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During pre- and post-harvest processing, leafy greens are exposed to environ-

mental conditions such as large variations in outside temperature and pressure,

exposure to light, and evaporation of surface water. These conditions can serve

as driving forces for stimulating various modes of bacterial transport into leafy

greens. This work aims to show how the applications of physics-based model-

ing, microfluidics and microbiological experimentation can lead to a deep un-

derstanding of various pathways by which bacteria can penetrate into plant

leaves. Three physics-based models are presented: 1) A porous media transport

model for pressure-driven infiltration of water and bacteria into plant leaves

during vacuum cooling, 2) A porous media transport model for light-induced

chemotactic infiltration of bacteria into plant leaves, and 3) A model of trans-

port in a two-phase fluid system, with phase interface tracking, for bacterial

retention and infiltration at/into plant leaves during sessile droplet evapora-

tion. Microbiological experiments to quantify the amount of bacterial infiltra-

tion into plant leaves during exposure to light are conducted to validate the

second model. Using photolithography techniques, artificial surfaces patterned

with common microstructures at the surface of plant leaves, i.e., stomata, tri-

chomes and grooves, are fabricated and used to support findings of the third

model.
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CHAPTER 1

INTRODUCTION

Leafy greens are among the most contaminated food products to human

pathogenic bacteria (DeWaal and Bhuiya, 2007). From 2005 to 2011, there were

5415 outbreaks associated to vegetable sprouts and leafy greens, like spinach

and lettuce; 73% of which occurred in 2011 due to E. coli O104:H4 and E. coli

O157:H7 (Olaimat and Holley, 2012). Very recently, the Centers for Disease Con-

trol and Prevention of the US (CDC, 2018) reported 210 E. coli O157:H7 infec-

tions linked to romaine lettuce. Infiltration of human pathogens into fresh leafy

greens significantly increases the risk of foodborne illnesses, as the internalized

microbes cannot be effectively removed or treated utilizing standard sanitation

and washing processes (Zhang et al., 2009; Vonasek and Nitin, 2016). Contami-

nation of leafy greens by bacteria is a complex process that involves various in-

fluencing factors. Bacteria can get into initial contact with a leaf surface through

various routes, such as contaminated irrigation or wash water, and infiltrate

the leaf through available opening at the leaf surface, such as stomata, cuts, or

wounds. During pre- and post-harvest processing, leafy greens are exposed to

environmental conditions such as large variations in outside temperature and

pressure, and exposure to light. These conditions can serve as driving forces

for stimulating various modes of bacterial transport into leafy greens. Mech-

anistic understanding of the role these factors can help in better prevention of

contamination of leafy greens by pathogenic microorganisms.

This work aims to show how the applications of physics-based modeling,

microfluidics and microbiological experimentation can lead to a deep under-

standing of various pathways by which bacteria can penetrate into plant leaves.
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The proposed physics-based models, as complementary to experiments, reveal

the fundamental primary and secondary factors affecting the contamination

processes that might lead to improvement of microbial safety of leafy greens.

In this chapter, the most important environmental conditions that can trigger

bacterial infiltration into leafy greens are discussed. This is followed by an in-

troduction to the application of physics-based modeling and experimentation to

address underlying pathways of contamination. Finally, the overall objectives

and organization of this dissertation are discussed.

1.1 Environmental factors triggering bacterial infiltration into

plant leaves

As leafy greens move from field to fork, they experience various temperature,

humidity, pressure, and light conditions. These environmental conditions, dur-

ing pre- and post-harvest processing, can trigger bacterial transport into the

plant leaves and alter their growth in the leaf interior. Figure. 1.1 highlights

some of these driving forces for bacterial transport into plant leaves that are of

interest in this dissertation.

1.1.1 Pressure changes

Any mechanical pressure gradients across the leaf tissue can result in a water

flow into the leaf interior and cause passive bacterial transport (i.e., bacteria

flowing with the fluid) (Fig. 1.1b). For example, such a contamination path-

way can happen during vacuum cooling process (Li et al., 2008; Vonasek and

2
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Large pressure gradients 
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stoma, and triggers 
photosynthesis within the 
leaf tissue. Bacteria sense 
the availability of nutrients 
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Figure 1.1: a) A schematic of a plant leaf and its cross section, b) Effect of
changes in the environmental pressure on the bactrial infiltra-
tion into the leaf interior, c) Effect of light in triggering pho-
tosynthesis in the plant leaf that can induce bacterial chemo-
taxis toward the leaf interior, d) Effect of evaporation in cre-
ating flows within a surface sessile droplet that can facilitate
bacterial retention close to the leaf surface and their infiltration
into the stomatal opening.
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Nitin, 2016) which is one of the fastest and most efficient pre-cooling practices

during post-harvest processing of leafy greens. During re-pressurization stage

(when vacuum returns to atmospheric) of this process, large pressure gradients

forcibly push water into the leaf porous structure through any available open-

ings at the leaf surface.

1.1.2 Light exposure

Light is one of the driving forces that can promote infiltration of pathogenic

bacteria into plant leaves (Kroupitski et al., 2009) (Fig. 1.1c). Photosynthetically

active cells in the leaf tissue produce nutrients during light exposure that are at-

tractive food sources for bacteria that may be initially present at the leaf surface.

Opening of the stomata in presence of light creates an opportunity for bacteria

to do chemotaxis toward the gradients of these nutrients, thus leading into the

leaf interior.

1.1.3 Evaporation of surface water

Evaporation of sessile droplets at surface of plant leaves is a process that fre-

quently happens during growth period and post-harvest processing of leafy

greens. Evaporation creates internal flows within a sessile droplet that can carry

colloidal particles (Deegan et al., 1997) (Fig. 1.1d). On a leaf surface, these flows

can transport microorganisms close to the surface and facilitate their adhesion

to the surface microstructures such as trichomes, and infiltration into the avail-

able openings such as stomata, grooves and wounds.

4
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Figure 1.2: The three-pronged approach to provide mechanistic under-
standing of bacterial infiltration into leafy greens. Each chapter
of the dissertation uses one or two of these approaches.

1.2 Mechanistic understanding of bacterial infiltration: a three-

pronged approach

An interdisciplinary, three-pronged approach (Fig. 1.2) is taken here to provide

a mechanistic understanding of bacterial infiltration into plant leaves as a result

of environmental driving forces discussed in Sec. 1.1. Each chapter uses one or

two of the approaches. This three-pronged approach includes: 1) Physics-based

modeling, which is a mechanistic approach in which physical laws of conserva-

tion of mass, momentum and energy are applied to the bacterial contamination

process, and predicts the response of the process (e.g., amount of bacterial infil-

tration) to change in the influencing parameters (e.g., changes in temperature,

5



pressure, and light exposure). For example, considering a leaf as a porous me-

dia, transport of bacteria within the leaf tissue can be modeled. Applying the

physical laws to a biologically complex system, like a leaf, requires several sim-

plifications and assumptions. The simplifications still correctly address all es-

sential physics. 2) Microbiological experimentation, by which the infiltration of

bacteria into real leaves are determined, and the response of various influencing

factors to the amount of infiltration are studied. 3) Microfluidics experimenta-

tion, by which an experimental substrate (e.g., artificial surfaces surrogate to

plant leaves) with prescribed properties (known roughness and hydrophobic-

ity) can be fabricated, and used to study the response of the biological system

to various influencing parameters. Here, patterned surfaces, that mimic micro-

structures (i.e., stomata, trichomes and grooves) and hydrphobicity at the sur-

face of plant leaves, are fabricated and used to study how they impact the re-

tention of bacteria close to the surface and their infiltration into the leaf tissue

during evaporation of surface sessile droplets.

These approaches are used to develop a mechanistic relationship between

the extent of contamination and various produce-bacteria-process parameters.

The three approaches synergistically complement and validate each other.

1.3 Objectives

The effect of the environmental driving forces discussed in Sec. 1.1 on the bac-

terial contamination of leafy greens are separately studied here using the ap-

proaches described in Sec. 1.2. The specific objectives of this dissertation are:

• Using physics-based modeling to understand physical mechanisms of

6



contamination (retention/infiltration) of leafy greens as a result of envi-

ronmental conditions (changes in the pressure, light exposure, and surface

water evaporation).

• Conducting microbiological experiments on the light-driven and evaporation-

driven infiltration of bacteria into plant leaves.

• Fabrication of patterned surfaces as surrogate of plant leaves, to study

how evaporation of surface sessile droplets containing bacteria can lead to

retention and infiltration into the leaf openings, and how surface micro-

structures and hydrophobicity can affect the contamination.

1.4 Organization of the dissertation

This dissertation is divided in five chapters:

Chapter 1: Introduction This chapter introduces the modeling and experi-

mental approaches used in this dissertation to study bacterial contamination of

leafy greens.

Chapter 2: Pressure-driven infiltration of water and bacteria into plant leaves

during vacuum cooling: A mechanistic model In this chapter a mechanis-

tic model for pressure-driven infiltration of bacteria into plant stomata during

re-pressurization stage of vacuum cooling process is introduced. The model fo-

cuses on only one stomatal opening and solves the multi-phase transport of gas,

water, vapor, and bacteria within the porous structure of a leaf tissue. It studies

7



the effects of vacuum cooling process parameters (e.g., vacuum level and re-

pressurization rate), bacterial and leaf characteristics (e.g., bacterial motile abil-

ity, and leaf permeability to water penetration) on the total amount and depth

of infiltration of bacteria into the leaf tissue.

Chapter 3: Mechanistic modeling of light-induced chemotactic infiltration of

bacteria into leaf stomata In this chapter, by focusing on a single stomatal

opening, a mechanistic model is developed for chemotactic transport of bac-

teria within a leaf tissue in response to the photosynthesis occurring within

plant mesophyll and guard cells. This comprehensive model includes trans-

port of carbon dioxide, oxygen, bicarbonate, sucrose/glucose, bacteria, and

autoinducer-2 (a signaling molecule) within the leaf tissue. The model includes

biological processes of carbon fixation in chloroplasts, and respiration in mito-

chondria of the plant cells, as well as motility, chemotaxis, nutrient consumption

and communication in the bacterial community. The model studies the effects of

various influencing process-bacterial-plant parameters on the bacterial infiltra-

tion into the leaf tissue. It also explains the effects of the plant stomatal defense

on the microbial infiltration.

Chapter 4: Retention and infiltration of bacteria on a plant leaf driven by sur-

face water evaporation This chapter presents experimental approaches to fab-

ricate micro-patterned surfaces that mimic microstructures (stomata, trichomes,

and grooves) and hydophobicity of plant leaves. The micro-patterned surfaces

are used to study various mechanisms by which evaporation of surface sessile

droplets containing bacteria can lead to retention of bacteria at a the various

micro-structures on the surface and bacterial infiltration into available open-

8



ings. The findings from this experimental work is used to validate and support

predictions obtained from a mechanistic model presented in Chapter 5.

Chapter 5: A mechanistic model for bacterial retention and infiltration on a

leaf during a sessile droplet evaporation This chapter develops a mechanis-

tic model for transport of bacteria within an evaporating sessile droplet located

at the surface of a plant leaf. The model predicts the amount of retention of

bacteria close to the leaf surface and their infiltration into stomatal openings.

It solves for fluid flow within the droplet and surrounding gas, liquid-gas in-

terface movements, heat transfer, transport of vapor in the gas phase, transport

of bacteria (by fluid flow, and motility and chemotaxis towards nutrients), and

sugar (glucose) within the water phase. The model studies the effects of var-

ious influencing process-bacterial-plant parameters on the bacterial retention

and infiltration. Experimental data obtained in Chapter 4 are used to validate

and support predictions of this model.

9
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CHAPTER 2

PRESSURE-DRIVEN INFILTRATION OF WATER AND BACTERIA INTO

PLANT LEAVES DURING VACUUM COOLING: A MECHANISTIC

MODEL

2.1 Abstract

Vacuum cooling of leafy greens can quickly lower their temperature, thus effi-

ciently extending their shelf-life. However, passive bacterial infiltration into the

leaf through openings such as stomata or wounds during this process presents

a risk. This study develops a mechanistic model of stomatal infiltration and

elaborates controlling parameters. Water and vapor phases transport in the leaf

tissue as a porous medium, with convective flow driven by pressure changes

outside the leaf, capillary diffusion of water and molecular diffusion of vapor.

Water exchange between symplast and apoplast in the leaf is driven by pres-

sure changes. Bacteria are convected with intercellular water, along with their

motility. Heat transfer includes evaporation that varies with pressure. Increased

water and bacterial infiltration are primarily caused by longer re-pressurization

time, lower initial moisture content of the leaf and larger stomatal pores, and

less so by increased vacuum level. Findings should help making vacuum cool-

ing processes microbiologically safer.
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2.2 Introduction

Global consumption of leafy greens has been on the rise over the past decades

(Olaimat and Holley, 2012). Meanwhile, outbreaks of foodborne illnesses asso-

ciated with contaminated leafy greens have increased. Leafy greens are among

the most contaminated food products to norovirus, Salmonella and Escherichia

coli (DeWaal and Bhuiya, 2007). From 2005 to 2011, there were 5415 outbreaks

associated to vegetable sprouts and leafy greens, like spinach and lettuce, that

73% of which occurred in 2011 due to E. coli O104:H4 and E. coli O157:H7

(Olaimat and Holley, 2012). Very recently, the Centers for Disease Control and

Prevention of the US (CDC, 2018) reported 210 E. coli O157:H7 infections linked

to romaine lettuce. Infiltration of human pathogens into fresh leafy greens sig-

nificantly increases the risk of foodborne illnesses, as the internalized microbes

cannot be effectively removed or treated utilizing standard sanitation and wash-

ing processes (Zhang et al., 2009; Vonasek and Nitin, 2016).

Temperature is the most important factor in preserving the quality of fresh

produce after harvest. Leafy greens like spinach and lettuce that have high

surface-to-volume ratios can be rapidly cooled by vacuum cooling to reach a

safe temperature level for storage (Ozturk and Ozturk, 2009). In vacuum cool-

ing, chamber pressure falls below the equilibrium vapor pressure of water, lead-

ing to rapid evaporation of moisture from the surface and within the leaves,

thus cooling the product.

While popular as a rapid cooling technique, vacuum cooling can promote

infiltration of pathogenic microorganisms into fresh produce (Li et al., 2008;

Vonasek and Nitin, 2016; Shynkaryk et al., 2016; Pyatkovskyy et al., 2017).
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When pressure of the vacuum chamber transitions from vacuum to the atmo-

spheric level, the generated pressure gradients within the leaf tissue can create a

pressure-driven gas and/or water transport into the porous structure of the leaf

through any available openings. As water is normally sprayed on the leaf sur-

faces to avoid moisture loss from evaporation (Thompson et al., 1998), one can

expect presence of a water film at the leaf surface when the vacuum is broken. If

the gas/water contains pathogenic microorganisms, they would be forcibly in-

filtrated within the leaf tissue. Indeed, such an infiltration mechanism is similar

to that of vacuum impregnation practices in which bacteria are artificially im-

pregnated into leaves to study their mutual interactions (Simmons et al., 2009).

The main routes of infiltration into leafy greens include stomata, cuts, and

wounds at the leaf surface (Li et al., 2008). Various factors can affect the amount

and depth of bacterial infiltration: 1) Transport properties of water and bacte-

ria within the leaf tissue. For example, capillary diffusivity of water within the

porous structure of the leaf, and random motility of bacteria. 2) Leaf charac-

teristics such as permeability of the mesophyll tissue to water, initial moisture

content, stomatal opening size, and leaf side. 3) Process parameters including

presence of water at the leaf surface, vacuum level, vacuum duration, and re-

pressurization duration. However, the effects of these factors on the amount

and depth of infiltration into leafy greens are not well-understood. Mechanis-

tic understanding of the role of each of the involved factors can help in better

prevention of contamination of leafy greens by pathogenic microorganisms.
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2.2.1 Objectives

The reported evidence (Li et al., 2008; Vonasek and Nitin, 2016) leaves us with a

concern about enhancement of pathogen infiltration into leafy greens during the

vacuum cooling process. This emphasizes the need for a better understanding

of the infiltration mechanisms and identification of the risk factors contributing

to foodborne outbreaks. To that end, this work aims to introduce a mechanis-

tic modeling approach that can delineate the involved mechanisms and clearly

show the effects of the process parameters, transport properties, and leaf struc-

tural features on the microbial infiltration. It was hypothesized that pressure

gradients generated during re-pressurization stage of the vacuum cooling pro-

cess are the driving force for water and bacterial infiltration into the stomatal

opening, leading to the following objectives of this study: 1) Development of a

porous medium-based model to explain how water and bacteria can infiltrate

into the leaf tissue through the stomatal opening during the re-pressurization

stage of the vacuum cooling process, 2) Validation of the model predictions

against literature data for leaf temperature, pressure, moisture content and the

amount of infiltrated bacteria, and 3) Identification of the effects of the most im-

portant parameters related to the leaf, process and transport, on the bacterial

infiltration.
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Figure 2.1: a) Various components of a leaf cross section, and b) symplastic
and apoplastic water transport in a leaf with water exchange
across plasma membrane.

2.3 Model formulation

2.3.1 Leaf section structure

Figure 2.1a shows different components of a leaf section. At the regions where

veins are not present, a leaf section contains a mesophyll layer in the middle

and two epidermis layers at the top and bottom sides that are covered by a

waxy cuticle layer. The mesophyll contains palisade and spongy cells. Most of

the surface areas of both spongy and palisade mesophyll cells are exposed to

air in the intracellular spaces (Nobel, 2005). The spongy cells are loosely packed

but palisade cells are tightly packed. Therefore, one can consider the mesophyll

as a porous zone with two different gas porosities. Gas exchange between the

interior region of the leaf and outside environment takes place through stom-

atal openings that are controlled by a pair of guard cells. The movement of

water among plant cells takes place by two different routes (Fig. 2.1b): 1) the
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Figure 2.2: a) Vacuum cooling stages, and b) vacuum chamber pressure
history during the stages.

symplastic pathways in which water is transported within cytoplasms through

plasmodesmata. This water presents within the vacuole of plant cells and here is

considered as bound water, and 2) the apoplastic pathways that are spaces out-

side of plasma membrane in which water is freely transported within connected

cell walls of adjacent cells (Dymek, 2015; Nobel, 2005). The apoplast has often

implicitly assumed to be dominated by bulk flow rather than a molecular diffu-

sion (Evert et al., 1985; Buckley, 2015). Therefore, free water was assumed to be

present at the intercellular spaces and apoplastic pathways whereas bound wa-

ter fills the intracellular regions (Fig. 2.1b), i.e., within protoplast that contains

vacuole and cytoplasm (Maurel, 1997).
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2.3.2 Problem description

Pressure history and physical schematic

A common vacuum cooling process includes three successive stages (Fig. 2.2a):

at stage 1, the pressure of the chamber is dropped from atmospheric pressure to

around 700 Pa (Fig. 2.2b). The produce temperature may reduce due to convec-

tive heat transfer and some evaporation effects. At stage 2, there is a constant

pressure condition. As the pressure is below the equilibrium vapor pressure of

water, a sharp evaporation takes place at the leaf surface and within its porous

structure, leading to a rapid cooling of the produce. After about 30 min, when

the temperature of the produce reaches to a safe level for storage, the chamber

pressure is restored. This is stage 3 within which water and gas might pas-

sively infiltrate into the produce through wounds, stomata, or other openings

and cuts, due to large pressure gradients generated during re-pressurization.

Such a pressure-driven infiltration of gas and water may cause microorganisms

present within the water film at the leaf surface to get passively transported into

the produce tissue.

Computational schematic and assumptions

A schematic of the computational problem is shown in Fig. 2.3a. A 2D-

axisymmetric domain around one stomate was used as the computational do-

main. The leaf section was modeled as an unsaturated porous medium contain-

ing solids, free water, bound water, vapor, and air phases (Fig. 2.3b). As the

mesophyll tissue is the dominant part in the leaf section, it was assumed that

the entire leaf section has the properties of the mesophyll region. Shrinkage and
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changes in porosity of the mesophyll tissue during vacuuming was neglected.

The profile of chamber pressure was applied as a boundary condition for the

single phase fluid region (stomatal cavity; Fig. 2.2b). Vacuum can forcibly keep

the stomata open (Li et al., 2008), which supports the assumption that stom-

ata are open enough at the start of re-pressurization process. It was assumed

that when the chamber is under vacuum, the stomatal cavity is filled only by

gas, and during re-pressurization, it only contains water. This assumption was

made to avoid application of a multiphase fluid flow formulation at the stom-

atal cavity region. The top and bottom boundaries (leaf surfaces) are assumed

to implicitly be covered by a layer of water during the entire process. This is

not unlikely as water is normally sprayed on the produce surface during the

vacuum cooling process to avoid excessive weight loss and quality deteriora-

tion (Vonasek and Nitin, 2016). The effect of leaf wettability on the amount

of water infiltration was ignored as the pressure exerted on the leaf during re-

pressurization stage is much larger than the minimum pressure required for

penetration of water into stomata (Schonherr and Bukovac, 1972). Active plant-

microbe interactions such as bacterial chemotaxis toward plant nutrients are not

considered here, as the timescale of these active interactions (several minutes to

hours) are much longer than that of the re-pressurization stage (few seconds to

few minutes) in which bacterial transport is studied here.

Qualitative description of the transport processes

During stages 1 and 2, the generated pressure gradients within the leaf section

cause the gas containing air and vapor to be sucked out from the stomatal cavity

and mesophyll regions (Fig. 2.3a). These pressure gradients, as well as capillary
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diffusion, are the driving forces for transport of free water within the porous

structure. Free water can evaporate and generate vapor within the porous me-

dia region (mesophyll). The vapor is transported by the gas flow and binary

diffusion in air. Relative humidity and temperature histories within a vacuum

chamber measured by Ozturk and Ozturk (2009) were used to calculate the va-

por mass fraction at the stomatal opening boundary. The bound water which

exists within the intracellular region can be transported via molecular diffusion.

As a result of vacuum at intercellular spaces, the bound water can cross the

plasma membrane and join the free water (Fig. 2.1b). During stage 3, water car-

rying bacteria enters the stomatal cavity from the stomatal opening boundary

followed by penetration into the mesophyll tissue. Bacteria can also transport

via diffusion (motile/Brownian motions) within the domain. The top and bot-

tom boundaries (leaf surfaces) are impermeable to the gas, water and bacteria

due to the presence of the waxy cuticle layer. Leaf temperature is described

by an energy balance over the entire domain. The evaporation of free water

within the mesophyll tissue causes a rapid cooling effect within the leaf during

stages 1 and 2. At the stomatal opening boundary, heat is transfered out of the

domain by gas outflow. In addition, heat can be exchanged via convective and

evaporative heat fluxes between leaf surfaces and the chamber environment.

2.3.3 Governing equations

A big picture of the model

An overview of the model is depicted in Fig. 2.4. To simulate the mass (water,

vapor, air, and bacteria), momentum and heat transfer in the mesophyll region, a
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Figure 2.4: An overview of the model.

multiphase porous media-based model was applied. The pressure-driven flow

of the fluids (except for bound water that can only diffuse) was modeled by

Darcy’s law within the porous zone and by Navier-Stokes equations within the

single phase fluid region. The interspecies couplings (i.e., bound to free water

exchange, free water evaporation, evaporative cooling) were implemented by

using a number of source terms.

Basic definitions

The porosity, φ, at any point inside the mesophyll is defined as the volume frac-

tion occupied by fluid phases:

φ(r, z) =
1
δV

∑
i

δVi (2.1)

with i = wf ,wb, g representing free water, bound water and gas phases, respec-

tively. δVi is the volume occupied by ith phase in the elemental volume, δV.
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Saturation of each fluid phase, Si, is defined as the fraction of the total fluid

volume occupied by each fluid:

Si(r, z) =
δVi

φ(r, z)δV
(2.2)

Free water in mesophyll tissues

Free water within the pores can be transported either through capillary diffu-

sion, due to concentration gradients, or pressure-driven Darcy flow. The mass

balance for free water is given by:

∂

∂t
(φρwSwf )+∇ · (uwρw) = ∇ · (Dw,cap∇(φρwSwf ))− İv + J̇w,bf (2.3)

where t is time (s), ρw is water density (kg/m3), uw is velocity of free water

(m/s), Dw,cap is capillary diffusivity of free water in pores (m2/s), İv is the rate

of evaporation of free water (kg/m3
· s), and J̇w,bf is the rate of water exchange

across the cell plasma membrane (i.e., bound water to free water) within the

mesophyll region (kg/m3
· s).

Bound water in mesophyll tissues

Bound water transports through symplastic pathways by molecular diffusion.

If there is a water potential difference across the plasma membrane, it passes

the membrane to join the apoplastic free water. The transport of bound water

within the porous zone is described as:

∂

∂t
(φρwSwb) = ∇ · (Dw,p∇(φρwSwb))− J̇w,bf (2.4)

where Dw,p is the diffusion coefficient of water in the protoplast (m2/s), which

was assumed to be equal to the self-diffusion coefficient of water (Wang, 1965),

22



Dw,w; as the protoplast is mainly occupied by vacuole (Nobel, 2005).

Vapor and air in the leaf section

The saturation of the gas phase, Sg, is obtained from:

Sg = 1− (Swf + Swb) (2.5)

In the gas phase, by considering a binary diffusion for water vapor and air, one

can solve for their respective mass fractions (ωv and ωa) using

∂

∂t
(φρgSgωv)+∇ · (ugρgωv) = ∇ · (φSg

C2
g

ρg
MaMvDg,eff∇xv)+ İv (2.6)

and

ωa + ωv = 1 (2.7)

Here, ρg is gas density (kg/m3), ug is the velocity of gas (m/s), Dg,eff is the diffu-

sion coefficient of vapor in air (m2/s), Cg is the molar density of gas (mol/m3),

Ma and Mv are molar masses of air and vapor (kg/mol), respectively, and

xv = pv/P is the mole fraction of vapor defined as the ratio of vapor pressure

to the gas pressure.

