The Computational Behaviour of
Girard’s Paradox

Douglas J. Howe

TR 87-820
March 1987

Department of Computer Science
Cornell University
Ithaca, NY 14853

OThis paper is to appear in The Proceedings of the Second Annual Symposium on Logic
in Computer Science, IEEE, 1987.

The Computational Behaviour of
Girard’s Paradox*

Douglas J. Howe
Department of Computer Science
Cornell University

Abstract

In their paper “Type” Is Not a Type, Meyer and Reinhold argued
that serious pathologies can result when a type of all types is added
to a programming language with dependent types. Central to their
argument is the claim that by following the proof of Girard’s paradox
it is possible to construct in their calculus A™" a term having a fixed-
point property. Because of the tremendous amount of formal detail
involved, they were unable to establish this claim. We have made
use of the Nuprl proof development system in constructing a formal
proof of Girard’s paradox and analysing the resulting term. We can
show that the term does not have the desired fixed-point property, but
does have a weaker form of it that is sufficient to establish some of the
results of Meyer and Reinhold. We believe that the method used here
is in itself of some interest, representing a new kind of application of
a computer to a problem in symbolic logic.

1 Introduction

For the purpose of studying the effect of the type-of-all-types assump-
tion on programminglanguages with dependent types, Meyer and Reinhold
defined AI) a polymorphically typed A-calculus with dependent types, and

*This work was supported, in part, by NSF grant no. MCS-81-04018.

A"", the calculus obtained from A by adding the axiom 7 € 7 (where 7 rep-
resents the type of all types). They asserted that by following the proof of
Girard’s paradox [4] they could construct in A\™" a polymorphic fixed-point
combinator

YellT:r (T —-T)—T
such that for any type T and any F € T — T

YTF = F(YTF).

They then showed that the existence of such a Y had some important
implications for A7":

¢ A non-normalizing term is derivable.
¢ Equality of terms is undecidable.

e A77 does not conservatively extend base-type theories, so that classical
reasoning about base-type objects is not valid in the programming
language formed by A" together with base-types.

However, they were not able to establish the existence of Y. It appears
that the problem may involve so much formal detail that a solution without
mechanical assistance is infeasible. A non-trivial proof must be carried out
in a formal system in which even the basic notions of logic need to be
encoded, and the behaviour under reduction of a very large term must be
characterized. (A printout, with no spaces, of the term constructed in our
effort is about 40 pages long.)

In [8], Reinhold considered an extension of A™™ that included the natural
numbers (together with a recursion combinator) and a dependent sum (or
sigma) type constructor. He outlined a proof that by following Martin-Lof’s
simplification of the proof of the paradox [6], it was possible to obtain in
the extension a term Y, of the proper type, such that there exist terms Y.
for n > 0 with Yy = Y and for all n

YoTF = F(Y,1 TF).

He called a term satisfying this property a looping combinator, and con-
jectured that an analogous construction in A™™ would give a fixed-point
combinator.

In this paper, we show that at least one particular proof of Girard’s
paradox yields a term which is a looping combinator and not a fixed-point
combinator. The computer plays an essential role in the argument. The
Nuprl proof development system [2] was used to deal with the vast amounts
of syntactic detail that an analysis of the computational behaviour of the
paradox seems to entail. It was straightforward (taking less than two days)
to formalize a proof of the paradox in a subset of the Nuprl type-theory
that is similar to A™", using the proof-development tools provided by the
system. We show how the proof that the resulting term is a looping but
not a fixed-point combinator can be reduced to the verification of a (small)
finite number of machine-checkable assertions about reduction. These veri-
fications were carried out using Nuprl’s term-manipulation facilities. What
we present, then, is not a complete proof, in that the argument depends on
the correctness of the Nuprl implementation. More specifically, we prove
that if the formal argument carried out in the system constitutes a valid
proof in the Nuprl type theory, and if the implementation of the program-
ming language ML [5] is correct insofar as it was used to perform certain
reduction sequences and to verify certain simple properties of some Nuprl
proofs, then the resulting term has the properties we claim.

Several features of Nuprl played an important role in the construction
of the term by allowing us to formalize the paradox at a high level of ab-
straction. Nuprl’s definition mechanism permits highly readable notations
for basic concepts. The tactic mechanism provides for the sound addition of
derived inference rules and for the construction of proof-finding programs.
Finally, the eztractor makes it possible to construct terms implicitly; one
can represent a mathematical proposition P by a Nuprl type T, construct
a proof which resembles a conventional proof of P, and then have the sys-
tem eztract from the proof a term ¢t € T that embodies the computational
content of the proposition. Because of these features, the formal proof we
constructed, although providing the construction of a massive term, bears
a strong resemblance to the conventional proof on which it is based.

