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The visual world is fine-grained and long-tailed: many classes are difficult to dis-

tinguish; a few classes account for most of the data, while most classes are under-

represented. With the remarkable advances in the field of computer vision fueled by

large-scale datasets and deep learning, a central question is whether we can quantita-

tively model such visual data and design deep networks that learn from them.

In this dissertation, we address this question from different perspectives. First, we

propose a framework on how to grow a dataset and learn the corresponding model for

fine-grained visual recognition with combined human and machine effort. We use deep

metric learning to capture the relatively high intra-class variance in fine-grained visual

data, assisted by human-annotated hard negatives during the labeling process. We then

address the problem of how to design a deep network for fine-grained visual recogni-

tion. Specifically, we find nonlinearities in the classifier help the network and thus we

explicitly incorporate higher-order nonlinearities into the classifier with our proposed

kernel pooling. Further, we focus on methods for fine-grained visual recognition when

large-scale, long-tailed data is available. In particular, we show how to measure domain

similarity for purposes of selecting a suitable subset from the source domain for im-

proved transfer learning in specific target domains. Next, we present a characterization

of long-tailed data distributions based on the effective number of samples, in which we

quantify data overlap using a small neighborhood centered around each sample. Finally,

we explore how to measure dataset granularity based on clustering theory, as a step

toward a more precise definition of “fine-grained.”
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CHAPTER 1

INTRODUCTION

In recent years, remarkable progress has been made toward recognizing and understand-

ing the visual world, the primary goal in the field of computer vision. This is largely at-

tributed to the availability of large-scale datasets, remarkable advances in deep learning

algorithms and specialized hardware and software. More recently, computer vision algo-

rithms have gained the ability to automatically classify images into thousands of classes

by training deep convolutional networks on millions of images and achieve accuracy

comparable to humans. Typically, a dataset is designed to have a relatively balanced

distribution across classes. However, the visual world is fine-grained and long-tailed:

many classes are difficult to distinguish, examples include bird species and car make &

model; a few classes claim most of the data, while most classes have very few examples.

How to learn from such fine-grained and long-tailed visual data remains challenging for

computers. In particular, since many classes are rare in nature and the data collection for

them cannot be easily scaled, long-tailed data distribution will be a long-lasting issue in

the area of fine-grained visual recognition.

In this dissertation, we present approaches to address the challenge of learning from

fine-grained and long-tailed visual data, from the perspectives of quantitatively model-

ing such visual data and designing deep networks that learn from them. First, we focus

on designing deep networks to capture relatively high intra-class variance in the data

and incorporate nonlinearities in the classifier, which can improve the performance of

the model. Then, we study how to quantitatively model visual data for domain-specific

transfer learning in fine-grained target domains and dealing with long-tailed data dis-

tribution with class-balanced loss based on effective number of samples. Despite its

increasing visibility in our field, “fine-grained” has thus far lacked a precise definition.
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In view of this, we conclude with an exploration into how to measure dataset granular-

ity based on clustering theory. We now provide a brief summary of the contributions

presented in each chapter.

In Chapter 2, we propose an iterative framework for fine-grained categorization and

dataset bootstrapping. Using deep metric learning with humans in the loop, we learn

a low dimensional feature embedding for each category to capture intra-class variances

and remain discriminative between classes. In each round, images with high confidence

scores from our model are sent to humans for labeling. By comparing with exemplar

images, labelers mark each candidate image as either a “true positive” or a “false posi-

tive.” True positives are added into our current dataset and false positives are regarded

as “hard negatives” for our metric learning model. Then the model is re-trained with an

expanded dataset and hard negatives for the next round.

In Chapter 3, we propose a general pooling framework that captures higher order

interactions of features in the form of kernels. Deep convolutional networks with bi-

linear pooling, initially in their full form and later using compact representations, have

yielded impressive performance gains on fine-grained visual categorization. The key

to their success lies in the spatially invariant modeling of pairwise (2nd order) feature

interactions. We demonstrate how to approximate kernels such as Gaussian RBF up to

a given order using compact explicit feature maps in a parameter-free manner. When

combined with deep networks, the composition of the kernel can be learned from data

in an end-to-end fashion via error back-propagation.

In Chapter 4, we first tackle a problem in large scale fine-grained recognition. Our

method won first place in iNaturalist 2017 large-scale species classification challenge.

Central to the success of our approach is a training scheme that uses higher image reso-

lution and deals with the long-tailed distribution of training data. Next, we study transfer
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learning via fine-tuning from large-scale datasets to small-scale, domain-specific FGVC

datasets. Transferring the knowledge learned from large-scale datasets (e.g., ImageNet)

via fine-tuning offers an effective solution for domain-specific fine-grained visual cate-

gorization (FGVC) tasks (e.g., recognizing bird species or car make & model). In such

scenarios, data annotation often calls for specialized domain knowledge and thus is dif-

ficult to scale. We propose a measure to estimate domain similarity via Earth Mover’s

Distance and demonstrate that transfer learning benefits from pre-training on a source

domain that is similar to the target domain by this measure.

In Chapter 5, we argue that as the number of samples increases, the marginal benefit

of a newly added data point will diminish. We introduce a theoretical framework to

measure data overlap by associating with each sample a small neighboring region rather

than a single point. The effective number of samples is defined as the volume of samples

and can be calculated by a simple formula (1 − βn)/(1 − β), where n is the number of

samples and β ∈ [0, 1) is a hyperparameter. We design a re-weighting scheme that uses

the effective number of samples for each class to re-balance the loss, thereby yielding a

class-balanced loss. When trained with the proposed class-balanced loss, the network

is able to achieve improved performance on long-tailed datasets.

In Chapter 6, building upon clustering theory, we pursue a framework for measuring

dataset granularity. We argue that dataset granularity should depend not only on the data

samples and their labels, but also on the distance function we choose. We propose an

axiomatic framework to capture desired properties for a dataset granularity measure and

provide examples of measures that satisfy these properties. We assess each measure via

experiments on datasets with hierarchical labels of varying granularity. When measur-

ing granularity in commonly used datasets using our measure with features from deep

networks, we find datasets with higher granularities (fine-grained) are more difficult to
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learn. In addition, we observe that deep features have more difficulty generalizing to

datasets with higher granularity. We perform robustness studies and find that dataset

granularity is relatively insensitive to changes in network architecture, but sensitive to

the choice of pre-trained data. Dataset granularity is also sensitive to nuisance factors

arising during image acquisition, including noise and reduced resolution. As a conse-

quence of our study, we find that certain datasets that are widely considered fine-grained

in fact have lower granularity than other datasets generally considered coarse-grained.

Chapter 7 concludes the dissertation and discusses future directions.
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CHAPTER 2

FINE-GRAINED CATEGORIZATION AND DATASET BOOTSTRAPPING

USING DEEP METRIC LEARNING WITH HUMANS IN THE LOOP

Fine-grained visual categorization (FGVC) has received increased interest from the

computer vision community in recent years. By definition, FGVC, as a sub-field of

object recognition, aims to distinguish subordinate categories within an entry-level cat-

egory. For example, in fine-grained flower categorization [122, 123, 4], we want to

identify the species of a flower in an image, such as “nelumbo nucifera (lotus flower),”

“tulip” or “cherry blossom.” Other examples include classifying different types of

plants [100], birds [17, 16], dogs [89], insects [102], galaxies [39, 31]; recognizing

brand, model and year of cars [95, 173, 179]; and face identification [153, 143].

Most existing FGVC methods fall into a classical two-step scheme: feature extrac-

tion followed by classification [3, 13, 22, 131]. Since these two steps are independent,

the performance of the whole system is often suboptimal compared with an end-to-end

system using Convolutional Neural Networks (CNN) that can be globally optimized via

back-propagation [16, 187, 96, 110]. Therefore, in this chapter, we focus on devel-

oping an end-to-end CNN-based method for FGVC. However, compared with general

purpose visual categorization, there are three main challenges arising when using such

end-to-end CNN-based systems for FGVC.

Firstly, lack of training data. Current commonly used CNN architectures such as

AlexNet [99], VGGNet [147], GoogLeNet-Inception [151] and ResNet [66] have large

numbers of parameters that require vast amounts of training data to achieve reasonably

good performance. Commonly used FGVC databases [123, 17, 89, 95], however, are

relatively small, typically with less than a few tens of thousands of training images.
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Figure 2.1: Overview of the proposed framework. Using deep metric learning
with humans in the loop, we learn a low dimensional feature embed-
ding for each category that can be used for fine-grained visual catego-
rization and iterative dataset bootstrapping.

Secondly, compounding the above problem, FGVC can involve large numbers of

categories. For example, arguably, it is believed that there are more than 400, 000

species of flowers in the world [83]. As a point of reference, modern face identification

systems need to be trained on face images coming from millions of different identities

(categories). In such scenarios, the final fully connected layer of a CNN before the

softmax layer would contain too many nodes, thereby making the training infeasible.

Lastly, high intra-class vs. low inter-class variance. In FGVC, we confront two

somewhat conflicting requirements: distinguishing visually similar images from differ-
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Figure 2.2: Simple appearance based methods will likely find incorrect groups for
two visually similar categories. A successful FGVC approach should
be able to deal with the challenge of high intra-class vs. low inter-class
variance.

ent categories while allowing reasonably large variability (pose, color, lighting condi-

tions, etc.) within a category. As an example illustrated in Figure 2.2, images from

different categories could have similar shape and color. On the other hand, sometimes

images within same category can be very dissimilar due to nuisance variables. In such a

scenario, since approaches that work well on generic image classification often focus on

inter-class differences rather than intra-class variance, directly applying them to FGVC

could make visually similar categories hard to be distinguished.

In this chapter, we propose a framework that aims to address all three challenges.

We are interested in the following question: given an FGVC task with its associated

training and test set, are we able to improve the performance by bootstrapping more

training data from the web? In light of this, we propose a unified framework using deep

metric learning with humans in the loop, illustrated in Figure 2.1.

We use an iterative approach for dataset bootstrapping and model training. In each

round, the model trained from last round is used to generate fine-grained confidence

scores (probability distribution) for all the candidate images on categories. Only images

with highest confidence score larger than a threshold are kept and put into the corre-

sponding category. Then, for each category, by comparing with exemplar images and
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category definitions, human labelers remove false positives (hard negatives). Images that

pass the human filtering will be included into the dataset as new (vetted) data. Finally,

we re-train our classification model by incorporating newly added data and also lever-

aging the hard negatives marked by human labelers. The updated model will be used for

the next round of dataset bootstrapping. Although we focus on flower categorization in

this chapter, the proposed framework is applicable to other FGVC tasks.

In order to capture within-class variance and utilize hard negatives as well, we pro-

pose a triplet-based deep metric learning approach for model training. A novel metric

learning approach enables us to learn low-dimensional manifolds with multiple anchor

points for each fine-grained category. These manifolds capture within-category vari-

ances and remain discriminative to other categories. The data can be embedded into a

feature space with dimension much lower than the number of categories. During the

classification, we generate the categorical confidence score by using multiple anchor

points located on the manifolds.

In summary, the proposed framework handles all three challenges in FGVC men-

tioned above. Using the proposed framework, we are able to grow our training set and

get a better fine-grained classifier as well.

2.1 Related Work

Fine-Grained Visual Categorization (FGVC). Many approaches have been proposed

recently for distinguishing between fine-grained categories. Most of them [3, 13, 22,

131] use two independent steps: feature extraction and classification. Fueled by the

recent advances in Convolutional Neural Networks (CNN) [99, 57], researchers have

gravitated to CNN features [16, 187, 96, 131, 110] rather than traditional hand-crafted
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features such as LLC [3] or Fisher Vectors [52]. Sometimes, the information from

segmentation [96], part annotations [16], or both [22] is also used during the feature

extraction. Current state-of-the-art methods [16, 187, 96, 110] all adopt CNN-based

end-to-end schemes that learn feature representations from data directly for classifica-

tion. Although our method also draws upon a CNN-based scheme, there are two major

differences. 1) Rather than using softmax loss, we aim to find a low-dimensional feature

embedding for classification. 2) We incorporate humans into the training loop, with the

human-provided input contributing to the training of our model.

Fine-Grained Visual Datasets. Popular fine-grained visual datasets [123, 167, 89,

95] are relatively small scale, typically consisting of around 10 thousand training images

or less. There are some efforts recently in building large-scale fine-grained datasets [159,

179]. We differ from these efforts both in terms of our goal and our approach. Instead

of building a dataset from scratch, we aim to bootstrap more training data to enlarge the

existing dataset we have. In addition, instead of human labeling, we also use a classifier

to help during the dataset bootstrapping. The most similar work in terms of dataset

bootstrapping comes from Yu et al. [184], which builds a large-scale scene dataset with

10 common categories using deep learning with humans in the loop. However, we

are bootstrapping a fine-grained dataset with much more categories (620). Moreover,

instead of a dataset, we can also get a model trained with combined human-machine

efforts.

Deep Metric Learning. Another line of related work is metric learning with CNNs

using pairwise [26, 63] or triplet constraints [168, 143, 70]. The goal is to use a CNN

with either pairwise (contrastive) or triplet loss to learn a feature embedding that cap-

tures the semantic similarity among images. Compared with traditional metric learn-

ing methods that rely on hand-crafted features [176, 58, 171, 25], deep metric learn-
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ing directly learns from data and achieves much better performance. Recently, it has

been successfully applied to variety of problems including face recognition and verifi-

cation [153, 143], image retrieval [168], semantic hashing [101], product design [10],

geo-localization [105] and style matching [165]. In contrast with previous methods, we

propose a novel strategy that enables the learning of continuous manifolds. In addition,

we also bring humans in the loop and leverage their inputs during metric learning.

2.2 Dataset Bootstrapping

One of the main challenges in fine-grained visual recognition is the scarcity of training

data. Labeling of fine-grained categories is tedious because it calls for experts with

specialized domain knowledge. This section presents a bootstrapping framework on

how to grow a small scale, fine-grained dataset in an efficient manner.

2.2.1 Discovering Candidate Images

In this first step, we wish to collect a large pool of candidate images for fine-grained sub-

categories under a coarse category, e.g., flowers. The most intuitive way to crawl images

could resort to image search engines like Google or Bing. However, those returned im-

ages are often iconic, presenting a single, centered object with a simple background,

which is not representative of natural conditions.

On the other hand, with the prevalence of powerful personal cameras and social

networks, people capture their day-to-day photos and share them via platforms like In-

stagram or Flickr. Those natural images uploaded by web users offer us a rich source

of candidate images, often with tags that hint at the semantic content. So if we search
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“flower” on Instagram, a reasonable portion of returned images should be flower images.

Naturally, we will need a filtering process to exclude the non-flower images.

We first downloaded two million images tagged with “flower” via the Instagram API.

To remove the images that clearly contain no flowers, we pre-trained a flower classifier

based on GoogLeNet-Inception [151] with 70k images. By feeding all the downloaded

images to this classifier, we retained a set of nearly one million images, denoted as C,

with confidence score larger than 0.5.

2.2.2 Dataset Bootstrapping with Combined Human-Machine Ef-

forts

Given an initial fine-grained dataset S0 of N categories and a candidate set C, the goal

of dataset bootstrapping is to select a subset S of the images from C that match with

the original N categories. We divided the candidate set into a list of k subsets: C =

C1∪C2∪· · ·∪Ck and used an iterative approach for dataset bootstrapping with k iterations

in total.

Each iteration consists of three steps. Consider the i-th iteration. First, we trained a

CNN-based classifier (see Section 2.3) using the seed dataset Si−1 ∪ Hi−1, where Hi−1

contains the hard negatives from the previous step. Second, using this classifier, we as-

signed each candidate image x ∈ Ci to one of the N categories. Images with confidence

score larger than 0.5 form a high quality candidate set Di ⊂ Ci for the original N cate-

gories. Third, we asked human labelers with domain expertise to identify true positives

Ti and false positives Fi, where Ti∪Fi = Di. Exemplar images and category definitions

were shown to the labelers.
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Compared to the traditional process requiring the labeler to select one of N cate-

gories per image, we asked labelers to focus on a binary decision task which entails

significantly less cognitive load. Noting that these false positives Fi are very similar to

ground-truths, we regard them as hard negatives Hi ← Hi−1 ∪ Fi. True positives were

also included to expand our dataset: Si ← Si−1 ∪ Ti for the next iteration.

It is worth mentioning this bootstrapping framework is similar in spirit to the recent

work [166, 69] that used semi-automatic crowdsourcing strategy to collect and annotate

videos. However, the key difference is we design a deep metric learning method (see

Section 2.3) that specifically makes the use of the large number of hard negativesHi in

each iteration.

2.3 Deep Metric Learning for FGVC

We frame our problem as a deep metric learning task. We choose metric learning for

mainly two reasons. First, compared with classic deep networks that use softmax loss in

training, metric learning enables us to find a low-dimensional embedding that can well

capture high intra-class variance. Second, metric learning is a good way to leverage

human-labeled hard negatives. It is often difficult to get categorical labels for these hard

negatives. They could belong to flower species outside the dataset, or non-flower im-

ages. Therefore, directly incorporating human-labeled hard negatives into a multi-way

classification scheme such as softmax is infeasible, while it is quite natrual to include

them into the metric learning.

Figure 2.3 illustrates the differences between CNN with softmax and CNN for metric

learning in 3-dimensional feature space. In order to minimize softmax loss, we try to

map all images within the same category to a single point in feature space, which loses
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Figure 2.3: Comparison between CNN with softmax and CNN for metric learning
in feature space, where ci denotes images within the same category.

the intra-class variance. In this figure, we try to map category c1 to [1, 0, 0]>, c2 to

[0, 1, 0]> and c3 to [0, 0, 1]>, respectively. We need N nodes in final feature layer to

represent N categories. However, in metric learning, we can learn manifolds and the

dimensionality of the feature layer could be much smaller than N. In addition, the

manifold can preserve useful intra-class variances such as color and pose.

Our goal is to learn a non-linear low-dimensional feature embedding f (·) via CNN,

such that given two images x and y, the Euclidean distance between f (x) and f (y) can

reflect their semantic dissimilarity (whether they come from same category or not). Typ-

ically, people use pairwise or triplet information to learn the feature embedding.

In the pairwise case [26, 63], f (·) is learned from a set of image pairs {(xi, yi)}

with corresponding labels {li} indicating whether xi and yi is similar. In the triplet

case [168, 70], f (·) is learned from a set of image triplets {(x, xp, xn)}, which constrains

the reference image x to be more similar with the image xp of the same category com-

pared with any image xn of different class. We can see triplet constraints offer more

fine-grained information: by making use of relative comparisons it is adaptive to dif-

fering granularity of similarity while the pairwise counterpart is not. We therefore use

triplet information to develop an end-to-end CNN-based approach for FGVC.
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2.3.1 Triplet-based Deep Metric Learning

The triplet-based deep metric learning framework is illustrated in Figure 2.4. In each

iteration, the input triplet (x, xp, xn) is sampled from the training set, where image x is

more similar to xp relative to xn. Then the triplet of three images are fed into an identical

CNN simultaneously to get their non-linear feature embeddings f (x), f (xp) and f (xn).

The CNN could be any arbitrary architecture such as AlexNet [99], VGGNet [147] or

GoogLeNet-Inception [151]. Since we need to compute the distances in feature space,

all the features should be normalized to eliminate the scale differences. We use L2-

normalization for this purpose: f (x)← f (x)√
f (x)> f (x)

.