Heat balance in the leaf section

A thermal energy balance is used to solve for temperature at any point within

the leaf section with assumption that all phases are in thermal equilibrium:

ρeff Cpeff

∂T
∂t
+ (ρCpu)fluid · ∇T = ∇ · (keff∇T)− λİv (2.8)

with effective properties being defined as:

ρeff = (1− φ)ρs + φ
(
(Swf + Swb)ρw + Sgρg

)
(2.9)
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keff = (1− φ)ks + φ
(
(Swf + Swb)kw + Sgkg

)
(2.10)

Cpeff = msCps +mg(ωaCpa + ωvCpv)+mwCpw (2.11)

(ρCpu)fluid =
(
ρwuwf −Dw,cap∇(φρwSwf )−Dw,p∇(φρwSwb)

)
Cpw + ρgug(ωvCpv + ωaCpa)

(2.12)

where T is temperature (K), λ is latent heat of vaporization of water (J/kg), k is

thermal conductivity (J/m · K · s), Cp is the specific heat capacity (J/kg · K), and

m is overall mass fraction of each phase. Subscripts a, v, w, and s, indicate air,

vapor, water and solid phases. Note that Eq. (2.8) is valid in the porous media

(mesophyll). In the stomatal opening region, a similar equation to Eq. (2.8) was

used, but for heat transfer in a single-phase fluid (gas in stages 1 and 2).

Pressure in the mesophyll tissue

Distribution of the gas pressure, P, within the mesophyll region is obtained from

the following conservation equation:

∂

∂t
(φρgSg)+∇ ·

(
−ρg

κg

ηg
∇P
)
= İv (2.13)

with Darcy’s law providing superficial velocity of each species i:

ui = −
κi

ηi
∇P (2.14)

where i is either gas or free water, ηi is the dynamic viscosity (Pa · s) of species i,

and κi is the permeability of mesophyll tissue to species i (m2).

Bacterial transport

The gas pressure gradients within the vacuum chamber push the water at the

leaf surface into the stomatal opening during the re-pressurization stage. In the
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absence of any stimulus, motile bacteria undergo a random walk motion known

as tumbles that is modeled as a diffusion-like transport mechanism (Tindall et

al., 2008). If the bacteria are non-motile, they still have the Brownian random

motion due to collisions with fast-moving molecules within the liquid phase.

Both of the above random mechanisms are modeled by a diffusive transport

term in Eq. (2.15). So, the mechanisms of infiltration includes the transport with

the flow of water as well as diffusion (motility/Brownian) of bacteria within

water. The conservation equation for bacterial transport in the leaf section can

be written as:

∂(cbφSwf )

∂t
+∇ · (ubcb) = ∇ · (Db,eff∇(cbφSwf )) (2.15)

where cb is the bacterial concentration (CFU/m3), and Db,eff is bacterial effective

diffusivity (m2/s) which depends on the porosity and free water saturation. It

represents the coefficient of random motility (if the bacteria are motile; Tindall

et al., 2008) in free water phase. Bacterial velocity, ub, was adapted by an inhi-

bition function (Shirai et al., 2017) in order to account for the effect of bacterial

concentration on their transport in the fluid:

ub =

(
1−

cb

cb,max

)
uw (2.16)

where cb,max is the maximum allowable concentration of bacteria beyond which

they cannot be transported by the fluid due to clogging effects. By considering

the ratio of the volumes of the stomatal cavity to a single bacterial cell (E. coli

has a typical dimension of 0.5 µm in radius and 3 µm in length (Zaritsky and

Woldringh, 1987)), the cb,max was estimated as 1× 1018 CFU/m3.
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Free water evaporation in the mesophyll tissue

Rate of change of free water to water vapor is calculated by the following non-

equilibrium equation (Halder et al., 2007):

İv = K(pv,eq − xvP)
MvSgφ

RT
(2.17)

where K is evaporation constant (1/s), R is the universal gas constant (J/mol ·K),

and pv,eq is equilibrium vapor pressure (Pa),

pv,eq = awpv,sat (2.18)

which depends on the moisture-dependent local water activity, aw, of the leaf

tissue, and saturation vapor pressure of water (Murray, 1967),

pv,sat =
101325

760
× 10

(
8.07131− 1730.63

T−39.574

)
(2.19)

Water exchange across plasma membrane

Based on a conservation of mass across plasma membrane, the time evolution of

the cell volume, Vc, equals the rate of water exchange across plasma membrane

surface area, Ac (Buckley, 2015). Considering a cell as an elastic shell having a

constant osmotic potential, π0, the rate of change in cell pressure, pwb, is related

to the rate of change in its volume (Nobel, 2005):

∂pwb

∂t
=

ε

Vc

∂Vc

∂t
=
γVwε

RT
αp(ψwf − ψwb) (2.20)

where ε is the volumetric elastic modulus of the cell wall (Pa), γ is the osmotic

water permeability of plasma membrane (m3/m2
· s), Vw is the molar volume of

water (m3/mol), ψwb andψwf are water potentials (Pa) in symplast and apoplast,

respectively, and αp = Ac/Vc is the specific surface area of the porous tissue of
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the leaf (m2/m3). Water potential in the symplast includes the internal cell pres-

sure (turgor pressure) and its osmotic potential, ψwb = pwb + π0. Assuming a

negligible concentration of solutes within the apoplast, one can write ψwf ≈ pwf .

Given the internal cell pressure, the volumetric rate of water exchange, J̇w,bf

(kg/m3
· s), across plasma membrane is calculated as:

J̇w,bf =
γρwVw

RT
αp
(
ψwb − ψwf

)
(2.21)

Gas/water flow in stomatal cavity

At the stomatal cavity, velocity and pressure of a single-phase incompressible

fluid (i : gas or water) are solved by the Navier-Stokes equation, assuming a

laminar flow regime:

ρi
∂ui

∂t
+ ρiui · ∇ui = −∇P+ ηi∇

2ui (2.22)

with

∇ · ui = 0 (2.23)

During stages 1 and 2, the fluid is gas, while at stage 3, it is water.

2.3.4 Initial and boundary conditions

The initial pressure within the leaf structure was set to 1 atm. The initial leaf

temperature was set to a constant value, e.g. 25 ◦C. Gas velocity at the stomatal

cavity was initially zero. The initial saturations of all phases were calculated in

Section 2.3.5. The initial mass fraction of the vapor was calculated to be 0.026

based on the assumption of having initial moisture equilibrium between free
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water and gas:

ωv,eq =
xv,eqMv

xv,eqMv + (1− xv,eq)Ma
(2.24)

where xv,eq = pv,eq/P was calculated from Eq. (2.18) and Eq. (2.19). The subscript

eq indicates the equilibrium condition. The concentration of bacteria within the

leaf was initially zero. The initial water potential difference across cells plasma

membrane was set to zero. As the boundary conditions for various stages of

vacuum cooling process were different (Fig. 2.3a), they are elaborated below.

Stages 1 and 2

During stages 1 and 2, the fluid flowing within the stomatal cavity has the prop-

erties of gas. For the Navier-Stokes equation (Eq. 2.22), at the top boundary of

the stomatal cavity, gas pressure, Pstoma,top, is set to that of vacuum chamber,

Pchmb, (see Fig. 2.2b)

Pstoma,top = Pchmb (2.25)

and at the bottom boundary of the stomatal cavity, the pressure continuity be-

tween stomatal cavity, Pstoma,btm, and the mesophyll region, Pmes, is assumed:

Pstoma,btm = Pmes (2.26)

All other boundaries in the mesophyll region are impermeable to the fluids, and

therefore zero flux conditions are set for them.

Vapor balance equation (Eq. 2.6) is solved within the entire domain includ-

ing stomatal cavity and mesophyll region. At the stomatal opening, flux of the

vapor (kg/m2
· s) is:

nv,stoma,top = ρgugωv −
C2

g

ρg
MaMvDg,eff∇xv (2.27)
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For all other boundaries, the vapor flux is zero.

Free water and bound water balance equations (Eqs. 2.3 and 2.4, respec-

tively) are solved only in the mesophyll region. At all boundaries, zero flux

conditions are used for both.

Heat transfer equation (Eq. 2.8) is solved for the entire domain. At the stom-

atal opening, heat flux (J/m2
· s) includes heat transfer by bulk flow and thermal

conduction in the gas:

qstoma,top = ρgug(ωvCpv + ωaCpa)T − kg∇T (2.28)

and, at the top and bottom surfaces of the leaf, there is convective heat trans-

fer from air within the vacuum chamber to the leaf, and a heat loss due to the

evaporation of water film at the leaf surface. So, heat flux (J/m2
· s) at the leaf

surfaces is defined as:

qsurf = ht(Tchmb − T)− hmλ(ρv,sat − ρv,chmb) (2.29)

where ht and hm are the heat transfer coefficient (J/m2
· K · S) and mass transfer

coefficient (m/s) at the leaf surface, respectively. Tchmb and ρv,chmb are temper-

ature (K) and vapor density (kg/m3) of gas in the vacuum chamber. ρv,chmb is

dynamically updated based on the experimental profile of temperature and rel-

ative humidity of gas within a vacuum chamber (Ozturk and Ozturk, 2009).

ρv,sat is saturation vapor density of water (kg/m3).

During stages 1 and 2, the bacterial flux through the stomatal opening is

zero.
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Stage 3

At this stage the fluid within the stomatal cavity region is water. The boundary

conditions for the Navier-Stokes equation (Eq. 2.22) at the top boundary of the

stomatal cavity are described by Eq.(2.25). However, in stage 3, the chamber

pressure is increasing from the target vacuum level to the atmospheric pressure

(Fig. 2.2b). At the bottom boundary of the stomatal cavity, there is a pressure

continuity condition (Eq. 2.26).

Flux of water (kg/m2.s) entering the mesophyll tissue is equal to the flux of

water leaving the bottom boundary of the stomatal cavity, obtained from the

Navier-Stokes equation:

nw,mes = ρwuw,stoma,btm (2.30)

Flux of bacteria (CFU/m2
· s) entering the top boundary of the stomatal cavity

with water is defined as:

nb,stoma,top = cbub,stoma,top (2.31)

2.3.5 Input parameters

The input parameters used for simulating the vacuum cooling process with mi-

crobial infiltration are summarized in Table 2.1. Details of some of the input

parameters are described here.
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Table 2.1: Input Parameters

Parameter Symbol Value Units Source

Dimensions
Stomatal

opening diam-

eter

Dstoma 10− 20× 10−6 m Iwabuchi

and Kurata,

2003, Li et

al. (2008)
Stomatal

opening depth
Hstoma 30× 10−6 m Dymek et

al. (2015)

Leaf depth Hdomain 300× 10−6 m Dymek et

al. (2015)
Distance from

axis of sym-

metry

Rdomain 80× 10−6 m Assumed

Mass fractions

of solid compo-

nents (ζ )

Carbohydrate ωcarb 0.0363(spinach), 0.0329(lettuce) kg/kg USDA

(2016)

Fat ωfat 0.0039(spinach), 0.0030(lettuce) kg/kg USDA

(2016)

Protein ωprot 0.0286(spinach), 0.0123(lettuce) kg/kg USDA

(2016)

Fiber ωfib 0.0220(spinach), 0.0210(lettuce) kg/kg USDA

(2016)

Ash ωash 0.0090(spinach), 0.0034(lettuce) kg/kg USDA

(2016)

Density
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Water ρw 998 kg/m3 Rahman

(2005)

Vapor ρv Ideal gas kg/m3 Gulati

and Datta

(2013)

Air ρa Ideal gas kg/m3 Gulati

and Datta

(2013)

Solids ρs

∑
i∈ζ ωi∑
i∈ζ

ωi
ρi

kg/m3 Gulati

and Datta

(2013)

Porosity
Spongy meso-

phyll
φspg 0.95(spinach), 0.975(lettuce) m3/m3 Calculated

Palisade mes-

ophyll
φpls 0.95(spinach), 0.975(lettuce) m3/m3 Calculated

Initial satura-

tions
Spongy meso-

phyll, gas
Sg,spg 0.41(spinach), 0.40(lettuce) m3/m3 Calculated

Spongy meso-

phyll, free wa-

ter

Swf ,spg 0.15(spinach), 0.15(lettuce) m3/m3 Calculated

Spongy meso-

phyll, bound

water

Swb,spg 0.44(spinach), 0.45(lettuce) m3/m3 Calculated

Palisade mes-

ophyll, gas
Sg,pls 0.20(spinach), 0.19(lettuce) m3/m3 Calculated

Palisade mes-

ophyll, free

water

Swf ,pls 0.15(spinach), 0.15(lettuce) m3/m3 Calculated
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Palisade mes-

ophyll, bound

water

Swb,pls 0.65(spinach), 0.66(lettuce) m3/m3 Calculated

Intrinsic perme-

ability
Spongy meso-

phyll to free

water

κwf ,in,spg 1× 10−12 m2 Calculated

Palisade mes-

ophyll to free

water

κwf ,in,pls 1× 10−16 m2 Calculated

Mesophyll to

gas
κg,in Eq. (2.34) m2 Tanikawa

and Shi-

mamoto

(2009)

Relative perme-

ability

Water κw,r Eq. (2.35) Bear (1972)

Gas κg,r Eq. (2.36) Bear (1972)

Specific heat ca-

pacity

Water Cpw 4176 J/kg.K Rahman

(2010)

Vapor Cpv 1793 J/kg.K Rahman

(2010)

Air Cpa 1005 J/kg.K Rahman

(2010)

Solids Cps

∑
i∈ζ ωi C pi J/kg.K Gulati

and Datta

(2013)

33



Thermal con-

ductivity

Water kw 0.60 W/m.K Rahman

(2010)

Vapor kv 0.026 W/m.K Rahman

(2010)

Air ka 0.026 W/m.K Rahman

(2010)

Solids ks 0.5

∑i∈ζ ωi∑
i∈ζ

ωi
ki

+

∑
i∈ζ

ωiki

 W/m.K Gulati

and Datta

(2013)

Viscosity

Water µw 9.27× 10−4 Pa.s McCabe

etal.(1956)

Gas µg 1.80× 10−5 Pa.s McCabe

etal.(1956)

Water activity aw 1− exp (−c(T − 273.15)Mn) Foke, 2013

c = −9× 10−6(T − 273.15)2

+0.0007(T − 273.15)+ 0.0143

n = 0.0004(T − 273.15)2

−0.0354(T − 273.15)+ 2.068
Water capil-

lary diffusiv-

ity

Dw,cap 1× 10−9 m2/s Calculated

Water self dif-

fusivity
Dw,w 1× 10−9 m2/s Wang

(1965)
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Vapor dif-

fusivity in

air

Dg,eff Eq. (2.41) m2/s Millington

and Quirk

(1961)
Bacterial

diffusivity
Db,eff 1× 10−11 m2/s Warning et

al. (2016)
Latent heat of

vaporization

of water

λ 2.26× 106 J/kg Warning et

al. (2016)
Evaporation

constant
K 100 1/s Assumed

Osmotic water

permeability

of plasma

membrane

γ 40× 10−6 m3/m2.s Buckley

(2015)

Osmotic po-

tential of cell

at reference

state

π0 −0.95× 106 Pa Santakumari

and

Berkowitz

(1989)
Volumetric

elastic mod-

ulus of cell

wall

ε 0.25× 106 Pa Nobel

(2005)

Specific sur-

face area of

porous zone

αp

(
((Sg+Swf )φ)

3

5κwf (1−(Sg+Swf )φ)
2

)0.5

m2/m3 Rahman

(2005)
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Solid fraction properties

The USDA composition database (USDA, 2016) was used to calculate the effective prop-

erties (Gulati and Datta, 2013) for solid fraction of spinach and lettuce based on their

respective solid components (i.e., carbohydrates, proteins, lipids, fiber, and ash).

Porosities and initial saturations

According to the USDA database, about 10% solid content is available within the

spinach leaves, which is equivalent to about 5% solids volume fraction. Therefore,

within the spinach leaves, the total porosity (including free water, bound water and gas

volume fractions) can be estimated as about 0.95, which is comparable with a value of

0.90 for a leafy vegetable (Song et al., 2016). The gas porosity values within the spongy

and palisade mesophyll were assumed to be 0.39 and 0.19 (Buckley, 2015), respectively.

Therefore, the respective initial saturations of the gas were calculated as 0.41 and 0.20.

A saturation of 0.15 for free water was adopted in both mesophyll regions based on the

available microscopic images and volume fractions of subcellular components in plant

leaves (Pearce and Beckett, 1985; Warmbrodt and VanDer Woude, 1990; Winter et al.,

1994). Therefore, the saturations of bound water for spongy and palisade tissues were

found to be 0.44 and 0.65, respectively. The respective values for lettuce leaf with solid

content of about 5% were estimated by the same approach and are shown in Table 2.1.

Permeabilities

The permeability of the porous media to species i is defined as the product of an intrinsic

permeability, κi,in (m2), and relative permeability, κi,r:

κi = κi,inκi,r (2.32)
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To estimate the intrinsic permeability of the mesophyll tissue to water, the bundle of

tubes model, κwf ,in = ntπR4
t /(24τ) (Bear, 1972), was used. Here, Rt is the tube radius

(m), τ is the tortuosity of pores in the porous media, and nt is the number of vascular

tubes per unit area (tubes/m2). Assuming the fractional free cross section of the vas-

cular tubes to be equal to the summation of the gas and free water porosities, one can

estimate nt = (Sg + Swf )φ/(πR2
t ). Therefore, the bundle of tubes model was re-written

as (Warning et al., 2014):

κwf ,in =
(Sg + Swf )φR2

t

24τ
(2.33)

From available structural data for a typical spacing between cells and porosity of the

mesophyll tissue (Rockwell et al., 2014; Dymek et al., 2015; Buckley, 2015), the intrinsic

permeabilities of the spongy and palisade mesophyll were estimated as 1 × 10−12 m2

and 1 × 10−16 m2, respectively. These values are comparable with 1 × 10−13 m2 which

was used by Song et al. (2016) as an average permeability of a leaf matrix to water and

gas. The vacuum condition increases the mean free path of the gas molecules, creating a

relatively large Knudsen Number (Kn ≈ 1), which requires the Klinkenberg correction

on the gas permeability (Tanikawa and Shimamoto, 2009):

κg,in = κwf ,in

(
1+

0.15κ−0.37
wf ,in

P

)
(2.34)

The relative permeabilities to gas and water were estimated based on the respective

saturation of each species in the porous structure of mesophyll tissue (Halder et al.,

2007):

κw,r =


(

Swf−0.08
1−0.08

)3
Swf > 0.08

0 Swf ≤ 0.08
(2.35)

κg,r =


1− 1.1Swf Swf < 1/1.1

0 Swf ≥ 1/1.1
(2.36)
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Capillary diffusivity

From the basic definition of the capillary diffusivity (Halder et al., 2007),

Dw,cap = −
κwf ,inκwf ,r

φηw

∂Pcap

∂Swf
(2.37)

and the Kelvin’s equation, which defines capillary pressure (Pa),

Pcap = −
RT
Vw

ln(aw) (2.38)

one can relate the capillary diffusivity to leaf dry-basis moisture content, M (kg/kg),

and water activity:

Dw,cap =
κwf ,inκwf ,r

φηw

RT
Vwaw

∂aw

∂M
∂M
∂Swf

(2.39)

where

M = (Swf + Swb)
ρwφ

ρs(1− φ)
(2.40)

Estimating ∂aw/∂M from a model for water activity (Foke, 2013; Table 2.1), the capillary

diffusivity was estimated to be on the order of 1× 10−9 m2/s. The same value was used

for both spinach and lettuce leaves.

Vapor diffusivity

The diffusivity of vapor in air within the porous media is a function of porosity, gas

saturation, pressure and temperature (Millington and Quirk,1961):

Dg,eff = φ
1.33S3.33

g

(
2.13

P

)(
T

273.15

)1.8

(2.41)

Heat and mass transfer coefficients

The heat transfer coefficient at the leaf surface was dynamically updated based on the

gas density of the vacuum chamber. The Nusselt number (NuL) was estimated for a
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laminar flow over a flat surface (Incropera and DeWitt, 1990), having the dimensions

(L) of a leaf:

NuL = 0.664Re1/2
L Pr1/3 (2.42)

ht =
NuLkg,chmb

L
(2.43)

where ReL is the Reynolds Number of the flow at the leaf surface and Pr is the Prandtl

Number of the gas in the chamber. The resulting heat transfer coefficient, varying from

4 J/m2
·K·s to 0.4 J/m2

·K·s during stage 1, was proportional to the square root of the gas

density, i.e. ht ∝
√
ρg,chmb. The convective mass transfer coefficient at the leaf surface

was dynamically calculated by the Chilton-Colburn analogy (Incropera and DeWitt,

1990):

hm =
ht Dg,e f f Le0.33

kv,chmb
(2.44)

where Le is the Lewis Number of the gas in the chamber. During stage 1, hm changed

from 0.002 m/s to 0.0008 m/s.

2.3.6 Solution procedure

The governing equations were solved using a commercial finite element package,

COMSOL R© Multiphysics version 5.2a (COMSOL Multiphysics, Burlington, MA). The

time-step size was dynamically varied between 0.001s to 0.25s for stages 1 and 2, and

between 10 ns to 0.001s for stage 3. Relative and absolute tolerances of 0.0001 were

used for all computations. A mesh of 1620 triangular elements was used for the 2D

axisymmetric model for which the maximum element size was 10µm within the meso-

phyll tissue and far from the stomatal cavity. The solutions were done with the MUMPS

direct solver. Run time for the simulations ranged from a few to several hours on a Win-

dows machine with 32 GB of RAM, and 2 GHz dual core Intel R© Xeon R© CPU E5-2620

processor, depending on the time-step size and pressure jump duration.

39



0

20000

40000

60000

80000

100000

120000

0 50 100 150 200

Le
af

 c
e

n
te

r 
p

re
ss

u
re

 (
P

a)

Pressure reduction time (s)

Pvac = 5 kPa Pvac = 25 kPa

Pvac = 45 kPa

Simmons et al. (2009)

Stage 1

Figure 2.5: a) Computed pressure history at the midpoint of the leaf dur-
ing pressure reduction stage compared with literature experi-
mental data (Simmons et al., 2009).

2.4 Results and discussion

In this section, the predicted distributions of gas pressure, vapor pressure, evaporation

rate, temperature and moisture content of the leaf, and bacterial concentration are re-

ported and discussed. For some of the above variables, the predicted values will be

compared with experimental literature data.

2.4.1 Transient pressure in the leaf: validation

During stage 1, pressure of the vacuum chamber is decreased from atmospheric level to

the target pressure. Therefore, pressure within the leaf would decrease accordingly with

a rate depending on the permeability of the mesophyll as well as the resistance of the

stomatal opening to the gas flow. Variations of the leaf pressure during stage 1 is shown
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in Fig. 2.5 for three levels of target vacuum. The model predictions were compared with

the experimental data of the leaf pressure (Simmons et al., 2009) and reasonable agree-

ment were obtained. During a vacuum cooling process, the cooling effects come from

evaporation of water at the leaf surface and water within the porous structure of the

leaf. When the vapor pressure within the leaf tissue goes below the equilibrium vapor

pressure of water at local temperature, water starts to evaporate. Figure 2.6a shows a

typical variation of the pore vapor pressure versus equilibrium vapor pressure of water

at the midpoint of the leaf section. As the chamber pressure is decreased during stage 1,

the vapor pressure follows closely behind the equilibrium vapor pressure. Such a trend

has been reported for vacuum cooling of water (Cheng and Lin, 2007). During stage 1,

pressure gradually approaches a constant level (i.e., target vacuum). Therefore, pressure

gradients across the leaf tissue weaken and decrease the convective transport of vapor

out of the leaf section. This traps vapor within the leaf tissue and causes condensation

mainly in the spongy mesophyll region (Fig. 2.6b). Further reduction in the chamber

pressure leads to a rapid drop of vapor pressure (Fig. 2.6a) which follows by an increase

in the evaporation rate (Fig. 2.6b). During stage 2, vapor pressure is at a constant level

while equilibrium vapor pressure decreases as the produce becomes cooler (Fig. 2.6a).

Therefore, evaporation rate within the leaf tissue reduces during stage 2 (Fig. 2.6b).

2.4.2 Transient temperature in the leaf: validation

Simulation results for prediction of the leaf temperature were validated against exper-

imental data for iceberg lettuce leaves (Ozturk and Ozturk, 2009). Figure 2.7a and b

show reasonable agreement between the predicted and experimental leaf temperatures

during stages 1 and 2 at two different vacuum levels of 700 Pa and 1000 Pa. Several

factors can contribute to the small discrepancies between simulation results and ex-

perimental data. These mainly include simplification of the computational geometry,

several assumptions to simplify the model, and differences between input data (e.g.,
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physical, thermal and structural prosperities of the leaf) of the computations and those

of the experiments. Convective heat transfer takes place at the leaf surface. Evaporative

cooling also happens at the surfaces of the leaf and within its porous structure, as the

vapor pressure drops below the equilibrium vapor pressure of water (Fig. 2.6a). Since

the evaporative heat loss dominates the convective heat gain, the leaf cools down by the

end of stage 1. As explained earlier, during stage 1, along with the reduction in the pres-

sure gradients, the effect of evaporation gets temporarily weaker. Therefore, due to the

dominance of the convective heat transfer at the leaf surface over evaporative cooling,

as well as condensation within the leaf tissue (Fig. 2.6b), the rate of cooling is decreased

at the end of stage 1. If this effect is strong enough, it can cause a small increase in

the temperature of the produce (Cheng and Hsueh, 2007). After expulsion of the gas

from the porous structure of the leaf, a sharp evaporation takes place (Fig. 2.6b) causing

the temperature to fall rapidly. The temperature within the leaf section was uniform

during the cooling process (Fig. 2.7c). Therefore, the trends shown in Fig. 2.7a and b

are the same for the entire leaf tissue. The total cooling time depends on the amount of

available water, characteristics of the leaf tissue (e.g., porosity) and the target vacuum

level. The higher the vacuum level, the shorter the cooling time, and the cooler the final

product.