Of course, the negative half of our result is based on one particular proof
of the paradox. Although it is possible that some other approach would give
a different result, it seems that the failure of the fixed-point property results
from the essential content of the paradox. It should be straightforward,
though, to apply our techniques to alternate proofs. If the fixed-point

property cannot be obtained, then the argument in (7] establishing the
failure of conservative extension for A™" is no longer valid. However, the
looping property is enough to prove both the undecidability of equality and
the existence of a non-normalizing term.

In Section 2 we present the variant of A™" that corresponds to the subset
of the Nuprl type theory we used. In Section 3, we discuss Girard’s paradox
and its formalization. In Section 4 we analyze the computational behaviour
‘of the resulting term. At end we make a few concluding remarks.

2 VT'T

In this section we present a polymorphic A-calculus 7" that has depen-
dent types and a type of all of types. It is a simple matter to check that the
actual Nuprl proof of Girard’s paradox that we constructed yields a proof
in ©77; it seems certain it also yields a proof in A”” but this has not been
verified. Details are contained in an appendix that we have omitted. The
chief difference between A\™™ and v"" is that A-abstractions in A”” contain
the type for the bound variable.

The set of terms of v is the smallest set containing an infinite set of
variables, the constant 7, a(b) whenever a and b are terms, and Az. B and
I z:A.B whenever z is a variable and A and B are terms. We will write
t(a/z] to denote the result of substituting a for z in ¢t. The rules of v™"
deal with sequents, of the form:

z1: Ay, .,z A, Fte T,

where the variables z; are all distinct, for each i the set of free variables of
A; is contained in {z;,...,2;_1}, and the set of free variables of t € T is
contained in {z;,...,z,}. We will call the portion of a sequent to the left of
the turnstile a context. The extension of a context .4 by an assumption z: 4
or by another context A’ will be denoted by A,z:4 and A, A’ respectively.
We will write ¢ — t' if ' can be obtained from ¢t by a sequence of f3-
reductions.

Following are the the rules of v"7. We omit an axiomatization of a
theory of equality.

7-formation AFTer

A-Aer A z:A-Ber
A-TNz:A.BeT

II-formation

AFAer A, z:A-beEB
AFXz.bcllz:A.B

A-intro

A fellz:A.B At ac 4
AF f(a) € Bla/z]

function-elim

assumption Ay z:A, A Fze A

A-teT A-Ter T - T
A-te T

reduction- 1

A, z: A A+-teT 4— A
Az A, AFHteT

reduction-2

3 Girard’s Paradox

Girard’s paradox is an adaptation by Girard [4] of the well-known
Burali-Forti paradox. The proof of the paradox that we use is somewhat
different from Girard’s.

Informally, the argument proceeds as follows. Define an ordering (a
type together with a transitive binary relation) to be well-founded if it has
no infinite descending chains of elements. If the collection of all types is
itself a type, then we can form the collection of all well-founded orderings.
We make this collection into an ordering using the relation of embedding,
and show that this ordering is well-founded. Any well-founded ordering can
be embedded in the collection, and so the collection is embedded in itself.
This gives an infinite descending chain, contradicting well-foundedness.

Formalizing this argument in v"" involves the propositions-as-types cor-
respondence, whereby a proposition is associated with a type of v"7 in such
a way that the members of the type correspond to constructive proofs of
the proposition. In this scheme, universal quantification corresponds to the
IT type; most of the other concepts of logic must be coded. Falsity is rep-
resented by the type Il t:7.¢; a member of this type would be a function

taking any type and producing a member of that type. A formalization
of the paradox in v™" yields a term that is a member of this type; the
outermost reduction sequence starting with this term does not terminate.

What was noticed by Meyer and Reinhold was that given a type T
and a function F € T — T, one could slightly modify the proof of the
paradox so that F would be inserted into the looping process that gives the
infinite reduction sequence. Using Nuprl 2], a computer system exploiting
the propositions-as-types correspondence, we took a (modified) proof of the
paradox, made formal definitions for the basic notions of logic and for the
other concepts involved, and then used the reasoning facilities of Nuprl to
construct a formal version of the informal argument. Nuprl is designed in
such a way that the system could then eztract from the formal derivation
the required term, which can be shown in v™" to have the type T. We then
analysed this term with the help of Nuprl’s symbolic computation facilities.
An important point here is that Nuprl made it possible to quickly construct,
in a natural way, a formal argument that looks very much like a detailed
version of the informal one and that produces, via extraction, the term to
be analysed. The complete Nuprl proof comprises eleven lemmas, with an
average of about ten steps per lemma. (An example of a step is given later.)