We use the triplet loss same as Wang et al. [168] used, which can be expressed as

Ltriplet(x, xp, xn) =

max
{
0,

∥∥∥ f (x) − f (xp)
∥∥∥2

2
− ‖ f (x) − f (xn)‖22 + m

} (2.1)

where m is a hyper-parameter that controls the distance margin after the embed-

ding. This hinge loss function will produce a non-zero penalty of
∥∥∥ f (x) − f (xp)

∥∥∥2

2
−

‖ f (x) − f (xn)‖22+m if the L2 distance between x and xn is smaller than the L2 distance be-

tween x and xp adding a margin m in feature space: ‖ f (x) − f (xn)‖22 <
∥∥∥ f (x) − f (xp)

∥∥∥2

2
+

m. The loss will be back propagated to each layer of the CNN and their corresponding

parameters are updated through stochastic gradient descent.

2.3.2 Training from Hard Negatives

The most challenging part of training a triplet-based CNN lies in the triplet sampling.

Since there are O(n3) possible triplets on a dataset with n training data, going through

all of them would be impractical for large n. A good triplet sampling strategy is needed

to make training feasible.
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Figure 2.4: Triplet-based deep metric learning. In the input triplet, image x is
closer to xp than it is to xn. We train a CNN to preserve this relative
ordering under feature embedding f (·).

We observed that during training, if we use randomly sampled triplets, many of

them satisfy the triplet constraint well and give nearly zero loss in Equation 2.1. That is,

those easy triplets have no effect in updating model parameters but we waste our time

and resources in passing them through the network. This makes the training process

extremely inefficient and unstable: only few examples make contributions to the training

within a batch.

Therefore, we use an online hard negatives mining scheme: only train on those

triplets that violate the triplet constraint and give non-zero loss will be included into

the training. Why not simply train from the hardest negatives, i.e., triplets with the

largest
∥∥∥ f (x) − f (xp)

∥∥∥2

2
− ‖ f (x) − f (xn)‖22? Because there are noisy data in the training

set and trying to satisfy them ruins the overall performance. A similar scenario was also

reported in [143].

In our framework, instead of using images coming from categories that are different

from the reference image, we also incorporate false positives marked by human labelers

as hard negative candidates. Those false positives are all misclassified by our model and

thus provide us access to an excellent source of hard negatives.
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2.3.3 Learning Manifolds

Typically, given the reference image x, the positive image xp is sampled from all images

within the same category as x. Suppose we have a training set with n images {xi} with

labels {C(xi)} from K categories, where i = 1, 2, . . . , n and C(xi) ∈ {1, 2, . . . ,K}. In

this setting, considering a reference image x within a fine-grained category, suppose

the maximum between-class distance for x in feature space is bounded by D. That is,

‖ f (x) − f (xn)‖2 ≤ D, ∀ C(xn) , C(x). In order to have 0 triplet loss for the reference

image x, we need
∥∥∥ f (x) − f (xp)

∥∥∥2

2
≤ ‖ f (x) − f (xn)‖22 −m, ∀ C(xp) = C(x),C(xn) , C(x).

Therefore, ∀ xi, x j where C(xi) = C(x j) = C(x),

∥∥∥ f (xi) − f (x j)
∥∥∥2

2
≤ ‖ f (x) − f (xi)‖22 +

∥∥∥ f (x) − f (x j)
∥∥∥2

2

≤ 2(D2 − m)
(2.2)

The squared within-class pairwise distance is bounded by 2(D2 − m). Thus, by using

triplet loss with positives sampled from all images in the same class, we are trying to

map all images within that class into a hypersphere with radius r =

√
2(D2−m)

2 . In FGVC,

between-class distances could be very small compared with the within-class distances.

In such a scenario, D2 − m could be very close to or even less than 0, which makes the

training process very difficult.
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Figure 2.6: Triplet sampling strategy, in which for a reference image, positives are
sampled locally and only hard negatives are kept.

However, if we only force positives to be close to the reference locally, we are able to

learn an extended manifold rather than a contracted sphere. As illustrated in Figure 2.5,

as the considered local positive region grows, the learned manifold will be increasingly

contracted, eventually becoming a sphere when using all positives within the same cat-

egory.

The triplet sampling strategy we used is summarized in Figure 2.6. Given a refer-

ence image x (in the blue bounding box) we sample positive images {xp} (in the green

bounding boxes) from the local region inside the same category. Negative images {xn}

are sampled from different categories but we only keep those hard negatives (marked

by red bounding boxes): negatives that violate the triplet constraint with respect to the

positives we chose.

2.3.4 Classification

After the manifold learning step, we adopt a soft voting scheme using anchor points on

manifolds for classification. For each category, the anchor points are generated by K-

means clustering on the training set in feature space. Suppose we have N categories and
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each category has K anchor points. The j-th anchor point for category i is represented as

ui j, where i = 1, 2, . . . ,N, j = 1, 2, . . . ,K. Given an input query image x, we first extract

its feature embedding f (x) from our network, then the confidence score for category i is

generated as

pi =

∑K
j=1 e−γ‖ f (x)−ui j‖

2
2∑N

l=1
(∑k

j=1 e−γ‖ f (x)−ul j‖
2
2
) (2.3)

The predicted label of x is the category with the highest confidence score: argmaxi pi.

γ is a parameter controlling the “softness” of label assignment and closer anchor points

play more significant roles in soft voting. If γ → ∞, only the nearest anchor point

is considered and the predicted label is “hard” assigned to be the same as the nearest

anchor point. On the other hand, if γ → 0, all the anchor points are considered to have

the same contribution regardless of their distances between f (x).

Notice that during the prediction, the model is pre-trained offline and all the an-

chor points are calculated offline. Therefore, given a query image, we only need a

single forward pass in our model to extract the features. Since we have learned a low-

dimensional embedding, computing the distances between features and anchor points in

low-dimensional space is very fast.

2.3.5 Learning Anchor Points

As we just described, after metric learning, we use K-means to generate anchor points

for representing manifolds and prediction. This could lead to suboptimal performance.

In fact, we can go one step further to directly learn anchor points by including soft

voting into our triplet-based metric learning model, which is illustrated in Figure 2.7.

For simplicity, the data part is not shown.
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f(x) f(xp) f(xn) 

Triplet Loss

CNN

Anchor 
Points

Label

Classification Loss

C(x)
{uij}

Figure 2.7: Combining anchor points learning into triplet network. The classifi-
cation loss is used to update the anchor points.

In contrast to the previous model in Figure 2.4 that uses only triplet information, we

also leverage the category label C(x) for the reference image x and learn anchor points

for classification. We can generate confidence scores pi for f (x) using anchor points

{ui j} by soft voting in Equation 2.3. The classification loss we used is logistic loss on

top of confidence score:

Lclassi f ication(x, {ui j},C(x)) = − log(pC(x)) (2.4)

where pC(x) is given in Equation 2.3 by substituting i with C(x). If we have very high

confidence score on the true category, pC(x) → 1, then the loss will be very small:

Lclassi f ication → 0.

The overall loss is the weighted sum of triplet and classification loss:

L = ωLtriplet + (1 − ω)Lclassi f ication (2.5)

During training, the loss will be back-propagated to both CNN and anchor points.

Anchor point ui j will be updated based on the gradient of the loss with respect to ui j:

∂L
∂ui j

. Since we combine both triplet and categorical information and also learn anchor
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points directly for classification, we can expect better performance over the triplet-based

model.

2.4 Experimental Evaluation

In this section, we present experiments to evaluate the proposed deep metric learning

approach against traditional two-step metric learning using deep features and commonly

used softmax loss on our flower dataset and another publicly available dataset. We also

evaluate the effectiveness of dataset bootstrapping and training with humans in the loop.

2.4.1 Experiments Setup

We compare the performance of the proposed deep metric learning approach with the

following baselines: (1) Softmax loss for classification (Softmax). The most commonly

used scheme in general purpose image classification. The deep network is trained from

data with categorical label using softmax loss. We can get label prediction directly

from the network output. (2) Triplet loss with naive sampling (Triplet-Naive). The

architecture illustrated in Figure 2.4 with randomly sampled triplets: given a reference

image, the triplet is formed by randomly sampling a positive from same category and

a negative from different category. Those triplets are directly fed into triplet network.

During testing, we use the classification scheme described in Section 2.3.4. (3) Triplet

loss with hard negative mining (Triplet-HN). As discussed in Section 2.3.2, instead of

feeding all the triplets into the network, we only keep those hard negatives that violate

triplet constraint. (4) Triplet loss with manifold learning (Triplet-M). As mentioned in

Section 2.3.3, the positives are sampled locally with respect to the reference image from
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same category. (5) Triplet loss with anchor points learning (Triplet-A). We combine

anchor points learning with triplet network as illustrated in Figure 2.7. During testing,

the network directly output label prediction based on confidence scores. In addition, we

also compared with state-of-the art FGVC approaches on publicly available dataset.

Since the network is trained via stochastic gradient descent, in order to do online

sampling of triplets, we need to extract features on the entire training set, which is

certainly inefficient if we do it for each iteration. Therefore, as a trade-off, we adopt

a quasi-online sampling strategy: after every 1, 000 iterations, we pause the training

process and extract features on the training set, then based on their euclidean distances

in feature space, we do triplet sampling (local positives and hard negatives) to generate a

list of triplets for next 1, 000 iterations and resume the training process using the newly

sampled triplets.

The CNN architecture we used is GoogLeNet-Inception [151], which achieved state-

of-the-art performance in large-scale image classification on ImageNet [36]. All the

baseline models are trained with fine-tuning using pre-trained GoogleNet-Inception on

ImageNet dataset.

We used Caffe [81], an open source deep learning framework, for the implementation

and training of our networks. The models are trained on NVIDIA Tesla K80 GPUs. The

training process typically took about 5 days on a single GPU to finish 200, 000 iterations

with 50 triplets in a batch per each iteration.
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Method (feature dimension) Accuracy (%)
Softmax (620) 65.1

Triplet-Naive (64) 48.7
Triplet-HN (64) 64.6
Triplet-M (64) 65.9
Triplet-A (64) 66.8

Table 2.1: Performance comparison on our flowers-620 dataset.

2.4.2 Deep Metric Learning

We evaluate the baselines on our flower dataset and publicly available CUB-200 Birds

dataset [167]. There are several parameters in our model and the best values are found

through cross-validation. For all the following experiments on both dataset, we set the

margin m in triplet loss to be 0.2; the feature dimension for f (·) to be 64; the number of

anchor points per each category K to be 3; the γ in soft voting to be 5. We set ω = 0.1

to make sure that the triplet loss term and the classification loss term in Equation 2.5

have comparable scale. For the size of positive sampling region, we set it to be 60% of

nearest neighbors within same category. The effect of positive sampling region size will

also be presented later in this section.

Flowers-620. flowers-620 is the dataset we collected and used for dataset bootstrap-

ping, which contains 20, 211 images from 620 flower species, in which 15, 437 images

are used for training. The performance comparison of mean accuracy is summarized in

Table 2.1.

From the results, we have the following observations: (1) Triplet-Naive, which uses

randomly offline sampling, performed much worse compared with other triplet base-

lines, which clearly shows the importance of triplet sampling in training. (2) Accuracy

increases from Triplet-HN to Triplet-M, showing the effectiveness of learning a bet-

22



Method (feature dimension) Accuracy (%)
Alignments [53] 67.0

MsML [131] 67.9
Symbiotic* [22] 69.5

POOF* [13] 73.3
PB R-CNN* [187] 82.0

B-CNN [110] 85.1
PNN* [16] 85.4

Softmax (620) 77.2
Triplet-Naive (64) 61.2
Triplet-HN (64) 77.9
Triplet-M (64) 79.3
Triplet-A (64) 80.7

Table 2.2: Performance comparison on birds-200 dataset. “*” indicates methods
that use ground truth part annotations.

ter manifolds with local positive sampling. (3) Triplet-A performed best and achieved

higher accuracy than Softmax. This verifies our intuition that fine-grained categories of-

ten have high intra-class difference and such within-class variance can be well captured

by learning manifolds with multiple anchor points. In this way, even in a much lower

dimensional feature space, the discrimination of the data can still be well preserved.

While in Softmax, we are trying to map all the data within a category to a single point

in feature space, which fails to capture the within-class structure well.

Birds-200. birds-200 is the Caltech-UCSD Birds-200-2011 data set for fine-grained

birds categorization. There are 11, 788 images from 200 bird species. Each category has

around 30 images for training. In training and testing, we use the ground truth bound-

ing boxes to crop the images before feeding them to the network. The performance

comparison is summarized in Table 2.2.

Similar to what we just observed in flowers-620, experiment results verify the effec-

tiveness of proposed methods. We also compared to recent state-of-the-art approaches
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(a) flowers-620 (b) birds-200

Figure 2.8: Accuracy with varying positive sampling region size.

for fine-grained categorization. Notice that we outperformed MsML [131] by a signif-

icant margin, which is a state-of-the-art metric learning method for FGVC. Although

our method performed worse than the recent proposed B-CNN [110], we were able to

achieve either better or comparable results with those state-of-the-arts using ground truth

part annotations during training and testing.

We also evaluate the effect of local positive sampling region size. As we mentioned

earlier in Section 2.3.3, the size of local positive sampling region controls the shape of

manifolds. We want to learn manifolds that can capture within-class variance well but

not too spread out to lose the between-class discriminations.

Figure 2.8 shows the mean accuracy with varying local positive sampling region

using Triplet-M. Using 60% of nearest neighbors for positive sampling gives best results

on both flowers-620 and birds-200.

2.4.3 Dataset Bootstrapping

During dataset bootstrapping, other than true positives that passed human filtering and

included into our dataset, plenty of false positives were marked by human labelers.
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Those false positives are perfect hard negatives in our metric learning framework. There-

fore, we combined these human labeled hard negatives with negatives from other cate-

gories that violate triplet constraint during triplet sampling. We sampled same number

of human-labeled hard negatives as the hard negatives from other categories.

With the proposed framework, we included 11, 567 Instagram flower images into

our database, which almost doubles the size of our training images to 27, 004. At the

same time, we also get 240, 338 hard negatives from labelers. We call this new dataset

flowers-620 + Ins and will use it for the evaluation of dataset bootstrapping. Notice that

the test set in flowers-620 + Ins remains same as flowers-620.

For best quality, currently we only use in-house labelers. Our framework could be

deployed to crowdsourced labeling platforms like Amazon Mechanical Turk, bit with

good quality control schemes.

We show that by dataset bootstrapping with humans in the loop, we are able to get

a better model using the proposed metric learning approach. For a fair comparison, we

also include two baselines that enable hard negatives to be utilized in softmax scheme:

(1) SoftMax with all hard negatives as a single novel category (Softmax + HNS). The

model is trained with one additional hard negative category. (2) SoftMax with hard

negatives as multiple novel categories (Softmax + HNM). In this setting, instead of

mixing all hard negatives as a single category, we regard hard negatives for different

flower categories as different novel categories. The model is trained with data from

620×2 = 1240 categories, from which 620 of them are category-specific hard negatives.

To make the number of flower images and hard negatives to be balanced in each batch

during training, the number of epochs we go through on all hard negatives is set to

be 10% of 620 flower categories. In testing, only confidence scores from 620 flower

categories will be considered for both baselines. The experiment results on flowers-620

25



Method (feature dimension) Accuracy (%)
Softmax (620) 68.9

Softmax + HNS (621) 70.3
Softmax + HNM (1240) 70.8

Triplet-A (64) 70.2
Triplet-A + HN (64) 73.7

Table 2.3: Performance comparison on flowers-620 + Ins.

+ Ins are shown in Table 2.3.

Compared with results in Table 2.1, we got 6.9% improvement by dataset bootstrap-

ping. If we look at the breakdown, 3.4% came from the newly added Instagram training

images and 3.5% came from human labeled hard negatives, indicating hard negatives has

similar importance as positive images. On the other hand, Softmax only gained 1.9%

by using hard negatives, which verifies our intuition that the triplet network is a better

choice for utilizing hard negatives. The proposed framework fully utilizes combined

human-machine efforts to enlarge the dataset as well as train a better model.

2.4.4 Visualization of Embedding

For qualitative evaluation purpose, in Figure 2.9, we show the 2-dimensional embedding

of flower-620 training set using PCA on features extracted from the trained Triplet-A

model. Within the zoomed in regions, we can observe the effectiveness of our method

in capturing high intra-class variances. For example, flowers from same category with

different colors are mapped together in upper right and lower right regions.
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Figure 2.9: 2-D embedding of flower-620 training set. We can observe that intra-
class variance is captured in upper right and lower right regions.

2.5 Conclusion

In this chapter, we have presented an iterative framework for fine-grained visual cat-

egorization and dataset bootstrapping based on a novel deep metric learning approach

with humans in the loop. Experimental results have validated the effectiveness of our

framework.

We train our model mainly based on triplet information. Although we adopt an

effective and efficient online triplet sampling strategy, the training process could still be

slow, which is a limitation of our method. Some future directions could be discovering

and labeling novel categories during dataset bootstrapping with a combined human-

machine framework or incorporating more information (e.g., hierarchical information,

semantic similarity) into the triplet sampling strategy.

27



CHAPTER 3

KERNEL POOLING FOR CONVOLUTIONAL NEURAL NETWORKS

The idea of interactions between features has been used extensively as a higher order

representation in learning tasks recently [112, 136, 14, 110]. The motivation behind is to

make the subsequent linear classifier operates on higher dimensional feature map so that

it becomes more discriminative. There are two ways in general to create higher order

interactions. The most commonly used one is to implicitly map the feature via the kernel

trick, like in the case of kernel SVM [162]. The disadvantages are twofold. The storage

needed and the evaluation time are both proportional to the number of training data,

which makes it inefficient on large datasets. In addition, the construction of the kernel

makes it hard to use stochastic learning methods, including Stochastic Gradient Descent

(SGD) in the training of CNNs. The other way is to explicitly map the feature vector

into high dimensional space with products of features (monomials). The drawback of

this method is obvious. If we want up to pth order interactions on a d dimensional

feature vector, the dimension of the explicit feature map will be O(dp), which makes it

impractical to use in real world applications. A common way to address these issues is

to compactly approximate either kernel functions [2, 172] or feature maps [85, 129, 6].

Before the remarkable success of using Convolutional Neural Networks (CNNs)

on visual data [99, 147, 151, 66], low-level hand-crafted features (e.g., SIFT [113],

HOG [34], Gist [124]) combined with mid-level feature aggregation or pooling meth-

ods (e.g., Bag-of-visual-words, Spatial Pyramid Matching [103], Sparse Coding [178],

Fisher Vector [128]) were widely adopted as the standard scheme for feature extrac-

tion. When learning and applying the subsequent linear classifier on extracted features,

kernel methods such as Gaussian RBF or exponential χ2 kernel are often adopted to

capture higher order information and make linear classifier more discriminative. Re-
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Figure 3.1: The proposed Kernel Pooling method. For a feature vector (i.e., the
activation at a spatial location on the feature map, in the case of a
CNN), we use Count Sketch [23] to generate a compact explicit fea-
ture map up to pth order. After applying kernel pooling, the inner
product between two features can capture high order feature interac-
tions as in Equation 3.1. This makes the subsequent linear classifier
highly discriminative. The proposed kernel pooling scheme is end-to-
end trainable and the composition of the kernel can be learned through
the update of coefficients {αi}

p
i=0. The vanilla compact bilinear pool-

ing [49, 48] only use the 2nd order information as the feature vector.

cently, efforts in combining CNNs with 2nd order feature interactions, either by replac-

ing hand-crafted features with CNN features [28] or jointly trained in an end-to-end

fashion, yielded impressive performance gains on a wide range of visual tasks. Rep-

resentative examples include fine-grained visual recognition [110, 49], visual question

answering [48], texture representation and synthesis [50, 108], face recognition [27]

and style transfer [51]. Notably, both Gao et al. [49] and Fukui et al. [48] used Tensor

Sketch [129] to compactly compress the full bilinear vector by 2 orders of magnitude

while preserve the same performance.