2.4.3 Transient temperature in a non-porous slab

To better understand the effect of the porous structure on the heat transfer in the leaf

section during vacuum cooling, variation of temperature for a non-porous slab with the

same thickness as a leaf, located in the vacuum chamber is also shown in Fig. 2.7a and

b. The material properties of the slab was the same as the effective properties (Eq. 2.9-

2.11) of a leaf, and the boundary conditions were the same as those at the leaf surfaces

(Eq. 2.29). The temperature profile of the slab in stage 1 is quite close to that of a porous

material. However, the temperature is slightly higher, which reflects the effect of some
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evaporative cooling within the leaf tissue. At the end of stage 1, there is an increase

in the relative humidity of the gas within the vacuum chamber (Ozturk and Ozturk,

2009), which can decrease the effect of evaporative cooling at the leaf surface. Therefore,

the convective heat gain dominates the evaporative heat loss at the surface of the slab

and its temperature temporarily increases. After a while, during stage 2, following

the expulsion of vapor from the chamber, relative humidity drops back, which results

in a downward trend in the slab temperature. A comparison between the temperature

profile of the slab and that of the porous material reflects the effect of volumetric cooling

that can only take place in a moist porous material.

2.4.4 Transient moisture content in the leaf: validation

Variation of the average moisture content of the leaf during vacuum cooling at two

vacuum levels of 700 Pa and 1000 Pa are illustrated in Fig. 2.8a. During stage 1, by

generation of vapor within the porous tissue, the vapor pressure follows slightly the

equilibrium curve (Fig. 2.6a) with a negligible moisture evaporation rate (Fig. 2.6b).

Therefore, the amount of moisture loss becomes close to zero and moisture content takes

a constant level (Fig. 2.8a). At the end of stage 1, the chamber pressure reaches the target

vacuum level and moisture content drops due to the sharp evaporations (Fig. 2.6b).

Similar experimental trends has been reported by He and Li (2008) for weight loss of

iceberg lettuce during vacuum cooling. The predicted values for the total weight loss

were in qualitative agreement with the available published data for vacuum cooling of

leafy greens (Showalter and Thompson, 1956; He and Li, 2008; Fig. 2.8b).
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2.4.5 Spatial variation of pressure and water concentration dur-

ing re-pressurization

A typical variation of water concentration and pressure within the leaf section during

re-pressurization stage is shown in Fig. 2.9. When sufficient water is available at the

stomatal opening, the pressure jump creates an inward flow into the stomatal cavity.

The pressure build-up within the leaf mainly depends on the permeability of the porous

zone to fluids. Higher permeabilities create faster pressure increase. As water enters

the leaf section, it flows through the intercellular air spaces within the mesophyll tissue

mainly driven by pressure. This is similar to the penetration of liquids into a porous
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food material during a vacuum impregnation process (Tylewicz et al., 2012).

2.4.6 Bacterial infiltration

Before re-pressurization, bacteria are assumed to be dispersed within the water film

at the leaf surface. The re-pressurization stage creates pressure gradients within the

chamber and leaf section, pushing water and bacteria into the stomatal opening region

(Fig. 2.9). The mechanism is similar to what happens during vacuum impregnation

of plant tissues where the tissue is submerged in a liquid and subjected to a reduced

pressure followed by a rapid re-pressurization (Simmons et al., 2009). This has been a

common method for artificially infiltrating bacteria into the leaf section through avail-

able openings like stomata and wounds (Bechtold and Pelletier, 1998; Tague and Man-

tis, 2006; Vonasek and Nitin, 2016). Figure 2.9 shows that the short re-pressurization

time made the infiltration of bacteria mainly restricted to the stomatal cavity region.

For longer re-pressurization durations (data not shown), however, bacterial infiltrated

much deeper into the leaf section. This is in agreement with the previous studies show-

ing that a slow release of the vacuum would lead to better impregnation of water into

the tissue (Baker and Wicker, 1996; Panarese et al., 2013). Within the stomatal cavity,

water freely flows and bacterial infiltration is mainly due to convective transport. In

contrast, in the porous zone, the velocities of water and bacteria decline as they face

cellular obstacles and bacteria scatter around within the mesophyll tissue. Snapshots

of the infiltrated GFP-tagged E. coli O157:H7 clusters at 12 µm beneath the surface of

vacuum-cooled lettuce leaves (Li et al., 2008) showed that bacterial communities gath-

ered within the stomatal cavities and scattered around them.

A typical variation of the total amount of bacterial infiltration into the leaf is illus-

trated in Fig. 2.10a. The model prediction for the total infiltrated bacteria is in qual-

itative agreement with the experimental data for infiltration of bacteria into spinach

leaves during the vacuum cooling at 700 Pa (Shynkaryk et al., 2016). The normalized
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concentration of infiltrated bacteria along the stomatal opening centerline is depicted

in Fig. 2.10b. The highest concentration of bacteria is at the stomatal cavity region. As

bacteria approach the porous structure of the mesophyll tissue, their concentration de-

creased rapidly toward the leaf depth. This is more evident right after the pressure

jump from 700 Pa to atmospheric pressure. When the pressure reached the atmospheric

level, bacteria spread out within the tissue due to the remaining pressure gradients and
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stage

diffusion. Available microscopy imaging data (Warmbrodt and VanDer Woude, 1990;

Dymek et al., 2015) for cross section of the leafy greens show that there are relatively

large air spaces within the mesophyll tissue with respect to the bacterial size. Within

the spongy mesophyll, one can expect presence of air pockets with two (or higher) or-

ders of magnitude larger than bacteria. Presence of these routes facilitate the passive

transport of bacteria by water flood into the porous structure of the leaf.

The results of the present study showed that during pressure jump, the convective

transport of bacteria by water was highly dominant in both the stomatal cavity (for

∼100%) and mesophyll (for ∼90%) regions. A summary of the mechanisms of water

and bacterial infiltration during re-pressurization is shown in Fig. 2.11.

2.5 Sensitivity analysis

In order to determine the overall effects of some of the model parameters on the amount

of water and bacterial infiltration into the leaf, sensitivity analyses were performed

(Fig. 2.12 and 2.13). These parameters include 1) transport properties, i.e., capillary

diffusivity of water, diffusivity of bacteria, 2) leaf characteristics, i.e., mesophyll per-
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Figure 2.12: Sensitivity of the amount of water infiltration during re-
pressurization stage to various process and product param-
eters.

meability, initial moisture content, stomatal opening size, and leaf side, and 3) process

parameters, i.e. vacuum level, vacuum duration, and re-pressurization duration.

2.5.1 Transport properties

Capillary diffusivity

During re-pressurization, water is pushed through the stomatal opening and the leaf

mesophyll due to the large pressure gradients created within the leaf section. As wa-

ter flows into the pores, concentration gradients cause water to diffuse within the tis-

sue. This observation neglects the hydrophobic nature of the exposed surfaces of the

mesophyll cells for various plants (Steward, 1986). Figure 2.12 shows that one order

of magnitude increase in the capillary diffusivity increases water infiltration by 4.13%.

During vacuum impregnation of porous foods, the driving force for the infiltration of
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Figure 2.13: Sensitivity of the a) amount and b) depth of bacterial infil-
tration during re-pressurization stage to various process and
product parameters.
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the liquids into the porous structure is the gradients in the imposed pressure and the

capillary pressure (Fito, 1994; Panarese et al., 2013). The higher the capillary pressure

gradient (i.e., capillary diffusivity), the more water can penetrate the pores.

Diffusivity of bacteria

Diffusion coefficient of bactreia in water can be different among various species. In

general, motile bacteria can diffuse faster than non motile ones by about three orders of

magnitude (Kim, 1996). Even so, bacterial diffusivity did not play a significant role on

the amount of bacterial infiltration into the leaf during the re-pressurization stage. Dur-

ing pressure jump from 700 Pa to 1 atm, the contribution of diffusive transport within

the porous structure of the leaf was less than 10%. This is due to the dominant effects of

the pressure-driven convective transport of bacteria after vacuum release. One order of

magnitude change in the bacterial diffusivity led to 0.63% change in the total amount

of infiltrated bacteria (Fig. 2.13a). However, the depth of the infiltration was signifi-

cantly affected (Fig. 2.13b). This is consistent with previous findings showing bacteria

with higher diffusive (motile) capabilities spread more within a porous media (Licata

et al., 2016). Note that the above observations ignore the effect of active plant-microbe

interactions (for example, chemotaxis toward nutrients and biofilm formation) on the

bacterial random walks and diffusivity. For later times after re-pressurization when

bacteria sense the nutrients available within the leaf tissue, they may do chemotaxis

toward the nutrients and actively attach to the plant cells and form colonies, which can

cease their random walks. These active interactions are of longer time-scales than the

re-pressurization time during vacuum cooling, and therefore are not considered in the

present model.
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2.5.2 Leaf properties

Permeability

Within the leaf section, water can either diffuse due to capillarity effects or flow due

to the pressure gradients created during the vacuum cooling process. In Darcy’s law,

permeability reflects the sole effect of the porous matrix property on the fluid velocity.

Leaves of various types and ages have different structural properties (e.g., porosity, pore

size distribution) and therefore different permeability to water and gas. As shown in

Fig. 2.12, 5.73% more water infiltrated into the leaf through the stomatal opening when

intrinsic permeability of the mesophyll tissue increased by one order of magnitude.

This further caused 1.04% more bacteria to infiltrate into the leaf (Fig. 2.13a) with 0.41%

increase in their maximum depth of infiltration (Fig. 2.13b). For higher permeabilities,

water can more easily flow through the gas spaces of the mesophyll tissue and therefore

more bacteria are transported into the leaf by convection. Similar relation between per-

meability of the produce tissue and the amount of water and bacterial infiltration were

obtained in hydrocooling of tomato (Warning, et al., 2016). In the present study, as the

convection-dominated flow time-scale is very short due to the short re-pressurization

time, the effect of permeability on water infiltration was not very significant.

Initial moisture content

If the leaf loses moisture prior to the vacuum cooling process, more water can infiltrate it

during the re-pressurization stage (Fig. 2.12). Dehydration (i.e., lower water saturation)

creates larger water concentration gradients, driving stronger capillary diffusion within

the porous tissue (Parker et al., 1987). In addition, as the relative permeability is larger

for the dehydrated porous structure, the pressure-driven flow will also increase (Warn-

ing et al., 2016). Therefore, due to stronger water transport, the amount and depth of

the bacterial passive infiltration into the leaf is higher for a dehydrated tissue (Fig. 2.13).
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Stomatal opening (cavity) size

Size of the stomatal opening varies over a leaf surface and also for various leaf types. In

addition, this size may change when the leaf undergoes pressure changes as a result of

water potential gradients across plasma membranes of stomatal guard cells (Raschke,

1970; Li et al., 2008; Sibbernsen and Mott; 2010). The model results showed that a

2 µm increase in the stomatal opening effective diameter (see Table 2.1 for nominal

sizes) created a 67.37% increase in the amount of water infiltration (Fig. 2.12). This

favored 8.6% more bacteria to infiltrate into the leaf tissue (Fig. 2.13a). Vacuum-induced

infiltrated bacteria into lettuce leaf tissue was observed to be 5.4% of the initial cell

population at the leaf surface (Li et al., 2008). From data of the amount of bacterial

infiltration into spinach leaves reported by Shynkaryk et al., (2016), 0.02% of the initial

cell population infiltrated into the leaf tissue. This considerable difference in lettuce and

spinach infiltration can be partly explained by the fact that the stomatal opening size in

lettuce is generally larger than those on spinach leaves (Iwabuchi and Kurata, 2003; Li et

al., 2008). Indeed, other factors like differences in stomatal density and wettability of the

leaves, process conditions, etc., could have also played roles in the bacterial infiltration.

In a mathematical model for vacuum impregnation of a bacterial suspension into lettuce

tissue, volume of the infiltrated bacterial suspension was directly proportional to the

volume of the stomatal cavity (Simmons et al., 2009). The above results suggest that the

stomatal opening size can play a role in the amount of bacterial infiltration.

Leaf side

The upper surface of the leaf has only about 25% as many stomata as the lower surface

(Panarese et al., 2016). In addition, at the upper leaf surface, the region adjacent to the

stomatal cavity is the palisade mesophyll which has less permeability to water (cells are

tightly packed). Despite these structural characteristics, the total amount of water infil-

trating the stomate at upper leaf surface is 50.27% of that of stomate located at lower leaf
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surface (Fig. 2.12). At the interface between palisade and spongy mesophyll (Fig. 2.1a),

there is a large gradient of water concentration, driving a fast diffusion of water out of

the palisade tissue. However, the low permeability of the palisade mesopyll works as a

barrier for bacteria. During the re-pressurization stage, as bacteria can hardly be trans-

ported into the palisade tissue, their concentration within the stomatal cavity increases

to a point that would cease their velocity due to agglomeration (See Eq. 2.16). There-

fore, they could not penetrate deeply into the leaf tissue from upper stomata (Fig. 2.13b)

and the total amount of bacterial infiltration for the upper and lower sides of the leaf

were not significantly different (Fig. 2.13a). These predictions follow the experimental

evidences showing that the effect of leaf side on the amount of bactreia infiltration into

lettuce leaf was not statistically significant, although infiltration from the top side of the

leaf was slightly higher (Vonasek and Nitin, 2016).

2.5.3 Process operating parameters

Vacuum level

Applying higher levels of vacuum (around 700 Pa) ensures reaching safe levels of pro-

duce temperature (about 6 ◦C; Ozturk and Ozturk, 2009) during the vacuum cooling

process (see Fig. 2.7). Although produce quality is improved due to lower temperature,

high vacuum levels may promote the risk of infiltration during the re-pressurization

stage. Lowering the vacuum (i.e., increasing the absolute pressure) from 700 Pa to 1000

Pa (Ozturk and Ozturk, 2009), while maintaining the same rate of pressure increase dur-

ing re-pressurization, led to lower amounts of water and bacterial infiltration into the

leaf tissue (Fig 2.12 and 2.13a). With the vacuum lowered (i.e., at 1000 Pa), the pressure

gradient driving the flow is decreased between inside the leaf and outside. In addition,

the time to reach atmospheric pressure is shorter when starting from 1000 Pa. Both

these factors combine to reduce the amount and depth of water and bacteria entering
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the mesophyll. These reductions in the amount and depth of infiltration at a lowered

vacuum were indeed the experimental observation in infiltration of bacterial suspen-

sion into lettuce leaves during a vacuum impregnation process (Simmons et al., 2009;

Simmons et al., 2014), thus validating the predictions.

Vacuum duration

As shown in Fig. 2.12, 10% increase in the vacuum duration, increased the amount of

water infiltration to the leaf tissue by only 0.62%. This slight increase in the amount

of water infiltration is because of having a more dehydrated product after longer vac-

uum duration. During re-pressurization, the larger water concentration gradients cre-

ate more water capillary diffusion into the tissue. This would also slightly increase the

amount and depth of bacterial infiltration (Fig. 2.13). The effect of vacuum duration

might be more significant than what is predicted here. In reality, during stages 1 and 2,

as the water film at the leaf surface evaporates, bacteria may be transported toward the

leaf surface due to the evaporation-driven internal flows within the water film (Dee-

gan et al., 1997), which is not included in the present model. Therefore, longer vacuum

duration (i.e., more evaporation of water film at the leaf surface) would accumulate

bacteria closer to the leaf surface, and cause more infiltration into the leaf tissue during

re-pressurization at stage 3. This is in agreement with the experimental observation of

Vonasek and Nitin (2016) showing a low moisture condition at the leaf surface, created

from air drying of water film a the leaf surface, led to more bacteria associate around

stomatal openings.

Re-pressurization duration

Re-pressurization duration can play a role in the amount of water infiltration into the

leaf. At the start of stage 3, when vacuum is broken, pressure inside the chamber in-
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Figure 2.14: a) More water is infiltrated with longer re-pressurization time,
until b) it becomes a constant value with no further increase.

creases very rapidly to a near atmospheric pressure level, typically followed by a more

gradual increase to the atmospheric pressure (Cheng and Hsueh, 2007). If sufficient wa-

ter is available at the leaf surface due to water spray on the leaves during vacuum cool-

ing (Li et al., 2008; Vonasek and Nitin, 2016), extended re-pressurization duration can

promote water infiltration into the leaf (Fig. 2.14a). Therefore, if the spray water is pol-

luted by bacteria, the chance of infiltration would increase for longer re-pressurization

durations. For very short re-pressurization durations, the pressure reaches the atmo-

spheric level rapidly and the huge pressure gradients across the leaf section lead to a
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rapid water infiltration which is small in amount. The flow maintains until the gradi-

ents vanish with a rate depending on the permeability of the porous structure to wa-

ter. For extended durations of re-pressurization, the pressure gradients are smaller but

they last longer, infiltrating more water into the leaf (Baker and Wicker, 1996). How-

ever, such an increase in water infiltration as a function of re-pressurization duration

is suppressed at some point and reaches a plateau as is shown in Fig. 2.14b. These

predictions are in agreement with experimental evidences of vacuum impregnations

of porous foods indicating a reduction in weight gain for faster re-pressurizations and

reaching a constant weight gain level at longer re-pressurization durations (Paes et al.,

2007). In reality, several plants respond to flooding of their intercellular air spaces with

water by rapid (partly or complete) closure of stomata in a few minutes (Sibbernsen and

Mott, 2010). Therefore, in long re-pressurization durations, they may limit or suppress

water inflow through this defense mechanism.
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2.5.4 Summary of factors affecting infiltration

Figure 2.15 summarizes the main conclusions from the sensitivity analysis. Re-

pressurization duration, initial moisture content of the leaf and size of stomatal opening

are the primary factors affecting water and bacterial infiltration into the leaf. The vac-

uum level and capillary diffusivity of water are the secondary factors. The depth of in-

filtration was primarily affected by re-pressurization duration, bacterial diffusivity, and

leaf side. For extended re-pressurization duration, the pressure gradients last longer,

causing more and deeper water infiltration. A low initial moisture content of the leaf

leads to a stronger capillary diffusion of water within the leaf and creates stronger con-

vective transport of water and bacteria by increasing the relative permeability. A wider

stomatal opening significantly favored more water and bacterial infiltration. Bacteria

having higher diffusivity (motility) were able to reach deeper locations in the leaf. In-

filtration was deeper when occurred from the bottom side of leaf as the permeability to

water is higher in the spongy mesophyll region.

2.6 Conclusions

The pressure-driven infiltration of bacteria into leafy greens through stomatal openings

during the re-pressurization stage of the vacuum cooling process was studied using a

mechanistic multiphase transport model considering the leaf as a porous medium. The

model results for predictions of leaf tempearature, weight loss, and the amount of bac-

terial infiltration were validated against available experimental data with reasonable

agreements. It was shown that when the vacuum is broken, pressure gradients occur

across the leaf thickness, driving water on the leaf surface into the leaf section. There-

fore, if the water on the leaf surface contains bacteria, they can be passively transported

into the leaf tissue. The flow of water into the porous structure of the leaf also creates

large concentration gradients of water, favoring diffusive transport of bacteria within
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the mesophyll tissue. However, the role of convective transport were much more dom-

inant in bacterial transport. Stomatal opening size, initial moisture content of the leaf,

and prolongation of the re-pressurization time were among the primary factors affect-

ing the amount of water and bacterial infiltration. Capillary diffusivity of water in the

leaf and vacuum level were shown to play a secondary role on the infiltrations. The

depth of the bacterial infiltration was significantly increased for higher bacterial dif-

fusivity (motility), bottom versus top side of the leaf, and extended re-pressurization

duration.
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CHAPTER 3

MECHANISTIC MODELING OF LIGHT-INDUCED CHEMOTACTIC

INFILTRATION OF BACTERIA INTO LEAF STOMATA

3.1 Abstract

Light is one of the factors that can play a role in bacterial infiltration into leafy greens

by keeping stomata open and providing photosynthetic nutrients for microorganisms.

Despite the known infiltration risks, limited mechanistic knowledge regarding this im-

portant infiltration pathway is available. In this work, by looking at one stomatal

opening, we model chemotactic transport of bacteria within a leaf tissue in response

to the photosynthesis occurring within plant mesophyll and guard cells. This first-time

comprehensive model includes transport of carbon dioxide, oxygen, bicarbonate, su-

crose/glucose, bacteria, and autoinducer-2 within the leaf tissue. Biological processes

of carbon fixation in chloroplasts, and respiration in mitochondria of the plant cells, as

well as motility, chemotaxis, nutrient consumption and communication in the bacterial

community are considered. The model results for the amount of bacterial infiltration

into the leaf tissue are validated by conducting microbiological experiments. The re-

sults showed that presence of light is enough to boost bacterial chemotaxis through the

stomatal opening and toward photosynthetic nutrients within the leaf tissue. Bacterial

ability to do chemotaxis was a major player in infiltration. It was shown that the plant

stomatal defense in closing the stomata as a perception of microbe-associated molecular

patterns is an effective way to inhibit the infiltration.
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3.2 Introduction

Several human pathogenic bacteria such as Salmonella, and Escherichia coli are able to

attach the microstructure at the surface of plant leaves, such as trichomes, stomata and

grooves (Warning and Datta, 2017), and localize at sites that are not accessible for wash

water and sanitizers. The bacteria are also able to infiltrate into available openings at

the leaf surface, such as stomata, cuts and wounds to reach tens of micrometer depths

below the leaf epidermis (Kroupitski et al., 2009). This infiltration presents a risk to

the public health by causing serious foodborne outbreaks as consumption of raw leafy

greens have been on the rise over the past decades (Olaimat and Holley, 2012).

Light is one of the driving forces that can promote infiltration of pathogenic bacte-

ria into plant leaves. Incubation of Salmonella enterica on iceberg lettuce leaves in the

light led to association of bacteria near open stomata and infiltration into the leaf tissue.

However, a dark condition caused a scattered attachment pattern at the leaf surface

and a poor stomatal infiltration (Kroupitski et al., 2009). Nutrients, such as glucose

and sucrose, produced by photosynthetically active cells in the leaf tissue during light

exposure are attractive for bacteria that may be initially present at the leaf surface (Gol-

berg, Kroupitski, Belausov, Pinto and Sela, 2011). Opening of the stomata in light brings

up an opportunity for bacteria to do chemotaxis toward the gradients of nutrients into

the leaf interior. Many plants have evolved stomatal defense machinery to close the

stomata upon perception of bacterial surface structures, known as microbe-associated

molecular patterns (MAMPs) (Melotto, Panchal and Roy, 2014). However, it is not al-

ways successful and some human pathogens could penetrate the leaf interior through

a process involved with chemotaxis and motility (Kroupitski et al., 2009).

The process of light-driven infiltration is complex involving plant photosynthesis

and respiration, and transport of gases, nutrients and bacteria, that are all intercon-

nected. These processes are affected by various factors including leaf properties, bacte-

rial features and environmental conditions. A deeper understanding of such a complex
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system can be obtained through development of a mechanistic model that integrate all

the relevant biological processes together with the physics of transport. A mechanistic

model can provide a comprehensive understanding of how various factors contribute

to the overall process. Such a model, by its nature, can isolate the effect of a particu-

lar factor that is difficult to obtain through experiment alone. While models exist for

individual elements of this complex such as for bacterial chemotaxis (Tindall, Maini,

Porter and Armitage, 2008) and growth (Monod, 1949), and plant photosynthesis (Far-

quhar, von Caemmerer and Berry., 1980), they have not been combined for this complex

system.

3.2.1 Objectives

The objectives of this manuscript are to: 1) develop a model for chemotactic and motile

transport of bacteria through an open stoma into the leaf interior toward the concentra-

tion gradients of photosynthetic products of glucose and oxygen, 2) couple this model

with a model of photosynthesis and respiration, and related multicomponent transport

and generation of gases and sugar inside the leaf as a porous medium, 3) validate the

models against literature and experimental data for photosynthetic products generated

and the amount of bacterial infiltration into the leaf interior, and 4) identify the most

important parameters and quantify their relative contributions to light-driven bacterial

infiltration.
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(2014).

3.3 Model development

3.3.1 Biological aspects

As the model includes various biological issues related to plant and bacteria, they are

briefly discussed here.
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Leaf

A typical leaf section is shown in Fig. 3.1a. It includes a mesophyll tissue in the middle

and two epidermis layers at top and bottom. The leaf surfaces are covered by a waxy

cuticle. Stomatal openings are responsible for selective mass exchange between the leaf

tissue and outside environment based on various biotic and abiotic environmental con-

ditions (Shimazaki et al., 2007; Melotto et al., 2014; Panchal et al., 2016). Inside plant

cells (Fig. 3.1b), the cytoplasm is covered by a plasma membrane and a cell wall. The

majority of the cytoplasm volume is occupied by vacuoles which mainly contain water.

Guard cells and mesophyll cells contain chloroplasts which are responsible for photo-

synthesis; production of organic nutrients. All cells within the leaf section have mito-

chondria which are responsible for respiration; production of energy from oxidation of

organic nutrients. Water and nutrients can move from one cell to another through plas-

modesmata, known as symplastic transport. In contrast, mainly in apoplastic phloem

loaders such as spinach leaves, nutrients are also available in the apoplastic region (Voit-

sekhovskaja et al., 2000). Here, any water outside of the plasma membrane is called free

water whereas intracellular water is called bound water.

During process of photosynthesis (Fig. 3.1c), light reactions occur within thylakoid

membranes in which water is consumed as an electron donor and releases oxygen,

hydrogen ions and electrons. The electrons are supplied to two successive electron

transport chains that end up with production of ATP and NADPH to contribute in

carbon fixation. Calvin cycle uses these molecules to convert carbon dioxide (CO2) to

triose phosphates (TPs) (i.e., three-carbon sugar-phosphate molecule) that are building

blocks for sugars production. The enzyme that catalyzes this carbon fixation step is

RuBP carboxilase/oxygenase, or RuBisCO. The cycle runs three times to generate one

molecule of triose-phosphate that is then provided to the plant to synthesize starch and

sugars (e.g., sucrose). If the concentration of CO2 declines, RuBisCO can bind oxygen

molecules (O2) in place of CO2. This process is called photorespiration which does not
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generate ATP. See Campbell et al. (2008) for more details.