We now give a detailed version of the informal argument above, which
can be rather directly translated into Nuprl. We point out the two modi-
fications that are made to the proof of the paradox in order to obtain the
looping combinator. After presenting this detailed version, we will very
briefly discuss its translation into Nuprl. This translation into Nuprl is
sufficiently direct that the interested reader should be able to determine
the correspondence between the detailed argument below and the terms
discussed in the next section. We assume at the outset that we are given
a type T and a function F € T — T; in the Nuprl proof, the function and
its type are represented by variables, and it is assumed as an axiom that
F €T — T. Also taken as an axiom in the Nuprl proof is the 7 € =
assumption.

The definitions of embedding, U, and <y given below are variants of
those given by Coquand [3]. We will not present the (well-known) encodings
for logic; as an example, existential quantification is defined by

dJe€Ad.B=10C:7r.(lz:4.B— C)— C

where we use A — B to abbreviate [l : A. B when z does not occur free
in B.

An ordering is a type A together with propositional functions r € 4 —
A — Prop and d € A — Prop. (We use Prop and Type as synonyms
for 7.) r is to be understood as a relation over A, and d as a subset of
A. Typical names for orderings will be (4,r,d) and (B,s,e). We will
be somewhat sloppy about notation for function application, writing, e.g.,
f(z,y) for f(z)(y). We will also abbreviate by writing R for (4,r,d) and
S for (B,s,e€).

IffeA— Bandbe€ B, and

e(b)&Vz e A.d(z) = e(f(z))
&Vez,ycAd. d(z)=d(y)

= r(z,y) = s(f(2),f(v))
&Vzed dz)=s(f(z)b)

then we will say that (f,b) embeds R in S. We will say that the first
ordering is embedded in the second, and write R < 5, if such an f and b
exist. We will refer to f and b as the order-preserving map and the bound
of the embedding, respectively.

Define transitivity, trans(R), in the obvious way. R is well-founded if
there are no non-empty subsets P of A such that for every y in P there
is an z in P with r(z,y). We call such subsets chains. More formally,
P € A — Propis a chain in R if

JdJz e A. P(z) & d(z)
&VyeA.P(y)=3dzc A. P(z) &r(z,y).

Well-foundedness is defined by:
wf(R) = VP € A — Prop. (P chain in R — false).

The definition of wf(R) is the only one that needs to be changed in order
to obtain the looping combinator; we replace false by the assumed type T.

We now define Uord, the collection of all well-founded orderings. Define
the type U to be

(Il B: Type .(B — B — Prop)
— (B — Prop) — Prop) — Prop

and the injection i by i(R) = Az . z(R). U can be viewed as the collection
of all sets of sets of orderings, and i as the function which associates to
each ordering the set of all sets of orderings that contain it. The mapping
¢ is injective with respect to intensional equality, defined by

a=b=VYPecU— Prop. P(a) = P(b).

If i(R) = i(S) then we can prove that the two orderings have the same
properties. The ordering on U is defined by: u <y v iff there are R and
S such that u = i(R), v = i(§), and R < S. Finally, define: dy(u) iff
there is an R such that u = i(R), trans(R), and wf(R). We will refer to
the ordering (U, <y, dy) as Uord.

Our proof of the paradox consists of eight lemmas, to each of which ex-
cept the first corresponds a lemma in the Nuprl formalization. The paren-
thesized numbers in lemma statements below give the number of steps in
the corresponding Nuprl proof. There are three additional lemmas in the
Nuprl development; they contain a total of ten steps. We will abuse no-
tation by writing R (possibly with subscripts) for (A,r,d). We will also
omit type information when it is clear from the context. The proofs of
the lemmas below are for the most part straightforward, and so they are
omitted or sketched.

Lemma 1 If i(Ry) = i(R;) € U and P is such that P(R;), then P(R;).

Lemma 2 (9). If R, < R, and (fiy b1) embeds Ry in R3 then there are f
and by which embed R, in R3 and such that r3(b2, by).

Lemma 3 (4). If dy(i(R)) then trans(R) (4) and wf(R).
Lemma 4 (8). trans(Uord).
Lemma 5 (31). wf(Uord).

Proof. Suppose P is a chain in Uord. Then there is an Ry such that
P(l(Ro)) and dU(Z(Ro)) Let Q be

Aa. 3R.3f.P(i(R)) & (f,a) embeds R in R,.

Q is a chain in Ry. U

The previous two lemmas, together with the assumption 7 € 7, imply
that dy(i(Uord)).

