Founding of the
Maize Genetics Cooperation News Letter

at Cornell University

Volumes I & II

A 90th Anniversary Tribute

Rollins Adams Emerson (1873–1947)

Edited by

Lee B. Kass
Edward H. Coe, Jr.
Michael N. Cook
Margaret E. Smith
Judy L. Singer

This Book – https://hdl.handle.net/1813/66550
Books and Articles Collection – https://ecommons.cornell.edu/handle/1813/63
The Internet-First University Press Directory – https://ecommons.cornell.edu/handle/1813/64826
This content appears online at Cornell University’s eCommons for open access distribution and then in the more traditional physical form (bound book) for a modest user fee. This approach obviates the need for other libraries (or indeed individuals for personal usage) to acquire, catalog and store this content. However, redistribution and all other rights remain with the copyright holders. The IFUP was co-founded by J. Robert Cooke and Kenneth M. King.

Online access to this digital book is at:
https://hdl.handle.net/1813/66550

Books and Articles
https://ecommons.cornell.edu/handle/1813/63

The Internet-First University Press Directory (All content through August 2019)
https://ecommons.cornell.edu/handle/1813/64826.2

Perfect bound copies of this book may be ordered as separate Volumes (Volume I and Volume II) via e-mail: digital@cornell.edu

Cover photo:
Rollins Adams Emerson (1873–1947), Head of Cornell University Department of Plant Breeding from 1914–1942 (Courtesy of Plant Breeding files, Cornell University)

Published by The Internet-First University Press
Ithaca, NY, USA
© 2019 Lee B. Kass, Edward H. Coe, Jr., Michael N. Cook, Margaret E. Smith, Judy L. Singer and Plant Breeding & Genetics Section, Cornell University
All rights reserved, except as noted above.
Founding of the
Maize Genetics Cooperation News Letter
at Cornell University

A 90th Anniversary Tribute

Volumes I & II
Thomas Hunt Morgan and Rollins Adams Emerson
Willard Straight Hall, Cornell University, Ithaca, New York.
Headquarters of the 1932 Sixth International Congress of Genetics, 24-31 August 1932.

Morgan was President of the Congress and Emerson the General Chairman of the Local Committee.
(Courtesy of Edward S. Buckler)
Founding of the
Maize Genetics Cooperation News Letter
at Cornell University
A 90th Anniversary Tribute
Volumes I & II

Edited by
Lee B. Kass
Edward H. Coe, Jr.
Michael N. Cook
Margaret E. Smith
Judy L. Singer

aPlant Breeding & Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853
bDivision of Plant and Soil Science, West Virginia University, Morgantown, WV 26506
cUnited States Department of Agriculture-Agricultural Research Service, Plant Genetics Research Unit and University of Missouri, Columbia, Missouri 65211
dCollection Development & Digital Collections, Albert R. Mann Library, Cornell University, Ithaca, NY 14853

PLANT BREEDING & GENETICS SECTION
CORNELL UNIVERSITY
Ithaca, New York

The Internet-First University Press
https://ecommons.cornell.edu/handle/1813/62
To the Legacy of R.A. Emerson

&

To Maize Cooperators Worldwide
Volume I

CONTENTS

Frontispiece T.H. Morgan and R.A. Emerson at 1932 International Congress of Genetics ii
Copyright ... iv
Dedication ... v
Foreword by Edward S. Buckler .. ix
Preface and Acknowledgments by Lee B. Kass and Edward H. Coe Jr. ... xi
Group Photograph of Congress Attendees, 1932 International Congress of Genetics xiii
Introduction by Editors .. 1

Introduction to Maize Genetics Cooperation News Letter, Volume 1 (1929) 7
Reprint: Maize Genetics Cooperation News Letter Volume 1 (1929) .. 8

Introduction to Maize Genetics Cooperation News Letters Volumes 2-14 (1932-1940) 41
Reprint: Maize Genetics Cooperation News Letter Volume 2 (1932) .. 42
Reprint: Maize Genetics Cooperation News Letter Volume 3 (1933) .. 46
Reprint: Maize Genetics Cooperation News Letter Volume 4 (1933) .. 64
Reprint: Maize Genetics Cooperation News Letter Volume 5 (1934) .. 74
Reprint: Maize Genetics Cooperation News Letter Volume 6 (1934) .. 87
Reprint: Maize Genetics Cooperation News Letter Volume 7 (1934) .. 92
Reprint: Maize Genetics Cooperation News Letter Volume 8 (1934) .. 104
Reprint: Maize Genetics Cooperation News Letter Volume 9 (1935) .. 123
Reprint: Maize Genetics Cooperation News Letter Volume 10 (1936) ... 150
Reprint: Maize Genetics Cooperation News Letter Volume 11 (1937) .. 173
Reprint: Maize Genetics Cooperation News Letter Volume 12 (1938) .. 201
Reprint: Maize Genetics Cooperation News Letter Volume 13 (1939) .. 245
Reprint: Maize Genetics Cooperation News Letter Volume 14 (1940) .. 269

Volume II

Reprint: Maize Genetics Cooperation News Letter Volume 15 (1941) ... 332
Reprint: Maize Genetics Cooperation News Letter Volume 16 (1942) ... 390
Reprint: Maize Genetics Cooperation News Letter Volume 17 (1943) ... 452
Reprint: Maize Genetics Cooperation News Letter Volume 18 (1944) ... 507
Reprint: Maize Genetics Cooperation News Letter Volume 19 (1945) ... 541
Reprint: Maize Genetics Cooperation News Letter Volume 20 (1946) ... 592
Reprint: Maize Genetics Cooperation News Letter Volume 21 (1947) ... 628

Annotated Bibliography .. B.1

To scroll to a menu item, click on it.
To return, use the “previous view” command.

vii
APPENDICES

Appendix I.
http://www.genetics.org/content/169/4/1787.full.pdf+html .. A.1
Reprint: Kass et al. 2005 ... A.2

Appendix II.
Reprint: Coe & Kass 2005 ... A.14

Appendix III.
Contributor’s Biographical Sketches ... A.19

To scroll to a menu item, click on it.
To return, use the “previous view” command.
When Dr. Kass asked me to write a foreword for this volume, I was surprised; surely there were others in the maize community better suited? However, I can trace my scientific lineage as a maize geneticist directly to the community built by the *Maize Genetics Cooperation News Letter (MNL)*. I did my PhD at the University of Missouri in evolution and archaeology. However, while I was there, Drs. Ed Coe (editor of *MNL* from 1974-2000, after Emerson, and others) and Jim Birchler (*MNL* co-editor with Mary Polacco, now Schaeffer) introduced me to maize genetics. In 1993, I drove in a van to my first Maize Meeting with their graduate students. Every year since, I have attended the Maize Genetics meeting, where over 600 people of all ages come to discuss and work on the intricacies of maize. But, before jet setting around the US or planet was possible, and before the myriad of Internet communication’s tools were available, the *Maize News Letter* was a visionary way to build an effective and collaborative community.

How did this community come about? As I look out the window of my office today, I see the building where, in 1932, the greatest geneticists from around the world gathered at Cornell University for The Sixth International Congress of Genetics. Despite the world being in the throes of the Great Depression, scientists traveled to Ithaca, New York to discuss the incredible breakthroughs occurring in genetics — the first Golden Age of genetics. At the time, the rediscovery of genetics was about 30 years old and if we look at the meeting attendees and talks, we can see the origins of many of the major branches of genetics represented for the first time. And, at that meeting, Dr. Rollins Emerson (1st *MNL* Editor) called together a side group of maize geneticists to develop a process to share knowledge and discovery across the community. This side meeting invigorated the previously established *Maize Genetics Cooperation News Letter*, which would, for the next decades, be the key catalyst for the community.

What other newsletter is a cooperation newsletter? This sense of cooperation was instrumental to the creation of our community, initially with sharing of information and genetics stocks. But over time, these founding geneticists and breeders collaborated with nearly every other field of science – physiology to archaeology to engineering. Cooperation evolved and added collaboration. Today, the breadth of science that is possible when working on maize through collaboration is what I love most about our science. Our community answers questions as precise as how a change in a single base of DNA affects the structure of the tassel to questions as overarching as how maize can play a sustainable role in feeding the world in the face of climate change. The newsletter let people know years before an official publication came out what various groups were working on. While there is always some competition for discovery, the community around the newsletter was dominated by cooperation and collaboration.

In this volume, Drs. Kass, Coe, and co-editors show how the *Maize News Letter* is central to the origins of maize genetics and community, and in no small part the origins of the entire modern genetics community. While I never had the honor of meeting Rollins Emerson, Barbara McClintock, George Beadle, or Marcus Rhoades, I have worked on questions that all of these people asked and even reanalyzed some of their data that was first reported in the *MNL*. In this volume, Lee Kass brings to life these founders of our scientific community, where we came from, and how our community was built. While this work highlights some scientific questions that remain open, the greatest lesson the *MNL* can teach us and future generations is how to build a community of learning and discovery, where the scientist, the science, and society all win.
PREFACE

Rollins A. Emerson, second Head of Cornell’s Department of Plant Breeding, established the Maize Genetics Cooperation and the Maize Genetics Cooperation News Letter (MNL) at Cornell University (Kass et al. 2005, reprinted in this volume). It was published at Cornell from 1929 through 1955, and continued publication at The University of Illinois, Indiana University and The University of Missouri (Coe & Kass 2005, MNL 79; reprinted in this volume).

This 90th Anniversary book was inspired when in April of 2018 Kass searched the MaizeGDB online database (https://www.maizegdb.org/mnl) to locate a complete reference, including page numbers and author affiliations, for an article published in MNL 17, 1943. Coe, former MNL editor (1975-2000), helped locate the reference and confirmed that it was not possible to gain knowledge of affiliations for historical purposes without examining hard copies of the MNL. Many of those early News Letters had been retyped for the digital venue, and contributors’ reports were not always shown in groups by affiliation (e.g., University, College, or other Institution), as can be found in the originals.

While searching for this reference, it occurred to Kass that Plant Breeding & Genetics at Cornell had Emerson’s bound volumes of the earliest MNLs that were not in the Cornell Library. Before sending these MNL bound volumes (Vols. 2-14, 1932-1940; Vols. 15-21, 1941-1947, compiled by Emerson for the College of Agriculture Library) to the Cornell Archives, we desired to scan them “verbatim” and make them available in digital format. We also have a copy of what is now considered MNL Volume 1, 1929, Emerson, pp. 1-30. This was located among the papers of E.G. Anderson, at The University of Missouri, by Coe (MNL 53, Foreword, 1979). It was reprinted in a hard copy of MNL 53:117-130, March 1, 1979, “IV. 50 Years Ago,” as part of the Historical Notes of the MNL, but was not initially available in digital format (see MNL archived volumes https://www.maizegdb.org/mnl; https://mnl.maizegdb.org/mnl/53/). A pdf version of MNL Volume 53 has since been added as a link: (https://mnl.maizegdb.org/mnl/53/00MNL%2053or.pdf). Volume 22 to date has been added as verbatim pdf versions by Coe and are posted at the online database, (https://www.maizegdb.org/mnl).

The early MNL articles were presented online, but were incomplete (available at Maize Newsletter Archives, https://www.maizegdb.org/mnl). Also, the early volumes (1-3) were mis-numbered on this website [the correct volume numbers were published by Coe and Kass (2005)]. The 1932 issue was listed as Volume 1, but the first Volume issued in 1929 was not included at this archive link (this volume was reprinted in MNL 53, as mentioned above). Considered to be the first MNL by Emerson, Volume 1, 1929 is correctly cited as MNL 1 at MaizeGDB, Reference Record, Emerson, R.A., 1929, MNL 1:1-30, “You who attended the “cornfab” in my hotel room ...” (https://maizegdb.org/data_center/reference?id=9020573). This web-link also reports that MNL 1 was reprinted in MNL 53. Biographical references for R.A. Emerson are included at: (https://maizegdb.org/person?id=12877).

Because the early MNLs were not available in digital format, we reached out to Robert Cooke, publisher of the Internet-First University Press, to ask if he might have an interest in publishing, as an e-book, Volumes 1-21 (1929-1947) of the Maize Genetics Cooperation News Letter, including the correspondence that accompanies these volumes. He was enthusiastic to publish the volumes if we could make arrangements to have them scanned. We were fortunate that Michael Cook of Albert R. Mann Library Digital Collections had the funding and resources for this endeavor, and he offered, in addition, to produce a Cornell eCommons webpage where the scans could also be viewed (see Introduction). Cook also suggested reprinting Coe & Kass (2005) in this volume for ease of comparison with original MNL volume numbers (see Appendix II).

We are, therefore, pleased to present here the early MNLs compiled by R.A. Emerson, with relevant photographs (see Introduction) and perspectives on its founding at Cornell University, 90 years ago this April.

Lee B. Kass
Edward H. Coe, Jr.
9 February 2019
ACKNOWLEDGMENTS

We acknowledge with thanks: the staff of Albert R. Mann Library for providing resources for scanning *Maize News Letters*; Jeffrey Piestrak, Digital Collections Specialist, for making the excellent scans; and Michael Cook, Head of Collections, for supervision. We also acknowledge Ed Buckler, Cornell University, for providing 1932 ICG photos; and Evan Earle, Director Cornell Archives and Peter Fraissinet, L.H. Bailey Hortorium, for identifying the building where the 1929 group photo was taken. Dr. Alexandra S. Kadner, WV medical writer and scientific consultant, provided assistance by alerting us to more recent cooperative-type Newsletters. We thank The Genetics Society of America for granting permission to reprint Kass et al. 2005, *Genetics* 169 (April 1): 1787-1797. We deeply appreciate Mark Sorrells, Professor of Plant Breeding & Genetics, for reviewing the manuscript. Hard copies of this volume were made available courtesy of School of Integrative Plant Science, Plant Breeding & Genetics Section. LBK thanks Plant Breeding & Genetics, Cornell University, and Plant & Soil Sciences, West Virginia University for logistical support. Special recognition is given to our publisher, J. Robert Cooke, for encouraging our efforts to make this project a reality.
Group photo of Sixth International Congress of Genetics, 24-31 August 1932, Ithaca, New York, taken outside northwest corner of the New York State Armory and Drill Hall (now Barton Hall), Cornell University Campus. (Courtesy of Edward S. Buckler) [For IDs see Jones (1932, Volume 1) or Crow (1992)]
[Left Half] Group photo of Sixth International Congress of Genetics, 24-31 August 1932, Ithaca, New York, taken outside northwest corner of the New York State Armory and Drill Hall (now Barton Hall), Cornell University Campus. (Courtesy of Edward S. Buckler) [For IDs see Jones (1932, Volume 1) or Crow (1992)]
[Right Half] Group photo of Sixth International Congress of Genetics, 24-31 August 1932, Ithaca, New York, taken outside northwest corner of the New York State Armory and Drill Hall (now Barton Hall), Cornell University Campus. (Courtesy of Edward S. Buckler) [For IDs see Jones (1932, Volume 1) or Crow (1992)]
INTRODUCTION

The *Maize Genetics Cooperation News Letter* (*MNL*) was founded by Rollins Adams Emerson (1873-1947) at Cornell University and has been published annually since 1929. It is a compendium of notes and information about on-going research intended to be shared throughout the maize research community. The *News Letters* were published by the Department of Plant Breeding at Cornell University until 1955. A partial name contraction to *Newsletter* was made with Volume 64 in 1990. The publication became fully and only digital with Volume 88.

Emerson was head of Cornell's Department of Plant Breeding from 1914 to 1942 (Murphy & Kass 2007, 2011). He had been called from the University of Nebraska to succeed H.J. Webber, who established the Department at Cornell in 1907. Emerson and his students established a school of Maize Genetics and Cytogenetics, and in 1929 he founded the *Maize Genetics Cooperation News Letter*.

In this book we offer a full page verbatim scan of the first *MNL*, sent to maize cooperators by R.A. Emerson on 12 April 1929. The scan was made by Coe from the archived files of E.G. Anderson, who had spent his retirement years at the University of Missouri. Anderson had received his Ph.D. (1920) at Cornell with Emerson (Murphy & Kass 2007, 2011, pp. 24, 31, 33-34, 119).

As Emerson planned his retirement, he arranged to have all copies of the *MNL* bound for the College of Agriculture Library. Two bound volumes resulted (see back cover). When the new library (Albert R. Mann Library) was established, Emerson's bound volumes remained in the Department of Plant Breeding and eventually were passed along to Margaret Smith (see Kass et al. 2005). The back cover of this volume shows the two bound volumes of the early *MNLs* that were compiled for the library. Verbatim scans of these first bound volumes are also included here, and the originals will be deposited in the Cornell Archives for their History of Science Collections.

The first set of bound *MNLs*, which we located in the Department of Plant Breeding at Cornell (*MNL*, Vols. 2–14, 1932–1940), was numbered by hand in pencil, beginning with October 1932, labeled “Vol. 2” (*MNL* 2; Coe & Kass 2005). The “Historical Notes on Maize Cooperation” listed on p. 56 of *MNL* 14 (1940) states that the mimeographed letter of April 12, 1929 is “considered *News Letter* 1.” The Cornell Plant Breeding Department's bound volumes appear to have been numbered retroactively under the guidance of Emerson, who was the secretary for *MNL*, Vol. 14, 1940. The binding on the first set of bound *News Letters* clearly shows that 1932 was considered to be *MNL* Vol. 2 (see image on back cover).

The *MNL* included unpublished data, unselﬁshly contributed by geneticists from many institutions (Murphy & Kass 2011, p. 23). This first and unique cooperative effort was so successful that it became widely copied. For example, the first volume of the *Drosophila Information Service* (*DIS*), issued in March 1934, mentioned the Emerson Cooperation and that *Drosophila* workers had planned to establish a similar service to that of the maize workers (Bridges & Demerec 1934, p. 2). Similar publications soon followed: *Mouse Genetics News* (Snell 1941, Law 1948), reestablished as *Mouse News Letter* (Dunn 1949); *Neurospora Newsletter* (1962-1985), later named *Fungal Genetics Newsletter* (1986-2007), and currently named *Fungal Genetics Reports* (2008-current); *Arabidopsis Information Service* (Röbbelen 1964-1973, Kranz 1974-1990), later *The Arabidopsis Information Resource* (*TAIR*); *Zebrafish Science Monitor* (1991-2000), which became *ZFIN NEWS* and then *The Zebrafish Information Network* (2004-current); *Worm Breeders Gazette* (*WBG*) (Edgar 1975-current); and a variety of other plant Newsletters that have come and gone, such as *Gramene* and *The Rice Genetics Newsletter* (1984-2007). See others as listed on the *Gramene* website (http://archive.gramene.org/newsletters/newsletters.html).

The first *MNL* (Vol. 1, 1929) was sent “To Students of Maize Genetics” in April of 1929, shortly after Emerson’s “cornfab,” held in his hotel room at the AAAS Christmas meetings, December of 1928, in New York City (Kass et al. 2005). This mimeographed letter included a long folder of linkage information—linkage data, lists of genes, and “rainbow maps”—and the names of researchers assigned to nine of the ten linkage groups known at that time (see *MNL* 1, 1929, p. 2). Most of the researchers assigned to study the maize linkage groups were working at Cornell; the more familiar names were [George W.] Beadle, [Barbara] McClintock, [Allan C.] Fraser and of course R.A.
Emerson. Others working on linkage groups were affiliated with Bucknell University, Lewisburg, Pennsylvania; Iowa State University, Ames, Iowa; The University of Minnesota, St. Paul, Minnesota; Ohio Agricultural Experiment Station, Wooster, Ohio, in cooperation with the Office of Cereal and Crops Diseases, Bureau of Plant Industry, U. S. Dept. of Agriculture, Beltsville, Maryland; University of Wisconsin, Madison, Wisconsin; and Kansas State University, Manhattan, Kansas. Barbara McClintock shared the study of linkage group B-LG with Lewis J. Stadler of The University of Missouri, Columbia, Missouri.

Beadle would later share the 1958 Nobel Prize in Physiology or Medicine for “… discovery that genes act by regulating definite chemical events” (https://www.nobelprize.org/prizes/medicine/1958/beadle/facts/). McClintock, 1983 Nobel Laureate in Physiology or Medicine, was awarded an unshared prize for her “discovery of mobile genetic elements” (https://www.nobelprize.org/prizes/medicine/1983/mcclintock/facts/; Kass 2013ff.).

Ever honest and forthcoming, Emerson claimed “no credit” for assembling this first summary of data. Professor Fraser had “abstracted the available published papers” before leaving for a year in Europe, Emerson explained. Emerson also noted that his graduate student, “Mr. Beadle, has completed that work and assembled my own unpublished records and has arranged all the tables and charts” (Emerson, MNL 1, p. 1).

Supplementary communications were sent out by Beadle in November and December of 1929 and February of 1930. Emerson sent a 17-page mimeographed folder of revised maps on April 17, 1930, and in July 1930 he sent a second folder of linkage data that included 23 pages. The latter two communications were found in the papers of E.G. Anderson and at the Rockefeller Archives Center, respectively. They were identified by Emerson in his Historical Notes published in MNL 14:56, but were not included in the Plant Breeding Departments’ bound volumes. These communications (not included here) were reprinted in MNL 54 (1980) and MNL 72 (1998), and are listed in Coe & Kass (2005).

The Maize Genetics Cooperation was formalized during the 1932 Sixth International Congress of Genetics held at Ithaca, NY (MNL 2, 1932), and was mentioned in Emerson’s Historical Notes published in 1940 (MNL 14:56). Shortly before that conference, Emerson notified maize geneticists of his plan to establish a Cooperation of Maize Geneticists (ref. MNL 14:56; Coe & Kass 2005). Soon after the Congress, Emerson and his former student Marcus Rhoades issued what has been considered to be the first “Maize Genetics Cooperation News Letter” (October, 1932), in which unpublished data were freely shared among the members. Rhoades assumed editorship of the MNL after Emerson and George Beadle. Rhoades numbered the October 5th 1932 MNL as number 1, but as we have shown this had been identified by Emerson as MNL 2, 1932 (see scanned MNL Vol. 2 in this volume, and bound volume image on back cover; see also Kass et al. 2005, reprinted Appendix I; Coe & Kass 2005, reprinted Appendix II).

A group photograph taken at the 1932 Congress of Genetics is published in this Anniversary volume (before the Introduction). The photograph is slightly different from the one published in the Proceedings (Jones 1932, Vol. 1), given that Emerson's dog is included in the lower right corner. The scan was made from a photograph that was saved from the trash by Edward (Ed) Buckler, when he was affiliated with North Carolina State University (NCSU). We also have a similar photo in the Plant Breeding and Genetics files at Cornell. By examining the list of attendees at the Ithaca Congress (Jones 1932, Vol. 1, p. 25), we concluded that the framed photo that Buckler had saved from a storage closet at NCSU had been obtained by C.H. Bostian, who had joined the faculty at North Carolina State College, Raleigh, North Carolina (now NCSU) in 1930, and retired in 1973 (Bostian Wikipedia). He is identified by number 368, in the upper left side of the 1932 Ithaca Congress group photograph (see Crow 1992 or Jones 1932, Vol. 1). In addition, the President of the Ithaca Congress, T.H. Morgan, and R.A. Emerson, the General Chairman of the Local Committee, are seen in a photo (frontispiece) taken in Willard Straight Hall, the Headquarters of the Congress (Morgan 1932). This scanned image was also made from a photograph saved by Buckler. An image of the Executive Committee for the Congress, also from this NCSU collection, can be viewed on the eCommons webpage (Maize Genetics Cooperation News Letter, eCommons https://ecommons.cornell.edu/handle/1813/58745).
At the 1932 International Genetics Congress, Emerson gave an opening address titled “The Present Status of Maize Genetics” (Kass & Bonneuil 2004). In his introduction he declared:

“I cannot refrain from noting here a very real advantage experienced by students of maize genetics ... I am aware of no other group of investigators who have so freely shared with each other not only their materials but even their unpublished data. The present status of maize genetics, whatever of noteworthy significance it presents, is largely to be credited to this somewhat unique, unselfishly cooperative spirit of the considerable group of students of maize genetics. In this connection I want gratefully to acknowledge the help of many persons who have contributed directly or indirectly to this summary statement of the status of maize genetics” (Kass 2001, Kass et al. 2005).

By October 1932, MNL 2 (= Rhoades MNL 1) was issued from Cornell, and provides a record that ten linkage groups had been assigned to ten maize workers. A report of the meeting held at the International Congress of Genetics was included in this MNL, as recorded by Secretary Rhoades (see also Kass et al. 2005). Emerson's numbered MNL 3, January 23, 1933, 16 pages (= Rhoades MNL 2), is identified as the “Third Corn News Letter” (MNL 14:56), and provided a long list of known genes of maize, among other items. By November 13, 1933, Rhoades issued a two-page call for information anticipating the forthcoming MNL 4, published the following month. This November call is not included in the Emerson bound volume, but was included in the files at Missouri (Coe & Kass 2005). By December 1933, Emerson's and Rhoades' MNLs were both numbered in agreement as MNL 4, 7 pages. Thereafter, the MNL volume numbers correspond (Coe & Kass 2005).

Rhoades left Cornell in 1935 and Emerson assumed editorship once again. In 1937, Derald Langham, Emerson's graduate student (Ph.D. 1939), became editor through MNL Volume 13 (March 1939). Emerson re-assumed editorship through 1944 (MNL 18), with the exception of MNL 15 (April 1, 1941), edited by Professor Fraser. Fraser had planned to assume editorship but, sadly, died in September of 1941. Robert L. Cushing was hired in 1943 to replace Fraser. Cushing edited MNLs 19 and 20 (1945-1946) and was succeeded by Harold H. Smith as editor and Professor of Genetics through MNL 26 (1952). It may have been Smith, in consultation with Emerson, who had the second set of MNLs (Volumes 15-21) bound for the library.

We have also included scans of the Cornell Plant Breeding Department's second bound volume of Maize News Letters (MNL 15-21, 1941-1947; see image on back cover). We believe that Emerson may have compiled this bound volume prior to his death on 8 December 1947. Note that MNL Volume 21, which we include in this book, was not scanned from this second bound volume. Due to technical difficulties with the library's book scanner, MNL Volume 21 was scanned from an unbound identical Albert R. Mann Library copy instead. As mentioned in the Preface, Cook provided funds to scan these early maize volumes, and provided guidance on copyright, and other items of value to include for historical perspective.

Professor Margaret Smith (Cornell Ph.D. 1982) has held Cornell's bound MNL collection for many years (Kass et al. 2005). She joined the Plant Breeding faculty in 1987. R.P. Murphy (Murph), former Chair of Plant Breeding (1953-1964), introduced Kass to Smith, when Kass sought information about McClintock's affiliation with the Maize Genetics Cooperation News Letter at the encouragement of former editor Coe (see Kass 2013ff.). Although Murphy had long ago left maize research, he had done his Ph.D. at Minnesota with one of the most prominent maize geneticists of his generation, Herbert K. Hayes, and continued his interest in the subject through the faculty in Plant Breeding (Murphy & Kass 2007, 2011). Having access to the early maize volumes led to cooperative efforts to expand the chronological list of materials related to maize cooperation (Coe & Kass 2005) and to provide historical perspectives on the cooperative spirit fostered at Cornell by Emerson (Coe 2001, Kass et al. 2005). Smith also tutored Kass in the reproductive biology of maize to further her understanding of the extensive field work required, and she introduced Kass to the cytogeneticists teaching in the Plant Breeding Department, who used slides prepared by McClintock for work reported in MNL (see Kass 2013ff.).

Judy Singer has been an invaluable resource to this project, and has been a long time member of Cornell's Department of Plant Breeding and Genetics. Singer facilitated all contacts for obtaining the photographs that appear in this book, and she designed and took the photo that appears on the back cover. Singer's cooperative spirit is reminiscent of the manner fostered by Plant Breeding Department Head Rollins A. Emerson. For many years, she has
worked towards the preservation of historical documents in this historically notable department, initiated by Dean Liberty Hyde Bailey in 1907 (Murphy & Kass 2007). Murphy, Kass, and Singer worked closely to save and identify documents for the history of Cornell's Plant Breeding Department (Murphy & Kass 2007), which was subsumed into the School of Integrative Plant Science when it was established in 2014, and to deposit these documents for posterity in the Cornell Archives.

In this tradition, and in celebration of the 90th Anniversary of the *Maize Genetics Cooperation News Letters*, the editors of this volume are pleased to present a digital record of the early *Maize News Letters*, founded at Cornell University by R.A. Emerson in April of 1929.

References Cited

Bridges, C.B., and M. Demerec. 1934. *Drosophila Information Service* [DIS] 1(March): 1–88. [DIS 1, p. 2 mentions a letter sent to Drosophila geneticists on Nov. 10, 1933, reporting that Drosophila workers plan to establish a similar service to that of the maize workers (Excerpts of DIS No. 1 have been digitized beginning with p. 54). *MNL* 4, p. 2, Dec. 18, 1933, reports that the Drosophila workers have decided to start a cooperative group modeled after the one for maize.]

Coe & Kass 2005 (see Annotated Bibliography and Appendix II)

Carter, T.C. et al. 1952. Nomenclature for Inbred Strains of Mice; Prepared by the committee on standardized nomenclature for inbred strains of Mice. *Cancer Res* 12:602-613. [Reference 1 states that the first Mouse News Letter was edited by L.C. Dunn at Columbia University. Subsequent issues were prepared by T.C. Carter, Hampstead, London. In this report there is no mention of Snell's (1941) or Law's (1948) previously published *Mouse Genetics News*.]

Crow 1992 (see Annotated Bibliography)

Fungal Genetics Reports (*FGR*). 2008--current. Published as an online resource by the Fungal Genetics Stock Center. Volumes 1 - 32 (1962 - 1985) were published as *Neurospora Newsletter*. From 1986 - 2007, *FGR* was continued as *Fungal Genetics Newsletter*, then *Fungal Genetics Reports* (2008-current), https://newprairiepress.org/fgr/

Jones 1932, Vol. 1 (see Annotated Bibliography)

Kass et al. 2005 (see Annotated Bibliography and Appendix I)

Maize Genetics Cooperation News Letter (see Annotated Bibliography)

Morgan 1932 (see Annotated Bibliography)

ZFIN NEWS, The Zebrafish Information Network, Volume 1, No. 1. Summer 2004 https://zfin.org/zf_info/news/Newsletter_Summer04.pdf; “ZFIN NEWS” is the ZFIN Newsletter, published bi-annually at the University of Oregon
The following pages offer a full page verbatim scan of the first *MNL*, sent to maize cooperators by R.A. Emerson on 12 April 1929 (Kass et al. 2005, Appendix I). The “Historical Notes on Maize Cooperation” listed on p. 56 of *MNL* 14 (1940) states that the mimeographed letter of April 12, 1929 is “considered *News Letter 1*” (see INTRODUCTION). The scan was made by Ed Coe from the archived files of E.G. Anderson (See Coe & Kass 2005, Appendix II).
TO STUDENTS OF MAIZE GENETICS:

You who attended the "cornshamb" in my hotel room at the time of the winter science meetings in New York will recall that I promised to prepare a summary of the published data involving linkage groups in maize, to add my own unpublished data, and to send these records to each of you for criticism and the addition of such unpublished records as you may care to furnish me. I am now enclosing the records promised, but can claim no credit for having assembled them. Professor Fraser had, before leaving for a year in Europe, abstracted the available published papers. Mr. Beadle has completed that work, has assembled my own unpublished records, and has arranged all the tables and charts.

I hope that each of you, whether or not you attended the New York meeting, will send me such relevant data as you have not yet published, showing either linkage or independent inheritance. In so far as you have data ready for publication, I prefer to receive a copy of your manuscript, but shall be glad to have also records which you are not ready to publish, if you care to send them. I agree not to publish any such data without your consent and in any case to give proper credit. Any records sent, however, should be with the understanding that I am at liberty to use them in an early revision of the mimeographed sheets for distribution to other workers, pending the publication of the general linkage paper which I have been threatening to bring out for some years now.

I indicated at New York that the records were too incomplete to warrant publication now, a fact made strikingly obvious by the "rainbows" on the maps. The distribution of the data in mimeographed form should serve temporarily the needs of those actively studying maize genetics; and others can wait. The coordination of effort agreed to in New York should go far toward straightening out many of the question marks in the next year or two.
In this connection, I add here, as a reminder, a list of those to whom linkage groups were parcelled out at New York.

C-Wx group - Eyster, Bucknell; Beadle, Cornell.
R-G group - Lindstrom, Jenkins, Wentz, Ames.
Su-Tu group - Emerson, Cornell.
B-Le group - Stadler, Missouri; McClintock, Cornell.
Y-Pl group - Hill, Cornell.
P-Bx group - Emerson, Cornell.
Ra-Gl group - Brewbaker, Minnesota; Brunson, Manhattan; Fraser, Cornell.
Pr-V$_2$ group - Eyster, Bucknell; Jorgenson, Ohio; Li, Cornell.
D$_1$-Pg$_2$ group - Not assigned.
A-Ts$_4$ group - Brink, Wisconsin; Li, Cornell.

To those not at the New York meeting, it should be explained that this assignment of groups was, so far as possible, made in accordance with the expressed interests of those assuming the responsibilities entailed. It was far from our purpose to preempt groups for ourselves and thereby warn off other workers. Our purpose rather was to make sure that each known group would be given immediate and adequate attention to the end that the not very exciting job of chromosome mapping may go forward with some dispatch, thereby making possible an attack on certain important genetic problems now awaiting just such tools as accurate linkage maps afford. It should go without saying therefore that the help of those of you who were not at the New York conference will be welcomed.

I suggest that those who have made themselves responsible for any group, request needed material directly from the workers most likely to have it, as indicated by the names in the last column of the table for that group. We at Cornell shall be glad to furnish on request tester stocks in so far as our somewhat limited supply will permit. It would doubtless be helpful if those who have particularly desirable testers for any group would proffer them to the ones who are primarily responsible for that group.

Sincerely,

R. A. Emerson
Linkage data.—

In the last column of the tables giving the linkage data for the several linkage groups, papers from which the records have been summarized are indicated by author and year. Not all published data are included. For instance, F2 data are omitted when abundant back-cross data are available. Records credited to an author without indication of the year are unpublished. In general, unpublished data received in personal correspondence are not included, except when no published records are available. Such data are doubtless incomplete. It is thought, therefore, that workers will prefer to add their complete data as of the spring of 1953.

X and Y in the column headings of the several tables indicate the dominant genes of the first column and x and y their respective recessive allelomorphs.

In the second column under the heading "Link, phase", C = coupling and R = repulsion, Bc = back-crossed and S = selfed.

Data presented in the table of three-point tests are included, not additional to, data in the several group tables. The first column of this table shows the genotype of one parent only, the other parent having obviously the respective allelomorphs of the genes of parent no. 1. The genotypes involved in columns 2 - 5 will be clear from the following illustration:

<table>
<thead>
<tr>
<th>Parental combinations</th>
<th>Region 1</th>
<th>Region 2</th>
<th>Regions 1 and 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 sh Wx C sh Wx-o C sh Wx C sh Wx-o C sh Wx C sh Wx-o C sh Wx</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I Sh Wx I sh Wx-i C sh Wx-I sh Wx-I sh Wx-I sh Wx-I sh Wx-I sh Wx</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Independent of linkage groups.—

This chart shows what tests have been made between genes of any one linkage group and those of other, presumably independent, groups. Thus, there are records involving approximately 9900 individuals from selfed parents indicating independence between C or I and A and approximately 2000 individuals in back-cross progenies indicating independence of sh and A. It is obvious that the data are not adequate to establish the independence of all the groups, and it is hoped that other workers will have unpublished data to fill in some of the "holes". As an example of the necessity of obtaining more nearly adequate data, a manuscript by Hayes and Brubaker (received after the stencils for the linkage tables had been cut) indicates that gl-1 belongs to the B-1g group, while Kendall's unpublished records suggest that Fl is in the C-wx group. The independence of these two groups is, therefore, questionable.
C-SH-WX GROUP

List of Genes

<table>
<thead>
<tr>
<th>Gene</th>
<th>Description</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>cr</td>
<td>Argentic - finely striped leaf</td>
<td>Eyster 1929</td>
</tr>
<tr>
<td>cu₁</td>
<td>Aurea chlorophyll-yellow plant</td>
<td>Eyster 1929</td>
</tr>
<tr>
<td>cu₂</td>
<td>Aurea chlorophyll-yellow seedling</td>
<td>Eyster 1929</td>
</tr>
<tr>
<td>lp</td>
<td>Brown pericarp with c</td>
<td>Heyes 1929</td>
</tr>
<tr>
<td>C</td>
<td>Colored aleurone with A and R</td>
<td>East and Hayes 1911</td>
</tr>
<tr>
<td>d₃</td>
<td>Dwarf plant</td>
<td>Suttle (Unpub.)</td>
</tr>
<tr>
<td>de₁₅</td>
<td>Defective endosperm</td>
<td>Brink 1927</td>
</tr>
<tr>
<td>f₁</td>
<td>Fluffy endosperm</td>
<td>Hayes and East 1915</td>
</tr>
<tr>
<td>gl₂</td>
<td>Glossy seedling</td>
<td>Hayes and Brewbaker 1925</td>
</tr>
<tr>
<td>gm₁</td>
<td>Germless</td>
<td>Eyster 1929</td>
</tr>
<tr>
<td>I</td>
<td>Inhibitor for aleurone color</td>
<td>East and Hayes 1911</td>
</tr>
<tr>
<td>pk</td>
<td>Polka dot leaf</td>
<td>Eyster 1929</td>
</tr>
<tr>
<td>v₁</td>
<td>Virescent seedling</td>
<td>Demerec 1924</td>
</tr>
<tr>
<td>v₁₄</td>
<td>Virescent seedling</td>
<td>Phipps (Unpub.)</td>
</tr>
<tr>
<td>v₁₅</td>
<td>Virescent seedling</td>
<td>Phipps (Unpub.)</td>
</tr>
<tr>
<td>w₁₁</td>
<td>White seedling</td>
<td>Demerec 1926</td>
</tr>
<tr>
<td>wx</td>
<td>Waxy endosperm</td>
<td>Collins 1909</td>
</tr>
<tr>
<td>yg</td>
<td>Yellow-green plant</td>
<td>Jenkins 1927</td>
</tr>
</tbody>
</table>

Notes

- **pk**: The 1929 data of Eyster on pk are not consistent with his earlier data. He makes the statement in his 1929 paper that pk and ar show relatively close linkage—hence pk probably lies on the wx side of C.

- **d₃**: In the material on which the d₃ and w₁₁ counts were made, the C and R factors were segregating. Demerec states that a calculation of the recombination percentage with C would suggest that both d₃ and w₁₁ were on the wx side of sh but that a calculation on such material could not be depended on.

- **cu₁**: The location of cu₁ to the right of sh is somewhat doubtful. Recombination values with C and sh are based on separate progenies. Neither cu₁ nor cu₂ have been tested with yg for allelomorphism.

- **v₁₄**: v₁₄ is known to be located in the C-sh-wx linkage group but the data (Phipps unpub.) are of such a nature that a recombination value cannot be calculated.
Linkage Data

<table>
<thead>
<tr>
<th>Genes</th>
<th>Link, phase</th>
<th>Number of individuals</th>
<th>Recombinations</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>XI Xy XI xy Total No.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. C and R segregating - 9:7 ratio
2. A, C and R segregating - 27:37 ratio
3. Ratio corrected for germination by author
4. See Three-point test data
5. Recombination value recalculated - author's calculation given as 39.7
R-G Group

List of Genes

<table>
<thead>
<tr>
<th>Gene</th>
<th>Description</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>df</td>
<td>Flint defective</td>
<td>Lindstrom 1925</td>
</tr>
<tr>
<td>g</td>
<td>Golden plant</td>
<td>Lindstrom 1918</td>
</tr>
<tr>
<td>gm2</td>
<td>Germless</td>
<td>Demerec 1926</td>
</tr>
<tr>
<td>li1</td>
<td>Lineate - striped leaves</td>
<td>Kompton 1926</td>
</tr>
<tr>
<td>l1</td>
<td>Lutous seedlings</td>
<td>Lindstrom 1917</td>
</tr>
<tr>
<td>l2</td>
<td>Lutous seedlings</td>
<td>Lindstrom 1925</td>
</tr>
<tr>
<td>nl</td>
<td>Narrow-leaf</td>
<td>Emerson (Unpub.)</td>
</tr>
<tr>
<td>pg1</td>
<td>Pale-green seedling</td>
<td>Brunson 1926</td>
</tr>
<tr>
<td>R</td>
<td>Aleurone color</td>
<td>East and Hayes 1921</td>
</tr>
<tr>
<td>S</td>
<td>Spotted aleurone with Rrr</td>
<td>Kompton 1919</td>
</tr>
<tr>
<td>v120</td>
<td>Virescent seedling</td>
<td>Phipps (Unpub.)</td>
</tr>
<tr>
<td>v20</td>
<td>Virescent seedling</td>
<td>Phipps (Unpub.)</td>
</tr>
<tr>
<td>W2</td>
<td>White seedling</td>
<td>Carver 1924</td>
</tr>
</tbody>
</table>
Linkage Data

<table>
<thead>
<tr>
<th>Genes</th>
<th>Link</th>
<th>Number of individuals</th>
<th>Recombinations</th>
<th>Authority</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X Y</td>
<td>X Y</td>
<td>X Y x y</td>
<td>X y Total No.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R G</td>
<td>C Be</td>
<td>200 55 56 154</td>
<td>487 113</td>
<td>23.2</td>
</tr>
<tr>
<td></td>
<td>C Be</td>
<td>237 36 33 195</td>
<td>491 69</td>
<td>14.1</td>
</tr>
<tr>
<td></td>
<td>R Be</td>
<td>29 81 86 18</td>
<td>214 47</td>
<td>22.0</td>
</tr>
<tr>
<td></td>
<td>R Be</td>
<td>18 117 156 28</td>
<td>319 46</td>
<td>14.4</td>
</tr>
<tr>
<td>R L</td>
<td>C S</td>
<td>303 2 5 121</td>
<td>451 1.6</td>
<td></td>
</tr>
<tr>
<td>G L</td>
<td>R Be</td>
<td>8 35 21 5</td>
<td>69 13</td>
<td>18.8</td>
</tr>
<tr>
<td>R P</td>
<td>C S</td>
<td>1907 303 1053 686</td>
<td>3946</td>
<td>23.3</td>
</tr>
<tr>
<td></td>
<td>R S</td>
<td>1199 506 445 32</td>
<td>2182</td>
<td>27.2</td>
</tr>
<tr>
<td>G P</td>
<td>C S</td>
<td>628 59 57 146</td>
<td>890 14.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R S</td>
<td>194 71</td>
<td>265</td>
<td></td>
</tr>
<tr>
<td>K W</td>
<td>C S</td>
<td>1329 171 202 402</td>
<td>2104</td>
<td>18.5</td>
</tr>
<tr>
<td></td>
<td>C S</td>
<td>648 74 81 157</td>
<td>960 13.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R S</td>
<td>43 16 22 2</td>
<td>83</td>
<td></td>
</tr>
<tr>
<td>W L</td>
<td>R S</td>
<td>815 210 10 1035</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R S</td>
<td>585 348 54 1177</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R S</td>
<td>560 318 70 948</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R S</td>
<td>380 402 115 897</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R L</td>
<td>R S</td>
<td>986 405 47 39</td>
<td>1893</td>
<td>33.9</td>
</tr>
<tr>
<td></td>
<td>C S</td>
<td>837 157 582 277</td>
<td>1893</td>
<td>35.4</td>
</tr>
<tr>
<td>R G</td>
<td>R S</td>
<td>2239 784 976 84</td>
<td>4083</td>
<td>31</td>
</tr>
<tr>
<td>G M</td>
<td>R S</td>
<td>6978 2947 1182 90</td>
<td>11095</td>
<td>47</td>
</tr>
<tr>
<td>G F</td>
<td>R S</td>
<td>2510 875</td>
<td>3683</td>
<td>30</td>
</tr>
<tr>
<td>G M</td>
<td>R S</td>
<td>635 255</td>
<td>1092</td>
<td>50</td>
</tr>
<tr>
<td>R V</td>
<td>G S</td>
<td>51 15 43 93</td>
<td>202</td>
<td>20</td>
</tr>
<tr>
<td>R V</td>
<td>C Be</td>
<td>77 10 80 152</td>
<td>319 12.5</td>
<td></td>
</tr>
<tr>
<td>C L</td>
<td>R Be</td>
<td>148 817 924 111 2000</td>
<td>259 25</td>
<td></td>
</tr>
<tr>
<td>R L</td>
<td>C Be</td>
<td>208 74 86 138</td>
<td>506 160</td>
<td>31.6</td>
</tr>
<tr>
<td></td>
<td>C Be</td>
<td>460 191 282 374</td>
<td>651 191</td>
<td>29.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G M</td>
<td>R Be</td>
<td>69 389 382 49</td>
<td>688 118</td>
<td>13.3</td>
</tr>
<tr>
<td>R M</td>
<td>C Be</td>
<td>219 93 116 191</td>
<td>619 209</td>
<td>33.8</td>
</tr>
</tbody>
</table>

1918 data indicate complete linkage

2C and R segregating - 9:7 colorone ratio

3W1 and w2 segregating

4W2 and w3 segregating

5W1, w2 and w3 segregating

6C and R segregating

7First two classes only

Notes

1. Lindstrom states that df and w3 are very closely linked but presents no data.
2. Kempton (1919) postulated this spotting factor, located so as to give about 12.5% recombinations with R.
3. Emerson (unpub.) has additional evidence in support of this assumption.
SU-TU GROUP

List of Genes

<table>
<thead>
<tr>
<th>Gene</th>
<th>Defective endosperm</th>
<th>Origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>do1</td>
<td></td>
<td>Mangeldsorf/1926</td>
</tr>
<tr>
<td>do6</td>
<td></td>
<td>Mangeldsorf 1926</td>
</tr>
<tr>
<td>do16</td>
<td></td>
<td>Wentz 1926 5</td>
</tr>
<tr>
<td>Ga</td>
<td>Gamete-pollen tube growth</td>
<td>Mangeldsorf/1925</td>
</tr>
<tr>
<td>ge1</td>
<td>Premature germination</td>
<td>Mangeldsorf 1926</td>
</tr>
<tr>
<td>su</td>
<td>Sugary endosperm</td>
<td>East and Hayes 1911</td>
</tr>
<tr>
<td>Ts5</td>
<td>Tassel-seed</td>
<td>Emerson (Unpub.)</td>
</tr>
<tr>
<td>Tu</td>
<td>Tunicate ear</td>
<td>Collins 1917</td>
</tr>
<tr>
<td>Wl</td>
<td>White-base leaf</td>
<td>Stroman 1925</td>
</tr>
</tbody>
</table>

Linkage Data

<table>
<thead>
<tr>
<th>Gene</th>
<th>Linkage</th>
<th>Number of individuals</th>
<th>Recombinations</th>
<th>Authority</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X Y</td>
<td>No. XY</td>
<td>XY</td>
<td>XY</td>
</tr>
<tr>
<td>Su</td>
<td>Tu C S</td>
<td>113</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>C Bc</td>
<td>430</td>
<td>7</td>
<td>169</td>
</tr>
<tr>
<td></td>
<td>C Be</td>
<td>612</td>
<td>296</td>
<td>208</td>
</tr>
<tr>
<td></td>
<td>R Be</td>
<td>1031</td>
<td>2498</td>
<td>2093</td>
</tr>
<tr>
<td></td>
<td>R Bc</td>
<td>63</td>
<td>215</td>
<td>164</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Su</td>
<td>Wl R S</td>
<td>44</td>
<td>19</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>R S</td>
<td>1918</td>
<td>1961</td>
<td>93</td>
</tr>
<tr>
<td>de16</td>
<td>Su C S</td>
<td>20622</td>
<td>453</td>
<td>7201</td>
</tr>
<tr>
<td>Su</td>
<td>V8 C S</td>
<td>940</td>
<td>214</td>
<td>179</td>
</tr>
<tr>
<td>V8</td>
<td>Tu C S</td>
<td>450</td>
<td>1</td>
<td>Lothal</td>
</tr>
<tr>
<td>de1</td>
<td>Su R S</td>
<td>601</td>
<td>238</td>
<td>247</td>
</tr>
<tr>
<td>de6</td>
<td>Su R S</td>
<td>204</td>
<td>92</td>
<td>-</td>
</tr>
<tr>
<td>ge1</td>
<td>Su R S</td>
<td>1218</td>
<td>474</td>
<td>-</td>
</tr>
<tr>
<td>Su</td>
<td>Ts5 C Bc</td>
<td>578</td>
<td>41</td>
<td>42</td>
</tr>
<tr>
<td>Ts5</td>
<td>Tu R Bc</td>
<td>49</td>
<td>166</td>
<td>115</td>
</tr>
</tbody>
</table>

Notes

- do16 is used instead of do su for sugary defective of Wentz.
- V8 is very near Tu but whether to the left or right is unknown.
- Ga is to the left of su because it disturbs the Tu-tu ratio very little if at all in pedigrees in which it disturbs the Su-su ratio materially (Emerson, Unpub.).
- do1 is presumably to the left of Ga, because Ga is between do and su (Mangeldsorf and Jones 1925).
B-LG GROUP

List of Genes

<table>
<thead>
<tr>
<th>Gene</th>
<th>Description</th>
<th>Authority</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Intensifier of plant color</td>
<td>Emerson 1918</td>
</tr>
<tr>
<td>lg</td>
<td>Liguleless</td>
<td>Emerson 1912</td>
</tr>
<tr>
<td>sk</td>
<td>Silkless</td>
<td>Jones 1925</td>
</tr>
<tr>
<td>ts</td>
<td>Tassel-seed</td>
<td>Emerson 1920</td>
</tr>
<tr>
<td>v4</td>
<td>Virescent seedling</td>
<td>Demerec 1924</td>
</tr>
</tbody>
</table>

Linkage Data

<table>
<thead>
<tr>
<th>Genes</th>
<th>Link</th>
<th>X Y phase</th>
<th>Number of individuals</th>
<th>Recombinations</th>
<th>Authority</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>X Y</td>
<td>X Y</td>
<td>x Y</td>
<td>Total</td>
</tr>
<tr>
<td>B</td>
<td>Lg</td>
<td>C Be</td>
<td>240</td>
<td>134</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C Be</td>
<td>642</td>
<td>291</td>
<td>282</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C Be</td>
<td>2467</td>
<td>1469</td>
<td>1557</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R Be</td>
<td>498</td>
<td>1035</td>
<td>1037</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Lg</td>
<td>R Be</td>
<td>51</td>
<td>65</td>
<td>64</td>
</tr>
<tr>
<td>Lg</td>
<td>Ts</td>
<td>C Be</td>
<td>117</td>
<td>52</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R Be</td>
<td>51</td>
<td>65</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>V4</td>
<td>C Be</td>
<td>113</td>
<td>24</td>
<td>21</td>
</tr>
<tr>
<td>V4</td>
<td>Lg</td>
<td>R Be</td>
<td>412</td>
<td>501</td>
<td>521</td>
</tr>
<tr>
<td>B</td>
<td>Sk</td>
<td>C Be</td>
<td>1,332</td>
<td>97</td>
<td>106</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R Be</td>
<td>2</td>
<td>82</td>
<td>66</td>
</tr>
<tr>
<td>Lg</td>
<td>Sk</td>
<td>R Be</td>
<td>187</td>
<td>288</td>
<td>315</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Y-PL GROUP

List of Genes

<table>
<thead>
<tr>
<th>Gene</th>
<th>Description</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bh</td>
<td>Blotched alicurone with A c R</td>
<td>Emerson (Unpub.)</td>
</tr>
<tr>
<td>pl</td>
<td>Purple streaked leaves</td>
<td>Anderson 1922</td>
</tr>
<tr>
<td>P1</td>
<td>Purple plant color</td>
<td>Emerson 1918</td>
</tr>
<tr>
<td>sm</td>
<td>Salmon silks</td>
<td>Anderson 1921</td>
</tr>
<tr>
<td>Vf</td>
<td>Virescent seedling</td>
<td>Carver 1927</td>
</tr>
<tr>
<td>v7</td>
<td>Virescent seedling</td>
<td>Carver 1927</td>
</tr>
<tr>
<td>W1</td>
<td>White seedling</td>
<td>Stroman 1924</td>
</tr>
<tr>
<td>W5</td>
<td>White seedling with W5</td>
<td>Demerec 1924</td>
</tr>
<tr>
<td>Wf</td>
<td>White seedling with Wf</td>
<td>Demerec 1924</td>
</tr>
</tbody>
</table>

Linkage Data

<table>
<thead>
<tr>
<th>Genes</th>
<th>Link</th>
<th>Number of individuals</th>
<th>Recombinations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X Y</td>
<td>No.</td>
<td>X Y</td>
</tr>
<tr>
<td>Y</td>
<td>pl</td>
<td>C Be</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>545</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>173</td>
</tr>
<tr>
<td>R</td>
<td>Be</td>
<td>C Be</td>
<td>367</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>336</td>
</tr>
<tr>
<td>pl</td>
<td>Sm</td>
<td>C Be</td>
<td>1078</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>84</td>
</tr>
<tr>
<td>Y</td>
<td>W5</td>
<td>C S</td>
<td>220</td>
</tr>
<tr>
<td>Y</td>
<td>W6</td>
<td>S</td>
<td>349</td>
</tr>
<tr>
<td>Y</td>
<td>V1</td>
<td>C S</td>
<td>1322</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>456</td>
</tr>
<tr>
<td>Y</td>
<td>V6</td>
<td>R S</td>
<td>467</td>
</tr>
<tr>
<td>Y</td>
<td>V7</td>
<td>C S</td>
<td>592</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>445</td>
</tr>
<tr>
<td>Y</td>
<td>V8</td>
<td>R S</td>
<td>497</td>
</tr>
<tr>
<td>Y</td>
<td>V9</td>
<td>R S</td>
<td>567</td>
</tr>
<tr>
<td>Y</td>
<td>Wf</td>
<td>C Be</td>
<td>124</td>
</tr>
<tr>
<td>Y</td>
<td>Wf</td>
<td>C Be</td>
<td>58</td>
</tr>
</tbody>
</table>

Notes

1 w5 and w6 duplicate genes
2 Segregating for another v - not linked
3 Probably part of this class actually Bh
4 From Bh class

m1) Stroman presents data which he interprets as showing linkage between m1 and m2 and also between m1 and y.
m2) His data are sufficient extensive only to suggest that these factors may belong to this linkage group.
Y Pl Group
List of Genes

- Bn: Brown aleurone
- gl: Glossy seedling
- in: Intensifier of aureone
- Pg: Pale-green seedling
- ra: Ramose
- sl: Slaed seedling
- ar: Striote-striped leaf
- v: Virecent

Linkage Data

<table>
<thead>
<tr>
<th>Genes</th>
<th>Link.</th>
<th>Number of individuals</th>
<th>Recombinations</th>
<th>Authority</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>X Y</td>
<td>X Y</td>
<td>X Y</td>
</tr>
<tr>
<td>Bn</td>
<td>gl</td>
<td>C Bc 177 63 54 192 486 117 24.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gl V5</td>
<td></td>
<td>C Bc 106 9 6 120 241 15 6.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bn</td>
<td>V5</td>
<td>C Bc 83 31 29 98 241 60 24.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bn</td>
<td>Ra</td>
<td>C Bc 159 104 100 161 534 204 36.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bn</td>
<td>Pg</td>
<td>C Bc 283 8 5 65 281 4.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gl</td>
<td>Sr</td>
<td>R Bc 97 289 342 63 791 160 20.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes

1. Hayes and Brevbaker state that sl belongs to this linkage group.
2. Hayes and Brevbaker present data showing a linkage between two factors for yellow endosperm (Yg and Yp) and a glossy seedling factor. Since the relation of the glossy character to gl is not evident, the placing of these two genes in this linkage group would appear uncertain.
ra-gl_{1}\text{ Group}
FR-V₂ GROUP

List of Genes

<table>
<thead>
<tr>
<th>Gene</th>
<th>Description</th>
<th>Authority</th>
</tr>
</thead>
<tbody>
<tr>
<td>bm</td>
<td>Brown midrib</td>
<td>Eyster 1926</td>
</tr>
<tr>
<td>bv</td>
<td>Brovis - semi-dwarf plant</td>
<td>Satlle (Unpub.)</td>
</tr>
<tr>
<td>f₂</td>
<td>Fine striped leaves</td>
<td>Eyster 1926</td>
</tr>
<tr>
<td>Pr</td>
<td>Purple alcurone</td>
<td>East and Hayes 1911</td>
</tr>
<tr>
<td>sc₁</td>
<td>Scarred endosperm</td>
<td>Eyster 1926</td>
</tr>
<tr>
<td>tn</td>
<td>Tiny plant</td>
<td>Eyster 1926</td>
</tr>
<tr>
<td>v₂</td>
<td>Variegated seedling</td>
<td>Demaree 1924</td>
</tr>
<tr>
<td>v₃</td>
<td>Variegated seedling</td>
<td>Demaree 1924</td>
</tr>
<tr>
<td>v₁₂</td>
<td>Variegated seedling</td>
<td>Phipps (Unpub.)</td>
</tr>
<tr>
<td>yg</td>
<td>Yellow green</td>
<td>Eyster 1926</td>
</tr>
<tr>
<td>ys</td>
<td>Yellow-stripe</td>
<td>Bdele 1929</td>
</tr>
</tbody>
</table>

Linkage Data

<table>
<thead>
<tr>
<th>Genes</th>
<th>Link.</th>
<th>Number of individuals</th>
<th>Recombinations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>X Y</td>
<td>x y</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x y</td>
<td>x y</td>
</tr>
<tr>
<td>Pr</td>
<td>V₂</td>
<td>R Be</td>
<td>377</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C B</td>
<td>67</td>
</tr>
<tr>
<td>Pr</td>
<td>V₂</td>
<td>R Be</td>
<td>123</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C S</td>
<td>61</td>
</tr>
<tr>
<td>Pr</td>
<td>Y₂</td>
<td>R Be</td>
<td>219</td>
</tr>
</tbody>
</table>

Notes

- bm: Eyster states that bm shows about 20 per cent recombinations with Pr but presents no data.
- f₂: Eyster states that these genes belong to the Pr linkage group but presents no data.
- sc₁: Eyster states that these genes belong to the Pr linkage group but presents no data.
- tn: Eyster states that these genes belong to the Pr linkage group but presents no data.
- yg: Li (Unpub.) has evidence that bv and Pr are relatively closely linked.
Pr v_2 Group
D1 - F2 GROUP

List of genes

- **D1** Dwarf plant Emerson 1912
- **PG2** Pale-green seedling Demerec 1924
- **cr** Crinkly leaves Emerson 1921

Linkage Data

<table>
<thead>
<tr>
<th>Genes</th>
<th>Linkage</th>
<th>Number of individuals</th>
<th>Recombinations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X Y</td>
<td>XY XY XY XY XY</td>
<td></td>
</tr>
<tr>
<td>D1 PG2</td>
<td>R S</td>
<td>1364 584 580 65 2593</td>
<td>32 Demerec '24</td>
</tr>
<tr>
<td>D1 Cr</td>
<td>R Bc</td>
<td>15 53 48 15 131</td>
<td>10 22.9 Emerson</td>
</tr>
<tr>
<td></td>
<td>C Bc</td>
<td>516 102 482</td>
<td>1209 202 17.3 Emerson</td>
</tr>
</tbody>
</table>

Total: 1340 233 17.8
d \ pg_2 \ Group
List of Genes

<table>
<thead>
<tr>
<th>Gene</th>
<th>Description</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Anthocyanin pigment</td>
<td>Emerson 1918</td>
</tr>
<tr>
<td>na</td>
<td>Dwarf plant</td>
<td>Buttle (Unpub.)</td>
</tr>
<tr>
<td>ts4</td>
<td>Tassel-seed</td>
<td>Phipps 1928</td>
</tr>
</tbody>
</table>

Linkage Data

<table>
<thead>
<tr>
<th>Genes</th>
<th>Link.</th>
<th>Phase</th>
<th>Number of Individuals</th>
<th>Recombinations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>X Y</td>
<td>X Y</td>
</tr>
<tr>
<td>A Ts4</td>
<td>C Br</td>
<td>90</td>
<td>63</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>R Br</td>
<td>262</td>
<td>351</td>
<td>372</td>
</tr>
</tbody>
</table>

Notes

Li (Unpub.) has evidence that na is linked with A, showing about 40 per cent of recombinations. Jones (Unpub.) also has evidence of this linkage.
A σ_4 Group

A
\[t_{\sigma_4} \]
\[\eta_2 \]
Summary of Three-Point Linkage Tests in Maize

<table>
<thead>
<tr>
<th>Parent Combinations</th>
<th>Recombinations</th>
<th>Coincidence</th>
<th>Authority</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parent No. 1</td>
<td>Region 1</td>
<td>Region 2</td>
<td>Region 1 & 2</td>
</tr>
<tr>
<td>Cash Wx</td>
<td>2538</td>
<td>2708</td>
<td>5246</td>
</tr>
<tr>
<td>R Sh wx</td>
<td>2213</td>
<td>2280</td>
<td>4495</td>
</tr>
<tr>
<td>yg C Sh</td>
<td>54</td>
<td>51</td>
<td>105</td>
</tr>
<tr>
<td>C sh ar</td>
<td>4673</td>
<td>4138</td>
<td>8816</td>
</tr>
<tr>
<td>Ta Su tu</td>
<td>163</td>
<td>113</td>
<td>276</td>
</tr>
<tr>
<td>Ta b Lg</td>
<td>111</td>
<td>71</td>
<td>21</td>
</tr>
<tr>
<td>Ta B Lg</td>
<td>57</td>
<td>57</td>
<td>296</td>
</tr>
<tr>
<td>St B Lg</td>
<td>148</td>
<td>131</td>
<td>279</td>
</tr>
<tr>
<td>Y Pl Sm</td>
<td>191</td>
<td>180</td>
<td>109</td>
</tr>
<tr>
<td>Y Pl sm</td>
<td>436</td>
<td>277</td>
<td>169</td>
</tr>
<tr>
<td>Y pl sm</td>
<td>305</td>
<td>285</td>
<td>107</td>
</tr>
<tr>
<td>Y pl sm</td>
<td>333</td>
<td>411</td>
<td>183</td>
</tr>
<tr>
<td>Te tr F</td>
<td>12</td>
<td>8</td>
<td>20</td>
</tr>
<tr>
<td>En Cl</td>
<td>83</td>
<td>98</td>
<td>181</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Author</th>
<th>122</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jenkins</td>
<td>127</td>
</tr>
<tr>
<td>Eyster</td>
<td>124</td>
</tr>
<tr>
<td>Emerson</td>
<td>125</td>
</tr>
<tr>
<td>Anderson</td>
<td>121</td>
</tr>
<tr>
<td>Kvakhan</td>
<td>124</td>
</tr>
</tbody>
</table>
Summary of Data on the Independence of the

<table>
<thead>
<tr>
<th>yg</th>
<th>Cl</th>
<th>sh</th>
<th>wx</th>
<th>v1</th>
<th>au</th>
<th>R</th>
<th>g1</th>
<th>nl</th>
<th>li</th>
<th>v18</th>
<th>v2c</th>
<th>Ts_B</th>
<th>su</th>
<th>Tu</th>
<th>ts</th>
<th>v4</th>
<th>sk</th>
<th>B</th>
<th>lg</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>99</td>
<td>20</td>
<td>5</td>
<td>48</td>
<td></td>
<td>99</td>
<td>9</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>30</td>
<td>1</td>
<td>12</td>
<td>13</td>
<td>30</td>
<td>6</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>5</td>
<td>12</td>
<td></td>
<td></td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Pr</td>
<td>8</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>6</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>8</td>
<td>13</td>
<td></td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V2</td>
<td></td>
<td>7</td>
<td>6</td>
<td>4</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>7</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>V3</td>
<td></td>
</tr>
<tr>
<td>V12</td>
<td></td>
</tr>
<tr>
<td>F1</td>
<td>2</td>
<td>14</td>
<td>4</td>
<td>9</td>
<td>6</td>
<td></td>
<td>29</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bn</td>
<td></td>
<td>26</td>
<td>14</td>
<td>14</td>
<td>9</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td></td>
<td>7</td>
<td>6</td>
<td>4</td>
<td></td>
<td>16</td>
<td>3</td>
<td>3</td>
<td>10</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td>2</td>
<td>12</td>
<td>6</td>
<td>6</td>
<td></td>
<td>15</td>
<td>4</td>
<td>2</td>
<td>10</td>
<td>1</td>
<td>10</td>
<td>4</td>
<td>13</td>
<td>1</td>
<td>14</td>
<td>14</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>Pl</td>
<td></td>
<td>6</td>
<td>5</td>
<td>6</td>
<td></td>
<td>12</td>
<td>5</td>
<td>11</td>
<td>8</td>
<td>13</td>
<td>1</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>10</td>
<td>4</td>
<td>14</td>
<td>44</td>
<td>1</td>
</tr>
<tr>
<td>SM</td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>12</td>
<td>7</td>
<td>5</td>
<td>12</td>
<td>5</td>
<td>12</td>
<td>13</td>
<td></td>
<td>8</td>
<td>4</td>
<td>5</td>
<td>10</td>
<td>5</td>
<td>13</td>
<td>10</td>
<td>21</td>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V2</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>33</td>
<td>11</td>
<td>19</td>
<td>15</td>
<td></td>
<td>46</td>
<td>1</td>
<td>7</td>
<td>7</td>
<td>10</td>
<td>7</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lg</td>
<td></td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>55</td>
<td>3</td>
<td>10</td>
<td>7</td>
<td>10</td>
<td>7</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ts</td>
<td></td>
</tr>
<tr>
<td>Su</td>
<td></td>
</tr>
<tr>
<td>Tu</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td></td>
</tr>
<tr>
<td>G1</td>
<td></td>
</tr>
<tr>
<td>li</td>
<td></td>
</tr>
<tr>
<td>v18</td>
<td></td>
</tr>
<tr>
<td>V20</td>
<td></td>
</tr>
</tbody>
</table>

Continued on next page
Figure in table represent approximately the number of hundreds of individuals counted, the counts suggesting independent inheritance.