Sucrose is synthesized in cytoplasm from TPs coming from chloroplast (Sharkey,

1985). In apoplastic phloem loaders, sucrose/glucose diffuse into the apoplast, me-

diated by SWEET transporter proteins located at the cell plasma membrane (Chen,

2014) (Fig 3.1), and then actively transported into sieve elements via SUT1 sucrose trans-

porter (Rennie and Turgeon, 2009; Doidy et al., 2012). In the appoplast (and also within

cells), invertase enzymes hydrolyse sucrose into glucose and fructose where they can

be accessible by microorganisms present at the intercellular spaces of the leaf tissue

(Vargas and Salerno, 2010).
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Bacteria

The underlying pathways related to transport and growth of bacteria (i.e., E. coli) are

shown in Fig. 3.2. Bacterial motility (Fig. 3.2a) is referred as the random tumbling mo-

tion of a bacterium cell due to rapid changes in the direction of flagellar rotation. At the

cytoplasmic membrane of bacteria, several chemoreceptors called methylated chemo-

taxis proteins (MCPs) exist that are sensitive to different extracellular molecules (i.e.,

ligands). While there is no external molecule bound to the MCPs, bacterium continues

the tumbling motion (McAdams et al., 2004). If an external attractant molecule binds

to the MCPs (Fig. 3.2b), bacterium continues to swim toward the attractive chemicals

(e.g., glucose, AI-2, O2).

Bacteria communicate by producing and sensing signaling molecules. The intercel-

lular signaling known as quorum sensing (QS) allows bacteria to regulate production

of gene products such as enzymes, and coordinate behavioral responses at high cell

densities (Laganenka et al., 2016). Among various QS systems discovered in E. coli

(Zohar and Kolodkin-Gal, 2015), auto-inducer 2 (AI-2) signaling pathway is considered

here (Fig. 3.2c). AI-2 has a key role in quorum sensing and biofilm formation in E. coli.

AI-2 is a chemoattractant for E coli in a process mediated by LsrB binding protein and

type Tsr of MCPs (Jani et al., 2017) . It enhances bacterial chemotaxis toward external

attractants (Long et al., 2017), like glucose and oxygen.

Bacterial growth is often limited by availability of nutrients. In E. coli the growth

limiting nutrients (Peterson et al., 2005; Bren et al., 2013) can be sources of carbon (e.g.,

glucose), nitrogen (e.g., ammonium), phosphorus (inorganic phosphate), etc. Oxygen

can also affect the growth of E. coli as a facultative anaerobe (McDaniel et al., 1965).

Most of the microorganisms, including E. coli, prefer glucose as their primary carbon

source (Gorke and Stulke, 2008). If sufficient glucose is present in the growth medium,

synthesis of the enzymes needed for transport and metabolism of the less favorable

sugars will be repressed. This phenomena is called carbon catabolite repression (CCR)
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(Luo et al., 2014). Glucose (and many other carbohydrates) is assimilated by bacteria

through the phosphotransferase system (PTS) (Fig. 3.2d) (Gorke and Stulke, 2008).
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3.3.2 Problem description and assumptions

Simplified overview of the processes

Figure 3.3 shows a schematic of the physical processes in light-driven active internaliza-

tion of chemotactic bacteria into leaves through stomatal opening. This study considers

the leaf surface to be covered by a thick layer of water containing bacteria. In absence of

light (Fig. 3.3a), stomatal guard cells remain closed. Shedding light on the leaf (Fig. 3.3b)

triggers opening of the stomatal pore (Shimazaki et al., 2007) which enhances the gas

exchange into or out of the leaf tissue. Exposure to light also induces carbon fixation in

the photosynthetic cells, including mesophyll cells and stomatal guard cells, leading to

synsthesis of various types of sugars as well as oxygen. These nutrients attract bacteria,

initially being within the water film at the leaf surface, to reach stomatal opening and

infiltrate the leaf (Kroupitski et la., 2009).

A closer look at the major pathways happening within a mesophyll cell that end up

to the bacterial attraction to synthesized nutrients is shown in Fig. 3.3c. Carbon dioxide

(CO2) can transport into the leaf tissue and diffuse in intercellular water, cell wall and

plasma membrane to reach the chloroplast . Meanwhile, some CO2 may be hydrated

into bicarbonate (HCO−3 ). Sugar (which is assumed to be glucose/sucrose) and O2 are

produced due to photosynthesis in the chloroplast, portion of it being reused in mito-

chondrion to regenerate CO2 and water. The excessive O2 diffuses out of the cell into

intercellular water (where it can attract bacteria) and gas. In apoplastic loader plants

like spinach, the excessive sugar is transported to the apoplast to be loaded into the

phloem (Doidy et al., 2012). Here, it is assumed that sugar efflux through SWEET trans-

porter proteins happens at the mesophyll plasma membrane (Chen, 2014). So, sugar

can diffuse into the intercellular water and be consumed by bacteria (Fig. 3.3c). Bacteria

transport via motility and chemotaxis toward nutrients and chemoattractants (AI-2),

starting from the layer of water outside to the intercellular space of the leaf interior.
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Computational schematic and assumptions

The computational schematic of the problem is shown in Fig. 3.4a. A 2D-axisymmetric

domain around one stomatal pore, including the leaf tissue and a water film at the

leaf surface, was considered as the solution domain. Transport and interactions of

seven species including CO2, O2, HCO−3 , symplastic glucose/sucrose, apoplastic glu-

cose/sucrose, bacteria, and AI-2 are studied in an isothermal condition. For all species

other than bacteria, a diffusion-reaction equation describes their time and spatial eval-

uations. For bacteria, in addition to a diffusion transport term which describes their

motile (diffusion-like) motion, a convective term defines their tactic (convective-like)

motion in the free water phase. The leaf tissue was assumed to be a porous media

containing solid, gas and water phases (Fig. 3.4b). Due to uncertainty about the situ-
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ation of gas and free water within the stomatal cavity, this region was also considered

as a porous zone and each phase inside that is determined by its own saturation. In

this approach, saturation of free water is a measure of wettability of the stomatal guard

cells. The leaf surfaces are assumed to be impermeable to mass transfer due to the

presence of the waxy cuticle layer. It was assumed that chloroplasts and mitochondria

are homogeneously distributed within the leaf tissue. Within guard cell and mesophyll

regions, there are photosynthesis, photorespiration, respiration, and CO2 hydration re-

actions. For epidermis layers, only CO2 hydration reaction is considered. A reaction

term describes the exchange of sugar, between symplast and apoplast, through SWEET

transporter proteins. Bacterial uptake of apoplastic glucose and O2 are also modeled as

a reaction term.

3.3.3 Governing Equations

Model overview

An overview of the model, including all involved species and their interconnections

are shown in Fig. 3.5. Temporal and spatial evolution of each species is described by a

diffusion-reaction equation. For bacteria, a convective term is also added to the trans-

port equation to account for the chemotactic motion toward nutrients.

Basic Definitions

The solution domain includes a leaf section and a water film at the leaf surface

(Fig. 3.4a). Within the leaf section, a total porosity, φ, is defined as the volume frac-

tion occupied by all fluid phases:

φ =
1
δV

∑
i

δVi (3.1)
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Here i = w f, wb, g represent free (intercellular) water, bound (intracellular) water, and

gas phases, respectively, and δVi is the volume occupied by the ith phase within a rep-

resentative elementary volume (REV), δV . Each fluid has a saturation which is defined

as a fraction of the total fluid volume within the REV:

Si =
δVi

φ δV
(3.2)

Therefore, Sg + Sw f + Swb = 1. Volume fractions of j th cell organelles (i.e., chloroplasts,

and mitochondria) are defined by a sub-saturation coefficient as a fraction of the bound

water volume:

γ j =
δV j

Swbφ δV
(3.3)

Concentration of species (CFU/m3 for bacteria, and mol/m3 for others), i , within the

computational domain is defined as:

ci = Sgφci,g + Sw f φci,w f + Swbφci,wb (3.4)

where ci,g, ci,w f and ci,wb are concentrations in the gas, free water and bound water

phases, respectively. For some species, one or two of these concentrations can be zero.

For instance, for bacteria: ci,g = 0 and ci,bw = 0. Solution of a transport equation for

species i gives the distribution of ci within an REV. Then Eq. 3.4 can be used to solve for

the concentration values in each phase.

Transport of CO2

As light drives the stomata to open, disolved CO2 in the water film at the leaf surface can

diffuse into the porous leaf tissue (Fig. 3.3) and be consumed in the chloroplasts during

photosynthesis. Also due to photorespiration in chloroplast and dark respiration in the

mitochondria some of the photosynthetic products will be oxidized, producing CO2. In

addition, CO2 may be hydrated in the aqueous medium. Assuming CO2 in the gas and

liquid phases are in equilibrium (Ho et al., 2006), the transport equation for CO2 in the

79



leaf tissue can be written as (see Appendix I for derivation):

∂cco2

∂t
= ∇ · (Dco2,eff∇cco2)− RphsγchlSwbφ + RresγmitSwbφ − Rhyd(Swf + Swb)φ (3.5)

where Rphs is the net photosynthesis rate, i.e., CO2 fixation rate in the chloroplasts

(mol/m3
· s), Rres is the rate of dark respiration in mitochondria (mol/m3

· s). Rhyd is

the rate of CO2 hydration in water phase (mol/m3
· s), and Dco2,eff is the effective diffu-

sivity of CO2 in the leaf (m2/s).

Transport of bicarbonate

Bicarbonate (HCO−3 ) diffuses within the water phase. It is generated from hydration of

CO2 and makes it unavailable for photosynthesis in chloroplast. Transport equation for

HCO−3 is as:
∂cHCO−3

∂t
= ∇ · (DHCO−3 ,w

∇cHCO−3
)+ Rhyd(Swf + Swb)φ (3.6)

where Rhyd is the rate of hydration of CO2 (mol/m3
· s).

Transport of O2

Oxygen is absorbed by the water phase from intercellular gas, and within cells it is

consumed during respiration in mitochondria and generated during photosynthesis.

Bacteria can consume oxygen as a nutrient. The transport of O2 in th porous media

takes place in both gas and water phases (see Appendix I for derivation):

∂co2

∂t
= ∇ · (Do2,eff∇co2)+ RphsγchlSwbφ − RresγmitSwbφ − Ro2,bacSwfφ (3.7)

where Do2,eff is the effective diffusivity of O2 in the leaf (m2/s). Ro2,bac is the rate of

uptake of O2 by bacteria (mol/m3
· s).
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Transport of symplastic sugar

Light exposure triggers sugar synthesis in the plant cells consisting chloroplasts. Glu-

cose/sucrose transports through plasmodesmata and membrane proteins (i.e., SWEET

transporters; Chen et al., 2012; Doidy et al., 2012) to be available in the apoplast. Trans-

port of symplastic sugar is modeled as:

∂cs,sug

∂t
= ∇ · (Dsug,w∇cs,sug)+ αRphsγchlSwbφ − RresγmitSwbφ − RSWEETSwbφ (3.8)

where subscript s, sug denotes symplastic glucose or sucrose, RSWEET is the rate of sugar

transport across plasma membrane through SWEET transporters (mol/m3
· s). To gen-

erate one molecule of glucose and sucrose, 6 and 12 molecules of CO2 are consumed,

respectively, therefore i.e., αgluc =
1
6 and αsuc =

1
12 .

Transport of apoplastic sugar

Once the synthesized sugar reaches apoplast, it is available to the bacteria that have

infiltrated the leaf tissue. Transport of apoplastic glucose/sucrose is modeled as:

∂ca,sug

∂t
= ∇ · (DAsug,w∇ca,sug)+ RSWEETSwfφ − Rsug,bacSwfφ (3.9)

where, subscript a, sug denotes apoplastic glucose or sucrose, Rsug,bac is the rate of

apoplastic sugar uptake by bacteria (mol/m3.s).

Transport of AI-2

AI-2 is a chemoattractant molecule which is secreted by E. coli and enhances chemotaxis

toward exogenous nutrients like glucose (Fig. 3.2; Lee and Lee, 2010). The transport of

AI-2 in the leaf tissue is given by:
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∂cAI2

∂t
= ∇ · (DAI2,w∇cAI2)+ RAI2Swfφ (3.10)

where, RAI2 is net rate of AI-2 production (mol/m3
· s).

Transport of bacteria

The continuum Keller-Segel model (Tindall et al., 2008) is used to describe the distribu-

tion of bacteria. Within the leaf, bacteria can only transport in the free water layer at

the surface of the mesophyll cells (Fig. 3.3c). The mechanisms of bacterial transport in-

cludes a random diffusion-like motion (motility) as well as chemotactic transport within

free water film. The mass balance for bacteria is as:

∂cbac

∂t
+∇ ·

(
cbac

∑
i

ucht,i

)
= ∇ · (ηbac∇cbac)+ Rbac,grSwfφ (3.11)

where, i represents either nutrients (i.e., glucose and O2), and chemoattractants secreted

by bacteria (i.e., AI-2), cbac is the concentration of bacteria (cell/m3), ηbac is the coefficient

of random motility (i.e., bacteria diffusion coefficient) (m2/s), Rbac,gr is the rate of bacte-

rial growth (CFU/m3
·s). The rate of bacterial death is ignored here as they are assumed

to be in their exponential phase of their growth.

The chemotaxtic velocity of bacteria is in the direction of the concentration gradients

of species i , including glucose, O2 and AI-2:

ucht,i = χcht,i
∇ci

ci

(
1−

cbac,wf

cbac,wf ,max

)
(3.12)

At high concentrations of nutrients or chemoattractants, bacteria sense the absolute gra-

dients (∇ci ), while at low concentrations they sense the logarithmic gradients (∇ log ci =

∇ci/ci ). Following Curk et al. (2013), a threshold value of 0.01 mol/m3 was adopted to

switch between these two modes of gradient sensing. At high concentrations, bacterial

swimming path becomes limited. The inhibition function in Eq. 3.12 presents a simple

approach to account for the effect of bacterial concentration on their chemotactic veloc-

ity. The maximum bacterial concentration, cbac,w f,max was adopted to be 1×1018 CFU/m3
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(Ranjbaran and Datta, 2019). The bacterial chemotactic coefficient (m2/s), χcht, is defined

as (Tindall et al., 2008):

χcht,i = χ0
Kd

(Kd + ci)2
(3.13)

where χ0 is chemotactic sensitivity coefficient (m2/s), and Kd is the receptor-ligand bind-

ing dissociation constant (mol/m3). Estimations of numerical values of these parameter

for E. coli can be found in Tindall et al. (2008), Ford and Lauffenburger (1991), and Ford,

Phillips, Quinn, Lauffenburger (1991). The porous structure of the leaf can affect bacte-

rial migration and confine their motile and tactic movements (Bhattacharjee and Datta,

2019). To include this confinement effect, the amounts of coefficient of random motility,

ηbac, and chemotactic sensitivity coefficient, χ0, in the porous media were assumed to be

two orders of magnitudes less than that in the water layer.

Rate of hydration of CO2

Carbonic anhydrase (CA) can catalyze the hydration of CO2 to HCO−3 . However, its

effect on the rate of photosynthesis was shown not to be significant (Ho et al., 2016). In

the absence of carbonic anhydrase, the rate of hydration of CO2 is defined as:

Rhyd = k1cco2,w − k2
cH+cHCO−3 ,w

Khyd
(3.14)

k1, k2 and Khyd are rate constants of the reaction. The concentration of cH+ in (mol/m3)

was estimated based on the values of pH within the leaf and water layer, i.e., pH

= − log10
(
10−3cH+

)
.

Rate of photosynthesis

Photosynthesis is one of the most studied and best understood physiological processes

(Yin and Struik, 2009). Recently, very detailed biochemical models including light re-

actions, proton transport, enzymatic reactions and regulatory functions have been de-

veloped (Laisk and Oja, 2006; Zhu et al., 2007; Zhu et al., 2013). However, due to high
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level of complexity, these models cannot be used to model photosynthesis in leaf-level

applications (Yin and Struik, 2009). Instead, the biochemical model of Farquhar et al

(1980) (i.e., the FvCB model) can be effective for this purpose. The art of this model is

that it makes no attempt to model all processes of photosynthesis but rather focuses on

a few key processes involved in C3 photosynthesis (Yin and Struik, 2009). Considering

FvCB model, the net photosynthesis rate, i.e., CO2 fixation rate (mol/m3
· s), Rphs, in the

chloroplasts of the C3 plant cells is described as:

Rphs = min{Ac,Aj,Ap} (3.15)

Ac =
(pco2 − 0

∗)Vc,max

pco2 + Km,co2(1+ po2/Km,o2)
(3.16)

Aj =
(pco2 − 0

∗)J
4pco2 + 80∗

(3.17)

Ap =
3T∗p

1− 0∗/pco2

(3.18)

where Ac is the RuBisCO-limited rate of CO2 assimilation (mol/m3
· s), Aj is the electron

transport-limited rate of CO2 assimilation (mol/m3
· s), and Ap is TP utilization-limited

(TPU-limited) rate of CO2 assimilation (mol/m3
· s). In Eq. 3.16, pco2 and po2 are CO2 and

O2 partial pressures (Pa) in chloroplast, Vc,max is the maximum carboxilation capacity

of RuBisCO (mol/m3
· s), Km,co2 and Km,o2 are Michaelis-Menten constants of RuBisCO

for CO2 (during photosynthesis) and O2 (during photorespiration) (Pa), and 0∗ is CO2

compensation point without dark respiration (Pa). In Eq. 3.17, J is the volumetric rate of

electron transport (mol/m3
·s) that includes the effects of light intensity and wavelength

on the rate of photosynthesis. In Eq. 3.18, T∗p is the volumetric TPU rate (mol/m3
· s).

Rate of respiration

Based on the available values for the dark respiration at 25◦C (Farquhar et al., 1980; Ho

et al., 2016), the following equation was used to described temperature dependence of

the dark respiration (mol/m3
· s), Rres :

Rres = 1.1× 10−6αt exp
(

66405(T − 298)
298RT

)
(3.19)
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To convert the rate of respiration to a volumetric value, αt was assumed to be the recip-

rocal of the leaf thickness (1/m).

Rate of sugar efflux by SWEET transporters

SWEET proteins are energy-independent transporters (Chen et al., 2012; Doidy et al.,

2012; Ayre and Turgeon, 2018), and transport of glucose/sucrose across them is fa-

cilitated by molecular diffusion. The rate of sugar efflux by SWEET transporters de-

pends on the concentration gradient across plasma membrane, population density of

the transporters on the plasma membrane, and the level of the saturation of the trans-

porter. The volumetric rate of sugar transport (mol/m3
· s) across plasma membrane

through SWEET transporters can be written as:

RSW E ET = Psug
(
cSsug − cAsug

)
ASW E ETρSW E ET

(
cSsug

KSW E ET + cSsug

)
αp (3.20)

The permeability (m/s) of a SWEET transporter to the sugar of interest was estimated

from diffusion coefficient of the sugar in water phase and the thickness of the plasma

membrane (7 nm) (Nobel, 2005) as Psug = Dsug,w/ lplm . In the above equation, ASW E ET

is the pore surface area of the SWEET transporter (m2), ρSW E ET is the population den-

sity of SWEET transporters at the plasma membrane of the plant cells (transporter/m2),

KSW E ET is the half-saturation constant for the transporter (mol/m3), and αp is the spe-

cific surface area (m2/m3) of the porous structure of the leaf.

Rate of uptake of glucose and oxygen by bacteria

The rate of uptake of glucose and O2 by bacteria can be modeled as (Tindall et al., 2008):

Ri,bac = ζgr,icbacYi/bacfQS (3.21)
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where i denotes apoplastic glucose or O2, ζgr,i is the bacterial growth rate (1/s) defined

in Eq. 3.24, Yi/bac is the yield coefficient of nutrients on bacteria (mol/cell), and fQS is a

switch function which represents the effect of quorum sensing of signaling molecules

(e.g., indole) during biofilm formation. It can be defined as a Hill function (Goryachev,

2011) to show state transition in bacterial biofilms. However, as the duration of the

process of interest here (2 h) is much shorter than the time-scale for bacteria to reach

stationary phase (Li and Young, 2013) and develop biofilms (>> 2 h), one can write

fQS = 1.

Rate of synthesis of AI-2

Synthesis of AI-2 by E. coli increases during exponential phase of the cells’ growth.

However, as cells reach the stationary phase, they uptake the extracellular AI-2 (Wang

et al., 2005; Xavier and Bassler, 2005). When glucose is present in the growth medium,

synthesis of AI-2 in the exponential phase is boosted, while its uptake in the stationary

phase is weakened (Li et al., 2006). Since in this study bacteria are always in their

exponential phase, only the synthesis of AI-2 is modeled, and its uptake by bacteria is

ignored:

RAI 2 = k1,AI 2cbac (3.22)

Here, RAI 2 is the rate of synthesis of AI-2 (mol/m3
·s) , and k1,AI2 is AI-2 synthesis rate

constant (mol/cell · s) whose value depends on the presence of glucose in the medium.

The estimated values for this rate constant based on the experimental and simulation

data of Xu et al. (2017), Wang et al. (2005) and Li et al. (2006) are included in Table 3.1.
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Rate of bacterial growth

The rate of bacterial growth as a result of nutrients uptake is:

Rbac,gr = ζgrcbac fQS (3.23)

The bacterial growth rate constant (1/s), ζgr, is defined using Monod kinetics (Monod,

1949):

ζgr = ζmax,gr

∏
i

ci

Ks,i + ci
(3.24)

Here, i stands for glucose and O2, ζmax,gr is the maximum growth rate constant (1/s),

and Ks,i is the Monod half saturation constant (mol/m3). Note that here fQS = 1, as

bacteria are in their exponential phase of growth.

3.3.4 Boundary and initial conditions

Table 3.1 shows all numerical values used for boundary and initial conditions in this

study. Initial concentrations of CO2 and O2 in the solution domain were calculated

based on the saturation of each phase and the Henry’s law. Their concentration in

the gas phase were equal to atmospheric levels. Initial concentrations of sugars were

in spinach and lettuce leaves were obtained from Voitsekhovskaja et al. (2000) and

Kroupitski et al. (2009), respectively. For HCO−3 , initial concentration in the water phase

was set as 0.001 mol/m3 (assumed from Allakhverdiev et al., 1997). Bacterial concen-

tration was initially normalized to 1 in the water film, and was set to 0 in the leaf tissue.

Concentration of AI-2 was initially zero in the entire domain.

An overview of the boundary conditions is shown in Fig. 3.4a. The constant con-

centration boundary condition at the top boundary of the water film is defined as:

ci = ci,∞ (3.25)
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where i stands for CO2, O2, glucose/sucrose, and bacteria. Note that for CO2 and O2,

the concentrations in the water phase can be estimated by Henry’s law based on their

partial pressures in the gas phase (Ho et al., 2016):

cco2,∞ = RT K H,co2cco2,g (3.26)

co2,∞ = RT K H,o2co2,g (3.27)

where K H,co2 and K H,o2 are the Henry’s constants for CO2 and O2 (mol/m3
· Pa), respec-

tively, R is the universal gas constant (J/mol · K), and T is temperature (K). The no

flux condition for species i applied to several boundaries in the solution domain (see

Fig. 3.4a) is written as:

−Di, f
∂ci

∂n
= 0 (3.28)

where subscript f stands for fluid phase, and n denotes the normal direction to the

boundary.

3.3.5 Input parameters

Input data for the simulations are shown in Table 3.1. Details of some of the input

parameters are discussed here.
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Table 3.1: Input Parameters

Parameter Symbol Value Units Source

Dimensions

Stomatal aper-

ture

Dstoma Fig. 3.12 m Measured

Depth of leaf sec-

tion

Hleaf 700× 10−6 m Vogelmann

and Evans

(2002)

Depth of spongy

mesophyll layer

Hspg 370× 10−6 m Assumed

Depth of palisade

mesophyll layer

Hpls 270× 10−6 m Assumed

Depth of epider-

mis layer

Hstoma 30× 10−6 m Assumed

Width of the do-

main

Wleaf 80× 10−6 m Assumed

Density

Carbon dioxide ρco2 Ideal gas kg/m3 Assumed

Oxygen ρo2 Ideal gas kg/m3 Assumed

Diffusivity

Motile-only bac-

teria in water

ηbac,mot 1× 10−12 m2/s Wu et al.

(2006)

Wild type bacte-

ria in water

ηbac,wt 5× 10−11 m2/s Wu et al.