It is the proof of Lemma 5 that is modified for the construction of the
looping combinator. The basic idea of this proof is to assume that there
is a chain in Uord and obtain from it a chain in a member of Uord (this
member is the element asserted to exist in the definition of chain). With
the modified definition of well-foundedness, to prove this lemma we must
give a function which takes chains in Uord to members of T. Given a chain
P in Uord, we can obtain a chain @ in some R as in the unmodified proof.
Since wf(R), we can get a member ¢ of T. Instead of using z directly, we
first apply F to it.

Denote by R, the ordering

(A,r,Az.d(z) & r(z,a))
Lemma 6 (9). If dy(i(R)) and a € A is such that d(a), then dy(i(R,)).
Lemma 7 (16). If dy(i(R)) then R < Uord.
Proof. Aa.i(R,) and i(R) give an embedding. U
Lemma 8 (13). Contradiction.

Proof. Au.(u = i(Uord)) is a chain in Uord, contradicting 5. U

In the Nuprl version of Lemma 8, instead of obtaining a contradiction,
we obtain a member of the type T. That is, the complete Nuprl proof of the
lemma yields a term ¢ and a proof in v"7 that - ¢t € T. We have space here
only for a few examples that illustrate the Nuprl version of the preceding
argument. For more information on Nuprl, see the Nuprl book [2].

The definitions given above can be directly transcribed into Nuprl. For
example, the (modified) well-foundedness predicate is the term

AArd. VP:A->Type. P chain in (4,r,d) => T

(which uses other definitions). Also defined is a display form for applica-
tions of this predicate. For example, the term which consists of the above

. A: Type

. q: A->A->Type

. ¢: A->Type

. du(ica, q, ¢))

al: A

. c(al)

>> (A,q,(Aa. c(a) & q(a,a1))) < (4,q,c)

D W

BY (DIntro [’Aw. w?; ’a1’] [1 0O ...)
THEN (DIntro [J1[1[] ...)
THEN (Reduce ...)

1*x 7. x: A
8. c(x) & q(x,al)
>> c(x)

2* 7. x: A

8. c(x) & q(x,al)
>> (q(x))(al)

Figure 1: A step from Lemma 7.

lambda-term applied to three arguments A, r, and d appears on the com-
puter screen as wf(A,r,d).

In Figure 1 is a step from the Nuprl proof of Lemma 7. From top to
bottom, the components are: a vertically presented sequent (using >> as
a turnstile) with numbered hypotheses; an ML program, called a tactic,
(the text following the BY) that was entered by the author; and two subgoal
sequents that were generated by the system as the result of the tactic
execution (the subgoals inherit all the hypotheses of the first sequent). We
will not explain the operation of the tactic shown in the figure except to
note that the effect is roughly to make progress toward proving the asserted
embedding by supplying an order-preserving map and an embedding bound.

10

4 Analysis of the Extracted Term

The Nuprl formalization of lemma 8 yields a term ¢ such that - ¢ € T.
The term we will examine, call it L, is a reduced (via B-reductions) form of
t. The term L actually contains constants which denote extractions from
other Nuprl theorems. Since there is a linear ordering of theorem depen-
dencies, these constants can be eliminated by successively replacing them
by the terms they denote. The actual Nuprl terms to which we apply sym-
bolic computation will retain these constants, since they provide convenient
labels for certain subterms of interest, although they are replaced by their
denotations when necessary for computation.

We will write ¢ 2 #'if ¢ reduces to ¢' via a sequence of head 3-reductions,
and ¢ — t' if ¢ reduces to t' via some sequence of 3-reductions. We write
t = t'if t and t' are the same except for the names of bound variables.
Two terms are equal if they are identical up to 3-conversion.

In what follows, we will be interested in the results of computations
in which certain subterms are irrelevant. We will therefore consider terms
which contain a special variable .. We will say that ¢ is an instance of t',
and write ¢ < t',if ¢ can be obtained from ¢’ by replacing some occurrences
of « by another term (possibly different terms for different occurrences). A
term will be called ground if it does not contain :. We also generalize the
notion of reduction (but equality will only apply to ground terms). When
we say that ¢ reduces to t’ in a certain way, we mean that for any instance
of ¢ there is an instance of #' such that the statement is true in the sense
previously defined. To verify ¢ — ¢’ using Nuprl’s computation facilities,
we can proceed as follows. Replace by some distinct Nuprl variable all
occurrences of ¢ in ¢, apply some Nuprl reduction steps to obtain ¢”, and
check that ¢” is an instance of ¢'.