Counts on backcross progenies are distinguished by an underscore from counts from self pollinations.
In general, only papers containing data on the linkage or independence of factors in known linkage groups are listed.

- Pericarp studies in maize. II. The alleles of a series of factors for pericarp color. Genetics 9: 442-453. 1924.

Carver, W. A. - The genetic relation of endosperm and chlorophyll characters in maize. Proc. Iowa Acad. Sci. 31: 129. 1924. (A short note without data in which it is stated that brindled, a chlorophyll defect, shows linkage with aw with about 26% of recombinations).

Demerec, M. - Inheritance of white seedlings in maize. Genetics 8: 561-593. 1923.

- Genetic relations of five factor pairs for virulent seedlings in maize. N. Y. (Cornell) Agric. Exp. Sta. Mem. 84: 3-58. 1924.

- Aberrant endosperm development as a means of distinguishing linkage groups in maize. Amer. Nat. 58: 272-277. 1924.

and Emerson, Sterling H. - Genetic interrelations of two andromonoecious types of maize, dwarf and anther ear. Genetics 7: 202-236. 1922.

and Hutchison, C. B. - The relative frequency of crossing over in microspore and in megaspore development in maize. Genetics 6: 417-432. 1921.

- Inheritance of zigzag culms in maize. Genetics 7: 559-567. 1922.

- The intensity of linkage between the factors for sugary endosperm and for tunicate ears and the relative frequency of their crossing over in microspore and megaspore development. Genetics 7: 597-601. 1922.

- Glossy seedlings in maize. Amer. Nat. 62; 228-235. 1928.

- Concerning the inheritance of green and yellow pigments in maize seedlings. Genetics 6: 91-110. 1921.

- Genetic research with maize. Genetics 5: 327-356. 1923.

- Complementary genes for chlorophyll development in maize and their linkage relations. Genetics 9: 305-326. 1924.

Meyers, Marion T. - A second recessive factor for brown pericarp in maize. Ohio Jour. of Science XXVII: 296-300. 1927.

Stroman, G. M. - Genetic relations of chlorophyll and anthocyanin seedling characters in maize. Genetics 9: 91-123. 1924.

Introduction to *Maize Genetics Cooperation News Letters*, Volumes 2-14 (1932-1940)

The following pages offer verbatim scans of the first set of bound *MNL* Volumes 2-14 (1932-1940) numbered by hand in pencil, beginning with October 1932, labeled “Vol. 2” (*MNL* 2; Coe & Kass 2005, Appendix II; see also Kass et al. 2005, Appendix I). The binding on the first set of bound News Letters clearly shows that 1932 was considered to be *MNL* Vol. 2 (see image on back cover).

MNL Volumes 2-14 are arranged below sequentially, numbered as per Emerson’s system (*MNL* 14:56, 1940), and inter-leaved with calls and other items as found in the Plant Breeding bound volumes (Scanning of *MNL* bound volumes was arranged by Michael Cook).

Not included here is the “second folder” of Linkage data mentioned by Emerson in his Historical Summary (*MNL* 14:56, 1940). That document was among the papers of E.G. Anderson and also in the archives of the Rockefeller Foundation (Kass et al. 2005, Appendix I; Coe & Kass 2005, Appendix II).

Note that both Emerson and Beadle sent many communications to maize cooperators prior to issuing *MNL* Vol. 2, 1932 (Coe & Kass 2005, Appendix II). Marcus Rhoades assumed editorship of the *MNL* as of October 5th 1932. Succeeding editors through 1940 were R.A. Emerson, Derald Langham, Emerson then Allan C. Fraser.
MAIZE GENETICS COOPERATION

NEWS LETTER

1932

Department of Plant Breeding
Cornell University
Ithaca, N. Y.
To Corn Geneticists:

Enclosed with this is a report of the meeting of corn geneticists held at Ithaca at the time of the Genetics Congress and a report of a committee provided for at that meeting.

In accordance with the action taken by the whole group and by the committee, it is requested that, as soon as convenient, you send to the undersigned a small quantity of seed of any stocks which you think may be useful to other workers now or which should be maintained for future use. As these lots of seed are received, a record of them will be made and later sent to all of you so that you may know what is available. As an illustration of combinations of genes such as should be available for distribution, a list of types now in our possession at Cornell is given below. You should not fail to send material even tho it duplicates stocks in this list.

1. lg-gl₂-b-v₄
2. En-ra-v₅
3. En-gl₁-v₅
4. y-Pl-al
5. a₁ P sh wx lg f₁
6. A B Pl lg sh wx y
7. lg g a₁-na-ts₄
8. p-(Ts₁Ts₂)-(ff)-(Br br)-an
9. A₁-na-cr gl₁-v₅ ts₂-f₁ Y-Pl
10. a₁ j B-lg Y-Pl C r² pr
11. P-br-f-an
12. P-br-f-brn₂

A limited supply of trisomic seed is available for the b-lg, a-na, pr-v₂, Y-Pl, ra-gl₁, j, c-wx and r-g linkage groups. We shall be glad to supply samples of this seed to the different individuals charged with the responsibility of the various groups. If the demand is not too great we shall try to supply all requests for trisomic seed.

If your work requires some unusual set-up or if you want better material of certain types than you now have, please indicate your needs at once. These requests will then be circulated from this office. As an illustration of what is in mind here, Emerson wants an early maturing stock involving green-striped. He also desires the combination adherent-ether ear.

M. M. Rhoades, Sec'y
Report of a meeting held during the Genetics Congress on August 26th by those interested in corn genetics

- M. M. Rhoades -

The meeting was called to order by Dr. R. A. Emerson. Approximately 45 individuals were present.

The following resolutions were discussed and favorably acted upon:

1. That the dropping of the second letter in bi-literal symbols to form a subscript be condemned as confusing and unsatisfactory.

2. That some place be designated as a 'clearing house' to assist in the assigning of appropriate names and symbols for characters and genes. Cornell was chosen as the institution where the records will be kept and help given in the assigning of symbols. An example of how this 'clearing house' may be expected to function is as follows: Two individuals, A and B, are working on glossy seedlings. A reports he has 5 and B reports he has 4 new glossy seedlings. A will then be assigned from glA to glc and B will be assigned from glD to glEP. This should avoid the confusion that arises when two investigators use the same symbols for different genes.

3. That a repository be formed for the storing and disseminating of new genes and of desirable multiple factor combinations, and that a list of such genes and combinations be furnished those interested from time to time.

4. That the geneticists refrain from designating the linkage groups by numbers until the cytologists agree to the size sequence of the different members of the haploid set.

5. That a committee be appointed by Dr. Emerson to consider the problems connected with the maintenance of a central seed repository. The report of the committee follows:

In accordance with the action noted above a committee was appointed consisting of Brink, Jones, Mangelsdorf, Stadler, and Emerson (chairman). The committee met and took action as follows:

1. The genetics group at Cornell, with M. M. Rhoades in charge, is to act as custodian of these stocks.

2. The custodian is to receive from the several workers seed of any stocks involving new characters considered by the finder as worth saving and certainly any such characters the linkage of which is known, also particularly useful combinations of genes in the several groups, etc.
3. The custodian will furnish those interested a list of the stocks received.

4. He will distribute on request small lots of particular stocks to workers having need of them.

5. The custodian will see that viable seed of these stocks is provided at least every three or four years by those charged with growing them.

6. The finder of a new character is expected to maintain the stock or to notify the custodian that he can not do so. Those assuming responsibility for particular groups will maintain stocks involving all the genes of those groups and will endeavor to build up desirable combinations of genes of the particular groups.

7. The following assignment of groups was made by the committee:

<table>
<thead>
<tr>
<th>Group</th>
<th>Symbol</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>P-br</td>
<td>Emerson</td>
</tr>
<tr>
<td>2</td>
<td>B-lg</td>
<td>Beadle</td>
</tr>
<tr>
<td>3</td>
<td>a_1-Rg</td>
<td>Brink</td>
</tr>
<tr>
<td>4</td>
<td>su-Tu</td>
<td>Jones</td>
</tr>
<tr>
<td>5</td>
<td>pr-v</td>
<td>Burnham</td>
</tr>
<tr>
<td>6</td>
<td>Y-Pl</td>
<td>Stadler</td>
</tr>
<tr>
<td>7</td>
<td>g_1-ra</td>
<td>Jenkins</td>
</tr>
<tr>
<td>8</td>
<td>j</td>
<td>Sprague</td>
</tr>
<tr>
<td>9</td>
<td>c-vx</td>
<td>Eyster</td>
</tr>
<tr>
<td>10</td>
<td>R-g_1</td>
<td>Lindstrom</td>
</tr>
</tbody>
</table>

Any of the above who cannot assume or continue responsibility for the group assigned him is to notify the custodian at once. It is to be understood that anyone may begin or continue work with any group whether or not it has been assigned to him. The purpose is not so much to prevent duplication as to insure that no group is neglected. It is expected, however, that when two or more are interested in the same group, they will work in close cooperation!

R. A. Emerson (chairman)
January 23, 1933

The data presented here are not to be used in publications without the consent of the authors.

Department of Plant Breeding
Cornell University
Ithaca, N. Y.
December 12, 1932

To Maize Geneticists:

If you have any good tester combinations you wish to send in so that they may be made available for the whole group or if there is any combination of genes you would like to have, will you please notify us here at Cornell so that we may list your contributions and wants in the corn-letter which will come out in the near future. January 1st has been set as the dead line for receipt of material to be included in the letter. Will you please cooperate with us so that we can make this cooperative affair a real service to all concerned.

We plan to include in the letter a summary of the technic employed by the Russian physiologist, Lysenko, in his "Springefication" of corn.

If any of you have this year's linkage data which could be added to the linkage summary, we shall be glad to receive them at once. The summary is in preparation for publication.

Sincerely yours,

M. M. Rhoades
To maize geneticists:-

We are including in this report an inventory of all maize characters whose description has either been published or called to our attention. We are also including a summary of the technique employed by Lyssenko in his 'Jarovization' of corn. Demerec was kind enough to make the translation from the Russian.

The response of the maize geneticists to the two letters from this office asking for their cooperation in establishing a clearing house and central repository has been good. Either seed or the statement that certain stocks were available and would be sent later has been received from the following institutions: Wisconsin, Texas A. and M., Missouri, Carnegie Institution, U. S. Department of Agriculture, Connecticut Agricultural Experiment Station, California Institute of Technology, Minnesota, Ames, Bucknell and Cornell. A list of these stocks is included in this report.

The following wants have been received:

1. Related stocks homozygous for Ga and ga. Sprague.

2. A multiple recessive stock for each chromosome involving as great a map distance as possible with genes so situated as to reduce undetected double crossovers to a minimum. Sprague.

3. Variegated pericarp material from different sources. Whenever possible variegated/red cob white combination is preferable. Demerec.

4. Allelomorphs or suspected allelomorphs of R such as marbled, stippled, navajo, mottled, etc., and allelomorphs of R affecting plant characters. Stadler.

5. Multiple recessive combinations of genes in the pr-v2 group. Rhoades.

6. Any recessive gene in the gl1 v5 group that is carrying dominant yellow endosperm. Hayes.

7. The combinations a1-Y-P1; ij-ra-gl1; a1-na1 lg1-gl2-b; pr-bm1 su-gl3; Y-P1 pr-bm1; P-f1-an; p-f1-an. Burnham.
8. Multiple seedling combinations for the same and different linkage groups; particularly new genes such as lg2, glossies, argostripe. Randolph.

9. The combination a^pr in with any glossy. Randolph.

10. Seedling genes in the Y-Pl group other than al and py. Randolph.

Recommendations concerning symbols for new characters:

Since approximately 290 different characters in maize have been described and assigned symbols it is becoming more and more difficult to find appropriate symbols, suggestive of the character, for new genes. Therefore, we recommend the following:

When a new character arises which is similar in its appearance to a previously described character it should be given the same symbol as that used for the old character except that the subscript, of course, shall be different. This has been done in the past, e.g. the different virescents, glossy seedlings, etc., but it has not been followed in all cases. As a concrete example of what we have in mind, we have different striped leaves described as fine streaked, fine striped, green striped, yellow striped, japonica, iojap, striate, etc. The number of genetically different striped characters will probably be great. Therefore, instead of trying to find a new symbol for a new stripe designate it as j2 if it resembles japonica, or ysg if it resembles yellow stripe, etc. The same holds for the male steriles, dwarfs, etc. Unless we are willing to do this we shall be forced to use tri-literal symbols, or bi-literal symbols which in no way suggest the appearance of the character.

We strongly urge that you correspond with this office before assigning symbols to new characters. We shall keep the list of assigned symbols up to date so that we can be of assistance in assigning the proper symbols. The success of this project depends entirely upon your cooperation. There have been several instances in the past where the same symbol has been used for different genes. This is confusing not only to maize geneticists but to others.

Listed below are the best available multiple combinations of genes in each of the 10 chromosomes:

Some of these stocks have just been isolated and the supply of seed is limited. By next summer enough seed should be available for everybody having a legitimate use for the stocks. However an attempt will be made this spring to supply any of the listed stocks as long as the supply holds out.
<table>
<thead>
<tr>
<th>Chromosome</th>
<th>Combination</th>
<th>Map distance covered by these factors</th>
<th>Total length of known genetic map</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>p-br-f _bm _</td>
<td>125 ±</td>
<td>125 ±</td>
</tr>
<tr>
<td>II</td>
<td>lg _gl _b-v _</td>
<td>30 ±</td>
<td>80 ±</td>
</tr>
<tr>
<td>III</td>
<td>a _na-cr _</td>
<td>79 ±</td>
<td>79 ±</td>
</tr>
<tr>
<td>IV</td>
<td>su-Tu-gl _</td>
<td>40 ±</td>
<td>70 ±</td>
</tr>
<tr>
<td>V</td>
<td>ys-pr-bm _</td>
<td>30 ±</td>
<td>87 ±</td>
</tr>
<tr>
<td></td>
<td>pr-bm _v _</td>
<td>57 ±</td>
<td></td>
</tr>
<tr>
<td>VI</td>
<td>al-y-pl-py</td>
<td>69 ±</td>
<td>69 ±</td>
</tr>
<tr>
<td>VII</td>
<td>Bn-gl _v _</td>
<td>26 ±</td>
<td>26 ±</td>
</tr>
<tr>
<td></td>
<td>Bn-ra-v _</td>
<td>26 ±</td>
<td></td>
</tr>
<tr>
<td>VIII</td>
<td>j-ms _</td>
<td>20 ±</td>
<td>27 ±</td>
</tr>
<tr>
<td>IX</td>
<td>yg _c-sh-wx</td>
<td>52 ±</td>
<td>96 ±</td>
</tr>
<tr>
<td>X</td>
<td>r-g-nl</td>
<td>33 ±</td>
<td>33 ±</td>
</tr>
</tbody>
</table>

Jarovization technique:

At the Sixth International Congress of Genetics, Professor Vavilov reported Lyssenko's discovery by which the growing period of plants can be appreciably shortened (jarovization). If the claims of the workers investigating this problem are justified, this discovery is of great importance to plant geneticists and to plant breeders.

Following is the description of the method worked out for maize and described in the Bulletin of Jarovization, 283: 105-108, 1932.

1. Add water to increase the water content of the seed to 30 per cent of weight.

2. Keep the seed in darkness for 10 to 15 days at a temperature of 20 to 30 centigrade and allow it to germinate. By regulating moisture the germination process should be controlled so that the germ does not develop excessively.
The following stocks have been received:

Brink - (1) $l_{g_1}-t_{s_1}-v_4 \times l_{g_1}-T_s_1-v_4$; (2) u_1-u_2; (3) $p-br-f-bm_2$; (4) $g_{l_2}-fl-v_4$; (5) $g_{l_2}-t_{s_1}-v_4 \times g_{l_2}-T_s_1-v_4$.

Sprague - (1) $r-g-n_l$; (2) $A_{g_1}E B P_l \ S_l$; (3) $a-l-y-P_l$; (4) $B_m-g_{l_1}-v_5$; (5) $P_{l_1} P_{l_2} P_{l_3} P_{l_4}$ - $P_c = purple$; (6) $b_{l_1} b_{l_2}$; (7) $A_{l_1} \ S_1 \ S_2$ - $s_1 = colorhiza$; (8) $s_y s_y - s_y = yellow$ scutellum; (9) s_x - scutellum color; (10) g_{l_1}; (11) g_{l_2}; (12) g_{l_3}; (13) g_{l_4}; (14) g_{l_5}; (15) $g_{l_7} v_{l_7}$; (16) g_{l_8}; (17) g_{l_9}.

Beadle - (1) s_r; (2) $g{_s}$ (early); (3) $s_u-T_u-g_{l_3}$.

Demerec - (1) x_{l_2}; (2) w_{l_1}; (3) p_{g_1}; (4) p_{g_4}; (5) p_{g_3}; (6) p_b_1; (7) p_{b_2} and p_{b_3} (duplicate factors); (8) p_{b_4}; (9) zebra$_1$; (10) zebra$_2$; (11) zebra$_3$.

Stadler - (1) $Y a R_i^G C pr in b pl$; (2) $a r C pr wx y$; (3) p^{vv} $A R_i^G \ C sh wx pr su$; (4) $A C r_i^G sh wx y pr Su su$ - $r_i^G derived by mutation from R_i^G; (5) $a C R_i^G pr in y wx Su su$.

Jenkins - (1) $A_i^1 A_i C R R pr pr a_{2} a_{2} (Bt bt)$; (2) $g_{l_1} ij YY$; (3) $g_{l_1} v_{5}$; (4) $g_{l_1} ij YY seg. fr_1 and fr_2$.

Eyster - (1) g_3; (2) g_4; (3) p_k; (4) l_6; (5) l_7; (6) l_5; (7) f_3; (8) s_{u_2}; (9) y_t; (10) d_a; (11) a_r; (12) s_{a_1}; (13) a_{u_1}; (14) a_{u_2}; (15) y_y; (16) m_{s_2}; (17) m_{s_3}; (18) v_{p_1}; (19) $m_{s_{18}}$; (20) c_{r_2}; (21) $m_{s_{20}}$; (22) b_{t_4}; (23) p_{g_5}.
Wangeldorf writes that he can furnish the following late stocks:

Kempton advises that he can furnish:

1. ra gllg; 2. ra glgbr; 3. prli lgf; 4. crlgi = zigas; 5. lgadf; 6. wxlggl.

Lindstrom can furnish:

Singleton and Jones have the following multiple tester:

A c RlggPSuy.

Anderson has seed of:

P-br-f-bmu; various combinations of sm and sk.

We have not listed any stocks from Cornell. In the corn letter of October 5, 1932, we listed the multiple testers available here.

Appended herewith is the list of maize characters with their gene symbols. We have attempted to make this list as accurate and up to date as possible but mistakes and discrepancies are bound to occur. We will appreciate it if you will call any of these errors to our attention.

We are making an attempt to collect seed of all of the maize characters in the central repository at Cornell. In the list of genes we have noted the stocks of which we have seed. If any one has seed of a character listed as not on hand at Cornell, he should send us a small supply of such seed.
<table>
<thead>
<tr>
<th>Gene</th>
<th>Character affected</th>
<th>Chromosome</th>
<th>Seed at Cornell</th>
<th>Described by</th>
</tr>
</thead>
<tbody>
<tr>
<td>a₁</td>
<td>plant, aleurone and pericarp color</td>
<td>III</td>
<td>"</td>
<td>Emerson '18,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Emerson & Anderson '32</td>
</tr>
<tr>
<td>a₂</td>
<td>plant and aleurone color</td>
<td>V</td>
<td>"</td>
<td>Jenkins '32</td>
</tr>
<tr>
<td>aᵋ₁</td>
<td>adherent tassel</td>
<td>I</td>
<td>"</td>
<td>Kempton '20</td>
</tr>
<tr>
<td>aᵋ₂</td>
<td></td>
<td></td>
<td></td>
<td>Eyster</td>
</tr>
<tr>
<td>aᵋ₃</td>
<td></td>
<td></td>
<td></td>
<td>Eyster</td>
</tr>
<tr>
<td>a₁</td>
<td>albescent</td>
<td>VI</td>
<td>"</td>
<td>Phipps</td>
</tr>
<tr>
<td>aᵋ₁</td>
<td>anther ear</td>
<td>I</td>
<td>"</td>
<td>Emerson '22</td>
</tr>
<tr>
<td>aᵋ₂</td>
<td>argentea</td>
<td>IX</td>
<td>"</td>
<td>Eyster</td>
</tr>
<tr>
<td>aᵋ₂</td>
<td>argostripe</td>
<td>VII</td>
<td>"</td>
<td>Eyster</td>
</tr>
<tr>
<td>aₘ</td>
<td>asynapsis</td>
<td>I</td>
<td>"</td>
<td>Beadle and McClintock '28</td>
</tr>
<tr>
<td>aᵋ₁</td>
<td>aurea</td>
<td>IX</td>
<td>"</td>
<td>Eyster '29</td>
</tr>
<tr>
<td>aᵋ₂</td>
<td>aurea</td>
<td></td>
<td></td>
<td>Eyster '29</td>
</tr>
<tr>
<td>B</td>
<td>plant color booster</td>
<td>II</td>
<td>"</td>
<td>Emerson '22</td>
</tr>
<tr>
<td>b₁</td>
<td>barren stalk</td>
<td>III</td>
<td>"</td>
<td>Hofmeyr</td>
</tr>
<tr>
<td>b₁₂</td>
<td></td>
<td>II</td>
<td>"</td>
<td>Hofmeyr</td>
</tr>
<tr>
<td>b₂</td>
<td>branched sterile</td>
<td></td>
<td></td>
<td>Collins and Kempton</td>
</tr>
<tr>
<td>bₑ</td>
<td>branched ear</td>
<td></td>
<td></td>
<td>Bryan</td>
</tr>
<tr>
<td>b₇</td>
<td>blotched aleurone</td>
<td>VI</td>
<td>"</td>
<td>Emerson</td>
</tr>
<tr>
<td>b₇</td>
<td>branched silkless</td>
<td></td>
<td></td>
<td>Kempton</td>
</tr>
<tr>
<td>b₉</td>
<td>brittle stalk</td>
<td></td>
<td></td>
<td>Wiggans</td>
</tr>
<tr>
<td>b₁</td>
<td>blotched leaf</td>
<td></td>
<td></td>
<td>Emerson '23</td>
</tr>
<tr>
<td>b₁₂</td>
<td></td>
<td></td>
<td></td>
<td>Wiggans</td>
</tr>
<tr>
<td>b₇₁</td>
<td>brown midrib</td>
<td>V</td>
<td>"</td>
<td>Eyster '26</td>
</tr>
<tr>
<td>b₇₂</td>
<td></td>
<td>I</td>
<td>"</td>
<td>Burnham</td>
</tr>
<tr>
<td>b₇₁</td>
<td></td>
<td></td>
<td></td>
<td>Burnham</td>
</tr>
<tr>
<td>Gene</td>
<td>Description</td>
<td>Chromosome</td>
<td>Reference</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>---------------------------------</td>
<td>------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Bn1</td>
<td>brown aleurone</td>
<td>VII</td>
<td>Kvakon '24</td>
<td></td>
</tr>
<tr>
<td>bp</td>
<td>brown pericarp</td>
<td>IX</td>
<td>Meyers '27</td>
<td></td>
</tr>
<tr>
<td>br</td>
<td>brachytic</td>
<td>I</td>
<td>Kempton '20</td>
<td></td>
</tr>
<tr>
<td>bs</td>
<td>barren sterile</td>
<td></td>
<td>Woodworth '26</td>
<td></td>
</tr>
<tr>
<td>bt1</td>
<td>brittle endosperm</td>
<td>V</td>
<td>Meyers '27</td>
<td></td>
</tr>
<tr>
<td>bt2</td>
<td></td>
<td></td>
<td>Sprague</td>
<td></td>
</tr>
<tr>
<td>bt3</td>
<td></td>
<td></td>
<td>Beadle</td>
<td></td>
</tr>
<tr>
<td>bt4</td>
<td></td>
<td></td>
<td>Eyster</td>
<td></td>
</tr>
<tr>
<td>bv</td>
<td>brevis</td>
<td>V</td>
<td>Li</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>aleurone</td>
<td>IX</td>
<td>East & Hayes '11</td>
<td></td>
</tr>
<tr>
<td>cb</td>
<td>chloroblotch</td>
<td>V</td>
<td>Emerson and Anderson '51</td>
<td></td>
</tr>
<tr>
<td>Ch</td>
<td>chocolate pericarp</td>
<td></td>
<td>Emerson '21</td>
<td></td>
</tr>
<tr>
<td>cr1</td>
<td>crinkly</td>
<td>III</td>
<td>Eyster '32</td>
<td></td>
</tr>
<tr>
<td>cr2</td>
<td></td>
<td>IX</td>
<td>Emerson '12</td>
<td></td>
</tr>
<tr>
<td>d1</td>
<td>dwarf</td>
<td>III</td>
<td>Suttle</td>
<td></td>
</tr>
<tr>
<td>d2</td>
<td>dwarf</td>
<td>IX</td>
<td>Demerec '23</td>
<td></td>
</tr>
<tr>
<td>d3</td>
<td>dwarf</td>
<td>V</td>
<td>Perry</td>
<td></td>
</tr>
<tr>
<td>d4</td>
<td>dwarf</td>
<td></td>
<td>Eyster '32</td>
<td></td>
</tr>
<tr>
<td>d5</td>
<td>dwarf</td>
<td>II</td>
<td>Eyster '32</td>
<td></td>
</tr>
<tr>
<td>d6</td>
<td>dwarf</td>
<td>V</td>
<td>Emerson and Anderson '51</td>
<td></td>
</tr>
<tr>
<td>da</td>
<td>dilute aleurone</td>
<td>IX</td>
<td>Mangelsdorf '26</td>
<td></td>
</tr>
<tr>
<td>de1</td>
<td>defective endosperm</td>
<td>IV</td>
<td>Mangelsdorf '26</td>
<td></td>
</tr>
<tr>
<td>de2</td>
<td></td>
<td></td>
<td>Mangelsdorf '26</td>
<td></td>
</tr>
<tr>
<td>de3</td>
<td></td>
<td></td>
<td>Mangelsdorf '26</td>
<td></td>
</tr>
<tr>
<td>de4</td>
<td></td>
<td></td>
<td>Mangelsdorf '26</td>
<td></td>
</tr>
<tr>
<td>de5</td>
<td></td>
<td></td>
<td>Mangelsdorf '26</td>
<td></td>
</tr>
<tr>
<td>de6</td>
<td></td>
<td></td>
<td>Mangelsdorf '26</td>
<td></td>
</tr>
<tr>
<td>de7</td>
<td></td>
<td></td>
<td>Mangelsdorf '26</td>
<td></td>
</tr>
<tr>
<td>Gene</td>
<td>Description</td>
<td>Reference</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>----------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>de8</td>
<td>defective endosperm</td>
<td>Mangelsdorf '26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>de9</td>
<td></td>
<td>Mangelsdorf '26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>de10</td>
<td></td>
<td>Mangelsdorf '26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>de11</td>
<td></td>
<td>Mangelsdorf '26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>de12</td>
<td></td>
<td>Mangelsdorf '26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>de13</td>
<td></td>
<td>Mangelsdorf '26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>de14</td>
<td></td>
<td>Mangelsdorf '26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>de15</td>
<td></td>
<td>IX Brink '27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>de16</td>
<td></td>
<td>IV Wentz '25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>depl</td>
<td></td>
<td>Mangelsdorf '26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>df</td>
<td>flint defective</td>
<td>X Emerson</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dt</td>
<td>dotted leaf</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f1</td>
<td>fine striped</td>
<td>I Lindstron '18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f2</td>
<td></td>
<td>V Eyster '26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f3</td>
<td></td>
<td>X Eyster</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f1</td>
<td>fine streaked</td>
<td>VI Anderson '22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f1</td>
<td>floury endosperm</td>
<td>II Hayes & East '15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fr1</td>
<td>frayed</td>
<td>VII Jenkins & Pope</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fr2</td>
<td>frayed</td>
<td>VII Jenkins & Pope</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fs</td>
<td>fasciated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g1</td>
<td>golden</td>
<td>X Emerson '12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>g2</td>
<td>golden</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g3</td>
<td>golden</td>
<td>I Eyster</td>
<td></td>
<td></td>
</tr>
<tr>
<td>g4</td>
<td>golden</td>
<td>IX Eyster</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ga</td>
<td>pollen tube growth factor</td>
<td>IV Mangelsdorf and Jones '26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>gc</td>
<td>glucostactous</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ge1</td>
<td>premature germination</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ge2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
<td>Alleles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>------------------------------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ge<sub>3</sub></td>
<td>premature germination</td>
<td>Mangelsdorf '26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ge<sub>4</sub></td>
<td>" "</td>
<td>Mangelsdorf '26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ge<sub>5</sub></td>
<td>" "</td>
<td>Mangelsdorf '26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>gi</td>
<td>gigas</td>
<td>Kempton</td>
<td></td>
<td></td>
</tr>
<tr>
<td>gl<sub>1</sub></td>
<td>glossy</td>
<td>VII " Kvakan '24</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| gl₂ | glossy | II " Hayes & Brew-
baker '28 |
| gl₃ | glossy | IV " Hayes & Brew-
baker '28 |
| gl₄ | glossy | IX " Sprague |
| gl₅ | glossy | - " Sprague |
| gl₆ | glossy | - - Sprague |
| gl₇ | glossy | - " Sprague |
| gl₈ | glossy | - " Sprague |
| gl₉ | glossy | - " Sprague |
| gm₁ | germless | Demerec '23 |
| gm₂ | germless | X Demerec '26 |
| gm₃ | germless | |
| gm₄ | germless | VI |
| *gm₆ | germless | IX Eyster '29 |
| gs | green striped | I " Emerson '12 |
| h | soft starch | |
| hs | hairy sheath | " Tavcar |
| I | inhibitor of aleurone color | IX " East & Hayes '11 |
| iJ | iojap | VII " Jenkins '24 |
| in | intensifier of aleurone color | VII " Fraser '24 |

* reported as gm₁.
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Chromosome</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>j</td>
<td>japonica</td>
<td>VIII</td>
<td>Emerson '12</td>
</tr>
<tr>
<td>Kn</td>
<td>knotted leaf</td>
<td></td>
<td>Bryan</td>
</tr>
<tr>
<td>l₁</td>
<td>luteus</td>
<td>X</td>
<td>Lindstrom '17</td>
</tr>
<tr>
<td>l₂</td>
<td>luteus</td>
<td>X</td>
<td>Lindstrom '25</td>
</tr>
<tr>
<td>l₃</td>
<td>luteus</td>
<td>-</td>
<td>Jenkins & Bell</td>
</tr>
<tr>
<td>l₄</td>
<td>luteus</td>
<td>X</td>
<td>Jenkins & Bell</td>
</tr>
<tr>
<td>l₅</td>
<td>luteus</td>
<td>V</td>
<td>Eyster '32</td>
</tr>
<tr>
<td>l₆</td>
<td>luteus</td>
<td>IX</td>
<td>Eyster</td>
</tr>
<tr>
<td>l₇</td>
<td>luteus</td>
<td>IX</td>
<td>Eyster</td>
</tr>
<tr>
<td>la</td>
<td>lazy</td>
<td></td>
<td>Jenkins</td>
</tr>
<tr>
<td>l₈₁</td>
<td>liguleless</td>
<td>II</td>
<td>Emerson '12</td>
</tr>
<tr>
<td>l₈₂</td>
<td>liguleless</td>
<td>III</td>
<td>Brink</td>
</tr>
<tr>
<td>li</td>
<td>lineate</td>
<td>X</td>
<td>Collins and Kempton '20</td>
</tr>
<tr>
<td>lp</td>
<td>pollen lethal</td>
<td>V</td>
<td>Rhoades</td>
</tr>
<tr>
<td>m₁</td>
<td>yellow white seedling</td>
<td></td>
<td>Stroman '24</td>
</tr>
<tr>
<td>m₂</td>
<td>yellow white seedling</td>
<td></td>
<td>Stroman '24</td>
</tr>
<tr>
<td>mc</td>
<td>micropyle color</td>
<td></td>
<td>Singleton and Jones</td>
</tr>
<tr>
<td>md</td>
<td>mid cob color</td>
<td></td>
<td>Demerec '27</td>
</tr>
<tr>
<td>mg</td>
<td>miniature germ</td>
<td></td>
<td>Wentz '24</td>
</tr>
<tr>
<td>mi</td>
<td>midget plant</td>
<td></td>
<td>Perry</td>
</tr>
<tr>
<td>mr</td>
<td>midrib</td>
<td></td>
<td>Kvakan</td>
</tr>
<tr>
<td>ms₁</td>
<td>male sterile</td>
<td>VI</td>
<td>Singleton and Jones</td>
</tr>
<tr>
<td>ms₂</td>
<td>male sterile</td>
<td>IX</td>
<td>Eyster</td>
</tr>
<tr>
<td>ms₃</td>
<td>male sterile</td>
<td>III</td>
<td>Eyster</td>
</tr>
<tr>
<td>ms₄</td>
<td>male sterile</td>
<td></td>
<td>Beadle</td>
</tr>
<tr>
<td>ms₅</td>
<td>male sterile</td>
<td></td>
<td>Beadle</td>
</tr>
<tr>
<td>ms6</td>
<td>male sterile</td>
<td>Beadle</td>
<td></td>
</tr>
<tr>
<td>ms7</td>
<td>" "</td>
<td>Beadle</td>
<td></td>
</tr>
<tr>
<td>ms8</td>
<td>" "</td>
<td>VIII</td>
<td></td>
</tr>
<tr>
<td>ms9</td>
<td>" "</td>
<td>Beadle</td>
<td></td>
</tr>
<tr>
<td>ms10</td>
<td>" "</td>
<td>Beadle</td>
<td></td>
</tr>
<tr>
<td>ms11</td>
<td>" "</td>
<td>Beadle</td>
<td></td>
</tr>
<tr>
<td>ms12</td>
<td>" "</td>
<td>Beadle</td>
<td></td>
</tr>
<tr>
<td>ms13</td>
<td>" "</td>
<td>Beadle</td>
<td></td>
</tr>
<tr>
<td>ms14</td>
<td>" "</td>
<td>Beadle</td>
<td></td>
</tr>
<tr>
<td>ms15</td>
<td>" "</td>
<td>Beadle</td>
<td></td>
</tr>
<tr>
<td>ms16</td>
<td>" "</td>
<td>Beadle</td>
<td></td>
</tr>
<tr>
<td>ms17</td>
<td>" "</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>ms18</td>
<td>" "</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>ms19</td>
<td>" "</td>
<td>Eyster</td>
<td></td>
</tr>
<tr>
<td>ms20</td>
<td>" "</td>
<td>Eyster</td>
<td></td>
</tr>
<tr>
<td>Mt</td>
<td>mottled aleurone</td>
<td>IX</td>
<td></td>
</tr>
<tr>
<td>na1</td>
<td>nana</td>
<td>III</td>
<td></td>
</tr>
<tr>
<td>ne2</td>
<td>nana</td>
<td>Perry</td>
<td></td>
</tr>
<tr>
<td>nl</td>
<td>narrow leaf</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>o1</td>
<td>opaque endosperm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>o2</td>
<td>" "</td>
<td></td>
<td></td>
</tr>
<tr>
<td>oy</td>
<td>oil yellow</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>P, etc.</td>
<td>pericarp color (many allelomorphs)</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>pb1</td>
<td>piebald</td>
<td>Demerec '26</td>
<td></td>
</tr>
<tr>
<td>pb2</td>
<td>piebald</td>
<td>Demerec</td>
<td></td>
</tr>
<tr>
<td>pb3</td>
<td>piebald</td>
<td>Demerec</td>
<td></td>
</tr>
<tr>
<td>pb4</td>
<td>piebald</td>
<td>Demerec</td>
<td></td>
</tr>
<tr>
<td>pb5</td>
<td>piebald</td>
<td>Demerec</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
<td>Source</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>-----------------</td>
<td></td>
</tr>
<tr>
<td>pc1</td>
<td>coleorhiza color</td>
<td>Sprague</td>
<td></td>
</tr>
<tr>
<td>pc2</td>
<td>"</td>
<td>Sprague</td>
<td></td>
</tr>
<tr>
<td>pc3</td>
<td>"</td>
<td>Sprague</td>
<td></td>
</tr>
<tr>
<td>pc4</td>
<td>"</td>
<td>Sprague</td>
<td></td>
</tr>
<tr>
<td>pg1</td>
<td>pale green</td>
<td>Brunson '24</td>
<td></td>
</tr>
<tr>
<td>pg2</td>
<td>"</td>
<td>Demerec '25</td>
<td></td>
</tr>
<tr>
<td>pg3</td>
<td>"</td>
<td>Demerec '25</td>
<td></td>
</tr>
<tr>
<td>pg4</td>
<td>"</td>
<td>Demerec '25</td>
<td></td>
</tr>
<tr>
<td>pg5</td>
<td>"</td>
<td>Demerec '25</td>
<td></td>
</tr>
<tr>
<td>pg6</td>
<td>"</td>
<td>Eyster '32</td>
<td></td>
</tr>
<tr>
<td>pg7</td>
<td>"</td>
<td>Eyster '32</td>
<td></td>
</tr>
<tr>
<td>pg8</td>
<td>"</td>
<td>Eyster</td>
<td></td>
</tr>
<tr>
<td>pg9</td>
<td>"</td>
<td>Eyster</td>
<td></td>
</tr>
<tr>
<td>pg10</td>
<td>"</td>
<td>Eyster</td>
<td></td>
</tr>
<tr>
<td>pi1</td>
<td>development of secondary florets</td>
<td>Hudson and Gillis '29</td>
<td></td>
</tr>
<tr>
<td>pi2</td>
<td>"</td>
<td>Hudson and Gillis '29</td>
<td></td>
</tr>
<tr>
<td>pk</td>
<td>polkadot leaves</td>
<td>Eyster '24</td>
<td></td>
</tr>
<tr>
<td>po</td>
<td>polynotic</td>
<td>Beadle '31</td>
<td></td>
</tr>
<tr>
<td>pr</td>
<td>red aleurone</td>
<td>East & Hayes '13</td>
<td></td>
</tr>
<tr>
<td>pu1</td>
<td>purple plumule</td>
<td>Jenkins '26</td>
<td></td>
</tr>
<tr>
<td>pu2</td>
<td>"</td>
<td>Sprague</td>
<td></td>
</tr>
<tr>
<td>py</td>
<td>pigmy</td>
<td>Suttle</td>
<td></td>
</tr>
</tbody>
</table>

R, etc. allelomorphic series, aleurone, plant and pericarp color

ra ramosa VII Gernert '12
Rg1 ragged III Brink & Senn
Rg2 ragged
<table>
<thead>
<tr>
<th>Trait</th>
<th>Symbol</th>
<th>Chromosome</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rolled leaves</td>
<td>ro</td>
<td></td>
<td>Curver '27</td>
</tr>
<tr>
<td>Rough sheath</td>
<td>rs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rootless</td>
<td>rt</td>
<td></td>
<td>Jenkins '26</td>
</tr>
<tr>
<td>Scutellum color</td>
<td>S₁</td>
<td>IV</td>
<td>Sprague</td>
</tr>
<tr>
<td></td>
<td>S₂</td>
<td></td>
<td>Sprague</td>
</tr>
<tr>
<td></td>
<td>S₃</td>
<td></td>
<td>Sprague</td>
</tr>
<tr>
<td></td>
<td>S₄</td>
<td></td>
<td>Sprague</td>
</tr>
<tr>
<td></td>
<td>S₅</td>
<td></td>
<td>Sprague</td>
</tr>
<tr>
<td>Striped auricle</td>
<td>sa₁</td>
<td>IX</td>
<td>Eyster</td>
</tr>
<tr>
<td></td>
<td>sa₂</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Slit blade</td>
<td>sb</td>
<td></td>
<td>Beadle</td>
</tr>
<tr>
<td>Scarred endosperm</td>
<td>sc</td>
<td>V</td>
<td>Eyster '26</td>
</tr>
<tr>
<td>Shrunken endosperm</td>
<td>sh</td>
<td>IX</td>
<td>Hutchinson '21</td>
</tr>
<tr>
<td>Silky</td>
<td>si</td>
<td>VI</td>
<td>Fraser</td>
</tr>
<tr>
<td>Silkless</td>
<td>sk</td>
<td>II</td>
<td>Jones '25</td>
</tr>
<tr>
<td>Slashed</td>
<td>sl</td>
<td>VII</td>
<td>Brewbaker</td>
</tr>
<tr>
<td>Salmon silks</td>
<td>sm</td>
<td>VI</td>
<td>Anderson '21</td>
</tr>
<tr>
<td>Small kernel</td>
<td>?</td>
<td>IX</td>
<td>Eyster '32</td>
</tr>
<tr>
<td>Orange scutellum</td>
<td>so₁</td>
<td></td>
<td>Sprague</td>
</tr>
<tr>
<td></td>
<td>so₂</td>
<td></td>
<td>Sprague</td>
</tr>
<tr>
<td>Small pollen</td>
<td>sp</td>
<td>IV</td>
<td>Mangelsdorf and Singleton</td>
</tr>
<tr>
<td>Striate</td>
<td>sr</td>
<td>I</td>
<td>Brunson</td>
</tr>
<tr>
<td>Sticky chromosomes</td>
<td>st</td>
<td>IV</td>
<td>Beadle '32</td>
</tr>
<tr>
<td>Sugary endosperm</td>
<td>su</td>
<td>IV</td>
<td>Correns '01</td>
</tr>
<tr>
<td></td>
<td>su₂</td>
<td></td>
<td>Eyster</td>
</tr>
<tr>
<td>Yellow scutellum</td>
<td>sy</td>
<td></td>
<td>Sprague</td>
</tr>
<tr>
<td>Threaded</td>
<td>th</td>
<td></td>
<td>Singleton and Jones</td>
</tr>
<tr>
<td>Tinged</td>
<td>tn</td>
<td>V</td>
<td>Eyster '26</td>
</tr>
<tr>
<td>Symbol</td>
<td>Term</td>
<td>Volume</td>
<td>Year</td>
</tr>
<tr>
<td>--------</td>
<td>-------------------------------</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>Tp</td>
<td>teopod</td>
<td>VII</td>
<td>"</td>
</tr>
<tr>
<td>ts₁</td>
<td>tassel seed</td>
<td>II</td>
<td>"</td>
</tr>
<tr>
<td>ts₂</td>
<td>"</td>
<td>I</td>
<td>"</td>
</tr>
<tr>
<td>Ts₃</td>
<td>"</td>
<td>-</td>
<td>"</td>
</tr>
<tr>
<td>ts₄</td>
<td>"</td>
<td>III</td>
<td>"</td>
</tr>
<tr>
<td>Ts₅</td>
<td>"</td>
<td>IV</td>
<td>"</td>
</tr>
<tr>
<td>Ts₆</td>
<td>"</td>
<td>IV</td>
<td>"</td>
</tr>
<tr>
<td>Tu</td>
<td>tunicate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tw₁</td>
<td>twisted seedlings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tw₂</td>
<td>"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tw₃</td>
<td>"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>v₁</td>
<td>virescent</td>
<td>IX</td>
<td>"</td>
</tr>
<tr>
<td>v₂</td>
<td>virescent</td>
<td>V</td>
<td>"</td>
</tr>
<tr>
<td>v₃</td>
<td>virescent</td>
<td>V</td>
<td>"</td>
</tr>
<tr>
<td>v₄</td>
<td>virescent</td>
<td>II</td>
<td>"</td>
</tr>
<tr>
<td>v₅</td>
<td>virescent</td>
<td>VII</td>
<td>"</td>
</tr>
<tr>
<td>v₆</td>
<td>virescent</td>
<td>VI</td>
<td>"</td>
</tr>
<tr>
<td>v₇</td>
<td>virescent</td>
<td>VI</td>
<td>"</td>
</tr>
<tr>
<td>v₈</td>
<td>virescent</td>
<td>IV</td>
<td>"</td>
</tr>
<tr>
<td>v₉</td>
<td>virescent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>v₁₀</td>
<td>virescent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>v₁₁</td>
<td>virescent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>v₁₂</td>
<td>virescent</td>
<td>V</td>
<td>"</td>
</tr>
<tr>
<td>v₁₃</td>
<td>virescent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>v₁₄</td>
<td>virescent (same as vₑ₂)</td>
<td>IX</td>
<td>"</td>
</tr>
<tr>
<td>v₁₅</td>
<td>virescent</td>
<td>IX</td>
<td>"</td>
</tr>
<tr>
<td>v₁₆</td>
<td>virescent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>v₁₇</td>
<td>virescent</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>V18</td>
<td>virescent</td>
<td>X</td>
<td>"</td>
</tr>
<tr>
<td>V19</td>
<td>virescent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V20</td>
<td>virescent</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>va1</td>
<td>variable sterile</td>
<td>VII</td>
<td></td>
</tr>
<tr>
<td>va2</td>
<td>"</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>vp1</td>
<td>vivipary</td>
<td>X</td>
<td>"</td>
</tr>
<tr>
<td>vp2</td>
<td>vivipary</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>vp3</td>
<td>vivipary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>vp4</td>
<td>vivipary</td>
<td>IX</td>
<td></td>
</tr>
<tr>
<td>w1</td>
<td>white seedling</td>
<td>VI</td>
<td>"</td>
</tr>
<tr>
<td>w2</td>
<td>white seedling</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>w3</td>
<td>"</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>w4</td>
<td>"</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>w5</td>
<td>"</td>
<td>"</td>
<td>VI</td>
</tr>
<tr>
<td>w6</td>
<td>"</td>
<td>"</td>
<td>VI</td>
</tr>
<tr>
<td>w7</td>
<td>"</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>w8</td>
<td>"</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>w9</td>
<td>"</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>w10</td>
<td>"</td>
<td>"</td>
<td>IX</td>
</tr>
<tr>
<td>w11</td>
<td>warty anthers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>wc</td>
<td>white cap endosperm</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>Wh</td>
<td>dominant white endosperm</td>
<td>VII</td>
<td>"</td>
</tr>
<tr>
<td>w1</td>
<td>white leaf base</td>
<td>IV</td>
<td>"</td>
</tr>
<tr>
<td>ws1</td>
<td>white sheath</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ws2</td>
<td>"</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>wx</td>
<td>waxy endosperm</td>
<td>IX</td>
<td>"</td>
</tr>
<tr>
<td>x1</td>
<td>xantha</td>
<td>X</td>
<td>"</td>
</tr>
<tr>
<td>x2</td>
<td>xantha</td>
<td></td>
<td>"</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Description</td>
<td>Chromosome</td>
<td>Reference</td>
</tr>
<tr>
<td>-------------</td>
<td>----------------------------------</td>
<td>------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>Y</td>
<td>yellow endosperm</td>
<td>VI</td>
<td>Correns '01</td>
</tr>
<tr>
<td>yd</td>
<td>yellow dwarf</td>
<td>VI</td>
<td>Singleton and Jones</td>
</tr>
<tr>
<td>ye1</td>
<td>yellow green</td>
<td>V</td>
<td>Eyster '26</td>
</tr>
<tr>
<td>ye2</td>
<td>"</td>
<td>IX</td>
<td>Jenkins '27</td>
</tr>
<tr>
<td>ye3</td>
<td>"</td>
<td>I</td>
<td>Burnham</td>
</tr>
<tr>
<td>ys1</td>
<td>yellow stripe</td>
<td>V</td>
<td>Beadle '29</td>
</tr>
<tr>
<td>ys2</td>
<td>"</td>
<td>II</td>
<td>Brink</td>
</tr>
<tr>
<td>yt</td>
<td>yellow top</td>
<td>III</td>
<td>Eyster '31</td>
</tr>
<tr>
<td>z</td>
<td>zigzag stalk</td>
<td>-</td>
<td>Eyster '22</td>
</tr>
<tr>
<td>zg</td>
<td>"</td>
<td>I</td>
<td>Eyster '22</td>
</tr>
<tr>
<td>zb1</td>
<td>zebra striped</td>
<td></td>
<td>Demerec '21</td>
</tr>
<tr>
<td>zb2</td>
<td>"</td>
<td></td>
<td>Demerec</td>
</tr>
<tr>
<td>zb3</td>
<td>"</td>
<td></td>
<td>Demerec</td>
</tr>
<tr>
<td>zb4</td>
<td>" seedling</td>
<td></td>
<td>Hayes '32</td>
</tr>
<tr>
<td>zl</td>
<td>zygotic lethal</td>
<td>I</td>
<td>Emerson</td>
</tr>
</tbody>
</table>

It should be unnecessary to do so, but we urge everyone to go carefully over the list of "wants" and if he has the desired stock to send it to the chap who requested it. Failure to cooperate will defeat the purpose of this service.

If enough requests for material come in we shall send out another corn letter before spring planting.

M. M. Rhoades
MAIZE GENETICS COOPERATION

NEWS LETTER

December 18, 1933

Department of Plant Breeding
Cornell University
Ithaca, N. Y.
November 13, 1953

To Maize Geneticists:

As was the case last year, this laboratory will again attempt to act as a clearing house for information and a distributing point for genetic stocks.

This letter is a call for information to be used in succeeding corn letters. We thought it would be appropriate if the first letter in the fall of each year presented new and pertinent information of value to all maize investigators, such as new linkages, revised or corrected linkage maps, new combinations of genes, new allelomorphs, reoccurrences of known mutations, etc. So we are, therefore, requesting all maize geneticists to send us any information they deem of value to others. It is understood that any information or data which appear in this series of corn letters can not be cited in publications without the direct consent of the contributor. As an example of the kind of information we would like to have for the first letter, we will give the following unpublished facts:

1. Emerson has a new glossy seedling which is linked with fine-striped (f_1). Seed available.
2. Hayes reports that argostripe (ag) is allelomorphic with jojap (ij) and that lazy (la) shows linkage with the su-Tu group.
3. Lindstrom has a new recessive sun red plant color. Seed available.

The above are sample items of a type that will interest everyone. We want more of them for the first corn letter. We would like to have this letter in your hands before the Christmas meetings at Boston so the dead line for contributions will be December 15th. Everyone is urged to contribute so that these letters will be of real value.

This winter we hope to make an inventory of all the genetic stocks in maize. The stocks will be listed under two categories: (1) Combinations of factors belonging to the same linkage group and (2) combinations of genes belonging to different linkage groups. It should be of great help to all investigators to know whether a desired combination of genes is already in existence or whether you must spend several years in
building it up. For that reason we are asking that you go over your genetic material and list the different combinations under the two categories. Care should be taken that the proper subscript is used for the different glossies, etc. If possible state whether of early or late season. We should like to have these lists as soon as possible. We hope to have the complete list ready for mailing by February 1st, so January 15th is set as the dead line for receipt of this information.

You will be interested in knowing that the Drosophila workers have recently decided to start a cooperative group modeled after the one for maize. The following paragraph is taken from the letter calling on the different laboratories to organize:

"For several years now workers on genetics of maize have been receiving mimeographed circulars prepared in Professor Emerson’s laboratory containing information contributed by various investigators. This service proved to be so useful that steps are being taken to extend it and make it a permanent institution." We are glad that the success of the maize group has stimulated the Drosophila investigators to undertake a similar cooperative enterprise and we hope they find the same generous spirit of cooperation which you maize workers have shown.

Remember we would like to have the requested information as soon as possible.

Sincerely yours,

M. M. Rhoades

M. M. Rhoades
To maize geneticists:

The response to our request for news items has been good. The various contributions which have been received comprise the bulk of this letter. All of the information given in this letter is unpublished and your cooperation has made it possible to place this mass of information in the hands of maize investigators considerably in advance of its publication. We believe you will find this letter interesting and profitable. If its success justifies it we plan to have a similar news letter in the fall of each year so that the workers in the different laboratories can keep in closer touch.

While this corn letter is essentially a list of new information, we shall be glad to include in subsequent letters for this year any facts which you think will be of interest to others.

We wish to emphasize again that the listing of information in these news letters does not constitute publication. The consent of the contributor should be obtained if you wish to cite his data in your papers.

News items from Ithaca:

1. Dwarf₂ (d₂) gives approximately 15 per cent recombination with a₁. (Singh).

2. Dwarf₇ (d₇) is in linkage group X. Order is d₇-a₁-a₅. (Singh).

3. Glossy₁₀ (g₁₀) gives 15 per cent recombination with fine striped₁ (f₁). (Emerson).

4. Pigmy₂ (p₂) belongs in linkage group I. (Emerson).

5. Japonica₂ (j₂) is about 5 units from Tu. Order unknown at present. (Emerson).

6. Two new r alleles. R²ₕ gives with a red plant, red anthers, green silks; r²ₕ gives with a green plant, green anthers, red silks. (Emerson).
7. Families segregating for in-ra-al-v5 give data which indicate the order is in-ra-al-v5. (Fraser).

8. Aurea\textsubscript{1} (\textsuperscript{au\textsubscript{1}}) lies between wx and v1 in linkage group IX. Order is \textsuperscript{c-sh-wx-au\textsubscript{1}-v1}. (Creighton).

9. Yellow-green\textsubscript{2} (\textsuperscript{ygc\textsubscript{2}}) is about 1 cross over unit from the terminal knob on the short arm of chromosome 9. (Creighton).

10. Argentea (ar) and v1 whose loci fall close together on the genetic map are not allelemorphs. (Creighton).

11. Brown midrib\textsubscript{1} (\textsuperscript{bm\textsubscript{1}}) is situated in the short arm of chromosome 5 and there is good evidence which suggests it lies extremely close to the insertion region. (McClintock).

12. A new narrow-leaved character is linked with ar. (McClintock). (As I remember, McClintock told me last summer it gave 30 per cent recombination with ar — Ed.)

13. Data from crossing over in trisomes indicate that ra and v5 lie on opposite sides of the insertion region of chromosome 7. (Rhoades).

14. A dominant modifier interacts with recessive ar to give a speckled or spotted aleurone. Interaction with recessive c and r unknown as yet. No difficulty in classification. (Rhoades).

15. In addition to the \#5 and \#7 trisomes, \#2, \#3, and \#10 trisomes can be distinguished from their disomic sibs by morphological differences. (Rhoades).

16. There is an extremely high correlation between small seeds and trisomy for chromosomes 5 and 6. (Rhoades).

Note: Seed is available for all the new characters listed under the Cornell heading.
News items from Pasadena:

1. Chromosome 1 is involved in 17, chromosome 2 involved in 20, chromosome 3 in 22, chromosome 4 in 18, chromosome 5 in 16, chromosome 6 in 14, chromosome 7 in 11, chromosome 8 in 11, chromosome 9 in 15, and chromosome 10 in 16 different reciprocal translocations. Most of these translocations have been obtained in a homozygous condition. (Anderson).

Note: Anderson has kindly offered to furnish any of his translocations to anyone who can use them as a tool in his research. The complete list of these interchanges (reciprocal translocations) will be listed in the next corn letter. Anyone desiring an interchange should write to Anderson and explain his needs to him.

2. Chocolate pericarp (Ch), that long elusive gene, seems to belong in chromosome 5. (Anderson).

3. Something wrong with albescent (al). Does not seem to belong in linkage group VI. (Anderson).

News items from New Haven:

1. The character remota (ra) has appeared three times in different inbreds. All were allelo-morphic with ra. (Singleton and Jones).

2. Mutation of Su to su occurred in one seed out of a total of 127,000. (Singleton and Jones).

3. A brittle endosperm was found in a flint corn from Germany. Tests showed it to be allelo-morphic with bt1. In this same flint corn two lazy (la) plants appeared in the second year. Tests are being made with la. (Singleton and Jones).

4. A dominant ragged (rg) similar to rg occurred in a Leming Evergreen hybrid back crossed twice to Leming. Is being tested with rg. Tentatively called rg. (Singleton and Jones).

5. A new brown midrib appeared in an inbred line of Country Gentleman. Is being tested with the other brown midrib. (Singleton and Jones).
6. A viviparous seed-white seedling combination appeared in an \(F_2 \) population. The development of the character varies. Sometimes the seeds germinate on the ear. If they do not, the seeds have a pale yellow endosperm in contrast to the normal orange yellow seeds of this strain. Pale yellow seeds always produce white seedlings. Orange seeds produce only normal green seedlings. (Singleton and Jones).

7. Dull brown blotches (\(dl \)) appeared in the endosperm of one of our \(y su \) Country Gentleman inbreds. This behaves as a recessive character. Dull blotched seeds when planted produce sterile dwarf plants, about 2 feet high, with no tassel or ear. Non-blotched seeds produce normal plants. (Singleton & Jones).

8. The linkage relations of the following characters, which segregate sharply, are being studied:

 a. opaque\(_1 \) (\(o_1 \)) - endosperm soft, starch, entirely opaque.

 b. opaque\(_2 \) (\(o_2 \)) - similar in appearance to \(o_1 \). Both give 25 per cent opaque in \(F_2 \).

 c. threaded (\(th \)) - seedling and plant character. Very fine pin stripes similar to "threaded" cloth.

 d. semi-dwarf\(_1 \) - plants about 2-1/8 feet high.

 e. semi-dwarf\(_2 \) - plants about 2-1/2 feet high.

 f. Rugged\(_2 \) (\(R_e_2 \)) - may be \(R_e_1 \).

 g. lazy\(_2 \) - may be \(l_z_1 \).

 h. yellow dwarf (\(y_d \)) about 25 per cent recombination between \(X \) and \(y_d \).

 i. micropyle color (\(nc \)) intense red dot at micropyle when plants have large \(P \). Tests are being made to determine whether an allelomorph or modifier of \(P \).

 j. Additional tests are being made to determine the linkage relations of \(sp \) and \(l_o \) with characters in the fourth linkage group other than \(su \). (Singleton and Jones).
9. A much-branched ear and tassel character was found in a field of corn at Fort Atkinson, Wisconsin. Same as \(r_{21} \). (Burnham).

10. New genes being studied:
 - brown-midrib (\(bm_{2} \))
 - yellow green (\(yg_{2} \))
 - green stripe (\(ts_{2} \))
 - a mottling allelomorph of \(r_{2} \) and an inhibitor of this mottling. (Burnham).

11. Revision of linkage group V. The most probable order is \(v_{2}-v_{5}-pr-by-bm_{2} \) with \(bt_{1} \) very close to \(bm_{2} \). \(v_{2} \) lies toward the end of the longer arm. (Burnham).

12. There is some evidence to indicate that \(r_{2} \) is either between \(fl_{1} \) and \(v_{5} \) or that the order is \(fl_{1}-v_{5}-r_{2} \). (Burnham).

13. Albescent (\(al_{1} \)) may not be in chromosome 6. (Burnham).

News from Madison:

1. A new workable character, pale midrib (\(pm_{2} \)), appears to show 10 to 20 per cent crossing over with \(Rr_{1} \). Seed available. (Brink).

2. A new allelomorph of the unplaced gene, golden \(2_{1} \), is reported. Golden \(2 \) (\(g_{2} \)) appears to be independent of \(r \). (Brink).

3. A new ramose (\(r_{2a} \)), less extreme than \(r_{21} \) but readily classifiable, is reported. Seed available. (Brink).

News from the U.S.D.A.:

1. Lazy \(1 \) (\(la_{1} \)) shows linkage in \(F_{2} \) with \(su \) and \(fl_{2} \) and in back cross counts with \(Tu \). Appears very close to \(su \) since there was only one crossover among several hundred \(F_{2} \) plants. (Jenkins).