(2006)

Carbon dioxide

in air

Dco2,g 1.6× 10−5 m2/s Lide (1999)
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Oxygen in air Do2,g 1.6× 10−5 m2/s Lide (1999)

Carbon dioxide

in water

Dco2,w 1.67× 10−9 m2/s Lide (1999)

Oxygen in water Do2,w 2.01× 10−9 m2/s Lide (1999)

HCO−3 in water DHCO−3 ,w
1.17× 10−9 m2/s Geers and

Gros (2000)

Glucose in water Dgluc,w 0.67× 10−9 m2/s Nobel

(2005)

Sucrose in water Dsuc,w 0.52× 10−9 m2/s Nobel

(2005)

AI-2 in water DAI2,w 1× 10−10 m2/s Assumed

from Stew-

art (2003)

Leaf properties

Porosity φ 0.95 m3/m3 Ranjbaran

and Datta

(2019)

Specific surface

area of porous

zone

αp 1× 105 m2/m3 Calculated

from Rah-

man (2005)

SWEET trans-

porters

Permeability, glu-

cose

Pgluc 1.34× 10−1 m/s Calculated

Permeability, su-

crose

Psuc 1.04× 10−1 m/s Calculated
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Population den-

sity on plasma

membrane

ρSW E ET 1× 1012 1/m2 Assumed

from Nobel

(2005)

Cross section

area

ASW E ET 1× 10−19 m2 Calculated

from Car-

ruthers

(1990), and

Dend and

Yan (2016)

Half saturation

constant

KSW E ET 9.1 mol/m3 Assumed

from Chen

et al. (2010)

Saturations

Spongy meso-

phyll, gas

Sg,spg 0.41 m3/m3 Ranjbaran

and Datta

(2019)

Spongy meso-

phyll, free water

Sfw,spg 0.15 m3/m3 Ranjbaran

and Datta

(2019)

Spongy meso-

phyll, bound

water

Sbw,spg 0.44 m3/m3 Ranjbaran

and Datta

(2019)

Palisade meso-

phyll, gas

Sg,pls 0.20 m3/m3 Ranjbaran

and Datta

(2019)

Palisade meso-

phyll, free water

Sfw,pls 0.15 m3/m3 Ranjbaran

and Datta

(2019)
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Palisade mes-

ophyll, bound

water

Sbw,pls 0.65 m3/m3 Ranjbaran

and Datta

(2019)

Epidermis layer,

gas

Sg,epd 0.20 m3/m3 Assumed

Epidermis layer,

free water

Sfw,epd 0.15 m3/m3 Assumed

Epidermis layer,

bound water

Sbw,epd 0.65 m3/m3 Assumed

Stomatal cavity,

gas

Sg,stm 0.90 m3/m3 Assumed

Stomatal cavity,

free water

Sfw,stm 0.10 m3/m3 Assumed

Sub-saturation co-

efficients

Chloroplast, mes-

ophyll

γchl,mes 0.254 m3/m3 Winter et

al., (1994)

Chloroplast,

guard cell

γchl,grd 0.254 m3/m3 Assumed

Chloroplast, epi-

dermis

γchl,epd 0 m3/m3 Assumed

Mitochondria γmit 0.0082 m3/m3 Winter et

al., (1994)

Gas solubility in

water

Gas solubility in

water
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Henry’s constant

for CO2, at 20 ◦C

KH,co2 0.3876× 10−3 mol/m3
· Pa Lide (1999)

Henry’s constant

for O2, at 20 ◦C

KH,o2 0.0137× 10−3 mol/m3
· Pa Lide (1999)

Carbon dioxide hy-

dration

Reaction constant

1

k1 0.039 1/s Jolly (1985)

Reaction constant

2

k2 23 1/s Jolly (1985)

Acid dissocia-

tion constant for

H2CO3

Khyd 0.25 mol/m3 Jolly (1985)

pH pH 7.0, Water Assumed

6.5, Leaf Assumed

from

Babic and

Watada

(1996)

Light absorption by

chloroplasts

Specific absorp-

tion, Blue light

a∗chl,blu 2600 m2/mol Assumed

from Vo-

gelmann

and Evans

(2002)
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Specific absorp-

tion, Green light

a∗chl,grn 1500 m2/mol Assumed

from Vo-

gelmann

and Evans

(2002)

Specific absorp-

tion, Red light

a∗chl,red 2000 m2/mol Assumed

from

Mitchell

and Kiefer

(1988) and

Vogelmann

and Evans

(2002)

Specific absorp-

tion, white light

a∗chl,wht 2100 m2/mol Assumed

Nutrient uptake by

bacteria

Yield of glucose

on bacteria

Ygluc/bac 9.4× 10−15 mol/cell Assumed

from

Kayser

et al. (2005)

Yield of oxygen

on bacteria

Yo2/bac 2.9× 10−14 mol/cell Assumed

from

Shiloach

and Fass

(2005)

AI-2 reaction
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Synthesis rate

constant

k1,AI2 1× 10−24, no glucose mol/cell · s Li et al.

(2006), Xu

et al. (2017)

and Wang

et al. (2005)

1× 10−23, with glucose mol/cell · s

Bacterial chemo-

taxis

Chemotactic

sensitivity coeffi-

cient, E. coli

χ0 10× 10−9 m2/s Ford et al.

(1991)

Receptor-ligand

dissociation

constant

Kd 0.1 mol/m3 Ford and

Lauffen-

burger

(1991)

Bacteria growth

Maximum

growth rate

constant, at 25 ◦C

ζmax,gr 1.00× 10−4 1/s Assumed

from Ko-

varova et

al. (1996)

Monod half sat-

uration constant,

glucose

Kgluc 184.8 × 10−6 mol/m3 Kovarova

et al. (1996)

Monod half sat-

uration constant,

Oxygen

Ko2 121× 10−6 mol/m3 Stolper et

al. (2010)
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Effective diffusivities

The effective diffusivity of CO2 and O2 in the leaf, Di,eff , accounts for both diffusion

coefficients in the gas, Di,g, and water, Di,w, phases by considering the interphase equi-

librium based on the Henry’s law (see Appendix I for full derivation):

Di,eff =
SgDi,g + (Swf + Swb)RTKH,iDi,w

Sg + (Swf + Swb)RTKH,i
(3.29)

CO2 assimilation parameters

RuBisCO-limited: Temperature dependence of kinetics parameters of RuBisCO (in

Eq. 3.16) including Vc,max, Km,co2 and Km,o2 can be described by Arrhenius equations

(Farquhar, 1980). The activation energy for the maximum carboxilation capacity of Ru-

BisCO, Vc,max , in spinach leaves was 64900 J/mol. Based on the data of Yamori et al.

(2008) at 25◦C, the maximum carboxilation capacity (mol/m3
· s) was calculated as:

Vc,max = 49.9× 10−6αt exp
(

64900(T − 298)
298RT

)
(3.30)

The temperature dependence of the Michaelis-Menten constants of RuBisCO (Pa),

within a range of 5-40 ◦C, were calculated as (Yin and Struik, 2009):

Km,co2 = 27 exp
(

80990(T − 298)
298RT

)
(3.31)

Km,o2 = 16500 exp
(

23720(T − 298)
298RT

)
(3.32)

The CO2 compensation point without dark respiration (Pa), 0∗, is defined as the par-

tial pressure of CO2 at which no net assimilations occurs (Yin and Struik, 2009). The

temperature dependence of 0∗ was reported by Medlyn et al. (2002) for spinach leaves:

0∗ = 0.101325
(
42.7+ 1.68(T − 298.15)+ 0.0012(T − 298.15)2

)
(3.33)

Electron transport-limited: The volumetric rate of electron transport (in Eq. 3.17;

mol/m3.s), J , can be described in terms of light limited, Jll , and light saturated, Jls ,
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rates of electron transport in PS II (Buckley and Farquhar, 2004):

J =
Jll + Jls −

√
(Jll + Jls)2 − 4θ Jll Jls

2θ
αt (3.34)

where θ = 0.97. The light limited rate of electron transport (mol/m2
· s), Jll , is deter-

mined from the amount of the available light (mol/m2
· s), I , to be absorbed by the

chlorophyll pigments which can vary by the light wavelength (Vogelmann and Evans,

2002):

Jll = αP SI I8P SI I I (3.35)

where αP SI I = 0.5 is the fraction of absorbed photons driving PS II electron transport,

and 8P SI I = 0.85 mol/mol is the maximum quantum efficiency of PS II in electron

transport. The distribution of light within the leaf tissue was calculated using Beer-

Lambert’s law:
∂ I
∂z
= achl I (3.36)

where achl is the absorption coefficient of chlorophyll a which depends on the specific

absorption (m2/mol) (Mitchell and Kiefer, 1988; Vogelmann and Evans, 2002), a∗chl , and

the density of chlorophyll a within the leaf tissue (mol/m3), ρchl :

achl = a∗chlρchl (3.37)

The profile of chlorophyll density within spinach leaves was obtained from Vogelmann

and Evans (2002) who measured the chlorophyll fluorescence profiles within spinach

leaves. The light saturated rate of electron transport (mol/m2
· s) is defined as:

Jls = β Jmax (3.38)

where β is defined here as the relative photosynthetic capacity whose profile was ob-

tained from Evans and Vogelman (2003), and Jmax is the maximum rate of electron trans-

port (mol/m2
· s), and can be calculated by (Harley et al., 1992):

Jmax = 1× 106 exp
(
37.08− 79500

RT

)
1+ exp

( 650T−201000
RT

) (3.39)
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TPU-limited: A value of 9.19 × 10−6mol/m2
· s was adopted for the TPU rate (in

Eq. 3.18; mol/m2
· s), Tp (Harley et al., 1992; Ho et al., 2016). So, the volumetric value of

TPU rate is:

T ∗p = Tpαt (3.40)

3.3.6 Solution procedure

The governing equations were solved using a commercial finite element package, COM-

SOL Multiphysics version 5.4 (COMSOL Multiphysics Burlington, MA). The time-step

size was varied between 0.001 s to 0.1 s. The relative and absolute tolerances were 0.001

for all computations. A mesh of 2477 triangular elements was used for the 2D axisym-

metric model for which the maximum element size was 1 µm within the mesophyll

tissue and far from the stomatal cavity. MUMPS direct solver was used to solve the

algebraic equations resulting from the finite element method. Run time for the simula-

tions ranged from few to several minutes on a Windows machine with 32 GB of RAM,

and 2 GHz dual core Intel c© Xeon c© CPU E5-2620 processor.

3.4 Experimental procedure

In order to validate the model predictions for the amount of bacterial infiltration, a

couple of microbiological experiments were performed (Fig 3.6). In short, during each

experiment, baby spinach leaves were inoculated with a prescribed bacterial suspen-

sion, and exposed to a certain illumination condition. Then the amount of infiltrated

bacteria were determined by plating methods. In addition to the microbiological exper-

iments, stomatal aperture of spinach leaves under exposure of different illumination

conditions were examined using microscopy imaging. Details of all experiments are

discussed here.
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Figure 3.6: Experimental procedure to determine total amount of infiltra-
tion.
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3.4.1 Bacterial strains and inoculum preparation

A loop of frozen (at -80 ◦C) culture of E. coli cells (wild type ampicillin-resistant

K-12 MG1655, or incessantly motile (but not chemotactic) kanamycin-resistant K-12

BW25113 (1 CheZ), gifts from John March, Cornell University) were grown in sterile LB

broth (a 25 g/l of LB powder dissolved in Milli-Q water supplemented with 100 µg/ml

ampicillin or 30 µg/ml kanamycin) and inoculated overnight in a shaker at 37 ◦C and

220 rpm. This was followed by a second overnight incubation in fresh LB broth. The

bacterial culture were then harvested by two successive centrifugation steps (Sorrvall

legend RT+centrifuge, Thermo Scientific, USA) at 2700 g for 10 min to efficiently remove

the LB broth. The cell pellets were resuspended in sterile 0.85% NaCl (saline) solution

and the concentration of final bacterial populations was adjusted to ∼ 108 CFU/ml by

using spectrophotometry analysis (Agilent Technologies, Inc., Mattapoiset, MA).

3.4.2 Leaf inoculation and light exposure

Fresh baby spinach leaves were purchased at a local retail store. Samples of 5 g contain-

ing about 8 leaves were used. The leaves were placed in sterile petri dishes with cover

lids and were kept at room temperature for about 45 min under the illumination condi-

tion that was under study. This was done to make sure that the leaf microstructures are

in equilibrium with the illumination condition. Then the samples were spot inoculated

with 500 µl of E. coli cell suspension to reach an initial population of ∼ 3× 107 CFU/g.

The inoculum was then gently spread on the leaf surface using a sterile loop to uni-

formly cover the surface. The lid of petri dishes were placed to avoid evaporation of

the inoculum at the leaf surface. The samples were exposed to white/blue/red/green

light with intensity of 100 µmol/m2
· s, or kept in dark. All exposures were performed

at room temperature for 2 h. The light intensity was measured by a digital luxmeter

(PM6612, Peak Meter R©, China) with ±3% accuracy. The illumination chamber were
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shielded thoroughly to make sure that the samples would only receive the expected

wavelengths.

3.4.3 Bacterial infiltration assay

After exposure treatment, the surface of the leaves were washed by sterile 0.85% NaCl

(saline) and let to dry. Then, they were sprayed with 70% ethanol in two successive

steps to remove any surface bacteria. The surface sterilizatrion were examined (Fig 3.7)

by gently pushing the surface of some treated leaves on LB agar plates and incubate

them. The surface sanitation was considered effective when more than 99.99999% of

inoculated bacteria at the surface were inactivated (about 8-log CFU/ml reduction).

The surface sterilized leaves of each sample were crushed in a sterile bowl and was

added with 45 ml sterile 0.85% NaCl (saline). The homogenized sample were serially di-

luted in sterile 0.85% NaCl (saline) solution and surface plated onto LB agar containing

100 µg/ml ampicillin or 30 µg/ml kanamycin. To make sure that the natural micro-

biota on the leaf surface were not growing in the growth medium containing ampicllin

or kanamycin, control samples without incubation were also homogenized and plated

(Fig 3.8). The inoculated petri dishes were incubated at 30◦C for 24 h, and the colonies

were enumerated to find the bacterial count. No growth was observed in any of the

uninoculated plates (data not shown) implying that the natural microbiota were not

ampicillin or kanamycin resistant and would not be counted as infiltrated bacteria.

3.4.4 Microscopy imaging of stomatal aperture

The microscopy imaging experiments were done using an epi-fuorescent microscope

(DM5500, Leica Microsystems, Exton, PA, USA) with 20x or 63x water immersion ob-

jectives. Before microscopy, three leaves were either exposed to white/blue/red/green
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Illumination 
condition

Number of 
colonies 
detected

Dilution 
factor

Leaf side Number of bacteria 
at the leaf surface 
after surface
sanitation (CFU)

Test 1 White 
100 (μmol/m2.s)

3 1/1 Adaxial 3

Test 2 Green
100  (μmol/m2.s)

1 1/1 Adaxial 1

Test 3 Green 
100 (μmol/m2.s)

0 1/1 Adaxial 0

Test 1 Test 2 Test 3

a.

b.

Bacteria: ampicillin-resistant E. coli K-12 MG1655

Figure 3.7: Results of the leaf surface sanitation treatments. The inocu-
lated surface of the leaves were washed by sterile 0.85% NaCl
(saline), after 2 h illumination, and let to dry. Then, they were
sprayed with 70% ethanol in two successive steps to remove
any surface bacteria.

light with an intensity of 100 µmol/m2
· s, or were kept in dark for 45 min. After illumi-

nation, samples (5 mm× 5 mm) from three arbitrary locations of each leaf were cut and

immediately used for microscopy. For each experimental condition, data of stomatal

aperture were gathered from more than 100 stomata. The measurements were done

using ImageJ software.
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Illumination 
condition

Antibiotic Dilution factor Leaf side Number of 
colonies 
detected

Test 1 White 
100 (μmol/m2.s)

Kanamycin 1/500 Adaxial 0

Test 2 White
100  (μmol/m2.s)

Kanamycin 1/500 Adaxial 0

Test 3 White 
100 (μmol/m2.s)

Kanamycin 1/500 Adaxial 0

Test 4 White 
100 (μmol/m2.s)

Ampicillin 1/500 Adaxial 0

Test 5 White
100  (μmol/m2.s)

Ampicillin 1/500 Adaxial 0

Test 6 White 
100 (μmol/m2.s)

Ampicillin 1/500 Adaxial 0

Test 1 Test 2 Test 3

a.

b.

No antibiotic-resistant bacteria

Figure 3.8: Control tests to make sure the natural microbiota on the leaf
surface were not growing in the growth medium containing
ampicllin or kanamycin.
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3.5 Results and discussion

In this section, the model predictions and validations are presented for the rate of CO2

fixation, and the amount of sugar production during photosynthesis. This is followed

by studying the effects of light intensity and wavelength, bacterial transport mode, leaf

side and stomatal defense on the amount of infiltration. After a sensitivity analysis

on the most important parameters in the model, the primary and secondary factors

affecting the infiltration are highlighted.

3.5.1 CO2 fixation and nutrients production

To show the performance of the FvCB model (Farquhar et al., 1980) in predicting the

rate of photosynthesis when coupled to the main model (Fig. 3.5), predicted rate of CO2

assimilation in spinach leaves are compared with the experimental measurements of

Harris et al. (1986) (Fig. 3.9a). The leaf was initially assumed to be in a dark condition

where stoma was closed. As illumination occurred, the stoma was gradually opened

by the moving mesh approach with a prescribed speed of 1 nm/s which is analogous

to the rate of stomatal opening in 1 h (by assuming a constant rate). As CO2 diffuses

into the leaf tissue during illumination, the rate of CO2 fixation increases until it equili-

brates with the exposed conditions. A step function was used here to help predictions

better match the experimental condition reported in Harris et al. (1983). The results are

in agreement with predicted and experimental values of the rate of photosynthesis in

tomato leaves (Ho et al., 2016).

Profiles of carbon fixation in the leaves are similar to those of light absorption

through the leaf tissue (Evans, 1995). The predicted profiles of CO2 fixation within

the leaf tissue were qualitatively compared with experimental profiles of 14C fixation

within spinach leaves obtained from measurement of chlorophyll fluorescence profiles
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Figure 3.9: a) Variation of the rate of CO2 fixation within spinach tissue at
white light intensity of 1500 µmol/m2

· s and atmospheric CO2
level of 0.013 mol/m3. The predicted results are compared with
experimental data of Harris et al. (1983). b) Variation of the nor-
malized rates of CO2 fixation within the leaf tissue. The trends
are compared with normalized trends of flourescent emissions
within spinach tissue (Evans and Vogelmann (2003).
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Figure 3.10: a) Total amount of apoplastic sucrose and glucose concentra-
tions in spinach leaves, after 120 min illumination with light
intensity of 300 µmol/m3

· s (Voitsekhovskaja et al., 2000),
and b) predicted and experimental (Voitsekhovskaja et al.,
2000) variation of apoplastic sucrose concentration in spinach
leaves during 4 h of illumination with a light intensity of
300 µmol/m3

· s.

(Evans and Vogelmann, 2003) (Fig. 3.9b). The rate of carbon fixation declines as the

light is absorbed by the chlorophyll pigments within the chloroplasts. It remains higher

through the leaf tissue when a higher level of light intensity is exposed to the leaf be-

cause chlorophyll pigments in the depth of the leaf can absorb more light. Similar dis-

tributions of CO2 fixation within the leaf tissue can be obtained for red, green and white

lights (Nishio et al., 1993; Evans and Vogelmann, 2003; Evan et al., 2017).
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Figure 3.11: Variations of the a) amount and b) depth of bacterial in-

filtration into the leaf tissue under white light intensity of
100 µmol/m2

· s and dark conditions.

As sugar is synthesized within the plant cells, it is effluxed by SWEET transporter

proteins located at the plasma membrane into the apoplast. This results in an increase

in the concentration of apoplastic sugar while the leaf is illuminated. The apoplastic

sucrose and glucose in spinach leaves, with inhibited phloem transport, were measured

in Voitsekhovskaja et al. (2000) and are compared with the predicted data and trends

in Fig. 3.10a and Fig 3.10b, respectively. The data presented in Fig. 3.10 are for the

condition that bacteria are absent.
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3.5.2 Bacterial infiltration

Effect of light exposure on infiltration

Typical variations of total amount of bacterial infiltration into the plant leaf is illustrated

in Fig. 3.11a. Also, the distribution of the infiltrated bacteria within the leaf depth is

shown in Fig. 3.11b. These simulations assume that the bacteria is E. coli , and the leaf

was initially in equilibrium with the illumination or dark conditions. Under light condi-

tion, stoma is open and photosynthesis and sugar efflux through SWEET transporters

increase the level of apoplastic glucose. The infiltration happened mainly during the

initial 30-min of the process. This is because the level of apoplatic sugar is high and a

large concentration gradient of glucose causes enhanced bacterial chemotaxis toward

the leaf tissue. During dark conditions, all stomata are not tightly closed (Fig. 3.12).

The observations on iceberg lettuce also showed 1% of the stomata were open during

dark condition (Kroupitski et al., 2009). This brings up an opportunity for the bacteria

to infiltrate the leaf (Fig. 3.11a) through the available openings (Fig. 3.11a). Even very

narrow openings slightly larger than bacterial cell diameter was shown to be enough

for infiltration (Mannik et al., 2009). However, the amount of infiltration is much less

than that in light, as the stomatal size is smaller and photosynthesis is inhibited un-

der dark condition. Evidence shows that Salmonella enterica serovar Typhimurium was

able to infiltrate iceberg lettuce leaves during dark condition, although the incidence of

infiltrated stomata in dark was much less than that occurred under exposure of light

(Kroupitski et al., 2009). The infiltration depth for the light condition was more than

dark (Fig. 3.11b) due to more nutrient availability at the deeper locations of the leaf

tissue when is exposed to light. Infiltrated bacteria are more concentrated within the

stomatal cavity and distribute around as they reach the mesphyll tissue.

The predicted total amounts of infiltrated bacteria into spinach leaves are compared

with the experimental data in Fig. 3.13, showing a reasonable predictions. The error bar
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Figure 3.12: Measured stomatal aperture of spinach leaves under differ-
ent light colors of 100 µmol/m2

· s, and dark condition for
45 min. Representative confocal microscopy images related to
dark condition (smallest aperture) and blue light illumination
condition (widest aperture) are shown as insets. Red arrows
in the inset images show the location of the stomata.

at experimental data shows the standard deviations, and those at predicted data reflect

the effect of 30% change in the stomatal size. An increase in the light intensity created

more bacterial infiltration into the leaf tissue (Fig. 3.13a). This is because the rate of

photosynthesis is higher at higher light intensities which enhances the bacterial chemo-

taxis. In Fig. 3.13a, the control condition confirms that no natural microbiota at/inside

the leaf tissue were able to survive at the LB-agar plates that were supplemented with

ampicillin/kanamycin. Therefore, all observed colonies were related to the antibiotic-

resistant bacterial strains. Light wavelength can also affect the amount of infiltration by

altering the amount of nutrients production in the leaf and affecting size of the stomatal

aperture. The highest infiltration was observed for the blue light exposure. A high in-

tensity blue light (similar to that of other lights) can trigger photosynthesis in the guard

cells leading to accumulation of sugars and opening of stomata. However, blue light

can also serve as a signal in the stomatal opening process: a low intensity blue light is
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Figure 3.13: Total amount of bacterial infiltration for different levels of a)
light intensities and b) wavelengths (at 100 µmol/m2

· s).

enough to activate the electrogenic H+ pumps located at the plasma membrane of the

guard cells, leading to membrane hyperpolarization, K+ uptake, and stomatal opening

(Shimazaki et al., 2007). Therefore, the stomatal size under blue light are larger than

that of other wavelengths (Fig. 3.12; Lurie, 1978).

Exposure to green light led to the least amount of bacterial infiltration (Fig. 3.13b).

This is partly attributed to the size of stomatal opening under green light which is the

least among other light wavelengths (Fig. 3.12; Kana and Miller, 1976). Also, green

light is absorbed less than other wavelenghts by chlorophyll pigments, leading to less

rate of photosynthesis in the mesophyll tissue, and weaker bacterial chemotaxis. Fig-
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Illumination 
condition

Number of 
colonies 
detected

Dilution 
factor

Leaf side Leaf sample 
weight (g)

Number of 
bacterial 
infiltration 
into the leaves 
(CFU/g)

Bacterial 
infiltration 
(log CFU/g)

Test 1 Dark 12 1/500 Adaxial 5.06 2400 3.38

Test 2 Dark 3 1/500 Adaxial 5.05 600 2.78

Test 3 Dark 9 1/500 Adaxial 5.01 1800 3.26

Mean 1600 3.13

Standard 
deviation

748.3 0.26

Test 1 Test 2 Test 3

a.

b.

Bacteria: ampicillin-resistant E. coli K-12 MG1655

Figure 3.14: Results of the colony growth of ampicillin-resistant E. coli K-
12 MG1655 on LB-agar medium containing 100 g/ml ampi-
cillin. The inoculated leaves were kept in dark condition for
2 h.

ures 3.14-3.18 show the details of the experimental data of bacterial infiltration that were

compared with the model predictions in Fig 3.13.

The effect of light intensity and wavelength on the bacterial infiltration might be

more complicated than what is considered in the present model. It has been shown that

E. coli does phototaxis away from blue light (Taylor and Koshland JR, 1975; Braatsch and

Klug, 2004), and gets more motile at high light intensities (Perlova et al., 2017, Wright et
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Illumination 
condition

Number of 
colonies 
detected

Dilution 
factor

Leaf side Leaf sample 
weight (g)

Number of 
bacterial 
infiltration 
into the leaves 
(CFU/g)

Bacterial 
infiltration 
(log CFU/g)

Test 1 White 
100 
(μmol/m2.s)

14 1/1000 Adaxial 5.015 5600 3.75

Test 2 White 
100  
(μmol/m2.s)

39 1/1000 Adaxial 5.011 15600 4.19

Test 3 White 
100 
(μmol/m2.s)

54 1/1000 Adaxial 5.013 21600 4.33

Mean 14266.7 4.09

Standard 
deviation

6599.7 0.25

Test 1 Test 2 Test 3

a.

b.

Bacteria: ampicillin-resistant E. coli K-12 MG1655

Figure 3.15: Results of the colony growth of ampicillin-resistant E. coli K-
12 MG1655 on LB-agar medium containing 100 g/ml ampi-
cillin. The inoculated leaves were exposed to white light, from
adaxial side, with an intensity of 100 µmol/m2

· s for 2 h.
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Illumination 
condition

Number of 
colonies 
detected

Dilution 
factor

Leaf side Leaf sample 
weight (g)

Number of 
bacterial 
infiltration 
into the leaves 
(CFU/g)

Bacterial 
infiltration 
(log CFU/g)

Test 1 Blue 
100 
(μmol/m2.s)

1978 1/500 Adaxial 5.012 395600 5.60

Test 2 Blue 
100 
(μmol/m2.s)

887 1/500 Adaxial 5.010 177400 5.25

Test 3 Blue 
100  
(μmol/m2.s)

861 1/500 Adaxial 5.021 172200 5.23

Test 4 Blue 
100 
(μmol/m2.s)

170 1/500 Adaxial 5.011 34000 4.53

Mean 194800 5.15

Standard 
deviation

129413 0.39

Test 1 Test 2 Test 3

a.

b.

Test 4

Bacteria: ampicillin-resistant E. coli K-12 MG1655

Figure 3.16: Results of the colony growth of ampicillin-resistant E. coli K-
12 MG1655 on LB-agar medium containing 100 g/ml ampi-
cillin. The inoculated leaves were exposed to blue light, from
adaxial side, with an intensity of 100 µmol/m2

· s for 2 h.

al., 2006). Therefore, a phototactic response and variations in the bacterial motility are

also possible to contribute in light-driven bacterial infiltration into the leaf tissue.

An overview of the underlying mechanisms leading to light-driven bacterial infil-

tration is shown in Fig. 3.19.
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Illumination 
condition

Number of 
colonies 
detected

Dilution 
factor

Leaf side Leaf sample 
weight (g)

Number of 
bacterial 
infiltration 
into the leaves 
(CFU/g)

Bacterial 
infiltration 
(log CFU/g)

Test 1 Green 
100 
(μmol/m2.s)

13 1/500 Adaxial 5.051 2600 3.42

Test 2 Green 
100  
(μmol/m2.s)

11 1/500 Adaxial 5.018 2200 3.34

Test 3 Green 
100 
(μmol/m2.s)

20 1/500 Adaxial 5.008 4000 3.60

Mean 2933.3 3.45

Standard 
deviation

771.7 0.11

Test 1 Test 2 Test 3

a.

b.