In this chapter, we propose a compact and differentiable way to generate explicit
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Figure 3.2: End-to-end training with the proposed pooling method. An input im-
age is fed into a series of fully convolutional layers to get the output
feature map of size h × w × c. For the c dimensional feature vector
on every single spatial location (e.g., the red or blue bar on the feature
map), we apply the proposed kernel pooling method illustrated in Fig-
ure 3.1. The final feature vector is average pooled over all locations
h×w. Then a linear layer with softmax is used to do the classification.
The kernel is defined by the order p and coefficients {αi}

p
i=0, which can

be learned from data through back-propagation.

feature maps. We generalize the strategy used in [49, 48] to represent higher order

feature interactions. For a feature vector x of dimension d, we generate its ith order

(i ≥ 2) compact explicit feature map with Count Sketch [23] and circular convolution. In

practice, people often operate circular convolution in frequency domain via Fast Fourier

Transform (FFT) and Inverse Fast Fourier Transform (IFFT). It has been proven, both

theoretically and practically in [129], that this method is able to compactly approximate

polynomial kernels. As illustrated in Figure 3.1, with a stack of Count Sketch, element-

wise multiplication, FFT and IFFT units, higher order information can be compactly

preserved. The kernel pooling method is applied on every single spatial location on

the feature map of a CNN. And the final feature vector is the result of global average

pooling across all spatial locations.

Denote the proposed kernel pooling method as φ. Then for two feature vectors x

and y, the inner product between φ(x) and φ(y) can approximate a kernel up to a certain
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order p as follows (see Section 3.2 for more details):

φ(x)>φ(y) ≈
p∑

i=0

α2
i (x>y)i ≈ K(x, y) (3.1)

Through the introduction of kernel functions associated with Reproducing kernel Hilbert

space, linear classifiers operate on high-dimensional Euclidean space become highly

discriminative. Combine the proposed pooling method with a CNN, as shown in Fig-

ure 3.2, the model can be trained end-to-end via back-propagation of classification er-

rors. The composition of the kernel, as determined by coefficients {αi}
p
i=0, can be either

predefined to approximate a certain kernel like Gaussian RBF up to order p or learned

from data.

To sum up, there are two main contributions in this chapter. Firstly, we propose a

general kernel pooling method via compact explicit feature mapping. Using the linear

classifier on the feature map is approximately same as applying the kernel trick. Sec-

ondly, the proposed kernel pooling is differentiable and can be combined with a CNN

for joint optimization. The composition of the kernel can also be learned simultaneously

during the training.

3.1 Related Work

The proposed kernel pooling method relies on the existing efforts on low dimensional

compact approximation of explicit feature maps. Rahimi et al. [133] is one of the first

work on using random features for Gaussian and Laplacian kernels. Later, the similar

idea was generalized to other kernels such as Maji et al. [117] for the histogram inter-

section kernel and Vedaldi et al. [164] for χ2 kernel. On the compact approximation

of polynomial kernels, recent proposed Random Maclaurin by Kar et al. [85], Tensor

Sketch by Pham et al. [129] and Subspace Embedding by Avron et al. [6] are the most

noticeable representatives. There is also a line of work that tries to learn higher order
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interactions from the data through optimization [112, 136, 14]. We differ from these

work by the combination of Convolutional Neural Networks (CNNs) in an end-to-end

fashion. With the joint optimization, we can leverage the powerful off-the-shelf fully

convolutional network architectures to learn better features directly from data.

Since the dimension of pth order pooled feature grows exponentially with p, the use

of p > 2 in real world applications is often limited. In the case of p = 2, the model is

usually referred as Bilinear models, first introduced by Tenenbaum and Freeman [154].

Bilinear models demonstrate impressive performance on visual tasks applied on both

hand-crafted features [21] and learned features [110, 27, 108, 51]. Recently, fueled

by compact 2nd order polynomial kernel approximation with Tensor Sketch [23, 129],

same visual recognition performances can be preserved with much lower feature dimen-

sion [49] and new application on visual question answering is enabled [48]. We differ

from these work by generalizing the compact representation from Bilinear models with

2nd order polynomial kernel to pth order Taylor series kernel defined in Section 3.2. The

composition of the kernel can also be learned through the end-to-end training with a

CNN (see Section 3.2.3).

3.2 Kernel Pooling

We define the concept of “pooling” as the process of encoding and aggregating feature

maps into a global feature vector. The architecture of Convolutional Neural Networks

(CNNs) can be regarded as fully convolutional layers followed by the subsequent pool-

ing layers and a linear classifier. Table 3.1 summaries pooling strategies adopted in

commonly used CNN architectures. Typically people use a stack of fully connected

layer with Rectified Linear Unit (ReLU) as in the case of AlexNet [99] and VGG [147].
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Fully connected layers often perform well in general but introduce heavy computation

and large number of parameters, hence makes the network slow and easy to get over-

fit. The recently proposed Inception [151] and Residual Learning [66] only use global

average pooling on the feature map. This strategy is more computationally efficient

but it does not capture higher order feature interactions, which are believed crucial in

many visual recognition tasks [110, 27, 108]. The bilinear models [21, 110] explicitly

generate the c2 dimensional feature map for 2nd order polynomial kernel, which is later

compactly approximated in [49, 48] using Tensor Sketch [129]. In light of the success

of Bilinear models, we propose an approach to go beyond Bilinear models and capture

higher order feature interactions. We first define Tayler series kernel and show its ex-

plicit feature map can be compactly approximated. Then we demonstrate how to use

the compact feature projection of Taylor series kernel to approximate commonly used

kernels such as Gaussian RBF.

3.2.1 Explicit feature projection via Tensor product

Suppose the output feature map of a convolution layer is X ∈ Rh×w×c with height h,

width w and number of channels c, we denote the c dimensional feature vector of a

spatial location on X as x = [x1, x2, . . . , xc]> ∈ Rc.

The explicit feature projection φ(.) of a kernel function K(., .) is defined by decom-

posing the the value of kernel function applied on two feature vectors x and y as the

inner product between their feature maps:

K(x, y) = φ(x)>φ(y) (3.2)

Commonly used kernel functions include polynomial kernels (x>y)p, Gaussian RBF

kernel exp(−γ‖x − y‖2), χ2 kernel
∑c

i=1
2xiyi
xi+yi

, etc. Notice that some of the kernels may
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correspond to an infinite dimensional feature projection (e.g., Gaussian RBF).

We introduce the concept of Tensor product and then demonstrate it can be used to

get the explicit feature projection of a specific type of kernel called Taylor series kernel.

First, we define the 2-level tensor product (i.e., outer product xx>) of x as:

x(2) = x ⊗ x =



x1x1 x1x2 · · · x1xc

x2x1 x2x2 · · · x2xc

...
...

. . .
...

xcx1 xcx2 · · · xcxc


∈ Rc2

(3.3)

Similarly, the p-level tensor product for p ≥ 2 is defined as:

x(p) = x⊗ · · · ⊗︸ ︷︷ ︸
p times

x ∈ Rcp
(3.4)

We also have x(0) = 1 and x(1) = x. Figure 3.3 illustrates the original feature vector x and

its 2-level and 3-level tensor product x(2) and x(3). It has been shown in [142] that the

p-level tensor product is the explicit feature projection of pth order Polynomial kernel:

(x>y)p = (x(p))>(y(p)) (3.5)

We define the Taylor series kernel of order p as follows:

KTaylor(x, y) =

p∑
i=0

α2
i (x>y)i (3.6)

Since the non-negative linear combination of kernels is still a kernel [142], the Taylor

series kernel is a valid kernel as it can be expressed as non-negative linear combinations

of Polynomial kernels.

It is clear to see that the explicit feature projection of Taylor series kernel is given

by:

φTaylor(x) = [α0(x(0))>, . . . , αp(x(p))>]> (3.7)
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Figure 3.3: An illustration of tensor product. The p-level tensor product x(p) of
x ∈ Rc is a cp dimensional vector.

Composed by the concatenation of scaled tensor products {αix(i)}
p
i=0, φ(x)1 is a long

feature vector with dimension O(cp). Even in the case of c = 512 and p = 3, cp is

still larger than 108. Such a high dimension hinders its applications in any real world

problems. Therefore, a compact approximation method is needed.

3.2.2 Compact approximation

The compact approximation method is differentiable and has good time and space com-

plexity. There are several recently proposed work on kernel approximation with random

feature projections [133, 85, 129, 6]. We build our approximation method on Tensor

Sketching [129], because it consumes less time and space compared to [133, 85], and it

is easier to implement compared to [6].

36



Algorithm 1: Count Sketch for Taylor series kernel
Input: x ∈ Rc, p, {di}

p
i=2, {αi}

p
i=0

Output: φ(x) ∈ Rd, where d = 1 + c +
∑p

i=2 di, s.t.
φ(x)>φ(y) ≈ K(x, y) =

∑p
i=0 α

2
i (x>y)i.

1 Initialization: φ(x)← [α2
0, x

>]>, P ← 1.
2 for t ← 1 to p do
3 Generate 2 independent hash functions ht and st. The outputs of ht and st are

uniformly drawn from {1, 2, . . . , dt} and {+1,−1}, respectively.
4 Calculate the Count Sketch of x as

Ct(x) = [c1, c2, . . . , cdt]
>,where ci =

∑
i:ht(i)= j st(i)xi.

5 P ← P ◦ FFT(Ct(x))
6 if t ≥ 2 then
7 φ(x)← concatenate (φ(x), FFT−1(P))

8 return φ(x)

Taylor series kernel

To compactly approximate the p-level tensor product x(p), we define the Count

Sketch [23] of x as:

C(x) = [c1, c2, . . . , cd]>,where ci =
∑

i:h(i)= j

s(i)xi (3.8)

The Count Sketch C(x) is a d-dimensional vector calculated using 2 hash functions h(.)

and s(.). Their outputs are uniformly drawn from {1, 2, . . . , d} and {+1,−1}, respectively.

The p-level tensor product x(p) can then be approximated as:

x̃(p) = FFT−1(FFT(C1(x)) ◦ · · · ◦ FFT(Cp(x))) (3.9)

where Ci(x) is the Count Sketch calculated from 2i independent hash functions

h1, h2, . . . , hi and s1, s2, . . . , si, ◦ denotes the element-wise multiplication, FFT and

FFT−1 is the Fast Fourier Transform and its Inverse.

Combining Equation 3.7 and Equation 3.9, the feature map of a Taylor series kernel

can be compactly approximated, as described in Algorithm 1. Inputs include the original
1For simplicity, unless otherwise specified, we will drop the subscript of KTaylor and φTaylor in the

remainder of the chapter.
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feature vector x, the order p of the Taylor series kernel to be approximated, target feature

dimensions di(i ≥ 2) we want to use for estimating x(i) and its associated coefficient

αi. Compared with the explicit feature map in Equation 3.7, we reduce the feature

dimension from exponential to linear. More specifically, from
∑p

i=0 ci to d = 1 + c +∑p
i=2 di, where d � ci, ∀i ≥ 2.

It has been proved that x̃(p) in Equation 3.9 is an unbiased feature map estimator for

pth order Polynomial kernel. The relative estimation error can be bounded by Cheby-

shev’s inequality (see Lemma 7 in [129] for the detailed proof). Similarly, the estimation

error of using Algorithm 1 can be bounded as:

P
[∣∣∣∣φ(x)>φ(y) − K(x, y)

∣∣∣∣ ≥ εK(x, y)
]
≤

1
dminε2 ∆(p) (3.10)

where dmin = min(d2, . . . , dp) and

∆(p) =


2(p − 1), if C = ±1

2C2(C2p−1)
C2−1 , otherwise

C = 1
cos θ is a constant that equals to the reciprocal of the cosine similarity between two

feature vectors x and y. In our experience, we find higher dimensional feature (large

dmin) gives better approximation, kernels with larger p introduce larger error, and the

error bound also depends heavily on the angle between two feature vectors.
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Gaussian RBF kernel

The Taylor expansion of Gaussian RBF kernel [130] can be expressed as:

KRBF(x, y) = exp
(
− γ‖x − y‖2

)
= exp

(
− γ(‖x‖2 + ‖y‖2 − 2x>y)

)
= β exp

(
2γx>y

)
=

∞∑
i=0

β
(2γ)i

i!
(x>y)i (3.11)

where β = exp
(
− γ(‖x‖2 + ‖y‖2)

)
is a constant and β = exp(−2γ) if x and y are `2-

normalized. Compared with Taylor series kernel in Equation 3.6, it is clear that Taylor

series kernel can be used to approximate Gaussian RBF term by term up to order p

by setting α2
i as β (2γ)i

i! . Other kernels can also be approximated if they have a Taylor

expansion in the similar form. Figure 3.4 illustrates the approximation of Gaussian RBF

by Taylor series kernel with variant p. The approximation error depends on the inner

product value x>y. In general, the closer the value is to 0, the smaller the approximation

error. So we need to choose γ carefully based on x>y. With the proper choice of γ,

using p = 4 would be sufficient to approximate Gaussian RBF. Experiments on kernel

approximation error and the effect of γ will be discussed extensively in Section 3.3.2.

3.2.3 Learning kernel composition end-to-end

The proposed kernel pooling method in Algorithm 1 relies on simple computations with

a set of fixed hash functions {ht} and {st}, FFT and FFT−1, which are all differentiable.

Combined with a CNN, the loss from the softmax layer can go through the proposed

kernel pooling layer and be propagated back to the preceding fully convolution layers.

Instead of using fixed pre-defined coefficients to approximate a certain kernel such
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Figure 3.4: Approximating Gaussian RBF kernel by Taylor series kernel with
variant p. Without loss of generality, we ignore the constant β when
plotting. The approximation error depends on the inner product value
x>y and γ. With the proper choice of γ based on x>y, using p = 4
would be sufficient to approximate Gaussian RBF.

as Gaussian RBF, the composition of the kernel can be learned from data, as illustrated

in Figure 3.5. Designing and choosing a good kernel is a challenging task because it

is hard to probe the underlying distribution of high-dimensional features. Therefore,

a kernel function is often chosen empirically or through cross-validation. By jointly

learning the kernel composition together with CNN weights in an end-to-end fashion,

we argue the learned kernel is more adaptive and suitable to the data we are working on.
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Figure 3.5: Learning kernel composition by end-to-end training with a CNN. The
coefficients of the kernel are jointly learned together with weights of
other CNN layers via back-propagation of the loss (denoted by outgo-
ing arrows from “Loss”).

3.3 Experimental Evaluations

The proposed kernel pooling method is evaluated in terms of both kernel approximation

error and visual recognition accuracy. Section 3.3.1 introduces experiment setup and

baseline methods. Then, in Section 3.3.2, we run a comprehensive study of kernel

approximation quality on CNN features. We also investigate the configuration such as

the choice of feature dimension d̄, kernel order p and γ. Section 3.3.3 is the major part of

the experiment, in which we present extensive evaluations on various visual recognition

tasks, including the recognition of bird [167], car [95], aircraft [118] and food [15]. The

proposed kernel pooling method achieves state-of-the-art results on all datasets.
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3.3.1 Experiment setup

We evaluate all pooling strategies listed in Table 3.1. For CNN architectures, we use

VGG-16 [147] and ResNet-50 [66], both of which achieved state-of-the-art performance

on ImageNet [36]. VGG-16 has 13 convolution with ReLU layers and 3 fully connected

layers including the final linear layer with softmax for classification. ResNet-50 consists

of 49 convolution layers followed by global average pooling and the final linear softmax

layer. Both VGG and ResNet reduce the spatial resolution of the input image by a

factor of 25 = 32 during the convolution. In the case of Bilinear, Compact Bilinear

and our model, we keep the fully convolutional part of the network and use the output

feature map from the last convolution layer (i.e., the feature vector x in Algorithm 1

corresponds to the activation at each spatial location of last layer’s feature map). For

standard pooling methods, we choose VGG-16 and ResNet-50 [66] as representatives

for fully connected pooling and global average pooling, respectively. The performance

of VGG-16 and ResNet-50 is reported by fine-tuning the entire network from ImageNet

pre-trained weights.

Pooling methods

We compare the performance of kernel pooling methods with the following baselines:

VGG with fully connected pooling (VGG): This is the original VGG-16 network

proposed in [147]. The architecture of VGG-16 is a generalization of the ground-

breaking AlexNet [99]. In AlexNet, only one convolution layer is applied to the input

image and the feature map of a specific spatial resolution. In VGG, however, more

convolution layers (2 to 3) are applied for each spatial resolution, which achieved state-

of-the-art performance on ImageNet Challenge 2014. Both AlexNet and VGG use the

42



same fully connected pooling scheme (a stack of two fully connected with ReLU layers)

for the subsequent softmax layer. Due to the fixed number of nodes designed in fully

connected layers, VGG requires a fixed input image size of 224 × 224. For each of the

dataset, we replace the last linear layer of VGG to match the number of categories and

then fine-tune the whole network from ImageNet pre-trained weights.

Residual Learning with average pooling (ResNet): Although the fully connected

layer works well in practice, it has several drawbacks including the heavy computation

and large storage needed as well as the tend to overfit. Recently proposed deeper net-

works based on Inception module [151] and Residual module [66] use global average

pooling after convolution layers for the subsequent linear classifier. The global average

pooling is lightweight, capable of taking input of any size and parameter-free. However,

it fails to capture nonlinear information in feature maps. We choose a strong baseline of

fine-tuned ResNet as comparison.

Bilinear Pooling (BP): We apply full bilinear pooling on top of the conv5 3 feature

map from VGG-16, which is same as the best-performed B-CNN [D, D] in [110]. The

feature dimension of the bilinear vector is d = 512 × 512 ≈ 260K. We don’t combine

ResNet with bilinear pooling because ResNet has 2048 channels in the final feature map.

The brute force bilinear vector has the dimension of 2048 × 2048 ≈ 4.2M, which is too

large to use in practice.

Compact Bilinear Pooling (CBP): We use Tensor Sketch with fixed hash functions to

approximate bilinear vector on the feature map of VGG-16 and ResNet-50. Whereas the

original paper [49] only used VGG-16. Typically, compact bilinear pooling can achieve

same performance as full bilinear pooling with d ≥ 8192, reducing the original feature

dimension by orders of magnitude. For a fair comparison, we set the feature dimension

in CBP to be the same as our kernel pooling method in all experiments.
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The proposed Kernel Pooling (KP): We evaluate the proposed kernel pooling

method in the same context as BP and CBP. For the activation x at each spatial loca-

tion on the feature map, we apply Algorithm 1 to get the compact feature map φ(x).