2. \(A_{2} \) is linked with \(bt_{1} \) with about 7 per cent of crossing over. Limited data of a three point backcross indicate the order is \(pr-bt_{1}-A_{2} \). (Jenkins).
3. A new nature plant chlorophyll deficiency, tentatively called gs, is in the second linkage group much closer to B than to l. (Sprague).

4. One of the duplicate factors for orange seutellum (s1) is in linkage group IX. The order is apparently \(s_{12} - s - sh - wx \). (Sprague).

5. Glossy 4 (g4) is in linkage group IX. Gives about 40 per cent recombination with \(v \) and independence with \(c \) and \(sh \). (Sprague).

6. An almost complete linkage was found between light colored seeds and albino seedlings. (Brunner).

News from Minnesota:

As was stated in the corn letter of November 15th, the following facts were reported:

1. Argostripe (ag) is allelomorphic with indnap (ln). (Hayes).

2. Lazy (la) shows linkage with the \(su-Tu \) group. (Hayes).

News items from Bucknell:

(During the past year Eyster sent in to this office the following pieces of unpublished information:

1. A dominant clear me diluter (Dc) is 6 units from \(c \). Order is \(D_{c2} - c - wx \).

2. Opaque endosperm (se3) belongs to linkage group IX.

3. Scarred endosperm (se2) belongs to linkage group IX.

4. Yellow flecked seedling leaves (yf) belongs to linkage group IX.

5. \(Su_{2} \) gives about 87 per cent recombination with \(y \).
This office has already received several lists of genetic stocks. The dead line for receipt of lists of these stocks is January 15th. We strongly urge those of you who have not made an inventory of your genetic strains to do so in the near future so that the next corn letter may present an adequate list of existing stocks.

In the coming corn letter we hope to be able to present for your criticism a tentative system of nomenclature for maize genetics.

Sincerely yours,

M. M. Rhodes

Marcus M. Rhodes
January 25, 1934

Department of Plant Breeding
Cornell University
Ithaca, N. Y.
To maize geneticists:

The inventory of genetic stocks which comprises the bulk of this letter is, of course, not complete but it will serve as a basis for future and more extensive lists. We wish to thank those maize geneticists who have cooperated in making this inventory possible. Its value should be apparent to everyone. In a plant such as maize where it takes several years to build up a required stock for a certain experiment, it is essential that the list of existing stocks be kept up to date and be available so that the investigator can make use of these stocks.

No attempt has been made to credit the stocks to different investigators. Those stocks which are marked with an asterisk are those which have not been received here at Cornell. It by no means follows that those stocks which are not marked by an asterisk were synthesized here at Ithaca. In the past we have received so many stocks from different cooperators that an attempt to trace the origin of the different stocks seemed a hopeless task. So we have purposely avoided listing the origin of any of the stocks. This does not give the credit due those investigators who have spent a great deal of time in building up good genetic strains. In the future we shall try to remedy this condition.

In order that this laboratory may serve efficiently as a distributing center for genetic strains, we urge those of you who have the stocks marked by an asterisk to send a small amount of seed to us so that it can be increased for distribution.

At the Boston meetings a system of nomenclature was agreed upon by representatives of the Drosophila and maize groups. This proposed system, as it applies to maize, is submitted in this report for your consideration and your criticisms and suggestions are requested. It was agreed that the needs and requirements of maize and Drosophila genetics were so diverse that it would be unwise to attempt to formulate an identical system of nomenclature. Yet in the matter of symbolizing genes, designating translocations, deficiencies, etc., it was felt that a uniform system could be employed with advantage, and the symbols which are used in the proposed system were agreed upon by the representatives of the two groups.

It should be clearly understood that the proposed system is only tentative. It can and will be modified in any way that will make for a better and more useful system.
The proposed nomenclatorial system for maize is as follows:

1. The linkage groups will be designated by Arabic numerals. Group 1 will include those genes which lie in the longest of the monoploid set of 10 chromosomes, etc. The longest chromosome will be called chromosome 1 and the shortest chromosome 10. Arabic numerals will be used for both linkage groups and chromosomes since the Roman numerals are too cumbersome.

2. Whenever biliteral symbols are used the second letter shall not be dropped as a subscript. Italicize gene symbols.

3. Literal superscripts shall be used to represent different members of an allelomorphic series, e.g., R^f, R^g, r^f, r^g.

4. Numeral subscripts shall be used to represent different genes which give phenotypically similar effects, e.g., V_1, V_2, V_3, etc.

5. The normal allelomorph of a mutant gene shall be designated by the use of the + sign as a superscript, e.g., the normal allelomorph of sugary (su) will be su+, and not Su or +. The plus sign alone may be used for normal allelomorphs in such genotypic formulae as $\frac{++}{su Tu}$, but these allelomorphs should be designated as indicated above when the formula is written as $su^+Tu^+ / su Tu$.

This suggestion was made by the Drosophila group and we believe it meritorious. It enables one to tell whether the mutant gene is dominant or recessive to the normal or average condition. And, too, the normal gene is nothing more than an allelomorph of the mutant one.

6. The letter T (italicized) shall denote reciprocal translocations or segmental interchanges. $T(1-2)_1$ would represent the first case of a reciprocal translocation between chromosomes 1 and 2, $T(1-2)_2$ the second, etc. Numeral subscripts instead of literal ones are recommended to denote the different translocations. There are several objections for using a, b, c, etc. to denote the different translocations. When more than 26 different translocations involving the same two chromosomes are found we should be forced to use biliteral subscripts, such as aa, ab, ac, etc. The letters of the alphabet have in the past been used for symbolizing genes. For example, we have designated the different virescents as V_1, V_2, V_3, etc., and not as V_a, V_b, V_c, etc.

7. The symbol Df (italicized) shall be used for Deficiency. For example, the first deficiency involving chromosome 10 will be represented as $Df 10_1$; the second as $Df 10_2$, etc.

8. The symbol In (italicized) shall stand for Inversion. An inversion involving chromosome 4 will be represented as $In 4_1$; the second one as $In 4_2$, etc.
9. It was decided that there was, as yet, no need to formulate a system of nomenclature for duplications.

This office will do all that it can to enable you to secure any of the stocks listed in this letter but it should be remembered that in several cases the amount of seed is small and we may not be able to fill your request.

Sincerely yours,

M. M. Rhoades

ENCLOSURES
Linkage group 1

1. P br f1 bm2
2. p br f1 bm2
3. P + br f1 bm2
4. P an bm2
5. p ad1 bm2
6. P gl10 f1
7. p br f1 ad1 *
8. p br ad1 *
9. f1 an may seg. bm2 *
10. p f1 bm2 *
11. ts2 f1 may seg. bm2 *
12. ts2 an may seg. f1 bm2 *
13. P + + an bm2
14. P br f1 ad1 +
15. P br f1 an +
16. P ts2 br f1 an +
17. P gl10 f1 an
18. P br f1 + an
19. P ts2 br f1 + an
20. P sr

Linkage group 2

1. lg1 gl2 b v4
2. lg1 gl2 b v4 seg. ts1 *
3. f1 v4 *
4. lg1 B v4
5. lg1 b v4
6. lg1 B ba2 seg.
7. lg1 b ba2 seg.
8. gl2 x sk F2
9. gl2 v4 seg. ts1 *
10. gl2 f1 v4 *
11. gl2 f1
12. lg1 v4 seg. ts1 *
13. lg1 b sk v4
14. B sk
15. lg1 B seg. ts1
Linkage group 3

1. \(a_1-na-ts_4 \)
2. \(a_1-ts_4 \)
3. \(a_1 na + \cr \)
4. \(a_1 + d_1 cr + \rg + + \)
5. \(a_1-na-cr \)
6. \(a_1-na-ts_4 \)
7. \(cr + \frac{+}{+} F_2 \)
8. \(ts_4 + \frac{+}{+} cr F_2 \)
9. \(a_1-na-ts_4-cr \)
10. \(a_2 d_1-cr \)
11. \(l_52-d_1 \)
12. \(\beta_1-l_52 \)
13. \(a_1-cr \)
14. \(a_1-Rg \)
15. \(a_1-bal \)
16. \(cr_1-ms \)
17. \(pg_2-d_1 \) seg.
18. \(a ts_4 + \frac{+}{+} bal F_2 \)
19. \(a_1 d_2 \)

Linkage group 4

1. \(su Tu gl_3 \)
2. \(su gl_3 \)
3. \(su Tu \)
4. \(su Ts_5 \)
5. \(su Ts_5 + \frac{+}{+} WI F_2 \)
6. \(su Tu + \frac{+}{+} WI F_2 \)
7. \(su gl_3 + \frac{+}{+} WI F_2 \)
8. \(su Tu + \frac{+}{+} J_2 F_2 \)
9. \(su Ts_5 + \frac{+}{+} J_2 F_2 \)
10. \(su j_2 \)
11. \(Su j_2 \)
12. \(su st \)
13. \(su Tu Ts_5 \)
14. \(F_2 \) seg. su and \(vp_3 \)
15. \(su la \)
16. \(Tu la \)
17. \(su + \frac{+}{+} lo \)
18. \(su + \frac{+}{+} \)
19. \(su + \frac{+}{+} \)
20. \(su + \frac{+}{+} sp \)
Linkage group 5

1. pr v_2
2. pr v_3
3. v_2 pr bm_1
4. pr bm_1
5. ys_1 pr bt
6. a_2-bt $_1$-pr
7. v_2 ys_1 pr *
8. pr bv bm_1 *
9. v_2 pr bv *

10. bt_1 bm_1 *
11. ys_1 pr bm_1 *
12. ys_1 pr bm_1 seg. v_2 *
13. pr v_{12} bm_1 *
14. pr v_3 bm_1 *
15. ys pr v_3 *
16. v_2-bv
17. pr v_{12}

Linkage group 6

1. y Pl py
2. Y Pl py
3. y Pl py
4. y Pl py
5. po y Pl *
6. po Y Pl *
7. po y pl *
8. sm Py py \otimes *
9. Y Bh Pl
10. y pl sm
11. y-si-pl seg.
12. v_7-y-pl
13. v_7-Y-pl
14. v_6-Y-pl
15. v_6-Yy-pl

x Stocks carrying al are not listed since there is considerable doubt that al belongs in this linkage group.
Linkage Group 7

1. \(b_n \, g_{l1} \, v_5 \)
2. \(B_n \, g_{l1} \, v_5 \)
3. \(g_{l1} \, iJ \, \text{seg.} \, f_{r1} \, \text{and} \, f_{r2} \)
4. \(r_{a-g_{l1-v5}} \)
5. \(r_{a} \, v_5 \)
6. \(B_n \, g_{l1} \, r_{a} \)
7. \(\frac{r_{a} + g_{l1}}{g_{l1} + iJ} \) \(F_2 \)
8. \(W_h \, g_{l1} \)
9. \(r_{a} \, s_l \)
10. \(B_n \, g_{l1} \, \text{sl may seg.} \, r_{a} \)
11. \(b_n \, g_{l1} \, s_l \)
12. \(g_{l1} \, v_5 \, v_{a1} \)
13. \(\text{in} \, g_{l1} \, v_5 \, \text{seg.} \)
14. \(\text{in} \, iJ \)
15. \(\text{in} \, g_{l1} \)
16. \(g_{l1} \, iJ \)
17. \(g_{l1} \, s_l \, r_{a} \)

Linkage group 8

1. \(\frac{j + W_{m} \, s_{8}}{g_{l1} + iJ} \) \(F_2 \)

81
Linkage Group 9

1. yε₂ c sh wx
2. c sh wx v₁
3. c sh v₁₅ wx
4. ARC wx homozygous terminal knob on 9 *
5. c sh bp wx *
6. ar pk sh *
7. c sh wx
8. da₁ au₁ au₂ sh
9. c sh wx w₁₁ seg.
10. sh ms₂
11. g₄ sh ar
12. au₁ au₂
13. c sh wx d₃ seg.
14. yε₂ sh d₃ seg.
15. sh l₆
16. sh-wx-w₁₁ F₂
17. c sh wx au₁ C sh Wx au₁ F₂
18. da au₁ sh
19. I sh

Linkage Group 10

1. r g₁
2. r g₁ nl₁
3. R g₁ nl₁
4. R g₁
5. g₁ li
6. l₂ r g₁ seg.
7. pg₁ g₁ r seg.
8. pg₁ l₂ seg.
9. g₁ l₄ seg.
10. d₇ r g₁ seg.
11. r tester stock which does not carry the inhibitor of the mottling allelomorph.
12. g₁-r mottled
Multiple combinations involving two or more groups

A1 C-sh-wx r-g Pr
A1 C-sh-wx r-g pr
A1 C-sh-wx R-g Pr
A1 C-sh-wx R-g pr
A1 C-sh-wx R-g nl Pr
A1 B-lg Y-Pl su-Tu
A1 B-lg Y-Pl Su-Tu
A1 B-lg y-Pl Su-Tu
A1 B-lg y-Pl su-Tu
A1 B-lg y-Pl su-Tu +=
F 1
BB-Lg lg Su-tu Yy-Pl pl wx *
Bb-lg Su su-tu Yy-Pl pl wx *
BB-Lg lg su-Tu tu Yy-pl Wx wx *
Bb-Lg lg su-Tu tu Yy-pl Wx wx *
b-Lg lg su-tu y-pl wx *
a pr in wx y C Rg Su su
a E Pl C R Pr Y
A1-cr C Rg pr su y-pl b-lg j
a B-lg Y-Pl Pr C R
A1 B-lg y-Pl Pr C R S
A1 B Y-Pl Pr C R Su
A1-cr C r-f-g pr in-Bn bn
Su su y-pl b-lg bm2
may seg. ts2 d1 j
A Cc Rg pr In in Su su y-pl
b-lg bm2 j v? may seg.
G1 d1 cr ts2
A1 Rg c-Sh sh-wx pr in su y Pvv
a1 r-f C B-lg Y-pl pr j
a1 R C lg y pr j in Su
a1 R c-wx Bb-lg Y-pl pr su
a1 R c-sh-wx B-lg Yy-Pl Pr su
a1 Rg C pr y in b pl *
a1 c Rg-g pr In Su su Y-pl
b-lg bm2 j may seg.
cr ts2 d1
pr gl1-v5
pr lg in
lg gl1-v5
pr in-gl1
pr in-ij
pr-bm1 an *
pr f1-(Br br) - (Bm2 bm2) *
pr lg-gl2-b F2 *
pr ts4 *
pr a1-na-ts4 C R *
pr-bm1 su Tu tu *
pr-bm1 y *
pr gl1-ra *
pr-bm1 sh-wx *
pr-bm1 wx *
pr-bm1 sh-wx su *
pr-bm1 v3 wx F2 *
Bm1 yg1 wx *
A R c-sh-wx pr-bm1-v2 *
A R C-sh-wx-v1 pr *
lg-gl₁-b wx F₂ *
a₁-ts₄ lg gl₁ F₂ *
a₁-na-ts₄ C-R B pl F₂ *
bm₂ cr *
bm₂ lg₁ g₁ *
Ch j su *
su-gl₃ lg₁-v₄ *
a₁ B pl c-sh-wx pr su-gl₃ *
a₁ B pl c-sh-wx pv su-Tu *
A C R pr lg₁ g₁ Su y Bn
br-li seg. bd (branched silkless)
g₁-li wx seg. bd.
cr li gi
ra g₁-li lg
A B pl li lg₁ f₁
lg₁ g₁ f₁
lg₁ ad-f₁
ra₁ lg₁ lg₁ br
wx lg₁ gl₁
cr ra₁ f₁
a₁ r C pr wx y Bn ? *
a₁ C r pr wx y Bn ?
a₁ C R₆ pr in y wx Su su
A C R₆ sh wx y pr Su su
a C R₆ pr Y pl in b
A C R pr su Tu tu gl₃
a₁ p sh-wx su lg-b f₁
a₁ p sh-wx Su lg-b f₁
A B pl lg ts₁ F₂
A C R b pl pr v₂
A C R pr-bm₁ wx may seg. v₂
A C R lg-B-v₄ pr bv Yy-pl F₂
A C r j y
a₁-na-cr Y-pl gl₁-v₅
a₁-na-cr Y-pl b-lg gl₁-v₅
a₁-na b-lg Y-pl
a₁-na-cr b-lg Y-pl
a₁-na-na-Ts₄ ts₄ b-lg g₁
a₁-na b-lg Y-pl gl₁-v₅
A C R Pr gl₁-ra *
A C R so₁ so₂
Aa Rr-g₁ B pl su
#2 trisome
#3 "
#5 "
#6 "
#7 "
#8 "
#9 "
#10 "
A C (Rr)? Pr (Bb)? pl Yy tetraploid
A C R₆ b pl y Su tetraploid
A₁ C R pr y Su
A₁ c R Pr y Su
A₁ C r pr y su *
A₁ C R pr y
Three inbred strains of Leaming selfed for 29 years.
Strain resistant to physiological forms 1 and 3 of Puccinia sorghi.
Strain susceptible to physiological forms 1 and 3 of P. sorghi.
Strain resistant to physiological form 1 but susceptible to physiological form 5 of P. sorghi.

List of reciprocal translocations at Cal. Tech.

<table>
<thead>
<tr>
<th>Pedigree No.</th>
<th>Chromosomes involved</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 11</td>
<td>1- 7</td>
</tr>
<tr>
<td>A 12</td>
<td>1- 3</td>
</tr>
<tr>
<td>A 13</td>
<td>4- 9</td>
</tr>
<tr>
<td>A 14</td>
<td>4- 5</td>
</tr>
<tr>
<td>A 15</td>
<td>3-10</td>
</tr>
<tr>
<td>A 16</td>
<td>8-10</td>
</tr>
<tr>
<td>A 17</td>
<td>2- 7</td>
</tr>
<tr>
<td>A 18</td>
<td>3-10</td>
</tr>
<tr>
<td>A 19</td>
<td>2- 3</td>
</tr>
<tr>
<td>A 20</td>
<td>5-10</td>
</tr>
<tr>
<td>A 21</td>
<td>5- 8</td>
</tr>
<tr>
<td>A 22</td>
<td>6-10</td>
</tr>
<tr>
<td>A 23</td>
<td>6-10</td>
</tr>
<tr>
<td>A 24</td>
<td>1- 5</td>
</tr>
<tr>
<td>A 25</td>
<td>2- 7</td>
</tr>
<tr>
<td>A 26</td>
<td>3-10</td>
</tr>
<tr>
<td>A 27</td>
<td>3- 7</td>
</tr>
<tr>
<td>A 28</td>
<td>3- 5</td>
</tr>
<tr>
<td>A 29</td>
<td>1- 2</td>
</tr>
<tr>
<td>A 30</td>
<td>3- 6</td>
</tr>
<tr>
<td>A 31</td>
<td>3- 9</td>
</tr>
<tr>
<td>A 32</td>
<td>1- 5</td>
</tr>
<tr>
<td>A 33</td>
<td>2- 6</td>
</tr>
<tr>
<td>A 35</td>
<td>1- 9</td>
</tr>
<tr>
<td>A 36</td>
<td>4- 6</td>
</tr>
<tr>
<td>A 37</td>
<td>4- 6</td>
</tr>
<tr>
<td>A 38</td>
<td>3- 8</td>
</tr>
<tr>
<td>A 40</td>
<td>1- 5</td>
</tr>
<tr>
<td>A 41</td>
<td>2- 6</td>
</tr>
<tr>
<td>A 42</td>
<td>2- 4</td>
</tr>
<tr>
<td>A 43</td>
<td>1- 9</td>
</tr>
<tr>
<td>Pedigree No.</td>
<td>Chromosomes involved</td>
</tr>
<tr>
<td>-------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>A 52</td>
<td>5—5</td>
</tr>
<tr>
<td>a 53</td>
<td>1—3</td>
</tr>
<tr>
<td>A 61</td>
<td>4—10</td>
</tr>
<tr>
<td>A 62</td>
<td>5—10</td>
</tr>
<tr>
<td>A 64</td>
<td>1—10</td>
</tr>
<tr>
<td>A 66</td>
<td>4—5</td>
</tr>
<tr>
<td>A 69</td>
<td>2—7</td>
</tr>
<tr>
<td>A 70</td>
<td>4—6</td>
</tr>
<tr>
<td>A 73</td>
<td>1—7</td>
</tr>
<tr>
<td>A 74</td>
<td>1—3</td>
</tr>
<tr>
<td>A 75</td>
<td>3—5</td>
</tr>
<tr>
<td>A 76</td>
<td>2—9</td>
</tr>
<tr>
<td>A 77</td>
<td>1—9</td>
</tr>
<tr>
<td>A 78</td>
<td>2—8</td>
</tr>
<tr>
<td>A 79</td>
<td>4—9</td>
</tr>
<tr>
<td>a 80</td>
<td>2—6</td>
</tr>
<tr>
<td>A 83</td>
<td>3—2</td>
</tr>
<tr>
<td>A 84</td>
<td>8—10</td>
</tr>
<tr>
<td>A 85</td>
<td>4—10</td>
</tr>
<tr>
<td>A 87</td>
<td>1—3</td>
</tr>
<tr>
<td>A 88</td>
<td>2—4</td>
</tr>
<tr>
<td>a 90</td>
<td>2—3</td>
</tr>
<tr>
<td>A 94</td>
<td>3—10</td>
</tr>
<tr>
<td>A101</td>
<td>2—4</td>
</tr>
<tr>
<td>A103</td>
<td>1—7</td>
</tr>
<tr>
<td>A111</td>
<td>6—8</td>
</tr>
<tr>
<td>A118</td>
<td>2—3</td>
</tr>
<tr>
<td>A119</td>
<td>6—9</td>
</tr>
<tr>
<td>A122</td>
<td>1—4</td>
</tr>
<tr>
<td>A129</td>
<td>2—4</td>
</tr>
<tr>
<td>A133</td>
<td>3—10</td>
</tr>
<tr>
<td>A136</td>
<td>5—7</td>
</tr>
<tr>
<td>A137</td>
<td>4—7</td>
</tr>
<tr>
<td>C & A 125</td>
<td>3—6</td>
</tr>
<tr>
<td>A & C 6452</td>
<td>5—6</td>
</tr>
<tr>
<td>a & C 6460</td>
<td>2—9</td>
</tr>
<tr>
<td>A & C 6462</td>
<td>4—5</td>
</tr>
<tr>
<td>a & C 6465</td>
<td>3—9</td>
</tr>
<tr>
<td>A & C 6466</td>
<td>1—10</td>
</tr>
<tr>
<td>A & C 6467</td>
<td>4—8</td>
</tr>
<tr>
<td>a & C 6468</td>
<td>3—5</td>
</tr>
<tr>
<td>A & C 6470</td>
<td>6—9</td>
</tr>
<tr>
<td>A & C 6471</td>
<td>2—6</td>
</tr>
<tr>
<td>A & C 6472</td>
<td>4—5</td>
</tr>
<tr>
<td>A & C 6473</td>
<td>2—10</td>
</tr>
<tr>
<td>A & C 6474</td>
<td>3—7</td>
</tr>
<tr>
<td>A & C 6475</td>
<td>5—7</td>
</tr>
<tr>
<td>A & C 6477</td>
<td>2—8</td>
</tr>
</tbody>
</table>
February 21, 1934

Department of Plant Breeding
Cornell University
Ithaca, N. Y.
To Maize Geneticists:

The proposed nomenclatorial system for maize has provoked considerable discussion and we have received comments and suggestions from Jones, Brink, Sprague, Jenkins, Stadler, Mangelsdorf, Beadle and Anderson. As might be expected, the proposed system in its present form was not acceptable to everyone. In this letter we shall list the different items in the proposed system and then state the criticisms or comments made about each item.

Item 1 - (see proposed nomenclatorial system in corn letter of January 25th).

Comments: This seemed to be generally acceptable to everyone but Anderson suggests that it be worded as follows: "Arabic numerals are preferred to Roman for designating both linkage groups and chromosomes except where other usage helps clarify or simplify expression." It is, of course, possible that in some special study clarity can not be obtained by using Arabic numerals throughout and that there should be, in those exceptional cases, no hesitation in using some other means of designating either linkage groups or chromosomes. But in the majority of cases the use of Arabic numerals will satisfactorily meet all requirements and it seems to us best that the statement, as made in the corn letter, should stand.

Item 2 - Whenever bilateral symbols are used the second letter shall not be dropped as a subscript. Italicize gene symbols.

Comments: Satisfactory to everyone.

Item 3 - Literal superscripts shall be used to represent different members of an allelomorphic series, e.g. R^f, R^e, R^f, R^e.

Comments: Satisfactory to everyone.

Item 4 - Numerical subscripts shall be used to represent different genes which give phenotypically similar effects, e.g. Y_1, Y_2, V_3, etc.

Comments: O.K. but Anderson suggests it might be well to dispense with all subscripts and raise the numeral to the same level as the rest of the symbol.

While this suggestion seems good we believe that the present system of dropping the numerals as subscripts has become widely used and is satisfactory so that any benefits which might accrue from raising the numeral to the same level as the rest of the symbol are
not of sufficient value to justify the change.

Therefore we suggest that Item 4 remain as stated.

Item 5 - (see proposed nomenclatorial system in corn letter of January 25th).

Comments: This suggestion has met with such widespread objection that we withdraw it and believe that the old system for designating normal allelomorphs should be continued, i.e. that either a + sign or capital letters be used (e.g. Ra, Sa, Lg for the normal allelomorphs of ra, sa and lg). Sprague and Jenkins made the interesting suggestion that the + sign be used to designate the dominant allelomorph rather than the normal allelomorph since such a procedure would tell at a glance whether the cross was made in coupling or repulsion phase.

Item 6 - (see letter of January 25th).

Comments: This was acceptable to all save Anderson, who wishes to use T 1-2a, T 1-2b, etc., in place of T(1-2)1, T(1-2)2, etc. He meets the objection that the use of the letters of the alphabet will necessitate the use of binomials by stating that it will be some time before we have more than 26 translocations involving the same two chromosomes. He further objects to the use of parentheses and sees no need for italicizing the letter T (as does Jones). But the question of whether or not Anderson's system is preferable is meaningless now since he has a paper in press in which he has listed all known translocations and has designated them by T 1-2a, etc.

Therefore it seems best that we modify the proposed system to agree with Anderson's terminology. Since some objection has been raised to italicizing the letter T we suggest that it shall not be italicized.

Stadler states that he sees no reason why the symbol T can not be used for any kind of translocation, i.e. simple, reciprocal or progressive. We see no a priori reason why his suggestion is not workable.

Item 7 - The symbol Df (italicized) shall be used for Deficiency. For example, the first deficiency involving chromosome 10 will be represented as Df 101; the second as Df 102, etc.

Comments: Generally satisfactory although Anderson would prefer Df 10a in place of Df 101. However Stadler states that he will have a good many deficiencies involving a single chromosome so the alphabet would soon be outstripped and since Stadler is using Df 101 and finds it satisfactory, we suggest that the proposed system for deficiencies stand as listed except that the symbol Df shall not be italicized.
Item 8 - The symbol In (italicized) shall stand for Inversion. An inversion involving chromosome 4 will be represented as In 4; the second one as In 4^2, etc.

Comments: Same as for Item 7.

Item 9 - It was decided that there was, as yet, no need to formulate a system of nomenclature for duplications.

No comment necessary.

We went to strongly emphasize that in the attempt to formulate a nomenclatorial system for maize there is no intention of establishing a set, rigid system which can not be modified to fit the varied needs of a rapidly changing field of research. That there will arise occasions when a modification of the proposed system is necessary for clarity we do not doubt, but without question some general rules of nomenclature which will be followed when possible are essential. To provide such a general code has been one of the purposes of these corn letters. We wish to thank those of you who have been sufficiently interested to communicate your views to us.

After taking into consideration your comments and criticisms we wish to submit a revised nomenclatorial system for maize which has been modified so as to incorporate some of the changes which were recommended.

The modified nomenclatorial system for maize is as follows:

1. The linkage groups and chromosomes will be designated by Arabic numerals. Linkage group 1 will include those genes which lie in the longest chromosome, etc. The longest chromosome of the monoploid set of 10 will be called chromosome 1 and the shortest chromosome 10.

2. Whenever bilateral symbols are used the second letter shall not be dropped as a subscript. Italicize gene symbols.

3. Literal superscripts shall be used to represent different members of an allelomorphic series, e.g. R_t, R_s, R^p, R_q.

4. Numerical subscripts shall be used to represent different genes which give phenotypically similar effects, e.g. V_1, V_2, V_3, etc.

5. The normal allelomorph of a recessive mutant gene shall be designated as has been customary in the past, i.e. either by a + sign or by a capital letter; e.g. the normal allelomorph of su can be either Su or +, depending upon which is the most convenient to use. The normal allelomorphs of what are commonly considered dominant genes can be designated, as in the past, by either a + sign or by small letters, i.e. the normal allelomorph of Tu can be either + or tu.
6. The letter T (not italicized) shall denote translocations. T 1-2a would represent the first case of a reciprocal translocation between chromosomes 1 and 2, T 1-2b the second, etc.

7. The symbol Df (not italicized) shall be used for Deficiency. For example, the first deficiency involving chromosome 10 will be represented as Df 10₁; the second as Df 10₂, etc.

8. The symbol In (not italicized) shall stand for Inversion. An inversion involving chromosome 4 will be represented as In 4₁; the second as In 4₂, etc.

Again it should be stated that this nomenclatorial system can be further modified so if you have any objections to the system as outlined in this letter please advise us.

Sincerely yours,

M. M. Rhoades

MMR:B

M. M. Rhoades 73.
September 13, 1934

Department of Plant Breeding
Cornell University
Ithaca, N. Y.
To Maize Geneticists:

We have the pleasure to announce that the Rockefeller Foundation has made a grant to support the cooperative maize work for a period of five years. We are indebted to Brink for having suggested to the Rockefeller people that they aid in a financial way the cooperative maize genetics enterprise.

Last fall we issued for the first time a call for news items such as new linkages, linkage data, short accounts of specific problems, new genes, etc. The response and interest manifested was sufficient to warrant the issuing of a similar call this fall. We would like to have the different items by November 15th. This time limit should make it possible to obtain seedling counts this fall before sending in your news items. The listing of new genetic testers is desired so that we can keep the list of available maize stocks up to date.

In addition to serving as a distributing and cooperative bureau this laboratory shall attempt to collect and maintain stocks of all corn characters. With this purpose in mind, this past summer we grew 8000 plants in our gardens and over 2000 pollinations were made. Included in this collection were characters which had not been grown in recent years, and were in danger of being lost, as well as desirable stocks which had become depleted through calls for seed. The great majority of the pollinations were made by Mr. John Shafer, a graduate student here at Cornell. While our primary purpose shall be to preserve the genes which have previously been isolated, we hope to produce, in a limited manner at least, some desirable multiple combinations.

Since January, 1934 this laboratory has distributed on request over 350 stocks to different investigators.

Through the kindness of R. C. Wiggans we have secured a dozen inbreds which are fairly early in season and are very resistant to the strains of corn smut present at Ithaca. Since some of our genetic testers are extremely susceptible it seems advisable to cross them with resistant lines to obtain resistant testers. In order to determine which of the inbreds will prove best we shall send samples of seed of the different inbreds to several stations so that their smut resistance in different parts of the country can be tested. Those inbreds which are most resistant will then be used in crosses with the susceptible genetic testers.
It is becoming increasingly more important to have lists of cytological testers, i.e., strains in which the chromosome morphology is known. Those of you who are engaged in cytogenetic research please go over your material to see if you can furnish such information and, if so, send us the lists.

Pollen classification

Anderson sends the following concerning classification of pollen for semi-sterility, etc.: "We cut out some blocks of light redwood, bored holes in them like this and attached handles. Usually we have 96 holes (8 rows of 12). We collect pollen only in the forenoon. No tags are used. We write the family number on the block and then check the plants collected in the record book, skipping a hole as we pass from one family to the next for safety. The pollen sheds plentifully especially after an hour or more. Tapping the tassel over a slide gives lots of pollen which we look at dry. When pollen is plentiful it is easier to classify dry than in a KI-I preparation. If it is too shriveled we put on a drop of weak iodine solution."

Anderson states that his assistant has made as many as 800 classifications in a single day.

Leitz makes a small pocket microscope (Tauschen Mikroskop) which sells for about $14.00. This pocket microscope can be used in classifying pollen in the field. It is a very fast and convenient method but can be used only when the anthers are shedding pollen. On a quiet morning, however, it is possible to work for several hours before the pollen has been completely shed.

Induced mutants

Stadler has kindly furnished this laboratory with the following mutants which he obtained in his X-ray work. We increased these stocks this past summer and they are available for distribution to anyone wishing to study their linkage relations.

<table>
<thead>
<tr>
<th>Segregating mutant</th>
<th>Viability</th>
<th>Linkage indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentia (ar<sub>1</sub>)</td>
<td>good</td>
<td>close to su</td>
</tr>
<tr>
<td>dwarf (d<sub>b</sub>)</td>
<td>good</td>
<td>none</td>
</tr>
<tr>
<td>dwarf (d<sub>a</sub>)</td>
<td>good</td>
<td>slight - Y repulsion</td>
</tr>
</tbody>
</table>
yellow green \((y_g) \) & low & none
pale green \((p_g) \) (might = \(a_r \)) & good & close to su
virescent (low ratio) & probably fair & none
virescent \((v) \) (not induced) & good & none
glossy \((g_l) \) & fair & none
glossy \((g_l) \) & fair & none
fine streaked \((f_s) \) & good & none
glossy \((g_l) \) & lethal & none
pale green & possibly viable & none
pale green (wilts) & very low & close to Y
pale green & lethal & close to \(Y \) units from \(Y \)

The names and symbols given to these mutants are merely for convenient reference. When they have been more thoroughly tested names and symbols will be assigned to them.

Maize genetics in the U.S.S.R.

American maize geneticists will be glad to learn that an active group of workers in maize genetics is springing up in the U.S.S.R. This work is under the direction of M. I. Hadjinov. We have received the following letters from him which are transcribed here for your information.

"Your letter of November 13, 1933 I received only 13th January, 1934. I am enclosing herewith information about our works on maize genetics. I hope it will be of some value though strongly delayed.

During the last 2-3 years we have carried out this work some results of which will be shortly published. The greater part of them I am sending you today.

I should be much obliged if you would kindly send me the mimeographed circulars of the Cornell University on maize genetics and also some genetics stocks.

I should like to ask you if you would find it possible to send me also numbers of circulars previously years of which I possess only that of 1930 "Linkage in Maize".

I wish to state that I am familiar with the Chromosome Map in the report of Prof. R. A. Emerson on the VIth Genetic Congress."
Dr. G. D. Karpetchenko asks me to send his best wishes to you.

Yours sincerely,
(Signed) M. I. Hadjinov.

The enclosure:

"Recurrences of known mutations"

liguleless. From 7 stocks: Shanghai, Primorsky Region (F. East) 2 different stocks, Middle Volga region, Armenia, U.S.A. Leaming (all tested) and one from the N. Caucasus (non-tested).

ramosa. From 4 stocks: Italy, 2 different stocks of Georgia, N. America (tested).

shrunken. From 2 stocks: Middle Asia, North America (varieties Minnesota 23) (tested).

golden. From West China (tested).

green striped. From 2 stocks: Georgia, Leaming (non-tested).

Teopod. From early sugar varieties (names unknown) supplied by Prof. Larionov from Ukraine, where Teopod has never been grown before.

fine-striped. From 2 stocks: Mexico, N. America (tested).

anther ear. From 2 stocks N. America (non-tested).

dwarf. From 2 stocks (tested).

dwarf 3. From 1 stock (tested).

barren-sterile. (Prof. Hayes). From Spain (non-tested).

barren-stalk. (Prof. Emerson). From Italy (non-tested).

tassel seed 1. From 2 stocks. Primorsky Region, N. America (tested).

tassel seed 2. From 2 stocks. Georgia, Armenia (tested).

lazy culm. From Ivory King (N. America) (non-tested).

brown midrib. From 2 stocks: Georgia, Sterling (N. America) (non-tested).

4 cases of cytoplasmatic male sterility: Azerbaijan, Peru, N. Caucasus, America.

male sterility. 25 stocks segregated for male sterility are being studied.
New genes

1. \(\text{Rh}_1 \text{Rh}_1 \). Rough sheaths. A dominant gene producing warts in the leaf sheaths in the lower part of the leaf blade near the auricole. This character appearing in the plant in the stage of 7 to 8 leaves. The vitality of the plant is normal. Seed available.

2. \(\text{Rh}_2 \text{Rh}_2 \). Rough sheaths. A recessive gene producing the character similar to that of \(\text{Rh}_1 \text{Rh}_1 \). Beside warts this gene causes sometimes a narrowing of the leaf blade and the appearance of thread-like leaves. The vitality of the plant is somewhat low, but in some families normal. Seed available.

3. \(\text{gl}_4 \text{gl}_1 \). Glossy. 11 different allelomorphs \(\text{gl}_1 \text{gl}_1 \) have been recorded from 25 different stocks. Among the 11 genes of glossy by intercrossing and linkage there have been found \(\text{gl}_1 \) and \(\text{gl}_3 \) previously described. The linkage of the remaining genes will be shown below.

4. \(\text{cr}_2 \text{cr}_2 \). Crinkly. A gene similar to crinkly but non-allelomorphic with it. Seed available.

5. \(\text{yg}_3 \text{yg}_3 \text{yg}_4 \text{yg}_4 \). Yellow-green. Duplicate genes. The seedlings are yellow-green till the flowering stage. After the flowering the yellow pigment disappears. It segregated as a simple recessive gene in the original stock. In crossing with non-allied families gives 15:1. The vitality of plant is extremely low. Seed available.

6. \(\text{rs} \text{rs} \). Ramosa-silkless. This gene causes a branching of the ear similar in appearance to ramosa but with the complete absence of silks. At the same time it causes an, in the tassel, increasing of glums, flower spikelets and anthers in the pair spikelets. It gives a normal pollen. The vitality of the plant is normal. Seed available.

7. \(\text{at} \text{at} \). Antherless. Causes a complete absence of anthers. The vitality of the plant is normal. Seed available.

8. \(\text{hf} \text{hf} \). Hermaphrodite flowers. A pistilate flower is developed in the male flower beside anthers giving a silk 2-3 cm. long. Sometimes instead of a silk there is only a rudimentary pistil. The pollen is very rarely developed. The ears have a low fertility. The vitality of plant is normal.

9. \(\text{vb} \text{vb} \). Variable brachyte. Causes a sharp shortening of the internodes up to 1 cm. This character is much variable. This shortening may affect either a considerable part of internodes in what case it produces a dwarf plant, or only a part of internodes. Very often the shortened internodes alternate with the normal. Non-allelomorphic with brachyte.
The allelomorphism of vb vb with brevis will be stated in summer 1934. Seed available.

In answer to my reply to the above letter the following was received:

"I have received your kind letter and mimeographed circulars. I am very grateful to you for information and multiple testers which you are sending me. The connection I am trying to establish with you and which, I trust, will be strengthened in future will greatly help us in our work on maize genetics, which I am carrying on now. I hope not to be soon the only worker on maize genetics in U.S.S.R. because I try incorporate into it a considerable number of persons carrying selectional work in corn inbreeding. These workers introduce up to 10-12 thousand new self pollinations every year. Without close association with you our work would be extremely difficult.

In regard to your observations on new mutation characters I am going to say the following:

1) I agree with you that Rs₁ and Rs₂ are better symbols for Rough sheath₁ and rough sheath₂. I gave them symbols Rh₁ and rh₂ because by rs I have designated ramosa-silkless which, as I read shortly in the Journal of Heredity seems to be similar to 'branched silkless' bd.

2) I hope to come to an agreement with Dr. Sprague regarding the allelomorphism of Dr. Sprague and my glossies.

3) My crinkly is non-allelomorph cr₁. A limited generation of F₂ from crossing \(\frac{t + c₂}{sh \cdot wx} \) shows that it is not located in 9 chromosomes and thus seems non-allelomorph cr₂ of Dr. Eyster. I will designate it by cr₃.

4) Genes yellow green₃₄ - duplicate genes which you think to be similar to au₁₂ of Dr. Eyster will be tested in linkage with the genes wx and C. I have these F₂.

5) My ramosa-silkless is similar to branched-silkless of Dr. Kempton. My data, however, on linkage (bd) do not coincide with those of Dr. Kempton, who believes it (bd) to be located in 4 (su-Tu) chromosome.

The table below shows my

<table>
<thead>
<tr>
<th>Progeny Phase</th>
<th>Genes</th>
<th>Number of Plants</th>
<th>Total Crossover</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Edx : Bdx : bdx : bdX : bdx</td>
<td></td>
</tr>
<tr>
<td>F₂ : R : Susu</td>
<td>728 : 159 : 227 : 42</td>
<td>1156 : 47.6 ± 1.55</td>
<td></td>
</tr>
<tr>
<td>F₂ : C : Tutu</td>
<td>102 : 33 : 41 : 8</td>
<td>184 : 57.0 ± 4.01</td>
<td></td>
</tr>
<tr>
<td>F₂ : R : Bnbn</td>
<td>252 : 143 : 101 : 19</td>
<td>515 : 34.7 ± 2.55</td>
<td></td>
</tr>
<tr>
<td>B : R : Bnbn</td>
<td>9 : 41 : 15 : 6</td>
<td>41 : 36.6</td>
<td></td>
</tr>
</tbody>
</table>
which induce me to think (bd) located in 7 (ra-gl^ chromosome. This summer I shall have the linkage (bd) with larger progeny.

6) I have genes ts^1, ts^2, ts^4 and I am aware of the genes Ts^3. All these genes produce grains on tassels and in ts^1, ts^2, ts^4 there is nearly always a complete replacement of male flowers by female. Ts^3 produces also grain on the tassel. A small ovary with a sport silk or without it is developed in the hermaphrodite male flowers in which seeds are never formed. Anthers are nearly normal, but pollen degeneration occurs soon after tetrads during the formation of pollen walls. hf^1 is associated with a strong sterility of female flowers, hf^2 is not linked with su^1. I have sent you the drawings of hf^ male flowers.

At the same time I am sending you small quantity of seed Rs^1, Rs^2, cr^1, at, hf^, vb^, bd^, ra^ and my g^gl^1, g^gl^2, g^gl^3, g^gl^7, g^gl^8, g^gl^9, g^gl^10. In autumn I will forward a series of characters after testing their mode of heredity.

Some time ago I read your paper on plasmatic sterility in the Journal of Genetics. The results which I obtained and mentioned at the time in my letter to Dr. Karpetchenko, then in Pasadena, are completely identical with yours. The experiments with artificial infection of seedlings by fresh juice from flowering ears showed me, as in your case, negative results. I am, however, inclined to consider this phenomenon as a result occasioned by the virus diseases. Presently in connection with investigations of the Mendelian type of male sterility from 35 different sources I came upon 4 cases of plasmatic sterility. One type of plasmatic sterility inherited in F^1 through pollen I have in sorghum. I am studying it presently. In regard to the work of the Mendelian type of male sterility I have got myself in connection with Dr. Beadle, through whose kindness I received all his genes of male sterility.

With best wishes, I am

Sincerely yours,

(signed) M. I. Hadjinov.

Unfortunately the seed Hodjinov sent was received too late for planting here at Ithaca last summer. Next fall, however, we shall have seed available for distribution.
Corrections and additions to list of genetic factors
(See maize letter of January 22, 1933)

at (antherless) Hadjinov
ag (argostripe) is allelomorphic with if (iojap).

The symbol bd is for branched silkless. The character branched sterile is non-existent.

bn2 (branched ear) proved from tests made this summer to be allelomorphic with bd.

bn2 (brown aleurone) is in chromosome 3. Sprague.

cr3 (crinkly leaves). Hadjinov.

d9 (dwarf plant) is in chromosome 10. Singh.

De2 (dominant aleurone diluter). In chromosome 9, 6 units from C. Order is De2-c-wx. Eyster.

d1 (dull brown endosperm blotch). Singleton and Jones.

dm (dead leaf margins). Kempton '23.

fl2 (floury endosperm). Mumm.

g10 (glossy seedling). In chromosome 1. Emerson.

g2 (green striped). In chromosome 2. Sprague.

hf (hermaphroditic flowers). Hadjinov.

i2 (japonica). In chromosome 4. Emerson.

le (lemon endosperm). In chromosome 5. Eyster.

10 (lethal ovule) may be allelomorphic with sp. In chromosome 4. Singleton '32.

me (mealy endosperm). Mangelsdorf '32.

pb5 (piebald). Apparently non-existent.

pe (pubescens-hairy sheath). Tavcar '32.

ps (panicula specialis). Tavcar '31.

ra2 (ramosa). Brink.

re₂ (reduced endosperm) chromosome 5. Eyster '31.
re₄ (reduced endosperm). Chromosome 4.
Rs₁ (rough sheath - dominant). Hadjinov.
rs₂ (rough sheath - recessive). Hadjinov.
Rw₁, etc. (row number genes). Tavcar.
si₂ (silky) (si₂ and si₃ are duplicate genes). Fraser.
si₃ (silky). Fraser.
su₂m (an allelomorph of su). Mangelsdorf.
w₁₂ (white seedling). Chromosome 4. Lindstrom.
w₃₅ (white sheath). Rhoades.

Please add these to the list in the maize letter of January 23, 1933. We would appreciate it if you would notify us of any mistakes, oversights, etc. Notify this office of any new symbols you may wish to use before publishing so that we can help avoid duplication of symbols.
List of maize geneticists

Anderson, E. G., Institute of Technology, Pasadena, Calif.
Beadle, G. W., Institute of Technology, Pasadena, Calif.
Brink, R. A., Genetics Dept., Univ. of Wisconsin, Madison, Wisc.
Clokey, Ira M., 1635 Laurel St., S. Pasadena, Calif.
Cooper, D. C., University of Wisconsin, Madison, Wisc.
Crelighton, Miss H. B., Conn. College for Women, New London, Conn.
Demerec, M., Carnegie Inst., Cold Spring Harbor, Long Island, N.Y.
Emerson, R. A., Plant Breeding Dept., Cornell Univ., Ithaca, N.Y.
Eyster, W. H., Botany Dept., Bucknell University, Lewisburg, Pa.
Fraser, A. C., Plant Breeding Dept., Cornell Univ., Ithaca, N.Y.
Hayes, H. K., Agronomy Dept., University Farm, St. Paul, Minn.
Hull, Fred, Agronomy Dept., Agric. Exp. Station, Gainesville, Fla.
Kvakan, Paul, Dobricevo Cuprija, Jugoslavia.
Li, H. W., Honan University, Kaifeng, Honan, China.
Linster, E. W., Genetics Dept., Iowa State College, Ames, Iowa.
McClintock, Miss Barbara, Plant Breeding Dept., Cornell University, Ithaca, N.Y.
Mangelsdorf, P. C., Agronomy Dept., Agric. Exp. Station, College Station, Texas.
Meyers, M. T., Farm Crops Dept., Ohio State Univ., Columbus, Ohio.
Mumma, W. J., Agronomy Dept., Univ. of Illinois, Urbana, Ill.
Perry, H. S., Botany Dept., Duke Univ., Durham, N. Car.
Randolph, L. F., Botany Dept., Cornell University, Ithaca, N.Y.
Reeves, R. G., Biology Dept., Agric. Exp. Sta., College Station, Tex.
Rhoades, M. M., Plant Breeding Dept., Cornell Univ., Ithaca, N.Y.
Rhoades, V. H., Botany Dept., Cornell University, Ithaca, N.Y.
Singh, S., Plant Breeding Dept., Cornell University, Ithaca, N.Y.
Stadler, L. J., Field Crops Dept., Univ. of Missouri, Columbia, Mo.
Tawcar, A., Dept. of Plant-Breeding, Univ. of Zagreb, Zagreb, Jugosl.
Thomas, H. C., Genetics Dept., University Farm, St. Paul, Minn.
Weatherwax, Paul, University of Indiana, Bloomington, Ind.
Wentz, J. B., Farm Crops Dept., Iowa State College, Ames, Iowa.
In addition to the preceding list the maize letters are sent to the following individuals who have requested that they be included on the mailing list. Some of them have been active in the past in corn genetics but have in recent years become inactive. Others on the list are anxious to receive the letters so that they may closely follow the progress of corn genetics.

Brunson, A. M., Agronomy Dept., Kansas State College, Manhattan, Kansas.
Dorsey, E., Plant Breeding Dept., Cornell Univ., Ithaca, N.Y.
Garber, R. J., Agronomy Dept., Univ. of W. Va., Morgantown, W. Va.
Hofmeyr, J. D. J., P.O. Marabastad, Pietersburg, South Africa.
Horovitz, S., Univ. of Buenos Aires, Buenos Aires, Argentina.
Krug, C. A., Inst. Agronomica do Estado Campinas, Sao Paulo, Brazil
Mains, E. B., Botany Dept., Univ. of Michigan, Ann Arbor, Mich.
Miles, L. G., Agric. Dept., Queensland Univ., Brisbane, Australia.
Neal, Norman P., Genetics Dept., Univ. of Wisconsin, Madison, Wis.
Richey, F. D., Assoc. Chief, Bureau of Plant Industry, U.S.D.A.
Sharp, L. W., Botany Dept., Cornell Univ., Ithaca, N.Y.
Wiggans, R. G., Plant Breeding Dept., Cornell Univ., Ithaca, N.Y.

Do not forget that the dead line for receipt of news items is November 15th. Please cooperate so that we can make these maize letters of real service and interest to you.

Sincerely yours,

M. M. Rhoades
MAIZE GENETICS COOPERATION

NEWS LETTER

November 24, 1934

Department of Plant Breeding
Cornell University
Ithaca, N. Y.
To Maize Geneticists:

This letter is composed of data and information which you have generously contributed so that we can all keep in closer contact and be better informed about the work in the different laboratories. The response to our request for news items has been good and the information included in this letter will be of interest and value to everyone. Most, if not all, of the information listed in this letter has not been published so we wish to emphasize, in order that there will be no misunderstanding, that the appearance of information in these series of corn letters does not constitute publication. If you wish to refer to any data you should ask the direct consent of the contributor.

Since these corn letters are a cooperative affair it seems just that only those who show sufficient interest to cooperate should receive the letters. Not everyone will have something to contribute and no one will be dropped from the mailing list for that reason. This office should, however, receive an acknowledgement of the request for news items even though you have nothing to contribute. We feel that anyone who does not value these letters sufficiently to include his own data has no claim to the unpublished data of others who have generously cooperated.

News items from Ithaca

1. Zebra5 (zb5) which shows in seedlings as a virescent and in mature plants as a zebra stripe (transverse bands of green and yellow tissue) shows no crossing over with d7. Order is zb5-R-g1. Classification excellent and viability good. Singh.

2. Zigzag stalk (zg2) is linked closely with Pl and sm. Exact order unknown. Classification satisfactory. Singh.

3. A dominant gene (Dt) interacts with a1 to give dotted aleurone. Dt does not interact with a2, c or r. Seeds of a1 a1 a1 a1 A2 C R Dt constitution have a pale purple background on which appear the more intense dots. The ratio of the number of dots on seeds of a1 a1 a1 a1 A1 A2 C R Dt Dt dt genotype to the number of dots on seeds of a1 a1 a1 a1 A1 A2 C R Dt dt constitution is 2:3, while the ratio for seeds of a1 a1 a1 A1 A2 C R Dt dt to seeds of a1 a1 a1 A2 C R Dt dt dt constitution is 1:3.8. These ratios suggest that the dosage of a1 affects the number or else that a1 has an inhibitory effect which is
proportional to the dosage of \(a_1^p\). \(D_t\) is not linked but is independent of \(a_1, a_2, c, r, su\) and \(l^g\). — Rhoades.

4. Plants which have 20 chromosomes plus the short arm of chromosome 5 are intermediate in appearance between disomes and trisomes for chromosome 5. The fragment has a terminal insertion region as the break occurred exactly at the spindle fiber region. In 50% of the cases a trivalent group is formed at metaphase I, and in 50% of the cases a bivalent and the fragment as a univalent are formed. When a trivalent is formed the disjunction in anaphase I is such that the fragment passes to the same pole as one of the normal 5 chromosomes. The two normal chromosomes rarely, if ever, pass to the same pole and fragment plants have never thrown the primary trisome. Through a study of genetic ratios in plants carrying the fragment it has been possible to assign certain genes in chromosome 5 to the long and short arms, respectively. The available data suggest that \(v_2\) y\(s\) pr and bt are in the long arm of chromosome 5, while \(b_m\) and \(a_2\) are in the short arm. Whether a gene shows a 5 : 3 or a 1 : 1 ratio in a back cross using the fragment plants as female determines if a given gene is in the long or short arm. — Rhoades.

5. An inbred strain gave in \(F_2\) approximately 65% of luteus seedlings. This aberrant ratio was caused by the linkage of a gene for small pollen with the normal allelomorph of the luteus gene. Small pollen (sp) has 2% crossing over with luteus. A variable percentage of the eggs with the small pollen gene abort giving in different \(F_2\) populations a range from 55 to 90% of luteus seedlings. Small pollen germinates as rapidly as normal pollen but never, or rarely, succeeds in fertilization. Cytological examinations at pachytene showed no visible deficiency. The gene for small pollen is being tested with sp\(_1\). — Rhoades.

6. White sheath \(w_s\) \(w_s\) shows as seedling and can be classified until shortly after flowering. — Rhoades.

7. \[\frac{+}{+} \frac{b_m}{b_t} \frac{b_m}{b_m}\] gave 128 + \(b_m\) : 1 ++ : 2 \(b_t\) \(b_m\) : 119 \(b_t\) + which gives 1.2% crossing over. — Rhoades.

8. \[\frac{+}{+} \frac{v_2}{v_2} \frac{pr}{pr} \frac{b_m}{b_m}\] region 1 = 43.4% crossing over region 2 = 28.8% crossing over Coincidence = .80. — Rhoades.
9. Branched ear (be) is allelomorphic with branched silkless (bd). Rhoades.

10. The studies on mutation and tetraploidy induced by heat treatments are being continued. The first seedling crop in the greenhouse this fall gave two new mutations, a glossy and a white seedling, from less than 100 F_2 ears tested. Randolph.

11. Treatments to obtain 4N commercial hybrid strains were repeated this past summer. A number of 4N plants from commercial inbreds treated a year ago looked very promising early in the season but failed to mature seed, due largely to unfavorable cultural conditions. Randolph.

12. The B-type chromosomes produce marked sterility when present in numbers higher than 16 or 18, and are structurally unstable. Randolph.

13. A survey of chromosome morphology in different strains of maize has revealed types of Indian corn from the southwest which are more nearly like teosintes than any previously known. Randolph.

14. Perennial teosinte in the greenhouse this fall was pollinated abundantly with corn pollen from liguleless brown plants to obtain haploids, and odds are being offered (3 : 1) that if any are obtained they will be annual. Randolph.

15. A summary of all data now available indicate recombination percentages as follows for the group of genes near the end of the known linkage map for chromosome 1:

<table>
<thead>
<tr>
<th>Gene</th>
<th>Number of individuals</th>
<th>Per cent of recombination</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-tS_2</td>
<td>3296</td>
<td>1.3</td>
</tr>
<tr>
<td>P-zl</td>
<td>2567</td>
<td>1.6</td>
</tr>
<tr>
<td>P-ms_{17}</td>
<td>2706</td>
<td>3.0</td>
</tr>
</tbody>
</table>

The order of these four genes is unknown. Emerson.

16. My collection includes the following aleurone, anther, and silk color combinations, in which "+" indicates colored and "-" colorless:

<table>
<thead>
<tr>
<th></th>
<th>aleurone</th>
<th>anther</th>
<th>silk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rfg</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Rsg</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>RRR</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>RGr</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Rsg</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

I need the following:

107
The nearest approach to this in my former collections was Navajo-pattern colored aleurone, colored anthers, and colored silks. Colored anthers appear always to be associated with some color in glumes, sheaths, brace roots, etc. and, except in the presence of B, colorless anthers with colorless glumes, sheaths, and brace roots. It is of interest to note that, if this series of supposed allelomorphs is an example of very close linkage, Webber was probably the first to report linkage in corn (Webber, H. J. - Rept. Amer. Breeders' Assoc. 2: 76-81, 1906). Emerson.

News items from Columbia, Mo.

1. V3 is located on the longer arm of chromosome 5, not far from the insertion region. This is the cytological position of Df 5\textsubscript{1}, which includes V3. Linkage data indicate the Df is between Bm\textsubscript{1} and Bv, very close to Bv. The Df does not include Bm\textsubscript{1}, Bt, or Bv. This internal deficiency markedly reduces crossing over, both in the Bm-Bv region and in the Bv-Pr region. This shows that in maize crossing over may be inhibited by deficiency outside the region homologous to the Df, which appears not to be the case in Drosophila. Stadler.

2. A new high-mosaic strain gives endosperm mosaics with a frequency higher than that ordinarily found in heavily X-rayed ears. The various endosperm loci show differing frequencies of loss corresponding at least roughly to their relative frequencies in common maize. The high frequency of chromosomal aberrations is limited to the early divisions in endosperm development, the proportion of small sectors being hardly more than normal. The factor responsible for this effect is transmitted through both male and female gametes. The chromosomes derived from both the male and the female parent are affected in endosperms which have received this factor from either parent. In an F\textsubscript{2} progeny segregating for an unknown yellow seedling factor and for the high-mosaic factor, seedlings sectorial for the yellow seedling character were common in the progenies with high mosaic frequency. Plants heterozygous or homozygous for the high-mosaic factor are normal in development and have normally fertile pollen and ears. Stadler.

3. Dr. Sprague and I have begun some work on ultra-violet treatment of pollen, with the collaboration of Dr. F. S. Brackett of the Smithsonian Institution. The experiments haven't gone very far as yet, but it is clear that ultra-violet treatment of pollen induces genetic changes which show up as both whole endosperm and mosaic endosperm deficiencies at rates rather
surprisingly high. A single progeny now growing in the greenhouse also shows about 10% of the plants with segregating pollen sterility. The results thus far therefore correspond to the changes to be expected from an X-ray treatment of pollen, with frequencies corresponding to a dosage of X-rays considerably lower than the maximum. However, the doses of ultra-violet radiation used were also well below the maximum. Results from filtered and monochromatic ultra-violet radiations are not yet available. Studler.

4. Linkage data:

<table>
<thead>
<tr>
<th>Gene</th>
<th>Linkage phase</th>
<th>Number of individuals</th>
<th>Recombinations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>XY</td>
<td>Xy</td>
</tr>
<tr>
<td>X y</td>
<td></td>
<td>37</td>
<td>52</td>
</tr>
<tr>
<td>Gs2 Le</td>
<td>RBC</td>
<td>162</td>
<td>4</td>
</tr>
<tr>
<td>Gs2 B</td>
<td></td>
<td>182</td>
<td>25</td>
</tr>
<tr>
<td>Pce2 R</td>
<td></td>
<td>204</td>
<td>19</td>
</tr>
<tr>
<td>Pce2 G</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Order R-Pce2-G

Sprague.

News items from Morgantown

1. New linkage stocks:

 Chromosome 1
 p f₁ an bn₂
 p br f₁ bn₂ (pale yellow endosperm)
 p f₁ bn₂ y
 P f₁ bn₂ (segregating ts₂).

 Chromosome 5
 pr bt₁ bn₁ (not homozygous for ACR).

 Chromosome 7
 ra gl₁ ij (or at least the F₁ in coupling).

 Burnham.

2. New characters:

 Several characters are either segregating or are in homozygous condition in the inbred lines here at Morgantown. Among them are the following: glossy seedling, tassel seed, rosette tassel with normal ears, purple seedling leaf color which is dilute sun red in mature plant. This last character is a dominant.

 Burnham.
3. Linkage data including a few tests with unlinked genes - 2 point tests:

<table>
<thead>
<tr>
<th>Genes x y</th>
<th>Linkage phase</th>
<th>Number of individuals</th>
<th>New combinations</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs i j</td>
<td>RS</td>
<td>437</td>
<td>111</td>
<td>130</td>
</tr>
<tr>
<td>v2 ys1 *</td>
<td>CB</td>
<td>113</td>
<td>48</td>
<td>51</td>
</tr>
<tr>
<td>bm ys1 *</td>
<td>CB</td>
<td>153</td>
<td>276</td>
<td>308</td>
</tr>
<tr>
<td>bm1 + x bm1 + + bt x bm1 bt:</td>
<td>---</td>
<td>260</td>
<td>465</td>
<td>17%</td>
</tr>
<tr>
<td>bm2 v2</td>
<td>CB</td>
<td>211</td>
<td>101</td>
<td>196</td>
</tr>
<tr>
<td>bm1 ch *</td>
<td>CB</td>
<td>104</td>
<td>98</td>
<td>106</td>
</tr>
<tr>
<td>ys1 ch *</td>
<td>CB</td>
<td>113</td>
<td>102</td>
<td>97</td>
</tr>
<tr>
<td>bm2 + ys1 *</td>
<td>CB</td>
<td>163</td>
<td>136</td>
<td>142</td>
</tr>
<tr>
<td>bm3 ch</td>
<td>CB</td>
<td>57</td>
<td>48</td>
<td>48</td>
</tr>
<tr>
<td>g2 ch</td>
<td>CB</td>
<td>59</td>
<td>57</td>
<td>61</td>
</tr>
<tr>
<td>X Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yg1 - T4-5a</td>
<td>CB</td>
<td>32</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>bm - T5-7a *</td>
<td>RB</td>
<td>5</td>
<td>148</td>
<td>95</td>
</tr>
</tbody>
</table>

* These include those in the 3-point tests.

Burnham.

4. Linkage data from a 3 point F2 test:

<table>
<thead>
<tr>
<th>Genetic constitution:</th>
<th>pr + vp2</th>
<th>pr bt</th>
<th>pr</th>
<th>pr bt +</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Not certain that these are vp2 grains. The recombination percentages are calculated as though these were vp2:

pr - vp2 = 22%
bt - vp2 = 10%
pr - bt = 15%

Burnham.
5. Linkage data from 3 point back crosses:–

<table>
<thead>
<tr>
<th>Genetic constitution</th>
<th>Regions 0</th>
<th>Regions 1</th>
<th>Regions 2</th>
<th>Regions 1, 2</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>pr ys v₂</td>
<td>149</td>
<td>35</td>
<td>75</td>
<td>7</td>
<td>266</td>
</tr>
<tr>
<td>bm₁ + +</td>
<td>167</td>
<td>34</td>
<td>11</td>
<td>2</td>
<td>214</td>
</tr>
<tr>
<td>+ + pr ys</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bm₁ pr ys</td>
<td>197</td>
<td>42</td>
<td>24</td>
<td>5</td>
<td>265</td>
</tr>
<tr>
<td>(also seg. v₂ 3:1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ + Ch</td>
<td>61</td>
<td>45</td>
<td>39</td>
<td>52:59</td>
<td>397</td>
</tr>
<tr>
<td>bm₁ yg₁ ch</td>
<td>106</td>
<td>91</td>
<td>103</td>
<td>87</td>
<td></td>
</tr>
<tr>
<td>No linkage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ T5-7a bn</td>
<td>36</td>
<td>40</td>
<td>6</td>
<td>1</td>
<td>95</td>
</tr>
<tr>
<td>gl₁ + Bn</td>
<td>76</td>
<td>10</td>
<td>72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T5-7a + + gl₁ v₅</td>
<td>142</td>
<td>214</td>
<td>81</td>
<td>43</td>
<td>345</td>
</tr>
<tr>
<td>+ + T5-7a ra gl₁ +</td>
<td>131</td>
<td>7</td>
<td>81</td>
<td>4</td>
<td>273</td>
</tr>
<tr>
<td>T₁-7 + + gl₁ 1J</td>
<td>493</td>
<td>13</td>
<td>45</td>
<td>1</td>
<td>552</td>
</tr>
</tbody>
</table>

* v₂ classification was not entirely satisfactory.