Bacteria: ampicillin-resistant E. coli K-12 MG1655

Figure 3.17: Results of the colony growth of ampicillin-resistant E. coli K-
12 MG1655 on LB-agar medium containing 100 g/ml ampi-
cillin. The inoculated leaves were exposed to green light, from
adaxial side, with an intensity of 100 µmol/m2

· s for 2 h.
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Illumination 
condition

Number of 
colonies 
detected

Dilution 
factor

Leaf side Leaf sample 
weight (g)

Number of 
bacterial 
infiltration 
into the leaves 
(CFU/g)

Bacterial 
infiltration 
(log CFU/g)

Test 1 Red 
100 
(μmol/m2.s)

60 1/500 Adaxial 5.010 12000 4.08

Test 2 Red 
100  
(μmol/m2.s)

27 1/500 Adaxial 5.021 5400 3.73

Test 3 Red 
100 
(μmol/m2.s)

32 1/500 Adaxial 5.001 6400 3.81

Mean 7933.3 3.87

Standard 
deviation

2904.4 0.15

Test 1 Test 2 Test 3

a.

b.

Bacteria: ampicillin-resistant E. coli K-12 MG1655

Figure 3.18: Results of the colony growth of ampicillin-resistant E. coli K-
12 MG1655 on LB-agar medium containing 100 g/ml ampi-
cillin. The inoculated leaves were exposed to red light, from
adaxial side, with an intensity of 100 µmol/m2

· s for 2 h.
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Bacterial secretion:
• Auto-inducer 2 (AI2)

Bacterial sensing:
• Concentration gradients of 

chemo-attractants

Photosynthesis (chloroplast):
• Light absorption
• CO2 and H2O consumption 
• Nutrients (sugar and O2) production

Respiration (mitochondria):
• Nutrients consumption 
• CO2 and H2O production

Diffusion of nutrients (sugars and O2):
• Due to concentration gradients 
• In plant cells (symplast)
• In extracellular water and apoplast

Bacterial sensing:
• Concentration gradients of 

nutrients

Chemotaxis:
• Toward nutrients
• Toward AI2

CO2 Diffusion:
• In intercellular gas
• In plant cells

Stomata open

Colony growth:
• Consumption of nutrients
• Controlled by quorum sensing

Light

Figure 3.19: A flowchart of the mechanisms leading to light-driven bacte-
rial infiltration within the leaf tissue.

Effects of motility and chemotaxis on infiltration

Total amount of bacterial infiltration for chemotactic and motile bacteria is compared

in Fig. 3.20a with that of motile-only bacteria. Both experimental and computed results

show that the ability to do chemotaxis plays a major role in infiltration. The wilde

type E. coli K-12 MG1655 capable in both chemotaxis and motility showed 1.23 log

(CFU/g) more infiltration compared with the CheZ mutant E. coli K-12 BW25113 which

was motile-only. These results are also supported by previous observations showing
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Figure 3.20: a) Total amount of bacterial infiltration for different modes of
bacterial migration, b) relative contributions of the three dif-
ferent tactic migration modes, c) Variations of the downward
bacterial flux within stomatal cavity after 1 h of illumination
with white light intensity of 100 µmol/m2

· s.
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Illumination 
condition

Number of 
colonies 
detected

Dilution 
factor

Leaf side Leaf sample 
weight (g)

Number of 
bacterial 
infiltration 
into the leaves 
(CFU/g)

Bacterial 
infiltration 
(log CFU/g)

Test 1 White 
100 
(μmol/m2.s)

6 1/500 Adaxial 5.051 1200 3.08

Test 2 White 
100  
(μmol/m2.s)

8 1/500 Adaxial 5.024 1600 3.20

Test 3 White 
100 
(μmol/m2.s)

1 1/500 Adaxial 5.021 200 2.30

Mean 1000 2.86

Standard 
deviation

588.8 0.40

Test 1 Test 2 Test 3

a.

b.

Bacteria: kanamycin-resistant E. coli K-12 BW25113 (∆CheZ) 

Figure 3.21: Results of the colony growth of kanamycin-resistant E. coli K-
12 BW25113 (1 CheZ) on LB-agar medium containing 30 g/ml
kanamycin. The inoculated leaves were exposed to white
light, from adaxial side, with an intensity of 100 µmol/m2

· s
for 2 h.
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Figure 3.22: Total amounts of bacterial infiltration at white light intensity
of 100 µmol/m2

· s for two leaf sides.

that the entry of cheY mutants of S. enterica (defective in chemotaxis) into iceberg let-

tuce leaves, under light exposure, was significantly inhibited, while the wild type bac-

teria effectively reached the sub-epidermis leaf depths (Kroupitski et al., 2009). The

simulation results show that chemotaxis toward sugar (glucose) had more than 98%

contribution in the total tactic infiltration into the leaf tissue (Fig. 3.20b). This implies

that the role of aerotaxis, and chemotaxis toward AI-2 was very insignificant. This is

because large concentration gradients of sugar that are developeded between the leaf

tissue and the water film at the leaf surface, causing a large chemotactic flux of bacteria

within the stomatal cavity (Fig. 3.20c). Figure 3.21 shows the details of the experimental

results of motile-only bacterial infiltration that was compared with model predictions

in Fig. 3.20a.

Effects of leaf side and stomatal defense on infiltration

Leaf side can play a role in the amount of infiltration. Both experimental and com-

puted results showed an increased bacterial infiltration for the abaxial side of the leaf

(Fig. 3.22). When bacteria infiltrate the abaxial stomata they face the spongy mesophyll
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Illumination 
condition

Number of 
colonies 
detected

Dilution 
factor

Leaf side Leaf sample 
weight (g)

Number of 
bacterial 
infiltration 
into the leaves 
(CFU/g)

Bacterial 
infiltration 
(log CFU/g)

Test 1 White 
100 
(μmol/m2.s)

114 1/500 Abaxial 5.025 22800 4.36

Test 2 White 
100  
(μmol/m2.s)

153 1/500 Abaxial 5.051 30600 4.49

Test 3 White 
100 
(μmol/m2.s)

511 1/500 Abaxial 5.017 102200 5.01

Mean 51867 4.62

Standard 
deviation

35733 0.28

Test 1 Test 2 Test 3

a.

b.

Bacteria: ampicillin-resistant E. coli K-12 MG1655

Figure 3.23: Results of the colony growth of ampicillin-resistant E. coli K-
12 MG1655 on LB-agar medium containing 100 g/ml ampi-
cillin. The inoculated leaves were exposed to white light, from
abaxial side, with an intensity of 100 µmol/m2

· s for 2 h.
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Figure 3.24: Total amounts of bacterial infiltration for various stomatal re-
sponses during a) light and b) dark conditions. c) Contours of
bacterial concentration within the stomatal cavity that is being
closed.

which are not as tightly packed as the palisade tissue. Moreover, the stomatal density

at the abaxial side is much higher than that of the adaxial side (Panarese et al., 2016),

providing more infiltration routes for bacteria. Therefore, although the photosynthesis

is less in spongy region due to less chloroplast density of the spongy cells (compared to

palisade cells), the total amount of infiltration from abaxial side is higher. Figure 3.23

shows the details of the experimental results of bacterial infiltration into abaxial side of

the leaf that was compared with model predictions in Fig. 3.22.

Stomatal behavior depends on a number of biotic and abiotic factors. These ex-

ternal factors can influence the balance of phytohormones such as jasmonic acid (JA),
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salicylic acid (SA), and abcisic acid (ABA) within the guard cells to affect the work-

flow within the stomatal guard cells and regulation of the stomatal opening. In general,

dominance of JA signaling over SA and ABA signaling (e.g., in high humidity condition

or under light exposure) favors stomatal opening while a reverse condition can lead to

stomatal closure (Panchal and Melotto, 2017). Plant can sense the bacterial invasion

through the pattern-recognition receptors (PRRs) that exist at the extracellular regions

of the plant leaf. PPRs can sense the microbe-associated molecular patterns (MAMPs)

(e.g., components of bacterial surface structures such as flagellin, lipopolysaccharides)

and trigger the pathogen-triggered immunity (PTI) which is the first line of the active

defense against bacterial invasion (Melotto et al., 2014). One of the first outputs of the

PTI, in response to perception of MAMPs, is stomatal closure. MAMPs perception up-

regulates SA signaling and down-regulates JA signaling, leading to stomatal closure

against bacterial invasion (Panchal and Melotto, 2017). Fig. 3.24a shows the amount of

bacterial infiltration in light for the situations with or without stomatal defense capa-

bility. In the first scenario, the stomatal aperture becomes closed over 1 h (see Fig. 3.24c

for visualization). This situation resembles the MAMPs-induced rapid stomatal closure

(< 2 h) of various plants in the presence of E. coli and Pseudomonas syringae pv. tomato

(Melotto et al., 2006; Krouptiski et al., 2009). In the second scenario, stoma remains

open in spite of bacterial presence in the medium. This situation is similar to the inter-

action of S. enterica serovar Typhimurium with lettuce leaves for which it was shown

that the bacteria do not significantly induce stomatal closure (Krouptiski et al., 2009). As

is shown in Fig 3.24a, presence of stomatal defense was effective in decreasing bacterial

infiltration into the leaf for about 1-log. However, the stomatal defense is not always

successful, since some bacteria such as P. syringae are able to override PTI and re-open

the closed stomata after a few hours by expression of coronatine (COR), a molecular

mimic of jasmonoyl-L-isoleucine (JA-Ile) that madiates stomatal opening (Panchal et

al., 2016; Panchal and Melotto, 2017).

In Fig. 3.24b, the amount of bacterial infiltration for two different stomatal responses
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Figure 3.25: Sensitivity analysis on the leaf and bacterial parameters.

in dark are illustrated. In the first scenario, stomata are partially closed in dark which

is a resemble of a natural situation. In the second scenario, the stomata are forcibly kept

open in dark which is a simulation of applying stomatal opening reagent fusicoccin

to the leaf (Turner and Graniti, 1969; Krouptiski et al., 2009), stomatal opening due to

high humidity conditions (Panchal et al., 2016), or the situation when the dark-closed

stomata are re-opened by COR during P. syringae pv. tomato infections (Panchal and

Melotto, 2017). The amount of infiltration in the second scenario was more than 1-log

higher than that of the first. The above predictions are in agreement with the experi-

mental findings of Krouptiski et al. (2009) who showed that the amount of infiltration of

S. enterica into iceberg lettuce leaves with forcibly-opened stomata was not significantly

high, although it was higher than that of dark-closed stomata.

123



3.5.3 Sensitivity Analysis

To highlight the sole effects of motility, chemotaxis, growth, photosynthesis, and stom-

atal wettability on the amount of light-driven bacterial infiltration, parametric sensi-

tivity analyses were performed (Fig. 5.12). While motile motion was shown to play a

significant role in bacterial infiltration into plant leaves (Kroupitski et al., 2009), a 30%

increase in the coefficient of random motility led to a 3% decrease in infiltration. Motil-

ity being a random movement, high motility reduces the chance of bacteria in the leaf

surface water film to reach the stomatal pore. Increasing the bacterial chemotactic co-

efficient created 24% more infiltration. Greater infiltration from higher chemotaxis is

expected since it is a directed movement toward stomata where sugar concentration

are higher. Higher chemotaxis can also happen due to higher concentration gradi-

ents of nutrients. Addition of exogenous sugars (thus eliminating the concentration

gradients) like glucose and fructose to the bacterial inoculum at the leaf surface was

shown to significantly inhibit bacterial infiltration into iceberg lettuce during illumina-

tion (Kroupitski et al., 2009). Growth is also a significant factor in increasing the bacte-

rial concentration stemming from infiltration. The effect of growth, of course, depends

on the relative time scales of transport and growth which is described by Damkohler

number (Da) (Plawsky, 2010). Considering the leaf depth as the characteristic length

scale, Da was calculated in the range of 0.01 to 10, where the lower value belongs to

a strong chemotactic transport and the higher one belongs to a motile-only transport.

This range of Da shows that the growth rate is comparable to the transport rate, and

thus can affect the bacterial concentration within the leaf tissue. The change in the rate

of CO2 fixation did not significantly impact the amount of infiltration which implying

the mere existence of photosynthesis, regardless of its rate, is sufficient for promoting

the infiltration. Stomatal wall wettability can play a role in availability of free water in

the stomatal cavity (Nonomura et al., 2016) which facilitates bacterial transport into the

leaf interior. Change in the stomatal wall wettability was simulated by changing the

saturation of free water within the stomatal cavity region (Fig. 3.4a). A 30% decrease in

124



More 
bacterial 

infiltration

Process parameters:
• Light exposure
• Blue/white/red light spectra

Leaf properties:
• High sugar content
• Wider stomatal opening

How much bacterial infiltration?

Bacterial properties:
• Higher chemotactic ability

Process parameters:
• Green light spectrum

Leaf properties:
• Abaxial side
• Inhibition of Stomatal defense
• Higher stomatal wettability

Bacterial properties:
• Lower motility
• AI-2 signaling

Primary factors: Secondary factors:
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rial infiltration into plant leaves.

the stomatal wettability (more hydrophobic stomatal walls) decreased the infiltration

for about 2%. This shows that the hydrophobic nature of the stomatal guard cells plays

a defensive role in front of bacterial invasion.

3.5.4 Big picture: factors affecting infiltration

Based on the results presented above, the primary and secondary factors affecting the

amount of infiltration into the leaf tissue are summarized in Fig. 3.26. It captures the

overall understanding developed using the model and experiments in this study as

well as experimental evidences reported in literature. Primary factors leading to more

bacterial infiltration include the presence of blue/white/red light and photosynthesis,

higher initial sugar content due to pre-exposure to light, high chemotactic ability of

bacteria, and wider stomatal size. The secondary factors include presence of green light

exposure, leaf abaxial side, lower bacterial motility, higher stomatal wettability and AI-

2 signaling.
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3.6 Conclusions

A mechanistic model of light-driven infiltration of bacteria into stomatal opening

of plant leaves was presented. The concentration of photosynthetic sugar (glu-

cose/sucrose) in the apoplast of the leaf tissue was predicted reasonably accurate,

as compared with the experimental literature data. Based on the model results and

experimental findings, it was shown that presence of light with moderate intensity

(100 µmol/m2
· s) is sufficient to induce chemotactic invasion of bacteria toward photo-

synthetic products within the leaf tissue. Bacteria were abale to infiltrate the leaf tissue

during dark condition, however, the mount of infiltration was significantly less than

that in the light. Blue light induced the highest amount of infiltration, while the green

light caused the lowest. Ability of bacteria to do taxis was a major factor in penetration.

Chemotaxis toward sugars was much more significant than aerotaxis or chemotaxis to-

ward AI-2. Higher motility caused a decrease in infiltration as it decreased the chance

of bacteria in the leaf surface water film to reach the stomatal pore. A more hydropho-

bic wall of the stomatal guard cells decreased the infiltration. Plant stomatal defense

induced by perception of microbe-associated molecular patterns (MAMPs) was shown

to play a role in inhibition of bacterial invasions into the leaf apoplast.
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Appendix I

Derivation of transport equations for CO2 and O2:

Transport of species, i , (i.e., CO2 and O2) in the gas and water phases are governed by:

Sgφ
∂ci,g

∂t
= ∇ · (SgφDi,g∇ci,g) (3.41)

(Swf + Swb)φ
∂ci,w

∂t
= ∇ ·

(
(Swf + Swb)φDi,w∇ci,w

)
+ (Swf + Swb)φRi,w (3.42)

where Ri,w is an arbitrary source term (mol/m3
· s). Assuming the equilibrium between

gas and water phases to be described by Henry’s law (Ho et al., 2006):

ci,w = RTKH,ici,g (3.43)

and plugging in Eq. (3.4), the total concentration of each species in the REV is defined

as:

ci =
(
Sg + (Swf + Swb)RTKH,i

)
φci,g (3.44)

Using Eq. (3.44), the Eq. (3.42) can be rewritten as:

(
Sg + (Swf + Swb)RTKH,i

)
φ
∂ci,g

∂t
= ∇ ·

(
(SgDi,g + (Swf + Swb)Di,wRTKH,i)φ∇ci,g

)
+(Swf + Swb)φRi,w

(3.45)

Finally, by adding Eq.(3.41) and Eq. (3.45) and applying Eq.(3.44), the combined trans-

port equation in the REV is obtained as:

∂ci

∂t
= ∇ ·

(
Di,eff∇ci

)
+ (Swf + Swb)φRi,w (3.46)

where Di,eff is effective diffusivity of species i in the porous media:

Di,eff =
SgDi,g + (Swf + Swb)Di,wRTKH,i

Sg + (Swf + Swb)RTKH,i
(3.47)
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CHAPTER 4

RETENTION AND INFILTRATION OF BACTERIA ON A PLANT LEAF DRIVEN

BY SURFACE WATER EVAPORATION

4.1 Abstract

Evaporation-driven internal flows within a sessile droplet can transport microorgan-

isms close to the leaf surface and facilitate their infiltration into the available open-

ings, such as stomata. Here, using microfabricated surfaces out of Polydimethylsilox-

ane (PDMS), the sole effects of evaporation of sessile droplets in contamination of

plant leaves was studied. These surfaces were patterned with stomata, trichomes and

grooves that are common surface microstructures on plant leaves. Evaporation of ses-

sile droplets, containing bacterial suspensions, on real leaves and fabricated surfaces

were studied using confocal microscopy. To provide insight about the effects of leaf

hydrophobicity and surface roughness on the bacterial retention and infiltration, varia-

tions of contact angle of sessile droplets at these surfaces were measured during evap-

oration. The results showed that evaporation-driven flow transported bacteria close to

the surface of spinach leaves and fabricated surfaces, leading to distinct infiltration into

the microstructures. Larger size and wider spacing of the micropores, and a more hy-

drophillic surface led bacteria to spread more at the droplet base area and infiltrate into

more stomata. Evaporation-driven movement of contact line, that can sweep bacteria

over the leaf surface, was shown to lead to bacterial infiltration into the stomatal pores.

Findings should help improve microbial safety of leafy greens.
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4.2 Introduction

Evaporation is a fundamental process that can happen at various stages of pre-harvest

and post-harvest processing of leafy greens. Within an evaporating sessile droplet (i.e.,

a droplet that attached to a substrate) on a leaf surface, internal flows toward the contact

line occur to compensate the high evaporation fluxes at the contact line region (Deegan

et al., 1997; Hu and Larson, 2005a,b). These flows can carry bacteria, if present, toward

the leaf surface and at the location of contact lines (Kasyap et al., 2014) and facilitate

their access to the leaf interior.

Bacterial transport within an evaporating sessile droplet on a leaf surface can be

due to several active and passive driving forces: 1) convective transport by the fluid

flow (Deegan et al., 2000), 2) diffusive transport due to Brownian motion, that is as a

result of continuous bombardment from molecules of the surrounding fluid, 3) tactic

motions or active swimming toward nutrient sources (Thokchom et al., 2014), and 4)

motile motions or the random runs and tumblings. Among these mechanisms, only

the first one is purely induced by evaporation and can be a combination of capillary

effects (driven by the surface tension of the liquid), thermo-capillary effects (driven by

the gradient of the surface tension of the liquid at the liquid-gas interface), and flow

due to the movement of the contact line (Snoeijer and Andreotti, 2013).

A leaf surface is a complex environment which includes several microstructures

such as trichomes, stomata and grooves that can be attractive for bacteria (Kroupitski et

al., 2009). In addition to the availability photosynthetic nutrients at the location of these

microstructures (for example, stomata do photosynthesis), they also serve as shelters

for bacteria to avoid harsh environments and settle them at the leaf surface. As bacteria

get hidden at the location of these microstructures, they cannot easily be washed away

following typical sanitation practices, thus presenting a risk to the consumer. Since

evaporation of water films and sessile droplets on plant leaf surfaces is a process that

frequently happens as leafy greens move from field to fork, its role on the microbial
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contamination of the leafy greens needs to be better understood. Literature is scant on

the specific effect of evaporation on bacterial retention at the leaf surface and their infil-

tration into leaf openings. This study intends to contribute to underling mechanisms of

this evaporation-driven retention and infiltration process. Due to the complexities of a

leaf surface in terms of its hydrophobicity and roughness, artificial patterned surfaces

fabricated out of Polydimethylsiloxane (PDMS) are used here in conjunction with real

leaves.

4.2.1 Objectives

The objectives of this work were:

• Design and fabrication of leaf surface surrogates out of PDMS patterned with

three different common microstructures of stomata, trichomes and grooves that

are normally found on plant leaves.

• To investigate how evaporation-driven flows, within a sessile droplet located on

real leaves as well as fabricated patterned surfaces, lead to bacterial access to the

surface microstructures.

• To investigate of the role of size and spacing of microstructures, and hydropho-

bicity of the surface, and bacterial concentration on bacterial deposition patterns.

• To investigate how evaporation-driven movements of contact lines leads to bac-

terial infiltration into stomatal opening.

4.3 Materials and Methods

The experimental approach taken here includes fabrication and characterization of

patterned PDMS surfaces, measurement of contact angles of sessile droplets on real
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Figure 4.1: Microscopic images of three types of the microstructures at the
surface of plant leaves, adapted from Sirinutsomboon et al.
(2011), and their artificial surrogate patterns on PDMS. Dimen-
sions a, b, d and h are shown in Table 4.1.

leaves and the PDMS surfaces, and microscopy imaging of drop (containing fluorescent

bacteria/micro-particles) evaporation on real leaves and the PDMS surfaces. Details of

these experiments are discussed here.

4.3.1 Fabrication of micropatterned surfaces

The three common micro-structures on the plant leaf surfaces were molded on the

PDMS surfaces (Fig 5.4). These micro-structures include trichomes, stomata and

grooves whose dimensions were chosen based on the available microscopic imaging

data (Sirinutsomboon et al., 2011). For each micro-structure, two different sizes and

spacing were fabricated. The PDMS surfaces were made in two different hydrophobic-

ity levels within a range that many leafy vegetables sit (40◦ to 130◦) (Lazouskaya et al.,
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Figure 4.2: Fabrication steps taken during photomask development,
ADEX molds fabrications and PDMS coating.

139



2016).

Typical fabrication steps are shown in Fig 4.2. In step 1, photomasks were prepared

for the each type of micro-structures.The patterns, shown in Fig 4.1, were designed

in L-Edit 15 (Mentor Graphics Corporation, OR, USA), and the CAD files (.gds for-

mat) were transferred to a Heidelberg mask writer (DWL2000, Heidelberg Instruments,

Germany) to write the 5-inch chromium photomasks. After laser exposure, each pho-

tomask was developed and etched to remove the exposed layer of photoresist and un-

covered chromium, respectively. Followed by a photoresist stripping, the masks were

thoroughly rinsed and dried.

In step 2, the molds required to pattern PDMS were made using photolithogra-

phy technique. ADEX sheets, dry-state negative photoresists, of various thicknesses

were purchased from Integrated Micro Materials TM (TX, USA). The sheets were lam-

inated on clean n-type one-sided silicon wafers of 100 mm diameter, using an ADEX

hot-roll laminator (SKY-335R6, SKY-DSB Ltd., Korea) at roller velocity and temperature

of 0.3 m/min and 65 ◦C , respectively. Immediately after lamination, the wafers were

baked at 65 ◦C for 30 min. Then, by using the photomasks fabricated in the previous

step, the wafers were exposed to i-line UV light by a contact aligner (ABM Inc., CA,

USA) equipped with a short wavelength exclusion filter. The exposure dose for the

ADEX sheets of 5 µm and 20 µm thickness were 90 mJ/cm2 and 175 mJ/cm2, respec-

tively. This was followed by a post-exposure bake at 85 ◦C for 10 min. The developing

time for the ADEX sheets of 5 µm and 20 µm thickness were 5 min and 15 min, respec-

tively, by using SU-8 developer. The developed devices were hard baked at 150 ◦C for

60 min. In order to avoid the PDMS stick to the ADEX, a molecular layer of FOTS (a

coating to make the surface hydrophobic) was deposited on the ADEX surfaces using a

molecular vapor deposition machine (MVD-100, MVD TM.)

In step 3, these ADEX devices were used as molds to pattern PDMS. PDMS (with

a mass ratio of base to curing agent of 10:1) was vacuumed for 20 min to remove all
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Figure 4.3: Fabricated photomask, ADEX mold, and PDMS surfaces pat-
terned with trichomes of two different size and spacing. See
Table 4.1 for the dimensions.

trapped air bubbles. It was then poured on the surface of the wafers and left at 65 ◦C

for 120 min to solidify. The final patterned PDMS surfaces were placed on microscope

cover-slips, after applying oxygen plasma on the attaching surfaces of the glass and

PDMS to improve their stickiness. Hydrophobocity of the final PDMS device was ad-

justed by depositing a layer of FOTS (to make the surface hydrophobic)or APTMS (a

coating to make the surface hydrophillic) using MVD-100 machine.

After fabrication of the PDMS devices, the size of the features were characterized by

an optical microscope and an optical profilometer (NewView 7300, Zygo Corporation,

CT, USA), as shown in Table 4.1.
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Table 4.1: Dimensions of the micro-structures fabricated on

the PDMS surfaces.