The Looping Property

The basic idea, due to Meyer and Reinhold, behind the proof that [
has the looping property is as follows. The proof of the paradox involves
constructing a chain in Uord and deriving a contradiction (member of T)

11

from Uord’s well-foundedness. This is reflected in the form of L, which is

wf(P°)(pf°)

where wf is the term extracted from the Nuprl proof of Lemma 5, P° is
the chain in Uord from the proof of Lemma 8, and pf° is the term which
constitutes a proof that P° is a chain. Uord’s well-foundedness gives a
procedure which when applied to P° (together with pf?), produces a chain
P! (with proof pf!) in a member of the chain P°, which, by construction of
P, is again Uord, and then applies this member’s well-foundedness proof.
This is reflected in the reduction sequence

wf(P°)(pf°) — F(wf(P")(pf"))-

P! and pf! are similar to P° and pf°, so we can repeat the above, obtaining
P* and pf* for k > 1, and thus obtaining the required L.

The problem in turning the above idea into a proof is that one must
characterize the reduction behaviour of a massive term. It is likely that
the task is not feasible for a human without the aid of a computer. We
have solved the problem by reducing it to a small set of machine-checkable
assertions.

The proof we give below involves verifying certain properties of certain
terms via symbolic computation. Whenever we state that a computation
has a certain result, then unless stated otherwise the computation was
carried out using utilities of the Nuprl system. We will not completely
describe the strategies for reduction that were used; the two main strategies
were head reduction, and normalization while holding constant a small
number of terms that were extractions from theorems. (A transcript of
the session in which these computations were done is available from the
author.) In what follows, when confusion might otherwise arise, object
variables, i.e., Nuprl variables that are part of the terms being discussed,
will have typewriter typeface (e.g., n instead of n).

Theorem 1 For each k there is a ground term Ly such that Ly = L and
for allk, Ly — F(Lg41).

Proof. We first make some simple definitions. The first definitions are for
pairing and projection: for terms a and b, let (a,b) denote Atf.f(a)(d),

12

and let 7(a) and m;(a) denote a(¢)(Azy.z) and a()(Azy.y), respectively.
We assume that the variables in the pairing definition are always named
so as to avoid capturing free variables of a and b. We extend the pairing
notation to n-tuples by right-associating. Next, denote by eq, id, pf;, pf;,
and pf; the terms AP.Az.z, Az.z, Azy.m(y), Auvvwzy.y, and Azy. my(y),
respectively. Finally, let d and wf denote the terms extracted from the
Nuprl proof that i(Uord) is in dy, and from the Nuprl proof of Lemma 5
(that Uord is well-founded), respectively (actually, these terms are just
Nuprl constants denoting other terms, as discussed earlier).

We inductively define (non-ground) terms f*, p*¥ and s, such that the
following three properties hold for all ¥ > 1 and n > 0:

wf(e)({{¢,p5,), F*)) — F(wf()(((e,p5 ", @), f471))),

FE)(a) = (4 Pag158n),

and
L — F(wf(L)(<<L,p(1],d>,fl>)).

Intuitively, the tuple (¢, p§, d) corresponds to the proof that the chain P* is
non-empty (with ¢« taking the place of Uord and with p§ corresponding to the
proof that Uord is in P¥), and f* is a function which takes a member of P*
and returns another member which is smaller in the embedding ordering.
In the tuple (¢, ps,,,s,), ¢ takes the place of this other member, p*
corresponds to the proof that this member is a member of P*, and s,
corresponds to a proof that this member is smaller than the first member.
The three properties above suffice to prove the theorem, since we can apply
the third property, and then repeatedly apply the first to obtain L, for
k > 1, as a ground instance of

wf()({(e,p5,d),f*))-
Define, for t a term,

So[t] = <L,L7"7L,"’La €q, €q, idabatapflapfzapf:i)
S[t] E <L’ L, l" L7L7L’ eq? eq7 id"” <L7t>7
Azp. (m1(p),¢), pfy, pfs)

13

Define the terms s, inductively by so = So[d], sa+1 = S[sn]. Next, for ¢, ¢’
terms, denote by P;[t, t'] the term

1]
(Ly0 0,0, €q 0,0, t").

We define by induction on k > 1 the terms f* and pf, and simultane-
ously show that they satisfy the required properties. For the case k = 1,
we define by induction on n > 0 terms

prlx = P1[0pn,bpfn],

where op, and bpf, are terms such that for each j > 0

op, ()()()(¢)(85) = sn+it1

and
bpfo(¢)(d) = sn-
Computing, we get

L — F(wf()(2))

where ¢ is ground and

t — ((Lapl[op07 bpfo}, d>7f>

for some op, bpfy, and f. Take p} to be Pi[opy, bpfy], and f' to be f. We
now verify the required properties of op, and bpf, with two computations
(sj is a single Nuprl variable):