Same as BP and CBP, the final feature vector is average pooled across all the spatial

locations. The composition of the kernel is evaluated with learned coefficients via back-

propagation. The choice of kernel order p, feature dimension d and γ will be discussed

in Section 3.3.2.

Implementation

Our implementation follows the commonly used practice in [99, 147, 110, 49]. We have

two image input sizes: 224 × 224 and 448 × 448. For each image input size S × S , we

first subtract it with the pixel-wise image mean, and we resize the original image so that

its shorter side is S while keeping its aspect ratio. Then we crop a S × S square image

from the original image. During training, a random square image is cropped. Both the

original crop and its horizontal flip are utilized for data augmentation. During inference,

the center image is cropped. We pass the original crop and its horizontal flip to the CNN

independently. The average of their classification scores is our final classification score.

We follow the post-processing steps in [110, 49] to the feature vector y before the

linear classifier, because the experiments show that it improves fine-grained recognition

performance. We apply element-wise signed square root: y← sign(y)
√
|y| followed by

`2 normalization: y← y/‖y‖ on the compact feature y vector.

For the sake of faster convergence and better performance, we use pre-trained

weights for the neural network. The intial weights of the convolutional layers are pre-

trained on ImageNet classification dataset, and the initial weights of the final linear
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classifier is obtained by training a logistic regression classifier on the compact kernel

pooling of pre-trained CNN features. We start the fine-tuing with 10x smaller learning

rate (i.e. 0.001 for VGG and 0.01 for ResNet) and divide it by 10 after every 30 epochs.

We use a momentum of 0.9 and a weight decay of 0.0005 for VGG and 0.0001 for

ResNet. The training usually converges at around 50 epochs. The model diverges due

to large gradients sometimes. Therefore, gradient clipping [127] is applied to ensure all

gradients fall in the range between −1 and +1.

We use Tensorflow [1] to implement and train all the models. On a single NVIDIA

Tesla K40 GPU, the forward and backward time of both VGG-16 and ResNet-50 with

kernel pooling is about 500ms on a 448 × 448 image and 100ms on a 224 × 224 image.

Kernel pooling requires around 50ms with d = 4096 and p = 4.

3.3.2 Kernel approximation and configurations

This subsection presents the experiments on kernel approximation error using Algo-

rithm 1 on CNN features. Using VGG-16 trained on ImageNet, we extract conv5 3

feature maps on the training set of CUB-200-2011 [167], with input size of 224 × 224.

For each spatial location in the feature map, the feature is a c = 512 dimensional vec-

tor. Without loss of generality, we use the same feature pooling dimension d̄ for each

order in kernel pooling (i.e., di = d̄ for i ≥ 2). Therefore, the final feature dimension is

d = 1 + c +
∑p

i=2 d̄ = 513 + (p − 1)d̄. Figure 3.6 shows the relative approximation error

of Gaussian RBF kernel in log scale, with variant feature pooling dimension d̄, order p

and γ. The relative approximation error between two feature vector x and y is given by:

ε =
|φ(x)>φ(y) − KRBF(x, y)|

KRBF(x, y)
(3.12)
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Figure 3.6: Relative approximation error for Gaussian RBF kernel applied on
CNN features with variant kernel configurations.

We compare kernel pooing with the feature dimension d̄ from 50 to 5000 with the step

of 50. Each data point is the averaged error on 100K randomly selected feature pairs.

From Figure 3.6, we have the following observations: higher feature pooling dimen-

sion gives better approximation in general; approximation error also goes down with

increasing order p; γ plays a key role in the approximation error. The above findings

verify the insights from Equation 3.10. In Figure 3.4 we can see that with sufficient

feature dimension and order as well as a proper γ, we can achieve close to 1% relative

error. In light of this, we use d̄ = 4096 and p = 4 for all the following experiments.

The output vector has a dimension of d = 1 + 512 + 3 × 4096 = 12801 for VGG, and

1 + 2048 + 3× 4096 = 14337 for ResNet. The hyper-parameter γ is set as the reciprocal

of the mean of inner products between feature vectors in the training set to ensure that

γx>y is small on average and we can get a good kernel approximation.
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Figure 3.7: Images we used for visual recognition. From left to right, each col-
umn contains examples from CUB-200 Bird [167], Stanford Car [95],
Aircraft [118] and Food-101 [15].

3.3.3 Visual recognition

We evaluate on the following visual recognition tasks.

Bird species recognition: We use CUB-200 dataset [167] for this task. The dataset

consists of 11, 788 images from 200 bird species. Each category has around 30 images

for both training and testing.

Car make, model, year classification: The Stanford Car dataset [95] is used for

this task. It has 16, 185 images of 196 classes with car make, model and year.

Aircraft classification: The fine-grained aircraft dataset [118] was first introduced

in FGComp 2013 challenge, which contains 100 categories and each has 100 images.
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Dataset CNN Original BP [110] CBP [49] KP Others

CUB-200
VGG-16 73.1* 84.1 84.3 86.2 82.0 84.1

ResNet-50 78.4 N/A 81.6 84.7 [96] [78]

Stanford Car
VGG-16 79.8* 91.3 91.2 92.4 92.6 82.7

ResNet-50 84.7 N/A 88.6 91.1 [96] [61]

Aircraft
VGG-16 74.1* 84.1 84.1 86.9 80.7

ResNet-50 79.2 N/A 81.6 85.7 [61]

Food-101
VGG-16 81.2 82.4 82.4 84.2 50.76

ResNet-50 82.1 N/A 83.2 85.5 [15]

Table 3.2: Performance comparisons among all baselines, where KP is the pro-
posed kernel pooling method with learned coefficients. Following the
standard experimental setup, we use the input size of 448 × 448 for
CUB, Stanford Car and Aircraft datasets except the original VGG-16
(marked by an asterisk *), which requires a fixed input size of 224×224.
For Food-101, we use the input size of 224 × 224 for all the baselines.

Food recognition: For this task we use Food-101 dataset [15], which is by far the

largest publicly available food recognition dataset to the best of our knowledge. This

is a large-scale dataset with 101, 000 images and 1000 images per each category. This

dataset is challenging as the training images are noisy and the background is not clean.

Sample images for each task are shown in Figure 3.7. Performance comparison with

all the baselines and state-of-the-art methods is presented in Table 3.2. The proposed

Kernel Pooling with learned coefficients outperforms all other baselines by a large mar-

gin (around 1-3%) on all the datasets.

3.3.4 Discussion

In this subsection, we discuss the relative importance of higher order information for

different CNN architectures. We examined learned kernel coefficients on CUB dataset

with kernel pooling on VGG and ResNet. We found that high order feature interactions,

48



especially 2nd and 3rd order, are weighted more in VGG compared with ResNet. In

ResNet, there is no obvious distinction among first 3 orders. We believe this is due to

the difference of the underlying network architectures.

One reason might be that in VGG, the non-linear feature interactions are mainly cap-

tured by fully-connected layers. So removing the fully-connected layers significantly

degrade the original 1st order feature. Since ResNet only use a global average pool-

ing layer and has a very large receptive field, the features at different locations of the

feature map is encouraged to represent similar information. Together with the residual

module and a much deeper convolutional architecture, the output convolution feature

could implicitly capture more information than VGG. In our experiments, we find that

the performance of both VGG-16 and ResNet-50 can be improved when the proposed

kernel pooling method is utilized. These experiments verify the effectiveness of using

high-order feature interactions in the context of CNN.

3.4 Conclusion

In this chapter, we have introduced a novel deep kernel pooling method as a high-order

representation for visual recognition. The proposed method captures high-order and

non-linear feature interactions via compact explicit feature mapping. The approximated

representation is fully differentiable, thus the kernel composition can be learned together

with a CNN in an end-to-end manner. Extensive experiments demonstrate that deep ker-

nel pooling method achieves state-of-the-art performance on various fine-grained recog-

nition tasks.
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CHAPTER 4

LARGE SCALE FINE-GRAINED CATEGORIZATION AND

DOMAIN-SPECIFIC TRANSFER LEARNING

Fine-grained visual categorization (FGVC) aims to distinguish subordinate vi-

sual categories. Examples include recognizing natural categories such as species of

birds [167, 159], dogs [89] and plants [123, 170]; or man-made categories such as car

make & model [95, 179]. A successful FGVC model should be able to discriminate

categories with subtle differences, which presents formidable challenges for the model

design yet also provides insights to a wide range of applications such as rich image

captioning [5], image generation [9], and machine teaching [82, 115].

Recent advances on Convolutional Neural Networks (CNNs) for visual recogni-

tion [99, 147, 151, 66] have fueled remarkable progress on FGVC [110, 33, 191]. In

general, to achieve good performance with CNNs, one needs to train networks with vast

amounts of supervised data. However, collecting a labeled fine-grained dataset often

requires expert-level domain knowledge and therefore is difficult to scale. As a result,

commonly used FGVC datasets [167, 89, 95] are relatively small, typically containing

around 10k of labeled training images. In such a scenario, fine-tuning the networks that

are pre-trained on large scale datasets such as ImageNet [36] is often adopted.

This common setup poses two questions: 1) What are the important factors to

achieve good performance on large scale FGVC? Although other large scale generic

visual datasets like ImageNet contain some fine-grained categories, their images are usu-

ally iconic web images that contain objects in the center with similar scale and simple

backgrounds. With the limited availability of large scale FGVC datasets, how to design

models that perform well on large scale non-iconic images with fine-grained categories

remains an underdeveloped area. 2) How does one effectively conduct transfer learning,
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by first training the network on a large scale dataset and then fine-tuning it on domain-

specific fine-grained datasets? Modern FGVC methods overwhelmingly use ImageNet

pre-trained networks for fine-tuning. Given the fact that the target fine-grained domain

is known, can we do better than ImageNet?

This chapter aims to answer the two aforementioned problems, with the recently

introduced iNaturalist 2017 large scale fine-grained dataset (iNat) [160]. iNat contains

675,170 training and validation images from 5,089 fine-grained categories. All images

were captured in natural conditions with varied object scales and backgrounds. There-

fore, iNat offers a great opportunity to investigate key factors behind training CNNs for

large scale FGVC. In addition, along with ImageNet, iNat enables us to study the trans-

fer of knowledge learned on large scale datasets to small scale fine-grained domains.

In this chapter, we first propose a training scheme for large scale fine-grained cate-

gorization, achieving top performance on iNat. Unlike ImageNet, images in iNat have

much higher resolutions and a wide range of object scales. We show in Section 4.2.1

that performance on iNat can be improved significantly with higher input image reso-

lution. Another issue we address in this chapter is the long-tailed distribution, where

a few categories have most of the images [194, 161]. To deal with this, we present a

simple yet effective approach. The idea is to learn good features from a large amount of

training data and then fine-tune on a more evenly-distributed subset to balance the net-

work’s efforts among all categories and transfer the learned features. Our experimental

results, shown in Section 4.2.2, reveal that we can greatly improve the under-represented

categories and achieve better overall performance.

Secondly, we study how to transfer from knowledge learned on large scale datasets to

small scale fine-grained domains. Datasets are often biased in terms of their content and

style [157]. On CUB200 Birds [167], iNat pre-trained networks perform much better
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Figure 4.1: Overview of the proposed transfer learning scheme. Given the target
domain of interest, we pre-train a CNN on the selected subset from
the source domain based on the proposed domain similarity measure,
and then fine-tune on the target domain.

than ImageNet pre-trained ones; whereas on Stanford-Dogs [89], ImageNet pre-trained

networks yield better performance. This is because there are more visually similar bird

categories in iNat and dog categories in ImageNet. In light of this, we propose a novel

way to measure the visual similarity between source and target domains based on image-

level visual similarity with Earth Mover’s Distance. By fine-tuning the networks trained

on selected subsets based on our proposed domain similarity, we achieve better transfer

learning than ImageNet pre-training and state-of-the-art results on commonly used fine-

grained datasets. Figure 4.1 gives an overview of the proposed training scheme.

We believe our study on large scale FGVC and domain-specific transfer learning

could offer useful guidelines for researchers working on similar problems.

4.1 Related Work

Fine-Grained Visual Categorization (FGVC). Recent FGVC methods typically in-

corporate useful fine-grained information into a CNN and train the network end-to-

end. Notably, second order bilinear feature interactions was shown to be very effec-
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tive [110]. This idea was later extended to compact bilinear pooling [49], and then

higher order interactions [33, 19, 146]. To capture subtle visual differences, visual at-

tention [174, 47, 191] and deep metric learning [143, 32] are often used. Beyond pixels,

we also leverage other information including parts [187, 16, 188], attributes [163, 55],

human interactions [17, 37] and text descriptions [134, 68]. To deal with the lack of

training data in FGVC, additional web images can be collected to augment the original

dataset [32, 97, 177, 55]. Our approach differs from them by transferring the pre-trained

network on existing large scale datasets without collecting new data.

Using high-resolution images for FGVC has became increasingly popular [78, 110].

There is also a similar trend in ImageNet visual recognition, from originally 224 × 224

in AlexNet [99] to 331 × 331 in recently proposed NASNet [195]. However, no prior

work has systematically studied the effect of image resolution on large scale fine-grained

datasets as we do in this chapter.

How to deal with long-tailed distribution is an important problem in real world

data [194, 161]. However, it is a rather unexplored area mainly because commonly

used benchmark datasets are pre-processed to be close-to evenly distributed [36, 107].

Van Horn et al. [161] pointed out that the performance of tail categories are much poorer

than head categories that have enough training data. We present a simple two-step train-

ing scheme to deal with long-tailed distribution that works well in practice.

Transfer Learning. Convolutional Neural Networks (CNNs) trained on ImageNet

have been widely used for transfer learning, either by directly using the pre-trained net-

work as a feature extractor [144, 40, 192], or fine-tuning the network [57, 125]. Due

to the remarkable success of using pre-trained CNNs for transfer learning, extensive

efforts have been made on understanding transfer learning [181, 7, 76, 148]. In particu-

lar, some prior work loosely demonstrated the connection between transfer learning and
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domain similarity. For example, transfer learning between two random splits is easier

than natural / man-made object splits in ImageNet [181]; manually adding 512 addi-

tional relevant categories from all available classes improve upon the commonly used

1000 ImageNet classes on PASCAL VOC [44]; transferring from a combined ImageNet

and Places dataset yields better results on a list of visual recognition tasks [192]. Az-

izpour et al. [7] conducted a useful study on a list of transfer learning tasks that have

different similarity with the original ImageNet classification task (e.g., image classifica-

tion is considered to be more similar than instance retrieval, etc.). Our major differences

between their work are two-fold: Firstly, we provide a way to quantify the similarity

between source and target domain and then choose a more similar subset from source

domain for better transfer learning. Secondly, they all use pre-trained CNNs as fea-

ture extractors and only train either the last layer or use a linear SVM on the extracted

features, whereas we fine-tune all the layers of the network.

4.2 Large Scale Fine-Grained Categorization

In this section, we present our training scheme that achieves top performance on the

challenging iNaturalist 2017 dataset, especially focusing on using higher image resolu-

tion and dealing with long-tailed distribution.

4.2.1 The Effect of Image Resolution

When training a CNN, for the ease of network design and training in batches, the input

image is usually pre-processed to be square with a certain size. Each network architec-

ture usually has a default input size. For example, AlexNet [99] and VGGNet [147] take
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Input Resolution Networks
224 × 224 AlexNet [99], VGGNet [147], ResNet [66]
299 × 299 Inception [151, 152, 150]
320 × 320 ResNetv2 [67], ResNeXt [175], SENet [71]
331 × 331 NASNet [195]

Table 4.1: Default input image resolution for different networks. There is a trend
of using input images with higher resolution for modern networks.

the default input size of 224 × 224 and this default input size cannot be easily changed

because the fully-connected layer after convolutions requires a fixed size feature map.

More recent networks including ResNet [66] and Inception [151, 152, 150] are fully

convolutional, with a global average pooling layer right after convolutions. This design

enables the network to take input images with arbitrary sizes. Images with different

resolution induce feature maps of different down-sampled sizes within the network.

Input images with higher resolutions usually contain richer information and subtle

details that are important to visual recognition, especially for FGVC. Therefore, in gen-

eral, higher resolution input image yields better performance. For networks optimized

on ImageNet, there is a trend of using input images with higher resolution for modern

networks: from originally 224 × 224 in AlexNet [99] to 331 × 331 in recently proposed

NASNet [195], as shown in Table 4.1. However, most images from ImageNet have a

resolution of 500×375 and contain objects of similar scales, limiting the benefits we can

get from using higher resolution inputs. We explore the effect of using a wide range of

input image sizes from 299×299 to 560×560 in iNat dataset, showing greatly improved

performance with higher resolution inputs.
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4.2.2 Long-Tailed Distribution

The statistics of real world images is long-tailed: a few categories are highly represen-

tative and have most of the images, whereas most categories are observed rarely with

only a few images [194, 161]. This is in stark contrast to the even image distribution in

popular benchmark datasets such as ImageNet [36], COCO [107] and CUB200 [167].

With highly imbalanced numbers of images across categories in the iNaturalist

dataset [160], we observe poor performance on underrepresented tail categories. We

argue that this is mainly caused by two reasons: 1) The lack of training data. Around

1,500 fine-grained categories in iNat training set have fewer than 30 images. 2) The

extreme class imbalance encountered during training: the ratio between the number of

images in the largest class and the smallest one is about 435. Without any re-sampling

of the training images or re-weighting of the loss, categories with more images in the

head will dominate those in the tail. Since there is very little we can do for the first issue

of lack of training data, we propose a simple and effective way to address the second

issue of the class imbalance.

The proposed training scheme has two stages. In the first stage, we train the network

as usual on the original imbalanced dataset. With large number of training data from

all categories, the network learns good feature representations. Then, in the second

stage, we fine-tune the network on a subset containing more balanced data with a small

learning rate. The idea is to slowly transfer the learned feature and let the network re-

balance among all categories. Figure 4.2 shows the distribution of image frequency in

iNat training set that we trained on in the first stage and the subset we used in the second

stage, respectively. Experiments in Section 4.4.2 verify that the proposed strategy yields

improved overall performance, especially for underrepresented tail categories.
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Figure 4.2: The distribution of image frequency of each category in the whole
training set we used in the first stage training and the selected subset
we used in the second stage fine-tuning.

4.3 Transfer Learning

This section describes transfer learning from the networks trained on large scale datasets

to small scale fine-grained datasets. We introduce a way to measure visual similarity

between two domains and then show how to select a subset from source domain given

the target domain.

4.3.1 Domain Similarity

Suppose we have a source domain S and a target domain T . We define the distance

between two images s ∈ S and t ∈ T as the Euclidean distance between their feature

representations:

d(s, t) = ‖g(s) − g(t)‖ (4.1)
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where g(·) denotes a feature extractor for an image. To better capture the image simi-

larity, the feature extractor g(·) needs to be capable of extracting high-level information

from images in a generic, unbiased manner. Therefore, in our experiments, we use g(·)

as the features extracted from the penultimate layer of a ResNet-101 trained on the large

scale JFT dataset [148].

In general, using more images yields better transfer learning performance. For the

sake of simplicity, in this study we ignore the effect of domain scale (number of images).