Burnham.

6. Notes on the above data:–

The linkage of T4-5a with yg₁ is the first found for yg₁. If it is in chromosome 5 it must be out in region where v₂ is or even nearer the end. Of course it may be in chromosome 4. The break in each chromosome was near the subterminal knob. The data on chromosome 7 are mostly from interchanges. In T5-7a both breaks were near the subterminal knobs, while in T1-7 the break in 7 was on the long arm not far from the spindle fiber insertion. The data indicate that Bn is out toward the end of the long arm, with ra near the break in 1-7 and gl₁ in between. Vg₂ apparently is on the bm₁ side of pr. **Burnham.**
News items from New Haven

1. Technique.

A map measure (K & E) has been found very useful in measuring the length of chromosomes. By tracing the camera lucida drawing with the map measure the length (in inches or centimeters) is registered on the dial of the measure. This is useful in determining arm lengths and relative lengths of the chromosomes. The map measure was suggested by an engineer, George W. Burke, on an FERA project here at the Experiment Station. Singleton.

2. Additions or Corrections to last year's notes.

a) The gene ramosa has appeared in another stock, a Lesning inbred. It has proved allelomorphic with ral. This makes the fourth occurrence of this gene in our stocks.

b) Preliminary tests with lao give an indication of linkage with su. No crossovers occurred in a row of 20 plants. It is probably allelomorphic to lao.

c) Micropyle color Me is a modifying factor of the P factor, rather than allelomorphic. Backcrosses of PMe to pme showed a segregation into PMe, Pme and p plants, which could not occur if Me were allelomorphic to P. Singleton.

3. New data.

a) The factor o2 has shown linkage with ramosa (C.O. 18 percent on the basis of F2 data). Backcross data will be available next year.

b) Backcross data have shown that both lo and sp are on the Ts5 side of su. They may be allelomorphic.

c) Backcross data of material sent by Dr. Emerson indicate that w1 is between Ts5 and su. The order probably is Ts5-w1-su-Tu. Singleton.

4. New genes or reoccurrence of known genes

a) ramosa - Sweepstakes inbred. It is being tested with ral.

b) brown midrib - Sweepstakes inbred.

c) glossy1 - Country Gentleman inbred.

d) glossy (not 1, 2, or 3) - Sweepstakes inbred.

e) crinkly - Sweepstakes inbred.

f) adherent tassel - Sweepstakes inbred.

g) yellow stripe - Sweepstakes inbred.

h) yellowish japonica - Sweepstakes inbred.

i) yellowish threaded - Sweepstakes inbred.

j) dwarf - Sweepstakes inbred.

k) fine stripe (may be allel. to f1) - Sweepstakes inbred.

Singleton.

5. Soft starch (h) of Munm is different from both opaque 1 and opaque 2. Singleton.
1. Amylaceous sugary (su^{am}) is allelicomorphic with su. This new sugary gene is expressed only when another gene, du, which produces a null endosperm similar in appearance to waxy but staining blue instead of red, is also present in the recessive condition. Ratios in most crosses are 15:1. The gene su^{am} shows the same linkage relations as su while the gene du is located in the R-g group. The new sugary is not as good a character as the original sugary but it has some bearing on the inheritance of pseudo-starchiness. A synthetic pseudo-starchy can be produced by crossing amylaceous sugary with true sugary. Seed are available. Mangelsdorf.

2. In Tripsacum hybrids with maize the number of Tripsacum chromosomes can be determined by an examination of the pollen. Plants with 20 Zea chromosomes plus one Tripsacum chromosome have 50 per cent normal and 50 per cent small pollen. Plants with two Tripsacum chromosomes have 25 per cent normal, 50 per cent small, and 25 per cent empty pollen. Apparently a single Tripsacum chromosome causes reduction in size, while two or more cause complete abortion of the pollen. Extra chromosome plants can be readily identified in the field by pollen examination. We now have a large number of stocks all having 20 maize chromosomes and one extra Tripsacum chromosome. We are attempting to identify these extra Tripsacum chromosomes by crossing with corn stocks in which the chromosomes are marked by two or more recessives. We are badly in need of multiple recessive stocks for this work. Mangelsdorf.

3. A few stocks which we have developed for Texas conditions and which are available to other maize geneticists in the South are:

 B 1g
 aa Bb Pl pl Lg₂ lg₂
 Pp Br br F f Bn bn Lg lg Gl gl Ra ra - F₂
 Pp Br br F f Bn bn su wx - F₂
 Lg lg su wx
 Lg lg Gl gl Ra ra su wx
 Y Pl B 1g su Tu wx
 aa Pp.

 Mangelsdorf.

4. We have a number of F₁ plants of diploid Zea x tetraploid Tripsacum which can be propagated by division. Anyone wishing some of this material is welcome to it. Mangelsdorf.
News items from Ames, Iowa

1. Linkage data:

<table>
<thead>
<tr>
<th>Pedigree:</th>
<th>Genes:</th>
<th>Age:</th>
<th>XY:</th>
<th>Xy:</th>
<th>Phase:</th>
<th>Total combinations:</th>
<th>Authority</th>
</tr>
</thead>
<tbody>
<tr>
<td>9451: R</td>
<td>C S</td>
<td>120:</td>
<td>24:</td>
<td>48:</td>
<td>20:</td>
<td>213:</td>
<td></td>
</tr>
<tr>
<td>9232: Su</td>
<td>R S</td>
<td>1366:</td>
<td>977:</td>
<td>980:</td>
<td>159:</td>
<td>4482:</td>
<td>h</td>
</tr>
<tr>
<td>9420: T</td>
<td>C B</td>
<td>31:</td>
<td>35:</td>
<td>59:</td>
<td>58:</td>
<td>181:</td>
<td>h</td>
</tr>
</tbody>
</table>

1) A new recessive anthocyan gene.

2) Assigned w because the original w in the mimeographed sheets is not shown to be linked with anything, and since the gene is on the new 4th chromosome.

Lindstrom.

2. New genes not described or tested for linkage:

a) Dominant chlorophyll striping. Old gold striping (Og).

b) A new dominant sorghum tassel. Will not be named until tested with Ts5 and Ts6.

Lindstrom.

News items from Washington, D.C.

1. In back cross counts involving 237 plants rootless (rt) showed 18.5% crossing over with Rg1. Jenkins.

2. Lazy (la) shows 11.4% crossing over with su and is on the opposite side of su from Tu and gl3 as based on a 4-point back cross test. Jenkins.

3. A 3-point back cross test with raT, Tp and ij indicates the order to be ra-Tp-ij with the total ra-ij distance about 11 units. Jenkins.

4. Branched silkless (bd). Our results agree with those of Hadjinov in that (bd) is not located in the fourth chromosome with Tu. Our latest progeny in repulsion phase with su gives Su Bd 261: Su bd 82: su Bd 42: su bd 14 with x2 less than 1. The deficiency of su plants is accounted for by the poor stand. Kempton.
Linkage data from Madison

1. \[
\begin{align*}
\frac{a_1 \text{ Lg}_2 \text{ Rg}}{a_1 \text{ Lg}_2 \text{ Rg}} & \times \frac{a_1 \text{ Lg}_2 \text{ Rg}}{a_1 \text{ Lg}_2 \text{ Rg}} \\
\text{Total} & = 1315
\end{align*}
\]

2. \[
\begin{align*}
\frac{a_1 \text{ Na \ ts}_4 \text{ Rg}}{a_1 \text{ Na \ ts}_4 \text{ Rg}} & \times \frac{a_1 \text{ Na \ ts}_4 \text{ Rg}}{a_1 \text{ Na \ ts}_4 \text{ Rg}} \\
\text{Total} & = 995
\end{align*}
\]

Brink.
3. \((l_{g2} \times n_{a})\)

No \(l_{g2}\) \(n_{a}\) plants appeared among about 5000 offspring. This result does not tally with expectation on the basis of the above results, viz. \((l_{g2} - R_{g} = 15.7\%\) c.o., and \(n_{a} - R_{g} = 40.9\%\) c.o.) \((a_{1} - n_{a} = 23.1\%,\) and \(a_{1} - l_{g2} = 36.0\%))

Brink.

4. \[
\frac{L_{g2} \; d_{1}}{L_{g2} \; D_{1}} = l_{g2} \; d_{1}
\]

\(D_{1} \; l_{g2} \) \(162\)

\(d_{1} \; L_{g2} \) \(162\)

\(D_{1} \; L_{g2} \) \(96\)

\(d_{1} \; l_{g2} \) \(96\)

Total \(258\)

\textbf{Crossing-over}

\(l_{g2} - d_{1} = 37.2\%\)

Brink.

5. \[
\frac{d_{1} \; R_{g}}{D_{1} \; R_{g}} \times d_{1} \; r_{g}
\]

\(d_{1} \; R_{g} \)

\(D_{1} \; r_{g} \)

\(591\)

\(D_{1} \; R_{g} \)

\(d_{1} \; r_{g} \)

\(94\)

Total \(388\)

\textbf{Crossing-over}

\(R_{g} - d_{1} = 24.2\%\)

Brink.

6. \(n_{a} \; P_{a} \; R_{g} \times n_{a} \; p_{a} \; r_{g}\)

\(N_{a} \; p_{a} \; r_{g}\)

\textbf{Numbers}

\begin{align*}
\text{na} \; P_{a} \; R_{g} &= 115 \\
\text{Na} \; p_{a} \; r_{g} &= 189 \quad \text{314} \\
\text{Na} \; P_{a} \; R_{g} &= 109 \\
\text{na} \; p_{a} \; r_{g} &= 57 \quad \text{166} \\
\text{Na} \; P_{a} \; R_{g} &= 13 \\
\text{na} \; p_{a} \; r_{g} &= 21 \quad \text{34} \\
\text{na} \; p_{a} \; R_{g} &= 1 \\
\text{Na} \; P_{a} \; r_{g} &= 5 \quad \text{6} \\
\text{Total} &= \text{520}
\end{align*}

\(p_{a} = \text{pale midrib}\)

\(R_{g} - n_{a} = 40.8\%\) c.o.

\(R_{g} - p_{a} = 7.7\%\)

\(p_{a} - n_{a} = 33.1\%\)

Brink.
7. \[\frac{A_{1} B_{c_{1}} R_{g}}{a_{1} b_{c_{1}} r_{g}} \times a b a_{1} r_{g} \]

\[
\begin{align*}
A b_{a_{1}} R_{g} & \quad 20 \\
a b a_{1} r_{g} & \\
A b_{c_{1}} R_{g} & \quad 18 \quad \text{Crossing-over} \\
a b_{c_{1}} r_{g} & \\
A b_{c_{1}} R_{g} & \quad 10 \quad k - b a_{1} = 38.8\% \\
a b_{c_{1}} R_{g} & \quad k - R_{g} = 22.4\% \\
a b_{c_{1}} R_{g} & \quad k - R_{g} = 61.2\% \\
A b a_{1} R_{g} & \quad 1 \\
a b_{a_{1}} R_{g} & \\
\text{Total} = 49
\end{align*}
\]

Brink.

8. \[\frac{R_{g} R_{a_{2}}}{r_{g} r_{a_{2}}} \times r_{g} r_{a_{2}} \quad r_{a_{2}} = \text{ramosa-2} \]

\[
\begin{align*}
R_{g} R_{a_{2}} & = 38 \\
r_{g} r_{a_{2}} & = 67 \\
R_{g} r_{a_{2}} & = 26 \quad \text{Crossing-over} \\
r_{g} R_{a_{2}} & = 29 \\
\text{Total} 160
\end{align*}
\]

Brink.

9. \[\frac{a B P_{1}}{r_{a_{2}}} \times \text{sane} \]

\[
\begin{align*}
A R_{a_{2}} & = 152 \\
A r_{a_{2}} & = 59 \quad a d = \frac{1368}{1247} = 1.1 \\
a A R_{a_{2}} & = 43 \\
a a r_{a_{2}} & = 9 \\
\text{c.o.} & = \text{ca. 50\%}
\end{align*}
\]

Brink.

News items from Pasadena

1. **New stocks - chromosome 2**

- \(l_{g_{1}} g_{l_{2}} b v_{4} \) segregating \(c \) sh \(w_{x} \)
- \(l_{g_{1}} g_{l_{2}} B v_{4} \)
- \(b s k v_{4} \) segregating \(l_{g_{1}} \) and \(g_{l_{2}} \)
- \(j \) sk \(v_{4} \)
- \(b t s_{1} v_{4} \)
- \(B t s_{1} v_{4} \)

Clokey.
2. Linkage data:

On a back cross of 1100 plants for \(r_{a1} g_{l1} i_{j} \) the order from the first 700 plants is \(r_{a1}-g_{l1}-i_{j} \) with a cross over value of 4-5 per cent between \(r_{a1} \) and \(g_{l1} \).

3. Data from cross \(+ \frac{sm}{Pl} + \frac{py}{py} \)

<table>
<thead>
<tr>
<th>Py plants</th>
<th>Py plants</th>
</tr>
</thead>
<tbody>
<tr>
<td>0:pl sm: 150</td>
<td>pl + : 137</td>
</tr>
<tr>
<td>1:pl sm: 17</td>
<td>pl + : 137</td>
</tr>
<tr>
<td>2:pl + : 26</td>
<td>pl + : 137</td>
</tr>
<tr>
<td>1-2:pl + : 0</td>
<td>pl + : 137</td>
</tr>
</tbody>
</table>

From Py plants only - \(Pl-sm = \frac{17}{137} = 12.5\% \)

\(sm-py = \frac{26}{195} = 13.5\% \)

From all plants - \(Pl-py = \frac{80}{361} = 22.2\% \)

Order is therefore \(Pl-sm-py \).

News items from Sao Paulo, Brazil

a) Ear and seed characters

<table>
<thead>
<tr>
<th>Ear and seed characters</th>
<th>No. of strains available</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) premature germination (3:1)</td>
<td>1</td>
</tr>
<tr>
<td>2) several kinds of defective endosperms (shrunken, floury, etc.)</td>
<td>6</td>
</tr>
<tr>
<td>3) variegated pericarp</td>
<td>1</td>
</tr>
<tr>
<td>4) mottled aleurone</td>
<td>1</td>
</tr>
</tbody>
</table>
5) brown pericarp
6) aleurone colors
7) semi-tunicate grains*
8) branched ear

h) Leaf characters
1) concentric spots* 1
2) oily spots (?)* 8
3) crinkly (?) 3
4) rolled leaves 12
5) ragged (?) 6
6) narrow leaves 1
7) hairy sheath 2

c) Chlorophyll-deficient types
1) white seedlings 7
2) yellow seedlings 2
3) several kinds of striped 14
4) zebra striped seedlings (?) 7

d) Genes affecting the whole plant
1) several types of dwarfs 13
2) ultra-dwarf 1
3) ranose (?) 1

e) Abnormal sex-distribution
1) tassel-ear, tassel-seed 4
2) hermaphr. flowers on the ear 1
3) male flowers on the ear* (upper half of ear is *) 1
4) female plants* 1

The characters marked with * are supposed to be new ones. Some of the abnormalities appeared in more than one strain, but they may not be allelomorphs.
Results of first inbreeding three corn varieties:

<table>
<thead>
<tr>
<th>Type of Variations Found</th>
<th>Varieties Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>"Amarelo"</td>
</tr>
<tr>
<td></td>
<td>(688 ear-rows)</td>
</tr>
<tr>
<td>No.</td>
<td>%</td>
</tr>
<tr>
<td>White seedlings</td>
<td>12 : 1.74</td>
</tr>
<tr>
<td>Yellow seedlings</td>
<td>5 : 0.73</td>
</tr>
<tr>
<td>Transv. striped lvs.</td>
<td>5 : 0.73</td>
</tr>
<tr>
<td>Light green lvs.</td>
<td>19 : 2.76</td>
</tr>
<tr>
<td>Striped leaves</td>
<td>15 : 2.18</td>
</tr>
<tr>
<td>Concentric spots</td>
<td>1 : 0.14</td>
</tr>
<tr>
<td>Ragged (?)</td>
<td>1 : 0.14</td>
</tr>
<tr>
<td>Rolled leaves</td>
<td>6 : 0.87</td>
</tr>
<tr>
<td>Crinkly</td>
<td>6 : 0.87</td>
</tr>
<tr>
<td>Oily spots (?)</td>
<td>4 : 0.58</td>
</tr>
<tr>
<td>Narrow leaves (?)</td>
<td>0 : 0</td>
</tr>
<tr>
<td>Hairy sheath</td>
<td>0 : 0</td>
</tr>
<tr>
<td>Dwarf s</td>
<td>5 : 0.75</td>
</tr>
<tr>
<td>Abnormal sex distribution</td>
<td>25 : 3.62</td>
</tr>
<tr>
<td>Ramosa (?)</td>
<td>0 : 0</td>
</tr>
<tr>
<td>Branched ear</td>
<td>4 : 0.58</td>
</tr>
</tbody>
</table>

In 1932 we selfed about 3,000 plants of these three varieties. Among the selfed ears we found a great many with defective endosperm seeds, one case of "premature germination" (3:1), one with semitunicate grains, besides a great number of diversely diseased ears which were eliminated. From these 3,000 ears we selected only 1812 for further planting; the variations found among these ear-rows are given in the above table.

Krug.
Sando's work with plant color pigments

In a former paper Sando and Bartlett showed that the pigment in an BB P1 P1 plants was a yellow flavonol glucoside, isoquercitrin. Sando, Millner and Sherman have a paper in press on the nature of the pigment in an BB P1 P1 plants. This purple pigment proves to be the anthocyanin of isoquercitrin, chrysanthemin.

To quote Sando: "If it is assumed that the anthocyanin in purple-husked maize is formed directly from the flavonol glucoside the reduction representing the possible formation of chrysanthemin (as chloride) from isoquercitrin may be expressed briefly as follows:

\[
\text{isoquercitrin} - \text{C}_{21}\text{H}_{20}\text{O}_{12} \rightarrow \text{chrysanthemin Cl} - \text{C}_{21}\text{H}_{20}\text{O}_{11}\text{HCl}.
\]

Inbreds resistant to smut

In the corn letter of September 13, 1934, we stated that we had several inbreds which were resistant to smut under field conditions here at Ithaca and that it seemed desirable to cross some of the more susceptible genetic stocks to these inbreds providing they proved resistant when grown at other stations. Hayes writes that they have made extensive tests for smut resistance at Minnesota and have inbreds which were resistant to smut brought in from various localities. This material should be ideal for our purposes and Hayes has kindly offered to supply a limited amount of seed for testing next summer. We should like very much to send small lots of seed to four or five different stations. If you are willing to grow this material and note its resistance to smut under your field conditions, please notify this office.
Miscellaneous

The following changes and corrections should be noted:

1. The symbol dt was originally given to the character dotted leaf. No description of this character was ever published, it was never linked, and the stock has been lost. Therefore, the symbol Dt has been assigned to dotted aleurone (see news items from Ithaca).

2. gl_{10} was erroneously reported in the news letter of last year as being linked with f_{1}. The striped character proved to be v_{5} instead of f_{1} and the glossy is gl_{1} instead of a new gene. N_{12} was reported as showing linkage with a_{1}. More extensive counts failed to substantiate this linkage.

3. The names of A. E. Longley and C. E. Sando have been added to the mailing list. Both are with the U. S. Department of Agriculture at Washington, D. C.

We hope to issue another corn letter in the spring. This letter will include such news items as are sent in and a more complete list of genetic stocks.

Sincerely yours,

M. M. Rhoades

M. M. Rhoades

EMR:B
March 6, 1935

Department of Plant Breeding
Cornell University
Ithaca, N. Y.
January 21, 1935

To Maize Geneticists:

This letter is a call for lists of new genetic stocks, news items, etc., for another corn letter which will be issued around the first of March. Please go over your genetic testers and list any new combinations you have developed. Also send a small sample of each stock to this laboratory and we will increase it for general distribution. News items are, of course, always welcome additions. The dead line for receipt of this material is February 15. Your cooperation is not only desired, it is essential.

Sincerely yours,

(signed) M. M. Rhoades

To Maize Geneticists:

This maize letter contains a list of new genetic stocks, as well as a considerable number of news items. Several new stocks were listed in the last maize letter—they will not be repeated here. The response of the various investigators to the request for material has, as heretofore, been gratifying and has made possible this series of maize letters.

The new stocks have been grouped together as follows:

From Singleton

Chromosome 4 stocks:

1. \[\frac{+ su}{wl} + x \frac{tu}{wl} su tu. \]
2. \[\frac{Ts5 + su}{wl +} x \frac{ts}{wl +} su tu. \]
3. \[\frac{su +}{+ sp} +. \]
4. \[\frac{su}{sp +} +. \]
5. \[\frac{su}{lo +} +. \]
6. \[\frac{su +}{+ lo} +. \]
7. su Ts5.
8. \[\frac{wl su +}{+ su gl3} F_2. \]
9. \[Ts5 + su + \frac{su}{wl +} F_2. \]
10. \[\frac{wl + tu}{wl su} x \frac{tu}{wl su} su Tu. \]

Stocks other than chromosome 4:

Chromosome 1. P ts2 f1 bm2.

Chromosome 2. v4 ts1 + gl2 lg1 and lg1 gl2 v4 A C r5 Y Su.

Chromosome 5. v2 bm1 pr.

Chromosome 7. gl1 v5 seg. ra1 and gl1 ij Y Su.

From Burnham

Chromosome 1. f1 an bm2.

Chromosome 1. P f1 bm2 and p f1 bm2.

Chromosome 2. lg1 gl2 b v4 which does not carry P1 or r5, it is probably rr.
From Randolph

10-chromosome tester stocks:

1. a_1-na-cr C R g^2 pr in su y-pl b-lg j bm$_2$.
2. a_1-Na na (Cr cr)? C R g^2 pr in su y-pl j b-lg$_1$ bm$_2$ - t_2 t_2.
3. a_1 c Rg^-g_1 pr In-Bn su y-pl b-lg j bm$_2$.
4. A_1-cr c Rg^-g_1 pr In (in)? - Bn Su su y-pl b-lg$_1$ j bm$_2$.
5. A_1-D (d)? c Rg^-g_1 pr In (in)? - Bn Su Su and Su su y-pl b-lg$_1$ j bm$_2$ - T_2 T_2.
6. A_1-D (d)? c Rg^-g_1 pr In-Bn su y-pl b-lg j bm$_2$ PVV.

From Jenkins

Chromosome 5:

1. A_1 C R a_2-bt$_1$-bv-pr.
2. A_1 a_2 C R bt$_1$-bv-pr.
3. A_1 C R a_2-bt$_1$-bv-pr.
4. A_1 a_2 C R bv-pr-v$_2$.
5. A_1 a_2 C R bt$_1$-bv-pr.

Jenkins will have pollen this summer from:

a_2-bt$_1$-bv-pr-v$_2$ plants.

Chromosome 4:

1. la-su-Tu tu-gl$_3$.
2. la-su-tu-gl$_3$.

News items from Ithaca

1. Order is su-Tu-j$_2$ with j$_2$ about 5 units from Tu. Emerson.
2. W$_3$ which was reported in the November 24, 1934, maize letter to be in chromosome 2 on the basis of trisomic ratios is linked closely with lg$_1$ on the basis of F$_2$ repulsion data. Rhoades.
3. Gl$_3$ is in chromosome 5 according to trisomic ratios. F$_2$ repulsion data indicate that pr and gl$_3$ are closely linked. Rhoades.
4. \(ad_2 = ad_1 \) so \(ad_3 \) is dropped to \(ad_2 \).

5. \(bt_4 = bt_1 \).

6. The gene for resistance to physiological form 3 of \textit{Puccinia sorghi} is in the short arm of chromosome 10 according to cytological studies of x-ray induced deficiencies. Trisomic ratios confirm the placings of this gene in chromosome 10. Data from trisomic plants segregating for both \(R \) and the rust resistant gene indicate that the two loci are linked.

V. H. Rhoades.

7. Eyster's duplicate genes for zigzag stalk are \(zg_1 \) and \(zg_2 \) and Singh's \(zg \) factor in chromosome 6 becomes \(zg_3 \).

News items from Morgantown, W. Va.

1. According to genetic tests my \(gs \), mentioned in the December 13, 1933, corn letter, appears to be the same as \(gs_1 \). This is a much earlier stock, however.

Burnham.

2. Ed. note: Burnham reported several weeks ago that he had some indication that \(al \) and \(B \) were linked. Unfortunately I have misplaced his letter so I cannot give the data. But if \(al \) is in chromosome \(6 \) then the yellow endosperm gene of Perry's \(Y_x \) should also be in chromosome \(6 \) since it is linked with \(al \).

News items from Pasadena, Calif.

Data on interchanges

Chromosome 1:

Near P 1-2b, 1-9c.

Between P and br 1-3a, 1-5b, 1-9a, 1-10b.

Near br 1-3d, 1-7b, 1-7c, 1-9b, 1-10a.

Between br and \(bn_2 \) 1-7d. 1-4 and 1-5 about 10 to 20 units from br but order uncertain.

Chromosome 3:

Between a and nana 3-5c, 1-3b and probably 3-9b.

Near \(na \) 3-5b.

Nearer \(ts_4 \) 1-3a, 2-3c, 3-7b, 3-8, 3-9a, 3-10a.

Chromosome 4:

Near su 1-4, 2-4c, 4-6a, 4-6b, 4-6c, 4-8, 4-9a, 4-10a, 4-10b, 4-5a.

Between su and Tu 2-4b.

Near Tu 2-4d.
Chromosome 5:

Between pr and bm \(^1\) 2-5b, 4-5d.
Close to bm \(^1\) 1-5b, 1-5c.

Chromosome 6:

In Y-Pl neighborhood with much suppression of crossing over 2-6d, 3-6a, 4-6a, 4-6b, 6-8, 6-9b.
Near pigmy 6-10 (probably sm-T-py).

Chromosome 7:

Near ra 1-7b, 2-7b, 2-7c, 3-7a, 3-7b.
Distant from ra 2-7a.

Chromosome 8:

Near jap 8-10c, 3-8a.
15 to 25 units from jap 5-8, 6-8, 3-10a.
Far from jap 3-8b, 4-8, 8-10b, 8-10c.

Chromosome 9:

All tested are in long arm beyond wx.
Less than 10 units from wx 3-9a, 6-9b, 4-9a.
10 to 15 units from wx 6-9a, 1-9a.
About 40 units from wx 1-9b.

Chromosome 10:

Left of R 9-10.
Near g 4-10b, 3-10c.
10 to 20 units beyond g 6-10, 8-10b, 1-10a, 8-10c, 3-10b.
20 to 30 units beyond g 3-10a, 8-10a.

Of the interchanges recorded in my list in Genetics (January, 1935 issue) all but 8 I believe have been obtained in homozygous condition.

Preliminary linkage data on a long inversion in chromosome 2, involving most of the chromosome, indicates that there is a map distance from \(v_4\) to the end of the inversion about equal to the map distance from B to \(v_4\). The "left" end of the inversion lies between 1g and B about 25 units from 1g and 7 from B. Cytological observations show both ends beyond the inversion to be of about equal length. That would suggest that nearly half of the linkage map for chromosome 2 should lie to the right of \(v_4\). In agreement with this, about half of the known interchanges involving chromosome 2 lie beyond \(v_4\).
News items from Durham, N. Car.

I now have enough data on the yellow-albescent situation to indicate quite clearly that my hypothesis last spring was correct. I have two factors for yellow endosperm—"Yx" linked with al (p = .01 - .02) and Y1 linked with Pl (p = .25 - .30). I have found no evidence of linkage between these two Y's or between Yx and Pl or py. Selfed plants of the constitution Y1 Y1 Yx Yx give F2 distributions of nine yellow to seven "not yellow" ranging from "lemon" to "white". I selfed some plants from the yellow seeds in such an F2 and found three groups as follows:

<table>
<thead>
<tr>
<th>All yellow</th>
<th>3:1</th>
<th>2:7</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>16</td>
<td>14</td>
</tr>
</tbody>
</table>

which came pretty close to the 1:4:4 expected. I grew a few seedlings from some of the three-to-one ears for linkage tests. (F2 was also segregating for Pl, al, and py). Some showed linkage with Pl, some with al. Only two were segregating for both Pl and al and the distributions for these were as follows:

<table>
<thead>
<tr>
<th>Yx</th>
<th>Yx</th>
<th>Yx-P1</th>
<th>Yx-al</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pl</td>
<td>Pl</td>
<td>Al al</td>
<td>Al al</td>
<td>58 0 11 0 2 19 0 7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.046</td>
<td></td>
<td>0+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 1 22 1 1 24 0 5</td>
<td>.44 (or .56)</td>
<td>.015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.048</td>
<td></td>
<td>±.048</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Combined progenies
122 0 33 1 3 43 0 12 |
.016 | .006

Of course, results like these don't rule Yx (or al) out of #6 if #6 is very long "genetically" but at least it is at considerable distance from the known factors of that group with which it has been tested. Maybe the trisomics will clear that up. Besides the 9:7, the dihybrid ratios 3:5 and 1:3 have been obtained.

H. S. Perry.

Dwarf1 (d1) allelomorphs

The following series of allelomorphs exist for the d1 locus:

d1 as described by Emerson.
d1semi-dwarf-androecious 50% height of normals.
d1approaching monoecious condition 60-65% height of normal sibs.
d1normal height.

The d1semi and d1mono allelomorphs are dominant to d1 and recessive to normal. The three dwarf allelomorphs have different origins:
d₁ from Emerson, d₁ˢ from Brink (= Brink's d₅) and d₁ᵛ from Beadle.

H. S. Perry.

News items from New Haven, Conn.

1. The brown midrib found in a Country Gentleman inbred (Maize letter December 13, 1933, p. 3) is allelomorphic to bm₁. This is the second occurrence of bm₁ at New Haven.

2. The brown midrib found in a Sweepstakes inbred (Maize letter November 24, 1934, p. 8) is bm₂ or an allelomorph.

3. The fine stripe reported in a Sweepstakes inbred (Maize letter November 24, 1934, p. 8) has proved to be allelomorphic to f₁.

News items from Columbia, Mo.

Mutant seed characters of possible value from x-ray experiments:

<table>
<thead>
<tr>
<th>Mutant</th>
<th>Description</th>
<th>Linkage Indications</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scarred a</td>
<td>Seed small and distinctly scarred. Separation clear. Only best sc seeds give usable plants.</td>
<td>Close to Y.</td>
<td></td>
</tr>
<tr>
<td>Scarred b</td>
<td>1/8 to 1/2 volume, usually scarred. About 3/4 are germless.</td>
<td>Possibly with Y.</td>
<td></td>
</tr>
<tr>
<td>Scarred c</td>
<td>1/8 to 3/4 volume. Have fair embryos, and larger seeds give fairly good plants.</td>
<td>Possibly with Pr.</td>
<td></td>
</tr>
<tr>
<td>Etched</td>
<td>Seed full size, etched pattern distinct, separation clear, and viability good. Somewhat resembles scarred but can be separated from it.</td>
<td>Possibly with Pr.</td>
<td>All et seeds give virescent seedlings, turning fine striped then green. (Viability good.)</td>
</tr>
<tr>
<td>Mutant</td>
<td>Description</td>
<td>Linkage Indications</td>
<td>Notes</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>---------------------</td>
<td>--</td>
</tr>
<tr>
<td>Rudimentary</td>
<td>2/3 height and width, 1/5 thickness, germless. Can be separated for aleurone color, wx, etc.</td>
<td>With Pr.</td>
<td>Possible dominant effect in partial dwarfing of heterozygous plants.</td>
</tr>
<tr>
<td>Tiny</td>
<td>Very small seed but germinates and produces small seedlings.</td>
<td>None.</td>
<td>None.</td>
</tr>
<tr>
<td>Thin</td>
<td>Normal height and width but less than 1/3 thickness to empty. Some have germs and a few might grow.</td>
<td>With CWx</td>
<td>None.</td>
</tr>
<tr>
<td>Miniature3</td>
<td>Reduces size of seed, especially thickness. Possibly overlaps normal.</td>
<td>Probably with Wx.</td>
<td>Partly eliminated in pollen, though pollen appears normal.</td>
</tr>
<tr>
<td>Miniature9</td>
<td>3/4 to full height and width, 1/2 thickness. May overlap normal.</td>
<td>With Pr.</td>
<td>None.</td>
</tr>
<tr>
<td>Miniature18</td>
<td>1/2 to 2/3 height and width and 1/3 to 1/2 thickness of normal. Clear separation. Low ratio. Good viability.</td>
<td>With Pr.</td>
<td>None.</td>
</tr>
<tr>
<td>Germless</td>
<td>Full size endosperm, typical germless.</td>
<td>Possibly with Y.</td>
<td>Not induced.</td>
</tr>
</tbody>
</table>

A simplification of chromosome-mapping technic is possible by the use of haplo-viable deficiencies transmitted through female and not through male germ cells. These are fairly common among the variants induced by x-ray treatment. The most useful ones are those located in the middle region of the chromosome. This technic may be illustrated by an example using Df 5 (described in abstract in Records Genetics Society 3: 56-57). This deficiency includes the locus of V and is located on the longer arm of chromosome 5 near the spindle node. It is transmitted with little loss through female gametes but deficient pollen is defective and does not function.
In using the deficiency for chromosome mapping it is used with a dominant marker on the same chromosome. We use Pr, since the mutants to be treated are induced in a Pr stock. (With mutants not known to be Pr the same method could be used with Ch as the dominant marker, since all new mutants will presumably be ch.

The new mutant x is crossed on the Df 5 Pr stock and a Df 5 plant of the F1 (recognized by its partially defective pollen) is crossed on the x stock. The progeny of this cross shows the location of the new mutant with reference to the loci of V3 and Pr, and since it is virtually a backcross test a relatively small progeny is sufficient. Since the Df pollen is eliminated, the dominants Pr and X appear only in gametes resulting from crossing over between their loci and that of the Df. Thus the regional location of the new locus will be indicated in three point order in the second generation from the original cross, without the necessity of producing the double recessive in a large F2 and a third generation for the backcross ratio.

If Df 5 is representative in its effect on crossing over, these crosses will not serve to determine the normal crossover frequency. Df 51 greatly reduces crossing over in the region including it (Pr-V3 reduced from 26-23% to 5-12%; V3-Bm reduced from 4-6% to 1%). Cytological observations indicate that this effect may be general for internal deficiencies. This means that backcrosses of non-deficient individuals will have to be used for final mapping, but the non-deficient sibs of the same crosses may be used for this. The reduction of crossing over in the deficient plants will be an advantage in reducing the genetic length of the chromosome so as to permit the detection of linkage over longer actual distances.

It might be worth while to construct haplo-viable Df stocks deliberately for this purpose, particularly in the case of the longer chromosomes. Probably one well placed Df would do for each chromosome. Preferably the Df should include a locus somewhere in the middle region, and the dominant marker used should be far enough away for fairly frequent crossing over. The dominant should be one not likely to occur in the mutant stocks, as N, N, Rg, Ne, Ch, Pl, etc. The recessive should be a seedling character so that a large number of plants may be examined in looking for the induced deficiencies. Such deficiencies may be obtained by irradiating the pollen of the dominant stock, pollinating on the recessive, growing to maturity the F1 plants showing the recessive character, and pollinating all which by their plant development and pollen development seem likely to be haplo-viable deficiencies. The best pollen to use on these plants will be pollen carrying two (or more) recessive markers widely separated in the chromosome. Then, when the Df plants are pollinated by the new mutant, the Df progeny may be used as outlined above and a few non-deficient sibs may be selfed to provide F2 material with widely separated markers, for accurate mapping if the Df test indicates linkage. Thus, for chromosome 3, a suitable technic would be as follows: Treat Rg and pollinate on lgg, save
only lg_2 seedlings, and pollinate suitable ones by a d_1. The Rg (lg_2)/$\text{a} \text{d}_1$ plants thus secured are suitable for pollination by the new mutants, and the Df stock is maintained by pollinating in each generation by a d_1 and using only the $\text{Rg} \text{Df}$ plants of the progeny.

If any corn breeder not having x-ray equipment available wishes to make up such a stock for his chromosome, we should be glad to make the necessary treatments and pollinations for him here next season, using the stocks designated by him for the purpose.

Stadler.

News items from Washington, D. C.

From a perennial teosinte-corn hybrid has been isolated a cornlike strain with 20 chromosomes in which chromosome IX has a terminal knob on the short arm and a large internal knob on the long arm. Measurements show the terminal knob to be approximately 0.33 of the whole length of the chromosome from the spindle fibre attachment, the internal knob approximately 0.52 of the whole length of the chromosome from the spindle fibre attachment and approximately 0.15 from the end of the long arm.

The terminal and internal knobs are frequently stuck together so that at first it gave the impression that the loop was due to the pairing of a normal IX with a IX that had an inversion.

Seed of this strain is available. A. E. Longley.

News items from Bucknell University

1. A new fine-striped* chlorophyll pattern in Chromosome 10 as indicated by its linkage with the R aleurone color gene.

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>r</th>
<th>RSt</th>
<th>rSt</th>
<th>R</th>
<th>r</th>
<th>St</th>
<th>r</th>
<th>St</th>
<th>r</th>
<th>st</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backcrosses</td>
<td>1206</td>
<td>1213</td>
<td>822</td>
<td>121</td>
<td>203</td>
<td>776</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Crossing over ca 17%.

*Ed. note: This gene is f_3.

2. Bn_1 in chromosome 5.

A) Field grown

<table>
<thead>
<tr>
<th>Group</th>
<th>Bn</th>
<th>bn</th>
<th>Approx. Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2495</td>
<td>763</td>
<td>3.27 : 1</td>
</tr>
<tr>
<td>2</td>
<td>633</td>
<td>101</td>
<td>6.27 : 1</td>
</tr>
<tr>
<td>3</td>
<td>1055</td>
<td>64</td>
<td>16.48 : 1</td>
</tr>
<tr>
<td>4</td>
<td>292</td>
<td>3</td>
<td>97:33 : 1</td>
</tr>
</tbody>
</table>

*Ed. note: This gene is f_3.
B) Greenhouse grown

<table>
<thead>
<tr>
<th>Group</th>
<th>Bn</th>
<th>bm</th>
<th>Approx. Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4656</td>
<td>1510</td>
<td>2.95 : 1</td>
</tr>
<tr>
<td>2</td>
<td>3551</td>
<td>1123</td>
<td>3.18 : 1</td>
</tr>
<tr>
<td>3</td>
<td>1616</td>
<td>111</td>
<td>14.56 : 1</td>
</tr>
<tr>
<td>4</td>
<td>745</td>
<td>10</td>
<td>74.50 : 1</td>
</tr>
</tbody>
</table>

C) Relation between Pr and bu

<table>
<thead>
<tr>
<th>F2</th>
<th>Pr Bu</th>
<th>Pr bu</th>
<th>pr Bu</th>
<th>pr bm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field grown</td>
<td>1870</td>
<td>341</td>
<td>298</td>
<td>436</td>
</tr>
<tr>
<td>Greenhouse</td>
<td>941</td>
<td>124</td>
<td>167</td>
<td>234</td>
</tr>
<tr>
<td>Backcrosses-Field</td>
<td>503</td>
<td>2169</td>
<td>2048</td>
<td>287</td>
</tr>
<tr>
<td>Greenhouse</td>
<td>2551</td>
<td>765</td>
<td>767</td>
<td>2306</td>
</tr>
<tr>
<td></td>
<td>441</td>
<td>138</td>
<td>199</td>
<td>408</td>
</tr>
</tbody>
</table>

D) Relation between Bu and Tn

<table>
<thead>
<tr>
<th>F2</th>
<th>Bu Tn</th>
<th>Bu tn</th>
<th>bm Tn</th>
<th>bm tn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field grown</td>
<td>814</td>
<td>35</td>
<td>57</td>
<td>135</td>
</tr>
<tr>
<td>Greenhouse</td>
<td>639</td>
<td>7</td>
<td>6</td>
<td>134</td>
</tr>
<tr>
<td>Backcrosses-Coupling</td>
<td>3894</td>
<td>58</td>
<td>56</td>
<td>1266</td>
</tr>
<tr>
<td>Repulsion</td>
<td>806</td>
<td>12</td>
<td>18</td>
<td>785</td>
</tr>
<tr>
<td></td>
<td>95</td>
<td>48</td>
<td>52</td>
<td>0</td>
</tr>
</tbody>
</table>

E) Relation between Pr and Tn

<table>
<thead>
<tr>
<th>Backcrosses</th>
<th>Pr Tn</th>
<th>Pr tn</th>
<th>pr Tn</th>
<th>pr tn</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>452</td>
<td>197</td>
<td>190</td>
<td>398</td>
</tr>
</tbody>
</table>

F) Cross involving Pr, Bu, and Tn

<table>
<thead>
<tr>
<th>A B</th>
<th>A b</th>
<th>a B</th>
<th>a b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bu Tn</td>
<td>116</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Pr Tn</td>
<td>32</td>
<td>88</td>
<td>85</td>
</tr>
<tr>
<td>Pr Bu</td>
<td>32</td>
<td>88</td>
<td>86</td>
</tr>
</tbody>
</table>

G) Relation between Bu and Oy

<table>
<thead>
<tr>
<th>F2</th>
<th>Bn Oy</th>
<th>Bn oy</th>
<th>bm Oy</th>
<th>bm oy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>458</td>
<td>154</td>
<td>126</td>
<td>29</td>
</tr>
</tbody>
</table>

H) Relation between Pr and Oy

<table>
<thead>
<tr>
<th>F2</th>
<th>Pr Oy</th>
<th>Pr oy</th>
<th>pr Oy</th>
<th>pr oy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>348</td>
<td>105</td>
<td>112</td>
<td>29</td>
</tr>
</tbody>
</table>

I) Relation between Pr and Vp

<table>
<thead>
<tr>
<th>F2</th>
<th>Pr Vp</th>
<th>Pr vp</th>
<th>pr Vp</th>
<th>pr vp</th>
</tr>
</thead>
<tbody>
<tr>
<td>repulsion</td>
<td>1474</td>
<td>616</td>
<td>690</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>284</td>
<td>149</td>
<td>116</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>94</td>
<td>47</td>
<td>39</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>103</td>
<td>49</td>
<td>46</td>
<td>2</td>
</tr>
</tbody>
</table>

J) Relation between Pr and reduced kernel (re). Re and Vp are extremely closely linked.

In above data under H all vp kernels were also reduced. The following data involve re but not vp.

<table>
<thead>
<tr>
<th>F2</th>
<th>Pr Re</th>
<th>Pr re</th>
<th>pr Re</th>
<th>pr re</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>241</td>
<td>129</td>
<td>180</td>
<td>2</td>
</tr>
</tbody>
</table>
K) Relation between Bm and an ovule lethal or rather embryo sac lethal.*

<table>
<thead>
<tr>
<th></th>
<th>Bm 01</th>
<th>Bm ol</th>
<th>bm 01</th>
<th>bm ol</th>
</tr>
</thead>
<tbody>
<tr>
<td>127</td>
<td>6</td>
<td>(6)</td>
<td>(39)</td>
<td></td>
</tr>
</tbody>
</table>

*Ed. Note: Symbol should be \log_2.

L) Relation between Pr and stiff leaved plant (sf).

<table>
<thead>
<tr>
<th></th>
<th>Pr Sf</th>
<th>Pr sf</th>
<th>pr Sf</th>
<th>pr sf</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_2 repulsion</td>
<td>235</td>
<td>91</td>
<td>109</td>
<td>9</td>
</tr>
<tr>
<td>coupling</td>
<td>274</td>
<td>67</td>
<td>79</td>
<td>48</td>
</tr>
</tbody>
</table>

M) Relation between Bm and Sf

<table>
<thead>
<tr>
<th></th>
<th>Pr Sf</th>
<th>Pr sf</th>
<th>pr Sf</th>
<th>pr sf</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>45</td>
<td>21</td>
<td>24</td>
<td>1</td>
</tr>
</tbody>
</table>

N) Relation between Pr and a yellow green (yg)

<table>
<thead>
<tr>
<th></th>
<th>Pr Yg</th>
<th>Pr yg</th>
<th>pr Yg</th>
<th>pr yg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backcross</td>
<td>59</td>
<td>81</td>
<td>96</td>
<td>65</td>
</tr>
</tbody>
</table>

3. Sugary endosperm. The sugary endosperm which has been used in experimental work since the beginning of maize genetics is designated as su_1.

A) Interrelation between sugary$_1$ and sugary$_2$

<table>
<thead>
<tr>
<th></th>
<th>su_1 x su_2 - All starchy</th>
<th>su_2 x starchy in F_1 - F_2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F_2 from su_1 x su_2</td>
<td>F_2 from su_1 x su_2</td>
</tr>
<tr>
<td></td>
<td>9493</td>
<td>4407</td>
</tr>
<tr>
<td></td>
<td>2991</td>
<td>1318</td>
</tr>
<tr>
<td></td>
<td>4069</td>
<td></td>
</tr>
</tbody>
</table>

B) Relation between su_2 and Y.

<table>
<thead>
<tr>
<th></th>
<th>Y su_2</th>
<th>Y su_2</th>
<th>y su_2</th>
<th>y su_2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F_2</td>
<td>1930</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Backcrosses</td>
<td>1065</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>394</td>
<td>393</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>340</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>895</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C) Sugary$_3$ in chromosome 9

a) Relation between sugary$_3$ and shrunken endosperm

<table>
<thead>
<tr>
<th></th>
<th>Su_3 Sh</th>
<th>Su_3 sh</th>
<th>su_3 Sh</th>
<th>su_3 sh</th>
</tr>
</thead>
<tbody>
<tr>
<td>17050-4 (X)</td>
<td>267</td>
<td>13</td>
<td>13</td>
<td>113</td>
</tr>
<tr>
<td>-7 (X)</td>
<td>261</td>
<td>71</td>
<td>54</td>
<td>90</td>
</tr>
<tr>
<td>-5 (X)</td>
<td>114</td>
<td>15</td>
<td>15</td>
<td>19</td>
</tr>
</tbody>
</table>
b) Relation between su₃ and pr₂

<table>
<thead>
<tr>
<th></th>
<th>Pr</th>
<th>Su</th>
<th>Pr</th>
<th>su</th>
<th>pr</th>
<th>Su</th>
<th>pr</th>
<th>su</th>
</tr>
</thead>
<tbody>
<tr>
<td>17011-4 (X)</td>
<td>184</td>
<td>15</td>
<td>17</td>
<td>55*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1 (X)</td>
<td>170</td>
<td>9</td>
<td>7</td>
<td>45*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17012-1 (X)</td>
<td>157</td>
<td>71</td>
<td>78</td>
<td>4**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* coupling
** repulsion

4. A new gene for red or rather for purple aleurone. This gene is called Pr₂ and belongs in chromosome 9 as indicated by linkage relations between Pr₂ and wx and also with su₃.

<table>
<thead>
<tr>
<th></th>
<th>Wx</th>
<th>Pr</th>
<th>Wx</th>
<th>pr</th>
<th>wx</th>
<th>Pr</th>
<th>wx</th>
<th>pr</th>
</tr>
</thead>
<tbody>
<tr>
<td>17078-6 (X)</td>
<td>207</td>
<td>58</td>
<td>65</td>
<td>43</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1 (X)</td>
<td>170</td>
<td>73</td>
<td>63</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5. New genes in chromosome 9.

A) Pr₂ and su₃ have already been mentioned.

B) Defective kernel

<table>
<thead>
<tr>
<th></th>
<th>Da₁</th>
<th>Da</th>
<th>da₁</th>
<th>De</th>
<th>da₁</th>
<th>De</th>
<th>da₁</th>
<th>de</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>168</td>
<td>13</td>
<td>(13)</td>
<td>(54)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C) Pale green seedling and plant

<table>
<thead>
<tr>
<th></th>
<th>Sh</th>
<th>Pg</th>
<th>sh</th>
<th>Pg</th>
<th>sh</th>
<th>Pg</th>
<th>sh</th>
<th>Pg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>127</td>
<td>42</td>
<td>38*</td>
<td>17*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>194</td>
<td>72</td>
<td>46*</td>
<td>21*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>14</td>
<td>9*</td>
<td>2*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>96</td>
<td>43</td>
<td>18*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Deficiencies due to poor germination of sh kernels.

<table>
<thead>
<tr>
<th></th>
<th>Wx</th>
<th>Pg</th>
<th>Wx</th>
<th>pg</th>
<th>wx</th>
<th>Pg</th>
<th>wx</th>
<th>pg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>163</td>
<td>82</td>
<td>87</td>
<td>3**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>96</td>
<td>40</td>
<td>41</td>
<td>22*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>112</td>
<td>68</td>
<td>101</td>
<td>1**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* coupling
** repulsion

D) Duplicate genes for zigzag culm showing linkage with genes in chromosome 9.

<table>
<thead>
<tr>
<th></th>
<th>Ms₂</th>
<th>Zg</th>
<th>Ms₂</th>
<th>zg</th>
<th>ms₂</th>
<th>Zg</th>
<th>ms₂</th>
<th>zg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>210</td>
<td>10</td>
<td>97</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>224</td>
<td>9</td>
<td>66</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

E) New chlorophyll pattern

<table>
<thead>
<tr>
<th></th>
<th>Wx</th>
<th>St*</th>
<th>Wx</th>
<th>st</th>
<th>wx</th>
<th>St</th>
<th>wx</th>
<th>st</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>237</td>
<td>8</td>
<td>31</td>
<td>59</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Ed. Note: St has been used for sticky chromosomes. Some other symbol is necessary.
f) Lethal male gametophyte (Gm_2)?

\[
\begin{array}{c|c|c|c|c|c|c|c}
& Sh \; wx & \; Sh \; Wx & Gm & Sh \; Wx & Gm & Sh \; Wx & Sh \\
Sh \; wx & Sh \; wx & Gm & Wx & Sh & Wx & sh & wx & Sh & wx & sh \\
\hline
250 & 135 & 1895 & 200 \\
\end{array}
\]

*Ed. Note: Gm is used for germless seed. Another symbol is necessary.

sh --- 17 92 --- Wx --- 17.5k --- gm.

g) A second male gametophytic lethal is almost completely linked with the \(Wx \) \(wx \) gene pair. Call this \(g m_3 \)?

6. Reduced kernel linked with aleurone color, but not with the gene \(C \), as indicated by tests with a number of genes in chromosome 9.

<table>
<thead>
<tr>
<th>Colored</th>
<th>Colorless</th>
</tr>
</thead>
<tbody>
<tr>
<td>Re</td>
<td>re</td>
</tr>
<tr>
<td>318</td>
<td>26</td>
</tr>
<tr>
<td>280</td>
<td>32</td>
</tr>
<tr>
<td>334</td>
<td>124</td>
</tr>
<tr>
<td>256</td>
<td>37</td>
</tr>
<tr>
<td>352</td>
<td>89</td>
</tr>
<tr>
<td>334</td>
<td>124</td>
</tr>
<tr>
<td>256</td>
<td>37</td>
</tr>
<tr>
<td>352</td>
<td>89</td>
</tr>
</tbody>
</table>

7. Pale green seedling linked with aleurone color but not with the \(C \; c \) gene pair.

8. Defective endosperm due to a gene in chromosome 10 as indicated by linkage with striped chlorophyll pattern described in 1 in this newsletter.

<table>
<thead>
<tr>
<th>De St*</th>
<th>De st</th>
<th>de St</th>
<th>de st</th>
</tr>
</thead>
<tbody>
<tr>
<td>235</td>
<td>15</td>
<td>82</td>
<td></td>
</tr>
</tbody>
</table>

* \(st = f_3 \).

<table>
<thead>
<tr>
<th>Sh Vp</th>
<th>Sh vp</th>
<th>sh Vp</th>
<th>sh vp</th>
</tr>
</thead>
<tbody>
<tr>
<td>273</td>
<td>81</td>
<td>63</td>
<td>36</td>
</tr>
<tr>
<td>175</td>
<td>47</td>
<td>40</td>
<td>123</td>
</tr>
<tr>
<td>75</td>
<td>76</td>
<td>12</td>
<td>57</td>
</tr>
</tbody>
</table>

10. Reduced kernel \(3 \) in chromosome 9.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>a</th>
<th>b</th>
<th>a</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sh</td>
<td>Re</td>
<td>185</td>
<td>55</td>
<td>66</td>
<td>30</td>
</tr>
<tr>
<td>244</td>
<td>63</td>
<td>69</td>
<td>44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>196</td>
<td>69</td>
<td>62</td>
<td>43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>245</td>
<td>68</td>
<td>69</td>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>216</td>
<td>63</td>
<td>71</td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>279</td>
<td>104</td>
<td>38</td>
<td>53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>71</td>
<td>29</td>
<td>2-2-?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
11. Linkage between speckled aleurone and lethal yellow seedling. Linkage group not known.

<table>
<thead>
<tr>
<th>Self colored aleurone</th>
<th>Speckled aleurone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>Green</td>
</tr>
<tr>
<td>Yellow</td>
<td>Yellow</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Alleles</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>A B</td>
<td>A B a b</td>
</tr>
<tr>
<td>196</td>
<td>60 57 25</td>
</tr>
<tr>
<td>197</td>
<td>45 46 39</td>
</tr>
<tr>
<td>241</td>
<td>69 72 38</td>
</tr>
<tr>
<td>229</td>
<td>76 82 30</td>
</tr>
</tbody>
</table>

Extensive data on cards but not summarized.

12. New yellow lethal in chromosome 9

\[133 \text{ C L} - 32 \text{ C L} - 30 \text{ C L} - 25 \text{ c l.}\]

13. Yellow green linked with aleurone color, specific gene not known.

<table>
<thead>
<tr>
<th>Colored aleurone</th>
<th>Colorless aleurone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>Green</td>
</tr>
<tr>
<td>Yellow green</td>
<td>Yellow green</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Alleles</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>A B</td>
<td>A B a b</td>
</tr>
<tr>
<td>374</td>
<td>88 64 35</td>
</tr>
</tbody>
</table>

14. Yellow green linked with sugary endosperm. Yg plants viable and grow to maturity.

15. The gene \(\text{Le}\) modifies endosperm color from lemon yellow to orange. Y Le gives orange yellow, Y le gives lemon yellow endosperm color.

A gene for yellow lethal seedling \((l)\) is almost completely linked with the gene for \(\text{le}\). Extensive data on cards but not summarized at present.

Sample - 233 Le L - 16 Le l - 1 le L - 78 le l.

16. A gene for purple \((\alpha\)-type) seedling in chromosome 9 closely linked with \(\text{Yg}\).

17. A gene for reduced kernel closely linked with a gene for semi-dwarf, stiff leaved, finely but distinctly lined (chlorophyll pattern) plant.

19. Duplicate genes for aurea chlorophyll. Extensive data on cards but not summarized.

20. Conspicuous seedling fine chlorophyll stripe closely linked with one of the genes for striped auricle \((\text{sa})\). Linkage group not known.
21. co and ad are alleles.

22. Male sterile in chromosome 5 almost completely linked with the gene for stiff leaves (sf). Although thousands of plants having stiff leaves have been examined only less than a half dozen such plants with fertile tassels have ever been observed.

Eyster.

Mr. Burr Robinson, graduate of the Connecticut Agricultural College and for several years assistant in genetics at the Connecticut Agricultural Experiment Station, has been appointed to the Fellowship in Genetics in the Bucknell Laboratory, established by the W. Atlee Burpee Seed Company.

A limited number of copies of a monograph, "GENETICS OF ZEA MAYS", reprinted from Bibliographia Genetics, Vol. XI, are available and will be sent postpaid for $1.50. Orders should be sent to Dr. William H. Eyster, Botanical Laboratory, Bucknell University, Lewisburg, Pa.

Eyster.
Paraffin Method for Root-Tip Chromosome Counts

L. F. Randolph

The reagents employed and the sequence of transfers from fixation to paraffin-ribbon mounts are as follows:

1. Fix roots 12 to 24 hours in "Craf" (Chromo-acetic-formalin):
 Solution A, Chromic 1 gr., Acetic 7 cc., Water 92 cc.
 Solution B, Formalin 30 cc., Water 70 cc.
 Mix equal parts A and B just before using.
 This fluid was developed primarily for making chromosome counts in the root-tips of maize, but it has proved to be very useful for similar studies in many other plants.

2. Transfer roots directly from Craf to 75% alcohol, changing several times at half-hour intervals to remove most of the fixing fluid; then to 85% alcohol.

3. From 85% alcohol to normal butyl alcohol as follows:
 (1) H₂O 15 cc., 95% ethyl 50 cc., butyl 35 cc.
 (2) 5 cc., " " 45 cc., " 55 cc.
 (3) Absolute ethyl 25 cc., butyl 75 cc.
 (4) Normal butyl, 3 or 4 changes.
 Leave roots at least an hour in each solution, 2-3 hours in pure butyl.

4. Infiltrate gradually with paraffin: Add melted paraffin (melting point 54-55°C) in an amount equal to about one-third the volume of the butyl alcohol covering the roots. Add the paraffin slowly so it will solidify on top of the butyl alcohol. Place the receptacle (preferably a 30 or 50 cc. pyrex beaker) containing the roots and butyl-paraffin mixture in a paraffin oven at 56°C. Leave over night. As the paraffin melts it passes slowly to the bottom of the beaker and gradually infiltrates the roots. The next day pour off the butyl-paraffin mixture and add pure liquid paraffin. Repeat 3 or 4 times at hourly intervals.

5. Embed, cooling the paraffin rapidly in ice water.

6. Prepare cross-sections 10 to 15 microns in thickness. Spread ribbons on slides and dry for several hours at about 40°C.

L. F. Randolph

To facilitate the handling of root-tips in the paraffin method they may be mounted on cards in the following manner.

1. Prepare small pieces of heavy paper approximately 2 cm. x 2.5 cm. in size (the heaviest grade of Y and Z filing cards is suitable). Smear the base of a card with DuPont household cement, or LePage's waterproofing cement. Add roots and cover with more cement, leaving at least .5 cm. of the tip of the root free (fig. 1). Invert at once in the fixing fluid, keeping the cards separated until the cement has partially hardened.

2. After fixation and transfer to 75% alcohol, snip off the tips of the roots from the original card in a petri dish containing a small amount of alcohol. Prepare a second smaller card, approximately 7 x 12 cm. in size. Label one side (Fig. 2a), and coat the other side with a thin layer of mucilage, using a clear, amber-colored grade of Carter's or Stafford's mucilage evaporated to the consistency of heavy syrup. Rapidly transfer the roots one by one from the petri dish to blotting paper for removal of excess alcohol, and then to the second card. Add more mucilage and a thin strip of paper to help hold the roots in place (Fig. 2b). Immerse the card with roots attached at once, right side up, in 85% alcohol. The mucilage may be conveniently applied with a No. 2 or No. 3 camel-hair brush. For transferring the roots quickly from the blotting paper to the card a bent dissecting needle applied to the moist surface of the root is very effective (Fig. 3). The final orientation of the roots on the card may be completed after transfer to 85% alcohol. The root-tips should project approximately 2 mm. beyond the edge of the card, and care must be taken that the tips are kept free of mucilage since it causes trouble in sectioning.

3. After the mucilage has hardened the card mounts are placed in a 30 cc. or 50 cc. pyrex beaker and dehydration and infiltration are completed in the usual manner. The mounts should be embedded with the labelled side down so that the mounts may be identified readily. Paraffin ribbons from two or more card mounts may be placed on the same slide (Fig. 4).
Crystal Violet Staining Procedure for Root-Tip Chromosomes.

I. F. Randolph

1. Place slides in xylol to remove the paraffin. Flush with fresh xylol, then with absolute alcohol. Pass the slides successively through 95%, 60%, and 30% alcohol to water, 3-5 minutes for each step.

2. 1% potassium permanganate, 2-3 minutes. Rinse in tap water.

3. 5% oxalic acid, until the sections are bleached—usually 1-3 minutes. Prolonged treatment with oxalic acid sometimes causes the sections to come off the slide. Wash in tap water 15 minutes. The bleaching process in permanganate and oxalic is not always necessary, but it usually adds contrast.

4. Mordant in 1% chromic, 20 minutes. Rinse in tap water and then in 2 or 3 changes of distilled water.

5. 1% aqueous solution of crystal violet, 4 hours. It is often desirable to vary the staining period. If the stain comes out too rapidly in the alcohols and clove oil, leave the slides in the stain longer. If destaining is prolonged, shorten the period. Rinse in tap water.

6. Treat with iodine-potassium iodide (iodine 1 gm., potassium iodide 1 gm., 80% alcohol 100 cc.) until the color of the sections changes from blue to brown, usually 1-2 minutes.

7. Rinse in 95% alcohol and pass through 3 changes of absolute alcohol to clove oil. Differentiate in the alcohols and clove oil, ordinarily 1-3 minutes. Watch the process in the final stages under the microscope. The metaphase chromosome groups under a 16 mm. objective should stand out sharply against a practically colorless background of cytoplasm.

8. Pass through several changes of xylol to remove all of the clove oil. Mount in thin xylol-balsam. After the cover glass is in place invert the slide on paper toweling and apply mild pressure to force the excess balsam from under the cover glass. Add a few drops of xylol to the edges of the slide, cover with another paper towel and a piece of heavy glass, or other suitable weight. As soon as the slides are dry they may be examined. This method of mounting removes all excess balsam and brings the cover in close contact with the material, so that high-power objectives may be used with greater safety.
Publication of new linkage data

It has become increasingly difficult to secure publication of papers presenting linkage data for new genes in maize. Some scientific journals refuse to accept this type of work for publication. Yet it is extremely important that a short description of new characters and a summary of the linkage data appear in some recognized journal so that this information will be made generally available.

In conversations with Richey, Jenkins and Brink at the recent Pittsburgh meetings the following solution was suggested: "That there be published annually a paper under the general heading 'New Linkages in Maize', or some similar title, which would present short descriptions of new characters with the linkage data given in summary form. This material would be contributed by the various workers. The name and address of the contributor would appear either before or after each linkage he reported so that he would get the credit which rightfully belongs to him."