0po(¢)(¢)(1)(1)(s3) — S[s]]

and

bpfo(+)(d) — So(d)-
Suppose that we have defined p?, and that op, and bpf, have the required
properties. We have

F1()(P opn, bptn))
- <”7 Pl [Opfn-{—l) bpfnﬁ-l}’ bpfn(¢)(d)>

14

for some terms op!, ; and bpf,:+1. Define p}_, to be Py[op),, bpf.] with
op,, and bpf, substituted for opn and bpfn respectively. By the induction
hypothesis, bpf,(¢)(d) reduces to s,, so if we can verify the required prop-
erties for p,+; then we will have completed the construction of the terms
pl and shown that for all n >0

fl(L)(pi) - <"aprl|+1’ 5n>'
The properties for p,,; are verified by computing
0P 11 (£)()(£)(1)(53) — (opn)()(¢)(¢)(¢)(S[s3])
and
bpfn11(1)(d) — (opm)(¢)(e)(1)(e)(Sold))
and applying the induction hypothesis.

Suppose now that & > 1 and that the terms f* and p* have been defined
and satisfy

fk(L)(Pﬁ) - <L,P:+173n>- (%)
For t, t' terms, denote by P[t,t'] the term
<L3 Lyt Zd’ ta t,apflapf‘.?,Pf:;)'

Define, for all n > 0, p**! to be

P[Pfu-] ’ u],

where u is d if n = 0, and ¢ otherwise. For any term ¢ denote by o(t) the
term

t(ps, f*/pkO, £k]
Now
wf(¢)(({1,PKO, d), £k)) = F(w(c)(u))
where w = wf and u A, (t,f). Define f**! to be o(f). tis
£k(¢)(pk0)(v)(v’).

This term, under o, contains a subterm to which, by induction, (*) can be
applied. We have

(<L7 Pk17 50))(”)(7]’) - <1" P[Pkla d]’ d>

15

This proves that
o(t) = (1,57, d).
We must now show that f¥1 has the required property. Suppose n > 0.

Let r be P[p,u] where uis d if n =0 or ¢ if n > 0, and let r' be S[sn]. For
t a term, let 7(t) be

tpe,f*,pk 1, 5./PKO, £k, p, sn].

We must show that
T(f(e)(r)) = (6, pitl, 5n)-

Computing, we get

\

f()(r) — £x(¢)(p)(a)(a)

for some a and a’. Now by induction

T(fk(b)(p)) - <La p:+235n+1>‘

By computation,

({t;q,7"))(a)(a’) = (¢, Plq, d], sn).
d

Not a Fixed-Point

We will now show that L is not an application of a fixed-point combina-
tor. In doing so, we only make one use of Nuprl symbolic computation to
establish a fact about reduction; this use will be indicated explicitly. Let
L, for k > 0, be the terms constructed as the proof of Theorem 1. Define
u* to be

((e;p5,d), %)
For k > 1, L is an instance of wf(¢)(u*). We consider T and F to be
constants in what follows.

Figure 2 contains part of a printout of the term wf with some subterms
elided, and containing names of theorems (which refer to the corresponding
extractions). From it we obtain the term wf’ by replacing the (unique)
subterm of the form Ay.F(¢) by X(Ay.F(¢)), (X is a fresh variable). Note

16

(A P voO.
(vo
(A x v9.
(v9

(A do y.
(F
(y
(and (trans A0 r0 d0)
(wf A0 r0 d0))
(A v3 v4. v4)
(wf A0 r0 dO)
(A v3 v4. v4)

<IN

Figure 2: wf with some subterms elided.

that ¢ is headed by y. The idea here is to block certain reductions in
order to show that all reductions from L must repeatedly satisfy a certain
property. We will call a term ¢ F-reducible if it has no subterm of the
form F(t') such that ¢ 2 F(t'). We will write F(")(¢) for the term which is
the n-fold application of F to ¢t. In the remainder of this section, all terms
will be ground unless indicated otherwise.

Lemma9 If w A wf, u — u* k > 1, and for some terms c¢ and t,
w(c)(u) — FO(t), where i > 0 and t is F-reducible, then t - F((¢)(e)(u))
for some u' equal to an instance of u* 7! (i.e., where there exists u" <
w T with u' = u").

Proof. The proof is by induction on i. We will do the induction step first.
Suppose, then, that i > 0. By standardization! we have

w(e)(u) = wf(e)(u) = F(t')

! Roughly, for every reduction sequence, there is a left-to-right reduction sequence with
the same initial and final terms. For details, see [1].

17

for some t' with ¢’ — F(i-1)(¢). Therefore, to prove the induction step

it suffices to show that t' has the form w'(c’)(u’') where w’ % wf and

u = uk-l—l.