Definition Microstructure

dimension

Small features,

size (µm)

Large features,

size (µm)

Stomata

Small diameter a 16.0 25.7

Large diameter b 27.6 29.5

Spacing d 50 & 100 50 & 100

Depth h 20 20

Trichomes

Diameter a 16.9 26.9

Spacing d 50 & 100 50 & 100

Height h 20 20

Grooves

Width a 2.8 5.2

Length b 31.4 31.9

Spacing d 50 & 100 50 & 100

Depth h 20 20

4.3.2 Measurement of the contact angle

A contact angle goniomter (Rame-Hart 500, NJ, USA) was used do detect the variations

of the contact angle of the droplet on various spinach leaves as well as the PDMS sur-

faces. For each experiment, a 1 µl droplet was placed on the surface and the variation

of the contact angle was measured over evaporation time.
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4.3.3 Drop evaporation experiments

To detect evaporation-driven bacterial collections on PDMS surfaces, a 1 µl drop of sus-

pension of fluorescent E. coli RP437 cells (see supplementary for bacterial preparation

procedure) was placed on each surface, and the evolution of the contact line region was

sequentially imaged using an inverted confocal microscope (Olympus IX71, Olympus

Corporation, Japan) (Kasyap et al., 2014). When needed, the same procedure was ap-

plied using 1 µm fluorescent tracer particles (Bangs Laboratories Inc., IN, USA) at a

concentration of about 1× 108 particles/ml. Drop evaporation and bacterial deposition

experiments on real plant leaves was done using an upright confocal microscope (Le-

ica TCS SP5, IL, USA). Both confocal microscopy experiments were performed at 10x

magnification, and using a 488 nm argon laser.

4.4 Results and discussion

This section presents first the variations of the contact angle of a sessile droplet on real

plant leaf and PDMS devices. Next, effects of presence of stomata, grooves and tri-

chomes, their size and spacing, the hydrophobicity of the surface, and bacterial con-

centration on evaporation-driven retention and infiltration of plant leaves is discussed.

Finally, the role of evaporation-driven movement of contact line in infiltration of bacte-

ria into stomatal opening is elaborated.

4.4.1 Contact angle on a leaf and patterned surfaces during

evaporation

Surface hydrophbicity of the plant leaves varies in a wide range. For instance, lettuce

leaves are hydrophilic with an initial contact angle of less than 45◦, while spinach leaves
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Figure 4.4: a) Variations of the contact angle on leaf and flat PDMS surfaces
coated with FOTS (hydrophobic) and APTMS (hydrophillic).
b) Variations of the contact angle on APTMS-deposited PDMS
patterned with stomata, trichomes and grooves. c) Effect of
size and spacing on the variation of the contact angle on
FOTS-deposited PDMS surfaces patterned with trichomes. d)
Schematic showing the underlying mechanisms of stick-slip
behaviour of a contact line during evaporation. e) Images of
an evaporating sessile droplet on a FOTS-deposited PDMS sur-
faces patterned with small trichomes with wide spacing.
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are more hydrophobic, having a contact angle above 65◦ (Lazouskaya et al., 2016). Vari-

ation of the contact angle of sessile droplets during evaporation affects flow patterns

within the droplet and thus transport of bacteria. Therefore, variation of the contact

angle of sessile droplets on leaf and patterned surfaces are analyzed here. Figure 4.4a

presents measured contact angle of 1 µl sessile droplets at the surfaces of spinach leaves

and flat PDMS surfaces covered with FOTS or APTMS. In general, the contact angle de-

creases during evaporation times almost linearly on both leaf and fabricated surfaces.

This is because the contact line often pined to the surface, and removal of mass from

the droplet led to reduction in its contact angle. Abaxial side of spinach leaf is more

hydrophobic than its adaxial surface (Lazouskaya et al., 2016). FOTS-deposited sur-

faces show closer surface characteristic to the abaxial side, while the APTMS-deposited

surface better represents the adaxial side.

Addition of the microstructures to the flat surfaces of the same hydrophobicity

makes some changes in the variation of contact angle during evaporation. For exam-

ple, on APTMS-deposited PDMS patterned with trichomes, the contact angle decreased

sharply during evaporation (Fig. 4.4b). This is because trichomes enhance pinning of

the droplet to the surface, and therefore the contact angle decreases faster as the drop

evaporates. On stomata and grooves, contact angle became somewhat constant after

about 550 s which is due to the movement of the contact line over these microstruc-

tures. This constant contact angle trend that was also seen on a flat surface (Fig. 4.4a).

On stomata, the contact line showed oscillations at these later times (Fig. 4.4b) due to a

stick-slip behavior, which is explained later.

Spacing of the pattered features highly affected the contact line variation during

evaporation (Fig. 4.4c). Wider spacing reduces the contact angle. The narrow spacing

probably brings the drop closer to a Cassie state (i.e., droplet sits on top of the mi-

crostructures without any contact with the surface) and causes a super hydrophobic

behavior. When spacing stayed the same, contact angles were similar for two different

sizes (Fig. 4.4c).
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The oscillations seen in the contact angle on all three patterned surfaces after about

550 s of evaporation (Fig. 4.4b) is due to a stick-slip behavior of the contact line on the

patterned surfaces (Chen et al., 2012, He et al., 2017). Figure 4.4d shows a schematic of

the underlying mechanisms of the stick-slip behavior of contact line on a surface pat-

terned with trichomes. Initially, the contact line is pinned to the surface of the features.

As the droplet evaporates, surface tension forces cause the contact angle to decrease.

This reduction in the contact angle continues until it reaches a critical value at which

the de-pinning forces generated from the surface tension of the evaporating droplet ex-

ceed the pinning forces (Fig. 4.4d), leading to the slipping of the contact line over the

feature. This behavior can be observed in Fig. 4.4e that shows the evaporation of a 1 µl

sessile droplet on a FOTS-deposited PDMS surface patterned with trichomes of small

size and wide spacing. The stick-slip behavior of the contact line, can contribute in the

bacterial infiltration into the leaf opening, as discussed Section 4.4.3.

4.4.2 Evaporation-driven flows transport bacteria toward the

leaf surface

Figure 4.5a shows a ring formed on a spinach leaf surface after evaporation of a 0.5 µl

sesile droplet containing E. coli RP437 cells. When a sessile droplet containing bacteria

evaporates on a leaf surface, it transports the bacterial cells close to the leaf surface and

facilitates their access to the surface microstructures (Fig. 4.5b). Figure 4.5c and Fig. 4.5d

confirm the bacterial accumulation at the location of the contact line and into the stom-

ata and grooves after evaporation of the sessile droplet. These findings imply the effects

of evaporation-driven internal flows, shown in Fig. 4.5b, in bacterial transport toward

the contact line and close to the leaf surface. Similar patterns were also observed for

1 µm fluorescent beads (instead of bacteria) in a sessile droplet (Fig 4.5e), highlighting

the dominant role of passive transport by evaporation-driven internal flows.
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Figure 4.5: Confocal microscopy image (with 10x magnification) of depo-
sition of E. coli RP437 on adaxial side of a spinach leaf after
evaporation of a sessile droplet. b) A schematic of the mecha-
nisms of transport of bacteria in the evaporating sessile droplet
located at the leaf surface. c) A close look at the leaf surface,
at the contact line region, showing bacterial collections at the
contact line and a severe infiltration into a stomatal pore. d)
A close look at the leaf surface, at a location inside the droplet
and away from the contact line, showing bacterial deposition
within grooves and stomata. e) Deposition of 1µm fluorescent
micro-particles on an adaxial side of a spinach leaf, showing
their accumulation within stomata and grooves.
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.

Figure 4.6a shows flow of fluorescent beads toward contact line of an evaporating

sessile droplet on spinach leaf. To provide a quantitative understanding of the amount

and distribution of fluid velocity within the droplet, velocity of fluorescent beads within

an evaporating droplet on a flat APTMS-deposited surface was measured from confo-

cal microscopy data (Fig. 4.6b). The velocity of microbeads increases as they approach

the contact lines. This is because the evaporation flux is stronger at the contact line re-

gion (Starov and Sefiane, 2009; Son, 2010), leading to the acceleration of particles. The

same patterns and orders of magnitude were observed by Kasyap et al. (2014), Monteux

and Lequeux (2011), and predicted by analytical models derived from the lubrication

theory (Hu and Larson, 2005). On a plant leaf, however, presence of microstructure

can create instabilities in the fluid flow close to the leaf surface. This can generate up-

ward flows away from microstructures that can reduce the radial flow velocity toward

the contact line, compared with what is seen on a flat APTMS-coated PDMS substrate
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(Fig. 4.6b). From confocal microscopy data (Fig. 4.6a), the radial velocity of microparti-

cles toward contact line of a sessile droplet at a leaf surface was estimated to be less than

1 µm/s which is smaller than what is observed on a flat APTMS-coated PDMS surface

(Fig. 4.6b). The smaller velocity on a leaf can lead to a more uniform distribution of

microparticles/bacteria at the leaf surface.

Plant leaves being complex, the underlying mechanisms of contamination can be

studied more effectively by using fabricated surfaces with known hydrophobicity and

roughness. Figure 4.7 shows the variations in the concentration of E. coliRP437 (flu-

orescence intensity represents bacterial concentration), during evaporation of sessile

droplets, initially containing 109 cells/ml on APTMS-deposited surfaces. On a flat sur-

face (Fig. 4.7a), the highest concentration of bacteria is at the contact lines (the sharp line

of the fluorescence intensity). In the presence of stomata (Fig. 4.7b), bacteria are also

collected within the features. Stomatal pores located at the contact line region contain

the highest concentration of bacteria after evaporation (see also Fig. 4.5c). Trichomes

play the role of micropillars in front of internal flows that can trap bacteria. Figure 4.7c

shows how bacterial cells are collected around trichomes during evaporation. At the

contact line, more bacteria are collected around the trichomes which is due to the bac-

terial transport by evaporation-driven flows toward the contact line. Bacteria are also

deposited within the grooves (Fig. 4.7d). Grooves located at the contact lines contained

a much higher concentration of bacteria after evaporation, as is highlighted by the flu-

orescent intensity profile (see also Fig. 4.5c).

Stomata are the main natural routes for infiltration of bacteria into plant leaves. Ef-

fect of their size and spacing on the bacteria infiltration is shown in Fig. 4.8a to Fig. 4.8c.

Stomatal density on the adaxial side of a leaf is lower than its abaxial side. Therefore,

patterned surfaces with stomatal features of wide (Fig. 4.8a) and narrow (Fig. 4.8b) spac-

ing can represent adaxial and abaxial sides of a leaf, respectively. An increase in the

stomatal density led bacteria to mainly accumulate at the location of the contact line.

An mentioned before, presence of stomata can create upward flows away from stom-
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Figure 4.7: Collection of E. coli RP437 (fluorescence intensity repre-
sents bacterial concentration), with an initial concentration of
109 cells/ml, on APTMS-coated (hydrophillic) PDMS surfaces
with a) no patterns (flat surface), and with b) stomatal, c) tri-
chomes and d) grooves patterns. For all cases, a fluorescence
intensity profile highlights the distributions of the bacterial
concentration at t/td = 1 along a yellow line shown in each im-
age. On a flat surface (a), bacterial concentration is higher at the
contact line. In (b) and (d), the bright color inside the small el-
lipses and rectangles represents bacterial infiltration into stom-
ata and grooves, respectively. In (c), the bright color around
the circles, represents bacterial collection around the trichomes.
The location of the contact line and the fabricated features are
shown by red arrows. All patterned surfaces shown here con-
tain large features with wide spacing. Here td is about 15 min.
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Figure 4.8: Collection of E. coli RP437 (fluorescence intensity repre-
sents bacterial concentration) with an initial concentration of
109 cells/ml, on APTMS-coated (hydrophillic) PDMS surfaces
patterned with stomatal features with a) large size and wide
spacing, b) large size and narrow spacing, and c) small size
and narrow spacing. d) Bacterial collection (with an initial con-
centration of 108 cells/ml) on a APTMS-coated (hydrophillic)
PDMS surface patterned with stomatal features with large size
and wide spacing. e) Bacterial collection (with an initial con-
centration of 109 cells/ml) on a FOTS-coated (hydrophobic)
PDMS surface patterned with stomatal features with large size
and wide spacing. the bright color inside the small ellipses and
rectangles represents bacterial infiltration into stomata.
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atal pores that can transport unattached bacteria out of the pore. When the stomatal

density increases, these flows get stronger. A combination of these upward flows and

the evaporation-driven downward and radial flows close to the leaf surface leads bacte-

ria to mainly transport through rows between stomatal pores, toward the contact line.

Therefore, they are rarely trapped inside the high-density stomatal pores (Fig. 4.8b),

and mainly accumulate at the contact line region.

Small stomatal features with wide spacing (Fig. 4.8c) can represent partially closed

stomata on adaxial side of a leaf at which the stomatal density is lower (Panarese et

al., 2016). Comparing Fig. 4.8a and Fig. 4.8c, a wider stomatal pore seems to trap more

bacteria per pore. The bacterial infiltration into stomatal opening during evaporation

is concentration-dependent. Figure 4.8d shows the effect of 1 order of magnitude de-

crease in the bacterial concentration (compared with what is used in Fig. 4.8a) on their

infiltration into stomatal pores. Obviously, the infiltration (presence of bacteria inside

the pores as represented by fluorescence intensity) is more noticeable when bacterial

concentration in the droplet is higher. Surface hydrophobicity can also affect the bacte-

rial accumulation patterns within an evaporating droplet. A more hydrophobic surface

(Fig. 4.8e, FOTS-deposited) has drastically reduced infiltration of bacteria within stom-

atal pore area compared to a hydrophillic surface (Fig. 4.8a, APTMS-deposited). The

hydrophillic nature of the surface can keep the bacteria closer to the leaf surface. There-

fore, the chance of bacteria to infiltrate the stomatal pores on a hydrophillic surface

(Fig. 4.8a) is higher than that on a more hydrophobic surface (Fig. 4.8e).

4.4.3 Evaporation-driven movement of contact line deposits

bacteria within surface microstructures

Microscopy imaging (Fig. 4.9a) reveals that mainly on a more hydrophobic surface

(FOTS-deposited), when the evaporation rate is high enough, the contact line sticks and
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Figure 4.9: a) Deposition of 1 µm fluorescent microparticles, at differ-
ent times during drying of a sessile droplet (with an initial
concentration of 108 particles/ml), into stomatal pores, fabri-
cated on a FOTS-coated (hydrophobic) PDMS surface. Here
the td = 7min. b) schematic showing how a stick-slip behaiour
of the contact line during evaporation of a sessile droplet can
lead to bacterial deposition inside the stomatal pores.
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slips over the microstructures. Here, instead of bacteria, fluorescent microparticles were

used to show that this mechanism can lead to particle attachment to the microstruc-

ture even without any active attachment means, such as flagella that wild-type bacteria

have. Evaporation-driven flows transport microparticles toward the contact line (Dee-

gan et al., 2000). Receding movement of the contact line over stomatal pores, as a result

of evaporation, leads to microparticle deposition at the edges or within the pores. This

observation can be explained using a schematic shown in Fig. 4.9b: in the first (stick)

stage, contact line sticks to the edge of the stomatal pore. Evaporation-driven internal

flows transport bacteria/microparticles into the stuck region where they can attach to

the surface and edges. Meanwhile, the surface tension forces tend to pull the liquid

surface in an opposite direction (toward the drop center line), leading to a local reduc-

tion in the contact angle at the stuck edge. This smaller contact angle creates a higher

evaporation flux at the stuck edge (as it acts like a hydrophyllic surface) and a stronger

microparticle transport into the stuck region. As the drop evaporates, the surface ten-

sion forces cause the apparent contact angle of the drop to decrease to a critical value

at which the de-pinning forces dominate the pinning forces (Fig. 4.4d). At this second

(slip) stage (Fig. 4.9b), the contact line slips over the stomatal pore and leaves the at-

tached microparticles/bacteria at the stomatal edge.

4.5 Conclusions

Evaporation of sessile droplets, containing bacterial suspensions, on plant leaves were

studied using confocal microscopy. Due to complexity of the plant leaves in terms of

variability in the surface roughness and hydrophobicity, fabricated PDMS surfaces were

used to further understand the underlying mechanisms of microbial retention and infil-

tration during evaporation. Drop evaporation experiments on plant leaves showed that

evaporation-driven flows can transport bacteria close to the leaf surface and facilitate

their access to the microstructures, such as trichomes, stomata, and grooves, leading to

154



their significant infiltration into the stomatal opening. Larger size and wider spacing

of the micropores, and a more hydrophillic surface led bacteria to spread more on the

droplet base area and infiltrate into more stomata. The infiltration was more noticeable

when the bacterial concentration in the droplet was higher. During evaporation of a

droplet on stomatal pores, the contact line may stick to the pore edges and slip over

them. Sticking of the contact line to the stomatal pores increases the time scale at which

evaporation driven internal flows can transport bacteria into the stomata, that facilities

their infiltration.
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Supplementary Information

Bacterial culture: Escherichia coli (E. coli) cells (RP437 strain, a gift from Sandy

Parkinson, the University of Utah, transformed with pTrc-GFP plasmid in DeLisa lab,

Cornell University) were grown in Tryptone Broth (10.0 g/L of Bacto Tryptone powder

dissolved in phosphate-buffered saline (PBS)) supplemented with 100 g/ml Ampicillin

in a shaker bath at 30 ◦C, 150 rpm. The overnight cultures were inoculated the next

morning in a fresh Tryptone Broth medium (∼ 25X) to a final concentration that corre-
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sponds to OD600 ∼ 0.05. Inducer isopropyl thiogalactopyranoside was added to a final

concentration of 1 mM when cell density reached OD600 ∼ 0.2. Cells were harvested at

exponential growth phase when OD600 reached ∼ 0.5. Cells were resuspended twice

(centrifuged at 1500 g for 2 min) in chemotaxis buffer (PBS, 0.1mM EDTA, 1µM me-

thionine, 10 mM lactic acid, pH = 7.3) before experiments. All drop evaporation ex-

periments were done within ∼ 2 h after the bacterial culture were prepared, to make

sure that each experimental run used cells with exact same preparation procedures as

described above.
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CHAPTER 5

A MECHANISTIC MODEL FOR BACTERIAL RETENTION AND INFILTRATION

ON A LEAF DURING A SESSILE DROPLET EVAPORATION

5.1 Abstract

Evaporation of sessile droplets at surface of plant leaves is a process that frequently

occurs during plant growth as well as post-harvest processes. Evaporation-driven in-

ternal flows within sessile droplets can transport microorganisms near the leaf surface,

facilitating their adhesion to surface microstructures such as trichomes, and infiltration

into available openings such as stomata and grooves. A mechanistic model for this re-

tention and infiltration pathway was developed. Solution domain is a sessile droplet

located on a leaf surface, as well as its surrounding gas. The model includes fluid flow

within the droplet and gas phases, gas-water interface tracking, heat transfer, trans-

port of vapor in gas, and transport of sugar and bacteria within water. The model

results are validated based on available literature data and experimental images. The

results showed that a hydrophilic surface would promote bacterial retention and infil-

tration. Evaporation-driven flows increase concentration of bacteria around or inside

microstructures at the leaf surface, facilitating their adhesion and infiltration. Larger

microstructures having wider spacing between them increased the retention. Chemo-

taxis toward nutrients at the leaf surface and random motility were shown to decrease

the retention and infiltration during evaporation.

5.2 Introduction

Leafy greens are among the most contaminated food products to various microorgan-

isms (DeWaal and Bhuiya, 2007; Olaimat and Holley, 2012). Their contamination might
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Evaporation-driven flows 

Leaf section

Stomatal guard cells

Epidermis cells

Bacterial accumulation at the 
contact lines

Spongy cells

Bacterial collections in stoma and 
grooves

a.

b. c.

Figure 5.1: Evaporation of a water film at the leaf surface can lead to bacte-
ria infiltration into the grooves and openings at the leaf surface.

be facilitated by various pathways such as imposed pressure gradients (Ranjbaran and

Datta, 2019), light exposure (Kroupitski et al., 2009), and evaporation of water film at

the leaf surface (Lazouskaya et al., 2016).

Sessile droplets of water frequently evaporate at the surface of plant leaves during

the growth period and the post-harvest processing of leafy greens. The evaporation-

driven internal flows within the sessile droplet can transport microorganisms close

to the leaf surface and facilitate their adhesion to the surface microstructures such as

trichomes, and infiltration into the available openings such as stomata and grooves

(Fig 5.1). The flows within evaporating sessile droplets (Deegan et al., 1997; Hu and

Larson, 2005a,b) and how these flows affect transport and deposition of colloids and

bacteria at artificial surfaces (Monteux and Lequeux, 2011; Kasyap et al., 2014) have

been studied over the years. Presence of chemical and structural complexities at a leaf
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Figure 5.2: mechanisms of bacteria transfer in an evaporating sessile
droplet on a leaf surface

surface, however, can affect the flow patterns within the evaporating sessile droplets

and incorporate additional bacterial transport mechanisms.

The most important pathways contributing to bacterial transport in an evaporating

sessile droplet at a leaf surface are (Fig 5.2): 1) Flows toward contact line (Fig 5.2a)

that happen when the surface-tension forces, acting at the droplet surface, squeezes the

fluid, making it flow toward the contact lines to compensate for the large evaporation

losses at the contact lines (Deegan et al. 1997). These flows can transport bacteria to-

ward the contact line regions (Kasyap et al., 2014). 2) Thermo-capillary (Marangoni)

flow (Fig 5.2b) that happen due to the temperature gradients at the droplet surface.

These flows can play a role in generating vortices within the droplet (Hu and Larson,
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2005a) and transport bacteria away from contact lines. 3) Flows due to movement of

contact lines (Fig 5.2c) that take place when the droplet recedes due to evaporation and

escaping water molecules from the contact lines. These flows can transport bacteria

away from contact line. Presence of surface roughness (Chen et al., 2012) or chemical

heterogeneity (He et al., 2017) can cause the contact line movement to happen as a stick-

slip motion. 4) Bacterial chemotaxis (Fig 5.2d) that is the directed movement of cells

toward available nutrients at the leaf surface. Swimming speed of chemotactic bacteria

is of the same order of magnitude as the flow velocity in an evaporating droplet (Curk

et al., 2013; Kasyap et al., 2014). The photosynthetic products can attract bacteria to

actively infiltrate the stomatal openings, and other crevices and cracks at the leaf sur-

face (Kroupitski et al., 2009). 5) Bacterial motility (Fig 5.2e) that is a random run and

tumbling motion of bacteria. This motion induces a diffusion-like transport (Kasyap et

al., 2014) of cells toward locations with lower bacterial densities.

The complex process of evaporation-driven retention and infiltration of bacteria

at/into plant leaves can be effectively understood by using a mechanistic model that

complements experimental observations. The model can help better understand how

various contributing factors and pathways work together to influence the overall pro-

cess. This work presents a novel mechanistic model describing the role of evaporation

of sessile droplets in bacterial retention and infiltration at/into plant leaves.

5.2.1 Objectives

The main objectives of this paper are to: 1) develop a model for transport of bacteria

within an evaporating sessile droplet by fluid flows, 2) incorporate the role of active

transport (chemotaxis and motility) in the model, 3) validate the model against experi-

mental and literature data, and 4) identify the most important contributing factors and

quantify of their relative contributions to evaporation-driven bacterial retention and

infiltration.
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Figure 5.3: a) A physical leaf section with a water droplet containing bac-
teria at the surface, b) a 3D computational domain focusing on
the water droplet and gas above the leaf surface. c) A side view
of the solution domain introducing the boundary conditions.

5.3 Model development

5.3.1 Problem description and assumptions

A schematic of the problem description is shown in Fig. 5.3. A microdroplet contain-

ing a known bacterial concentration is located on a leaf surface (Fig. 5.3a). To avoid

topological complexities existing at the leaf surface, the solution domain is simplified

to be a flat surface (Fig. 5.3b). In addition to a flat surface, other substrate structures,

i.e., stomata, grooves and trichomes (Fig. 5.4), are separately studied. The solution do-

main includes the epidermis layer of the leaf, the water droplet and the surrounding gas
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Figure 5.4: Microscopic images of the three types of the microstructures at
the surface of plant leaves, adapted from Sirinutsomboon et al.
(2011), and their computational analogues.

(Fig. 5.3c). A two-phase flow moving mesh approach describes the flow within droplet

and surrounding gas. At the interface, there is a pressure jump due to liquid surface

tension and evaporation effects. The evaporation flux at the interface is dynamically

calculated from local vapor concentration and temperature. Movement of the contact

line is described by the Navier slip condition which is used in conjunction with a pre-

scribed dynamic contact angle (Sui et al., 2014). As the moving mesh approach does not

tolerate mesh break-ups, the contact line was assumed to move only on flat a surface.

Vapor generated from evaporation of the droplet transports within the gas phase. Heat

transfer inside the entire domain is solved to include the evaporative cooling effects

and updating temperature-dependent parameters. Inside the water phase, bacteria can

transport by fluid flow and motility (diffusion-like transport). In the presence of sugar

(glucose), bacteria can also do chemotaxis (convection-like transport). Sugar transports

by the fluid flow within the droplet as well as molecular diffusion. When sugar trans-

port is solved, a constant sugar concentration boundary condition at the internal walls
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Figure 5.5: An overview of the model.

of stomatal openings simulates secretion of photosynthetic products from leaf interior

into the droplet.
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5.3.2 Governing Equations

An overview of the model is shown in Fig. 5.5. All of the equations are written in the

mesh frame; their solution domain moves with the mesh. Fluid flow in each phase is

described by Navier-Stokes equations coupled with an ALE moving mesh approach

to track the interface. A heat transfer equation determines distribution of temperature

within the fluids. Vapor transport is solved within the gas phase, while bacterial and

sugar transport equations are solved in the liquid phase.

Flow of water and gas

Shape of a sessile droplet is mainly governed by the surface tension. For a small sessile

droplet (e.g., 1 µl), the Bond number (Bo = 1ρgL2/σ ) which accounts for the balance

of the surface tension and gravitational forces, is quite small (∼ 0.04) (Hu and Larson,

2005a). Here, 1ρ is the difference between densities of the two phases ( kg/m3), g

is the gravitational acceleration (m/s2), L is the characteristic length scale (m), and σ

is the surface tension (N/m). Therefore, for a small droplet of size 1 µl, the surface

forces dominate the body forces and the effect of buoyant flows due to changes in the

water density can safely be neglected. Both gas and water phases are considered as

Newtonian incompressible fluids here. Within both fluid phases (i.e., mesh frame), the

continuity and momentum balance equations are as:

∇ · u = 0 (5.1)

ρ
∂u
∂t
+ ρu · ∇u = ∇ · τ + ρg (5.2)

where ρ is fluid density (kg/m3), u is the fluid velocity vector (m/s), P is the fluid pres-

sure (Pa), η is the fluid viscosity, and g is the gravitational acceleration vector (m/s2).