The above suggestion will, of course, have to be developed in greater detail but we believe it should receive careful consideration from you because it offers a remedy to the rather serious problem of securing publication for new linkages.

The amount of space devoted to each character will have to be limited to not more than one printed page and preferably less. This allotment should prove sufficient, although some leeway would, of course, be permitted. This proposed publication is not, in any sense, to be considered as supplanting the maize letters because as we have so often reiterated, the appearance of information in the maize letters does not constitute publication.

If this proposed annual paper of new linkages will not be acceptable for publication in one of the Journals, we suggest that space be purchased at so much per page. For the next four years at least there will be funds available from the grant made by the Rockefeller Foundation to the Maize Genetics Cooperation which can be used to pay for the publishing of this paper. One attractive feature of purchasing space is that we could secure immediate publication. The contributions from the various investigators would be edited and compiled by the Secretary of the Maize Genetics Cooperation.

Give us your opinion of this idea and, more important, would you be willing to take part in such an enterprise?

Below is a copy of a letter which was received from Jones in response to an enquiry as to what he thought of the idea from his point of view as Editor of GENETICS:

"Dear Dr. Rhoades:

I am much interested in your suggestion as to a way of publishing linkages. I should like very much to try something of this kind and see no reason why it would not be acceptable in GENETICS. I agree with you that the information should be published but in the past, authors have usually expanded each individual
case of linkage into a 5 or 6 page paper or more, and facilities have not permitted the publication of this much material. If each item could be condensed into a page or less, I think the arrangement would be advantageous for all concerned. Some provision would have to be made for references so that each separate contribution should have a main heading together with the author's name and address.

The principal difficulty that I see will be to get someone to summarize this material and get it in shape for publication. If you are willing to do this or anyone else can be persuaded to do it, we shall be very glad to do our part.

(Signed) D. F. Jones."

Inasmuch as I am severing my connections with Cornell to take a position with the U. S. Department of Agriculture at Ames, Iowa, I necessarily am relinquishing my duties as Secretary of the Maize Genetics Cooperation. Until, however, Dr. Emerson appoints my successor I shall be willing to continue to act as Secretary so that there will be no lapse in the functions performed by this office. Until March 20th I can be reached here at Ithaca and after March 20th at Ames, Iowa, c/o Department of Farm Crops, Iowa State College.

I wish to state that I have really enjoyed my work with the Maize Genetics Cooperation and I hope that my successor will receive the same fine cooperation from the maize geneticists which has made possible this unique series of corn letters.

Sincerely yours,

M. M. Rhoades
The enclosed maps of the linkage groups were made from the data which Emerson has assembled for the forthcoming paper on linkages in maize by Emerson, Fraser and Beadle. Only those loci whose position is known with reasonable accuracy are listed. We are indebted to the Division of Cereal Crops and Diseases, U. S. Department of Agriculture, for furnishing the copies of these maps.

M.M.R.
<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>LG</td>
<td>A</td>
<td>DE</td>
<td>A</td>
<td>V</td>
<td>MS</td>
<td>KNOB</td>
<td>YG</td>
<td>NL</td>
</tr>
<tr>
<td>19</td>
<td>GL</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>AS</td>
<td>28</td>
<td>NA</td>
<td>31</td>
<td>PR</td>
<td>MS</td>
<td>T</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>B</td>
<td>39</td>
<td>BA</td>
<td>40</td>
<td>YS</td>
<td>Y</td>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>SK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>BR</td>
<td>57</td>
<td>FL</td>
<td>56</td>
<td>TS</td>
<td>TS</td>
<td>57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>TS</td>
<td>63</td>
<td>RG</td>
<td>66</td>
<td>SP</td>
<td>PL</td>
<td></td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>V4</td>
<td></td>
<td></td>
<td>71</td>
<td>SU</td>
<td>BH</td>
<td></td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>AN</td>
<td></td>
<td></td>
<td>74</td>
<td>DE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>D</td>
<td></td>
<td></td>
<td>87</td>
<td>PY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>GS</td>
<td>103</td>
<td>CR</td>
<td>105</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>GL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>BM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CHROMOSOME MAPS OF MAIZE
1935
To Maize Geneticists:

The summary of linkage in maize is finally off the press as Cornell Agricultural Experiment Station Memoir 180, and a copy has been mailed to each of you. The authors realize that this summary is already a year or two out of date, but hope that it will serve a useful purpose as a base of reference for future linkage studies. It will, of course, have to be revised from time to time, but probably a general revision should not be attempted for some years. Your secretary believes that, for the present at least, it will be better for those of you who are interested in a particular linkage group to publish a revision of that group when you have data sufficient to straighten out any of the confusing and even contradictory situations apparent in many of the groups as presented in the summary. When one has evidence sufficient for a thoroughgoing revision of any one of the ten groups, it should not be difficult to find a place for publication of a concise paper setting forth the revision.

Pending the time when any of us are ready to publish such revision, the data obtained should be made available to others. Moreover, most workers find a miscellaneous lot of linkages the data on which should be made known to the rest of us. In the past many such records have been sent to you in mimeographed form, but always with the caution that such distribution does not constitute publication and that no one other than the one who contributed the data has any right to use them without permission, in a published paper. This is not an ideal arrangement. The data should be published at once. But it is almost impossible to find a journal that will accept a paper presenting data say on a single linkage.

It has been proposed that those of you who have linkage data worth publishing but not of sufficient importance to warrant a separate paper send to the secretary of Maize Genetics Cooperation brief, concisely worded accounts embodying the data and that these short papers be published together under some general heading, but each to be signed by the responsible author. I have been informed that the outgoing editor in chief of Genetics has approved this suggestion, but it has not been presented to the incoming editor, Dr. Dunn. If the publication of such a collection of brief papers is paid for from sources other than the publishers of Genetics, very prompt publication can be assured. It would seem that the grant of funds made by the Rockefeller Foundation for the support of Maize Genetics Cooperation might be used legitimately for this purpose. Before presenting this proposal to the Rockefeller Foundation for
II

Reports have been received from a few of you who grew inbred strains last summer to determine relative resistance to smut and other diseases, general adaptability, etc. I trust that the others who received seed of these strains will report soon so that all reports can be tabulated for the next news letter. It is already apparent that no one or two of these strains will be useful in all regions of this country. Since the strains tested last summer came from only two sources, Dr. Hayes and Dr. Wiggens, it seems probable that others of you may have or know of inbred lines better adapted to some regions than any of the strains so far tested. If you will indicate this to me, a further test can doubtless be arranged next season.

Altho the inbred strain test was started with the hope of finding one or more strains widely resistant to smut, which is a serious drawback to many of the genetic stocks grown by some of us and particularly serious in case of plants injured in collecting sporocyte material for cytological study, the crossing of good inbred strains with genetic stocks may prove very useful in other ways. If one desires to make an accurate comparison of segregates in any culture involving even so few as two allelomorphic characters, it is necessary to use relatively large numbers of individuals to make sure that the nine chromosome pairs other than the one directly involved in the comparison are, on the average, the same in both segregates. When, by the nature of the comparison, one is limited to a few individuals, as might well be the case in certain histological, physiological, or chemical investigations, it becomes essential to employ material with as uniform as possible a background of genes other than those involved in the study. Such material can probably best be obtained by repeated backcrosses of the recessive segregates to the same inbred line. Backcrossing separately to two inbred lines makes it possible later to study the segregates in vigorous material by intercrossing two such backcrossed progenies. In line with this purpose, crosses were made last summer of six dwarf and semidwarf types with two of the inbred strains which did well at Ithaca. This was done to get material for Mrs. Abbe's (Minnesota) histological and developmental study of these types. In so far as possible, other undesired genes linked with the pair to be studied were involved in the crosses. When in progressive backcrosses these unwanted genes are lost, one can be reasonably sure that a considerable part of the chromosomes carrying the genes to be studied, as well as the other nine pairs, are relatively uniform genetically for both normal and dwarf segregates. Even one or two backcrossings should afford material that is much more nearly uniform than are most segregating genetic stocks now in use.
III

Hand pollinations of the cooperative material last summer were for the most part highly successful. We shall be able to include a list of these stocks in the next news letter.

A list and seed of new stocks which any of you may have and which have not previously been sent to the secretary are herewith called for. The list should be ready for the next news letter and the seed should be sent as soon as convenient.

IV

This is also a call for items of interest to be included in the next news letter. Please include new genes, indications of linkage of new or well known genes, etc. Linkage data might well be included unless you intend to submit them later for independent publication or for collective publication as proposed in this letter.

V

-Summary-

1. Please report promptly on behavior of inbred strains if you grew them and have not yet reported (See II above)
2. Send list and seed of new stocks (III)
3. News items are now due (IV)
4. Indicate (a) whether you do or do not favor the proposed collective publication of short signed articles on linkage in maize, (b) whether you will probably be able to submit such articles by late winter or early spring, (c) deadline date favored for reception of such articles.
5. All these items (1-4 above) should reach me by December 20, 1935, so that the next news letter can be sent out early in January.

(Signed) R. A. Emerson
Secretary "pro tem"
March 4, 1936

Department of Plant Breeding
Cornell University
Ithaca, N. Y.
To Maize Geneticists:-

This letter contains information from many sources, arranged under the following heads:-

I. Collective publication of linkages.
II. General news items. Includes notes on linkage without data, lists of seed stocks, etc.
III. Linkage data.
IV. Seed stocks received, and those propagated in the Cooperation garden at Ithaca.
V. Tests of inbred strains for disease resistance.
VI. Special notices.

Most of these reports are given almost verbatim but are not put in quotation marks because in numerous instances they have been somewhat abbreviated and sometimes the phraseology has been changed (without, I trust, a change in meaning). Statements enclosed in brackets, [], are gratuitous comments by your secretary.

I. Collective Publication of Papers on "Linkage in Maize"

Perhaps the most important matter presented in this news letter relates to the collective publication of separately headed and signed articles on linkage (see news letters of March 6 and November 30, 1935).

The response from cooperators has been wholly favorable and several have indicated their readiness to contribute to such a series of papers.

Dr. Hanson, representative for the natural sciences of the Rockefeller Foundation, has written as follows:

"Regarding your request to use a small part of the fund for the publication of brief papers in Genetics, since this seems to you to be merely using a somewhat different mechanism than you originally contemplated for putting this maize material before the geneticists interested, the Foundation will have no objection to a small portion of the funds being used for that purpose.

With kind regards, I am Cordially yours,

(Signed) Frank Blair Hanson"
Dr. Dunn, editor in chief of Genetics, with reference to our proposal, says:

"I see no danger in this so long as we adhere to the basic rule for publication in GENETICS — i.e., soundness, significance and permanent value of the material printed, and so long as we are just as free to accept or refuse such papers as any others. I think the publication of such material should differ as little as possible from other papers published; that is, it should not form a separate department of the journal which would constitute a special privilege and might bring resentment from other groups. I think we shall be able to make satisfactory arrangements and suggest that when ready, you send in some sample copy which we can use as the basis for settling form, etc. We go to press on February 15th (May Number) and thereafter on the first of each odd numbered month. If an arrangement is made, copy can be printed in two months (plus about five days) from receipt of mss.

Sincerely yours,

(Signed) L. C. Dunn"

See also suggestions by Jones (news letter March 6, 1935, pp. 19, 20).

Of course, we should not expect to receive preferential treatment from Genetics, and could not expect our papers to be accepted unless they meet the standards set for that periodical. I am anxious to try the plan this spring. It is obvious that we cannot get material ready for the May issue of Genetics. The July issue goes to press May 1 (I assume from Dunn's letter), and manuscripts should be in the editor's hands some time before that.

I ask, therefore, that you send such material as you desire to include to reach me not later than March 31.

Manuscripts should be typed and ready for publication without change. When new genes are involved, a short, concise description of the characters differentiated by them might well be included. Well known genes should not require such treatment.

Tables should be presented in summary form. Different cultures involving the same kind of data should not be listed separately unless that is essential in order to demonstrate significant differences between them. Of course F_2 and backcross data for coupling and repulsion must be entered separately in the tables. A single frequency distribution may often be displayed in the text to better advantage than in a table. Tables of data should be accompanied by such discussion only as is essential to make clear any points not obvious from an examination of the tabular data themselves, or as is necessary to indicate the relation of the reported observations to other linkage tests, etc. The tabular arrangement and headings used in the Linkage Summary are convenient and I, naturally, think them good.

No limit can be set now to the length of the individual contributions, but, unless a very considerable amount of data are presented, individual papers might well be kept to not over one or two pages of printed matter, and it is my hope that some may be not more than half that long.
II. General News Items

Maize Genetic Cooperation, Ithaca, N. Y. —

1. D. G. Langham, formerly of the State College, Ames, Iowa, and now a graduate student in genetics at Cornell, is to serve as assistant in the Maize Cooperation work.

2. Several glossies received from Hadjinov were crossed last summer with standard glossies and the seedling progenies have been grown and noted this winter. Pollinations were made by John Shafer and seedling tests by D. G. Langham.

These tests indicate that:

Hadjinov’s glossy 3 = gl4
" 6 = gl6
" 10 = gl3.

Hadjinov’s glossy 5 gave normal seedlings in crosses with glossies 1, 2, 3, 4, 6, 7, 9; with gl3 it gave seedlings normal in appearance but which exhibited the behavior of glossies in holding sprayed water; it was not tested with glossies 5 and 6.

Hadjinov’s glossy 7 gave normal seedlings in crosses with glossies 1, 3, 4, 6, but has not been tested with glossies 2, 5, 8, 9. Hadjinov’s glossy 8 has not been adequately tested.

In the records of Cooperation cultures, I find these notes by Rhoades: -- "Hadjinov’s 3 is possibly the same as gl3 since it is linked with su", and "Sprague reports that Hadjinov’s 1C is allelomorphic to Stadler’s glc".

Cornell University, Ithaca, N. Y. —

1. Corrections to the linkage summary (Cornell Memoir 180):—
 Page 13. Delete the gl10 (see news letter November 24, 1934). We missed this in proof reading.
 Page 25. The stock of Demerec’s w4 having been lost, w4 was assigned to a white seedling found by Lindstrom to belong to group 4 (see Linkage Summary, p. 46).
 Page 52. The last item in table 15 should read
 Ch + + 61 45 54 59 43 44 52 39
+ bml yEl 106 113 87 91 397 Burnham
 28.5% 21.9% 22.9%

Page 57, table 18. Gl1 Ij, second line, read 11 not 1.1 per cent.

It will be helpful to all of us to have any other corrections called to my attention, so please send them on and observe my excellent imitation of pleasure.

2. To get for chemical studies material of the several plant color types with as uniform a genetic background as possible, I have tested the germination of seed samples stored in my cases for seven years. A brown plant, a1 b Pl, was crossed with a dilute sun red, A1 b pl, inbred strain, and a brown from F2 of this cross was backcrossed to the same inbred strain. Ears of the several color types of F2 of this backcross were tested.

Four ears of purple, A1 B Pl, averaged 4% germination, while 14 ears including some of each of the other color types, namely, sun red, dilute purple, dilute sun red, brown and green, averaged 95% germination. The observed difference between purple and the
other color types is interesting, but probably without significance.

The seedlings of all color types, however, gave striking evidence of the effect of age. Normally the primary roots of germinating seeds show before the plumules do and grow more rapidly for some time. In most lots of this old seed the plumules showed before the primary roots did, and in one lot that germinated 100% no primary roots were visible at any time, but secondary roots started after the plumule was one-half inch or more long. Moreover, many seedlings died after being potted in good soil. Of seedlings from lots ripened last summer, tho germinated two weeks later, and planted in the same soil, none have died and the lot as a whole is now (a month after planting) two or three times the size of those from old seed. This is so similar to Randolph's results in germinating seed and growing seedlings from kernels subjected to high temperatures while dormant as to make the problem seem worth further study.

R. A. Emerson

3. Quantitative studies on the frequency of chromosome doubling in corn seedlings treated at different temperatures for varying periods of time indicate that 20, 40, and 60 minute treatments at 36°, 38°, 40° and 42° C are effective in producing a markedly increased frequency of tetraploid sectors in the root-tips and stem-tips, more mutant sectors being produced in the roots than in the stems of the same treatment. Negative results were obtained from a study of the persistence in the mature plants of tetraploid sectors induced by heat treatment of the germinating seed. Over 300 plants were included in the experiment and no tetraploid ears or ears with tetraploid sectors, as determined by applying pollen from tetraploid plants to the treated plant and noting the set of seed, were obtained.

4. Heat treatments of diploid corn, barley and einkorn in early embryogeny and in the seedling stage induced an increased frequency of segregating mutant seedling types differing from the normal either in growth habit or morphology or in the amount of chlorophyll development.

5. Inbred stocks of tetraploid maize after four generations of selfing have good vigor, reasonably good uniformity, and in some cases an increase in fertility over the original parental tetraploid stock. Tetraploid strains of commercial yellow corn are being tested in cooperative bio-chemical and animal assay experiments to determine their vitamin A potency. Since the tetraploid yellow maize endosperm has six doses of Y rather than three as in the normal diploid yellow corn the vitamin A potency may be twice as great in the former as in the latter.

6. The tolerance of dormant seed to heat treatment varied with the moisture content of the seed. Corn and barley seed with 24 per cent moisture was killed with one 30-minute treatment at 100° C. With a reduction of moisture content to 9 per cent the seed was not injured by a 30-minute treatment at 100° C, but after 60 minutes germination was only 30 per cent, and after 2 hours only 10 per cent of the seed germinated. Seeds with 5 per cent moisture germinated perfectly after 2 hours treatment at 100° C, but were killed after 30 minutes at 115° C. Seeds with 2 per cent moisture, the reduction in moisture content being accomplished by drying approximately 3 weeks at 60° C, germinated well after 30
minutes at 115° C, but only 10 per cent germinated after 60 minutes, and 30 minutes at 130° C killed all of the seed. The corn seedlings from the sub-lethal dosages at the different moisture contents were weak and chlorotic, many failing to survive, but the development of normal green color was not similarly altered in the barley seedlings.

7. In further studies on the B-type chromosomes in maize the number in individual plants has been increased to 32-35, with no marked decrease in plant vigor but with an appreciable decrease in fertility among these extremely high numbered B-type plants. Both Florida and Durango teosinte occasionally have B-type chromosomes which are morphologically identical with those in maize, and exhibit the same synaptic behavior and breeding relationships. Plants of Florida teosinte with 5 B-type chromosomes and plants of Durango with as many as 10-12 have been obtained by inter-crossing plants with lower numbers. From an extensive survey of chromosome morphology in various stocks of maize and teosinte, primarily for the purpose of determining the origin of the B-type chromosomes, an extremely wide variation in prophase morphology in different stocks has been noted; maize stocks with as many as 13-14 sizable knobs and others with as few as 1 or 2 have been discovered, also Durango and Florida teosinte stocks with very few and other stocks with numerous knobs. However, a careful search for a chromosome arm in these diverse stocks similar to or identical with the B-chromosome has been fruitless thus far. This suggests that the B-chromosome may be a composite of several parts from different regions of the same or different A-chromosomes.

L. F. Randolph

8. Mosaic plants in part heterozygous and in part homozygous for a chromosome 5 deficiency. - Breakage in the spindle fiber insertion region of chromosome 5 resulted in two chromosomes, one a deficient rod-shaped chromosome and the other its reciprocal, a ring-shaped chromosome, each with an insertion region, the two equivalent genomically to one chromosome 5 (McClintock, Proc. Nat. Acad. Sci., 1932). Two such cases were described. In one case, known as the large deficiency large ring, the ring involved approximately one-sixth of the length of the chromosome, including the locus of Bm1. In the other case, called the small deficiency small ring, the ring involved about one-twentieth of the length of the chromosome and also included the locus of Bm1.

It has been found that the small deficiency can function through the eggs without the small ring being present also. Pollen having the large deficiency plus the large ring-shaped chromosome (the full genomic complement for chromosome 5) can function as well as normal pollen with an intact chromosome 5. When two such gametes fuse, an individual having the small deficient chromosome, the large deficient chromosome and the large ring-shaped chromosome is produced. As stated in the above publication, loss of the ring-shaped chromosome occurs in some mitotic divisions. In the plants resulting from the described cross, the nuclei and thus cells which arise after such a loss of the ring chromosome will be homozygous deficient for the amount of chromosome represented by the length of the small deficiency. Such plants should
be therefore, a mosaic of heterozygous and homozygous deficient tissue if cells whose nuclei have undergone the loss of the ring chromosome can continue to propagate themselves. It was known that the heterozygous deficient tissues do not vary noticeably from non-deficient tissues. If, in these plants, the homozygous deficient tissue is viable and if the homozygous deficiency alters the structure of the cell, streaks of altered tissue should be detectable. Streaks of altered tissue were very obvious in the leaves of such plants. A histological study of the nature of the alterations is being conducted by Mrs. Lucy Abbe. From the appearance of the homozygous deficient tissue it is probable that such tissue would be inviable if not surrounded by normal tissue. The original “double-deficient” plants were obtained by crossing plants having a normal chromosome 5 with bm1, a deficient chromosome 5 with no lucus for Bm1 and the ring chromosome carrying Bm1. The “double-deficient” plants were all Bm1 except one plant which was variegated for Bm1 and bm1. The introduction of the bm1 locus of the normal chromosome 5 into the deficient chromosome is believed to have occurred as the result of a non-homologous cross-over between the normal and deficient chromosomes with a resulting shift in the position of the deficiency (as described by Stadler in the Amer. Nat., 1934).

9. Several inversions, two involving sections of chromosome 9 and one involving a section of the long arm of chromosome 4, have been detected and isolated by Miss Creighton and myself. One of the inversions on chromosome 9 should eliminate single cross-overs within the short arm of this chromosome, although the tests have not been completed.

10. Disjunction studies on interchanges have shown that sister spindle fiber regions do not separate in I, that crossing-over between the spindle fiber and the break is followed by disjunction of homologous spindle fiber regions, that the passage of two homologous spindle fiber regions to the same pole in I is increased when the crossing-over is decreased, and that whether 4 or 6 types of spores will be formed and their proportions depend upon the relative distances between the spindle fiber regions and the breaks coupled with crossing-over in these regions.

Barbara McClintock

11. Data from crosses of Florida teosinte with maize, back-crossed to maize, showed little or no crossing over in the short arm of chromosome 9, but between wx and v1, there was from 6.4% (Creighton) to 40% (Allen) of crossing over.

Sylvia M. Allen and Harriet B. Creighton

12. An inbred strain of yellow dent corn, which, after having been selfed for nine generations, has been propagated by sib-crossing or mass pollination for three years, has given rise to two striking mutations, namely, yellow to white endosperm and normal stature to a slender dwarf type. All the white endosperm kernels germinate prematurely.

R. G. Wiggans

University of Minnesota, St. Paul, Minn.

1. I have been studying an abnormal tassel type that I propose to call ramose tassel. It gives some variation in ear type. Some strains show crooked rows and generally a few sterile male
florets on the tip of the ear. In other cases the upper half of the ear is divided somewhat like ramose-1. In crosses, however, either of these types can be separated from ra1 with considerable accuracy. Linkage studies of ramose tassel were made last year using F2 data from crosses with representative genes of the ten groups. It is linked with ra1 or1 and py in group 3 [py is in group 3]. It has occurred to me that this may be the same factor or an allelomorphic of ra reported by Brink but not published.

(Brink's linkage data (Linkage Summary, pp. 41, 42) give a1-ra2 51% and ra2-Rg 34% recombination.)

2. I note your statement [Linkage Summary, p. 12] that floury is difficult to classify in many stocks. I have had no difficulty except where some of the virescent seedlings were concerned. I classify commonly over a ground glass with light underneath.

H. K. Hayes.

U. S. Dept. of Agric., Cereal Crops & Diseases, Ames, Iowa

1. A branched ear was observed in F2 (1923) of the station strain of Reid's Yellow Dent. It appears similar in all respects to the one described by Kempton as branched silkless, bd, and was reported by Rhoades (Maize letter, November 24, 1934) to be allelomorphic to that gene. F2 data involving bd with two other genes show it to belong to group 7. (The data (sec III, below) seem to place bd to the right of 1j, near Bn1. Hadjinov's data (Linkage Summary, p. 57) give about 36% recombination between his bd and Bn1. His bd has not been tested with either Bryan's or Kempton's.)

2. A character similar to Brunson's cuzzoid was found in F2 of the variety Krug in 1934. It tasseled very late but produced no ear shoots. It had about 50% more nodes than normal corn. It apparently is controlled by a single recessive gene.

A. A. Bryan

3. The study of the factor interaction of a1 and Dt has been continued (see maize letter of November 24, 1934). On the basis of rather extensive counts the ratio of the average number of dots on seeds of a1 a1 a1 a1 Dt Dt dt to the average number of dots on seeds of a1 a1 a1 a1 Dt Dt Dt dt constitution is 3:2. The ratio for seeds of a1 a1 a1 a1 Dt Dt dt to a1 a1 a1 a1 P a1 P a1 P a1 P Dt Dt dt constitution is 3:1. Since in the comparisons the Dt gene is held constant while the dosage of a1 varies, it is apparent that the effect of increasing the dosage of recessive a1, as indicated by the average number of dots, is an arithmetic one. In reciprocal crosses between two closely related lines (a1 a1 dt dt x a1 a1 Dt Dt) the ratio of the average number of dots on seeds of Dt Dt dt to seeds of Dt dt dt constitution was 4:1. Some data have also been obtained on the number of spots of Dt Dt Dt constitution. These data indicate that the effect of increasing the dosage of Dt may be geometric.

4. Further study with the chromosome 5 fragment (see maize letter of November 24, 1934) has placed the following genes in the long arm of chromosome 5: v2, yS, pr, v12, v5, and bt. The loci of a2 and bm1 are in the short arm of chromosome 5. The fragment chromosome, which is composed of the short arm of chromosome 5 and has a terminal insertion region, occasionally passes
through the pollen. In the progeny of a selfed fragment plant there occurred an individual with the normal complement of 20 chromosomes plus two fragment chromosomes. In genetic constitution and appearance this 22 chromosome plant was identical with the secondary trisome found several years ago in which the single supernumerary chromosome was composed of two short arms of chromosome 5. Plants having a single fragment chromosome were studied at pachytene. As reported before, the fragment pairs with the two normal chromosomes 5 in approximately half the cells. It was occasionally observed in those cells where the fragment was unpaired that the terminal insertion region presented the appearance of being split. This observation may have some theoretical importance since some of the prevalent theories of meiosis assume that the reason the spindle fiber region undergoes a reductional division in the first meiotic anaphase is that the division of the insertion region is delayed to a late prophase stage while the split of the chromosome thread occurs in the early prophase stages.

5. An inbred strain gave in F2 approximately 55% luteus seedlings (again see maize letter of November 24, 1934). The genetic constitution of this line was \(\text{sp}^{+} \) with about 2 per cent crossing over between the \(\text{sp} \) and 1 loci. These two genes have been linked with factors in chromosome 10. They are very close to \(g_{1} \) and give about 20 per cent of recombinations with \(R \). The luteus gene is designated as \(l_{g} \) and the small pollen gene as \(\text{sp}^{2} \). Seed available.

6. A triploid individual occurred in a cross of \(g_{1}^{l} \times w_{3}^{l} \). The constitution of the triploid was \(G_{1} G_{1} g_{1} W_{3}^{l} W_{3}^{l} w_{3}^{l} w_{3}^{l} \) which suggests that the diploid number of chromosomes was contributed by the pollen parent.

7. During the harvesting of the fields in the Iowa Corn Yield Test several ears were found which had, to the writer, the appearance of triploid ears. Root tip counts of the progeny substantiated this hunch.

8. Half the plants in a small F1 progeny of an R- \(g \)-li stock x Florida teosinte had narrow leaves, an unusual type of chlorophyll striping, and brown midribs. Neither of the parents showed this character. It seems possible that we have here a case of factor interaction between \(Zca \) and \(Euchlaena \) genes. Several crosses were made between the R- \(g \)-li stock and Florida teosinte and only one of the F1 progenies showed this new character.

9. In the progeny of a plant trisomic for chromosome 6 there occurred an individual with 20 chromosomes plus a fragment composed of the long arm of chromosome 6. The insertion region is apparently terminal. Studies of the disjunction of the two normal chromosomes 6 and the fragment, utilizing the technic of McClintock in studying the number of nucleoli in the quartets of microspores, showed that in 2.4% of the cases the fragment chromosome went to one pole and the two normal chromosomes to the other pole. In the remaining cases the two normal chromosomes underwent disjunction.

10. Studies of some of the Iowa inbred lines showed that in those inbreds which are poor pollen producers there was a considerable number of unpaired chromosomes at Metaphase I. These unpaired chromosomes undoubtedly cause some of the sterility
found in these lines. Fertile inbred lines showed fewer univalent chromosomes. In the "sterile" inbreds the pairing pachytene was perfect and the unpaired homologous chromosomes showed at diakinesis an orientation to each other because of this earlier association.

11. In a selfed line homozygous for all the dominant aleurone factors there occurred seeds with colorless areas of varying size (Anderson had a similar character several years ago. He called it "Bald" aleurone.) The explanation for the appearance of colorless areas in this line is due to the failure of formation of the aleurone layer.

12. New stocks:

- Tp-gl1-v5-ra
- a1-lg2 Dt
- a1-na-ts4 Dt
- pr-bml-a2 (probably)

13. Studies with P^V and sm indicate that intensity of salmon color in silks depends upon amount of variegation on the ear. The silks have a uniform color, not variegated.

14. Golden-1, gl1, though not identifiable by external appearance, can be classified accurately in the seedling stage by cutting off the seedling stalk just above the ground. Golden-1 seedlings have a distinct golden color in cross section while non-golden ones are clearly green.

M. M. Rhoades

Agr'11 Experiment Station, New Haven, Conn.

1. We are informed by Eyster that his opaque-3 is the same as our o1. (Eyster reported o3 in chrom. 2).

2. A maternal stripe has been obtained from a series of Sweepstakes inbreds. It is more vigorous than those obtained by Demerec and Anderson.

3. The dwarf reported in maize letter of November 24, 1934 is not d1. It segregates well and is viable but never produces an ear or even pollen at New Haven. Seed available.

4. The adherent reported in the same news letter is not ad1. Viability good.

5. Seed of a stock of trisomic chromosome 4 is available.

6. F2, 783 individuals, of \(\frac{o_2 +}{+gl_1 i_1 j} \) gave recombination percentages as follows: \(o_2 - gl_1 27, o_2 - i_1 j 37 \).

Another F2, 323 seedlings, of \(\frac{o_2 +}{+gl_1} \) gave 22% crossing-over. Backcross data, 453 plants, give 17% crossing-over between o2 and ra1. These data indicate that o2 is to the left of v5.

7. We apparently have two complementary factor pairs for yellow endosperm. I have tentatively designated one of them Y1 and the other It (intensifier). I have only one stock of Y1 Y1 it it, but It is carried by several white stocks, in fact, all so far tested except one a-tester. It might be an allelomorph of A. F1 seed of the cross Y1 Y1 it it x Y1 Y1 It It is all yellow. The F2 ears segregate fairly well into a 9:7 ratio for yellow and white, showing several intensities of yellow. I do not think the stock of Y1 Y1 it it is the same as Y1. It is
much lighter in color and shows segregation well only in very flinty corneous stocks. The intensifier stocks, Y_1, also intensify the yellow color of Y_1.

W. Ralph Singleton

University of Florida, Gainesville, Fla. —

1. A few years ago an inbred ear segregated sharply (3:1) full yellow and pale yellow endosperm. The pale seeds produced almost 100% white seedlings and the others produced nearly all green seedlings. Brunson reported something similar, I think.

2. A first year inbred ear of Cuban Yellow Flint segregated sharply red and green seedlings and a range of intensity of yellow endosperm. The seeds were arranged in order of endosperm color and the darker 3/4 planted separately from the lighter 1/4. On this classification crossovers with anthocyanin were about 20%. The stock was grown through two more generations with selection of ears giving lesser crossing over and the crossovers reduced to about 10%. The reduction was attributed to selection for sharper segregation and more accurate classification of endosperm color. The anthocyanin difference was indicated at the R locus by out-croses to Cornell aleurone testers.

Fred H. Hull

California Institute of Technology, Pasadena, Calif. —

1. Data on striate and interchanges place sr between P and br.

2. Summary of map positions of interchanges in chromosomes 1, 3, 9 and 10. Part of this is a repetition of what I sent last year.

Chrom. 1 —

Left of P. An undescribed 1-6 interchange gave the order $T-P-ar$ with 6% crossing over between T and P.

Near P, order uncertain, 1-2b, 1-9c.

Between P and br 1-3a, 1-5b, 1-5c, 1-9a.

Near br 1-3d, 1-7b, 1-7c, 1-9b, 1-10a.

Between br and bm2 1-5a, 1-4, 1-7d.

Chrom. 2 —

Between a and na 2-3d, 3-5c, 3-5b.

Near 1-3a 1-3b, 3-7a, 3-8a, 3-9a, 3-10a, 3-10b.

Probably beyond 1-3b but order uncertain 3-10a, 2-3c, 1-3d.

Beyond 1-3b (27.2%) 3-7b.

Chrom. 9 — all tested are beyond waxy.

<table>
<thead>
<tr>
<th>Crossing over</th>
<th>No. of backcross plants</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-9a</td>
<td>7.2</td>
</tr>
<tr>
<td>1-9b</td>
<td>36.4</td>
</tr>
<tr>
<td>1-9c</td>
<td>12.7</td>
</tr>
<tr>
<td>2-9a</td>
<td>30.7</td>
</tr>
<tr>
<td>2-9b</td>
<td>7.5</td>
</tr>
<tr>
<td>3-9a</td>
<td>3.6</td>
</tr>
<tr>
<td>4-9a</td>
<td>25.1</td>
</tr>
<tr>
<td>4-9b</td>
<td>3.1</td>
</tr>
<tr>
<td>6-9a</td>
<td>9.5</td>
</tr>
<tr>
<td>6-9b</td>
<td>3.7</td>
</tr>
</tbody>
</table>
1. In Garrapata corn from the Province of Salta in Argentina and from Bolivia, spotted aleurone is due to a dominant r modifier giving mottled aleurone.

Mottled x a and c testers gives self color
Mottled x r testers gives mottled F1,
but in F2 some colorless kernels appear. The modifier is independent from pr and from a and c but seems to be linked with r. The r modifier is designated Mr. The backcross: r Mr Pr/r mr pr x r mr pr gave

Mottled purple 66
Mottled red 59
White 251

Mr has been used by Kvakan for midrib (Linkage Summary, p. 15) but the stock has been lost. Seeds sent look like "stippled", which is either an allelomorph of r or very closely linked with it.

2. Six "glossies" were obtained from selfed Amargo and other varieties. They are designated temporarily by the following symbols:

\[g_{l33a} \] Same as \[g_{l2} \]
\[g_{l33b} \] Different from \[g_{l1}, g_{l2}, g_{l3}, \] and \[g_{l33a} \].
\[g_{l34a} \] From sample of floury corn from Humahuaca (Jujuy, Argentina), different from \[g_{l1} \] and \[g_{l2} \].
gl_{34b} From a yellow flint; being tested with other glossies.

gl_{34c} From the Amargo variety; different from gl_{32}.

3. A barren-stalk type was found in the stock of gl_{34c}.

4. A liguleless stock was found in Amargo corn. A planting of 100 selfed seeds gave 56 green and 28 lethal white leaf base seedlings. Of the normal green plants that lived to the age of three months, 28 had normal and 20 had liguleless leaves. This is at present designated lg_{34a}.

5. A selfed plant of Amargo produced, from 50 seeds, 22 normal plants and 7 dwarf plants with bifid leaves and the midrib prolonged into a conspicuous awn, like the flowering glume of Avenæac. The character is called aristifolia and its genetic symbol is given as af. The aristifolia character is not known in grasses, so far as I am aware, except in a small genus of Mexican grasses (Jouvea), the taxonomic position of which is uncertain.

6. Lazy, la_{34a}, appeared in the progeny of a selfed plant of the variety, "Maiz Canario de 8 filas", which consisted of 47 normal and 15 lazy plants. Has been crossed with su gl_{7}.

7. Siamensis, sn, is a recessive character of variable expression obtained from an Amargo strain. Of the double seedlings, the "paracito twin" aborts early in some instances, leaving normal appearing individuals. A homozygous strain of sn exhibited the following types:

- Seedlings with marked duplications - 12
- Seedlings with different abnormalities - 32
- Seedling normal - 1.

8. Male steriles: A male sterile, ms_{34a}, from a strain of maize from Tabacol (Salta, Argentina) gives a sharp 3:1 segregation. Another, ms_{34a}, from Humahuaca (Jujuy, Argentina) is linked with aleurone color. The stock is segregating for R r.

9. Tassel seed, ta_{34a}, has been found in a yellow flint from San Luis, Argentina.

10. Germless seeds, gm_{34a}, from a selfed ear of Piamontés, a flint corn, had 112 normal and 30 germless kernels.

11. Silky, si_{33a}, came from the same Piamontés strains.

S. Korovitz

Instituto Agronomico de Campinas, Sao Paulo, Brazil

Attention is called to a bulletin from Brazil: Effecitos da primeira autofecundacao em tres variedades do milho. Technical bulletin #19, p. 19, with 37 photographic illustrations (five colored plates). Published in Portuguese with an abstract in English, as follows:

"The Genetics Department of the Instituto Agronomico started in 1932 a large maize breeding project based on the production of pure lines to be used for hybrid seed production. Over 3000 vigorous plants of 3 main commercial varieties were self-fertilized and part of the seeds of 1812 selected inbred ears was planted out for further selfing. In this paper the author describes some of the more prominent variations found among the selfed ears and also in the progenies. Most of these off-types are compared with similar variations worked out by American geneticists. The variations described here are: (1) premature germination of the seeds on the ears; 2) several cases
of defective endosperm; 3) endosperm color (yellow-white); 4) mealy endosperm; 5) Aleurone colors; 6) Pericarp colors; 7) white seedlings; 8) yellow seedlings; 9) zebra striped seedlings; 10) virescent seedlings; 11) pale green seedlings; 12) zebra striped leaves; 13) several kinds of striped leaves; 14) oily spots; 15) several kinds of dwarfs; 16) narrow leaves; 17) crinkly leaves; 18) ramosa (?); 19) rolled leaves; 20) ragged (?); 21) branched ear; 22) several kinds of abnormal sex distribution: male and female plants, extreme cases of 'tassel-seed', etc. — It is the author's intention to exchange seeds of his genetic material with American geneticists in order that some of the supposed new variations may be conveniently worked out and their genes be located in the maize linkage groups".

C. A. Krug

University of Zagreb, Jugoslavia —

1. Attention is called to a recent paper dealing with the inheritance of number of kernel rows in maize (Tavčar, Alois — Beitrag zur Vererbung der Kornreihenanzahl an Maiskolben. Zeitschrift für Züchtung, Pflanzenzuchtung, 20: 364–376. 1935). A 4-rowed type is described and its genotype is assumed to be $Rw_1 \overline{Rw}_1$. Crosses of 4-rowed with 8-rowed forms exhibit monohybrid F_2 and backcross ratios. To the genes differentiating these two forms are assigned the symbols $Rw_2 \overline{Rw}_2$. 4-row = $Rw_1 \overline{Rw}_1 \overline{Rw}_2 \overline{Rw}_2$; 8-row = $Rw_1 \overline{Rw}_1 \overline{Rw}_2 \overline{Rw}_2$. Rw_1 and Rw_2 are inherited independently of each other and of P and Y_1. [Since, on the author's assumption, Rw_1 is homozygous in both the 4-rowed and 8-rowed types used in these crosses, no evidence is presented for the independence of Rw_1 from Rw_2, P, and Y_1. Of course Rw_1 could be used as a symbol for the residual genotype of a 4-rowed form, but there seems no more need for such a symbol here than in many other cases.]

2. Four-rowed ears have two rows of kernels on either side of the cob, the two pairs of rows being separated by smooth areas (rachis without paleae). It is necessary to distinguish between palea and rachis color as well as between these and pericarp color, all of which belong to the P allelomorphic series. Ten genotypes have been found, as follows:

<table>
<thead>
<tr>
<th>Genotype (with A)</th>
<th>Pericarp color</th>
<th>Palea color</th>
<th>Rachis color</th>
</tr>
</thead>
<tbody>
<tr>
<td>$prrr$</td>
<td>red</td>
<td>red</td>
<td>red</td>
</tr>
<tr>
<td>$prrw$</td>
<td>"</td>
<td>"</td>
<td>white</td>
</tr>
<tr>
<td>$Pwrr$</td>
<td>"</td>
<td>white</td>
<td>red</td>
</tr>
<tr>
<td>$Pwwr$</td>
<td>"</td>
<td>"</td>
<td>white</td>
</tr>
<tr>
<td>$Pwwr$</td>
<td>colorless</td>
<td>red</td>
<td>red</td>
</tr>
<tr>
<td>$Pwww$</td>
<td>"</td>
<td>"</td>
<td>white</td>
</tr>
<tr>
<td>$Pwww$</td>
<td>"</td>
<td>white</td>
<td>red</td>
</tr>
<tr>
<td>$Pwww$</td>
<td>"</td>
<td>"</td>
<td>white</td>
</tr>
<tr>
<td>$Pwww$</td>
<td>orange</td>
<td>red</td>
<td>red</td>
</tr>
<tr>
<td>$Pwww$</td>
<td>"</td>
<td>white</td>
<td>white</td>
</tr>
</tbody>
</table>

An account of this series will probably be published in Zeitschrift für induktive Abstammungs- u. Vererbungslehre.

A. Tavčar
1. There is pronounced indication of linkage between a gene for fasciated ear and white endosperm.

2. In a cross between fasciated-cherry-japonica and golden, the majority of the F1 plants were not-golden not-fasciated but were japonica. F2 segregation was normal for the first genes but gave 89 japonica in a total of 189 plants. When japonica was crossed with dwarf-3 all F1 plants were green, not japonica.

3. In a cross between a line with coloured aleurone and rr lines, four alleles of R could be distinguished by their different effects on aleurone colour. Otherwise the plants were of the constitution AA CC bb F1 F1. At least one of the R alleles involved seems to be a cherry allele. Two alleles were the normals, at present designated R and r. A third may be identical with the allele recently discovered by Rhoades, and designated here r'. The fourth is a very weak dominant called R'. The four heterozygotes when selfed gave

\[
\begin{array}{cccc}
 Rr & 25\% & \text{colourless} \\
 R'r' & 35\% & " \\
 R'r & 50\% & " \\
 R'r' & \text{mostly 66\%, in one case 75\% colourless} \\
\end{array}
\]

It seems possible to obtain colourless R' homozygotes by selection of modifiers. The ratios 63:1 after selfing and 1:7 after backcrossing seem to indicate the presence of at least three complementary recessive modifiers.

4. The intensity of aleurone colour in the crosses mentioned under (3) depends upon two complementary modifiers giving 9 deep to 7 pale after selfing.

5. A large set of data was analysed with the help of efficient statistical methods in order to see how many ratios were disturbed by linked genes for pollen tube competition. Indications of such competition have been found in connection with the following segregations:

- purple-1 and brittle-1 (see 6 below) Briggert
- deep and pale aleurone Tidbury
- yellow-white endosperm
- deep-pale yellow endosperm
- c and sh Tseng.

6. The distance between pr1 and bt1 has been found to be 17.5\%. The gametophyte factor ga2 is located between pr1 and bt1 about 12.8 units from pr1 and 4.7 units from bt1. The amount of elimination in Ga/ga heterozygotes has been found to vary and has been studied in both types of heterozygotes, i.e.

\[
\frac{Pr_1 Ga_2}{Pr_1 ga_2} \text{ and } \frac{Bt_1}{Bt_1} \text{ and } \frac{Pr_1 ga_2}{Pr_1 Ga_2} \text{ and } \frac{Bt_1}{Bt_1}
\]

The data vary round the means 5\%, 15\% and 40\% instead of the expected 50\%.

7. Random pollination of unprotected plants has been found to be of rare occurrence in the experimental plots both at Berlin and Merton. Selfing predominated if unrelated lines which, however, flowered nearly simultaneously, were interplanted. Random pollination was found only if the plants were nearly identical in composition.
Experiments on earliness and yield were started in order to find types well suited to the English climate. A number of varieties were tested in randomised blocks. The plants were sown in three lots. The variation within each lot was very small. Plants sown on April 17th and planted out in May were far the slowest, those sown on May 21st and planted out on June 14th were quicker and needed about two weeks less. Plants sown in the field on June 5th gained another seven days. The differences between the varieties were partly very significant. I am convinced that part of the failure in the cultivation of maize in Northern Europe is due to the fact that the seeds are sown too early and kept too long in pots.

A fairly large coupling F2 of C Sh/c sh and I Sh/C sh has been produced (9053 grains in the first and 7226 in the second case) to see whether there is any significant difference between the recombination values. All the data from the individual ears as well as the totals form a homogeneous sample around the common mean of 5.1%. A backcross for C Sh/c sh gave 4.3% in 6648. The difference between all F2's and the backcrosses is just over twice the error. Experiments will be made to test reciprocal backcrosses.

F. G. Brieger

Honan University, Kaifeng, Honan, China

1. A white waxy strain of maize from the province of Szechuan was crossed to aly PI, white seeded of course. The F1's were all yellow seeded. F2 gave 146 yellow and 87 white, a case of complementary factors. Linkage tests are in progress.

2. From selfed strains of corn collected from Honan Province, one ear was found to have prematurely germinated seeds that seem to be linked with y. On selfing again one ear was found to have 159 yellow and 59 white seeds. All the white seeds had germinated on the cob. This may be a case of complete linkage. Progress is being made to ascertain this.

H. W. Li

III. Linkage Data

1. Four-point tests, group 2. I. W. Clokey

<table>
<thead>
<tr>
<th>+</th>
<th>+</th>
<th>+</th>
<th>+</th>
</tr>
</thead>
<tbody>
<tr>
<td>161</td>
<td>612</td>
<td>B</td>
<td>v4</td>
</tr>
<tr>
<td>310</td>
<td>124</td>
<td>186</td>
<td>0</td>
</tr>
<tr>
<td>69</td>
<td>40</td>
<td>29</td>
<td>55</td>
</tr>
<tr>
<td>184</td>
<td>42</td>
<td>101</td>
<td>83</td>
</tr>
<tr>
<td>11</td>
<td>10</td>
<td>15</td>
<td>13</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

9.4% 13.3% 25.1% 1.5% 3.6% 4.0% 0.8%

161-61 15.3%, 61-3 19.6%, B-v4 33.5%

2. Trisomic and backcross tests, group 2, involving albescent, liguleless-1, and yellow endosperm. H. S. Perry

F0 data from the cross of #2 trisome carrying 161 x al show that al is in chromosome 2.

<table>
<thead>
<tr>
<th>+</th>
<th>+</th>
<th>161</th>
<th>al +</th>
<th>al</th>
<th>161</th>
<th>161</th>
<th>al</th>
</tr>
</thead>
<tbody>
<tr>
<td>81</td>
<td>61</td>
<td>14</td>
<td>0</td>
<td>156</td>
<td>39</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>490</td>
<td>42</td>
<td>47</td>
<td>0</td>
<td>572</td>
<td>7</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

Total 735 8.3
The suggestion of close linkage between al and lgi seems to be confirmed by a diploid F2 progeny, as follows:

\[
\begin{array}{cccc}
++ & +lgi & al & al \ lgi \\
101 & 51 & 43 & 0
\end{array}
\]

Per cent crossing over < 15.

F2 progenies involving Yx and al have indicated close linkage between these two genes. Backcross counts confirm this linkage, as follows:

- **Yellow**
 - Al al
- **Not yellow**
 - Al al

<table>
<thead>
<tr>
<th></th>
<th>Normal</th>
<th>Non-yellow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al al</td>
<td>186</td>
<td>0</td>
</tr>
<tr>
<td>Al al</td>
<td>0</td>
<td>169</td>
</tr>
</tbody>
</table>

Two seedlings from seeds with yellow endosperm and one from non-yellow, are still too small to classify.

3. Two-point tests, group 7. A. A. Bryan

<table>
<thead>
<tr>
<th>Trait</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bd</td>
<td>804</td>
</tr>
<tr>
<td>Gl1</td>
<td>254</td>
</tr>
<tr>
<td>RS</td>
<td>268</td>
</tr>
</tbody>
</table>

[All three genes involved in the same F2 cultures]

4. Three-point tests, group 7.

<table>
<thead>
<tr>
<th>Trait</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>423</td>
</tr>
<tr>
<td>Y</td>
<td>113</td>
</tr>
<tr>
<td>xy</td>
<td>104</td>
</tr>
</tbody>
</table>

5. Four-point test, group 7. I. W. Clokey

<table>
<thead>
<tr>
<th>Trait</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>T3-7a</td>
<td>153</td>
</tr>
<tr>
<td>ra1</td>
<td>36</td>
</tr>
<tr>
<td>gl1</td>
<td>132</td>
</tr>
</tbody>
</table>

Normal and semisterile (T) plants considered separately:

- **Normal** - T-ra1 5.1%, ra1-gl1 5.8%, gl1-ij 13.6%
- **Semisterile** - " 1.2%, " 2.5%, " 11.1%

The large difference in per cent of crossing over in the two cases is unexplained.
6. Three-point test, group 10. V. Rhoades

\[
 \begin{array}{cccccc}
 R^0 & + & + & 1\text{-}2 \\
 + & g1 & R & 215 & 142 & 36 & 17 = 410 \\
 \end{array}
\]

7. Linkage Data for Chocolate, group 2. (?)

Ch V\textsubscript{4} CB 71 66 42 76 255 42% Burnham

I have some later material of the same sort for more data. With a\textsubscript{2} [Chrom. 5] I had only F\textsubscript{2} material (furnished by Clokey, segregating also for c, r), but it gives absolutely no indication of linkage. Chas. Burnham.

Some miscellaneous linkage data with Ch are all negative. The earlier indication of linkage with T5-7c is washed out with further data. E. G. Anderson.

[See discussion in Linkage Summary, p. 51.]

IV. Seed Stocks Received

1. M. M. Rhoades, Ames, Iowa: Stocks involving Eyster's Y\textsubscript{2}.
2. H. K. Hayes, St. Paul, Minn.: v\textsubscript{21} (chrom. 8).

[Records Genetics Soc. Amer. No. 4, 1935. Abstract.]

4. M. T. Jenkins, Washington, D.C.:

\[
\begin{array}{c}
1a \text{ su } T_u \text{ tu } g1_3 \\
\end{array}
\]

Homozygous A\textsubscript{1} C R a\textsubscript{2} bt bv pr (This bt stock gives good field germination.)

Same as above, but segregating V\textsubscript{2} v\textsubscript{2}.

Homozygous A\textsubscript{1} C R A\textsubscript{2} bt bv pr
\[
\begin{array}{c}
fr_2 g1_1 ij fr_1 \\
+ + + fr_1 \\
fr_2 g1_1 ij fr_1 \\
fr_2 + + + \\
\end{array}
\]

5. W. Ralph Singleton, New Haven, Conn.:

Y\textsubscript{4} Y\textsubscript{4} it it
Y\textsubscript{4} Y\textsubscript{4} It It
Y\textsubscript{4} Y\textsubscript{4} It It \times Y\textsubscript{4} Y\textsubscript{4} it it.

6. S. Horowitz, Buenos Aires, Argentina:

su\textsubscript{1} g1_3 Y \times la_3 4a

g1_3 3a
g1_3 3b
l3 4a

r + Kr Pr \times r g1 m (R-tester)

af 34a
sn

7. Queensland Agricultural High School and College, Gatton, Australia:

Ten packages of seed, labeled I - X (no letter).
8. Ithaca, N. Y. Stocks grown by Maize Genetics Cooperation. Pollinations by John Shafer:

Inbred strains. Selfed or sib-crossed ears of all the inbred strains in disease resistance test (see V, below), except 070-34, which did not germinate.

Glossies 1, 2, 3, 4, 6, 7, 9, gl5, no germination, gl6 too late to ripen. Hadjinov's glossies 3, 5, 6, 7, 10 (H3 = gl4, H6 = gl6, H10 = gl3, see II above); H8, all normal seedlings, supposed to be +/gl but some certainly homozygous normal.

Hadjinov's Rsl, rs2, at, bd, cr3, bs?, vb (variable brachytic).

Perry's Yx and yx, in various combinations with Y1 Y1, Pl pl, Al al.

Brunson's pale yellow endosperm.
Wiggans' brittle stalk.
Segregating cultures from W1 W1 x A1 b Pl py su.

Plant colors:— A1 B Pl, a1P B Pl, a1 B pl, a1 b Pl.

Tester stocks:

Group 1. — P-p f1 bm2, P-p br f1 bm2, P-p br f1 an1, p sr an1 bm2, P-p gls1 bm2, p as.

Group 2. — lg1 gl2 b b v4, lg1 gl2 ts1, sb, al.

Group 3. — a1 na1 ts4, d1S, d1m, a Rg.

Group 4. — la tu tu gl3.

Group 5. — ys1 bm1 pr1 v2, A2 a2 bt bv pr1, bm1 bt pr1, bv pr1 v2.

Group 6. — Y1 Pl sm py, Y1 pl (ag3?), po y.

Group 7. — v5 ra1 gl1, ra1 gl1 i, v5 gl1 Bu1.

Group 8. — j1, ms8.

Group 9. — c sh wx v1, yg2 c sh wx.

Group 10. — nl1 gl1 R, r zb5, d7, li gl1 Rr.

Multiple testers:—

ts2 bm2 lg1 b su1 A1 na1 cr1 pr1 Y1 pl in j1 C Rg.

bm2 lg1 b A1 su1 pr1 Y1 pl In Bn1 j1 c Rg.

pvv A1 su pr1 Y1 in c sh wx Rg.

A1 A2 Pr pr C-sh-wx gl1-R-r.

A1 A2 B-lg1 Y-y-Pl Su-su-Tu-tu.

Other stocks previously listed are, for the most part, still available.

New seed stocks listed under general news items (II) in this letter but which have not been sent for the Cooperation collection, should be received as long as possible before planting time (May 15).

V. Tests of Inbred Strains for Disease Resistance

Last spring seed of five inbreds furnished by Professor Hayes and eight by Professor Wiggans were sent to eight cooperators in various parts of this country. All these strains were supposed to be more or less resistant to smut. Some of them were shown to be less smut resistant than expected, several proved very
susceptible to bacterial wilt (Stewart’s disease) and a few susceptible to rust.

1. Smut.
 I have attempted to present a summary of the observations on smut in tabular form, below:

<table>
<thead>
<tr>
<th>Variety</th>
<th>No. St. Paul</th>
<th>Mor-</th>
<th>New Haven,</th>
<th>Ithaca,</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>years selfed</td>
<td>Minn.</td>
<td>Ia. W.Va.</td>
<td>Conn. N.Y.</td>
<td>age</td>
</tr>
<tr>
<td>Golden Bantam</td>
<td>7</td>
<td>10.4</td>
<td>0</td>
<td>0</td>
<td>36.4</td>
</tr>
<tr>
<td>Northwestern</td>
<td>9</td>
<td>6.0</td>
<td>5.0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Minnesota 13</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rustler</td>
<td>6</td>
<td>10.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rustler</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Leaming</td>
<td>9</td>
<td>6.5</td>
<td>17.1</td>
<td>30.0</td>
<td>93.7</td>
</tr>
<tr>
<td>U.S.204</td>
<td>13</td>
<td>14.3</td>
<td>3.8</td>
<td>3.0</td>
<td>7.1</td>
</tr>
<tr>
<td>Bloody Butcher</td>
<td>14</td>
<td>31.0</td>
<td>2.3</td>
<td>0</td>
<td>21.1</td>
</tr>
<tr>
<td>Oil Dent</td>
<td>12</td>
<td>9.2</td>
<td>42.9</td>
<td>0</td>
<td>15.4</td>
</tr>
<tr>
<td>White Dent</td>
<td>12</td>
<td>0</td>
<td>3.0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Minnesota cultures grown under smut-epidemic conditions. Longfellow variety had 65.6% smut. H. K. Hayes.

Iowa season excellent for testing smut resistance; smut infection in general was one of the heaviest in several years. A. A. Bryan.

West Virginia check variety showed 75-80% smut. C. Burnham.

Notes of smut infection --
Line C86-34, no smut reported; 214, little smut at Ames, Ia. only; 206, light smut at Morgantown, W. Va. and Ithaca, N.Y.; 228, light smut at St. Paul, Minn. and Ithaca, N.Y. only; 342, light smut at St. Paul, Morgantown, and Ithaca; 211, some smut at St. Paul and New Haven.

Line 208, showed medium to high percentages of smut infection in most tests; at Morgantown, New Haven, and Ithaca, smut with one exception limited to light tassel infection, but at Ames five ears were smutted.

Lines 212 and 213, showed heavy ear-smut infection in some tests.

Line C70-34, little to no germination in all tests.

2. Rust.
 Pasadena, Calif. Little smut in 1935, none on strains in test. Lines 208 and 211 very badly rusted; 209 moderately badly rusted; 210, 212, and 213 lightly rusted; 206 and 214 free from rust and easily the most desirable for this locality. E. G. Anderson.
Ithaca, N. Y. Lines S42 and 211 some rust; 208 much rust, but too late to injure plants very seriously. There is some rust present every year at Ithaca, but it usually comes too late to be a serious disease. During two widely separated seasons, however, when rust had been introduced inadvertently with seedlings transplanted from the greenhouse early in summer, a very severe epidemic occurred. Many of the more susceptible stocks were killed before flowering time. If conditions should arise by which early infection were brought about, rust would be our most serious disease. R. A. Emerson.

New Haven, Conn. "Apparently one of our inbreds, Connecticut 2, an inbred out of the Whipple variety of sweet corn, is completely susceptible to rust. We had no rust here during the years that we were inbreeding Whipples from 1925 to 1928. Sometime later, I think in 1929 or 1930, we noticed considerable rust on this one inbred. Aside from rust Connecticut 2 has proved to be our best Whipple inbred and the one we are using in a great many crosses. It is used as the pollen parent and is never damaged so much that it will not make sufficient pollen. It always makes a good crop of seed when planted early. Last year the Eastern States Farmers' Exchange at Springfield, Mass, planted about an acre of Connecticut 2 for increase. They planted this late in order to avoid contamination from the pollen of sweet corn growing near by. This field of Connecticut 2 was so badly damaged that it did not make a single ear. I am doing some convergent improvement on this inbred and using Rhoades method of inoculating the seedlings so I can get a similar inbred resistant to wilt." Of the inbreds in the cooperative test the only one seriously affected by rust was 208 in which about 80% of the leaf area was covered by rust pustules. Somewhat susceptible strains were, in order of susceptibility: 211, 30% ; 209, 20% ; 206, 213, and 2283, 10%, the latter had a few scattered pustules on the leaves of all the plants. W, Ralph Singleton.

3. Bacterial blight (Stewart's disease).
Morgantown, W. Va. Lines S54 and 209 very susceptible to wilt; C86 and S42 poor plants, wilt (?) susceptible. Chas. Burnham.

Washington, D. C. At Arlington Farm, resistance to bacterial wilt is of much greater importance than smut resistance. We seem to have universally heavy infections of wilt and susceptible lines are almost completely wiped out. Such was the case this season. Dr. Wiggans' lines 206, 203, and 210 were outstandingly the most resistant. Merle T. Jenkins.

4. Lodging.
Washington, D. C. Lines 206, 208, and 210 looked better than everything else until late in the season. In the heavy storm we had in September, 206 and 210 lodged somewhat, whereas 208 remained erect. Merle T. Jenkins.
Morgantown, W. Va. Lines S283 and 211 no lodging; 206, 203, and 214 some lodging; 210 and 212 badly lodged. Chas. Burnham.
Ames, Iowa. Lodging recorded by grade: 1 = little or none, and 5 very much lodging. Roots and stalks noted separately to determine whether lodging due to weak roots or weak stalks.
5. Firing.
 Ames. Line 209, top leaves burned badly just prior to tasseling. A. A. Bryan.

6. Ear notes.
 Ames.

<table>
<thead>
<tr>
<th>Line</th>
<th>Seed set</th>
<th>Quality</th>
<th>Line</th>
<th>Seed set</th>
<th>Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>S54</td>
<td>poor</td>
<td>poor</td>
<td>209</td>
<td>excellent</td>
<td>fair</td>
</tr>
<tr>
<td>S42</td>
<td>fair</td>
<td>good</td>
<td>210</td>
<td>good</td>
<td>good</td>
</tr>
<tr>
<td>S283</td>
<td>fair</td>
<td>good</td>
<td>211</td>
<td>good</td>
<td>good</td>
</tr>
<tr>
<td>C86-3</td>
<td>fair</td>
<td>fair</td>
<td>212</td>
<td>poor</td>
<td>fair</td>
</tr>
<tr>
<td>206</td>
<td>good</td>
<td>fair</td>
<td>213</td>
<td>fair</td>
<td>very poor</td>
</tr>
<tr>
<td>208</td>
<td>good</td>
<td>fair</td>
<td>214</td>
<td>poor</td>
<td>poor</td>
</tr>
</tbody>
</table>

 Ithaca.

<table>
<thead>
<tr>
<th>Line</th>
<th>Ears</th>
<th>Line</th>
<th>Ears</th>
</tr>
</thead>
<tbody>
<tr>
<td>S54</td>
<td>good</td>
<td>209</td>
<td>good</td>
</tr>
<tr>
<td>S42</td>
<td>good</td>
<td>210</td>
<td>poor</td>
</tr>
<tr>
<td>S283</td>
<td>good</td>
<td>211</td>
<td>good</td>
</tr>
<tr>
<td>C86-3</td>
<td>fair</td>
<td>212</td>
<td>good</td>
</tr>
<tr>
<td>206</td>
<td>fair</td>
<td>213</td>
<td>fair</td>
</tr>
<tr>
<td>208</td>
<td>poor</td>
<td>214</td>
<td>good</td>
</tr>
</tbody>
</table>

 Obviously these inbreds differ widely in ability to produce sound and well filled ears at Ames and Ithaca. R. A. Emerson.

7. Summary.
 The lines most generally resistant to smut are, in order of greatest resistance:— C86-3, 214, 206, S283, S42, 211. Line 206 showed the highest percentage of smut, but in most instances the infection was light and in the tassel only.
 In rust susceptibility, line 208 showed the most infection, 209 and 211 much rust, and 206, 210, 212, 213, S42, and S293 some rust.
 Bacterial blight was most injurious to lines S54, 209, C86, and S42. Lines 206, 208, and 210 were most resistant.
 At both Ames and St. Paul, line 209 showed bad firing.
 In set of seed, quality of ear, amount of lodging, there was little uniformity.
The following comments are of interest:

Line 211, "excellent". A. A. Bryan, Ames.

Under Arlington Farm conditions, I don't think there is any question but that 206 is by far the best line of the whole lot. M. T. Jenkins.