Nupr!’s symbolic computation gives

wf'(1)({(c, kO, d), ¢)) = X(Xy. F(wo(co)(uo)))(vo)

for some terms wy, cg, ug, and vy that are not ground terms, are minimal
with respect to < (i.e., are obtained by treating ¢ as a variable, doing the
computation, and not making any replacements, in the reduct, of subterms
by ¢), and do not contain X. It follows that

wf'(u)(u*) % X(Ay. F(wi (2)(u1)))(v1)

for some terms wy, u;, and v; that are not ground terms, do not contain X,
and are minimal with respect to <. Note that, since wy, u;, and v; do not
contain X, for any ¢’, w', v/, v and any u < u* such that

wf'(')(u) & X(y. F(w'(¢)(u)))(v"),

w’, v’ and v' do not contain X. Removing the X and doing the final -
conversion in the reduction defining w, etc., we get

wf(u)(u*) 2 F(wi[v1/y](e)(w[v1/3)))-
In the proof of Theorem 1, we showed that
wf(1)(u*) 5 F(wa(e)(uz))

h ..
where w; and u; are not ground, w; — wf and u; — u**!. By the mini-
mality of wy, u;, and v;, we have

wiv1/y] < wy and wifv1/y] < uy.

Now,
h
wf'(c)(u) — wf'(c)(ug) = X(Ay. F(ws(¢)(u3)))(v3)
where uf, w3, u3, and v; are instances of u*, wy, u;, and v;, respectively.
Standardizing, we get

wf'(e)(w) = X(Ay. F(wa(e)(ua)))(ve) ()

18

w'(c)(u) = wf'(c)(uw) B XAyF((s1)(s2)(w'))(v)

1 !

t' 2, r = X(y. F((s3)(se)(z")))(v")
Y

t - P = Ay F(()()(u™)(x")

Figure 3: Reductions in the base case argument.

where, since wy must be in head normal form by the construction of wf’,
wy — w3, U4 — u3, and vy — v3. Therefore,

walva/y] — w3v3/y] < wiv1/y] < wz > wf.

Note that wf was actually defined to be a constant denoting an extraction,
so we must have
h
wa[vs/y] = wf.

Also,

ug[va/y] — us[vs/y] < walvr/y] < up — wtt,

so us[ve/y] — u*t!. Removing the X in (x), then, we have

w(e)(u) = wf(e)(u) = (Ay. Fwa(t)(us)))(ve)
2 F(wa[vg/y)(e)(ualva/y]))-

This completes the proof of the induction case.

k. and

To prove the base case, we must show that if w A wf, u — u
w(c)(u) — t where t is F-reducible, then ¢t 2 F((:)(:)(u')), where u' is
equal to an instance of u*™1. For v a term, let ¢(v) be the term obtained
by repeatedly replacing subterms of the form X(a) by a.

Figure 3 contains a diagram which summarizes the reductions discussed
in the following. Let w’ be w with all occurrences of wf replaced by wf’.

Using the argument in the induction case, we have
w'(e)(w) = wf (e)(w) = XAy F((s1)(s2)(w))(v)

19

where

u'lo/y] — ut,

and u’ and v do not contain X. Now consider the reduction sequence from
w(c)(u) to t. Note that if b is such that w'(c)(u) — b, and if for some
a and a' X(a)(a’) is a subterm of b, then a(a’) is a redex and has no
free variables, and if this redex is contracted, the resulting term is head
normal (see Figure 2). It follows that we can obtain a reduction sequence
from w'(c)(u) to some ¢’ where t can be obtained from t' by replacing
maximal subterms of the form X(a;)(az) or X(a;) by some term a3 where
e(a1(az)) — a3 or €(a;) — a3, respectively. (Such a set of replacements
is indicated in the diagram in Figure 3 by a double arrow.) We must also
have

' 2 X(Ay.F((s3)(s4)(u"))(v")

for some u” and v’ where, using standardization and the fact that s; is
head-normal, v — »” and v — v'. Call the reduct above r. The head

reduction sequence from ¢’ to r gives, step for step, a sequence ¢ 2 ¢! for
some r'. The replacements taking t’ to ¢t give rise to a replacement taking r
to r’. Suppose that the replacement involves contracting the topmost redex

Ay F((s3)(s4)(u"))(v").

Then, since also any subterm of ¢’ of the form X(a)(a’') must be closed, we
must have that

X(Ay- F((s3)(sa)(u")))(v")
is a subterm of t’, and that the replacements which take t' to ¢ involve
replacing this subterm by r’. This contradicts the assumption that ¢ is
F-reducible. Therefore the term 7’ is of the form

(Ay- F(()()(w")N)(v")

for some »" and v”. Since u” and v’ do not contain X, and since s3 is

head-normal, we have u” — u" and v’ — v”. Now

u'lv/y] — w"[v'/y] — u"[v"/y].