The stress tensor, τ , is defined as:

τ = −PI+ η
(
∇u+ (∇u)T

)
(5.3)
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The movement of the mesh within the solution domain is done by an ALE approach

whose equations are not elaborated here.

Transport of vapor in gas

Vapor is transported within the gas phase by binary diffusive and convective transport:

∂

∂t
(ρgωv)+∇ · (ugρgωv) = ∇ ·

(
Cg

ρg
Ma MvDbin∇xv

)
(5.4)

where, ωv and xv are the mass (kg/kg) and mole (mol/mol) fractions of water vapor,

respectively. Dbin is the binary diffusion coefficient (m2/s), and Ma and Mv are molar

masses (kg/mol) of air and vapor, respectively.

Heat transfer in water and gas

The heat transfer in fluids is described by a convection-diffusion equation:

ρ f C p f

∂T
∂t
+ ρ f C p f u f · ∇T = ∇ · (k f∇T ) (5.5)

where k f and C p f are thermal conductivity and specific heat capacity of fluids (W/m·K),

respectively.

Transport of sugar in water

Sugar (glucose) available at the leaf surface is transported into the water film and attract

bacteria toward leaf stomata. In an evaporating sessile droplet, the effect of aerotaxis on

bacterial transport and deposition was shown to be insignificant (Kasyap et al., 2014),

and is ignored here. A transport equation is used to describe the distribution of the

glucose concentration (csug) within the droplet:

∂csug

∂t
+∇ · (ulcsug) = ∇ · (Dsug,l∇csug) (5.6)

where Dsug,l is the diffusivity of glucose in water (m2/s).
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Transport of bacteria within water

Bacteria are transported within the water droplet. They can be advected by water veloc-

ity (uw) and actively swim with a chemotactic velocity (uchx ) toward nutrient concentra-

tion gradients. In addition, the tumbling motion of bacteria would induce a diffusion-

like transport within the water phase. As the drop evaporation takes a short time

(e.g., 10 min), the growth of bacteria and their consumption of nutrients was neglected.

Transport of bacteria within the water droplet is described by a modified Keller-Segel

equation (Tindall et al., 2008):

∂cb

∂t
+∇ · ((ul + uchx)cb) = ∇ · (Db,l∇cb) (5.7)

where cb is the bacterial concentration (CFU/m3), Db,l is the diffusivity of bacteria

(m2/s) within water. For motile bacteria, it is called coeficient of random motility. The

chemotactic velocity is defined as (Tindall et al., 2008):

uchx = χcht∇csug (5.8)

Here χcht is chemotactic coefficient (1/s):

χcht = χ0
Kd

(Kd + csug)2
(5.9)

where χ0 is chemotactic sensitivity coefficients (m2/s) and Kd is the receptor-ligand

binding dissociation constant (kg/m3).
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Table 5.1: Input Parameters

Parameter Symbol Value Units Source

Density

Water ρw 998 kg/m3 Rahman

(2005)

Vapor ρv Ideal gas kg/m3 Assumed

Air ρa Ideal gas kg/m3 Assumed

Specific heat capacity

Water C pw 4176 J/kg · K Rahman

(2010)

Vapor C pv 1793 J/kg · K Rahman

(2010)

Air C pa 1005 J/kg · K Rahman

(2010)

Thermal conductivity

Water kw 0.60 W/m · K Rahman

(2010)

Vapor kv 0.026 W/m · K Rahman

(2010)

Air ka 0.026 W/m · K Rahman

(2010)

Viscosity

Water µw 9.27× 10−4 Pa · s McCabe et

al. (1956)

Gas µg 1.80× 10−5 Pa · s McCabe et

al. (1956)

Interfacial energy
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Water-gas σ 10−3(114.81− 0.1435T ) N/m Kazemi et

al. (2017)

Diffusivity

Vapor in air Dbin
( 2.13

P

) ( T
273.15

)1.8 m2/s Millington

and Quirk

(1961)

Bacteria in water Db,w 1× 10−11 m2/s Ranjbaran

and Datta

(2019)

Sugar in water Dsug,w 0.67× 10−9 m2/s Nobel

(2005)

Other parameters

Latent heat of vapor-

ization of water

hlv 2.26× 106 J/kg Ranjbaran

and Datta

(2019)

Slip length of contact

lines

β 15× 10−9 m Assumed

from

Kazemi

et al. (2017)

Bacteria chemotaxis

Chemotactic sensitiv-

ity coefficient, E. coli

χ0 10× 10−9 m2/s Ford et al.

(1991)

Receptor-ligand dis-

sociation constant

Kd 0.1 mol/m3 Ford and

Lauffen-

burger

(1991)
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5.3.3 Input parameters, initial and boundary conditions

The input data for the simulations are shown in Table 5.1. Initially, the droplet having a

known volume (1 µl) forms a spherical cap with a known contact angle at the substrate

surface. The initial velocities of fluids are zero everywhere. There is a uniform con-

centration of bacteria in the droplet which is normalized to 1. Temperature is initially

constant at 25 ◦C everywhere. If sugar transport is to be solved, its initial concentration

is zero in the droplet. The boundary conditions (Fig. 5.3c) are elaborated below.

Solid walls

At the contact line (wall-interface connection), the dynamic contact angle, θ , is pre-

scribed, based on experimental measurement data (Ranjbaran, 2019), over evaporation

time. At all solid walls the normal component of the fluid velocity is zero. At walls that

are entirely covered with a specific fluid phase, a no slip condition sets the tangential

slip velocities of the fluid to zero. Whereas, for the solid wall that is in touch with the

contact line, a Navier slip (Sui et al., 2014) condition is assumed that relates the slip

velocity of the contact line to the shear rate at the surface:

u · ti =
β

η
(τ · ti ) (5.10)

where t is the unit tangential vectors at the interface, i = 1, 2, and β is the slip length

(m).

A constant temperature boundary condition was assumed at all solid surfaces. If

sugar transport is to be solved, a constant concentration of sugar was assumed at the

internal walls of the stomatal pores. A no flux condition was applied in the bacterial

transport at all solid walls.

171



Liquid-gas interface

From a mass balance at the interface, the following relationship between normal veloc-

ities of water and gas can be obtained:

ul · n = ug · n+ ṁ
(

1
ρl
−

1
ρg

)
(5.11)

where n is the unit normal vector at the interface, and ṁ is the local mass flux at the in-

terface due to phase change (kg/m2.s). By adopting a no-slip condition at the interface,

the tangential components of liquid and gas velocities are equal:

ul · ti = ug · ti (5.12)

where i = 1, 2. The three other conditions needed for resolving momentum transfer at

the interface are embedded in (Panton, 2005):

τ l · n = τ g · n− σκn−∇tσ + ṁ(ul − ug) (5.13)

Here κ = −∇t · n is the curvature of the interface (1/m). The second and third terms

on the right-hand side of Eq. 5.13 are the capillary and thermo-capillary (Marangoni)

stresses, respectively, and the last term is the momentum transfer due to inertia. These

three terms represent a pressure jump at the interface.

A temperature continuity at the interface (i.e., Tl = Tv) is assumed here. Therefore,

an energy balance at the interface gives:

kl∇T = kv∇T − ṁhlv (5.14)

where hlv is the latent heat of evaporation of water (J/kg).

The local mass flux at the interface due to evaporation (kg/m2.s) is calculated from

(Son, 2010):

ṁ =
n · Dbinρg∇ωv

(1− ωsat)
(5.15)
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where ωsat is the mass fractions of vapor at saturation point, and the saturation density

of vapor (kg/m3), ρsat , is defined as:

ρsat =
Psat Mv

RT
(5.16)

where R is the universal gas constant (8.314J/mol · K), and Psat is the vapor pressure at

saturation point (Murray, 1967):

Psat =
101325

760
10

(
8.07131− 1730.63

T−39.574

)
(5.17)

At the interface a no flux condition is applied to bacterial and sugar transport.

The mesh velocity at the interface is obtained from:

umesh = u · n−
ṁ
ρ

n (5.18)

Surrounding boundaries

For all surrounding boundaries confining the domain, there are known bulk gas veloc-

ity/pressure and temperature, and a known vapor mass fraction.

5.3.4 Solution procedure

The governing equations were solved using a commercial finite element package, COM-

SOL Multiphysics version 5.4 (COMSOL Multiphysics, Burlington, MA). The time-step

size was varied between 0.001 s to 0.1 s. The relative and absolute tolerances were

0.001 for all computations. The solution domain was meshed with more than 70000

mesh elements. A very fine mesh was used at the location of the contact lines and mi-

crostructures. The solutions were done with the PARDISO direct solver. Run time for

the simulations was about 15 minutes on a Windows machine with 32 GB of RAM, and

2 GHz dual core Intel c© Xeon c© CPU E5-2620 processor.
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5.4 Results and Discussion

5.4.1 Spatial distribution of temperature and evaporation

Temperature distribution at the droplet surface is not uniform due to the evaporative

cooling effects, being colder on the apex and warmer near the contact line (Fig.5.6a) (Hu

and Larson, 2005; Girard et al., 2008; Starov and Sefiane, 2009). This is because the fluid

near the contact line is closer to the substrate and can exchange heat with it through

conduction. Therefore, although the rate of evaporation is higher at the contact line (and

more evaporation cooling effect might be expected), the fluid is warmer at this region.

At the location of the contact line, the rate of evaporation increases (Fig. 5.6b) (Deegan

et al., 2000). This is because the saturation mass fraction of vapor is higher at the contact

line due to higher temperature. In addition, the local concentration of vapor decreases

at this region, leading to a larger concentration gradient of vapor (Fig. 5.6c) and its faster

diffusion into open ambient. Figure. 5.6b compares predicted evaporation flux with the

prediction of Deegan et al., (2000) that was already verified with experimental work of

Monteux and Lequeux (2011):

Jevp =
Dbin(cv,sat − cv,∞)

ρwxαR1−α
(5.19)

where R is the radius of the droplet, x is the distance from the contact line, and α = (π2 −

θ)/(π − θ), with θ being the contact angle of the droplet (Fig. 5.3c). The non-uniformity

in the evaporation flux within the droplet is a major contributor in the generation of

internal flows within the droplet, as discussed in the next section.

5.4.2 Velocity patterns

Evaporative flux theoretically goes to infinity at the location of contact line, as Jevp ∼

1/xα (Eq. 5.19). Inside the droplet, this induces a flow (with a velocity Uevp) toward the
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contact line (Fig. 5.2a). An estimation of the Uevp was reported by Deegan et al. (2000)

that was obtained from the lubrication theory for an evaporating sessile droplet on a

flat substrate:

Uevp =
R
(
(1− r2)−λθ − (1− r2)

)
4td(1− t

td
)r

(5.20)

where td is the total drying time, r = (R − x)/R is non-dimensional radial coordinate

measured from the center of the droplet, and λθ = 0.5 − θ/π . Figure 5.7a compares

the model predictions of the flow on a flat substrate for a sessile droplet, with initial

contact angles of 40◦ and 70◦, with those predicted by Eq. 5.20 and experimental data

reported by Kasyap et al. (2014) for the velocity of 1 µm fluorescent beads in an evap-

orating droplet on a glass substrate. The Deegan’s estimation (Eq. 5.20) was calculated

by considering the updated contact angle of droplets after 6 minutes of evaporation.

As can be seen, the fluid velocity increases in the vicinity of the contact line. This ve-

locity is higher in a droplet located at a more hydrophilic surface. This is because the

evaporation flux at the contact line of a droplet located on a more hydrophillic surface

is stronger, leading to higher velocity of fluid toward the contact line. Meanwhile, as

droplet evaporates, the contact line recedes in an opposite direction, creating a reced-

ing flow (with a velocity Ursd) away from the contact line (Fig. 5.2c) (Berteloot et al.,

2008; Snoeijer and Andreotti, 2013). Thermo-capillary effects also cause flows toward

the center of the droplet (Fig. 5.2b). A combination of these three mechanisms creates

a vortex within an evaporating droplet (Fig. 5.7b). At the early stage of evaporation,

the flow velocity toward the contact line, Uevp, is weak and is scaled to about 1 µm/s.

At the longer evaporation times, however, following a decline in the contribution of re-

ceding flow velocity, Ursd , the velocity toward the contact line, Uevp, increases to tens of

µm/s. These predictions are supported by experimental observations of Monteux and

Lequeux (2011) showing that the radial flow of fluorescent microbeads, directed toward

the contact line of an evaporating sessile droplet, increased an order of magnitude, from

1 µm/s to 20 µm/s.

Presence of the microstructures changes the velocity patterns in the proximity of the
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Figure 5.8: a) Velocity magnitude in an evaporating sessile droplet, and
b) deposition of fluorescent micro-particles around microfabri-
cated trichomes, indicating their role in trapping particles that
are transported with the flow.
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leaf surface. Trichomes are micropillars that flow passes around or over them (Fig. 5.8a).

If the flow contains microparticles, they interact with the surface of trichomes. Fluid

velocity approaches to zero when reaching the trichome surfaces, creating spots that

microparticles can safely attach to the substrate surface without being transported with

the fluid. Note that the physics of attachment of microparticles to a plant surface (Warn-

ing and Datta, 2017) is not included in the current model which focuses on the modes

of transport of bacteria as a continuum phase. Figure 5.8b shows an evaporating 1 µl

sessile water droplet containing 1µm fluorescent microparticles (1×107 particle/ml), lo-

cated on a PDMS surface (θ = 74◦) patterned with trichome microstructures (see Chap-

ter 4 for fabrication details). After 9 min of evaporation, the microparticles are shown to

deposit around the trichomes, suggesting their critical role in decreasing fluid velocity

and trapping microparticles transported with the fluid flow. These patterns are com-

pared (Fig. 5.8b) with those on a flat PDMS surface with the same hydrophobicity level,

suggesting the role of trichomes in trapping microparticles. Similarly, trichomes on

plant leaves (Fig. 5.4) act as micro-pillars standing in front of the internal flows within

evaporating droplets, to which colloids and bacteria can attach.

The same mechanism can aid bacteria suspended in sessile droplets located at the

surface of plant leaves to reach these microstructures, increasing the probability of their

attachment to the surface.

5.4.3 Bacterial collection at the surface

When a sessile droplet containing bacteria evaporates on a leaf, it eventually deposits

all the bacterial cells on its surface. However, the deposition pattern and area depend on

surface characteristics (hydrophobicity and roughness), rate of evaporation, and bacte-

rial charactristics (ability to do motility and chemotaxis). If the cells are deposited on an

open surface of the leaves, they could be washed away during rinsing practices. How-

ever, the bacterial cells may also be transported into leaf openings or deposit around tri-
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chomes that protect them from wash fluids. Effects of the above factors on the bacterial

retention at the leaf surface and infiltration into the leaf openings, during evaporation,

are analyzed.

Effect of hydrophobicity

On a hydrophilic surface, evaporation driven flows keep the bacterial cells closer to

the surface. Figure 5.9a shows the variation of the bacterial amount over evaporation

time within a distance of 5 µm away from a flat substrate. For a hyrdophilic surface

(θ = 40◦), this amount increases with a higher rate during evaporation. Since the drop

spreads more on a hydrophilic surface, the area of interaction between bacteria and

the substrate is larger than that for a hydrophobic surface. Therefore, the cells can

contaminate a wider area on a hydrophilic surface.

Deegan et al. (2000) showed that on a flat substrate, the total number of colloids (N)

accumulated near contact lines follows a power-law trend in time:

Ncol,acum = Ncol,tot
(
1− (1− t/t f )

(1+α)/2)2/(1+α)
(5.21)

where t f is the total drying time. Figure 5.9b qualitatively compares the bacterial

amount at the location of contact lines with Deegan’s model (Eq. 5.21) for accumu-

lation of colloidal particles at the contact lines. For hydrophobic surfaces (θ = 90◦),

the amount of accumulation at the contact line decreases. This is because evaporation

driven flows (Uevp) toward contact lines are weakened for a hydrophobic surface. Con-

tours of predicted bacterial concentration within an evaporating sessile droplet on a

flat substrate with an initial contact angle of 40◦ is shown in Fig. 5.9c. When there is

no evaporation, bacterial concentration remains uniform within the droplet as there is

no flows within the droplet and cells can only have a diffusion-like transport (motil-

ity). Therefore, no bacterial collection happens at the location of contact line. However,

evaporation drives bacterial transport with water flow, leading to a non-uniform con-
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centration patterns within the droplet. The predicted collection of bacteria near the con-

tact line is compared with experimental observations of Kasyap et al. (2014) (Fig. 5.9c)

after 6 min of evaporation.

Effect of microstructures

To obtain a fundamental understanding of the effects of surface microstructures on the

bacterial collections, the model focused on a few microstructures. In Fig. 5.10a, a sessile

droplet with θ = 90◦ evaporated on a substrate surface containing three stomatal open-

ing. The predicted bacterial distribution within the droplet after 5 min of drying shows

how internal flows can transport cells into the openings. In reality, once the bacteria

reach sufficiently close to these microstructures (stomata), they can use their flagella,

or other adhesion means, to attach to the microstructure. The amount of bacterial col-

lection at each microstructure increases with the evaporation time as the evaporation-

driven flows close to the leaf surface increase during drying (Eq. 5.20). Figure 5.10b

shows the image of an evaporating sessile droplet containing gfp-tagged E. coli RP437

on a PDMS surface patterned with microfabricated stomatal openings (See Chapter 4

for details of the experiments). The fluorescence intensity diagram reveals how the

bacteria accumulated at the contact line as well as stomatal openings. This accumula-

tion supports the model predictions in Fig. 5.10a, showing the role of internal flows in

transport of bacteria into the leaf openings. This transport of bacteria into the stomatal

openings is more likely to happen when the surface is hydrophilic and the droplet is in

Wenzel state (i.e., drop completely sits on the surface and covers the microstructures).

On highly hydrophobic surfaces where the droplet is more likely to be in the Cassie

state (i.e., drop sits on top of the microstructures without any contact with the surface),

the drop may not penetrate into pores. In this case, although bacteria are transported

to the pores, they will be relocated by the flow without any infiltration.

In general, the amount of bacterial accumulation close to a surface is higher for a
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flat substrate (Fig. 5.11a). Presence of microstructures, such as trichomes, stomata and

grooves, causes changes in the flow patterns within the evaporating droplet, leading to

less accumulation near the substrate surface. For instance, stomata create upward flows

away from the stomatal pore (Fig. 5.10a) that can interfere with radial flows toward the

contact lines. These upward flows can transport unattached bacteria away from the leaf

surface. However, when microstructures are present, the bacteria have higher chance to

attach to them or infiltrate inside the pores, leading to enhanced contamination. Among

different microstructures, stomata are more effective in increasing bacterial accumula-

tion near the substrate surface that here is defined as the total amount of bacteria in

a 5 µm distance from the substrate surface (Fig. 5.11a). The size and spacing of the

microstructures can affect the bacterial retention near the substrate surface (Fig. 5.11b).

Larger stomata with a wider spacing can keep more bacteria near the surface. Spac-

ing has a more dominant effect than the size on the bacterial retention near a substrate

surface.

Figure 5.12 shows the amount of bacterial concentration around trichomes or within
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stomata and grooves after 5 min of drying, for two levels of hydrophobicity of the sub-

strate and at three different locations with respect to the drop center line. The error bar

shows the effect of a 30% change in the evaporation rate. The concentration of bacteria

around trichomes and within stomata is higher when the substrate is highly hydrophilic

(θ = 40◦). This is because the evaporation driven flows responsible for transport of bac-

teria are stronger, leading to retention of more bacteria close to the substrate surface

(Fig. 5.9a) and an increase in the chance of their accumulation within the stomatal pores

or around trichomes. Stomata are larger openings than grooves (Fig. 5.4c). Therefore,

bacterial concentration can increase more inside stomata, as the fluid velocity can be

lower inside them. As the depth of grooves is shallow, fluid velocity can simply trans-

port bacteria out of them, leading to less bacterial concentration inside them. This is

more evident for more hydrophilic surfaces (θ = 40◦).

Effect of active transport

Swimming speed of chemotactic bacteria in an aqueous medium is ∼ 10 µm/s (Curk et

al., 2013), which is comparable the flow velocity magnitude in an evaporating droplet

(Monteux and Lequeux, 2011; Kasyap et al., 2014). Therefore, the two active (taxis and

motility) and passive (flow) transport mechanisms compete during evaporation of a

droplet on a leaf surface. It was previously shown that aerotaxis (active swimming

toward oxygen gradients) was not an effective factor in bacterial collection at the loca-

tion of contact lines of an evaporating droplet located on a glass substrate (Kasyap et

al., 2014). However, the role of chemotaxis of bacteria in destabilizing flows within an

evaporating sessile droplet and altering the final deposition patterns on the substrate

has been documented (Thokchom et al., 2014). Plant leaves can provide surface-located

bacteria a rich source of photosynthetic products (Kroupitski et al., 2009) that can play a

role in bacterial access to the leaf surface during sessile drop evaporation. Assuming a

constant concentration of sugar at the boundaries of the stomatal pores, the model was

re-solved with chemotaxis. When there is no evaporation, sugar only diffuses within
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the droplet and its concentration gradient at the stomatal opening is always toward the

pore (Fig. 5.13). In the presence of evaporation, sugar is transported within the droplet

by the internal flows as well as diffusion. At the initial stage of the evaporation, the

sugar concentration within the droplet is low, creating a high concentration gradient to-

ward stomatal pores. This accelerates bacterial access to the stomata. By progression of

the evaporation, however, droplet volume decreases, leading to an increase in the sugar

concentration within the droplet and gradual reduction of the gradients. Eventually, the

concentration of sugar within the droplet becomes higher than that in the stomatal pore,

187



0

0.5

1

1.5

2

2.5

No evaporation With evaporation

B
ac

te
ri

al
 a

m
o

u
n

t 
in

si
d

e
 

st
o

m
at

a 
(N

o
rm

al
iz

e
d

)

-1.00% 0.00% 1.00% 2.00% 3.00% 4.00% 5.00%

Chemotaxis

Motility

Relative change in the amount of bacterial 
infiltration into stomata during evaporation

- 30 %

+ 30 %

Flow + Motility

Flow + Chemotaxis + Motility

a.

b.

Figure 5.14: a) Bacterial concentration inside stomata after 300 s evapo-
ration of a sessile droplet on a substrate surface with a con-
tact angle of 90◦. The effect of two different combinations of
transport mechanisms are shown. b) Effects of 30% change in
motility and chemotactic coefficients on the amount of bacte-
rial infiltration into stomatal pores, during evaporation.

188



making the concentration gradient away from the stomatal pores (Fig. 5.13). Therefore,

if the bacteria are able to do chemotaxis, they tend to swim toward the droplet rather

than into the stomatal pore at the later stages of evaporation.

Figure 5.14a compares bacterial infiltration into stomatal pores in the presence and

absence of chemotaxis. Without evaporation, there are no internal flows and no net

infiltration by the non-chemotactic bacteria. However, without evaporation, chemotac-

tic bacteria can transport via chemotaxis toward the stomatal pores and infiltrate them.

In the presence of evaporation, internal flows and chemotaxis are responsible for the

directed movement of bacteria toward stomata. However, contribution of chemotaxis

toward stomata gradually reduces and finally reverses, i.e, away from the stomata as

concentration gradient of sugar evolves during evaporation (Fig. 5.13). This decreases

the amount of bacterial infiltration into the stomata compared with when there is no

chemotaxis (Fig. 5.14a).

A sensitivity analysis for the effects of motility and chemotaxis on bacterial infil-

tration into stomata during evaporation is shown in Fig. 5.14b. A 30% decrease in the

bacterial motile and chemotactic ability led in 2.3% and 4.1% increase in the bacterial

infiltration. Random motion of bacteria away from stomata deceases when the motility

decreases. This increases their concentration inside the stomatal pore. Bacteria with

lower chemotaxis ability are mainly transported with fluid flow, leading to more in-

filtration. These results highlight the suppressing roles that active transport modes

(chemotaxis and motility) have on passive transport with evaporation-driven fluid flow

into the leaf openings.

189



Higher evaporation rate

• More hydrophilic surface
• Larger microstructures
• Wider spacing between 

microstructures
More 

retention and 
infiltration

• Lower motility
• Lower chemotaxis

How effective is retention and infiltration on 
a rough surface during evaporation?

Figure 5.15: Various factors affecting the efficacy of retention and infiltra-
tion of bacteria on a rough surface, during evaporation of a
sessile droplet.

5.4.4 Summary of influencing factors in retention and infiltra-

tion

A summary of the primary and secondary factors affecting bactreial retention and in-

filtration facilitated by evaporation-driven flows are shown in Fig. 5.15. Surface hy-

drophobicity is a major factor: a more hydrophilic surface leads to more retention and

infiltration. Also, lower chemotaxis toward nutrients at the leaf surface and lower ran-

dom motility can result in more retention and infiltration during evaporation. Evapo-

ration rate, and microstructure size and spacing are among the secondary factors.
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5.5 Conclusions

A mechanistic model for transport of bacteria in an evaporating sessile droplet located

on a leaf surface was presented. The predicted process parameters such as tempera-

ture, evaporation rate and evaporation-driven velocity in the vicinity of the contact line

were compared with classical analytical models and experimental data. It was shown

that internal flows within the evaporating sessile droplet are the major responsible for

transporting bacteria close to the leaf surface and into the leaf openings. A hydrophilic

substrate can better cause bacterial retention at its surface during evaporation. In gen-

eral, presence of microstructures decreased the effectiveness of internal flows in trans-

porting bacteria close to the leaf surface. However, on a non-flat surface, these flows

could increase the concentration of bacteria around microstructures such as trichomes,

or inside micropores such as stomata and grooves, facilitating their further attachment

to the substrate. The bacterial retention increased when the microstructures were larger

and/or their spacing was wider. The bacterial retention and infiltration were not highly

sensitive to the evaporation rate, suggesting that only presence of evaporation is suffi-

cient to promote bacterial transport. In an evaporating droplet on a leaf surface contain-

ing nutrients, infiltration of non-chemotactic bacteria is more than that of chemotactic

ones. Higher motility decreased the infiltration as it decreased the chance of bacteria in

the droplet to reach the stomatal pores.
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