Specifically, we normalize the number of images in both source and target domain. As

studied by Chen et al. [148], transfer learning performance increases logarithmically

with the amount of training data. This suggests that the performance gain in transfer

learning resulting from the use of more training data would be insignificant when we

already have a large enough dataset (e.g., ImageNet). Therefore, ignoring the domain

scale is a reasonable assumption that simplifies the problem. Our definition of domain

similarity can be generalized to take domain scale into account by adding a scale factor,

but we found ignoring the domain scale already works well in practice.

Under this assumption, transfer learning can be viewed as moving a set of images

from the source domain S to the target domain T . The work needed to be done by

moving an image to another can be defined as their image distance in Equation 4.1.

Then the distance between two domains can be defined as the least amount of total work

needed. This definition of domain similarity can be calculated by the Earth Mover’s

Distance (EMD) [132, 139].

To make the computations more tractable, we further make an additional simplifica-

tion to represent all image features in a category by the mean of their features. Formally,

we denote source domain as S = {(si,wsi)}
m
i=1 and target domain as T = {(t j,wt j)}

n
j=1,

where si is the i-th category in S and wsi is the normalized number of images in that cat-
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Figure 4.3: The proposed domain similarity calculated by Earth Mover’s Distance
(EMD). Categories in source domain and target domain are repre-
sented by red and green circles. The size of the circle denotes the
normalized number of images in that category. Blue arrows represent
flows from source to target domain by solving EMD.

egory; similarly for t j and wt j in T . m and n are the total number of categories in source

domain S and target domain T , respectively. Since we normalize the number of images,

we have
∑m

i=1 wsi =
∑n

j=1 wt j = 1. g(si) denotes the mean of image features in category

i from source domain, similarly for g(t j) in target domain. Using the defined notations,

the distance between S and T is defined as their Earth Mover’s Distance (EMD):

d(S,T ) = EMD(S,T ) =

∑m,n
i=1, j=1 fi, jdi, j∑m,n

i=1, j=1 fi, j
(4.2)

where di, j = ‖g(si) − g(t j)‖ and the optimal flow fi, j corresponds to the least amount of

total work by solving the EMD optimization problem. Finally, the domain similarity is

defined as:

sim(S,T ) = e−γd(S,T ) (4.3)

where γ is set to 0.01 in all experiments. Figure 4.3 illustrates calculating the proposed

domain similarity by EMD.
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4.3.2 Source Domain Selection

With the defined domain similarity in Equation 4.2, we are able to select a subset from

source domain that is more similar to target domains. We use greedy selection strategy to

incrementally include the most similar category in the source domain. That is, for each

category si in source domain S, we calculate its domain similarity with target domain by

sim({(si, 1)},T ) as defined in Equation 4.3. Then top k categories with highest domain

similarities will be selected. Notice that although this greedy way of selection has no

guarantee on the optimality of the selected subset of size k in terms of domain similarity,

we found this simple strategy works well in practice.

4.4 Experiments

The proposed training scheme for large scale FGVC is evaluated on the recently pro-

posed iNaturalist 2017 dataset (iNat) [160]. We also evaluate the effectiveness of the

our proposed transfer learning by using ImageNet and iNat as source domains, and 7

fine-grained categorization datasets as target domains. Section 4.4.1 introduces experi-

ment setup. Experiment results on iNat and transfer learning are presented in Section 4.2

and Section 4.4.3, respectively.

4.4.1 Experiment setup

Datasets

iNaturalist. The iNatrualist 2017 dataset (iNat) [160] contains 675,170 training and val-

idation images from 5,089 natural fine-grained categories. Those categories belong to
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FGVC Dataset # class # train # val
Flowers-102 [123] 102 2,040 6,149
CUB200 Birds [167] 200 5,994 5,794
Aircraft [118] 100 6,667 3,333
Stanford Cars [95] 196 8,144 8,041
Stanford Dogs [89] 120 12,000 8,580
NABirds [159] 555 23,929 24,633
Food101 [15] 101 75,750 25,250

Table 4.2: We use 7 fine-grained visual categorization datasets to evaluate the pro-
posed transfer learning method.

13 super-categories including Plantae (Plant), Insecta (Insect), Aves (Bird), Mammalia

(Mammal), and so on. The iNat dataset is highly imbalanced with dramatically dif-

ferent number of images per category. For example, the largest super-category “Plantae

(Plant)” has 196,613 images from 2,101 categories; whereas the smallest super-category

“Protozoa” only has 381 images from 4 categories. We combine the original split of

training set and 90% of the validation set as our training set (iNat train), and use the

rest of 10% validation set as our mini validation set (iNat minival), resulting in total of

665,473 training and 9,697 validation images.

ImageNet. We use the ILSVRC 2012 [140] splits of 1,281,167 training (ImageNet

train) and 50,000 validation (ImageNet val) images from 1,000 classes.

Fine-Grained Visual Categorization. We evaluate our transfer learning approach

on 7 fine-grained visual categorization datasets as target domains, which cover a wide

range of FGVC tasks including natural categories like bird and flower and man-made

categories such as aircraft. Table 4.2 summarizes number of categories, together with

number of images in their original training and validation splits.
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Network Architectures

We use 3 types of network architectures: ResNet [66, 67], Inception [151, 152, 150] and

SENet [71].

Residual Network (ResNet). Originally introduced by He et al. [66], networks

with residual connections greatly reduced the optimization difficulties and enabled the

training of much deeper networks. ResNets were later improved by pre-activation that

uses identity mapping as the skip connection between residual modules [67]. We used

the latest version of ResNets [67] with 50, 101 and 152 layers.

Inception. The Inception module was firstly proposed by Szegedy et al. in

GoogleNet [151] that was designed to be very efficient in terms of parameters and com-

putations, while achieving state-of-the-art performance. Inception module was then fur-

ther optimized by using Batch Normalization [77], factorized convolution [152, 150] and

residual connections [150] as introduced in [66]. We use Inception-v3 [152], Inception-

v4 and Inception-ResNet-v2 [150] as representatives for Inception networks in our ex-

periments.

Squeeze-and-Excitation (SE). Recently proposed by Hu et al. [71], Sequeeze-and-

Excitation (SE) modules achieved the best performance in ILSVRC 2017 [140]. SE

module squeezes responses from a feature map by spatial average pooling and then

learns to re-scale each channel of the feature map. Due to its simplicity in design, SE

module can be used in almost any modern networks to boost the performance with little

additional overhead. We use Inception-v3 SE and Inception-ResNet-v2 SE as baselines.

For all network architectures, we follow strictly their original design but with the last

linear classification layer replaced to match the number of categories in our datasets.
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Implementation

We used open-source Tensorflow [1] to implement and train all the models asyn-

chronously on multiple NVIDIA Tesla K80 GPUs. During training, the input image

was randomly cropped from the original image and re-sized to the target input size with

scale and aspect ratio augmentation [151]. We trained all networks using the RMSProp

optimizer with momentum of 0.9, and the batch size of 32. The initial learning rate

was set to 0.045, with exponential decay of 0.94 after every 2 epochs, same as [151];

for fine-tuning in transfer learning, the initial learning rate is lowered to 0.0045 with

the learning rate decay of 0.94 after every 4 epochs. We also used label smoothing as

introduced in [152]. During inference, the original image is center cropped and re-sized

to the target input size.

4.4.2 Large Scale Fine-Grained Visual Recognition

To verify the proposed learning scheme for large scale fine-grained categorization, we

conduct extensive experiments on iNaturalist 2017 dataset. For better performance, we

fine-tune from ImageNet pre-trained networks. If training from scratch on iNat, the

top-5 error rate is ≈ 1% worse.

We train Inception-v3 with 3 different input resolutions (299, 448 and 560). The

effect of image resolution is presented in Table 4.3. From the table, we can see that

using higher input resolutions achieve better performance on iNat.

The evaluation of our proposed fine-tuning scheme for dealing with long-tailed dis-

tribution is presented in Figure 4.4. Better performance can be obtained by further

fine-tuning on a more balanced subset with small learning rate (10−6 in our experi-
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Inc-v3 299 Inc-v3 448 Inc-v3 560
Top-1 (%) 29.93 26.51 25.37
Top-5 (%) 10.61 9.02 8.56

Table 4.3: Top-5 error rate on iNat minival using Inception-v3 with various input
sizes. Higher input size yield better performance.

Inc-v3 299 Inc-v3 560 Inc-v4 560 Inc-ResNet-v2 560
Network and input image size
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Figure 4.4: Top-5 error rate on iNat minival before and after fine-tuning on a more
balanced subset. This simple strategy improves the performance on
long-tailed iNat dataset.

ments). Table 4.4 shows performance improvements on head and tail categories with

fine-tuning. Improvements on head categories with ≥ 100 training images are 1.95%

of top-1 and 0.92% of top-5; whereas on tail categories with < 100 training images,

the improvements are 5.74% of top-1 and 2.71% of top-5. These results verify that the

proposed fine-tuning scheme greatly improves the performance on underrepresented tail

categories.

Table 4.5 presents the detailed performance breakdown of our winning entry in the

iNaturalist 2017 challenge 1. Using higher image resolution and further fine-tuning on a

more balanced subset are the key to our success.

1https://www.kaggle.com/c/inaturalist-challenge-at-fgvc-2017
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Before FT After FT
Top-1 Top-5 Top-1 Top-5

Head: ≥ 100 imgs 19.28 5.79 17.33 4.87
Tail: < 100 imgs 29.89 9.12 24.15 6.41

Table 4.4: Top-1 and top-5 error rates (%) on iNat minival for Inception-v4 560.
The proposed fine-tuning scheme greatly improves the performance on
underrepresented tail categories.

Network Top-1 (%) Top-5 (%)
Inc-v3 299 29.9 10.6
Inc-v3 560 25.4 (+ 4.5) 8.6 (+ 2.0)
Inc-v3 560 FT 22.7 (+ 2.7) 6.6 (+ 2.0)
Inc-v4 560 FT 20.8 (+ 1.9) 5.4 (+ 1.2)
Inc-v4 560 FT 12-crop 19.2 (+ 1.6) 4.7 (+ 0.7)
Ensemble 18.1 (+ 1.1) 4.1 (+ 0.6)

Table 4.5: Performance improvements on iNat minival. The number inside the
brackets indicates the improvement over the model in the previous row.
FT denotes using the proposed fine-tuning to deal with long-tailed dis-
tribution. Ensemble contains two models: Inc-v4 560 FT and Inc-
ResNet-v2 560 FT with 12-crop.

4.4.3 Domain Similarity and Transfer Learning

We evaluate the proposed transfer learning method by pre-training the network on source

domain from scratch, and then fine-tune on target domains for fine-grained visual cate-

gorization. Other than training separately on ImageNet and iNat, we also train networks

on a combined ImageNet + iNat dataset that contains 1,946,640 training images from

6,089 categories (i.e., 1,000 from ImageNet and 5,089 from iNat). We use input size

of 299 × 299 for all networks. Table 4.6 shows the pre-training performance evaluated

on ImageNet val and iNat minival. Notably, a single network trained on the combined

ImageNet + iNat dataset achieves competitive performance compared with two models

trained separately. In general, combined training is better than training separately in the
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Figure 4.5: Examples showing top 10 most similar categories in the combined Im-
ageNet + iNat for each FGVC dataset, calculated with our proposed
domain similarity. The left column represents 7 FGVC target do-
mains, each by a randomly chosen image from the dataset. Each row
shows top 10 most similar categories in ImageNet + iNat for a spe-
cific FGVC target domain. We represent a category by one randomly
chosen image from that category. ImageNet categories are marked in
blue, whereas iNat categories are in red.

case of Inception and Inception SE, but worse in the case of ResNet.

Based on the proposed domain selection strategy defined in Section 4.3.2, we select

the following two subsets from the combined ImageNet + iNat dataset: Subset A was

chosen by including top 200 ImageNet + iNat categories for each of the 7 FGVC dataset.

Removing duplicated categories resulted in a source domain containing 832 categories.

Subset B was selected by adding most similar 400 categories for CUB200, NABirds, top

100 categories for Stanford Dogs and top 50 categories for Stanford Cars and Aircraft,

66



Im
ag

eN
et

va
l

iN
at

ur
al

is
tm

in
iv

al
O

ri
gi

na
l

Se
pa

ra
te

Tr
ai

n
C

om
bi

ne
d

Tr
ai

n
Se

pa
ra

te
Tr

ai
n

C
om

bi
ne

d
Tr

ai
n

to
p-

1
to

p-
5

to
p-

1
to

p-
5

to
p-

1
to

p-
5

to
p-

1
to

p-
5

to
p-

1
to

p-
5

R
es

N
et

-5
0

[6
6,

67
]

24
.7

0
7.

80
24

.3
3

7.
61

25
.2

3
8.

06
36

.2
3

15
.6

7
36

.9
3

16
.4

9
R

es
N

et
-1

01
[6

6,
67

]
23

.6
0

7.
10

23
.0

8
7.

09
23

.3
9

7.
06

34
.1

5
14

.5
8

33
.9

7
14

.5
3

R
es

N
et

-1
52

[6
6,

67
]

23
.0

0
6.

70
22

.3
4

6.
81

22
.5

9
6.

64
31

.0
4

12
.5

2
32

.5
8

13
.2

0
In

ce
pt

io
n-

v3
[1

52
]

21
.2

0
5.

60
21

.7
3

5.
97

21
.5

2
5.

87
31

.1
8

11
.9

0
30

.2
9

11
.1

0
In

ce
pt

io
n-

R
es

N
et

-v
2

[1
50

]
19
.9

0∗
4.

90
∗

20
.3

3
5.

16
20

.2
0

5.
18

27
.5

3
9.

87
27

.7
8

9.
12

In
ce

pt
io

n-
v3

SE
[7

1]
-

-
20

.9
8

5.
76

20
.7

5
5.

69
30

.1
5

11
.6

9
29

.7
9

10
.6

4
In

ce
pt

io
n-

R
es

N
et

-v
2

SE
[7

1]
19

.8
0

4.
79

19
.7

7
4.

79
19

.5
6

4.
61

27
.3

0
9.

61
26

.0
1

8.
18

Ta
bl

e
4.

6:
Pr

e-
tr

ai
ni

ng
pe

rf
or

m
an

ce
on

di
ff

er
en

t
so

ur
ce

do
m

ai
ns

.
N

et
w

or
ks

tr
ai

ne
d

on
th

e
co

m
bi

ne
d

Im
ag

eN
et

+
iN

at
da

ta
se

t
w

ith
6,

08
9

cl
as

se
s

ac
hi

ev
e

co
m

pe
tit

iv
e

pe
rf

or
m

an
ce

on
bo

th
Im

ag
eN

et
an

d
iN

at
co

m
pa

re
d

w
ith

ne
tw

or
ks

tr
ai

ne
d

se
pa

ra
te

ly
on

ea
ch

da
ta

se
t.
∗

in
di

ca
te

s
th

e
m

od
el

w
as

ev
al

ua
te

d
on

th
e

no
n-

bl
ac

kl
is

te
d

su
bs

et
of

Im
ag

eN
et

va
lid

at
io

n
se

t
th

at
m

ay
sl

ig
ht

ly
im

pr
ov

e
th

e
pe

rf
or

m
an

ce
.

67



which gave us 585 categories in total. Figure 4.5 shows top 10 most similar categories in

ImageNet + iNat for all FGVC datasets calculated by our proposed domain similarity.

It’s clear to see that for CUB200, Flowers-102 and NABirds, most similar categories

are from iNat; whereas for Stanford Dogs, Stanford Cars, Aircraft and Food101, most

similar categories are from ImageNet. This indicates the strong dataset bias in both

ImageNet and iNat.

The transfer learning performance by fine-tuning an Inception-v3 on fine-grained

datasets are presented in Table 4.7. We can see that both ImageNet and iNat are highly

biased, achieving dramatically different transfer learning performance on target datasets.

Interestingly, when we transfer networks trained on the combined ImageNet + iNat

dataset, performance are in-between ImageNet and iNat pre-training, indicating that we

cannot achieve good performance on target domains by simply using a larger scale,

combined source domain.

Further, in Figure 4.6, we show the relationship between transfer learning perfor-

mance and our proposed domain similarity. We observe better transfer learning perfor-

mance when fine-tuned from a more similar source domain, except Food101, on which

the transfer learning performance almost stays same as domain similarity changes. We

believe this is likely due to the large number of training images in Food101 (750 train-

ing images per class). Therefore, the target domain contains enough data thus transfer

learning has very little help. In such a scenario, our assumption on ignoring the scale of

domain is no longer valid.

From Table 4.7 and Figure 4.6, we observe that the selected Subset B achieves good

performance among all FGVC datasets, surpassing ImageNet pre-training by a large

margin on CUB200 and NABirds. In Table 4.8, we compare our approach with existing

FGVC methods. Results demonstrate state-of-the-art performance of the prposed trans-
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Figure 4.6: The relationship between transfer learning performance and domain
similarity between source and target domain. Each line represents a
target FGVC dataset and each marker represents the source domain.
Better transfer learning performance can be achieved by fine-tuning
the network that is pre-trained on a more similar source domain. Two
selected subsets based on our domain similarity achieve good perfor-
mance on all FGVC datasets.

fer learning method on commonly used FGVC datasets. Notice that since our definition

of domain similarity is fast to compute, we can easily explore different ways to select

a source domain. The transfer learning performance can be directly estimated based

on domain similarity, without conducting any pre-training and fine-tuning. Prior to our

work in this chapter, the only options to achieve good performance on FGVC tasks are

either designing better models based on ImageNet fine-tuning [110, 33, 191] or aug-

menting the dataset by collecting more images [177, 97]. Our work, however, provides

a novel direction of using a more similar source domain to pre-train the network. We

show that with properly selected subsets in source domain, it is able to match or exceed

those performance gain by simply fine-tuning off-the-shelf networks.
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4.5 Conclusion

In this chapter, we have presented a training scheme that achieves top performance on

large scale iNaturalist dataset, by using higher resolution input image and fine-tuning to

deal with long-tailed distribution. We further proposed a novel way of capturing domain

similarity with Earth Mover’s Distance and showed better transfer learning performance

can be achieved by fine-tuning from a more similar domain. In the future, we plan to

study other important factors in transfer learning beyond domain similarity.
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CHAPTER 5

CLASS-BALANCED LOSS BASED ON EFFECTIVE NUMBER OF SAMPLES

The recent success of deep Convolutional Neural Networks (CNNs) for visual recog-

nition [99, 147, 151, 66] owes much to the availability of large-scale, real-world an-

notated datasets [36, 107, 192, 160]. In contrast with commonly used visual recog-

nition datasets (e.g., CIFAR [98, 158], ImageNet ILSVRC 2012 [36, 140] and CUB-

200 Birds [167]) that exhibit roughly uniform distributions of class labels, real-world

datasets have skewed [86] distributions, with a long-tail: a few dominant classes claim

most of the examples, while most of the other classes are represented by relatively

few examples. Models trained on such data perform poorly for weakly represented

classes [80, 65, 161, 18].