1

Since also u'[v/y] reduces to an instance of u**!, we are done. O

20

Lemma 10 Any term t can be reduced to a term F()(t') where t' is F-
reducible.

Proof. The proof is a simple induction on the size of terms. Write ¢ as
F()(#') with i maximal, and suppose #' is not F-reducible. Then t' reduces
to a term F(¢”) which appears in ¢'. This term is smaller than t'. U

Theorem 2 If1 < k < k', then Ly # L.

Proof. Suppose not. Then L, and Ly have a common reduct ¢. By
Lemma 10 we may assume that ¢ is of the form F()(¢') where t' is F-
reducible. Applying Lemma 9, we get

t' 2 F((1)(e)(w)),

where u is equal to an instance of u*T*™! and equal to an instance of
w¥'T+1 This means that there are instances of u***! and u***! that
have a common reduct, which implies that there are instances of pft**!
and pf'T**! that have a common reduct. From the definition of these latter
two terms, it follows that there are instances of p{; and p,’:;__il‘+1 that have
a common reduct. But this is impossible, since the first of these terms is
a nine-tuple whose fifth component is eg, while the second is a nine-tuple
whose fifth component is also a nine-tuple. [

The following is immediate.

Theorem 3 There is no Z such that Z = L and Z =F(Z).

5 Conclusion

We formalized one particular proof of Girard’s paradox. It is possible
that another proof would yield a term which is a fixed-point combinator,
but it seems unlikely. The focus of the looping structure of the paradox
seems to be in the proof that Uord is well-founded, where, to show that
a particular entity does not exist (a chain in our case, a proof that some
member is less than itself in the case of Girard’s proof), one assumes that
it does, transforms it into an analogous entity in a member of Uord, and

21

applies that member’s well-foundedness property. It seems certain that
if the transformation adds any structure, then the fixed-point cannot be
obtained.

Nuprl was used in an essential way in this effort. The formal proof of
Girard’s paradox was carried out at a fairly high level and in a reason-
ably short time (about two working days), and involved very little explicit
reasoning about the components of the term that was being constructed.
Nuprl’s collection of tools for term manipulation were then used to verify
certain properties of the huge resulting term. Nuprl also played a valu-
able role in the discovery of parts of the argument presented in this paper,
since the straightforward formalization of the informal proof yielded a term
in whose correctness one could have confidence, and on which one could
quickly test certain kinds of conjectures using the various tools provided by
the system.

The result of this effort indicates a possible role for mechanized for-
mal problem solving environments such as Nuprl in mathematical research.
There may arise other problems such as the one addressed in this paper,
where the computer plays an indispensable role in the solution. If this is the
case, then systems like Nuprl, that can support high-level formal reasoning
in a variety of problem domains, and that provide a large set of facilities for
manipulation and analysis of proofs and terms, will prove to be valuable
tools.

Acknowledgements

The author is grateful to Bob Constable, Todd Knoblock, and Scott
Smith for their suggestions concerning the presentation of this work.

References

[1] H. P. Barendregt. The Lambda Calculus: Its Syntaz and Semantics.
Volume 103 of Studies in Logic and the Foundations of Mathematics,
North-Holland, Amsterdam, revised edition, 1984.

22

[2] R. L. Constable, et al. Implementing Mathematics with the Nuprl Proof
Development System. Prentice-Hall, Englewood Cliffs, New Jersey,
1986.

[3] T. Coquand. An analysis of Girard’s paradox. In First Annual Sympo-
sium on Logic in Computer Science, IEEE, 1986.

[4] J. Girard. Interprétation fonctionelle et élimination des coupures dans
I’arithmétique d’ordre supérieur. 1972. These de Doctorat d’Etat, Uni-
versity of Paris, France.

[5] M. J. Gordon, R. Milner, and C. P. Wadsworth. Edinburgh LCF: A
Mechanized Logic of Computation. Volume 78 of Lecture Notes in Com-
puter Science, Springer-Verlag, 1979.

[6] P. Martin-Lof. An intuitionistic theory of types. 1972. Mimeographed
manuscript.

[7] A. R. Meyer and M. B. Reinhold. ‘Type’ is not a type. In Conference
Record of the Thirteenth Annual ACM Symposium on Principles of Pro-
gramming Languages, Association for Computing Machinery, SIGACT,
SIGPLAN, 1986.

[8] M. Reinhold. Looping with Girard’s paradox. 1986. Unpublished

manuscript.

23

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif

