method for the day-ahead capacity offer decision

problem that we formulated in Chapter 5, however. We discuss this in detail in §5.3.7.
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