A number of recent studies have aimed to alleviate the challenge of long-tailed train-

ing data [12, 126, 72, 161, 169, 56, 189, 180]. In general, there are two strategies: re-

sampling and cost-sensitive re-weighting. In re-sampling, the number of examples is

directly adjusted by over-sampling (adding repetitive data) for the minor class or under-

sampling (removing data) for the major class, or both. In cost-sensitive re-weighting,

we influence the loss function by assigning relatively higher costs to examples from

minor classes. In the context of deep feature representation learning using CNNs, re-

sampling may either introduce large amounts of duplicated samples, which slows down

the training and makes the model susceptible to overfitting when over-sampling, or dis-

card valuable examples that are important for feature learning when under-sampling.

Due to these disadvantages of applying re-sampling for CNN training, the present chap-

ter focuses on re-weighting approaches, namely, how to design a better class-balanced

loss.

Typically, we assign sample weights or re-sample data inversely proportionally to the
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class frequency. This simple heuristic has been widely adopted [72, 169]. However, re-

cent work on training from large-scale, real-world, long-tailed datasets [120, 116] reveal

poor performance when using this strategy. Instead, they propose to use a “smoothed”

version that empirically re-samples data to be inversely proportional to the square root

of class frequency. These observations suggest an interesting question: how can we

design a better class-balanced loss that is applicable to a diverse array of datasets with

drastically different scale and imbalance?

We aim to answer this question from the perspective of sample size. As illustrated in

Figure 5.1, we consider training a model to discriminate between a major class and a mi-

nor class from a long-tailed dataset. Due to highly imbalanced data, directly training the

model or re-weighting the loss by inverse number of samples cannot yield satisfactory

performance. Intuitively, the more data, the better. However, since there is information

overlap among data, as the number of samples increases, the marginal benefit a model

can extract from the data diminishes. In light of this, we propose a novel theoretical

framework to characterize data overlap and calculate the effective number of samples in

a model- and loss-agnostic manner. A class-balanced re-weighting term that is inversely

proportional to the effective number of samples is added to the loss function. Extensive

experimental results indicate that this class-balanced term provides a significant boost

to the performance of commonly used loss functions for training CNNs on long-tailed

datasets.

Our key contributions can be summarized as follows: (1) We provide a theoret-

ical framework to study the effective number of samples and show how to design a

class-balanced term to deal with long-tailed training data. (2) We show that signifi-

cant performance improvements can be achieved by adding the proposed class-balanced

term to existing commonly used loss functions including softmax cross-entropy, sig-
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Figure 5.1: Two classes, one from the head and one from the tail of a long-tailed
dataset (iNaturalist 2017 [160] in this example), have drastically dif-
ferent number of samples. Models trained on these samples are biased
toward dominant classes (black solid line). Re-weighing the loss by
inverse class frequency usually yields poor performance (red dashed
line) on real-world data with high class imbalance. We propose a the-
oretical framework to quantify the effective number of samples by tak-
ing data overlap into consideration. A class-balanced term is designed
to re-weight the loss by inverse effective number of samples. We show
in experiments that the performance of a model can be improved when
trained with the proposed class-balanced loss (blue dashed line).
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moid cross-entropy and focal loss. In addition, we show our class-balanced loss can be

used as a generic loss for visual recognition by outperforming commonly-used softmax

cross-entropy loss on ILSVRC 2012. We believe our study on quantifying the effective

number of samples and class-balanced loss can offer useful guidelines for researchers

working in domains with long-tailed class distributions.

5.1 Related Work

Most of previous efforts on long-tailed imbalanced data can be divided into two regimes:

re-sampling [145, 56, 18, 196] (including over-sampling and under-sampling) and cost-

sensitive learning [156, 193, 72, 88, 141].

Re-Sampling. Over-sampling adds repeated samples from minor classes, which

could cause the model to overfit. To solve this, novel samples can be either interpolated

from neighboring samples [24] or synthesized [64, 196] for minor classes. However,

the model is still error-prone due to noise in the novel samples. It was argued that even

if over-sampling incurs risks from removing important samples, under-sampling is still

preferred over over-sampling [42].

Cost-Sensitive Learning. Cost-Sensitive Learning can be traced back to a classical

method in statistics called importance sampling [84], where weights are assigned to

samples in order to match a given data distribution. Elkan et al. [43] studied how to

assign weights to adjust the decision boundary to match a given target in the case of

binary classification. For imbalanced datasets, weighting by inverse class frequency [72,

169] or a smoothed version of inverse square root of class frequency [120, 116] are

often adopted. As a generalization of smoothed weighting with a theoretically grounded

framework, we focus on (a) how to quantify the effective number of samples and (b)
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using it to re-weight the loss. Another line of important work aims to study sample

difficulty in terms of loss and assign higher weights to hard examples [46, 119, 41,

106]. Samples from minor classes tend to have higher losses than those from major

classes as the features learned in minor classes are usually poorer. However, there is no

direct connection between sample difficulty and the number of samples. A side effect

of assigning higher weights to hard examples is the focus on harmful samples (e.g.,

noisy data or mislabeled data) [91, 135]. In our work, we do not make any assumptions

on the sample difficulty and data distribution. By improving the focal loss [106] using

our class-balanced term in experiments, we show that our method is complementary to

re-weighting based on sample difficulty.

It is noteworthy to mention other efforts in dealing with data imbalance, including

transferring the knowledge learned from major classes to minor classes [12, 126, 169,

30, 180] and designing a better training objective via metric learning [72, 189, 182] or

Bayesian uncertainty estimates [87].

Covering and Effective Sample Size. Our theoretical framework is inspired by the

random covering problem [79], where the goal is to cover a large set by a sequence of

i.i.d. random small sets. We simplify the problem in Section 5.2 by making reasonable

assumptions. Note that the effective number of samples proposed in this chapter is

different from the concept of effective sample size in statistics. The effective sample

size is used to calculate variance when samples are correlated.

5.2 Effective Number of Samples

We formulate the data sampling process as a simplified version of random covering. The

key idea is to associate each sample with a small neighboring region instead of a single
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point. We present our theoretical framework and the formulation of calculating effective

number of samples.

5.2.1 Data Sampling as Random Covering

Given a class, denote the set of all possible data in the feature space of this class asS. We

assume the volume of S is N and N ≥ 1. Denote each sample as a subset of S that has

the unit volume of 1 and may overlap with other samples. Consider the data sampling

process as a random covering problem where each subset is randomly sampled from S

to cover the entire set of S. The more data is being sampled, the better the coverage of

S is. The expected total volume of sampled data increases as the number of samples

increases and is bounded by N. Therefore, we define:

Definition 1 (Effective Number). The effective number of samples is the expected vol-

ume of samples.

The calculation of the expected volume of samples is a very difficult problem that

depends on the shape of the sample and the dimensionality of the feature space [79]. To

make the problem tamable, we simplify the problem by not considering the situation of

partial overlapping. That is, we assume a newly sampled data point can only interact

with previously sampled data in two ways: either entirely inside the set of previously

sampled data with the probability of p or entirely outside with the probability of 1− p, as

illustrated in Figure 5.2. As the number of sampled data points increases, the probability

p will be higher.

Before we dive into the mathematical formulations, we discuss the connection be-

tween our definition of effective number of samples and real-world visual data. Our

idea is to capture the diminishing marginal benefits by using more data points of a class.
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All possible data (N)

Newly sampled data (1)

Previously sampled data

Overlapped (p)

Not overlapped (1-p)

Figure 5.2: Giving the set of all possible data with volume N and the set of previ-
ously sampled data, a new sample with volume 1 has the probability
of p being overlapped with previous data and the probability of 1 − p
not being overlapped.

Due to intrinsic similarities among real-world data, as the number of samples grows, it

is highly possible that a newly added sample is a near-duplicate of existing samples. In

addition, CNNs are trained with heavy data augmentations, where simple transforma-

tions such as random cropping, re-scaling and horizontal flipping will be applied to the

input data. In this case, all augmented examples are also considered as same with the

original example. Presumably, the stronger the data augmentation is, the smaller the N

will be. The small neighboring region of a sample is a way to capture all near-duplicates

and instances that can be obtained by data augmentation. For a class, N can be viewed

as the number of unique prototypes.

5.2.2 Mathematical Formulation

Denote the effective number (expected volume) of samples as En, where n ∈ Z>0 is the

number of samples.
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Proposition 1 (Effective Number). En = (1 − βn)/(1 − β), where β = (N − 1)/N.

Proof. We prove the proposition by induction. It is obvious that E1 = 1 because there

is no overlapping. So E1 = (1 − β1)/(1 − β) = 1 holds. Now let’s consider a general

case where we have previously sampled n − 1 examples and are about to sample the nth

example. Now the expected volume of previously sampled data is En−1 and the newly

sampled data point has the probability of p = En−1/N to be overlapped with previous

samples. Therefore, the expected volume after sampling nth example is:

En = pEn−1 + (1 − p)(En−1 + 1) = 1 +
N − 1

N
En−1. (5.1)

Assume En−1 = (1 − βn−1)/(1 − β) holds, then

En = 1 + β
1 − βn−1

1 − β
=

1 − β + β − βn

1 − β
=

1 − βn

1 − β
. (5.2)

�

The above proposition shows that the effective number of samples is an exponential

function of n. The hyperparameter β ∈ [0, 1) controls how fast En grows as n increases.

Another explanation of the effective number En is:

En = (1 − βn)/(1 − β) =

n∑
j=1

β j−1. (5.3)

This means that the jth sample contributes β j−1 to the effective number. The expected

total volume N for all possible data in the class can then be calculated as:

N = lim
n→∞

n∑
j=1

β j−1 = 1/(1 − β). (5.4)

This is consistent with our definition of β in the proposition.

Implication 1 (Asymptotic Properties). En = 1 if β = 0 (N = 1). En → n as β → 1

(N → ∞).
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Proof. If β = 0, then En = (1 − 0n)/(1 − 0) = 1. In the case of β → 1, denote

f (β) = 1−βn and g(β) = 1−β. Since limβ→1 f (β) = limβ→1 g(β) = 0, g′(β) = −1 , 0 and

limβ→1 f ′(β)/g′(β) = limβ→1(−nβn−1)/(−1) = n exists, using L’Hôpital’s rule, we have:

lim
β→1

En = lim
β→1

f (β)
g(β)

= lim
β→1

f ′(β)
g′(β)

= n. (5.5)

�

The asymptotic property of En shows that when N is large, the effective number

of samples is same as the number of samples n. In this scenario, we think the num-

ber of unique prototypes N is large, thus there is no data overlap and every sample is

unique. On the other extreme, if N = 1, this means that we believe there exist a single

prototype so that all the data in this class can be represented by this prototype via data

augmentation, transformations, etc.

5.3 Class-Balanced Loss

The Class-Balanced Loss is designed to address the problem of training from imbal-

anced data by introducing a weighting factor that is inversely proportional to the effec-

tive number of samples. The class-balanced loss term can be applied to a wide range of

deep networks and loss functions.

For an input sample x with label y ∈ {1, 2, . . . ,C} 1, where C is the total number

of classes, suppose the model’s estimated class probabilities are p = [p1, p2, . . . , pC]>,

where pi ∈ [0, 1] ∀ i, we denote the loss as L(p, y). Suppose the number of samples for

class i is ni, based on Equation 5.2, the proposed effective number of samples for class i

1For simplicity, we derive the loss function by assuming there is exactly one ground-truth label for a
sample.
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is Eni = (1 − βni
i )/(1 − βi), where βi = (Ni − 1)/Ni. Without further information of data

for each class, it is difficult to empirically find a set of good hyperparameters Ni for all

classes. Therefore, in practice, we assume Ni is only dataset-dependent and set Ni = N,

βi = β = (N − 1)/N for all classes in a dataset.

To balance the loss, we introduce a weighting factor αi that is inversely proportional

to the effective number of samples for class i: αi ∝ 1/Eni . To make the total loss roughly

in the same scale when applying αi, we normalize αi so that
∑C

i=1 αi = C. For simplicity,

we abuse the notation of 1/Eni to denote the normalized weighting factor in the rest of

this chapter.

Formally speaking, given a sample from class i that contains ni samples in total, we

propose to add a weighting factor (1 − β)/(1 − βni) to the loss function, with hyperpa-

rameter β ∈ [0, 1). The class-balanced (CB) loss can be written as:

CB(p, y) =
1

Eny

L(p, y) =
1 − β

1 − βny
L(p, y), (5.6)

where ny is the number of samples in the ground-truth class y. We visualize class-

balanced loss in Figure 5.3 as a function of ny for different β. Note that β = 0 corre-

sponds to no re-weighting and β → 1 corresponds to re-weighing by inverse class fre-

quency. The proposed novel concept of effective number of samples enables us to use a

hyperparameter β to smoothly adjust the class-balanced term between no re-weighting

and re-weighing by inverse class frequency.

The proposed class-balanced term is model-agnostic and loss-agnostic in the sense

that it is independent to the choice of loss function L and predicted class probabilities

p. To demonstrate the proposed class-balanced loss is generic, we show how to apply

class-balanced term to three commonly used loss functions: softmax cross-entropy loss,

sigmoid cross-entropy loss and focal loss.
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Figure 5.3: Visualization of the proposed class-balanced term (1 − β)/(1 − βny),
where ny is the number of samples in the ground-truth class. Both
axes are in log-scale. For a long-tailed dataset where major classes
have significantly more samples than minor classes, setting β prop-
erly re-balances the relative loss across classes and reduces the drastic
imbalance of re-weighing by inverse class frequency.

5.3.1 Class-Balanced Softmax Cross-Entropy Loss

Suppose the predicted output from the model for all classes are z = [z1, z2, . . . , zC]>,

where C is the total number of classes. The softmax function regards each class as

mutual exclusive and calculate the probability distribution over all classes as pi =

exp(zi)/
∑C

j=1 exp(z j),∀ i ∈ {1, 2, . . . ,C}. Given a sample with class label y, the soft-

max cross-entropy (CE) loss for this sample is written as:

CEsoftmax(z, y) = − log

 exp(zy)∑C
j=1 exp(z j)

 . (5.7)

Suppose class y has ny training samples, the class-balanced (CB) softmax cross-entropy

loss is:

CBsoftmax(z, y) = −
1 − β

1 − βny
log

 exp(zy)∑C
j=1 exp(z j)

 . (5.8)
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5.3.2 Class-Balanced Sigmoid Cross-Entropy Loss

Different from softmax, class-probabilities calculated by sigmoid function assume each

class is independent and not mutually exclusive. When using sigmoid function, we re-

gard multi-class visual recognition as multiple binary classification tasks, where each

output node of the network is performing a one-vs-all classification to predict the prob-

ability of the target class over the rest of classes. Compared with softmax, sigmoid

presumably has two advantages for real-world datasets: (1) Sigmoid doesn’t assume the

mutual exclusiveness among classes, which aligns well with real-world data, where a

few classes might be very similar to each other, especially in the case of large number

of fine-grained classes. (2) Since each class is considered independent and has its own

predictor, sigmoid unifies single-label classification with multi-label prediction. This is

a nice property to have since real-world data often has more than one semantic label.

Using same notations as softmax cross-entropy, for simplicity, we define zt
i as:

zt
i =


zi, if i = y.

−zi, otherwise.
(5.9)

Then the sigmoid cross-entropy (CE) loss can be written as:

CEsigmoid(z, y) = −

C∑
i=1

log
(
sigmoid(zt

i)
)

= −

C∑
i=1

log
(

1
1 + exp(−zt

i)

)
.

(5.10)

The class-balanced (CB) sigmoid cross-entropy loss is:

CBsigmoid(z, y) = −
1 − β

1 − βny

C∑
i=1

log
(

1
1 + exp(−zt

i)

)
. (5.11)

84



5.3.3 Class-Balanced Focal Loss

The recently proposed focal loss (FL) [106] adds a modulating factor to the sigmoid

cross-entropy loss to reduce the relative loss for well-classified samples and focus on

difficult samples. Denote pt
i = sigmoid(zt

i) = 1/(1 + exp(−zt
i)), the focal loss can be

written as:

FL(z, y) = −

C∑
i=1

(1 − pt
i)
γ log(pt

i). (5.12)

The class-balanced (CB) focal loss is:

CBfocal(z, y) = −
1 − β

1 − βny

C∑
i=1

(1 − pt
i)
γ log(pt

i). (5.13)

The original focal loss has an α-balanced variant. The class-balanced focal loss is

same as α-balanced focal loss when αt = (1−β)/(1−βny). Therefore, the class-balanced

term can be viewed as an explicit way to set αt in focal loss based on the effective

number of samples.

5.4 Experiments

The proposed class-balanced losses are evaluated on artificially created long-tailed CI-

FAR [98] datasets with controllable degrees of data imbalance and real-world long-tailed

datasets iNaturalist [160]. To demonstrate our loss is generic for visual recognition, we

also present experiments on ImageNet data (ILSVRC 2012 [140]). We use deep residual

networks (ResNet) [66] with various depths and train all networks from scratch.
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5.4.1 Datasets

Long-Tailed CIFAR. To analyze the proposed class-balanced loss, long-tailed versions

of CIFAR [98] are created by reducing the number of training samples per class accord-

ing to an exponential function n = niµ
i, where i is the class index (0-indexed), ni is the

original number of training images and µ ∈ (0, 1). The test set remains unchanged. We

define the imbalance factor of a dataset as the number of training samples in the largest

class divided by the smallest. Figure 5.4 shows number of training images per class

on long-tailed CIFAR-100 with imbalance factors ranging from 10 to 200. We conduct

experiments on long-tailed CIFAR-10 and CIFAR-100.

iNaturalist. The recently introduced iNaturalist species classification and detection

dataset [160] is a real-world long-tailed dataset containing 579,184 training images from

5,089 classes in its 2017 version and 437,513 training images from 8,142 classes in its

2018 version 2. We use the official training and validation splits in our experiments.

ImageNet. We use the ILSVRC 2012 [140] split containing 1,281,167 training and

50,000 validation images.

Table 5.1 summarizes all datasets used in our experiments along with their imbalance

factors.

5.4.2 Implementation

Training with sigmoid-based losses. Conventional training scheme of deep networks

initializes the last linear classification layer with bias b = 0. As pointed out by Lin et

al. [106], this could cause instability of training when using sigmoid function to get

2https://github.com/visipedia/inat_comp
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Figure 5.4: Number of training samples per class in artificially created long-tailed
CIFAR-100 datasets with different imbalance factors.

Dataset Name # Classes Imbalance
Long-Tailed CIFAR-10 10 10.00 - 200.00
Long-Tailed CIFAR-100 100 10.00 - 200.00
iNaturalist 2017 5,089 435.44
iNaturalist 2018 8,142 500.00
ILSVRC 2012 1,000 1.78

Table 5.1: Datasets that are used to evaluate the effectiveness of class-balanced
loss. We created 5 long-tailed versions of both CIFAR-10 and CIFAR-
100 with imbalance factors of 10, 20, 50, 100 and 200 respectively.

class probabilities. This is because using b = 0 with sigmoid function in the last layer

induces huge loss at the beginning of the training as the output probability for each class

is close to 0.5. Therefore, for training with sigmoid cross-entropy loss and focal loss,

we assume the class prior is π = 1/C for each class, where C is the number of classes,

and initialize the bias of the last layer as b = − log ((1 − π) /π). In addition, we remove

the `2-regularization (weight decay) for the bias b of the last layer.

We used Tensorflow [1] to implement and train all the models by stochastic gradient

descent with momentum. We trained residual networks with 32 layers (ResNet-32) to

conduct all experiments on CIFAR. Similar to Zagoruyko et al. [185], we noticed a dis-
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turbing effect in training ResNets on CIFAR that both loss and validation error gradually

went up after the learning rate drop, especially in the case of high data imbalance. We

found that setting learning rate decay to 0.01 instead of 0.1 solved the problem. Models

on CIFAR were trained with batch size of 128 on a single NVIDIA Titan X GPU for 200

epochs. The initial learning rate was set to 0.1, which was then decayed by 0.01 at 160

epochs and again at 180 epochs. We also used linear warm-up of learning rate [62] in

the first 5 epochs. On iNaturalist and ILSVRC 2012 data, we followed the same training

strategy used by Goyal et al. [62] and trained residual networks with batch size of 1024

on a single Cloud TPU. Since the scale of focal loss is smaller than softmax and sigmoid

cross-entropy loss, when training with focal loss, we used 2× and 4× larger learning rate

on ILSVRC 2012 and iNaturalist respectively. Code, data and pre-trained models are

available at: https://github.com/richardaecn/class-balanced-loss.

5.4.3 Visual Recognition on Long-Tailed CIFAR

We conduct extensive studies on long-tailed CIFAR datasets with various imbalance

factors. Table 5.2 shows the performance of ResNet-32 in terms of classification error

rate on the test set. We present results of using softmax cross-entropy loss, sigmoid

cross-entroy loss, focal loss with different γ, and the proposed class-balanced loss with

best hyperparameters chosen via cross-validation. The search space of hyperparameters

is {softmax, sigmoid, focal} for loss type, β ∈ {0.9, 0.99, 0.999, 0.9999} (Section 5.3),

and γ ∈ {0.5, 1.0, 2.0} for focal loss [106].

From results in Table 5.2, we have the following observations: (1) With properly

selected hyperparameters, class-balanced loss is able to significantly improve the per-

formance of commonly used loss functions on long-tailed datasets. (2) Softmax cross-
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entropy is overwelmingly used as the loss function for visual recognition tasks. How-

ever, following the training strategy in Section 5.4.2, sigmoid cross-entropy and focal

loss are able to outperform softmax cross-entropy in most cases. (3) The best β is 0.9999

on CIFAR-10 unanimously. But on CIFAR-100, datasets with different imbalance fac-

tors tend to have different and smaller optimal β.

To understand the role of β and class-balanced loss better, we use the long-tailed

dataset with imbalance factor of 50 as an example to show the error rate of the model

when trained with and without the class-balanced term in Figure 5.5. Interestingly, for

CIFAR-10, class-balanced term always improves the performance of the original loss

and more performance gain can be obtained with larger β. However, on CIFAR-100,

only small values of β improve the performance, whereas larger values degrade the

performance. Figure 5.6 illustrates the effective number of samples under different β.

On CIFAR-10, when re-weighting based on β = 0.9999, the effective number of samples

is close to the number of samples. This means the best re-weighting strategy on CIFAR-

10 is similar with re-weighting by inverse class frequency. On CIFAR-100, the poor

performance of using larger β suggests that re-weighting by inverse class frequency is

not a wise choice. Instead, we need to use a smaller β that has smoother weights across

classes. This is reasonable because β = (N − 1)/N, so larger β means larger N. As

discussed in Section 5.2, N can be interpreted as the number of unique prototypes. A

fine-grained dataset should have a smaller N compared with a coarse-grained one. For

example, the number of unique prototypes of a specific bird species should be smaller

than the number of unique prototypes of a generic bird class. Since classes in CIFAR-

100 are more fine-grained than CIFAR-10, CIFAR-100 should have smaller N compared

with CIFAR-10. This explains our observations on the effect of β.
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Figure 5.5: Classification error rate when trained with and without the class-
balanced term. On CIFAR-10, class-balanced loss yields consistent
improvement across different β and the larger the β is, the larger the
improvement is. On CIFAR-100, β = 0.99 or β = 0.999 improves the
original loss, whereas a larger β hurts the performance.

5.4.4 Visual Recognition on Large-Scale Datasets

To demonstrate the proposed class-balanced loss can be used on large-scale real-world

datasets, we present results of training ResNets with different depths on iNaturalist 2017,

iNaturalist 2018 and ILSVRC 2012.

Table 5.3 summarizes the top-1 and top-5 error rate on the validation set of all

datasets. We use the class-balanced focal loss since it has more flexibility and find
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Figure 5.6: Effective number of samples with different β on long-tailed CIFAR-10
and CIFAR-100 with the imbalance of 50. This is a semi-log plot with
vertical axis in log-scale. When β → 1, effective number of samples
is same as number of samples. When β is small, effective number of
samples are similar across all classes.

β = 0.999 and γ = 0.5 yield reasonably good performance on all datasets. From results

we can see that we are able to outperform commonly used softmax cross-entropy loss

on ILSVRC 2012, and by large margins on iNaturalist. Notably, ResNet-50 is able to

achieve comparable performance with ResNet-152 on iNaturalist and ResNet-101 on

ILSVRC 2012 when using class-balanced focal loss to replace softmax cross-entropy

loss. Training curves on ILSVRC 2012 and iNaturalist 2018 are shown in Figure 5.7.

Class-balanced focal loss starts to show its advantage after 60 epochs of training.
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Figure 5.7: Training curves of ResNet-50 on ILSVRC 2012 (upper) and iNatural-
ist 2018 (lower). Class-balanced focal loss with β = 0.999 and γ = 0.5
outperforms softmax cross-entropy after 60 epochs.

5.5 Conclusion

In this chapter, we have presented a theoretically sounded framework to address the

problem of long-tailed distribution of training data. The key idea is to take data overlap

into consideration to help quantify the effective number of samples. Following this

framework, we further propose a class-balanced loss to re-weight loss inversely with

the effective number of samples per class. Extensive studies on artificially induced long-

tailed CIFAR datasets have been conducted to understand and analyze the proposed loss.

The benefit of the class-balanced loss has been verified by experiments on both CIFAR

and large-scale datasets including iNaturalist and ImageNet.

Our proposed framework provides a non-parametric means of quantifying data over-

lap, as we don’t make any assumptions about data distribution. This makes our loss

generally applicable to a wide range of existing models and loss functions. Intuitively,

a better estimation of the effective number of samples could be obtained if we know

the data distribution. In the future, we plan to extend our framework by incorporating

assumptions on the data distribution or designing learning-based, adaptive methods.
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CHAPTER 6

MEASURING DATASET GRANULARITY

Recent advances in deep learning [59] have fueled tremendous progress in visual

recognition [99, 66]. However, fine-grained recognition on real-world data still re-

mains challenging [160]. Fine-grained recognition is often regarded as a sub-field of

object recognition that aims to distinguish subordinate categories within entry-level cat-

egories. Examples include recognizing natural categories such as species of birds [167]

and breeds of dogs [89]; or man-made categories such as fashion attributes [111] and car

make & model [95]. There are also recent efforts focusing on fine-grained recognition

in data collected from the real-world that are highly imbalanced [116, 29]. Despite the

increasing visibility of fine-grained recognition as a sub-field, it has thus far lacked a

precise definition.

Given the scope and the vagueness of the problem, it is unrealistic to expect an ex-

plicit definition of fine-grained that is universally applicable to a wide-range of scenar-

ios. Therefore, in this chapter, we instead pursue a framework for quantitatively measur-

ing dataset granularity, wherein high granularity means fine-grained and low granularity

means coarse-grained. The notion of dataset granularity only applies when the dataset

is labeled. For unlabeled data, in extreme cases, we could label all samples in the whole

dataset as a generic class, or label each sample as an instance-level class. Other than

the data samples and their labels, we argue that dataset granularity should also depend

on the distance function we choose. The distance function tells us how to represent

the data samples and calculate distances between them. Examples of distance functions

include Euclidean distance between features extracted from deep networks, Hamming

distance between binary encoding of attributes, etc. The granularity of a dataset will be

different if we change how we represent samples and calculate their distances. This is
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aligned with the notion of fine-grained in human perception. Two visually similar bird

species are difficult to distinguish for ordinary people but easy for bird experts [159].

People with congenital amusia have difficulty processing fine-grained pitch in music and

speech [155]. In this respect, using different distance functions on a dataset is analogous

to different levels of domain expertise.

We define a dataset granularity measure as a function that maps a labeled dataset

and a distance function to a real number indicating the dataset granularity. Considering

there might be multiple reasonable measures, we seek a set of broad, intuitive notions

for which we have a consensus on what a dataset granularity measure should capture.

Inspired by the seminal work of Kleinberg [90] and Ben-David and Ackerman [11] on

clustering theory, we propose an axiomatic framework comprising three desired prop-

erties for a dataset granularity measure: scale invariance, isomorphism invariance, and

granularity consistency. Then, we show these properties are self-consistent by providing

a few examples of dataset granularity measures.

To assess the quality of dataset granularity measures, we use simulated data and

datasets with hierarchical labels. We assume every time when we merge subordinate

classes into a higher-level super-class, the granularity should be strictly smaller. We

use this information as an oracle to empirically evaluate and select the best dataset

granularity measure for the rest of our experiments. With the selected measure, we

investigate the interplay between dataset granularity and a variety of factors on com-

monly used datasets. We find it is more difficult to learn on more fine-grained datasets

with higher granularities. In addition, dataset granularity correlates well with transfer

learning performance, indicating deep features are more difficult to generalize to fine-

grained datasets with higher granularities. We also perform robustness studies and find

that dataset granularity is relatively insensitive to changes in network architecture, but
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Figure 6.1: Using our measure of dataset granularity, we show two subsets from
CUB-200 with 10 classes that are fine-grained (CUB-200-Bitter) and
coarse-grained (CUB-200-Sweet). CIFAR-10, which is widely con-
sidered coarse-grained, is more fine-grained than CUB-200-Sweet.
We represent a class by a randomly selected image from that class
in this figure.

sensitive to the choice of pre-trained data. Dataset granularity is also sensitive to nui-

sance factors arising during image acquisition, including noise and reduced resolution.

As a consequence of our study, we show that certain datasets that are widely consid-

ered fine-grained in fact have lower granularity than other datasets generally considered

coarse-grained. Figure 6.1 shows that based on our proposed dataset granularity mea-

sure, a subset from CUB-200 [167] has much lower granularity than CIFAR-10 [98].

Our key contributions can be summarized as follows: (1) We propose a theoreti-

cal framework to measure dataset granularity that defines what are the properties that a

dataset granularity measure should have. (2) We provide examples of dataset granularity

measures and evaluate their quality with hierarchical labeled datasets. (3) We perform a

comprehensive empirical study on the characteristics of dataset granularity and their re-

lationship to learning difficulty, generalization and robustness to nuisance factors. Based

on our observations, the proposed granularity measure can be used to indicate learning

difficulty and transfer learning performance. It can be also used for dataset analysis
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to find “sweet” and “bitter” subsets with drastically different granularities as shown in

Figure 6.1.

6.1 Related Work

Learning from Fine-Grained Visual Data. Recent work on learning from fine-

grained visual data focus on designing a deep network in an end-to-end fashion that

incorporates modules for better capturing subtle visual differences. Examples of such

modules include non-linear feature interactions [110, 49, 33] and attention mecha-

nisms [78, 174, 47, 191, 149]. More recently, efforts have been made to understand

the characteristics of learning from fine-grained visual data. Some observations in-

clude: (1) deep networks for fine-grained recognition benefit from higher input image

resolution [78, 110, 30]; (2) transfer learning to domain-specific fine-grained datasets

benefits from networks pre-trained on an adaptively selected subset from the source do-

main [54, 30, 121]; (3) ImageNet pre-training appears to have only marginal benefits for

fine-grained datasets when their labels are not well-represented in ImageNet [93]; (4)

Low-shot learning is more difficult on fine-grained dataset, where the dataset granularity

is empirically measured by the mean Euclidean distance between class centroids [94].

Our work differs from them by focusing on how to measure dataset granularity and then

performing extensive quantitative studies using the proposed measure.

Clustering Theory and Evaluation. The notion of clustering arises naturally when-

ever one aims to group similar objects together. Despite this intuitively compelling

goal, a unified theoretical framework for clustering is difficult to find [90]. However,

it is relatively easy to construct a theoretical framework for clustering quality mea-

sures [11]. Commonly used metrics for clustering quality evaluation can be divided

into two groups: supervised and unsupervised. Supervised clustering measures includ-
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ing Normalized Mutual Information (NMI), the Rand index [74], the V-measure [137]

and the Fowlkes-Mallows index (FMI) [45] compare the clustering assignment against

ground-truth labels. Unsupervised clustering measures [138, 20, 35, 8, 75] evaluate

the intrinsic quality of clustering results. In this chapter, build upon seminal work in

[90, 11], we regard a labeled dataset as a clustering assignment and develop a theoret-

ical framework that defines desired properties for a dataset granularity measure. Note

that some commonly used unsupervised clustering measures, including the Silhouette

index [138], the Calinski-Harabaz index [20] and the Davies-Bouldin index [35], do

not satisfy our desired properties. Please refer to Desgraupes [38] for a comprehensive

review of clustering evaluation metrics.

6.2 Measuring Dataset Granularity

In this section, we develop an axiomatic framework for measuring dataset granularity.

First, we give the problem formulation and mathematical notations. Then we define

dataset granularity measure and present three properties as axioms that a dataset gran-

ularity measure ought to satisfy. Finally, we show the proposed properties are self-

consistent and provide a few examples of dataset granularity measure.

6.2.1 Problem Formulation and Notations

We denote a labeled dataset as S = (X,Y), where X = {xi}
n
i=1 is a set of samples and

Y = {yi ∈ {1, 2, . . . , k}}ni=1 is a set of corresponding labels 1. n denotes the number of

samples and k is the number of classes. The set of labels Y divides samples X into k

1We assume there is exactly one ground-truth label for a sample.
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classes C = {C1,C2, . . . ,Ck}, where Ci = {x j | y j = i, x j ∈ X, y j ∈ Y}, Ci ∩ C j = ∅ for

i , j and ∪k
i=1Ci = X.

A distance function d : X × X 7→ R defines the similarity between two samples,

such that ∀ xi, x j ∈ X, d(xi, x j) ≥ 0, d(xi, x j) = d(x j, xi) and d(xi, x j) = 0 if and only

if xi = x j. Note that we do not require distance functions to be the metrics satisfying

the triangle inequality. In our experiments, we use distance functions as the Euclidean

distance between features extracted from deep networks pre-trained on different data.

We define a dataset granularity measure as a function g : S× d 7→ R that maps a la-

beled dataset and a distance function to a real number indicating the dataset granularity.

Larger number of g(S, d) means finer granularity.

6.2.2 Properties of Dataset Granularity Measures

We propose a set of three desired properties as axioms that a dataset granularity measure

ought to satisfy. The idea is to characterize what a dataset granularity measure should

look like and prevent trivial measures.

The first property we would like to have is the scale invariance with respect to the

distance function.

Definition 2 (Scale Invariance). For any distance function d and any α > 0, we have

g(S, d) = g(S, αd).

The scale invariance property requires the dataset granularity measure to be invariant

to changes in the units of distance function. This property can be easily satisfied by

normalizing the feature vector before calculating distance (e.g., `2-normalization for

Euclidean distance).
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Another nice property is that a dataset granularity measure should remain the same

when we permute the class indexes. Formally speaking, we define S′ = (X′,Y′) as

an isomorphic transformation of S = (X,Y) if X′ = X and Y′ = {σ(yi)}ni=1, where

Y = {yi ∈ {1, 2, . . . , k}}ni=1 and σ(.) is a permutation of {1, 2, . . . , k}. We require the

measure to be invariant to any isomorphic transformations.

Definition 3 (Isomorphism Invariance). Suppose dataset S′ is a isomorphic transforma-

tion of dataset S. For any S′, g(S′, d) = g(S, d).

Other than the above two invariance properties, we also want to have a property that

captures the concept of making a dataset less fine-grained. Intuitively, a labeled dataset

is fine-grained if the distance between intra-class samples is relatively large compared

with the distance between inter-class samples. Therefore, if we reduce the intra-class

distances and enlarge the inter-class distances, the dataset should have smaller granular-

ity. This could be done by using a distance function that better represents the data and

makes samples well clustered.

Formally, we define d′ as a granularity consistent transformation of d if ∀ xi, x j ∈ X

in the same class of C, we have d′(xi, x j) ≤ d(xi, x j); and ∀ xi, x j ∈ X in different classes

of C, we have d′(xi, x j) ≥ d(xi, x j).

Definition 4 (Granularity Consistency). Suppose distance function d′ is a granularity

consistent transformation of distance function d. For any d′, g(S, d′) ≤ g(S, d).

The definition of granularity consistency is inspired by the consistency property pro-

posed in Kleinberg [90] and Ben-David and Ackerman [11]. Figure 6.2 illustrates the

isomorphic transformation, under which the granularity should remain unchanged, and

the granularity consistent transformation, under which the granularity should be smaller.
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(a) Isomorphic Transformation

(b) Granularity Consistent Transformation

Figure 6.2: Illustration of isomorphic transformation and granularity consistent
transformation on a dataset with 4 classes, denoted by 4 disks with
different sizes and colors. We show the original dataset S on the left
and the transformed dataset S′ on the right. In isomorphic transforma-
tion, we permute the class indexes. In granularity consistent transfor-
mation, we reduce the within-class distances and enlarge the between-
class distances.

6.2.3 Examples of Dataset Granularity Measures

To show that scale invariance, isomorphism invariance and granularity consistency are

self-consistent, we present examples of dataset granularity measures that satisfy all these

desired properties.

The Silhouette index [138] can be calculated as:

1
n

n∑
i=1

b(xi) − a(xi)
max

(
a(xi), b(xi)

) , (6.1)

where a(xi) = 1
|C|−1

∑
x∈C,x,xi

d(xi, x) is the mean intra-class distance between xi and other

samples in the same class C that xi belongs to, and b(xi) is the mean distance between

xi and samples from the nearest class that xi is not belonging to. Formally, b(xi) =
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minC′,C d(xi,C′), where d(xi,C′) = 1
|C′ |

∑
x∈C′ d(xi, x). The silhouette index of a dataset

is the mean of silhouette index for all samples in this dataset.

The silhouette index satisfies scale invariance and isomorphism invariance but fails

to satisfy granularity consistency. We present a revised version of the silhouette index

that satisfies all desired properties.

The Revised Silhouette index (RS). We define the revised silhouette index as the

ratio between the mean intra-class distance and the mean nearest-class distance:

RS(S, d) =
1
n

n∑
i=1

a(xi)
b(xi)

, (6.2)

where a(xi) and b(xi) are same as defined in the original silhouette index. RS can be

calculated in O(n2) time.

The Revised Silhouette with Medoids index (RSM). To make the computation

of RS faster, we use the medoid to represent each class. The revised silhouette with

medoids index is defined as:

RSM(S, d) =
1
n

n∑
i=1

d(xi, cxi)
d(xi, c′xi

)
, (6.3)

where cxi is the medoid of the ground-truth class of xi and c′xi
is the medoid of the

nearest class other than the ground-truth class of xi (i.e., c′xi
= arg minc,c,cxi

d(c, xi), c is

the medoid of a class). RSM can be calculated in O(nk) time, where k is the number of

classes.

The Ranking index (Rank). Inspired by the Precision-Recall curve and mean Av-

erage Precision used in information retrieval, we define the ranking index as:

Rank(S, d) =
1
n

n∑
i=1

n
n − 1

(
1 −

|Ri |∑
j=1

j
Ri j

)
, (6.4)

where Ri is the list of ranks for samples in the same class of xi, sorted by their distance

between xi. Specifically,
∑|Ri |

j=1
j

Ri j
is the Average Precision (i.e., the area under Precision-
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Recall curve) used in information retrieval. We add a term n
n−1 to make sure the range of

Rank(S, d) ∈ [0, 1]. Rank can be calculated in O(n2 log n) time.

The Ranking with Medoids index (RankM). Similar to the case of RSM, we use

the medoid to present each class for faster computation of Rank index. The ranking with

medoids index is defined as:

RankM(S, d) =
1
n

n∑
i=1

k
k − 1

(
1 −

1
Ric

)
, (6.5)

where Ric is the rank of the xi’s class medoid among all class medoids and k is the

number of classes. We add a term k
k−1 to make sure the range of RankM(S, d) ∈ [0, 1].

RankM can be calculated in O(nk log k) time.

Proposition 2. Dataset granularity measures RS, RSM, Rank and RankM satisfy scale

invariance, isomorphism invariance and granularity consistency.

Proof. The proof is given in supplementary material. �

Instead of the aforementioned measures, there exists other measures that satisfy all

desired properties, including the Baker-Hubert Gamma index (BHG) [8, 60] for rank

correlation between two vectors and the C index [75] for clustering quality assessment.

However, the calculations of BHG and the C index have much higher time complexity

(O(n4) for BHG and O(n3) for the C index) and thus are not scalable on large datasets.

For a more comprehensive analysis of other potential dataset granularity measures and

proofs showing that they satisfy our proposed properties, please refer to the supplemen-

tary material.
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6.3 Assessment of Granularity Measures

We perform experiments to assess the quality of dataset granularity measures RS, RSM,

Rank and RankM using simulated data and hierarchical labeled CIFAR-100.

6.3.1 Simulation

To better understand the characteristics of proposed granularity measures, we perform a

study using simulated datasets with 2 classes, each class has 1000 samples. Samples for

each class are drawn from a 2-dimensional multivariate normal distributions with unit

covariance matrix and different means in horizontal axis. Formally, X1 ∼ N(Σ, µ1) and

X2 ∼ N(Σ, µ2), where Σ =
( 1 0

0 1
)
, µ1 = (0, 0)> and µ2 = (m, 0)>. Figure 6.3 illustrates

the simulated datasets with different m. The larger the m is, the more separated the two

classes are.

We generate simulated datasets with variant m and calculate their granularity mea-

sure scores using Euclidean distance as the distance function. We repeat the this process

100 times and show the mean and standard deviation in Figure 6.4. From the figure we

can observe that the variance of the scores are small and in general, granularity mea-

sures RS, RSM, Rank and RankM are all able to a give lower score when two classes

are further separated.

6.3.2 Hierarchical Labeled Dataset

We evaluate the quality of granularity measure in the context of fine-grained class dis-

covery. Consider a dataset S annotated with coarse-grained labels and a distance func-
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Figure 6.3: Examples of simulated datasets of 2 classes. Samples from each class
are draw from a 2-dimensional multivariate normal distributions with
unit covariance matrix. m denotes the distance between the means of
two classes.
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Figure 6.4: Dataset granularity measures RS, RSM, Rank and RankM on simu-
lated dataset with variant m. The solid line denotes mean and the
shaded region represents standard deviation.

tion d as the Euclidean distance between features extracted from a deep network, when

we re-label samples from a coase-grained class with fine-grained sub-classes, the gran-

ularity g(S, d) should be higher. We build the oracle of relative dataset granularity based

on such information and use it to evaluate granularity measures.

We use CIFAR-100 dataset [98] with 20 coarse-grained classes, each containing 5

106



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of coarse-grained classes re-labeled to fine-grained

0.0

0.2

0.4

0.6

0.8

1.0

Gr
an

ul
ar

ity

RS
RSM

Rank
RankM

Figure 6.5: Dataset granularity measures RS, RSM, Rank and RankM on CIFAR-
100 dataset with increasing number of coarse-grained classes re-
labeled to fine-grained. The solid line denotes mean and the shaded
region represents standard deviation.

fine-grained classes. We train a ResNet-20 [66] using labels of 20 coarse-grained classes

on the CIFAR-100 training set and then extract features on the test set. When calculating

granularity scores, we gradually re-label each coarse-grained class until all 20 coarse-

grained classes are re-labeled into 100 fine-grained classes. To capture the randomness

when deciding the order of coarse-grained class re-labeling, we shuffle the re-labeling

order and repeat the experiments 100 times. Figure 6.5 shows the granularity score

on CIFAR-100 in terms of how many coarse-grained classes are re-labeled into fine-

grained ones. We find scores from all granularity measures are monotonic increasing,

consistent with the oracle. Based on results in Figure 6.4 and Figure 6.5, RankM has a

smoother change of granularity scores and relatively low computational time complexity

compared with others. Therefore, we choose to use the Ranking with Medoids index

(RankM) as the dataset granularity measure. Unless otherwise stated, we use the term

“granularity” of a dataset S and a distance function d to refer to RankM(S, d) in the rest

of this chapter.
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6.4 Experiments

In this section, we first introduce the datasets and network architectures we used in

Section 6.4.1. Then, we discuss the choice of distance function based on pre-trained

deep networks in Section 6.4.2.

With a measure of dataset granularity in hand, we can proceed to investigate its

interplay with a variety of factors on a range of real-world datasets, including learning

difficulty in Section 6.4.3, transferability in Section 6.4.4 and nuisance factors during

image capturing in Section 6.4.5.

6.4.1 Experiment Setup

We perform experiments on 9 datasets (Oxford Flowers-102 [123], CUB200-

2011 Birds [167], FGVC Aircraft [118], Stanford Cars [95], Stanford Dogs [89],

NABirds [159], Food-101 [15], CIFAR-10 and CIFAR-100 [98]) using distance function

as the Euclidean distance between features extracted from deep networks. Dataset gran-

ularity is calculated using features in the test set. Following the convention, on CIFAR,

we use a ResNet-20 trained from scratch on the training set; on the rest of 7 datasets, we

use a deep networks pre-trained on large-scale datasets including iNaturalist-2017 [160],

ImageNet [36, 140] and ImageNet + iNaturalist, which is the combined dataset of Ima-

geNet and iNaturalist-2017 with 6,089 classes [30]. Table 6.1 summarizes the number

of classes, together with number of samples in the training and test splits for all datasets

we used.
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Dataset # class # train / test
Oxford Flowers-102 [123] 102 2,040 / 6,149
CUB200-2011 Birds [167] 200 5,994 / 5,794
FGVC Aircraft [118] 100 6,667 / 3,333
Stanford Cars [95] 196 8,144 / 8,041
Stanford Dogs [89] 120 12,000 / 8,580
NABirds [159] 555 23,929 / 24,633
CIFAR-10 [98] 10 50,000 / 10,000
CIFAR-100 [98] 100 50,000 / 10,000
Food-101 [15] 101 75,750 / 25,250
iNaturalist-2017 [160] 5,089 579,184 / 95,986
ImageNet [36, 140] 1,000 1,281,167 / 50,000
ImageNet + iNaturalist 6,089 1,860,351 / 145,986

Table 6.1: Datasets used in measuring dataset granularity, where iNaturalist-2017
ImageNet and ImageNet + iNaturalist are used to pre-train models for
feature extraction.

6.4.2 On the Choice of Distance Function

We calculate distance between samples based on features extracted from a deep net-

work. To understand how sensitive the dataset granularity is in terms of the different

choices of distance functions, we perform experiments using deep networks with differ-

ent architectures pre-trained on ImageNet, including ResNet [66], DenseNet [73] and

Inception-V3 [152].

From results in Figure 6.6, we observe that dataset granularity is not very sensitive

to the choices of network architecture. In general, using DenseNets yields lower gran-

ularity compared with using ResNets and Inception-V3. Choosing different network

architecture doesn’t change the relative order of dataset granularity. However, dataset

granularity is sensitive to the choice of pre-trained data. Using a network pre-trained on

different data could drastically change the granularity. For more details on the granular-

ity in terms of pre-trained data, please refer to Section 6.4.4 and Figure 6.10.
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Figure 6.6: Dataset granularity using features extracted from different networks
pre-trained on ImageNet.

6.4.3 Granularity versus Learning Difficulty

Intuitively, learning on fine-grained data is more difficult compared with coarse-grained

data. To quantitatively understand the relationship between learning difficulty and gran-

ularity, we use the training error rate of a linear logistic regression model (LR) trained

with deep features as an estimate of training difficulty.

We conduct comprehensive experiments on CIFAR. Specifically, we train a ResNet-

20 from scratch on the training set. We then extract features on the test set and use them

to train a LR and measure granularity and the training error rate. Figure 6.7 presents

results on CIFAR datasets, including CIFAR-10 and CIFAR-100 with variant number

of coarse-grained classes re-labeled as fine-grained. Further more, we examine the case

of binary classification by forming a dataset with two specific classes for each pair of

classes in CIFAR-10 and CIFAR-100, results are shown in Figure 6.8. We observe

that dataset granularity is highly correlated with learning difficulty. In addition, we

find that machine’s perception of granularity makes sense to human: (“cat”, “dog”),
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Figure 6.7: Dataset granularity correlates well with difficulty (training error rate
using linear logistic regression). The purple square marker represents
CIFAR-10 dataset. Other markers represent the CIFAR-100 with dif-
ferent number of classes (by re-labeling coarse-grained classes with
fine-grained), where the purple triangle and the red diamond denote
CIFAR-100 with 20 and 100 coarse-grained labels respectively.

(“otter”, “seal”) and (“boy”, “girl”) are the most fine-grained pairs of classes and are

also relatively difficult to differentiate for human.

Qualitatively, we show t-SNE embeddings [114] of subsets with drastically different

granularities from CIFAR-10 and CIFAR-100 in Figure 6.9. Classes with low granular-

ity are well separated, whereas classes with high granularity are mixed together.

Other than linear logistic regression, we also tried to use the training error rate of

deep networks to indicate the learning difficulty. However, we find deep networks tend

to have close to 0 training error rate on all datasets. As pointed out by Zhang et al. [186],

deep network can easily fit a training set, especially when the number of parameters

exceeds the number of data points as it usually does in practice. In such scenario, if

we want to measure the learning difficulty of a deep network, we need to seek for other

metrics such as the intrinsic dimension [104] of the network.
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Figure 6.8: Training difficulty versus granularity on all pairs of classes from CI-
FAR. The number in the bracket denotes the Pearson’s ρ correlation
coefficient.

6.4.4 Granularity versus Transferability

Transferring features learned from large-scale datasets to small-scale datasets has been

extensively used in our field. To examine the relationship between dataset granularity

and feature transferability, we train Inception-V3 networks from scratch on 3 large-scale

datasets: ImageNet, iNaturalist-2017 and ImageNet + iNaturalist respectively. Then,

we transfer the learned features to 7 datasets. Specifically, for each dataset, we extract

features from pre-trained Inception-V3. Then we train a linear logistic regression model

using training set features. We evaluate the performance of transfer learning by the error

rate on the test set. The dataset granularity is calculated based on test set features.

From results in Figure 6.10, we have the following observations: (1) In general,

dataset granularity correlates well with transfer learning performance (with Pearson’s

ρ = 0.980). Therefore, transferring features to a dataset with lower granularity is easier.

And on the contrary, transferring to a dataset with higher granularity is harder. Dataset
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Figure 6.9: t-SNE embedding of subsets from CIFAR-10 and CIFAR-100. The
granularity is shown in the bracket.

granularity could be used as an indicator for the transfer learning performance. (2) The

choice of pre-trained data has a huge effective on the dataset granularity. For example,

the granularity of Stanford-Dogs is about 8× lower when using ImageNet pre-trained

features instead of iNaturalist-2017; however, the granularity of NABirds is about 5×

lower when using iNaturalist-2017 pre-trained features instead of ImageNet. This is

illustrated qualitatively by t-SNE embeddings in Figure 6.11. A key to make a dataset

less fine-grained is to use better features extracted from a network pre-trained on more

appropriate data. This has beed verified by recent work on domain-specific adaptive

transfer learning [54, 30, 121]
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Figure 6.10: Transfer learning performance and granularity on 7 datasets. Each
dataset is represented by markers with the same color. We use
markers with different shapes to represent pre-training on different
datasets.

6.4.5 Granularity versus Nuisance Factors

Ideally, to distinguish classes with subtle visual difference, one could zoom in and lever-

age information from local discriminative regions. However, nuisance factors such as

noise, motion blur, occlusion etc. arise during image acquisition in real-world. Fur-

thermore, due to physical constraints of imaging devices, one can not get sharp images

with arbitrary high spatial resolution. To examine how nuisance factors affects dataset

granularity, we add Gaussian noise and Salt & Pepper noise to images before feature

extraction. In addition, we reduce the image resolution by re-sizing the shorter edge

of the image and keeping the aspect ratio. Figure 6.12 shows dataset granularity on

CUB-200 using ImageNet pre-trained ResNet-50 features. Dataset granularity is very

sensitive to noise and reduced resolution. In addition, nuisance factors may change the

relative order of granularity. For example, NABirds becomes more fine-grained than
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(a) Stanford-Dogs - IN (0.049) (b) Stanford-Dogs - iNat (0.414)

(c) NABirds - IN (0.380) (d) NABirds - iNat (0.075)

Figure 6.11: t-SNE embeddings of first 20 classes from Stanford-Dogs and
NABirds, with ImageNet pre-training (IN) on the left and iNaturalist-
2017 (iNat) pre-training on the right. The granularity is shown in the
bracket.

Aircraft, Stanford Cars and Food-101 as we increasing the noise and reducing the image

resolution.

6.5 Conclusion

In this chapter, as a step toward a precise definition of fine-grained recognition, we

present an axiomatic framework based on clustering theory for measuring dataset gran-
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Figure 6.12: Dataset granularity of CUB-200 with respect to nuisance factors in-
cluding Gaussian noise, Salt & Pepper noise and reduced resolution.
The datasets become more fine-grained when we increase the level
of noise and reduce the image resolution.
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ularity. We define a dataset granularity measure as a function that maps a labeled dataset

and a distance function to a real number and then describe three desirable properties for

the measure: scale invariance, isomorphism invariance, and granularity consistency. We

then give four examples of granularity measures that satisfy all properties and choose the

Ranking with Medoids index (RankM) based on assessment on simulated data and a hi-

erarchical labeled CIFAR dataset. In our experiments, we show that dataset granularity

correlates well with learning difficulty and transfer learning performance. In addition,

dataset granularity is sensitive to the choice of pre-training data and nuisance factors,

but insensitive to the choice of network.

Future directions include: (1) defining other axiomatic properties for granularity

measures; (2) seeking more examples of granularity measures; (3) investigating the in-

terplay between dataset granularity and other factors including label noise, number of

samples or in different scenarios including low-shot learning and adversarial learning.
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CHAPTER 7

CONCLUSIONS

In this dissertation, we studied several key problems associated with learning from fine-

grained and long-tailed visual data. In particular, we focused on quantitatively modeling

such data and designing deep networks that learn from such data.

One of the biggest challenge in fine-grained recognition is that the data annotation

process often calls for specialized domain knowledge and thus is difficult to scale. The

success of recently introduced iNaturalist dataset [160] opens up a promising direction

to solve this issue. We feel that by collaborating with communities of domain experts,

large amounts of annotated data with high quality could be available for building fine-

grained visual recognition systems.

As the number of classes increase, how to deal with long-tailed data distribution and

recognize novel classes that are not seen during training will be long-lasting challenges.

We showed how to re-balance the loss during training based on the effective number of

samples. It would be interesting to explore how to combine re-balancing strategies with

few-shot or zero-shot learning for recognizing rare or unseen classes.

Another rather unexplored area is multi-modal learning. For example, two bird

species that are visually similar may live in different habitats geographically or gen-

erate different sounds. How to learn a joint representation from multi-modal data for

fine-grained recognition would be an intriguing direction.

118



BIBLIOGRAPHY

[1] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
Tensorflow: A system for large-scale machine learning. In OSDI, 2016.

[2] Dimitris Achlioptas, Frank McSherry, and Bernhard Schölkopf. Sampling tech-
niques for kernel methods. In Advances in neural information processing systems,
2002.

[3] Anelia Angelova and Shenghuo Zhu. Efficient object detection and segmentation
for fine-grained recognition. In CVPR, 2013.

[4] Anelia Angelova, Shenghuo Zhu, and Yuanqing Lin. Image segmentation for
large-scale subcategory flower recognition. In WACV, 2013.

[5] Lisa Anne Hendricks, Subhashini Venugopalan, Marcus Rohrbach, Raymond
Mooney, Kate Saenko, and Trevor Darrell. Deep compositional captioning: De-
scribing novel object categories without paired training data. In CVPR, 2016.

[6] Haim Avron, Huy Nguyen, and David Woodruff. Subspace embeddings for the
polynomial kernel. In Advances in neural information processing systems, 2014.

[7] Hossein Azizpour, Ali Sharif Razavian, Josephine Sullivan, Atsuto Maki, and
Stefan Carlsson. Factors of transferability for a generic convnet representation.
PAMI, 2016.

[8] Frank B Baker and Lawrence J Hubert. Measuring the power of hierarchical
cluster analysis. Journal of the American Statistical Association, 1975.

[9] Jianmin Bao, Dong Chen, Fang Wen, Houqiang Li, and Gang Hua. Cvae-gan:
Fine-grained image generation through asymmetric training. In ICCV, 2017.

[10] Sean Bell and Kavita Bala. Learning visual similarity for product design with
convolutional neural networks. ACM Trans. on Graphics, 2015.

[11] Shai Ben-David and Margareta Ackerman. Measures of clustering quality: A
working set of axioms for clustering. In Advances in neural information process-
ing systems, 2009.

[12] Samy Bengio. Sharing representations for long tail computer vision problems. In
ICMI, 2015.

119



[13] Thomas Berg and Peter N Belhumeur. Poof: Part-based one-vs.-one features for
fine-grained categorization, face verification, and attribute estimation. In CVPR,
2013.

[14] Mathieu Blondel, Masakazu Ishihata, Akinori Fujino, and Naonori Ueda. Poly-
nomial networks and factorization machines: New insights and efficient training
algorithms. In ICML, 2016.

[15] Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101–mining dis-
criminative components with random forests. In ECCV, 2014.

[16] S Branson, G Van Horn, P Perona, and S Belongie. Improved bird species recog-
nition using pose normalized deep convolutional nets. In BMVC, 2014.

[17] Steve Branson, Catherine Wah, Florian Schroff, Boris Babenko, Peter Welinder,
Pietro Perona, and Serge Belongie. Visual recognition with humans in the loop.
In ECCV, 2010.

[18] Mateusz Buda, Atsuto Maki, and Maciej A Mazurowski. A systematic study of
the class imbalance problem in convolutional neural networks. Neural Networks,
2018.

[19] Sijia Cai, Wangmeng Zuo, and Lei Zhang. Higher-order integration of hierar-
chical convolutional activations for fine-grained visual categorization. In ICCV,
2017.
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