[Lines 206 and 210 were good except for lodging.]

The starred lines [206, 208, 211, 214] I consider good enough for use in crosses with genetic testers. C. R. Burnham.

My choice of these lines would be about as follows, starting with the best: 214, 206, 210, 213, 211, 208, 212. E. G. Anderson.

Line 208, very nice strain, vigorous. Lines 542, 5283, 206, 210, 211, 212, 214, desirable types. 086-34 fair, 209 and 213 undesirable. H. K. Hayes.

From all these comments, it would seem that lines 206, 210, 211, 214 have rather wide adaptability and that, where rust and smut are not troublesome, line 206 may prove satisfactory. Sprague, however, reports that at Columbia, Mo., none of the lines have value.

8. Some cooperators have indicated a willingness to test these lines further and to include some of their own. Any of you, whether or not you helped in the test in 1935, who are willing to conduct a test in 1936, will be furnished seed in so far as it is available or can be obtained. If any of you have other inbred strains, thought to be highly resistant to diseases and which might be adapted to a relatively wide range of climatic conditions, I shall be glad to arrange for tests. We shall probably be unable, however, to handle any large number of strains.

VI. Special Notices

1. Manuscripts for inclusion in the proposed collective publication of papers on Linkage in Maize must reach me not later than March 31. (See I, above). Some of the data included in this news letter might well form the basis of short papers.

2. New seed stocks should be received at an early date—certainly by May 1—so that plans can be made for their multiplication in the Cooperation garden.

3. Those having disease resistant inbred strains of possibly wide adaptability which they desire to have tested this year should indicate the fact at once and send seed by April 1. Those willing to cooperate in making the tests will please communicate with me at once.

R. A. Emerson,
Secretary
March 23, 1937

Department of Plant Breeding
Cornell University
Ithaca, N. Y.
November 21, 1936

To Maize Geneticists:

Contributions of material for the Maize Genetics Cooperation letter are hereby requested. These should include anything that you think will be of value to other maize geneticists. The deadline is January 15.

Seed stocks of many of the genes reported have never been sent to the Co-op to be kept on file for use by other cooperators. This winter a special effort will be made to bring this collection up to date. Your prompt cooperation will be very much appreciated.

Sincerely yours,

Derald Langham
Secretary
To Maize Geneticists:

The information in this letter was contributed by a number of individuals, and has been organized into the following divisions:

I. General news items.
II. Collective publication of linkages.
III. Seed stocks grown in 1936.
IV. Seed stocks received for propagation in 1937.
V. List of genes not in Co-op.
VI. Tests of inbred strains for disease resistance.

Most of these reports are given almost verbatim but are not put in quotation marks because in numerous instances they have been somewhat condensed.

I. General News Items

Maize Genetics Cooperation, Ithaca, N. Y. -

1. Backcross data show that Hadjinov's barren stalk (ba_x) is allelomorphic to ba₂.

2. Seed received from L. C. Raymond, Quebec, labelled "Sweet Brittle", produced plants with brittle stalks and leaves. These plants differed from brittle stalk (bk₁ Wiggans, unpub.) in that they were normal size, and greenhouse tests show that "Sweet Brittle" and bk₁ are not alleles.

3. Backcross data show that Hadjinov's branched silkless (bd_x) is allelomorphic to Kempton's bd₁ (chrom. 7).

D. G. Langham

Cornell University, Ithaca, N. Y. -

1. Data sent by Anderson, with supplementary data of mine, show that sr (chrom. 1) is to the left of P_r, rather than between P and br as previously announced, and suggest that ts₂ is to the right of P. The following table includes the available data from three-point backcrosses:

<table>
<thead>
<tr>
<th>F<sub>1</sub> genotype</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>1,2</th>
<th>Total</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>P + br</td>
<td>242</td>
<td>71</td>
<td>108</td>
<td>28</td>
<td>449</td>
<td>Anderson</td>
</tr>
<tr>
<td>+ T1-5b</td>
<td></td>
<td></td>
<td>15.8%</td>
<td>24.1%</td>
<td>6.2%</td>
<td></td>
</tr>
<tr>
<td>P + br</td>
<td>195</td>
<td>60</td>
<td>58</td>
<td>19</td>
<td>332</td>
<td>Anderson</td>
</tr>
<tr>
<td>+ T1-5c</td>
<td></td>
<td></td>
<td>18.1%</td>
<td>17.5%</td>
<td>5.7%</td>
<td></td>
</tr>
<tr>
<td>sr P</td>
<td>178</td>
<td>89</td>
<td>88</td>
<td>20</td>
<td>375</td>
<td>Anderson</td>
</tr>
<tr>
<td></td>
<td>23.7%</td>
<td>23.5%</td>
<td>5.3%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F1 genotype</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1,2</td>
<td>Total</td>
<td>Author</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>-----</td>
<td>-------</td>
<td>--------</td>
</tr>
<tr>
<td>+ + Tl-5c</td>
<td>116</td>
<td>64</td>
<td>36</td>
<td>14</td>
<td>230</td>
<td>Anderson</td>
</tr>
<tr>
<td>sr P +</td>
<td>27.9%</td>
<td>15.7%</td>
<td>6.1%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ + Tl-9a</td>
<td>80</td>
<td>21</td>
<td>39</td>
<td>6</td>
<td>228</td>
<td>Anderson</td>
</tr>
<tr>
<td>sr P +</td>
<td>17</td>
<td>14</td>
<td>1</td>
<td>3.1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ + Tl-9c</td>
<td>97</td>
<td>24</td>
<td>5</td>
<td>3</td>
<td>129</td>
<td>Emerson</td>
</tr>
<tr>
<td>sr P +</td>
<td>18.6%</td>
<td>3.9%</td>
<td>2.3%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P ts2 +</td>
<td>97</td>
<td>1</td>
<td>18</td>
<td>0</td>
<td>116</td>
<td>Emerson</td>
</tr>
<tr>
<td>+ + Tl-9c</td>
<td>0.9%</td>
<td>15.5%</td>
<td>16.5%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P + Tl-10b</td>
<td>232</td>
<td>3</td>
<td>41</td>
<td>0</td>
<td>276</td>
<td>Emerson</td>
</tr>
<tr>
<td>+ ts2 +</td>
<td>29</td>
<td>0</td>
<td>16.5%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P ts2 +</td>
<td>169</td>
<td>2</td>
<td>29</td>
<td>0</td>
<td>200</td>
<td>Emerson</td>
</tr>
<tr>
<td>+ + Tl-10b</td>
<td>401</td>
<td>5</td>
<td>14</td>
<td>14.7%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

There is some question about the locus of what is here designated Tl-10b. If it is between P and br as previously announced, then ts2 must be to the right of P. It is certain that sr is to the left of P, thus adding about 25 units to the length of the known linkage map of chrom. 1 and making it now approximately 150 units.

R. A. Emerson

2. Piebald (pbx), found in Emerson's cultures, seedlings and plants with large, indefinite patches of white and yellow. Classification good, viability fair. Chrom. 6. Linkage data from F2 crosses:

<table>
<thead>
<tr>
<th>Genes</th>
<th>Phase</th>
<th>XY</th>
<th>Xy</th>
<th>xy</th>
<th>Total</th>
<th>% recomb.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y1 PbX</td>
<td>CS</td>
<td>402</td>
<td>50</td>
<td>40</td>
<td>122</td>
<td>614</td>
</tr>
<tr>
<td>Pl PbX</td>
<td>CS</td>
<td>239</td>
<td>14</td>
<td>29</td>
<td>34</td>
<td>316</td>
</tr>
</tbody>
</table>

These data indicate that pbx is located between Y1 and Pl in chrom. 6.

G. A. Lebedeff

3. I have just returned from Canal Point, Florida, where two weeks were spent in the examination of corn sporocyte material. A brief statement about the winter planting of corn in Florida, arranged for and supervised by Dr. Jenkins, may be of some general interest. It was an unusually warm winter down there. Corn planted at Canal Point from October 25 to 28 began shedding pollen in late December and Mr. Garrison had finished making most of the crosses in this material by January 20, some 2 or 3 weeks ahead of last year. A later planting on November 24 was beginning to reach the sporocyte stage January 10, and an abundant supply of sporocyte material equal in quality to that obtained during the summer here at Ithaca was
available during the following two weeks. Tassels were beginning to show in this planting on January 25.

The location at Canal Point is well-protected from frosts, the soil is well-adapted to corn, and corn smut which often does so much damage, especially to plants from which sporocyte samples are taken, seems to be entirely absent from that region. Birds, the ear worm, sugar cane borer, and other pests caused considerable damage this year, but it looked to me as if it should be possible to get at least a reasonably good winter crop down there most every year. A stunted condition possibly due to a length of day effect was noted in some lines, but other lines looked about as good down there as they do at home here in the north.

4. Studies on induced polyploidy and other genetic effects induced by heat treatments were continued during the past year. My stocks of tetraploid corn looked much better last year than ever before in spite of the generally unfavorable weather conditions; good vigor, and a very sturdy growth habit characterized a number of lines which were also highly fertile and in other respects looked very promising. Tetraploidy was induced in both the Durango and Florida types of annual teosinte. These experimentally induced tetraploids were entirely annual with no trace of the perennial habit which characterizes the tetraploid Euchlaena perennis from Mexico. One octoploid was also obtained and it wasn't perennial either, but was dwarfed and sterile like the corn octoploids.

5. Chemical analyses of the carotinoid content of tetraploid corn are under way in cooperation with Professor D. B. Hand, a biochemist, with a growing interest in the chemical basis of heredity. Preliminary results indicate that the meal from the tetraploid yellows has appreciably more of the active provitamin A carotinoids, cryptoxanthin and beta carotin, than the comparable diploid yellows. The diploid yellows differ widely in the amount of carotinoids present in the meal, and from some "non-yellows" yellow pigment has been extracted. With what we now know about the genetics of yellow endosperm from Perry and Sprague's recent paper and from the earlier work, and with the method which Professor Hand has perfected for separating chemically the various yellow pigments in corn meal, it should be possible to find out something about the chemistry of gene action.

6. Some progress was made last summer in the improvement of my multiple tester stocks with markers in each of the ten linkage groups. Stocks similar to those tested last year with one or more genes added are available for distribution in limited amounts.

L. F. Randolph
Connecticut Agricultural Experiment Sta., New Haven, Conn.

1. The character previously listed as threaded (th) has been found to be allelomorph to striate (sr). An F₂ population segregating for f₁, bm₂, and sr gave a recombination per cent of 25 for bm₂ and sr, 25.5 for sr and ts₂. The recombination percentage for sr and f₁ was 59, or no linkage. This seems puzzling since ts₂ and bm₂ are 128 units apart. However, the population was small consisting of but 59 plants.
2. Trisomic stocks with chrom. 4 as the extra chrom. are available.

3. Unreported linkage of \(\text{o}_2 \) and \(\text{ra}_1 \), and \(\text{gl}_1 \) and \(\text{ij} \):

<table>
<thead>
<tr>
<th>Genes</th>
<th>Phase</th>
<th>(X Y)</th>
<th>(X y)</th>
<th>(xY)</th>
<th>(xy)</th>
<th>Total</th>
<th>No.</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{o}_2 \text{Ra}_1)</td>
<td>RB</td>
<td>116</td>
<td>597</td>
<td>554</td>
<td>109</td>
<td>1376</td>
<td>225</td>
<td>16</td>
</tr>
<tr>
<td>(\text{o}_2 \text{Ra}_1)</td>
<td>CB</td>
<td>127</td>
<td>15</td>
<td>15</td>
<td>112</td>
<td>269</td>
<td>30</td>
<td>11</td>
</tr>
<tr>
<td>(\text{o}_2 \text{gl}_1)</td>
<td>RS</td>
<td>3148</td>
<td>1595</td>
<td>1487</td>
<td>64</td>
<td>6294</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>(\text{o}_2 \text{ij})</td>
<td>RS</td>
<td>405</td>
<td>169</td>
<td>184</td>
<td>30</td>
<td>688</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>(\text{o}_2 \text{V}_5)</td>
<td>RS</td>
<td>758</td>
<td>353</td>
<td>328</td>
<td>13</td>
<td>1452</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

* These plants were grown in a warm greenhouse and hence the classification for \(\text{V}_5 \) was difficult. All questionable plants were classified as \(\text{v}_5 \). This per cent is probably not reliable.

4. A three-point test involving \(\text{o}_2 \), \(\text{gl}_1 \), and \(\text{ij} \) gave the following counts:

<table>
<thead>
<tr>
<th>(F_1) genotype</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>1,2</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{o}_2 + +)</td>
<td>467</td>
<td>513</td>
<td>115</td>
<td>150</td>
<td>28</td>
</tr>
<tr>
<td>(+ \text{gl}_1 \text{ij})</td>
<td>980</td>
<td>17.5%</td>
<td>14.3%</td>
<td>3.4%</td>
<td>51</td>
</tr>
</tbody>
</table>

The recombination percentages of \(\text{o}_2 \) and \(\text{ra}_1 \) (repulsion phase), also \(\text{o}_2 \) and \(\text{gl}_1 \) indicate that \(\text{o}_2 \) is to the left of \(\text{v}_5 \) and within 2 or 3 units of \(\text{v}_5 \). The percentages between \(\text{o}_2 \) and \(\text{ij} \) indicate that \(\text{o}_2 \) is 2 or 3 units to the right of \(\text{v}_5 \).

Stock of \(\text{o}_2 \) is available.

5. By wrapping developing ears of the composition of \(A \text{Bpl} \) with different colored cellophane we found that the sun-red color will not develop when all but red light is excluded, Science 27, Vol. 84, No. 2187, pages 488 and 489. More selective filters have been obtained and we will try to locate definitely in 1937 the wave lengths of light responsible for the production of the sun-red pigment.

W. R. Singleton

6. Paired mosaics (twin spots) have been found to involve \(\text{g}, \text{Gl} \), \(\text{Pr}, \text{P}, \text{Wx} \) and some unknown aleurone color modifiers. \(\text{Wx} \) twin spots are very faint and show only in certain material with light iodine staining. The evidence indicates that some unpaired spots start as paired mosaics but one or the other altered cell is non-viable or fails to produce tissue that reaches the surface. Unpaired \(\text{c} \) mosaic areas are usually larger and more numerous than twin spots involving the same gene in the same seeds. Many of these unpaired spots probably do not start as twin spots.

In \(\text{G Wx} \) heterozygous seeds both genes go together in about 60% of both twin spots and single spots and \(\text{G} \) alone in about 40%. A shift of \(\text{Wx} \) without \(\text{G} \) has not been observed. The dark part of a \(\text{G} \) \(\text{Wx} \) twin spot may also show a further change to colorless, normal or
still darker cells. In some cases these are twin spots within twin spots. Wx may shift with C the first time and not the second, or neither or both times.

Obviously these results can not all be accounted for by mutation, non-disjunction or deletion. Some kind of interchange between homologous or non-homologous chromosomes is indicated. Proof of an exchange between the C and Pr chromosomes is at hand in white and red paired mosaics in heterozygous C Pr seeds. Such mosaics are rare. Chromosomal aberration does not seem to be adequate to account for the frequent twin spots in which the two parts are equal in size and outline and crossing-over, between homologous chromosomes as shown by Stern for Drosophila (GENETICS 21:625-730) seems probable.

Proof of somatic crossing-over in plants will have to await further evidence. It may be found in 2N tissue where dominant linked genes are contributed from each parent. The 3N endosperm mosaics are not satisfactory for this purpose.

Translocation stocks having either Su or Pr with C and Wx are desired. Seed will be appreciated if such stocks are available.

Aleurone and endosperm mosaics vary in frequency in different families from none in a thousand seeds to thousands of mosaics on a single seed. They are easily seen with a low power binocular microscope. A Bausch and Lomb BKT5 microscope with a revolving drum and 7, 1 and 2x objectives and 10x eyepieces has been found convenient.

The light is also important. In addition to the well-known plain spots and the twin spots that are frequent in some families, large cells, giant cells, depressions and outgrowths are easily seen. The growth changes may accompany color and other known gene changes and clearly result from somatic segregation. Depressions and outgrowths are sometimes paired, alone or with color changes. Somatic segregation has an important bearing on the cancer problem and any evidence should be put on record.

D. F. Jones

California Institute of Technology, Pasadena, Calif.

1. Chromosome 1. Striate (sr) seems to be definitely to the left of P, making the order sr-P-br-bm2. One interchange seems to be about 2 units further to the left.

2. Chromosome 2. Backcrosses involving Ch and a long inversion in chrom. 2 gave 136 recombinations out of a total of 447, or a recombination percentage of 30.4.

3. Chromosome 3. Three interchanges show close linkage with di. The data are:

<table>
<thead>
<tr>
<th>% recombination with d1</th>
<th>Number of backcross plants</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1-3d</td>
<td>0</td>
</tr>
<tr>
<td>T2-3c</td>
<td>0.2</td>
</tr>
<tr>
<td>T3-7b</td>
<td>0.4</td>
</tr>
</tbody>
</table>

4. Chromosome 4. Most interchanges show little crossing-over with su1. Of those tested the following are furthest away:

179
% recombination

<table>
<thead>
<tr>
<th></th>
<th>Number of B.C. plants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tl-4a</td>
<td>359</td>
</tr>
<tr>
<td>Tl-6b</td>
<td>320</td>
</tr>
<tr>
<td>T2-4d</td>
<td>500</td>
</tr>
<tr>
<td>Beyond gl3</td>
<td>215</td>
</tr>
<tr>
<td>T2-4b</td>
<td>79</td>
</tr>
<tr>
<td>T4-9b</td>
<td>556</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Distance from msg</th>
<th>Number of Ms plants in B.C.</th>
</tr>
</thead>
<tbody>
<tr>
<td>T8-10a</td>
<td>T-msg-j1</td>
<td>25.0</td>
</tr>
<tr>
<td>T8-10b</td>
<td>40.0</td>
<td>j1</td>
</tr>
<tr>
<td>3-8a</td>
<td>T-msg-j1</td>
<td>7</td>
</tr>
<tr>
<td>3-8b</td>
<td>33</td>
<td>j1</td>
</tr>
<tr>
<td>4-8</td>
<td>(uncertain)</td>
<td>0.4</td>
</tr>
<tr>
<td>5-8</td>
<td>T-msg-j1</td>
<td>5</td>
</tr>
<tr>
<td>6-8</td>
<td>27</td>
<td>j1</td>
</tr>
<tr>
<td>8-9b</td>
<td>27</td>
<td>j1</td>
</tr>
<tr>
<td>8-10c</td>
<td>27</td>
<td>j1</td>
</tr>
</tbody>
</table>

(Distance between msg and j1 about 10 units in all these tests; data varies from 8.1 to 10.9).

Iowa State College, Ames, Iowa

<table>
<thead>
<tr>
<th>Genes</th>
<th>Phase</th>
<th>XY</th>
<th>Xy</th>
<th>xY</th>
<th>xy</th>
<th>Total</th>
<th>No.</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tsg Gs1</td>
<td>CB</td>
<td>128</td>
<td>37</td>
<td>46</td>
<td>113</td>
<td>324</td>
<td>83</td>
<td>25.6</td>
</tr>
</tbody>
</table>

2. Chromosome 10.

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

F1 genotype

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. Chromosome 4. Order of three linked genes is established by F2 data of small magnitude as: la-su1-w1.

E. W. Lindstrom

4. Further studies with plants hyperploid for the short arm of chrom. 5 show that secondary trisomes, involving the fragment chrom.,
are found in the progeny of hyperploid individuals. The breeding behavior of the fragment of hyperploid plants is as follows:

<table>
<thead>
<tr>
<th>Type of offspring in %</th>
<th>Fragment plant as female</th>
<th>Fragment plant as male</th>
</tr>
</thead>
<tbody>
<tr>
<td>2N</td>
<td>70.0%</td>
<td>98.2%</td>
</tr>
<tr>
<td>2N + fragment</td>
<td>29.7%</td>
<td>0.5%</td>
</tr>
<tr>
<td>Secondary trisomes</td>
<td>0.3%</td>
<td>0.5%</td>
</tr>
</tbody>
</table>

The above data show that the fragment chrom. is readily transmissible through the female side but only rarely do male gametophytes hyperploid for the fragment chrom. function. The frequency of secondaries, however, through the male side is as great, at least, as through the female side. Pollen from secondary trisomes gave only disomic offspring in the limited backcross tests made which indicates that pollen hyperploid for the "secondary" chrom. can not successfully compete with haploid grains. Among the questions to be answered are (1) How do the secondaries arise and (2) How do those male gametophytes from fragment plants which bring in the "secondary" chrom. manage to successfully compete with haploid pollen when pollen hyperploid for the fragment chrom. is rarely successful.

5. Hayes recently reported a new virescent linked with j1 and therefore belonging in chrom. 8. This virescent was designated v21. Trisomic tests showed that v16 was in chrom. 8. Crosses made between v16 and v21 show them to be allelic.

6. v10 is linked with an endosperm color gene with 43% recombination as shown by the following data:

<table>
<thead>
<tr>
<th>XY</th>
<th>XY</th>
<th>XY</th>
<th>xy</th>
<th>Total</th>
<th>% recomb.</th>
</tr>
</thead>
<tbody>
<tr>
<td>816</td>
<td>241</td>
<td>226</td>
<td>108</td>
<td>1391</td>
<td>43</td>
</tr>
</tbody>
</table>

Tests are in progress to see whether v10 is in chrom. 2 or 6.

7. A new viable pale green is in chrom. 9 on the basis of trisomic tests.

8. F2 linkage data places ws3 ten units to the left of Lg1. The locus of Lg1 has been shown by McClintock to be near the end of the short arm of chrom. 2, so ws3 must occupy a nearly terminal position in this arm.

9. A second occurrence of a chrom. fragment consisting of the short arm of chrom. 5 was found among the progeny of a disomic plant. This fragment is apparently identical with the one mentioned in item 4.

10. A new annual form of teosinte, resembling the Durango variety, was crossed by sh-wx maize. Five F1 plants had approximately normal amounts of crossing-over in the sh-wx region while one F1 plant showed no recombinations in this interval. The F1 ears had 8-10 rows of seeds as contrasted with the usual 4-rowed ears found for F1 hybrids of the other annual forms of Euchlaena. No segregation into types occurred when selfed and sibbed seed of the pure Euchlaena was grown. No admixture with maize was evident as the tassels had no main spikelet.
11. Small pollen (sp₂) and lg are probably between 2 g₁ and li with the order li-sp₂-lg-g₁-R. Plants trisomic for chrom 10. and having the constitution Sp₂ Sp₂ sp₂ had about 20% small pollen (sp₂) and about 80% normal pollen. This indicates that n+1 pollen of Sp₂ sp₂ constitution is of normal size and that sp₂ is recessive to Sp₂ in such gametophytes.

12. More data have been obtained on the dosage relation of Dt and a₁. Three levels of dosage for a₁ show a linear effect while increasing the dosage of the Dt gene, as shown by three dosage levels results in a non-linear effect. The genes Dt and a₁ interact to produce the dotted aleurone character.

13. Linkage data for chrom. 2.

Gene	Phase	XY	XY	XY	XY	Total	% recombi.
Lg₁ Ws₂	RS	480	252	253	3	968	10
G₁₂ Ws₃	RS	251	100	85	9	445	32
Lg₁ A₁	RS	361	161	183	0	705	0
G₁₂ A₁	RS	128	66	50	2	246	19

14. Linkage data for chrom. 10.

Gene	Phase	XY	XY	XY	XY	Total	% recombi.
R Lg	CS	1368	179	702	575	2824	18
*+sp₂+	CB	529	130	39	824	1524	18
G₁ + li	CB	657	33	48	314	341	1393
G₁ + li							

*(could not classify for sp₂ because of drouth and heat damage). Previous data have shown about 3% recombination for sp₂ and lg, and sp₂ to be fairly close to g₁. These facts together with the above data indicate the order is li-sp₂-lg-g₁.

M. M. Rhoades

15. Linkage data for chrom. 10.

<table>
<thead>
<tr>
<th>F₁ genotype</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>1,2</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rp + r</td>
<td>179</td>
<td>161</td>
<td>109</td>
<td>114</td>
<td>31</td>
</tr>
<tr>
<td>Rp + g₁ +</td>
<td>223</td>
<td>90</td>
<td>40</td>
<td>40</td>
<td>13</td>
</tr>
<tr>
<td>Rp + li</td>
<td>223</td>
<td>90</td>
<td>40</td>
<td>40</td>
<td>13</td>
</tr>
<tr>
<td>Rp + g₁</td>
<td>223</td>
<td>90</td>
<td>40</td>
<td>40</td>
<td>13</td>
</tr>
</tbody>
</table>

*(seedlings inoculated in flats and only resistant individuals transplanted to field, to prevent spreading the rust to other cultures).
Singleton reported 35% recombination between \(D_7 - G_1 \) and 27% between \(D_7 - R \). This suggests the order is \(G_1 - R - D_7 \), but might be different. However, if \(D_7 \) falls to the left of \(R \) it should show fairly strong linkage with \(R_p \), but it does not. Therefore the order in chrom. 10 is:

\[
\begin{array}{cccccc}
& R_p & l_1 & g_1 & R & d_7 \\
0 & 84 & 43 & 57 & 28 & 615
\end{array}
\]

V. H. Rhoades

16. The following data were obtained from three-point tests involving \(g_1 l_1 \), \(l_1 \), and \(b_1 d_7 \):

\[
\begin{array}{cccccccc}
F_1 \text{ genotype} & 0 & 1 & 2 & 1,2 & \text{Total} \\
+ + bd & 344 & 271 & 37 & 26 & 255 & 198 & 18 & 18 & 1167 \\
g_1 l_1 & 615 & 5.4\% & 453 & 5.4\% & 36 & 11.4\% & 31 & 3.1\% & 1167
\end{array}
\]

17. Data were obtained on a dominant or partially dominant character which we have been calling knotted leaf and designating by the symbol \(Kn \). A full description has not been published. Superficial observations indicate a more rapid growth of the vascular tissue, resulting in a kinking or knotting of the veins. Plants known to be heterozygous for this character usually make normal growth with only an occasional knot on the leaf blade and a slight knotting of the leaf sheath. Other plants proven to be homozygous were so badly knotted that the tassels could not make their appearance without assistance.

Backcross data were obtained in 1933 on 531 plants and in 1936 on 252 plants involving the genes \(f_1 \), \(t_s \), and \(Kn \). The combined data for the two years are as follows:

\[
\begin{array}{cccccccc}
F_1 \text{ genotype} & 0 & 1 & 2 & 1,2 & \text{Total} \\
+ + Kn & 171 & 125 & 101 & 161 & 94 & 31 & 29 & 71 & 783 \\
t_s f_1 & 296 & 262 & 125 & 16.0\% & 100 & 12.8\% & 100
\end{array}
\]

A marked deficiency of \(f_1 \) plants in 1933 made interpretation of the data doubtful. The results in 1936, however, were very similar to those in 1933.

Backcross stocks involving the genes for \(br, f_1, b_m \), and \(Kn \) were obtained this year for classification in 1937.

A. A. Bryan

University of Missouri, Columbia, Missouri

18. \(G_{16} \) and \(G_{16} \) have become mixed some time in the past and the stocks of \(G_{16} \) which have been distributed are \(G_{16} \). An ultra-violet induced glossy is tentatively assigned the symbol \(G_{16} \).
The linkage relations of \(\text{Gl}_6 \) are listed below:

<table>
<thead>
<tr>
<th>Genes</th>
<th>Phase</th>
<th>XY</th>
<th>Xy</th>
<th>XY</th>
<th>xy</th>
<th>Total</th>
<th>(%) recomb.</th>
</tr>
</thead>
<tbody>
<tr>
<td>St Gl6</td>
<td>RS</td>
<td>339</td>
<td>175</td>
<td>77</td>
<td>1</td>
<td>592</td>
<td>10.0</td>
</tr>
<tr>
<td>Pr Gl6</td>
<td>RS</td>
<td>305</td>
<td>169</td>
<td>164</td>
<td>0</td>
<td>638</td>
<td>8.5 (if 1 xy)</td>
</tr>
<tr>
<td>V12 Gl6</td>
<td>RS</td>
<td>148</td>
<td>74</td>
<td>93</td>
<td>1</td>
<td>316</td>
<td>10.5</td>
</tr>
</tbody>
</table>

2. \(\text{Gl}_{10} \) (not the one reported by Emerson) is in the 9th linkage group. A small \(F_2 \) repulsion gave no double recessives with \(\text{wx} \).

3. Intercrosses were made between 18 newly-acquired glossies and glossies 1-10 inclusive. Due to the unfavorable season, seed was not obtained from many of the crosses. However, crosses were complete enough to suggest that this group included some new glossies.

4. Intercrosses have been made between Hadjinov's and the writer's glossies. The following identities have been established: \(H \text{gl}_3 = \text{gl}_4; H \text{gl}_{10} = \text{gl}_3; H \text{gl}_5 = \text{gl}_{10}; H \text{gl}_6 = \text{gl}_6 \) (see News Letter of March 4, 1936, page 3). His stock designated \(\text{Gl}_2 \text{gl}_2 \) did not segregate and his stock \(\text{gl}_9 \) has been lethal under conditions at Columbia.

5. Seed has been sent of a new dominant character tentatively designated "vestigial glume" with symbol \(\text{Vg} \). In the presence of the dominant allele \(\text{Vg} \) there is almost complete suppression of glumes in both the staminate and pistillate inflorescence.

G. F. Sprague

6. The following list of mutants is submitted as a sample of the types of mutant observed following treatment of pollen with ultra-violet radiation. The list includes the seed and seedling character mutations observed in experiments recently reported (Proc. Nat. Acad. Sci. 22:572-578) in which unfiltered radiation from a commercial quartz mercury vapor arc was used. Similar mutants have been observed in later experiments.

Many of the mutants listed are of little value for general genetic purposes, because of lethality or low viability, or in a few cases, because of overlapping the normal type. In (2), (15), and (33) the parent \(F_1 \) plant had defective pollen, but the mutant appeared to be unrelated to the factor causing the pollen defect. In all other cases the parent \(F_1 \) plant had normal pollen so far as could be determined by pollen examination. It is possible that among the mutant seed characters reported there may be included instances of small seed due to heterozygous deficiencies not manifested by defective pollen development. Tests against this possibility have not yet been completed.

<table>
<thead>
<tr>
<th>Mutant</th>
<th>Description (seedling character)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) red leaf</td>
<td>dark to faint red coloration in seedling leaves</td>
<td>not distinct on mature plants</td>
</tr>
<tr>
<td>(2) virescent yellow-green-a yellow green, others near white</td>
<td>possibly two separate mutants; may be associated with small seed</td>
<td></td>
</tr>
<tr>
<td>Mutant</td>
<td>Description (seedling character)</td>
<td>Notes</td>
</tr>
<tr>
<td>----------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>(3) glossy-a</td>
<td>glossy seedling with possibly some normal overlap</td>
<td>occurred with a small seed, unlinked</td>
</tr>
<tr>
<td>(4) yellow green-a</td>
<td>clear yellow green, later develops necrotic areas and dies</td>
<td></td>
</tr>
<tr>
<td>(5) virescent yellow green-b</td>
<td>nearly pure yellow at emergence; turns green</td>
<td>probably a usable mutant</td>
</tr>
<tr>
<td>(6) rolled</td>
<td>early seedling leaves tightly rolled and adherent</td>
<td>many die but a few survive to produce normal mature plants</td>
</tr>
<tr>
<td>(7) dwarf</td>
<td>dwarf seedling and plant</td>
<td>not induced; possibly a recurrence of dwarf 3; closely linked with wx</td>
</tr>
<tr>
<td>(8) corrugated</td>
<td>leaves narrow with well marked corrugation</td>
<td>occurred with aleurone spot; original material showed complete association with aleurone spot</td>
</tr>
<tr>
<td>(9) virescent yellow green-c</td>
<td>nearly pure yellow on emergence, gradually turns a greenish yellow</td>
<td>probably a usable mutant</td>
</tr>
<tr>
<td>(10) speckled</td>
<td>seedling leaves prominently speckled and semi-dwarf</td>
<td></td>
</tr>
<tr>
<td>(11) yellow green-b</td>
<td>seedlings distinct yellow green; do not green up in seedling stage</td>
<td>may be viable</td>
</tr>
<tr>
<td>(12) glossy-b</td>
<td>clear glossy</td>
<td>indication of linkage with pr; tentatively designated as glg</td>
</tr>
<tr>
<td>(13) virescent yellow</td>
<td>seedlings appear luteus with slight greening</td>
<td>lethal</td>
</tr>
<tr>
<td>(14) yellow green-c</td>
<td>segregates for yellow green and white seedlings</td>
<td>occurred with a germless, unlinked</td>
</tr>
<tr>
<td>(15) white tip</td>
<td>seedling leaves have a distinct white tip; present also on some mature plants</td>
<td>occurred with an unassociated pollen segregation</td>
</tr>
<tr>
<td>Mutant</td>
<td>Description</td>
<td>Notes</td>
</tr>
<tr>
<td>---------------</td>
<td>------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>(16) germless-a</td>
<td>1/8-1/4 normal size</td>
<td>deficiency of small seeds</td>
</tr>
<tr>
<td>(17) small-a</td>
<td>1/10-3/4 normal size; very</td>
<td>occurred with a virescent yellow green, unlinked</td>
</tr>
<tr>
<td>(18) small-b</td>
<td>irregular shape</td>
<td></td>
</tr>
<tr>
<td>(19) aborted</td>
<td>very small and poorly developed</td>
<td>all aborted seeds are germless, but some normal size germless seeds present</td>
</tr>
<tr>
<td>(20) small-c</td>
<td>clear separation, approximately 25% recessive type</td>
<td>many small seeds are germless</td>
</tr>
<tr>
<td>(21) small-d</td>
<td>seeds normal in height and width, reduced in thickness</td>
<td>occurred with a glossy seedling, unlinked</td>
</tr>
<tr>
<td>(22) miniature-a</td>
<td>seeds reduced in size and characteristically scarred</td>
<td></td>
</tr>
<tr>
<td>(23) miniature-b</td>
<td>variable in size with probable normal overlap</td>
<td></td>
</tr>
<tr>
<td>(24) miniature-c</td>
<td>seed size reduced but with probable normal overlap</td>
<td>occurred in check, not induced</td>
</tr>
<tr>
<td>(25) aleurone spot</td>
<td>aleurone layer absent in scattered areas over the seed</td>
<td>occurred with seedling character corrugated</td>
</tr>
<tr>
<td>(26) small-e</td>
<td>seeds normal width and 1/4 -3/4 normal height and thickness</td>
<td>only slight deficiency of small</td>
</tr>
<tr>
<td>(27) germless-b</td>
<td>seeds normal in size</td>
<td>marked deficiency of germless seeds</td>
</tr>
<tr>
<td>(28) miniature-d</td>
<td>seeds about 1/2 normal size, some normal overlap</td>
<td>all miniature seeds are germless</td>
</tr>
<tr>
<td>(29) small-f</td>
<td>seed reduced in size</td>
<td>small seeds are germless</td>
</tr>
<tr>
<td>(30) gnarled</td>
<td>seeds small and variously mis-shapen</td>
<td></td>
</tr>
<tr>
<td>(31) shriveled</td>
<td>seeds poorly developed and shriveled</td>
<td>shriveled are also germless</td>
</tr>
<tr>
<td>Mutant</td>
<td>Description (seed character)</td>
<td>Notes</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>(32) miniature-e</td>
<td>seeds 1/2-3/4 normal size small seeds not germ-apparently clear separation less</td>
<td></td>
</tr>
<tr>
<td>(33) miniature-f</td>
<td>seeds reduced in size not germless</td>
<td></td>
</tr>
<tr>
<td>(34) germless-b</td>
<td>seeds nearly normal size</td>
<td></td>
</tr>
<tr>
<td>(35) scar</td>
<td>scarred seeds range from 1/8 to normal size</td>
<td></td>
</tr>
<tr>
<td>(36) miniature-g</td>
<td>seeds 1/8-1/2 normal thickness and 3/4 height and width</td>
<td></td>
</tr>
<tr>
<td>(37) germless-c</td>
<td>many seed also scar occurred with virescent yellow and white seedlings, unlinked</td>
<td></td>
</tr>
</tbody>
</table>

Further information regarding these mutants will be included in a research bulletin of the Missouri Agricultural Experiment Station.

C. F. Sprague and L. J. Stadler.

Agricultural Experiment Station, College Station, Texas -

1. Several years ago we reported a new type of sugary, "amyloceous sugary," the inheritance of which depends upon two factors, one of which, su^Am, is allelomorphic to su_1, the other du being located in chromosome 10. The genotype $su^Am su^Am Du Du$ is indistinguishable from pure starchy, while the genotype $su^Am su^Am du du$ is a good sugary though not as wrinkled and translucent as ordinary sugary. Since the presence of the du gene in homozygous condition can convert $su^Am su^Am$ from starchy to sugary, it occurred to us that this same gene might have a similar effect on ordinary sugary, $su_1 su_1$, converting it to a "super sugary." Chemical analyses of ordinary sugary, $su_1 su_1 Du Du$ and "super sugary," $su_1 su_1 du du$, have been made which confirm this assumption. The former has 46.7 per cent total sugars, the latter 62.6 per cent. Several commercial sweet corn varieties are now being converted to "super sugary" by introducing the du gene through repeated backcrossing to determine whether this gene will have any value in practical sweet corn breeding.

2. In a stock derived from a cross of Tripsacum and Zea, comprising 20 Zea and 1 Tripsacum chromosomes, the extra Tripsacum chromosome carries the allelomorph of the sugary gene. This chromosome shows regular, though not complete pairing with the first chromosome of Zea and not with fourth on which the sugary$_1$ gene is located in Zea.

3. Tripsacum is apparently homozygous for the A factor. Its composition with regard to the C, R, and Pr factors is being determined.
4. Corn seedlings left in refrigerator for brief periods showed frequent islands of tetraploid tissue in root tips. Treatment of ears with dry ice soon after pollination has not produced any tetraploid plants.

5. A new gene for premature germination, or vivipary, is linked with su1. A new gene which causes a peculiar mottling of the endosperm appears to be a usable endosperm character. Linkage tests are being made.

6. Observations for several years have indicated that B factor causes plants to bloom earlier. Extensive data this season on date of anthesis in B and b plants from same segregating progenies show no significant difference.

7. A study has been in progress for several years to determine whether the marked differences between Euchlaena and Zea are genic and whether the genes which differentiate the two genera can be located on definite chromosomes. Four chromosomes have been studied, using marker genes from corn, and it has been found that the V-P1 genes are definitely linked with genes for number of tassel branches, B-lg1 genes are linked with genes for height of stalk, number of tillers, number of leaves, number of ears, and number of tassel branches. Waxy gene is linked with genes for number of tillers, number of leaves, and number of ovules per ear. su1Tu genes are linked with genes for height of stalk, number of leaves, number of ears, number of tassel branches, length of ear, number of rows of ovules and number of ovules. So far as the results go they indicate that the genes which differentiate Zea and Euchlaena are scattered at random over all the chromosomes.

P. C. Mangelsdorf and R. G. Reeves

University of Wisconsin, Madison, Wisconsin -

1. Linkage data on Chrom. 3:

<table>
<thead>
<tr>
<th>Genes</th>
<th>Phase</th>
<th>XY</th>
<th>Xx</th>
<th>xy</th>
<th>Total</th>
<th>% recomb.</th>
</tr>
</thead>
<tbody>
<tr>
<td>G2-D1</td>
<td>RS</td>
<td>241</td>
<td>89</td>
<td>85</td>
<td>13</td>
<td>428</td>
</tr>
<tr>
<td>Ng-Ra2</td>
<td>CB</td>
<td>61</td>
<td>12</td>
<td>41</td>
<td>77</td>
<td>197</td>
</tr>
</tbody>
</table>

Severe drought injury made accurate classification of or and g2 impossible. The g2-d1 results, however, indicate that g2 may be in chrom. 3.

<table>
<thead>
<tr>
<th>Genes</th>
<th>% recombination</th>
</tr>
</thead>
<tbody>
<tr>
<td>A - Lg2</td>
<td>39</td>
</tr>
<tr>
<td>A - Ra2</td>
<td>45</td>
</tr>
<tr>
<td>Lg2-Ra2</td>
<td>54</td>
</tr>
</tbody>
</table>

The data of these two tables (together with earlier findings) indicate that the ra2 locus is in the neighborhood of d1, probably between d1 and cr.

R. A. Brink
1. Linkage data on Chromosome 2:

<table>
<thead>
<tr>
<th>Genes</th>
<th>Phase</th>
<th>XY</th>
<th>Xy</th>
<th>XY</th>
<th>XY</th>
<th>% recomb.</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL-B</td>
<td>CB</td>
<td>30</td>
<td>15</td>
<td>15</td>
<td>43</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>RB</td>
<td>50</td>
<td>127</td>
<td>118</td>
<td>57</td>
<td>34</td>
</tr>
</tbody>
</table>

2. Linkage test with su₂:

<table>
<thead>
<tr>
<th>F₁ genotype</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>1,2</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>P₁ + Y₁</td>
<td></td>
<td>189</td>
<td>64</td>
<td>11</td>
<td>4</td>
</tr>
<tr>
<td>su₂</td>
<td>352</td>
<td>64</td>
<td>118</td>
<td>33</td>
<td>6</td>
</tr>
</tbody>
</table>

(separation of Y₁-y₁ poor, especially in su₂ class)

C. R. Burnham

Bureau of Plant Industry, Washington, D.C. -

1. Recent morphological studies of the chromosomes of strains of Indian corn and of teosintes from the experiment station at Chapingo near Mexico City have shown several strains in which chromosome 10 is abnormal. This chromosome has a piece attached to the end of the long arm about the length of its short arm. This piece is much knobbed and at present nothing definite can be said concerning its origin.

A small quantity of both corn and teosinte seed carrying this abnormality are available for distribution.

A. E. Longley

2. In connection with making the corrections in the linkage summary pointed out on page 3 of the March 4 Maize Genetics Letter, I note on page 43 that w₁ is listed as reported by Demerec 1923B. I assume that this should be changed to Lindstrom as on page 25.

F. D. Richey

II. Collective Publication of Linkages

Some of the linkage data presented in this News Letter would seem suitable material for a general linkage paper to be published. (see News Letters of March 6 and November 30, 1935, and March 4, 1936).

If the authors of these data will signify their desire to have it published as presented in this News Letter or will rewrite it in the form they prefer, we will attempt to make arrangements for having it published this summer. If others of you with similar data will send it to the Co-op. not later than April 10, we shall be glad to include it in this publication.

In the News Letter of March 4, 1936, Dr. Emerson gave some very good suggestions regarding the manner of arranging the linkage data: "Manuscripts should be typed and ready for publication without change. When new genes are involved, a short, concise description of the characters differentiated by them might well be included."
Well-known genes should not require such treatment. Tables should be presented in summary form. Different cultures involving the same kind of data should not be listed separately unless that is essential in order to demonstrate significant differences between them. Of course F2 and backcross data for coupling and repulsion must be entered separately in the tables. A single frequency distribution may often be displayed in the text to better advantage than in a table. Tables of data should be accompanied by such discussion only as is essential to make clear any points not obvious from an examination of the tabular data themselves, or as is necessary to indicate the relation of the unreported observations to other linkage tests, etc. The tabular arrangement and headings used in the Linkage Summary are convenient and I, naturally, think them good. No limit can be set now to the length of the individual contributions, but, unless a very considerable amount of data are presented, individual papers might well be kept to not over one or two pages of printed matter, and it is my hope that some may be not more than half that long).

III. Seed Stocks Grown, 1936

Inbred strains. Selfed or sibbed ears of all the inbred strains in disease resistance test.

\(s_{u1} g_{13} Y_{1} l_{a2} l_{a4} \) (allele to \(l_{a1} \))

\(r P_{r1} m_{r1} \) (mottled aleurone-Horovitz) may seg. \(g_{1} \)

Homo. \(A_{1} C R a_{2} b_{1} v_{1} \)

Homo. \(A_{1} C R a_{2} b_{1} v_{1} \) seg. \(v_{2} \)

Homo. \(A_{1} C R A_{2} b_{1} v_{1} \)

Inbred line of supergold pop corn (Jenkins)

seg. cultures of \(y_{4} y_{4} \) It It \(x \) \(Y_{4} Y_{4} \) it it

\(y_{4} y_{4} \) It It \(a_{1} c r pr_{1} i \)

Trisomics 3, 5, and 6

Sweet Brittle (L. C. Raymond)

seg. cultures of \(l_{g1} g_{s2} b \times l_{g1} g_{s2} b v_{4} \)

\(" \times a_{1} n a t_{s4} \)

\(" \times a_{1} D_{t} x a_{1} l_{g2} b P_{l} \)

\(" \times a_{2} v_{2} p_{r1} b_{1} A_{1} C R \)

\(" \times R g_{1} n_{l1} x z b_{5} \)
au₁ au₂ sh
a₁ na ts₄ Dt
Tp g₁₁ ra₁ v₅ /
ar wx
hf
Kn
g₁₅
vₓ (Wiggans)
pt₁₂ br f₁ bm₃
lg₁ g₁₂ b v₄
A₁Pl sm seg b
g₁₄ x yg₂ c sh wx
No germination:
d₇ g₁ x g₁₈
A₁C r sh wx v₁ pr₁ Su/su₁ x dx
su₂
Y₄ Y₄ it it
Too late:
y₂₃
va₁
g₁₃₃a (= g₁₂)
g₁₃₃b (amargo corn)
seg. lg₃₄a ms
af₃₄a (= aristifolia)
sm (= siamensis)
10 pkges. of seed from Australia

(Note: this seed from Australia is of various inbred strains, developed at Queensland Agricultural High School and College, which show seedling characters such as fine-stripe and virescent. These characters ought to be studied in a region with a longer growing season than at Ithaca. A small amount of this seed is available for distribution.)
IV. Seed Stocks Received for Propagation in 1937

1. A. A. Bryan, Ames, Iowa:--
br f1 bm2 kn x + + + Kn
 br f1 bm2 +
 + + bd x gl1 ij bd
 gl1 ij +

2. R. A. Brink, Madison, Wisconsin:--
 A1 lg2 x A1 lg2 ts4 d1
 a1 lg2 ra2
 a1 lg2 d1 x A1 lg2 d1 ts4

3. G. F. Sprague, Columbia, Missouri:--
b gg2 lg1
 Vg x vg
 vg

4. J. Shafer, Pasadena, California:--
 (inbred x sb)#
 (sb x A b pl Y1 su2)#
 Y1 su2

5. A. E. Longley, Washington, D.C.:--
 Indian maize carrying an extra piece attached to chrom. 10.
 Teosinte (Tecubaya) carrying an abnormality similar to that
 found in the Indian maize stock.

 Teosinte from Mexico-
 Novoaylan, from the hacienda of that name near Durango City
 (from the same place as the original Durango seed).
 Nobogame, from the town of that name in Southwestern Chihuahua.
 Represents the farthest north for teosinte.
 Trampas, from near northern border of Durango.

7. G. A. Lebedeff, Ithaca, New York:--
 pb x wx Y1
 P1 sm x pb

8. S. Horowitz, Buenos Aires, Argentina:--
 J33a (dominant japonica) x A1 c R sh wx B pl

 Chlorophyll types -
 Yellowish green seedlings
 Dark green
 Rather light green
 Medium to light green
 Good foliage, leaves broad, excellent in general appearance
 Yellow stripe
10. R. A. Emerson, Ithaca, N. Y.:
\[
\begin{align*}
+ \text{gl}_3 & + (X) \\
\text{su}_1 & + j_2 \\
+ \text{Ts}_5 & \text{su}_1 (X) \\
\text{wl} & + + \\
+ \text{su}_1 & \text{gl}_3 (X) \\
\text{wl} & + + \\
+ \text{Ts}_5 & \text{su}_1 (X) \\
\text{la} & + \text{su}_1
\end{align*}
\]

11. C. A. Krug, Sao Paulo, Brazil:

<table>
<thead>
<tr>
<th>Variety</th>
<th>Numbers</th>
<th>Characteristics</th>
<th>Ratios</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amarello</td>
<td>41B-1B</td>
<td>segregating mealy endosperm</td>
<td>(3 : 1)</td>
</tr>
<tr>
<td></td>
<td>47-1</td>
<td>"brown pericarp" bp ?</td>
<td>(3 : 1)</td>
</tr>
<tr>
<td>Crystal</td>
<td>83-1-4</td>
<td>seg. dwarf plants</td>
<td>(3 : 1)</td>
</tr>
<tr>
<td></td>
<td>96-4-1</td>
<td>seg. tassel seed</td>
<td>(3 : 1)</td>
</tr>
<tr>
<td></td>
<td>97-1</td>
<td>"ragged" Rg ?</td>
<td>3 : 1</td>
</tr>
<tr>
<td></td>
<td>111-2-3</td>
<td>"oily spots" (blotched leaf)?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>119-6</td>
<td>branched ear (homozygous)</td>
<td></td>
</tr>
<tr>
<td>Amarello</td>
<td>129-1-1</td>
<td>striped leaves</td>
<td>3 : 1</td>
</tr>
<tr>
<td>Crystal</td>
<td>134-2-1</td>
<td>semi-dwarfs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>137-1-3</td>
<td>seg. zebra seedling leaves</td>
<td>3 : 1</td>
</tr>
<tr>
<td>Amarello</td>
<td>146-1</td>
<td>semi-dwarfs (homozygous)</td>
<td></td>
</tr>
<tr>
<td>Crystal</td>
<td>149-2</td>
<td>"rolled leaves" ro ?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>150-1-1a</td>
<td>seg. defective endosperm</td>
<td>3 : 1</td>
</tr>
<tr>
<td>Negro</td>
<td>155</td>
<td>"rolled leaves" ro? (holmo.)</td>
<td></td>
</tr>
<tr>
<td>Morango</td>
<td>164-2-1</td>
<td>colored pericarp and aleurone</td>
<td></td>
</tr>
<tr>
<td>Amparo</td>
<td>189 A</td>
<td>variegated pericarp</td>
<td></td>
</tr>
<tr>
<td>Crystal</td>
<td>242</td>
<td>seg. defective endos. sh ?</td>
<td>3 : 1</td>
</tr>
<tr>
<td>Amarello</td>
<td>256-1</td>
<td>bracts in the tassel</td>
<td></td>
</tr>
<tr>
<td>Hickory King</td>
<td>267</td>
<td>zebra-striped leaves (homo.)</td>
<td></td>
</tr>
<tr>
<td>Crystal</td>
<td>280-1</td>
<td>defective cob Rw_1, Rw_2 (?)*</td>
<td></td>
</tr>
</tbody>
</table>

V. List of Genes Not in Co-op

The genes that have been reported and are not in the Cooperative Collection are listed below. If you have any of these genes in your seed stocks, will you kindly send us a few seeds so that we may get a stock for the Co-op? Your cooperation will be greatly appreciated by all who are interested in having available in a central repository a complete set of maize genetic seed stocks.

\[
\begin{align*}
a_3 & \text{g}^{l_1}10 & \text{gm}_e & \text{gm}_1 \\
\text{ad}_2 & \text{gm}_2 & \text{gm}_3 & \text{gm}_4 \\
\text{ar}_2 & \text{Hs} & l_1 & l_5
\end{align*}
\]
VI. Tests of Inbred Strains for Disease Resistance

Last spring seed of five inbreds furnished by Wiggans, one by Hayes, one by Kvakan, three by Bryan, and five by Singleton were sent to eight cooperators in various parts of the United States. One severe drouth and heat in some areas made possible a good comparison of the inbred lines in regard to resistance to firing.

The following tables and supplementary notes on the inbreds were received by the Co-op.:
Arlington Experiment Farm, Rosslyn, Virginia -

<table>
<thead>
<tr>
<th>Line</th>
<th>Date Silked</th>
<th>Total No. Plants</th>
<th>No. Erect Plants</th>
<th>No. Smutted Plants</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co 206</td>
<td>7/30</td>
<td>27</td>
<td>3</td>
<td>0</td>
<td>Very little pollen</td>
</tr>
<tr>
<td>Co 208</td>
<td>7/26</td>
<td>34</td>
<td>13</td>
<td>0</td>
<td>Good line</td>
</tr>
<tr>
<td>Co 210</td>
<td>7/30</td>
<td>36</td>
<td>1</td>
<td>2</td>
<td>Pollen 5 or 6 days later than silks</td>
</tr>
<tr>
<td>Co 211</td>
<td>7/26</td>
<td>33</td>
<td>21</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Co 214</td>
<td>7/26</td>
<td>29</td>
<td>17</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>S283</td>
<td>7/30</td>
<td>14</td>
<td>12</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>I 234</td>
<td>8/10</td>
<td>29</td>
<td>17</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Dr 276 A</td>
<td>8/10</td>
<td>30</td>
<td>9</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>WD 456 A2</td>
<td>8/2</td>
<td>23</td>
<td>22</td>
<td>1</td>
<td>Very good line</td>
</tr>
<tr>
<td>Kvakan 6991</td>
<td>7/30</td>
<td>9</td>
<td>2</td>
<td>0</td>
<td>Light green & spotted</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No good here</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Singleton C2</td>
<td></td>
<td>25</td>
<td>0</td>
<td>:</td>
<td>Too early, Entirely unsuited to</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>:</td>
<td>Arlington conditions</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>"</td>
<td>C6</td>
<td>36</td>
<td>2</td>
<td>:</td>
<td></td>
</tr>
<tr>
<td>"</td>
<td>C13</td>
<td>39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"</td>
<td>C65</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"</td>
<td>C78</td>
<td>34</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ames, Iowa -

The season in Iowa was so unfavorable that observations must not be taken too seriously. Early lines were more affected by these conditions than the later lines. No attempt was made to hand-pollinate any ears. Under open-pollination the set of seed was fair on some lines and poor on others.

The season was good for testing smut resistance, the smut infection being about as heavy as in 1935. The following notes were made on the inbred lines:

- **C 206**: Free from smut; no firing of leaves, tassels good, ear shoots good but poorly filled; roots weak; plants about 5' high; ears about 1½ to 2' high; not very promising.

- **C 208**: Smutted ears on about 30% of the plants; tassels good; one or two top leaves fired; plants erect; ear shoots good but not very well filled; tendency toward 2-eared condition and some multiple earing; rather promising stock except for the smutting of the ears.

- **C 210**: One smutted plant in a total of 36; roots weak, badly lodged; not at all promising.

- **C 211**: No smutted plants; extremely early, very short plants; produced considerable seed; a useful stock.

- **C 214**: No smut; roots very weak; unproductive; not promising.

- **S 283**: No smut; early; lodging-resistant, at least until late in the season when a tendency toward stalk-breaking became apparent; produced a fair amount of seed for the season; probably a useful line.

- **Kvakan 6991**: About one-third of the plants had bud smut; stalks weak, broke badly; not promising.

- **I 234**: Rather late compared to others in this group but also relatively good; only two smutted plants in a total of 33 (bud smut); good set of seed; promising but possibly rather late for general use.
Dr 2764: Two suckers with ear smut and one plant with stalk smut just below the ear; short, thick, well-filled ears; very weak roots; not especially promising.

WD 456 A2: Four plants with small bud smut galls near the base of the plant; no lodging; ears fairly well-filled with seed of excellent quality; poor pollen producer; relatively late; an excellent line for Iowa conditions but probably too late for general use.

Sweet Corn Lines: All of these lines were so extremely early and made such poor growth under the prevailing conditions that fair judgment can hardly be passed upon them. They were nearly or quite smut-free. Numbers C6, C13, C78, and C85 had a fair set of seed. They are not promising for our conditions.

A. A. Bryan

Columbia, Missouri -

<table>
<thead>
<tr>
<th>Line</th>
<th>Firing Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co 214</td>
<td>yellow green in color; no ear shoots</td>
</tr>
<tr>
<td>S 283</td>
<td>tassels were blasted on 7/6; first silk appeared 7/9</td>
</tr>
<tr>
<td>Co 206</td>
<td>wilted badly followed by firing and tassel blasting; tassels blasted 7/15</td>
</tr>
<tr>
<td>Co 208</td>
<td>little firing but tassels blasted 7/15</td>
</tr>
<tr>
<td>Co 210</td>
<td>little firing but tassels blasted 7/16</td>
</tr>
<tr>
<td>Co 211</td>
<td>upper leaves fired; tassels blasted 7/9</td>
</tr>
<tr>
<td>Kvakan 6991</td>
<td>very slender stalk; yellow green color; tassels blasted 7/9; first silks 7/11</td>
</tr>
<tr>
<td>Dr 276 A</td>
<td>lower leaves fired 7/17; pollen shed 7/17</td>
</tr>
<tr>
<td>WD 456 2A</td>
<td>silked 7/13; all tassels blasted by 7/17</td>
</tr>
<tr>
<td>Bryan 234</td>
<td>upper leaves fired 7/15; first silks 7/20</td>
</tr>
</tbody>
</table>

No rust, bacterial blight or smut was noticed in these cultures. None of the strains produced ears.

G. F. Sprague
Durham, North Carolina -

<table>
<thead>
<tr>
<th>Approximate order of adaptability</th>
<th>Number of diseased plants observed</th>
<th>Maturity</th>
<th>Miscellaneous observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group I (good)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.*Dr 276-A</td>
<td>0</td>
<td>late</td>
<td>general appearance</td>
</tr>
<tr>
<td>2.*Co 208</td>
<td>0</td>
<td>0</td>
<td>sturdy</td>
</tr>
<tr>
<td>3.*S 283</td>
<td>0</td>
<td>13(50%)</td>
<td>Rust injury negligible</td>
</tr>
<tr>
<td>4.*WD 456-A2</td>
<td>0</td>
<td>0</td>
<td>two plants runty</td>
</tr>
<tr>
<td>Group 2 (fair)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Co 210</td>
<td>0</td>
<td>0</td>
<td>seg. small plants</td>
</tr>
<tr>
<td>6. Kvakan 6991</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>7. I 234</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Group 3 (poor)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(not in order)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C 85</td>
<td>1(5%)</td>
<td>0</td>
<td>med.-late</td>
</tr>
<tr>
<td>#Co 211</td>
<td>0</td>
<td>0</td>
<td>Two "F1 hybrids" ruled out</td>
</tr>
<tr>
<td>Co 214</td>
<td>0</td>
<td>0</td>
<td>General appearance</td>
</tr>
<tr>
<td>Co 205</td>
<td>0</td>
<td>0</td>
<td>satisfactory</td>
</tr>
<tr>
<td>C 13</td>
<td>0</td>
<td>0</td>
<td>Very few seeds on</td>
</tr>
<tr>
<td>C 2</td>
<td>0</td>
<td>0</td>
<td>open-pol. ears</td>
</tr>
<tr>
<td>C 6</td>
<td>0</td>
<td>0</td>
<td>Not much pollen; probably</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>protandrous</td>
</tr>
</tbody>
</table>

* eight to 20 hand-pollinations in each of these inbreds.
all pollination failures were of same date. This inbred may deserve better rating.

Conditions prevailing here last summer were in general too favorable to afford a rigorous test. The weather was consistently hot but rainfall was adequate (for late plantings which included these inbreds). No firing, no lodging, and no bacterial blight was observed. The infrequency of smut and rust infection in the inbred lines may not mean much, since my cultures generally suffered little from smut and rust.

I had occasion to use some of these inbreds in crosses and also made a few self and sib pollinations in each line. The rating as to adaptability is based largely on the results of these pollinations. The proportion of successful pollinations and the yield of grain resulting provided a basis for rating.

H. S. Perry
Morgantown, West Virginia -

<table>
<thead>
<tr>
<th>Line</th>
<th>Height (inches)</th>
<th>% lodging bent</th>
<th>% lodging lodged</th>
<th>Rooting system</th>
<th>% Smut</th>
<th>No. Plants</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bryan 276 A</td>
<td>44</td>
<td>24</td>
<td>12</td>
<td>fair</td>
<td>0</td>
<td>39</td>
<td>Very short ears</td>
</tr>
<tr>
<td>" 234 *</td>
<td>70</td>
<td>0</td>
<td>0</td>
<td>v. good</td>
<td>0</td>
<td>25</td>
<td>#1 of Iowa lines, late</td>
</tr>
<tr>
<td>" 456 A2</td>
<td>65</td>
<td>0</td>
<td>0</td>
<td>v. good neck</td>
<td>10.3</td>
<td>29</td>
<td>#2 of Iowa lines,</td>
</tr>
<tr>
<td>Co 206</td>
<td>53</td>
<td>72</td>
<td>9</td>
<td>fair</td>
<td>neck</td>
<td>7.7</td>
<td>13</td>
</tr>
<tr>
<td>Co 208</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>v. good neck</td>
<td>7.7</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Smut check</td>
<td></td>
<td></td>
<td></td>
<td>gen'l</td>
<td>26.3</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Co 210</td>
<td>60</td>
<td>0</td>
<td>33</td>
<td>fair</td>
<td>0</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Co 211</td>
<td>42</td>
<td>0</td>
<td>0</td>
<td>poor</td>
<td>0</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Co 214</td>
<td>33</td>
<td>0</td>
<td>0</td>
<td>poor</td>
<td>0</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>S 283</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>good</td>
<td>0</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Wiggins 206-32(X)*</td>
<td>65</td>
<td>90</td>
<td>0</td>
<td>poor</td>
<td>0</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>" 211-10(X)</td>
<td>45</td>
<td>0</td>
<td>0</td>
<td>good</td>
<td>ear</td>
<td>3.8</td>
<td>52</td>
</tr>
<tr>
<td>" 212-18(X)</td>
<td>54</td>
<td>20</td>
<td>15</td>
<td>fair</td>
<td>below ear</td>
<td>1.5</td>
<td>66</td>
</tr>
<tr>
<td>" 210-11(X)*</td>
<td>64</td>
<td>15</td>
<td>10</td>
<td>fair+</td>
<td>ear, neck</td>
<td>3.4</td>
<td>59</td>
</tr>
<tr>
<td>" 209-13(X)</td>
<td>46</td>
<td>70</td>
<td>0</td>
<td>----</td>
<td></td>
<td>0</td>
<td>stalks break down early</td>
</tr>
<tr>
<td>Smut check</td>
<td></td>
<td></td>
<td></td>
<td>gen'l</td>
<td>54.9</td>
<td>51</td>
<td>stalks break down early</td>
</tr>
<tr>
<td>Wiggins 206-9(X)</td>
<td>58</td>
<td>5</td>
<td>5</td>
<td>good</td>
<td>0</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>Hayes S-42</td>
<td>58</td>
<td>0</td>
<td>10</td>
<td>fair</td>
<td>0</td>
<td>51</td>
<td></td>
</tr>
</tbody>
</table>

Singleton 078, C 13, 0 85, C 2, 0 6

Planted late and on different plot, no smut. May be able to run this 1938

* These are considered the best lines.

C. R. Burnham
<table>
<thead>
<tr>
<th>Pedigree</th>
<th>Date of Pollination</th>
<th>Erectness</th>
<th>No. plants</th>
<th>Smut plants</th>
<th>Good ears</th>
<th>Rust 1-10</th>
<th>Row No.</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co 206</td>
<td>8/15</td>
<td>/</td>
<td>13</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>1</td>
<td>14-16</td>
</tr>
<tr>
<td>Co 208</td>
<td>8/13</td>
<td>/</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>13</td>
<td>6</td>
<td>12-14</td>
</tr>
<tr>
<td>Co 210</td>
<td>8/20</td>
<td>(</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>* Co 211</td>
<td>8/15</td>
<td>(</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>14</td>
<td>5?</td>
<td>12</td>
</tr>
<tr>
<td>** Dr 276 A</td>
<td>8/21</td>
<td>/</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>13</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>* WD 456 A2</td>
<td>8/20</td>
<td>/</td>
<td>17</td>
<td>1</td>
<td>1</td>
<td>24</td>
<td>0</td>
<td>14-16</td>
</tr>
<tr>
<td>I 234</td>
<td>?</td>
<td>/</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>16-18</td>
</tr>
<tr>
<td>** Co 214</td>
<td>?</td>
<td>/</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>21</td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>** S 283</td>
<td>8/13</td>
<td>/</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>17</td>
<td>0</td>
<td>12-16</td>
</tr>
<tr>
<td>Kvakan 6991</td>
<td>8/15</td>
<td>(</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>2</td>
<td>14-16</td>
</tr>
</tbody>
</table>

* good ** very good

W. R. Singleton
Ithaca, New York -

<table>
<thead>
<tr>
<th>Inbred line</th>
<th>Smut</th>
<th>Rust</th>
<th>Ears</th>
<th>Maturity</th>
<th>Plant Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co 206</td>
<td>Some ear smut</td>
<td>1</td>
<td>fair</td>
<td>med.</td>
<td>weak stalk</td>
</tr>
<tr>
<td>Co 208</td>
<td>Badly smutted</td>
<td>2</td>
<td>poor</td>
<td>med.</td>
<td>very desirable</td>
</tr>
<tr>
<td>Co 210</td>
<td>Moderate amt.</td>
<td>2</td>
<td>poor</td>
<td>med.</td>
<td>slender stalk</td>
</tr>
<tr>
<td>Co 211</td>
<td>Trace</td>
<td>1</td>
<td>good</td>
<td>med.</td>
<td>sturdy plants</td>
</tr>
<tr>
<td>Co 214</td>
<td>0</td>
<td>2</td>
<td>good</td>
<td>early</td>
<td>sturdy plants</td>
</tr>
<tr>
<td>S 283</td>
<td>0</td>
<td>3</td>
<td>fair</td>
<td>med.</td>
<td>very weak</td>
</tr>
<tr>
<td>WD 456-A2</td>
<td>Trace</td>
<td>1</td>
<td>good</td>
<td>late</td>
<td>rel. sturdy</td>
</tr>
<tr>
<td>Dr. 276A</td>
<td>0</td>
<td>1</td>
<td>good</td>
<td>late</td>
<td>short, sturdy</td>
</tr>
<tr>
<td>I 234</td>
<td>Trace</td>
<td>1</td>
<td>good</td>
<td>late</td>
<td>rel. sturdy</td>
</tr>
<tr>
<td>Kvakan 6991</td>
<td>Moderate amt.</td>
<td>4</td>
<td>v.poor</td>
<td>med.</td>
<td>lodged badly</td>
</tr>
</tbody>
</table>

(Rust notes taken latter part of Sept., rating is 1-5)

No bacterial blight and very little firing.

Inbred Co 211 is the most desirable one of this group for Ithaca. It excels in the favorable combination of suitable maturity, resistance to smut, good plant type, good ears, and vigor. It did show some top firing, however.

Co 206 has excellent plant type and proper maturity, but it has much tassel and ear smut. Bryan's inbreds Dr 276A, I 234, and W.D. 456A2 are eliminated only because of maturity. They are too late for Ithaca.

D. G. Langham

Summary

A general summary of the above tables approaches impossibility, and may not be desirable, anyway, because certain inbreds are best adapted to certain localities. We note, however, that inbreds WD 456-A2, Co 208, Co 211, and S 283 met with the greatest approval and should be included in the test another year. Perhaps inbreds Dr 276A, I 234, Co 210, and Co 206 should also be tested further.

Several of the cooperators in this test of inbred lines for disease resistance have suggested that a uniform system of taking notes on the different inbreds be established. What is your opinion in the matter? If those of you who are interested will send to the Co-op. the type of form that you prefer for this purpose, we will attempt to combine the best suggestions into one blank to be used in 1937.

Any of you who would like to conduct this test on disease resistance in 1937 will please notify us soon. If you have some inbreds that are quite resistant to disease and have desirable plant type, we should like to include them in the test this year. There is, of course, a limit to the number of inbreds we can handle properly.

D. G. Langham

Secretary
March 6, 1938

The data presented here are not to be used in publications without the consent of the authors.

Department of Plant Breeding
Cornell University
Ithaca, N. Y.
November 17, 1937

To Maize Geneticists:

Contributions of material for the annual Maize Genetics Cooperation news letter is hereby requested. Any new linkage data, methods, hypotheses, suggestions, or anything else that you think may be of interest to other maize workers will be incorporated in this news letter. Since it is desirable to have the information presented in a somewhat uniform system, it is suggested that you refer to some of the previous Co-op News Letters for ideas concerning the nature of your write-up. In order to be included in this News Letter your material must be received by the Co-op not later than January 15, 1938.

Several years ago when a number of maize geneticists found that they were unable to get their linkage data published in some of the leading journals, they conceived the idea of combining their relatively small papers into one larger paper and publishing collectively. This suggestion was approved by the Editor of Genetics, and the Secretary of the Maize Genetics Cooperation signified his willingness to collect the individual papers for the publication. But to date only one paper has been received by the Co-op. Perhaps the reason for this lack of response from maize workers has been due to some misunderstanding of the plan. With this possibility in mind, it may be advisable to quote from a recent letter to Dr. Dunn, Editor of GENETICS:

"The Maize Genetics Cooperation circular letter does not constitute publication and none of the material in it may be quoted except by permission of the author. Much of the material in this Co-op News Letter is not complete, but rather is merely some ideas and indications which the men have obtained in their studies and are willing to pass on to other workers in this field to speed up progress with maize. Some of the material, however, is more complete and should be published so that it will be more readily available to other geneticists. This latter type of material will be included in the Co-op News Letter in the same form as in previous circular letters. But it will also be written up in a different manner to be included in the collective publication."
"The details of the method of handling the material in the proposed collective publication of linkage studies in maize will, of course, have to be worked out cooperatively between the publisher and the Maize Genetics Cooperation. During the several years that this idea of collective publication has been discussed among maize workers, the following plan has been formulated. Each cooperator who has linkage data which he considers useful and of permanent value to other geneticists, shall write a short paper in the same manner as he would if he were to publish independently. Then each of these papers will be sent to the Secretary of the Maize Genetics Cooperation, who will group them into one larger paper with an introduction, etc., and will serve as author of the collective paper. The important point is that each short paper will be an individual and separate unit within this larger paper, with the name and address of the author affixed to it. The Secretary of the Maize Genetics Cooperation shall be responsible for the organization and composition of the whole collective paper, but the respective authors of the 'unit papers' shall be responsible for their data. This means that any citation from the collective publication must include the name of the maize worker who furnished that particular data."

Dr. Dunn has written:

"......there is nothing in the policy of GENETICS to interfere with publication of maize linkage data in the form you suggest. Our numbers early in the year are likely to be the heaviest so May or July publication would fit our schedule best. Submission of the first paper in February would be most convenient for us."

It is suggested that you write your contribution to the News Letter first; then excerpt certain linkage data from it and write a separate paper(s) to be included in the collective publication. The particular data which you select for publication will appear in both the News Letter and the group publication. For further information concerning the general form of a linkage paper, see the Co-op News Letter of March 4, 1936, page 2; or March 23, 1937, page 15.

Sincerely yours,

D. G. Langham

D. G. Langham,
Secretary
To Maize Geneticists: -

A number of maize geneticists have already sent in their items for the annual Co-op News Letter, and many of you probably have your contributions in the mail now. The final date for the receipt of material for this 1938 Letter is January 31st.

In the circular letter of November 17, 1937, I discussed the proposed collective publication of linkage data in such detail that the cardinal points were apparently lost in the shuffle. In brief, the plan is that linkage papers, any one of which in itself would not be sufficient for separate publication, will be sent to the Secretary of the Maize Genetics Cooperation who will group them in much the same manner as in BIOLOGICAL ABSTRACTS and send them to the Editor of GENETICS for publication. Each unit paper must be written as if it were to be published independently. No alterations or additions will be made by the Secretary of the Co-op.

In order to be included in this collective publication, your paper must be received by the Co-op not later than March 31, 1938.

Sincerely yours,

D. G. Langham

D. G. Langham
To Maize Geneticists:—

The material in this letter was obtained from many sources, and has been organized under the following heads:

I. General News Items.
II. Seed Stocks Grown in 1937.
III. Seed Stocks Received for Propagation in 1936.
IV. Miscellaneous Co-op Items.
V. Gene Index of all the Co-op letters.
VI. Chromosome Maps of Maize.

A. Regular map: few genes, loci fairly definite.
B. Working map: many genes, loci not well established.

Most of the information in this letter is given as it was received by the Co-op, but a few changes were made in some of the tables to conform to the accepted system of arrangement.

I. General News Items

University of Minnesota, St. Paul, Minn.—

1. Zebra seedling, zb4, has been located in chromosome 1 by the following studies.

<table>
<thead>
<tr>
<th>Genes</th>
<th>Phase</th>
<th>XY</th>
<th>XY</th>
<th>XY</th>
<th>XY</th>
<th>Total</th>
<th>% Recomb.</th>
</tr>
</thead>
<tbody>
<tr>
<td>zb4 Br</td>
<td>RS</td>
<td>448</td>
<td>142</td>
<td>152</td>
<td>12</td>
<td>754</td>
<td>31.1</td>
</tr>
<tr>
<td>zb4 F1</td>
<td>RS</td>
<td>455</td>
<td>135</td>
<td>158</td>
<td>9</td>
<td>757</td>
<td>28.0</td>
</tr>
<tr>
<td>zb4 Bm2</td>
<td>RS</td>
<td>487</td>
<td>103</td>
<td>144</td>
<td>23</td>
<td>757</td>
<td>46.0</td>
</tr>
<tr>
<td>zb4 P</td>
<td>CS</td>
<td>266</td>
<td>24</td>
<td>5</td>
<td>64</td>
<td>359</td>
<td>6.9</td>
</tr>
</tbody>
</table>

Progeny of 1 ear indicated that the P parent was heterozygous giving the following segregation:

<table>
<thead>
<tr>
<th></th>
<th>63</th>
<th>30</th>
<th>2</th>
<th>24</th>
<th>199</th>
<th>6.7</th>
</tr>
</thead>
</table>

2. A culture of ra2 received from Dr. Brink at Wisconsin proves to be similar to the one I have studied for many years. There is some variability in type of ear, some cultures showing rudimentary male flowers on the tips of some ears, irregularity of rows on the cob but no division of the cob as in ra1. Other cultures have a divided cob on the tip of the ear but a solid cob at the base. Ra1 can be separated from ra2 in the F2 of a cross.

H. K. Hayes
3. Virescent seedling. A virescent seedling in Minn. #13 corn was found to be linked with japonica and given the symbol v_21. Rhoades (Co-op News Letter, March 23, 1937) has found v_16 and v_21 to be allelic after trisomic tests had placed v_16 also in chromosome 8. Further linkage data of j_1, msg and v_16 are as follows:

<table>
<thead>
<tr>
<th>Genes</th>
<th>Phase</th>
<th>XY</th>
<th>Xy</th>
<th>xy</th>
<th>Total</th>
<th>% Recomb.</th>
</tr>
</thead>
<tbody>
<tr>
<td>J_1 V_16</td>
<td>RB</td>
<td>82</td>
<td>565</td>
<td>542</td>
<td>71</td>
<td>1260</td>
</tr>
<tr>
<td>J_1 V_16</td>
<td>RS</td>
<td>354</td>
<td>149</td>
<td>154</td>
<td>4</td>
<td>661</td>
</tr>
<tr>
<td>J_1 msg</td>
<td>CS</td>
<td>464</td>
<td>39</td>
<td>23</td>
<td>135</td>
<td>661</td>
</tr>
<tr>
<td>msg V_16</td>
<td>RS</td>
<td>337</td>
<td>150</td>
<td>171</td>
<td>3</td>
<td>661</td>
</tr>
</tbody>
</table>

The order of the genes appears to be j_1 - msg - v_16.

4. Zebra striped. Emerson et al list five cases of zebra striping that have been reported. There are two types, one that is expressed in the seedling stage and which may completely disappear in partly grown plants. The type reported here was obtained from an inbred line of Del Maiz sweet corn furnished by J. D. Barnard of the Minnesota Valley Canning Company. The season in 1936 was very hot and dry. Germination of sugary seeds was much lower than normal. Zebra striping could not be classified until late summer when the weather was cooler. Classification was difficult in some cultures. The results given in the summary indicate zb_6 is located in group 4.

<table>
<thead>
<tr>
<th>Genes</th>
<th>Phase</th>
<th>XY</th>
<th>Xy</th>
<th>xy</th>
<th>Total</th>
<th>% Recomb.</th>
</tr>
</thead>
<tbody>
<tr>
<td>zb_6 Tu</td>
<td>CS</td>
<td>410</td>
<td>64</td>
<td>64</td>
<td>90</td>
<td>628</td>
</tr>
<tr>
<td>zb_6 Gl_3</td>
<td>RS</td>
<td>326</td>
<td>148</td>
<td>135</td>
<td>19</td>
<td>628</td>
</tr>
<tr>
<td>Tu Gl_3</td>
<td>RS</td>
<td>314</td>
<td>160</td>
<td>147</td>
<td>7</td>
<td>628</td>
</tr>
<tr>
<td>zb_6 Su_1</td>
<td>CS</td>
<td>4227</td>
<td>259</td>
<td>175</td>
<td>361</td>
<td>5022</td>
</tr>
</tbody>
</table>

The order of the genes appears to be Su_1 - zb_6 - Tu - gl_3.

H. K. Hayes and M. S. Chang

University of Missouri, Columbia, Missouri

1. Of the unknown glossies grown in 1937, tests were completed on one which was found to be different from the other ten and has been assigned the symbol gl_11. This was an X-ray induced mutant. One of the ultra-violet induced glossies proved upon test to be gl_2. Tests on three others have not been completed.
In a previous report it was stated that somewhere along the line g_{16} and g_{18} had been confused and the present stocks of these are identical. Since the symbol g_{18} has been used in print for the glossy on the 5th chromosome, this designation has been retained and a new glossy assigned the symbol g_{16}.

2. Glossy 7 has been tested with j_1 msg with no indication of linkage:

<table>
<thead>
<tr>
<th>Genes</th>
<th>Phase</th>
<th>XY</th>
<th>Xy</th>
<th>XY</th>
<th>xy</th>
<th>Total</th>
<th>% Recomb.</th>
</tr>
</thead>
<tbody>
<tr>
<td>g_{17} j_1</td>
<td>CS</td>
<td>159</td>
<td>22</td>
<td>40</td>
<td>9</td>
<td>230</td>
<td>43</td>
</tr>
<tr>
<td>g_{17} Msg</td>
<td>CS</td>
<td>148</td>
<td>23</td>
<td>51</td>
<td>8</td>
<td>230</td>
<td>50</td>
</tr>
</tbody>
</table>

3. The inheritance of yellow endosperm color is more complex than has been generally believed. Evidence is available for the presence of at least one gene in addition to Y_1 and Y_3 which is concerned with the presence or absence of yellow endosperm pigment. Ratios of 3:1, 9:7, 15:1, 45:19 and others possibly more complex have been obtained.

The yellow scutellum gene s_y is able to produce its effect in the presence of Y_1Y_1, but in the presence of other recessive whites the development of pigment (carotin) is completely suppressed. The factor or factors involved have not been completely identified.

G. F. Sprague

John Innes Horticultural Institution, London, England —

1. Experiments on the inheritance of quantitative characters commenced by Dr. Brieger were continued during the summers of 1936 and 1937. The ultimate aim is to produce varieties of sweet corn which are early enough for the English climate and yet satisfactory in yield. In a comparison of F_1 families and their parents it was found that the application of a pseudo-factorial method of analysis (Yates, 1936) is not warranted for field trials with maize. The efficiency of the experiment when treated as a $3 \times 3 \times 3$ pseudo-factorial arrangement was about 60% of that when treated as a simple randomised block lay-out.

C. D. R. Dawson

Connecticut Agricultural Experiment Station, New Haven, Conn. —

1. The evidence so far obtained indicates that mosaics in maize are due to losses or rearrangements of chromosome fragments rather than to somatic crossing over as Stern finds for Drosophila. Paired mosaics involving different chromosomes have been found for nearly all of the easily identified endosperm characters. In seeds heterozygous for C and Pr the following results have been obtained:

<table>
<thead>
<tr>
<th>White Spots</th>
<th>Red Spots</th>
<th>Red and White Paired Spots</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>8409</td>
<td>1061</td>
</tr>
<tr>
<td>Ratio</td>
<td>227</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
These figures indicate a more or less random exchange between the 60 chromosome arms in this triploid tissue.

The secondary paired mosaics (twin spots within the dark part of primary twin spots) can not be accounted for by somatic crossing over but are understandable on the basis of translocation followed by further breaking at other places. Variegated waxy tissue in areas that have previously lost the C gene show an unstable condition that would not be expected from somatic crossing over. Similar variegation has been found involving C, Pr, and Su.

In seeds resulting from the pollination of C wx by c Wx light and dark aleurone twin spots were found indicating a shift of one C allele. If this resulted from an exchange of homologous segments the endosperm underlying the dark part of the twin spot should be waxy. In many such twin spots examined no waxy areas were found.

D. F. Jones

Agricultural Experiment Station, College Station, Texas -

1. The most important development in Texas during the past year is the discovery that the essential differences between Zea and Euchlaena are not due to numerous genes scattered at random over all the chromosomes as we first thought, but are due to four chromosome segments which are transmitted in inheritance in almost the same manner as single genes. The fact that these segments all carry genes similar to those possessed by Tripsacum, and the simultaneous discovery that short segments of the chromatin are interchanged between Zea and Tripsacum in hybrids of these two genera, has led us to the conclusion that teosinte is nothing more than maize with several translocation segments from Tripsacum superimposed upon the maize germplasm; the product of a natural hybrid between Zea and Tripsacum.

Two of these translocation segments have been located by linkage studies. They occur at opposite ends of chromosome 4 and both show linkage with Su and Tu. These translocation segments from Tripsacum are probably the cause of the unpaired terminal segments which Longley has observed in his cytological studies of the hybrid of maize and teosinte. We have verified his observations on the occurrence of these segments but we are not yet certain that they occur in every case on the chromosomes which he has designated.

The differences between the various kinds of teosinte which have been collected in Guatemala and Mexico may be attributed partly to the differences in the maize to which these translocation segments have been added, and partly to a loss of portions of one or more segments as the result of repeated hybridization with maize.

These new facts reopen the entire question of the origin of
maize. With teosinte as a recent development out of the picture, it is reasonable to assume that maize originated from pod corn, which in the homozygous condition is frequently a perfect flowered plant similar to the Andropogonae, and which has the essential characteristics of a plant adapted to survival in the wild. The place of origin was probably in South America, either in Peru or Bolivia.

We suspect that the crossing of South American types of maize with Tripsacum to produce the new genus Euchlaena, has also resulted in some new types of maize previously not in existence, such as the pointed pop corns and the long slender flint and flour corns, neither of which are known in Peru or Bolivia. If this is the case most of our North American maize varieties, with the possible exception of the Southern Gourd-seed types, carry Tripsacum genes in their germplasm. It is possible that the knobs which many of our North American corn exhibit on the chromosomes have been received from Tripsacum via Euchlaena, in which case we are quite likely to find some South American varieties which are lacking in knobs.

These hypotheses suggest a number of genetic and cytological tests which will keep us well occupied for a number of years. We are having some difficulty in locating viable seed of Bolivian and Peruvian maize and if any of the readers of this letter have such seed available we should appreciate receiving some of it.

P. C. Mangelsdorf and R. G. Reeves

The following linkage data were obtained from the back-cross:

\[
\begin{array}{c|c|c|c|c|c|c|c|c}
0 & 1 & 2 & 3 & 1,2 & 1,3 & 2,3 & 1,2,3 \\
\hline
165 & 182 & 14 & 4 & 50 & 50 & 47 & 52 & 7, 10 & 1, 2 & 16 & 32 & 6 & 2 \\
\hline
347 & 18 & 100 & 99 & 17 & 3 & 48 & 8 & \end{array}
\]

Recombination percentages: \(br-f_1 \ 7.2\), \(br-Kn \ 26.1\), \(br-bm_2 \ 35.2\), \(f_1-Kn \ 27.0\), \(Kn-bm_2 \ 24.1\).

These data do not agree completely with the present accepted location of \(br\) and \(f_1\). On the basis of these data \(Kn\) is located closer to \(br\) than to \(f_1\), but it must be between \(f_1\) and \(bm_2\). After more extensive tests in 1937 the writer is doubtful that homozygous knotted plants can be distinguished from the heterozygous plants.

2. A tall late type of plant with about 50 per cent more nodes than the normal was discovered among the plants from an \(F_2\) selfed
ear from the Krug variety. Plants of this type were crossed with several normal stocks in 1936 and the F₁ progenies were grown in 1937. All of the F₁ plants were normal. A similar type was found in 1936 among the plants from another F₂ selfed ear from the Krug variety.

A. A. Bryan

California Institute of Technology, Pasadena, Calif.

1. Correlation between cytology and map position in chrom. 1.

<table>
<thead>
<tr>
<th>Cytological Position</th>
<th>Linkage Map Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1-2c</td>
<td>S .7</td>
</tr>
<tr>
<td>T1-9c</td>
<td>S .6</td>
</tr>
<tr>
<td>T1-2b</td>
<td>S .4</td>
</tr>
<tr>
<td>T1-6c</td>
<td>S .3</td>
</tr>
<tr>
<td>T1-3a</td>
<td>S .25</td>
</tr>
<tr>
<td>T1-9a</td>
<td></td>
</tr>
<tr>
<td>T1-5b</td>
<td></td>
</tr>
<tr>
<td>T1-5c</td>
<td></td>
</tr>
<tr>
<td>T1-6b</td>
<td>L .25</td>
</tr>
<tr>
<td>T1-6a</td>
<td>L .2</td>
</tr>
<tr>
<td>T1-3d</td>
<td></td>
</tr>
<tr>
<td>T1-7c</td>
<td>L .3</td>
</tr>
<tr>
<td>T1-7a</td>
<td>L .4</td>
</tr>
<tr>
<td>T1-10a</td>
<td>L .4</td>
</tr>
<tr>
<td>T1-7b</td>
<td>L .6</td>
</tr>
<tr>
<td>T1-9b</td>
<td>L .6</td>
</tr>
<tr>
<td>T1-2a</td>
<td></td>
</tr>
<tr>
<td>T1-5a</td>
<td></td>
</tr>
<tr>
<td>T1-4a</td>
<td></td>
</tr>
<tr>
<td>T1-7d</td>
<td>L .8</td>
</tr>
</tbody>
</table>

2. Chocolate. In the distal part of long arm of chrom. 2. Homozygous long inversion gave the linkage order: lg₁-44-v₄₄-32-B-25-Ch

As the inversion includes about 4/5th of the long arm, Ch must be very near the end.

E. G. Anderson

3. Ms₂₀. Backcross tests with the following chromosome alterations show no obvious linkage:

- Inversion of chrom. 2 (near B and beyond v₄₄)
- T2-4b (2 near v₄₄, 4 beyond g₁₃)
- T2-3c (2 near sk, 3 near d₁)
- T4-8a (4 near su, 8 near spindle attachment)
4. Correlation between cytology and map position in chromosome 2.

<table>
<thead>
<tr>
<th>Cytological Position</th>
<th>Linkage Map Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2-3a</td>
<td>near 1g</td>
</tr>
<tr>
<td>T2-6b</td>
<td>B ± 2.2</td>
</tr>
<tr>
<td>T2-9a</td>
<td>B - 2.7 - T - 23.7 - Vf4</td>
</tr>
<tr>
<td>T1-2b</td>
<td>B - 5.3 - T - 30.9 - Vf4</td>
</tr>
<tr>
<td>T2-3c</td>
<td>B - 6.0 - T - 28.0 - Vf4</td>
</tr>
<tr>
<td>T2-3d</td>
<td>B - 13.3 - T - 12.4 - Vf4</td>
</tr>
<tr>
<td>T2-4d</td>
<td>B - 18.0 - T - 6.0 - Vf4</td>
</tr>
<tr>
<td>T2-9b</td>
<td>B - 22.5 - T - 7.2 - Vf4</td>
</tr>
<tr>
<td>T2-5a</td>
<td>B - 25.0 - T - 7.0 - Vf4</td>
</tr>
<tr>
<td>T2-7b</td>
<td>B - 28.2 - T - 4.6 - Vf4</td>
</tr>
<tr>
<td>T2-10a</td>
<td>B - 36.5 - T - 6.0 - Vf4</td>
</tr>
<tr>
<td>T2-6c</td>
<td>Vf4 ± 1.1</td>
</tr>
<tr>
<td>T2-7c</td>
<td>Vf4 ± 1.6</td>
</tr>
<tr>
<td>T2-4a</td>
<td>Vf4 ± 5.3</td>
</tr>
<tr>
<td>T2-7c</td>
<td>Vf4 ± 7.7</td>
</tr>
<tr>
<td>T2-5b</td>
<td>Vf4 ± 35.0 - T</td>
</tr>
<tr>
<td>T2-4b</td>
<td></td>
</tr>
<tr>
<td>T2-4c</td>
<td></td>
</tr>
</tbody>
</table>

I. M. Clokey and E. G. Anderson

5. Linkage of sb. Slit blade is probably not on chromosome 6 where first reported:

<table>
<thead>
<tr>
<th>Genes</th>
<th>Phase</th>
<th>XY</th>
<th>Xy</th>
<th>xy</th>
<th>xy</th>
<th>Total</th>
<th>% Recomb.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y1 sb</td>
<td>RS</td>
<td>930</td>
<td>249</td>
<td>306</td>
<td>84</td>
<td>1569</td>
<td>50</td>
</tr>
<tr>
<td>P1 sb</td>
<td>RS</td>
<td>478</td>
<td>135</td>
<td>154</td>
<td>49</td>
<td>816</td>
<td>48</td>
</tr>
<tr>
<td>Su2 sb</td>
<td>RS</td>
<td>896</td>
<td>265</td>
<td>340</td>
<td>68</td>
<td>1569</td>
<td>43</td>
</tr>
<tr>
<td>Py sb</td>
<td>RS</td>
<td>1165</td>
<td>328</td>
<td>352</td>
<td>68</td>
<td>1913</td>
<td>50</td>
</tr>
</tbody>
</table>

The Y was not certainly, but probably, Y1. In any case, sb is not between Y1 and PY.

6. sb is not on chromosome 2.

<table>
<thead>
<tr>
<th>Genes</th>
<th>Phase</th>
<th>XY</th>
<th>Xy</th>
<th>xy</th>
<th>xy</th>
<th>Total</th>
<th>% Recomb.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lg1 sb</td>
<td>RS</td>
<td>288</td>
<td>95</td>
<td>76</td>
<td>35</td>
<td>494</td>
<td>50</td>
</tr>
<tr>
<td>Gl2 sb</td>
<td>RS</td>
<td>288</td>
<td>92</td>
<td>78</td>
<td>36</td>
<td>494</td>
<td>50</td>
</tr>
</tbody>
</table>

sb x trisome 2:

<table>
<thead>
<tr>
<th></th>
<th>sb</th>
<th>sb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Culture 1</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Culture 2</td>
<td>187</td>
<td>63</td>
</tr>
<tr>
<td>Culture 3</td>
<td>126</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>319</td>
<td>88</td>
</tr>
</tbody>
</table>
If sb were on chromosome 2 there should be about 30 sb plants; if on some other chromosome, about 100.

Notes: Sb is generally readily classifiable, though quite variable. Many of the plants are fully fertile. Usually the ratio is about as expected, though in two of my cultures the ratio was about 3:1 (F₂ seed). This was not due to lethality of sb, for nearly all of the seeds grew. In A B PI plants the splitting of the blades seemed less developed than in green plants.

J. Shafer

University of Wisconsin, Madison, Wisconsin

1. Linkage of ra₂.

<table>
<thead>
<tr>
<th>Genes</th>
<th>Phase</th>
<th>XY</th>
<th>Xy</th>
<th>XY</th>
<th>xy</th>
<th>Total</th>
<th>% Recomb.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr₁ Ra₂</td>
<td>RB</td>
<td>14</td>
<td>26</td>
<td>22</td>
<td>3</td>
<td>65</td>
<td>26.1</td>
</tr>
</tbody>
</table>

This is further evidence indicating that the ra₂ locus may be near that of d₁.

R. A. Brink

Arlington Experiment Farm, Arlington, Virginia

1. The dominant Dt gene has been reported (1936) to produce dots of aleurone color on a₁-tester seeds. The nature of the interaction between Dt and a₁ was unknown at that time. It has now been established that Dt causes a₁ to become unstable and to mutate at a rate thousands of times greater than normal. Mutations of a₁ in the presence of Dt can be detected in aleurone, husks, and leaves i.e. plant color, and pericarp tissue. Recessive a₁ mutates to the A₁ allele a thousand times as frequently as to the a₁ allele. There is no chromosome abnormality present in the Dt line. The a₁ gene is in chromosome 3 while Dt may belong to chromosome 9. Mutations of a₁ to A₁ or a₁ occur late in development in all tissues. It is not possible, at least by the writer, to reconcile these data with any of the hypotheses advanced by Schultz, Stern or Patterson to explain variegation. They seem, however, to agree with Demerec's conception of increased mutability being caused by a chemical or physiological condition produced in the cell. Recessive a₁ is highly stable in the presence of dt. The Dt gene is specific in its effect on a₁. No other recessive locus including a₂, c, f, le₁, wx and su is affected. A dominant modifying gene reducing the frequency or rate of mutation has been isolated. There is some evidence of a recessive gene affecting the time of mutation.

2. The following data on the location of ws₃ show the order to be as follows:

\[
\begin{align*}
\text{ws₃} & \quad \text{le}₁ & \quad g₁₂ & \quad B \\
0 & \quad 11 & \quad 30 & \quad 49
\end{align*}
\]

These four genes are all located in the short arm of chromosome 2 and if the Rs or r₈ alleles are used with B all of them can be classified in the seedling stage.
3. Trisomic tests show \(y_{10} \) is in chromosome 6. Since \(y_{10} \) gave \(43\% \) recombination with \(Y_1 \) it will fall near the end of either the long or short arm. Tests with \(px \) will be made this spring.

4. Preliminary results indicate that the pollen tube is not parasitic but is dependent for its growth in the silk upon the starch stored in the pollen grain.

5. There is a highly significant increase in crossing over in the \(A_2-Bt \) and \(Bm_{1}-Pr \) regions of chromosome 5 in microsporocytes as compared with megasporocytes. In a "low" line there was 7.6\% recombination between \(A_2-Bt \) in the female gametes contrasted with 12.2\% in the male gametes. Similar differences between the frequency of crossing over in the two sexes is the explanation of the inexplicable difference found by the writer (1936) in crossing over for the \(Bm_1-Pr \) region in plants hyperploid for the short arm of chromosome 5 as compared with diploid sibs. The hyperploid individuals had been used as the male parent while the diploid sibs had been used as the female.

M. M. Rhoades

Cornell University, Ithaca, New York

1. In the News Letter of March 23, 1937, pp. 1, 2, it was shown by means of three-point tests involving the genes \(sr, P, \) and \(br \) and the translocations \(Tl-5a \) and \(Tl-5c \), that the order of the genes is \(sr - P - br \) with the translocation breaks between \(P \) and \(br \). Backcross data from 476 individuals were also presented suggesting that \(t_{25} \) is between \(P \) and what was then called \(Tl-10b \) but now designated \(Tl-2c \).

Records of the past summer presented below show that \(Tl-2c \) is to the left of \(P \) very near \(sr \), that \(t_{25} \) is to the left of \(P \) with \(m_{17} \) presumably to the left of \(t_{25} \), and that \(Tl-3a \) and \(Tl-9c \) are probably to the right of \(P \). The data are as follows:

<table>
<thead>
<tr>
<th>Genes</th>
<th>Phase</th>
<th>XY</th>
<th>XY</th>
<th>XY</th>
<th>XY</th>
<th>Total</th>
<th>% Recomb.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sr</td>
<td>Tl-2c</td>
<td>CB</td>
<td>151</td>
<td>1</td>
<td>1</td>
<td>144</td>
<td>297</td>
</tr>
<tr>
<td>F<sub>1</sub> genotype</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1, 2</td>
<td>Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>------</td>
<td>-------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ts<sub>2</sub> P + + Tl-5b</td>
<td>76</td>
<td>93</td>
<td>1</td>
<td>2</td>
<td>17</td>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td>ms<sub>17</sub> P + + Tl-5b</td>
<td>26</td>
<td>25</td>
<td>3</td>
<td>2</td>
<td>15</td>
<td>13</td>
<td>2</td>
</tr>
<tr>
<td>ts<sub>2</sub> P + + Tl-3a</td>
<td>106</td>
<td>140</td>
<td>3</td>
<td>1</td>
<td>29</td>
<td>36</td>
<td>0</td>
</tr>
<tr>
<td>ms<sub>17</sub> P + + Tl-3a</td>
<td>54</td>
<td>33</td>
<td>2</td>
<td>0</td>
<td>7</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>sr P + + Tl-9c</td>
<td>38</td>
<td>32</td>
<td>24</td>
<td>17</td>
<td>0</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>From '37 News Letter</td>
<td>97</td>
<td>167</td>
<td>24</td>
<td>17</td>
<td>0</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Tl-2c + P + ts<sub>2</sub> +</td>
<td>156</td>
<td>138</td>
<td>51</td>
<td>29</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>+ Tl-2c + + ts<sub>2</sub> P</td>
<td>204</td>
<td>276</td>
<td>50</td>
<td>49</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>From '37 News Letter</td>
<td>401</td>
<td>1175</td>
<td>70</td>
<td>149</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>+ ms<sub>17</sub> P + Tl-2c + +</td>
<td>152</td>
<td>157</td>
<td>29</td>
<td>31</td>
<td>3</td>
<td>5</td>
<td>0</td>
</tr>
</tbody>
</table>

Two of the cultures reported above involving Tl-2c with B of chromosome 2 and P and ts₂ of chromosome 1, gave the following data from B Tl-2c + P + + ts₂ + +:

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>1, 2</th>
<th>1, 3</th>
<th>2, 3</th>
<th>1, 2, 3</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>122 111</td>
<td>27 34</td>
<td>30 21</td>
<td>2 0 8 21</td>
<td>1 0 0 0</td>
<td>0 0</td>
<td>0 0</td>
<td>377</td>
</tr>
<tr>
<td>233 16.2 %</td>
<td>13.5 %</td>
<td>0.5 %</td>
<td>7.7 %</td>
<td>0.3 %</td>
<td>0 0</td>
<td>0 0</td>
<td>377</td>
</tr>
</tbody>
</table>

One of these cultures also segregated lg₁ as in F₂. Using only lg₁ plants, the records for lg₁ B Tl-2c + P + + ts₂ + + are:
One of the cultures reported above to show close linkage between
Tl-2c and sr also involved B of chromosome 2 but no marker other
than sr of chromosome 1. The data are:

<table>
<thead>
<tr>
<th>F<sub>1</sub> genotype</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>1,2</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>B Tl-2c + sr</td>
<td>63</td>
<td>44</td>
<td>28</td>
<td>9</td>
<td>144</td>
</tr>
<tr>
<td>+ +</td>
<td>107</td>
<td>37</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Since no crossover between Tl-2c and sr appeared in this culture,
the orientation of these two markers with respect to the rest of
chromosome 1 cannot be told.

2. Among 2052 F₂ plants of crosses of ad₁ with an₁, no double
recessive appeared, but F₃ cultures from 220 F₂ an₁ and ad₁ plants
indicated a crossover value of 4.1% (Linkage Summary, 1935, p. 32).
Backcross cultures of last summer gave the following results:

<table>
<thead>
<tr>
<th>Genes</th>
<th>Phase</th>
<th>XY</th>
<th>Xy</th>
<th>xy</th>
<th>xy</th>
<th>Total</th>
<th>% Recomb.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ad<sub>1</sub> An<sub>1</sub></td>
<td>CB</td>
<td>247</td>
<td>7</td>
<td>10</td>
<td>199</td>
<td>463</td>
<td></td>
</tr>
<tr>
<td>Ad<sub>1</sub> An<sub>1</sub></td>
<td>RB</td>
<td>4</td>
<td>36</td>
<td>31</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A number of seedlings in the latter cross were destroyed by mice
in early stages. Counts are not dependable for distances but they
are consistent with the order in the first cross.

A. C. Fraser
1. Doubling the number of chromosomes in yellow corn increased the carotinoid content 43 per cent as determined by chemical analysis of 2N and 4N stocks having a common origin. The volume of the endosperm cells of the tetraploid was more than 3.5 times as great as that of the diploid. Thus the individual endosperm cells of the tetraploid contained more than 5 times as much carotinoid as did those of the diploid and in terms of gene concentration within the endosperm tissue the amount of carotinoid was increased 2.5 times as a result of chromosome doubling. Chemical analyses by D. B. Hand.

2. The following results have been obtained to date on haploid frequencies in seedling progenies from untreated and x-rayed (1500 r-units) pollen:

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>2N</th>
<th>(\frac{4}{1000})</th>
<th>(\frac{52}{1000})</th>
</tr>
</thead>
<tbody>
<tr>
<td>From untreated</td>
<td>66</td>
<td>126,302</td>
<td>(\frac{4}{1000})</td>
<td>(\frac{52}{1000})</td>
</tr>
<tr>
<td>From x-rayed</td>
<td>31</td>
<td>24,619</td>
<td>(\frac{1.25}{1000})</td>
<td></td>
</tr>
</tbody>
</table>

The haploids were identified with the aid of recessive seedling genes, stomate examination and root-tip chromosome counts.

L. F. Randolph

6. The following characters have appeared in inbred lines:
 - de - Defective endosperm. Seed similar to de1.
 - de - Defective endosperm. Seed similar to de1.
 - de - Defective endosperm. May be a new sugary. Classification good. Viability good in germinator, but hasn’t been tested under field conditions.
 - Pu - Purple plumule. Similar to Pu1.
 - w - White seedling. Similar to w1.
 - ws - White sheath. Similar to ws3.

R. G. Wiggins

7. White seedling-1 (w1) has been known to be loosely linked with the Y1 gene of the sixth chromosome (Linkage Summary, 1935). To place w1 more accurately in the chromosome seedling counts were made of the F2 cross between w1 and pigmy (py). Seeds were taken from the Co-op stocks. The results indicate a very close linkage between py and w1.
Segregation in autotetraploid maize. To determine the nature of segregation of some genes in autotetraploid maize, backcrosses were made involving the genes \(B \) (plant color booster) and \(Su \) (sugary endosperm).

<table>
<thead>
<tr>
<th>Cross</th>
<th>B</th>
<th>b</th>
<th>No. of Plants</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>BBbb x bbbb</td>
<td>437</td>
<td>135</td>
<td>572</td>
<td>3.25 : 1</td>
</tr>
</tbody>
</table>

Some difficulty was encountered in classifying the progeny of the backcross, sun red (BBbb) x green (bbbb), since there was a great deal of variation in degree of coloration. Some plants were distinctly sun red, others resembled dilute sun red, while still others showed a tinge of color on and around the ligules. Undoubtedly errors were made in classification, there being an excess of green plants. However, the backcross ratio approaches \(3.67 : 1 \). Since the type of segregation is a function of cross over distance between the gene locus and the spindle fiber attachment region, this would indicate that the gene \(B \) is located fifty or more units from the spindle fiber attachment region and that chromatid segregation had occurred.

<table>
<thead>
<tr>
<th>Cross</th>
<th>Su</th>
<th>su</th>
<th>No. of plants</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Su Su su su x</td>
<td></td>
<td></td>
<td>2877</td>
<td>4.46 : 1</td>
</tr>
<tr>
<td>su su su su</td>
<td>369</td>
<td>87</td>
<td>456</td>
<td>4.43 : 1</td>
</tr>
</tbody>
</table>

There was no difficulty in classifying sugary segregates in a backcross of autotetraploids. The ratio of \(4.43 \) Su : 1 su indicates that this gene has segregated on a basis intermediate between the random distribution of four chromosomes and random distribution of eight chromatids, and suggests that the gene \(Su \) is located about 20 cross over units from the spindle fiber attachment region.

H. E. Fischer

It has been observed by many investigators that the \(F_1 \) ears of maize–teosinte hybrids are 4-rowed (paired spikelets, two-ranked). This indicates that the paired spikelet condition
of the maize ear is dominant to the single spikelets of teosinte. Collins and Kempton, 1920, showed that in an F₂ population, paired and single spikelets segregated 3:1. Data obtained by the writer in the summer of 1937 have confirmed their findings.

It has not been pointed out, however, that the two-ranked condition of teosinte, which appears in the F₁ of maize-teosinte hybrids, segregates as a unit character in the F₂ population. The combined 3:1 segregation of the dominant two-ranked condition of teosinte (as contrasted with the many-ranked condition of maize) and the 3:1 segregation of paired vs single spikelets, gave a 9:3:3:1 ratio, indicating that these two genes are independent of each other. This independence makes possible the combination of the recessive many-ranked condition of maize with the recessive single spikelets of teosinte, giving two kinds of ears: some with an even number of rows and others with an odd number of rows. Thus, 3-, 4-, and 5-rowed ears with single spikelets have been found. With paired spikelets these would presumably have been 6-, 8-, and 10-rowed ears, respectively.

10. Preliminary F₂ and reciprocal backcross data on maize-teosinte hybrids indicate that response to short-day may be due to one, or a few, genetic factors.

11. New characters.

czx - Cuzco. Plant too late to shed pollen under field conditions at Ithaca.
la₄ - Lazy teosinte. Similar to la₁ in maize. Has not been tested for allelism.

D. G. Langham

II. Seed Stocks Grown, 1937

1. Testers.

Chromosome 1:
\[p \text{ ad₁ seg. } an₁ \]
\[(p \text{ ad₁ } x p \text{ ad₁ } an₁)\text{self} \]
\[br \ f₁ \ bm₂ \ x (Kn \ x \ br \ f₁ \ bm₂) \]

Chromosome 2:
\[1g₁ \ gl₂ \ B \ ts₁ \ v₄ \ A \ Pl \ x 1g₁ \ +/gl₂ \ B \ +/ts₁ \ v₄ \ A \ Pl \]
\[1g₁ \ b \ gs₂ \ v₄ \ ? \ gl₂/? \ x \ Inbred \ II \]
\[1g₁ \ gl₂/? \ b \ v₄ \ gs₂ \ x \ Inbred \ I \]
Chromosome 2 (cont'd):
Inbred x lg1 gl2 b v4 A pl
lg1 gl2 b v4 A1 Y

Chromosome 3:
a1 lg2 Dt/?
a1 Dt/?
a1 +/na +/lg2 +/ts4 x a1 na +/lg2 +/ts2
a1 lg2 d1 x A1 lg2 d1 ts4
a1 lg2 ra2
a1 yt seg. na
a1 ts4 +/na Dt/? x a1 +/ts4 na Dt/? Trisome #3

Chromosome 4:
(su1 x dH) x (Tu su1 x dH)
suam du
(+/w4 +/su1)self
(Ts5 su1 x w1)self
(Ts5 su1 x la) x la su1

Chromosome 5:
Homo. A1 C R a2 bt bv pr1
v2 a2 A1 C R b pl
Trisome #5

Chromosome 6:
Pl sm +/py A b x Pl py A b
Y1 Pl sm seg. py

Chromosome 7:
Inbred x ra1 gl1 ij bx
ra1 gl1 ij x gl1 ij fr1 +/fr2
v5 gl1 Tp seg. ra1 tp
ra1 gl1 v5 x Tp gl1 v5

Trisome #7

Pl sm x pbx (Lebedeff)
Chromosome 8:
\[v_{16} \text{ msg j}_1 x (\text{msg j}_1 x v_{16}) \]
\[\text{msg x msg/+} \]

Chromosome 9:
Inbred I x \(\ell_4 \) wx
\[\ell_4 \text{ wx x (gl}_4 x \text{yg}_2 \text{ c sh wx)} \]
\[\text{au}_1 \text{ au}_2 \text{ sh} \]
\[\text{wx da ar sa}_1 \]
Trisome #9

Chromosome 10:
\(r \text{ zb}_5 \text{ seg. nl}_1 \)
\[0g/ + Y \text{ Pwr} \]
Inbred x OgOg
\[r A_1 C y_1 \text{ seg. } t_1 \]

2. Miscellaneous

U. S. 204 (Inbred I)
Inbred I x bm\(_3\)
\[A_1 C R P l \text{ B } y_1 a_2 \]
\[\ell_2 A_1 b P l \]
seg. \(v_{12} \)
\[v_{13} \]
\[v_{a2} x v_{a2/+} \]
\[w_{a} x w_{a/+} \]
\[m_{s5} x m_{s5/+} \]
\[m_{s6} x m_{s6/+} \]
\[m_{s7} x m_{s7/+} \]
\[m_{s9} x m_{s9/+} \]
\[m_{s10} x m_{s10/+} \]
\[m_{s12} x m_{s12/+} \]

msg \(j_1 x \text{msg/+ } j_1 \)
Trisome #8

Inbred I x ar wx
c sh wx bp
\[\text{msg}_2 x \text{msg}_2/+ \]
\[(\text{gl}_4 x \text{yg}_2 \text{ c sh wx}) \text{self} \]

11 seg. \(w_1 \)
\[0g \text{ Og} \]
seg. \(l_1 \)
Trisome #10

West Branch (Inbred II)
seg. \(hf \)
\[\text{Kn } A_1 b/b P l x A_1 +/b P l \]
\[A_1 C R A_2 \text{ Pr}_1 \]
\[(b m_3 x y g_3) \text{self} \]
\[A_1 C R A_2 \text{ pr}_1 \text{ i} \]
\[V_{g/+} x v_{g} \]
an\(_2\) x Inbred
\[+/n_{a2} x n_{a2} \]
r \(\text{pr}_1 x A_1 C \text{ Rst } \text{B} \]
\[A_1 B \text{ pl Rst } x r \text{ pr}_1 \]
\[+/b_{k1} x b_{k2} \]
\[(+/b_{k1}) \text{self} \]
\[+/d e +/m i x d e m i \]
ms\textsubscript{13} x ms\textsubscript{13}/+
ms\textsubscript{14} x ms\textsubscript{14}/+
ms\textsubscript{37} x ms\textsubscript{37}/+
ms\textsubscript{39} x ms\textsubscript{39}/+
ms\textsubscript{42} x ms\textsubscript{42}/+
v_{12} x v_{12} pr\textsubscript{1}
seg. g\textsubscript{l10}
(sb x A\textsubscript{1} b pl+/y\textsubscript{1} su\textsubscript{2}) sib
y\textsubscript{1} su\textsubscript{2} seg sb
pb\textsubscript{14}
S\textsubscript{x}
sy
Pc\textsubscript{x}
Ch/?. seg. g\textsubscript{1}
T\textsubscript{s3}+/ v\textsubscript{11}+/ x Rg/+ n\textsubscript{12}
T\textsubscript{s3}+/ v\textsubscript{11}+/ x R g\textsubscript{1} C sh wx g\textsubscript{c2}

Seed stocks from Australia grown by Shafer in Calif. for the Co-op:
3 different stocks of yellow-striped seedling.
5 different stocks of virescent seedling.

From Krug:
brown pericarp
branched ear
seg. dwarf
oily spots
seg. mealy
variegated pericarp
ragged
seg. zebra seedling
crinkly
black pericarp
seg. tassel seed
bract in tassel
seg. defective endosperm
rolled leaf
semi-dwarf
striped leaves
ms x ms/+
zebra leaves
From Mangelsdorff
mottled dwarf
seg. vp\textsubscript{x}
4. No germination.

\[
\begin{align*}
\text{sr an}_1 \text{ bm}_2 & \quad J_{33a} \times A \ c \ R \ sh \ wx \ B \ Pl \\
\text{da au}_1 \text{ au}_2 \ sh & \quad +/v_{15} \times +/v_{15} \\
\text{ms}_4 \times \text{ms}_4/+ & \quad \text{ms}_{15} \times \text{ms}_{15}/+ \\
\text{ms}_{27} \times \text{ms}_{27}/+ & \quad g_{4} \ ar \ sa_{1} \ pk_{1}
\end{align*}
\]

III. Seed Stocks Received For Propagation in 1938

1. J. Shafer, Ithaca, N. Y.:--

\[
\begin{align*}
v_{19} & \\
T \ 1-2b \times T \ 1-2b & \\
T \ 2-4b &
\end{align*}
\]

2. R. A. Brink, Madison, Wisconsin:--

\[
\begin{align*}
(p_m \times l_g_{2} \ d_{1}) \ sib & \\
(A_1 \ p_m \times a_1 \ l_g_{2}) \ sib
\end{align*}
\]

fs

4. A. Tavcar, Zagreb, Jugoslavia:--

Hs

5. M. M. Rhoades, Arlington, Virginia:--

\[
\begin{align*}
(w_{3} \ l_g_{1} \ B \ A_1 \ p_l \times g_l_{2}) & \times (w_{3} \ l_g_{1} \ b \ A_1 \ p_l \times g_l_{2})
\end{align*}
\]

6. W. R. Singleton, New Haven, Connecticut:--

\[
\begin{align*}
\text{ra}_{2} & \quad \text{zb} \times \text{f} \times \text{ys} \\
\text{su}_1 \times +/\text{lo} & \quad +/\text{ba}_x \\
\text{v}_{5} & \quad \text{g}_{1} \text{ v}_{4} \times \text{l}_{g} \text{ g}_{1} \text{ g}_{2} \text{ b} \text{ v}_{4} \ 	ext{r}^{\text{gACYSu}} \\
yellow \times yellow & \quad \text{ys}_{x} \text{ (7 cultures)}
\end{align*}
\]

7. R. G. Wiggans, Ithaca, N. Y.:--

\[
\begin{align*}
\text{dec} & \\
\text{f}_x & \quad \text{Pu}_{x}
\end{align*}
\]

IV. Miscellaneous Co-op Items

1. Seed stock inventory. In March, 1937, an inventory of the genetic seed stocks in the Co-op collection showed that 148 of the genes reported in the Linkage Summary, 1935, were not in the seed trays here. A list of those 148 genes was included in the News Letter, March 23, '37, and several maize geneticists responded by sending in 16 genetic stocks.
In January, 1938, personal requests were sent to each of the 25 geneticists who, collectively, had first reported the remaining 132 stocks. We have learned that about 75% of those genes have been lost due to inviability of seed stocks.

2. Assignment of linkage groups. One of the topics discussed at a special meeting of maize geneticists at the A A A S meetings in Indianapolis, was the problem of linking workable genes and developing more desirable tester stocks. This is an important question because there are more than 50 suitable genes that haven't been linked and some of the chromosomes are poorly marked.

The plan previously outlined for linking new genes has not been fundamentally changed, but it may well be reviewed here. Each of the ten linkage groups in maize has been assigned to one, or more, cooperator who is charged with testing unplaced characters with his particular chromosome and building up suitable tester stocks. The following assignments have been made:

Chromosome 1. Emerson.
Chromosome 2. Rhoades and Clokey.
Chromosome 4. Singleton and Brunson.
Chromosome 5. Burnham.
Chromosome 7. Jenkins and Fraser.
Chromosome 8. Sprague and Perry.
Chromosome 10. Lindstrom, Wentz, and Bryan.

When a new gene is found, a few seeds involving it should be sent to the secretary of the Maize Genetics Cooperation who will grow them in an increase block and obtain a liberal supply of seed for the central repository. Then the secretary will send a few seeds to each of the above geneticists who will test for linkage in his particular chromosome.

This system has been devised not to limit the number of workers who are trying to link new genes, but rather to insure the linkage of every workable gene.

3. More vigorous genetic stocks. During the summers of 1935 and 1936, a number of maize geneticists tested a group of inbred strains for disease resistance and general desirability. The two inbreds, U.S. #204 and West Branch Sweepstakes, seemed best suited to Ithaca conditions and have been selected for use in the Co-op. They have been designated as Inbred I and Inbred II, respectively, and are being used in crosses with weak genetic stocks to increase vigor and, by repeated backcrossing of the segregates to the
inbreds, to obtain a more nearly homozygous chromosome complement. Later, the segregates from each inbred line may be crossed to get hybrid vigor.

Last summer 17 genetic stocks were crossed with both Inbred I and Inbred II.

4. Linkage maps. The linkage maps attached to this Letter were prepared from the data in the Linkage Summary and the data which appeared in the Co-op News Letters since the Linkage Summary was published.

Sincerely yours,
D. G. Langham
D. G. Langham
Secretary
V. Gene Index of Co-op News Letters

This gene index of the Co-op News Letters was made so that the information in the Letters which might be of value in connection with linkage studies could be more readily found. It includes mainly those genes about which some statement of linkage has been made in the Letters, and does not include those that are merely mentioned without any supplementary information. John Shafer.

\[a_1:\]

- 12-18-33, p. 5
- 9-13-34, p. 8
- 1-23-33, p. 6

\[a_2:\]

- 19-24-34, p. 2, 14
- 1-23-33, p. 6
- 2-6-35, pp. 7, 17
- 2-6-38, pp. 9, 15

\[a_3:\]

- 11-24-34, p. 10

\[ad_1:\]

- 12-18-33, p. 5
- 1-25-34, p. 6
- 11-24-34, pp. 2, 14
- 1-23-33, p. 6
- 2-6-35, pp. 7, 17
- 2-6-38, pp. 9, 15

\[ad_2\] (= \(ad_1\))

- 2-6-35, p. 3

\[ad_2\] (first called \(ad_3\))

- 3-6-35, pp. 3, 15

\[ad_3\] (now \(ad_2\))

- 3-6-35, p. 3

\[ag\] (=\(ij\))

- 12-18-33, p. 6
- 9-13-34, p. 8
- 1-23-33, p. 6

\[al:\]

- 12-18-33, pp. 3, 5
- 1-23-33, pp. 3, 6
- 2-6-35, pp. 3, 5
- 2-6-38, pp. 15, 16
- 2-3-37, pp. 8, 15

\[an:\]

- 1-25-34, p. 4
- 11-24-34, p. 5
- 1-23-33, p. 6
- 2-6-35, p. 1
- 2-36-38, pp. 6, 11, 14

\[ar_1:\]

- 9-13-34, p. 2

\[ar:\]

- 12-18-33, p. 2
- 1-25-34, p. 8
- 1-23-33, p. 3
- 2-6-38, p. 16

\[as:\]

- 1-23-33, p. 6

\[an_1:\]

- 12-18-33, p. 2
- 1-25-34, p. 8
- 1-23-33, p. 3
- 2-6-38, p. 16
an2:
1-25-34, p. 8
3-6-38, p. 16

B:
12-18-33, p. 6
1-25-34, p. 4
11-24-34, p. 5
1-23-33, pp. 3, 6
3-6-35, pp. 1, 3, 4
3-4-36, pp. 11, 15
3-23-37, pp. 14, 15
3-6-38, pp. 6, 7, 8, 10, 11, 13, 14

ba1:
1-25-34, p. 5
11-24-34, p. 13
1-23-33, p. 3

ba2:
1-25-34, p. 4
1-23-33, p. 6
3-23-37, p. 1

bd:
9-13-34, pp. 6, 8
11-24-34, p. 10
3-4-36, pp. 7, 16
3-23-37, pp. 1, 9
3-6-38, p. 15

be (=bd):
9-13-34, p. 8

Bh:
1-25-34, p. 6
1-23-33, p. 6

bk1:
3-23-37, p. 1

bm1:
12-18-33, pp. 2, 5
1-25-34, p. 6
11-24-34, pp. 2, 4, 5, 6, 7
1-23-33, pp. 3, 6

bm1 (con't.):
3-6-35, pp. 1, 4, 9, 10, 11
3-4-36, pp. 3, 7
3-6-38, p. 9

bm2:
1-25-34, p. 4
11-24-34, p. 5
1-23-33, pp. 3, 6
3-6-35, pp. 1, 3
3-4-36, p. 10
3-23-37, pp. 3, 5
3-6-38, pp. 1, 5, 6, 14

bm3:
12-18-33, p. 5
11-24-34, p. 6

Bn1:
1-25-34, p. 7
11-24-34, pp. 6, 7
1-23-33, pp. 3, 7
3-4-36, p. 7

bn2:
9-13-34, p. 8

bp:
1-25-34, p. 8
1-23-33, p. 7
3-6-38, p. 16

br:
1-25-34, p. 4
11-24-34, p. 5
1-23-33, pp. 3, 7
3-6-35, p. 3
3-4-36, p. 10
3-23-37, pp. 1, 2, 5
3-6-38, pp. 1, 5, 6, 9, 14

bt1:
12-18-33, pp. 3, 5
1-25-34, p. 6
11-24-34, pp. 2, 4, 4, 6
1-23-33, p. 7
3-6-35, p. 3

226
bt_1 (continued):

- $3-23-37$, p. 10
- $3-6-38$, pp. 9, 15

bt_4 ($= bt_1$):

- $3-6-35$, p. 3

bv:

- $12-18-33$, p. 5
- $1-25-34$, p. 6
- $11-24-34$, p. 4
- $1-23-33$, p. 7
- $3-6-38$, p. 15

c:

- $12-18-33$, pp. 2, 6
- $1-25-34$, p. 8
- $9-13-34$, p. 8
- $1-23-33$, pp. 3, 7
- $3-6-35$, pp. 12, 14
- $3-4-36$, pp. 11, 15
- $3-6-38$, p. 16

cb:

- $1-23-33$, p. 7

Ch:

- $12-18-33$, p. 3
- $11-24-34$, pp. 6, 7
- $3-4-36$, pp. 3, 17
- $3-23-37$, p. 5
- $3-6-38$, p. 6

co:

- $3-6-35$, p. 15

cr_1:

- $1-25-34$, p. 5
- $1-23-33$, pp. 3, 7
- $3-4-36$, p. 7
- $3-23-37$, p. 14
- $3-6-38$, pp. 8, 15

cr_2:

- $1-23-33$, p. 7

d_a:

- $9-13-34$, p. 2

d_b:

- $9-13-34$, p. 2

dh:

- $3-6-38$, p. 15

d_2:

- $12-18-33$, p. 1
- $1-25-34$, p. 5

d_3:

- $1-25-34$, p. 8
- $1-23-33$, p. 7

d_5:

- $1-23-33$, p. 7

d_6:

- $1-23-33$, p. 7

d_7:

- $12-18-33$, p. 1
d_7 (cont.):
1-25-34, p. 8
9-13-34, p. 8
3-23-37, pp. 8, 9

d_{a1}:
1-25-34, p. 8
1-23-33, p. 7
3-6-35, p. 12
3-6-38, p. 16

D_{a2}:
12-18-33, p. 6
9-13-34, p. 8

de_{7}:
3-6-35, p. 12

de_{f}:
1-23-33, p. 8

de_{1}:
1-23-33, p. 7

de_{15}:
1-23-33, p. 8

de_{16}:
1-23-33, p. 8

dl:
12-18-33, p. 4

D_{t}:
11-24-34, p. 1
3-4-36, p. 7
3-23-37, p. 8
3-6-38, pp. 8, 15

du:
11-24-34

du (cont.):
3-23-37, p. 13
3-6-38, p. 15

et:
3-6-35, p. 5

f_{1}:
1-25-34, p. 4
11-24-34, pp. 5, 18
1-23-33, pp. 3, 8
3-6-35, p. 1
3-23-37, pp. 3, 9
3-6-38, pp. 1, 5, 14

f_{2}:
1-23-33, p. 8

f_{3}:
1-23-33, p. 8
3-6-35, pp. 9, 13

f_{ia}:
9-13-34, p. 3

fi:
1-23-33, p. 8

f_{11}:
1-25-34, p. 4
1-23-33, p. 8
3-4-36, p. 7

f_{r1}:
1-25-34, p. 7
1-23-33, p. 8
3-6-38, p. 15

f_{r2}:
1-25-34, p. 7
1-23-33, p. 8
3-6-38, p. 15
gl₁:
1-23-33, p. 8
11-24-34, pp. 5, 10
1-23-33, pp. 3, 8
3-6-35, p. 4
3-4-36, pp. 8, 9, 11, 16
3-23-37, pp. 6, 8, 9
3-6-38, p. 16

11-24-34, pp. 5, 7, 14
3-6-35, p. 1
3-4-36, pp. 3, 9, 16
3-23-37, pp. 4, 9
3-6-38, pp. 11, 15

gl₂:
12-18-33, p. 5
11-24-34, p. 6
3-23-37, p. 14

1-23-33, pp. 3, 9
1-25-34, p. 10
3-6-35, p. 1
3-4-36, p. 15
3-23-37, p. 8
3-6-38, pp. 2, 6, 15

gl₃:
1-23-33, pp. 3, 9
12-18-33, p. 6
1-25-34, p. 10
3-6-38, pp. 2, 6, 15

12-18-33, p. 5
1-23-33, p. 9
3-23-37, p. 10
3-6-38, p. 16

gl₄ (= old gl₅):
3-23-37, pp. 9, 10
3-6-38, p. 3

3-6-38, p. 3

gl₆ (new)
3-6-38, p. 3

gl₇
3-6-38, p. 3

gl₈:
3-6-35, p. 2
3-23-37, p. 9
3-6-38, p. 3

229
<table>
<thead>
<tr>
<th>gl\textsubscript{10} (=gl\textsubscript{1})</th>
<th>gl\textsubscript{10} (new)</th>
<th>gs\textsubscript{2} (cont.)</th>
<th>h</th>
<th>I</th>
<th>ij</th>
<th>in</th>
<th>it</th>
<th>j\textsubscript{1}</th>
<th>j\textsubscript{2}</th>
</tr>
</thead>
<tbody>
<tr>
<td>12-18-33, p. 1</td>
<td>3-23-37, p. 10</td>
<td>11-24-34, p. 5</td>
<td>11-24-34, p. 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-25-34, p. 4</td>
<td>3-6-35, p. 2</td>
<td>9-13-34, p. 8</td>
<td>1-23-33, p. 9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9-13-34, p. 8</td>
<td>3-23-36, p. 3</td>
<td>3-6-38, p. 14</td>
<td>1-25-34, p. 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-24-34, p. 18</td>
<td>3-4-36, p. 13</td>
<td>3-6-38, p. 16</td>
<td>3-4-36, p. 15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g\textsubscript{m}\textsubscript{a}</td>
<td>g\textsubscript{m}\textsubscript{e}</td>
<td>g\textsubscript{m}\textsubscript{2}</td>
<td>g\textsubscript{m}\textsubscript{2}</td>
<td>g\textsubscript{m}\textsubscript{0}</td>
<td>g\textsubscript{m}\textsubscript{3}</td>
<td>g\textsubscript{m}\textsubscript{0}</td>
<td>g\textsubscript{m}\textsubscript{0}</td>
<td>g\textsubscript{m}\textsubscript{0}</td>
<td>g\textsubscript{m}\textsubscript{0}</td>
</tr>
<tr>
<td>3-6-35, p. 6</td>
<td>1-23-33, p. 9</td>
<td>1-23-33, p. 9</td>
<td>3-6-35, p. 13</td>
<td>3-6-35, p. 16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g\textsubscript{s}\textsubscript{?}</td>
</tr>
<tr>
<td>12-18-33, p. 5</td>
<td>3-6-35, p. 13</td>
<td>1-23-33, pp. 3, 9</td>
<td>1-23-33, p. 9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g\textsubscript{1}</td>
</tr>
<tr>
<td>1-23-33, p. 9</td>
<td>1-25-34, p. 4</td>
<td>1-23-33, pp. 3, 9</td>
<td>12-18-33, p. 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-25-34, p. 4</td>
<td>3-4-36, p. 14</td>
<td>12-18-33, p. 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-23-37, p. 6</td>
<td>3-6-38, pp. 2, 3, 15</td>
<td>1-25-34, p. 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g\textsubscript{s}\textsubscript{2}</td>
</tr>
<tr>
<td>12-18-33, p. 6</td>
<td>12-18-33, p. 6</td>
<td>9-13-34, p. 8</td>
<td>9-13-34, p. 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
j₂ (con't.):

3-6-35, p. 2
3-6-38, p. 15

Kn:

3-23-37, p. 9
3-6-38, pp. 5, 14

dl:

3-6-35, p. 14

l₁:

1-23-33, p. 10
3-6-38, p. 16

l₂:

1-25-34, p. 8
1-23-33, p. 10

l₄:

1-23-33, p. 10
1-25-34, p. 8

l₅:

1-23-33, p. 10

l₆:

1-23-33, p. 10

l₇:

1-23-33, p. 10

l₈:

11-24-34, p. 2
3-4-36, p. 8
3-23-37, p. 8

la₁:

12-18-33, pp. 3, 5, 6
1-25-34, p. 5
11-24-34, p. 10
3-23-37, p. 6
3-6-38, p. 15

le:

9-13-34, p. 8
3-6-35, p. 14

lg₁:

1-23-33, pp. 3, 10
12-18-33, p. 6
1-25-34, p. 4
11-24-34, p. 5
3-6-35, pp. 1, 2, 4
3-4-36, pp. 15, 16
3-23-37, pp. 7, 8, 14
3-6-38, pp. 7, 8, 9, 10, 14

lg₂:

1-23-33, p. 10
1-25-34, p. 5
11-24-34, p. 12
3-23-37, p. 14
3-6-38, p. 15

li:

1-23-33, p. 10
1-25-34, p. 8
3-23-37, pp. 8, 9

lo₁:

12-18-33, p. 4
1-25-34, p. 5
11-24-34, p. 8
9-13-34, p. 8
3-6-35, p. 1

lo₂:

3-6-35, p. 11

lp:

1-23-33, p. 10

mc:

12-18-33, p. 4
11-24-34, p. 8

Mi:

3-4-36, p. 11
Pc2:
11-24-34, p. 5

p9a:
9-13-34, p. 3

p9b:
9-13-34, p. 3
3-6-35, pp. 12, 13
3-23-37, p. 7

P91:
1-23-33, p. 12
1-25-34, p. 8

P92:
1-23-33, p. 12
1-25-34, p. 5

P93:
1-23-33, p. 12

P96:
1-23-33, p. 12

P97:
1-23-33, p. 12

P9:
1-23-33, p. 12
1-25-34, p. 8

Pl:
1-23-33, p. 3
1-25-34, p. 6
9-13-34, p. 8
11-24-34, pp. 10, 14
3-6-35, pp. 4, 5
3-23-37, pp. 2, 14, 15
3-6-38, pp. 7, 15

pm:
12-18-33, p. 5
9-13-34, p. 8
11-24-34, p. 12

po:
1-23-33, p. 12
1-25-34, p. 6

pr1:
1-23-33, pp. 3, 12
12-18-33, p. 5
1-25-34, p. 6
11-24-34, pp. 2, 4, 5, 6, 7
3-6-35, pp. 1, 2, 4, 10, 11
3-4-36, pp. 7, 11, 14
3-23-37, p. 10
3-6-38, pp. 9, 15

Pr2:
3-6-35, p. 12

py1:
1-23-33, pp. 3, 12
1-25-34, p. 6
11-24-34, p. 14
3-6-35, p. 4
3-4-36, p. 7
3-6-38, pp. 12, 13, 15

py2:
12-18-33, p. 1

R:
1-23-33, pp. 3, 12
12-18-33, pp. 1, 5
1-25-34, p. 8
11-24-34, pp. 5, 10, 3
3-6-35, pp. 3, 4, 9
3-4-36, pp. 8, 11, 14, 16
3-23-37, pp. 6, 8, 9
3-6-38, p. 16
ra:
3-4-36, p. 7

ra1:
1-23-33, pp. 3, 12
12-18-33, pp. 2, 3, 5
1-25-34, p. 7
11-24-34, pp. 5, 6, 7, 8, 10, 14
3-6-35, pp. 1, 4
3-4-36, pp. 7, 9, 16
3-23-37, p. 4
3-6-38, p. 15

ra2:
12-18-33, p. 5
11-24-34, p. 13
3-4-36, p. 7
3-23-37, p. 14
3-6-38, pp. 1, 8, 15

re1:
3-6-35, p. 13

re2:
9-13-34, p. 8

re3:
3-6-35, pp. 13, 14

re4:
9-13-34, p. 9

Rg1:
1-23-33, p. 12
12-18-33, pp. 3, 5
1-25-34, p. 5
11-24-34, pp. 10, 11, 12, 13
3-4-36, p. 7
3-23-37, p. 14

Rg2:
12-18-33, pp. 3, 4

Rp:
3-6-35, p. 3
3-4-36, p. 17
3-23-37, pp. 8, 9

rt:
11-24-34, p. 10

S1:
1-23-33, p. 13

sa1:
1-23-33, p. 13
3-6-38, p. 16

sa2:
1-23-33, p. 13

sb:
3-6-38

sc1:
3-6-35, p. 5

sc2:
3-6-35, p. 5

sc3:
3-6-35, p. 5

sc4:
3-6-35, p. 5

sc5:
12-18-33, p. 6
sf:
3-6-35, p. 11

sh:
1-23-33, pp. 3, 13
12-18-33, pp. 2, 6
1-25-34, p. 8
3-6-35, pp. 12, 13
3-23-37, p. 7
3-6-38, p. 16

si:
1-25-34, p. 6
1-23-33, p. 13

sk:
1-23-33, p. 13
1-25-34, p. 4
3-6-38, p. 6

sl:
1-23-33, p. 13
1-25-34, p. 7

sm:
1-23-33, p. 13
1-25-34, p. 6
11-24-34, p. 14
3-6-35, p. 4
3-4-36, p. 9
3-6-38, p. 15

so1:
12-18-33, p. 6

sp1:
1-23-33, p. 13
12-18-33, p. 4
1-25-34, p. 5
11-24-34, p. 8
9-13-34, p. 8
3-6-35, p. 1

sp2:
11-24-34, p. 2

sp2 (con't.)
3-4-36, p. 8
3-23-37, p. 8

sr:
1-25-34, p. 4
1-23-33, p. 13
3-4-36, p. 10
3-23-37, pp. 1, 2, 3, 5
3-6-38, pp. 6, 9, 10, 11, 14

st1:
3-6-35, p. 12

st:
1-23-33, p. 13
1-25-34, p. 5

su1:
1-23-33, pp. 3, 13
12-18-33, pp. 3, 4, 5, 6
1-25-34, p. 5
11-24-34, pp. 8, 9, 10
9-13-34, p. 9
3-6-35, pp. 1, 2, 3, 11
3-23-37, pp. 5, 6, 13, 14
3-6-38, pp. 2, 4, 6, 13, 15

su2:
12-18-33, p. 6
3-6-35, p. 11
3-23-37, p. 15
3-6-38, p. 7

su3:
3-6-35, pp. 11, 12

sy:
3-6-38, p. 3

th (=sr):
12-18-33, p. 4
3-23-37, p. 3
<p>| tn: | 1-23-33, p. 13 |
| | 3-6-35, p. 10 |
| Tp: | 1-24-34, p. 10 |
| | 1-23-33, p. 14 |
| | 3-4-36, p. 16 |
| | 3-6-38, p. 15 |
| Tl-2a: | 3-6-38, p. 6 |
| Tl-2b: | 3-6-35, p. 3 |
| | 3-4-36, pp. 10, 11 |
| | 3-6-38, pp. 6, 7 |
| Tl-2c (see 1-10b): | 3-6-38, pp. 6, 9, 10, 11 |
| Tl-3a: | 3-6-35, p. 3 |
| | 3-4-36, p. 10 |
| | 3-6-38, pp. 6, 7, 10 |
| Tl-3b: | 3-6-35, p. 3 |
| Tl-3d: | 3-6-35, p. 3 |
| | 3-4-36, p. 10 |
| | 3-23-37, p. 5 |
| | 3-6-38, p. 6 |
| Tl-5a: | 3-6-35, p. 3 |
| | 3-4-36, p. 10 |
| | 3-6-38, p. 6 |
| Tl-5b: | 3-6-35, pp. 3, 4 |
| | 3-4-36, p. 10 |
| | 3-23-37, p. 1 |
| | 3-6-38, pp. 6, 10 |
| Tl-5c: | 3-6-35, p. 4 |
| | 3-4-36, p. 10 |
| | 3-23-37, pp. 1, 2 |
| | 3-6-38, p. 6 |
| Tl-6a: | 3-6-38, p. 6 |
| Tl-6b: | 3-6-38, p. 6 |
| Tl-6c: | 3-6-38, p. 6 |
| Tl-7a: | 3-6-38, p. 6 |
| Tl-7b: | 3-6-35, pp. 3, 4 |
| | 3-4-36, p. 10 |
| | 3-6-38, p. 6 |
| Tl-7c: | 3-6-35, p. 3 |
| | 3-4-36, p. 10 |
| | 3-6-38, p. 6 |
| Tl-7d: | 3-6-35, p. 3 |
| | 3-4-36, p. 10 |
| | 3-6-38, p. 6 |
| Tl-9a: | 3-6-35, pp. 3, 4 |
| | 3-4-36, p. 10 |
| | 3-23-37, p. 2 |
| | 3-6-38, p. 6 |
| Tl-9b: | 3-6-35, pp. 3, 4 |
| | 3-4-36, p. 10 |
| | 3-6-38, p. 6 |</p>
<table>
<thead>
<tr>
<th>T1-9c</th>
<th>T2-4d</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-6-35, p. 3</td>
<td>3-6-35, p. 3</td>
</tr>
<tr>
<td>3-11-36, p. 10</td>
<td>3-4-36, p. 11</td>
</tr>
<tr>
<td>3-23-37, p. 2</td>
<td>3-23-37, p. 6</td>
</tr>
<tr>
<td>3-6-38, pp. 6, 9, 10</td>
<td>3-6-38, p. 7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T1-10a</th>
<th>T2-5a</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-6-35, pp. 3, 4</td>
<td>3-6-35, p. 4</td>
</tr>
<tr>
<td>3-4-36, pp. 10, 11</td>
<td>3-4-36, p. 11</td>
</tr>
<tr>
<td>3-6-38, p. 6</td>
<td>3-6-38, p. 7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T1-10b (see 1-2c)</th>
<th>T2-5b</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-6-35, p. 3</td>
<td>3-6-35, p. 4</td>
</tr>
<tr>
<td>3-23-37, p. 2</td>
<td>3-4-36, p. 11</td>
</tr>
<tr>
<td>3-6-38, p. 9</td>
<td>3-6-38, p. 7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T2-3a</th>
<th>T2-6a</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-6-38, p. 7</td>
<td>3-6-35, p. 4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T2-3b</th>
<th>T2-6b</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-4-36, p. 10</td>
<td>3-6-35, p. 4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T2-3c</th>
<th>T2-6c</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-6-35, p. 3</td>
<td>3-4-36, p. 11</td>
</tr>
<tr>
<td>3-4-36, pp. 10, 11</td>
<td>3-6-38, p. 7</td>
</tr>
<tr>
<td>3-23-37, p. 5</td>
<td></td>
</tr>
<tr>
<td>3-6-38, pp. 6, 7</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T2-3d</th>
<th>T2-6d</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-4-36, pp. 10, 11</td>
<td>3-6-35, p. 4</td>
</tr>
<tr>
<td>3-6-38, p. 7</td>
<td>3-4-36, p. 11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T2-4a</th>
<th>T2-7a</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-4-36, p. 11</td>
<td>3-6-35, p. 4</td>
</tr>
<tr>
<td>3-6-38, p. 7</td>
<td>3-4-36, p. 11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T2-4b</th>
<th>T2-7b</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-6-35, p. 3</td>
<td>3-6-35, p. 4</td>
</tr>
<tr>
<td>3-4-36, p. 11</td>
<td>3-4-36, p. 11</td>
</tr>
<tr>
<td>3-23-37, p. 6</td>
<td>3-6-38, p. 7</td>
</tr>
<tr>
<td>3-6-38, pp. 6, 7</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T2-4c</th>
<th>T2-9a</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-6-35, p. 3</td>
<td>3-4-36, pp. 10, 11</td>
</tr>
<tr>
<td>3-4-36, p. 11</td>
<td>3-6-38, p. 7</td>
</tr>
<tr>
<td>3-6-38, p. 7</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T2-4d</th>
<th>T2-9b</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-6-35, p. 3</td>
<td>3-4-36, pp. 10, 11</td>
</tr>
<tr>
<td>3-6-38, p. 7</td>
<td>3-6-38, p. 7</td>
</tr>
</tbody>
</table>
T3-5b:
3-6-35, p. 3
3-4-36, p. 10

T3-5c:
3-6-35, p. 3
3-4-36, p. 10

T3-6a:
3-6-35, p. 4

T3-7a:
3-6-35, p. 4
3-4-36, pp. 10, 16

T3-7b:
3-6-35, pp. 3, 4
3-4-36, p. 10
3-23-37, p. 5

T3-8a:
3-6-35, p. 4
3-4-36, p. 10
3-23-37, p. 6

T3-8b:
3-6-35, p. 4
3-23-37

T3-9a:
3-6-35, pp. 3, 4
3-4-36, p. 10

T3-9b:
3-6-35, p. 3

T3-10a:
3-6-35, pp. 3, 4
3-4-36, pp. 10, 11

T3-10b:
3-6-35, p. 4
3-4-36, pp. 10, 11

T3-10c:
3-6-35, p. 4
3-4-36, p. 11

T4-5a:
11-24-34, pp. 6, 7

T4-5d:
3-6-35, pp. 3, 4

T4-6a:
3-6-35, pp. 3, 4

T4-6b:
3-6-35, pp. 3, 4
3-23-37, p. 6

T4-6c:
3-6-35, p. 3

T4-9a:
3-6-35, pp. 3, 4
3-6-36, p. 10

T4-9b:
3-4-36, p. 10
3-23-37, p. 6

T4-10a:
3-6-35, p. 3

T4-10b:
3-6-35, pp. 3, 4
3-4-36, p. 11

T4-7a:
11-24-34, pp. 6, 7

T5-7c:
3-4-36, p. 17
T6-9a:
3-6-35, p. 4
3-4-36, p. 10

T6-9b:
3-6-35, p. 4
3-4-36, p. 10

T8-9b:
3-4-36, p. 11
3-23-37, p. 6

T8-10a:
3-6-35, p. 4
3-4-36, p. 11

T8-10b:
3-6-35, p. 4
3-4-36, p. 11

T8-10c:
3-6-35, p. 4
3-4-36, p. 11
3-23-37, p. 6

T8-10d:
3-6-35, p. 4

T8 (cont.):

Ts1:
1-23-33, p. 14
1-25-34, p. 4
3-6-35, p. 1
3-6-38, p. 14

Ts2:
1-23-33, p. 14
1-25-34, p. 4
11-24-34, pp. 3, 5
3-6-35, p. 1
3-23-37, pp. 1, 2, 3, 9
3-6-38, pp. 9, 10

Ts3:
1-23-33, p. 14

Ts4 (cont.):
1-25-34, p. 5
11-24-34, p. 11
3-6-35, p. 3
3-4-36, p. 10
3-6-38, p. 15

Ts5:
1-23-33, p. 14
1-25-34, p. 5
11-24-34, p. 8
3-6-35, p. 1
3-23-37, p. 6
3-6-38, p. 15

Ts6:
3-23-37, p. 6

Tu:
1-23-33, pp. 3, 14
12-18-33, pp. 5, 6
1-25-34, p. 5
11-24-34, pp. 8, 10
3-6-35, pp. 1, 2, 3
3-23-37, p. 14
3-6-38, pp. 2, 4, 15

va:
9-13-34, p. 3

v1:
1-23-33, p. 14
12-18-33, pp. 2, 6
1-25-34, p. 8
3-4-36, p. 3

v2:
1-23-33, pp. 3, 14
12-18-33, p. 5
1-25-34, p. 6
11-24-34, pp. 2, 6, 7
3-6-35, p. 1
3-4-36, p. 7
3-6-38, p. 15

v3:
1-23-33, pp. 3, 14
12-18-33, p. 5
1-25-34, p. 6
11-24-34, pp. 2, 6, 7
3-6-35, p. 1
3-4-36, p. 7
3-6-38, p. 15
\[w_1 = v_{12} \]:
- 11-24-34, p. 10
- 3-4-36, p. 3
- 3-23-37, pp. 6, 15

\[w_5 \]:
- 1-23-33, p. 15

\[w_6 \]:
- 1-23-33, p. 15

\[w_{11} \]:
- 1-23-33, p. 15
- 1-25-34, p. 8

\[w_{12} \]:
- 9-13-34, p. 9

\[\text{wn} \]:
- 1-23-33, p. 15
- 1-25-34, p. 7

\[w_1 \]:
- 1-23-33, p. 15
- 1-25-34, p. 5
- 11-24-34, p. 8
- 3-6-35, p. 1
- 3-6-38, p. 15

\[w_{53} \]:
- 11-24-34, p. 2
- 3-6-35, p. 2
- 3-23-37, pp. 7, 8
- 3-6-38, pp. 8, 9

\[wx \]:
- 1-23-33, pp. 3, 15
- 12-18-33, pp. 2, 6
- 1-25-34, p. 8
- 9-13-34, p. 8
- 3-6-35, pp. 4, 12, 13, 14
- 3-4-36, pp. 3, 10, 11
- 3-23-37, pp. 7, 10, 11, 14
- 3-6-38, p. 16

\[x_{n_1} \]:
- 1-23-33, p. 15

\[Y_x (=Y_{3}) \]:
- 3-6-35, pp. 3, 5, 14
- 3-4-36, p. 16

\[Y_1 \]:
- 1-23-33, pp. 3, 16
- 12-18-33, p. 6
- 1-25-34, p. 6
- 3-6-35, pp. 4, 5, 14
- 3-4-36, p. 9
- 3-23-37, pp. 2, 15
- 3-6-38, pp. 3, 7, 9, 15

\[Y_{4} \]:
- 3-4-36, p. 9

\[\text{yd} \]:
- 1-23-33, p. 16
- 12-18-33, p. 4

\[yf \]:
- 12-18-33, p. 6
- 9-13-34, p. 9

\[yg_2 \]:
- 3-6-35, p. 14

\[yga \]:
- 9-13-34, p. 3

\[yg_1 \]:
- 1-23-33, p. 16
- 11-24-34, pp. 6, 7
- 3-6-35, p. 11
- 3-4-36, p. 3

\[yg_2 (=v_{14}) \]:
- 1-23-33, pp. 3, 16
- 12-18-33, p. 2
- 1-25-34, p. 8
- 3-6-35, p. 14
- 3-6-38, p. 16
ys₁:
121833, p. 5

ys₂:
122333, pp. 3, 16
121833, p. 5
122534, p. 6
112434, pp. 2, 6, 7
3436, p. 7

yt:
122333, p. 16
3638, p. 15

zbi₁:
3638, p. 1

zbi₂:
122434, p. 1
3638, p. 16

zbi₃:
3638, p. 2

z (zg₁):
122333, p. 16
3635, pp. 3, 12

zg₁ (zg₂):
122333, p. 16
3635, pp. 3, 12?

zg₂ (zg₃):
112434, p. 1
91334, p. 9

zg₃:
3635, p. 3

zl:
122333, p. 16
112434, p. 3
linkage map of the ten chromosomes of pea maps showing the approximate loci of many genes. (Working map. More 3-point tests needed to establish exact loci of genes).
Linkage map of the ten chromosomes of sea mugs showing the loci of those genes whose position can be determined with reasonable certainty.
April 15, 1939

The data presented here are not to be used in publications without the consent of the authors.

Department of Plant Breeding
Cornell University
Ithaca, N. Y.
January 21, 1939

To Maize Geneticists:

The call for material for the 1939 Co-op News Letter has purposely been delayed to allow you more time to analyze last summer's results. Since it is desirable to have the Letter available not later than the first part of March, however, the individual contributions must be received by the Co-op by February 15, 1939.

In order to insure a more uniform system of presentation, please refer to previous News Letters for suggestions concerning the form of your write-up.

Sincerely yours,

D. G. Langham

D. G. Langham,
Secretary
April 15, 1939

To Maize Geneticists:

The material in this letter was obtained from many sources, and has been organized under the following heads:

I. General News Items.
II. Seed Stocks Grown in 1938.
III. Seed Stocks Received For Propagation in 1939.
IV. Maize Publications.
V. Maize Genetics Cooperation Mailing List.

I. General News Items

University of Buenos Aires, Buenos Aires, Argentina

1. The Argentine varieties of commercial corn are all flint and can be classified in three groups according to endosperm color:
 a. Varieties with orange endosperm.
 b. " yellow ".
 c. " white ".

Genetical analysis shows that both groups a and b carry the genes $Y_1Y_2Y_3Y_4$. In the first group the varieties Colorado Cuarenton were tested; in the second group the varieties Amarillo Comun and Amarillo Enans. The difference in color between groups a and b is due to modifying factors. Long White Flint, the only variety of white endosperm tested, has the genotype $Y_1Y_2Y_3Y_4$.

2. The gene A_1, besides the known effects upon the development of chlorophyll, reduces the intensity of the endosperm color. In ears segregating A_1A_1, A_1a_1, and a_1a_1, most kernels which have the last combination may be recognized because they have a lighter yellow color. Plants a_1a_1 give ears with light yellow endosperm. In numerous F_2, no plants of homozygous a_1 and deep yellow or orange endosperm have been found.

T. M. Andres

University of Minnesota, St. Paul, Minn.

1. Linkage relations of g_{14} with w_x and sh. The sample of g_{14} was found in Minnesota in one of our cultures and was being studied at the time of Dr. Sprague's report on g_{14}.
Order of genes sh-wx-gl\textsubscript{y}

2. Linkage of zebra seedling-4 (zb\textsubscript{y}) with \textsc{p} in chromosome 1. Results are similar to those obtained with \textsc{f}_2 data.

3. An upright habit of the tassel characteristic of inbred line 19 used in 1st cross \textsc{k} (15 \times 19) proved recessive in crosses with normal tassel but dominant in the \textsc{f}_1 of the cross between upright and \textsc{ts}_\text{y}.

H. K. Hayes

4. I believe it is possible now to arrange the linkage groups in our linkage map still further, so that the linkage groups are oriented in a still more uniform scheme in relation to the chromosomes. In the linkage map sent out with the last corn letter, they are oriented so that the upper end corresponds to, or is in the direction of the short arm end of the chromosome with the exception of \#3 and probably \#8. My evidence on \#3 indicates that this group should be reversed with or at the zero point or in the direction of the short arm end. For \#8, the only data I have are those given below. The numbers are too small, but they suggest that this group should be reversed also, placing \#1 at the zero point. This means that the zero point will be moved as new data come along, but that will be true of several other groups as they stand now.

5. The series of \textsc{r} and \textsc{R} alleles listed in the corn linkage summary does not include the one designated in the original paper on plant colors (pp. 111-113) as \textsc{r}_{\text{psc}}. This allele was there described as giving in the dilute types (\textsc{a} \textsc{b} \textsc{pl} and \textsc{a} \textsc{b} \textsc{pl}) green anthers with red color at the base of the plants, whereas the ordinary \textsc{r}_{\text{psc}} allele gave green anthers and green base plants. One suggestion is that the superscript for the \textsc{r}-series may need to be a tri-letter one (anther color, silk color, and base color).

C. R. Burnham
West Virginia University, Morgantown, W. Va. -

1. Linkage data on chromosome 8:

<table>
<thead>
<tr>
<th>Genes</th>
<th>Phase</th>
<th>XY</th>
<th>Xy</th>
<th>xy</th>
<th>Total</th>
<th>No.</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ms T5-9a</td>
<td>CB</td>
<td>35</td>
<td>1</td>
<td>3</td>
<td>41</td>
<td>80</td>
<td>4</td>
</tr>
<tr>
<td>Msj</td>
<td>CB</td>
<td>54</td>
<td>26</td>
<td>16</td>
<td>24</td>
<td>120</td>
<td>42</td>
</tr>
<tr>
<td>J1 T5-9a</td>
<td>CB</td>
<td>56</td>
<td>18</td>
<td>26</td>
<td>31</td>
<td>131</td>
<td>44</td>
</tr>
</tbody>
</table>

Indicating the order: T5-9a - j1 - ms - end of long arm.

C. R. Burnham

2. Sterilizing seeds for germination. A hypochlorite solution sold under the trade name "Chlorox" is easier to use than the bleaching powder solution. Field corn soaked in Chlorox solutions at 5% and stronger for 1/2 hour completely controlled the molds but reduced germination. There was very little mold and normal germination at 3% and also at 2%. For genetic material a solution of 2 cc. of commercial Chlorox to 100 cc. of water is recommended, soaking the grains for 1/2 hour. Other hypochlorite solutions are on the market but may vary in the % of the active ingredient.

J. A. Rigney and C. R. Burnham

Connecticut Agricultural Experiment Station, New Haven, Conn. -

1. In seeds treated with X-rays shortly after fertilization numerous paired mosaic areas are found associated with losses of all of the easily identified marker genes such as C, Wx, Pr, Su. In many cases areas showing losses of any of these markers are paired with areas that are either lighter or darker than normal in varying shades of aleurone color. Not all of these can be due to shifts of aleurone color genes and it seems likely therefore that breaks and rearrangements of chromosome fragments may alter the cell metabolism and indirectly affect aleurone color. In the same way other activities of the cell are altered, notably in starch formation, viability, and growth control.

D. F. Jones

2. Fine mottling of rrR seeds. In 1937 an ear of Connecticut 720 y Su A C R when pollinated by 697 (a C R) gave seeds that were all mottled. There were 94 regular or coarse mottled kernels, 86 with very fine mottling, color often limited to a few patches of from one to a few cells each, and 6 colorless. (These probably were fine mottling where no color was visible, or were contaminations. They are being tested).

In 1938 seeds of the two classes were planted in separate rows and selfed or again crossed by 697 A-tester. Two ears of
the fine mottled stock selfed produced only whites, solid, and fine mottling. One ear crossed by 697 gave 180 white, 92 solid color, and 82 fine mottled kernels. Three ears from the coarse mottled stock when crossed by 697 gave 534 white, 250 solid color, 132 coarse mottling and 94 fine mottled kernels. This is not a great deviation from a 4:2:1:1 ratio expected if the fine mottled factor shows independent inheritance with Mt.

Does anyone have any convincing evidence that Mt is not an allele of the Rr gene? Kempton's (GENETICS 4: 261-274) data can be interpreted on an allelic basis as well as assuming 12.5% of the colored seeds should have been mottled. He incorrectly states he expected 25% whereas 33 l/3% was the correct proportion of the colored kernels. Selfed ears are rather unsatisfactory for determination of this point. We plan to test this by backcrossing if it has not been done.

3. White seedling classification. White seedlings can be classified satisfactorily soon after the seeds have germinated if they are germinated in the light. We use an old glass incubator for a germinator and keep the temperature about 75°F. Seeds are sterilized for 1 minute in a 1% solution of Hg Cl₂ and put in petri dishes, 100 to a dish. Under these conditions chlorophyll develops rapidly and classification can usually be completed within a week after planting.

4. Seedling classification for red or green base. Seedlings germinated by the above method can be classified accurately for the green base (Rₑ or Rₑ), or red base (Rₕ or Rₕ). The tip of the first true leaf has been found the most reliable place for classification. If any antho-cyanin color is present it will appear at the tips of the leaves. Seedlings so germinated and classified can still be planted without injury or setback. (This method of classification is not new. It is used by Dr. Stadler and his students at the University of Missouri. It is cited here as it may be helpful to some unfamiliar with it).

5. Seeds germinated in the germinator produce pollen and silks early. Last spring one lot of 650, a sweet corn inbred, was planted in the field on June 1. Another lot of the same stock was put into the germinator. As soon as the seedlings were well started they were put into four inch pots and kept in the greenhouse for about two weeks before transplanting to the field. The plants so treated produced pollen a week ahead of those planted in the field and there was a difference of nine days in the silking dates. This method may be utilized for securing early tassels and silks of stocks, without planting early.

6. sp₁ and lo not allelic. We now have definite proof that sp₁ and lo on chromosome 4 are not alleles of the same gene.
fact they are located on opposite sides of su₁. Complete evidence will be published shortly.

W. R. Singleton

7. A hybrid between a Lancaster inbred (696-3c) and Parnunkey in 1936 produced all semi-sterile ears. Cytological examination of the hybrid in 1938 showed the presence of a heterozygous translocation involving chromosomes 1 and 2. The point of interchange in chromosome 1 is in the short arm, at approximately 6/10 of the distance from the spindle fiber attachment region to the end of the chromosome. The break was between the spindle fiber and a knob on the short arm. The point of interchange on chromosome 2, on the long arm, is approximately half way between the spindle fiber and the end of the chromosome. Chromosome 2 also has a knob. Seed of the homozygous translocation is available.

F. J. Clark

University of North Carolina, Raleigh, N. C. -

1. Opaque endosperm-H. Endosperm similar to o₁ and o₂. Classification good in white dent stocks. Seed segregate 75% normal (O_H), 25% opaque (o_H). All O_H seeds produce normal plants while all o_H seeds produce dwarfish, yellow-green striped, abnormal leaved plants which die in four weeks under field conditions. Some seedlings of O_H lived two months in greenhouse but never got over 5 inches tall. Germination of O_H seed approximately 50%.

Paul H. Harvey

2. Red leaf tip (r₁). Appears when plants are 8 to 12 inches high under field conditions. Red color gradually extends from tip to cover approximately one-half of blade. Classification good in F₂. Segregates 75% normal (R₁) to 25% red (r₁). All r₁ plants smaller than normal.

3. Burned leaf (b₁). Tissue in leaf tips begins to die and turn brown when plants are 10-18 inches high under field conditions. Condition spreads to one-half or more of leaf. Somewhat resembles conditions caused by certain plant food deficiencies. Classification fair, though a few heterozygous plants show some evidence of burning along leaf margins. Segregates 75% normal (B₁) to 25% burned (b₁). All b₁ plants smaller than normal.

G. K. Middleton
1. With further reference to our hypothesis that (1) maize originated from a wild form of pod-corn, (2) that teosinte is the product of natural hybridization between maize and Tripsacum, and (3) that most North American varieties of maize are contaminated with Tripsacum, we have spent a good share of the past year in reviewing the archaeological and historical evidence which has a bearing on this problem. We have found nothing seriously in conflict with the hypothesis and a great deal of evidence in support of it.

In the last News Letter we made the suggestion that the knobs on the chromosomes of maize may have come originally from Tripsacum, in which case pure South American varieties might be found in which the chromosomes were knobless. This has proved to be the case. Of 17 lots received from Peru, all but two had knobless chromosomes. Collections from other parts of South America, however, all had knobbed chromosomes, the average numbers being as follows:

<table>
<thead>
<tr>
<th>Country</th>
<th>Knobs per Chromosome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Venezuela</td>
<td>5.50</td>
</tr>
<tr>
<td>Uruguay</td>
<td>5.00</td>
</tr>
<tr>
<td>Brazil</td>
<td>4.08</td>
</tr>
<tr>
<td>Paraguay</td>
<td>3.50</td>
</tr>
<tr>
<td>Dutch Guiana</td>
<td>3.00</td>
</tr>
<tr>
<td>Argentina</td>
<td>2.00</td>
</tr>
<tr>
<td>Peru</td>
<td>0.83</td>
</tr>
</tbody>
</table>

If the knobs on maize chromosomes have come originally from Tripsacum, it is evident that Tripsacum-infected varieties have replaced pure maize varieties in all parts of North and South America except the Andean region, which we regard as the primary center of domestication. Bolivian varieties have not yet been studied from the standpoint of chromosome knobs, but we anticipate that the majority of them will be found to be knobless.

The objection most frequently raised to the hypothesis that maize originated from pod-corn is that pod-corn is sterile in the homozygous condition and a sterile form could scarcely have served as a progenitor. We have attributed pod-corn's sterility to the fact that it has been maintained in a heterozygous condition for so many generations it is now a monstrosity when homozygous. We have suspected, however, that a fertile, homozygous form might still be developed by selection since there is great variation in the expression of the glumes and other characteristics of pod-corn. During the past season we have found that the T_s gene apparently is a strong modifier of fertility of TuTu plants. Homozygous tunicate plants carrying the T_s gene are highly fertile on the pistillate side and exert a few good anthers. Self-pollination is impossible because the silks are dried up before anthesis occurs. Sib-pollinations can be made, however, and we expect to have true-breeding stocks of pod-corn available in the near future.

P. G. Mangelsdorf and R. G. Reeves
1. **Lg** (dominant liguleless) is in chromosome 3 as shown by the following summary of data from six small cultures:

<table>
<thead>
<tr>
<th>Genes</th>
<th>Phase</th>
<th>XY</th>
<th>Xy</th>
<th>XY</th>
<th>xy</th>
<th>Total</th>
<th>(p = .011)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rg Lg 3</td>
<td>RB</td>
<td>3</td>
<td>138</td>
<td>124</td>
<td>0</td>
<td>265</td>
<td></td>
</tr>
</tbody>
</table>

A greater portion of the ligule is present in **Lg** plants than in either **Lg** or **Lg** plants. But for the characteristic "liguleless" appearance of the plant as a whole the character might more appropriately be called "defective ligule". Classification (except for seedlings), viability, and fertility (except perhaps for homozygotes) are satisfactory.

A test for allelism with **Lg** and three-point tests are being made.

H. S. Perry

List Of translocations involving chromosome 3:

Near left end (i.e. short arm)—
- T3-6b S .8 \(\pm .5 \)
- T3-7b S .8 \(\pm .4 \)
- T2-3c S .8 \(\pm .3 \)
- T1-3d \(\pm .6 \)

Middle region—
- T3-9a ts4 - 2.9 \(\pm .6 \)
- T3-7a ts4 - 5.0 \(\pm .7 \)
- T3-8b L .1 \(- T - 11.2 \)
- T3-9c L .1 \(- T - 11.7 \)
- T3-10a L .1+ ts4 - 10.4 \(- T - 11.9 \)
- T2-3b ts4 - 1.1
- T3-10b ts4 - 0.8
- T3-10c ts4 - 0.7
- T3-6a \(d_1 - 18.0 - T - 12.0 \)
- T3-5a \(d_1 - 24.5 - T - 7.9 \)
<table>
<thead>
<tr>
<th>Translocation</th>
<th>Gene(s)</th>
<th>Chromosome Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>T3-5a</td>
<td>ts4</td>
<td>L.2</td>
<td>T = 23.4 - T - 5.9 - 1g2</td>
</tr>
<tr>
<td>T3-8a</td>
<td>ts4</td>
<td>L.6</td>
<td>T = 29.5 - T - 5.7 - 1g2</td>
</tr>
<tr>
<td>T3-7c</td>
<td>ts4</td>
<td>L.6</td>
<td>T = 20.0 - T - 22.0 - a</td>
</tr>
<tr>
<td>T3-9b</td>
<td>1g2</td>
<td>L.6</td>
<td>T = 7.9 - T - 18.0 - a</td>
</tr>
<tr>
<td>T3-5c</td>
<td>na</td>
<td>L.6</td>
<td>T = 11.7 - T - 12.5 - a</td>
</tr>
<tr>
<td>T2-3d</td>
<td>na</td>
<td>L.6</td>
<td>T = 13.0 - T - 7.1 - a</td>
</tr>
</tbody>
</table>

List of translocations involving chromosome 6:
- T3-6b Satellite
 - Clarke and Anderson, 1935
- T1-6b Satellite
 - Burnham, 1932
- T2-6 Satellite
 - Clokey (unpublished)
- T5-6b Satellite
 - McClintock (unpublished)
- T6-9a Nucleolus
 - McClintock, 1934, Anderson, 1934
- T6-10b S 0.5
 - McClintock (unpublished)
- T5-6a S 0.1
 - McClintock (unpublished)
- T2-6a S 0.1
 - Burnham, 1932
- T4-6a L 0.2
 - Very near Y
- T4-6b L 0.2
 - Very near Y
- T1-6c L 0.25
 - Very near Y
- T6-9b L 0.5
 - Near PI and sm. Probably T-Pl-sm
- T2-6c L 0.25
 - Near PI and sm. Probably T-Pl-sm
- T2-6d L 0.4
 - Near PI
- T2-6e L 0.4
 - Near PI
- T5-6a L 0.5
 - Near PI
- T2-6b L 0.5
 - Near PI
- T3-6a L 0.6
 - Near PI (Probably T-Pl-sm)
- T1-6a Brink and Cooper y-Pl-8-T
- T5-10a L 0.7
 - Pl-sm-22-T

Clarke and Anderson, 1935

Burnham, 1932

Clokey (unpublished)

McClintock (unpublished)

McClintock, 1934, Anderson, 1934

Burnham, 1932

Very near Y

Near Y

Near PI and sm. Probably T-Pl-sm

Near PI and sm. Probably T-Pl-sm

Near PI

Near PI (Probably T-Pl-sm)

Brink and Cooper y-Pl-8-T

Pl-sm-22-T

1. The Linkage Summary suggests a possible allelism of ε_1 and ψ_2. They are distinct genes, as an F_1 between them contained only green plants. In F_2 both ε_1 and ψ_2 segregated.

2. Dull endosperm, δ_y, which intensifies su^{am} and su_1 (see Corn Letter of March 23, 1937, p. 13) has no distinctly visible effect on su_2. Three separate crosses of $\delta_y \times su_2$ were made and F_1s selfed. Six ears from each F_2 showed no definite effect of
du on su2. Any such effect is very slight if existent at all. Therefore, the mechanisms by which the su1 and su2 genes act must be different, at least in part.

3. Slit blade, sb, has shown various abnormalities. Sometimes F2 ratios are atypical in crosses involving sb. Last year an 8:1 ratio of sb was reported. This year one plant of 90 F2s was a dwarf, resembling mi-sh. Various genes have appeared following sb crosses (see below); some of these, at least, seem to be new. In the progeny of an open pollinated mi-sh sb plant there was one very abnormal plant. It was ms, striped, bm, with a silkless ear, possessing much enlarged glumes. Slit blade itself is variable, ranging from almost normal-appearing plants to small "deficiency-like" plants with narrow, thick leaves. Many sb plants are nearly or completely sterile. In the light of these diverse abnormalities, it is suggested that sb is, or is closely accompanied by, some chromosomal abnormality.

4. Possible new genes from sb crosses:
 twsh — an adherent showing in both the seedling (causing it to be twisted) and the tassel. Viability good. Classification good.
 mish — a semi-dwarf with compact tassel, rather stiff leaves, small seeds. Viability good. Fertility good. Classification good except with lg.
 chsh — a vigorous golden, showing golden late. May be g2, for it showed about 30% recombination with a.

John Shafer

5. F2 data (News Letter, March 23, 1937) indicated that pbx is located between Y1 and Pl in chromosome 6. Backcross data obtained last summer, however, suggest rather close linkage of Y1 and pbx.

<table>
<thead>
<tr>
<th>Genes</th>
<th>Phase</th>
<th>XY</th>
<th>Xy</th>
<th>xY</th>
<th>xy</th>
<th>Total</th>
<th>% Recombination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y1</td>
<td>Pb x</td>
<td>CB</td>
<td>187</td>
<td>2</td>
<td>-</td>
<td>139</td>
<td>328</td>
</tr>
</tbody>
</table>

Three-point test:

<table>
<thead>
<tr>
<th>F1 genotype</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Y1 + Pl</td>
<td>170</td>
<td>132</td>
<td>-</td>
<td>2</td>
<td>47</td>
<td>35</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>+ pbx +</td>
<td>302</td>
<td>2</td>
<td>0.5%</td>
<td>82</td>
<td>21.1%</td>
<td>0.5%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total 388
Whether \(p_{\wedge X} \) is located to the right or to the left of \(Y_{\wedge} \) can not be decided from these data. The white and yellow patches on plants obtained from backcrosses are considerably larger than those found on piebald plants from the \(F_2 \), and are found not only on the leaves but also on the husks. This is attributed to the effect of modifiers rather than to environment.

G. A. Lebedeff

6. Sterility in tetraploid maize. An investigation of the possible causes of the variation in degree of sterility observed in different lines of tetraploid maize was made both from the cytological and genetical angles. In a study of microsporogenesis, both self-sterile and self-fertile lines showed a large number (8-10) of quadrivalents at diakinesis. This indicates that quadrivalent formation is not an important factor in causing sterility in tetraploid maize.

The chromosome number of the microspores varied from 14 to 24. Much of this variation was found to be due to the lagging of univalents and non-disjunction of chromosomes resulting in the formation of micronuclei, and to a lesser extent to the three to one separation of quadrivalents. From one to six chromosomes, usually in univalent groups, were seen to lag in sporocytes showing lagging. Gametes having 18 to 22 chromosomes are considered to be functional, since the chromosome numbers of the progeny of a tetraploid maize plant (4n = 40) has been shown to range from 37 to 42. The frequency of microspores having between 18 and 22 chromosomes agreed very well with the percentage of apparently good pollen in the fertile and sterile lines in which this was studied.

Four \(F_1 \) populations resulting from crosses between lines with a high degree of pollen abortion (25%) and lines with a low degree of pollen abortion (10%), showed a low mean percentage of aborted pollen, suggesting a possible genic basis for this.

The coefficient of correlation between degree of pollen abortion and percentage of aborted ovules, when only fertile lines were considered, was found to be \(-0.651 \pm 0.025\), indicating that factors causing pollen abortion are also operative in causing ovular abortion.

Evidence was obtained indicating that genetic factors for incompatibility were also involved in causing sterility in tetraploid maize. Some self-compatible lines were found to be cross-incompatible with other self-compatible lines when used as the pollen parent. This relationship was true even when the effect of different pollen was compared on two ears from the same plant, one ear being self-pollinated and the other cross-pollinated. In crosses between self-compatible and self-incompatible stocks a unimodal distribution was obtained for the \(F_1 \) and a bimodal
distribution for the F_2 population, indicating the existence of at least one dominant or epistatic gene for self-compatibility. A study of reciprocal crosses between self-compatible and self-incompatible lines showed that self-incompatible lines were cross-compatible only when used as the pollen parent. No evidence of pollen tube competition was found in a compatible cross between a self-compatible and a self-incompatible line when mixed pollinations were made to determine this.

Some evidence was obtained indicating that the chromosome number of the plant was not very important with respect to degree of fertility since a 38 chromosome plant was found to be 75% fertile (seed set) when self pollinated. This supports the conclusion that much of the sterility in tetraploid maize is due to genic rather than chromosome number difference.

If genes for self and cross-incompatibility are concerned in causing sterility in tetraploid maize, it is necessary to assume that these genes were present but inhibited in diploids, but became effective because of a genic unbalance resulting from chromosome doubling, i.e. upon doubling some genes increase in effectiveness and others remain static as far as their activity is concerned.

Harold E. Fischer

7. A sib cross between two iojap plants in a culture obtained from A. A. Bryan gave an ear which is homozygous for white seedlings. Forty seeds from this ear were planted. Thirty-eight germinated; all the seedlings were white and died within two weeks. This is interpreted as a case of extreme variation in the expression of iojap.

8. In a tester stock of 11 plants with the genetic constitution $\text{Pr} \times v_2 \text{A} \; \text{b} \; \text{pl} \; \text{C} \; \text{R}$ eight plants were dilute sun red, as expected, but three showed occasional red sectors in the leaves, husks, and tassel. When the leaves were stripped down and the stalk exposed to the sunlight, red sectors appeared on it, too. Apparently b is unstable and mutates to B.

9. Linkage of E_4 and thin kernels. In a cross of Inbred II $x \text{E}_4 \text{wx}$, three F_2 ears segregated 25% thin kernels and the other four F_2 ears were normal. Seed was taken from an ear segregating thin kernels, and the normal kernels planted separately from the thin ones. Theoretically, E_4 should have segregated 3:1 in each group. All 14 plants obtained from the kernels of normal thickness were green, while the 10 plants from the thin kernels were E_4. This behavior suggests that the gene (or small deficiency?) for thin kernels is closely linked with E_4.
10. New characters in maize, teosinte, and maize-teosinte hybrids:

Maize —
 adL — adherent plant. Can be classified in early seedling stage; tips of leaves stick together. Plant becomes almost normal until anthesis, when anthers, tassel branches, and silks become sticky and tend to adhere. Viability and fertility good. Chrom. unknown.

Teosinte —
Several plants each of Nobogame, Huixta, Novocayan, and Durango teosinte were selfed and progeny tests made for genetic characters. The following characters segregated in 3:1 ratios:
 zb — zebra seedling.
 ad — adherent leaves.
 dt — dwarf.
 pg — pale green (two cultures).
 ft — fine stripe.
 glt — glossy.
 wt — white seedling (two cultures).
 cot — corrugated leaf (three cultures).
 gst — green stripe (three cultures).
 yst — yellow stripe.
 lat — lazy teosinte (reported in 1938 News Letter).

These genes will be crossed with similar maize genes to test for possible allelism.

Maize-Teosinte hybrids —
 sd — response to short day. Recessive to "weak" response to length of day in maize. Mendelian character.
 tr — two-ranked ear and two-ranked central branch of the tassel. Recessive to the many-ranked ear and many-ranked central branch of the maize tassel. Mendelian character.
 pd is linked with tr with 20% recombination. Chromosome unknown.

11. Brittle stalk-X (bk) reported by R. G. Wiggans in the News Letter, March 6, 1938, p. 12, is an allele of bk.

 Fine stripe-X (fx) from the same report is an allele of f.

 D. C. Langham
II. Seed Stocks Grown, 1938

1. Testers.

Chromosome 1:
\[(P \text{ br } f_1 \text{ bm }_2 \times P \text{ zb}_4) \times \text{ zb}_4 \text{ br } f_1\]

Chromosome 2:
\[+/d_1\]
\[(lgl \text{ g2 } b \times lgl_2) \times \text{ Inbred I)self}\]
\[(ws_3 \times lgl_2) \times \text{ (ws}_3 \times lgl_2)\]
\[lgl \times lgl_2 \times f_1\]
\[lgl \times ts_1 \times lgl_2 \times lgl +/v_4\]
\[lgl +/sk_1 \times lgl \text{ sk}_1\]
\[+/ba_2 \times ba_2\]

Chromosome 3:
\[(pm \times lgl_2 d_1) \times (pm \times lgl_2 d_1)\]
\[+/d_1 \times d_1\]
\[d_2 +/ba_1 \times ba_1\]
\[lgl_2 d_1 +/ts_4\]
\[a_1 lgl_2 ra_2\]
\[(ts_4? \times Rg \times d_3) \times lgl_3^?\]

Chromosome 4:
\[su_1 g1_3 +/wl\]
\[sp_1 su_1\]

Chromosome 5:
\[bm_1 \text{ bv } pr\]
\[bm_1 \text{ bt}\]
\[bm_1 \text{ pr } v_2\]

Chromosome 6:
\[v_7\]
\[Pl \text{ sm } +/py \times Pl \text{ sm } py\]
\[Y_1 \times Pl \text{ sm } A b\]
\[Inbred \text{ II } \times pb_2\]
\[Inbred \text{ I } \times pb_1\]
Chromosome 7:
Hs
v5

Chromosome 8:
msg j1 v16 x (msg j1 x v16)

Chromosome 9:
+/vpl
ms2 x ms2/+
ms20 x Ms20
sh +/-d3

Chromosome 10:
+/vpl
rst
Rmb
Rnj A1 C Pr
Rreg A1 C pr pvv
r^ y su1

2. Miscellaneous:
fx Pu_x
de_c
v20
a1 C Rg pr in wx y
a1 C R Y pr in
ms11/+
+/ws3
v9
A c Rg su1 +/v9 x v9
+/v13

02
/+l7
sh wx +/-w11
Inbred I x ar wx
Inbred II x c sh bp wx

+/w2
v18
Og e1 li
Og a3
a3 e1
Inbred I x zb5 Nl1/? G1/?

01
h
fl2
at x at/+
+/bk1
bk2
a1 B Pl C R Pr y1
A1 C r g1 y
A1 B pl C Rg Pr Sc x y1 1g1
ms7 x Inbred II
Inbred I x bm3
Lo/

hf x +/hf

Ts6/+ x al
+/ tw3
+/ba (Singleton)
+/ra (Singleton)
zf x ys

3. No germination:
Inbred II x Sx
lo su1
ws
bt2
aP B P1 P
Ms3/1 sh g1

ms12 x Inbred II
ms42 x Inbred II
Hy x mg

Inbred II x y53
In In

db
fs
mg

3. Too late:

ms27 x ms27/+
su1 g13 Wl/?

sh pk1 seg. fl1

gl9

ysx (Singleton)

A1 RS c sh wx pr y su1

III. Seed Stocks Received for Propagation in 1939

1. P. C. Mangelsdorf, College Station, Texas:--
 du2 du2 seg. da1 suam
 Du2du2 seg. du1 suam

2. P. H. Harvey, Raleigh, N. C.:--
 oH oH
 oH oH

3. J. Shafer, Ithaca, N. Y.:--
 wx v1 gl14
 sh wx v1 gl14
 yg2 sh wx seg. gl14 lg1
IV. Some Recent Papers on the Cytogenetics of Maize

During the past year several maize geneticists have written to the Co-op for a list of recent publications in maize. In view of this demand, what do you think of the idea of making such a list a part of the annual Maize Genetics Cooperation News Letter? Most of the maize literature to 1935 is included in the combined bibliographies of "Genetics of Zea Mays" by W. H. Eyster, and "A Summary of Linkage Studies in Maize" by Emerson, Beadle, and Fraser. If these bibliographies were brought up to date, a list of all the papers published between February, 1939, and February, 1940, could be included in the 1940 News Letter, and all those to February, 1941, in the following News Letter.

If your reaction to this suggestion is favorable, will you help bring the following list of papers up to date (I have more than likely missed some)?

V. Maize Genetics Cooperation Mailing List

Anderson, Dr. Edgar, Washington University, St. Louis, Mo.
Anderson, Dr. E. G., Institute of Technology, Pasadena, Calif.

Beadle, Dr. G. W., Biology Dept., Stanford Univ., Stanford Univ., Calif.
Bennett, Dr. L. S., Agronomy Dept., Agric. Exp. Sta., Fayetteville, Ark.
Brieger, Dr. Friedrich, Escola Luiz de Queiroz, Piracicaba, Sao Paulo, Brazil.
Brink, Dr. R. A., Genetics Dept., Univ. of Wisconsin, Madison, Wisc.
Brunson, Dr. A. M., Agronomy Dept., Purdue Univ., LaFayette, Ind.
Bryan, Dr. W. W., Queensland Agric. College, Lewes, Q., Australia.
Burnham, Dr. C. R., Agronomy Division, University Farm, St. Paul, Minn.

Cartledge, Dr. J. L., Agronomy Dept., Univ. of West Virginia, Morgantown, W. Va.
Clokey, Mr. Ira M., 1635 Laurel St., South Pasadena, Calif.
Cooper, Dr. D. C., University of Wisconsin, Genetics Dept., Madison, Wisc.
Creighton, Dr. Harriet B., Conn. College for Women, New London, Conn.

Demerec, Dr. M., Carnegie Inst., Cold Spring Harbor, Long Island, N.Y.
Dorsey, Dr. E., Plant Breeding Dept., Cornell University, Ithaca, N.Y.
Doxtator, Mr. C. W., Div. of Agronomy, University Farm, St. Paul, Minn.

Eckhardt, R. C., Farm Crops Dept., Iowa State College, Ames, Iowa.
Emerson, Dr. R. A., Plant Breeding Dept., Cornell University, Ithaca, N. Y.
Eyster, Dr. W. H., Botany Dept., Bucknell University, Lewisburg, Pa.
Fraser, Dr. A. C., Plant Breeding Dept., Cornell University, Ithaca, N. Y.
Garber, Dr. R. J., U.S.D.A., Regional Pasture Research Lab., State College, Penn.
Gurney, Dr. H. C., Waite Research Inst., Adelaide Univ., Adelaide, Aust.
Hadjinov, Dr. M. I., Inst. of Plant Industry, Detskoe Selo (near Leningrad), U.S.S.R.
Harvey, Dr. Paul H., Agronomy Dept., University of North Carolina, Raleigh, N. C.
Hayes, Dr. H. K., Agronomy Division, University Farm, St. Paul, Minn.
Hofmeyr, Dr. J. D. J., P.O. Marabastad, Pietersburg, South Africa.
Holbert, Dr. J. R., Federal Building, Bloomington, Illinois.
Horovitz, Mr. S., Instituto de Santa Catalina, Llanallol, F.C.O., Argentina.
Hull, Dr. Fred, Agronomy Dept., Agric. Exp. Sta., Gainesville, Florida.
Jenkins, Dr. M. T., Bureau of Plant Industry, U.S.D.A., Washington, D. C.
Johnson, Dr. I. J., Agronomy Division, University Farm, St. Paul, Minn.
Jones, Dr. D. F., Genetics Dept., Agric. Exp. Sta., New Haven, Conn.
Kopf, Mr. Kenneth, F. H. Woodruff & Sons, Milford, Conn.
Krug, Mr. Carlos A., Institut Agronomica de Estado Campinas, Sao Paulo, Brazil.
Kvakan, Dr. Paul, Dobricevo Cuprija, Jugoslavia.
Langham, Dr. D. G., Plant Breeding Dept., Cornell Univ., Ithaca, N. Y.
Lebedeff, Dr. G. A., Plant Breeding Dept., Cornell Univ., Ithaca, N. Y.
Li, Dr. H. W., Wu-Han University, Wuchang, Hupeh, China.
Lindstrom, Dr. E. W., Genetics Dept., Iowa State College, Ames, Iowa.
Longley, Dr. A. E., Bureau of Plant Industry, U.S.D.A., Washington, D. C.
McClintock, Dr. Barbara, Botany Dept., Univ. of Missouri, Columbia, Mo.
Mains, Dr. E. B., Botany Dept., University of Michigan, Ann Arbor, Mich.
Mangelsdorf, Dr. P. C., Agronomy Dept., Agric. Exp. Sta., College Station, Texas.
Miles, Dr. L. C., Dept. of Agric. & Stock, Brisbane, Queensland, Aust.
Mumm, Mr. W. J., Agronomy Dept., University of Illinois, Urbana, Ill.
Neal, Dr. Norman P., Genetics Dept., Univ. of Wisconsin, Madison, Wisc.
Perry, Dr. K. S., Botany Dept., Duke University, Durham, N. Caro.
Reef, Dr. F. H., National Research Council, Ottawa, Ontario, Canada.

Randolph, Dr. L. F., Botany Dept., Cornell University, Ithaca, N. Y.
Reeves, Dr. R. G., Biology Dept., Agric. Exp. Sta., College Sta-
tion, Texas.
Richey, Mr. F. D., P.O. Box 23, Ashville, Ohio.

St. John, Mr. R. R., Botany Dept., Purdue University, LaFayette, Indiana.
Sancho, Dr. Chas. E., Bureau of Chemistry and Soils, U.S.D.A.,
Washington, D.C.
Sansome, Dr. F. W., Botany Dept., Univ. of Manchester, Manchester 13, England.
Shafer, Dr. John I., Botany Dept., Cornell Univ., Ithaca, N.Y.
Singh, Dr. S., Botanical Section, Imperial Inst. of Agric. Re-
search, Pusa, Behar, India.
Singleton, Dr. W. R., Genetics Dept., Agric. Exp. Sta., New Haven, Conn.
Sokoloff, Prof. Dmitri, Escuela de Ciencias Biologicas, Instituto
Politecnico Nacional, Mexico City, Mexico.
Sprague, Dr. G. F., Field Crops Dept., Univ. of Missouri, Columbia, Mo.
Stadler, Dr. L. J., Field Crops Dept., Univ. of Missouri, Columbia, Mo.
Stringfield, Mr. G. M., Agronomy Dept., Agric. Exp. Sta., Wooster, Ohio.

Tavcar, Dr. A., Dept. of Plant-Breeding, Univ. of Zagreb, Zagreb, Yugoslavia.
Thomas, Dr. H. C., Genetics Dept., University Farm, St. Paul, Minn.
van Overbeck, Dr. J., Institute of Technology, Pasadena, Calif.
Viegas, Clauco P., Agronomica do Estado Campinas, Sao Paulo, Brazil.

Weatherwax, Dr. Paul, University of Indiana, Bloomington, Indiana.
Wellhausen, Dr. E. J., Genetics Department, University of West
Virginia, Morgantown, W. Va.

Wernham, Mrs. C. G., 229 West Beaver Ave., State College, Penn.
Wiggans, Dr. R. G., Plant Breeding Dept., Cornell University,
Ithaca, N. Y.

Woodworth, Prof. C. M., Agronomy Dept., Univ. of Illinois, Urbana,
Ill.

Yasui, Prof. K., Plant-Morphology Division, Tokyo Imperial Uni-
versity, Tokyo, Japan.

Andres, Dr. Jose M., Director Del Instituto De Genetica, Facultad
De Agronomia Y Veterinaria, Buenos Aires, Argentina.

Hill, Mrs. H. H., Arlington Experiment Station, Arlington, Va.
The data presented here are not to be used in publications without the consent of the authors.

Department of Plant Breeding
Cornell University
Ithaca, N. Y.
October 31, 1939

To Maize Geneticists:

Call for material for the 1940 issue of the Maize Genetics Cooperation News Letters. Deadline is January 15th at Ithaca, New York.

The next issue of the News Letters will contain a revised list of all the Co-op stocks. Please send us your material which in your opinion would be desirable to include in the Co-op list. Also include anything that will be of value to other maize geneticists, such as your new linkage data, etc.

Members who attended the Genetical Congress at Edinburgh last summer are particularly requested to send in comments which might be of interest to maize geneticists.

Sincerely yours,

G. A. Lebedeff
Secretary
To Maize Geneticists:

Dr. G. A. Lebedeff, secretary of Maize Genetics Cooperation has accepted a position at the Agricultural Experiment Station of the University of Puerto Rico, Rio Piedras, Puerto Rico. I am, therefore, for the present acting as secretary.

This News Letter is presented under the following headings:

I. Maize gene symbols in publications.
II. General news items.
III. Maize publications.
IV. Inventory of Cooperation seed stocks.
V. Index to seed stocks.
VI. Historical Notes on Maize Genetics Cooperation.

It is understood that data presented here are not to be used in publications except on permission of the authors.

I. MAIZE GENE SYMBOLS IN PUBLICATIONS

The following statement is quoted from a letter written by Dr. L. C. Dunn, managing editor of Genetics, to Dr. L. J. Stadler, a member of the board of editors:

"The chief difficulty from the standpoint of publisher and printer comes from the frequent employment of subscripts which as you know have to be set in by hand and sometimes require special characters to be cast. This represents extra cost to the journals. If it is absolutely essential it must be done, but I'm not convinced that it is essential. In the present paper Al would serve as well as A_1 etc., except that the habit of subscripts has crept in through use. Jones had a rule against them but I notice that he didn't enforce it in Emerson's papers and I haven't either. There's no avoiding superscripts for multiple allelic series, but subscripts aren't generally essential and when both are required, e.g. A^b_1, the system approaches physical limits for the compositor and looks rather absurd. I don't propose any sudden revolution. I do suggest it might be discussed by the maize group,
keeping in mind that a system needn't necessarily be frozen by the first ten years of use and that economies in publication, if done without harm to clarity and preciseness, give our journals greater stability and security for the future."

Dr. Dunn's example illustrates the confusion which might often result from following his suggestion. Arabic figure "1" in typed manuscript cannot be distinguished from l.c. letter "1". The symbol "al" might be read "a-one" or "albescent". If the literal part of the symbol were always italicized and the numerical part not italicized, there need be no confusion. Or, if the numeral is joined to the letter by a hyphen, there should be no trouble. Again, if the numeral could be set in smaller type than the literal part of the symbol, the printer's problem might be solved, but certainly not the typist's. It seems likely, however, that two sizes of type might be as bad as subscripts for the compositor. In a recent personal conference with Dr. Dunn, he suggested omitting the numeral "1" in all cases. No numeral would then indicate either that there is only one gene with that literal symbol or that it is the first one reported. Thus, we would have a (= a1) a2, a3, etc. In order that you may see how you like it, the latter plan is followed throughout this News Letter. Let me know what you think of it. The principal difficulty noted in its use here appears first in Anderson's Table (p. 3) where gl3 = glossy 3 not golden 13. In the inventory of seed stocks 17 is not seventeen but luteus 7. Perhaps a period would help, thus: gl.3 and l.7.

R. A. Emerson

II. GENERAL NEWS ITEMS

California Institute of Technology, Pasadena, California

1. Translocations involving the left end of chromosome 1.

<table>
<thead>
<tr>
<th>Translocation</th>
<th>Cytological position</th>
<th>Linkage map position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tl-2c</td>
<td>S .7</td>
<td>T 1 sr ts2</td>
</tr>
<tr>
<td>1-9c</td>
<td>S .6</td>
<td>ts2 P 1</td>
</tr>
<tr>
<td>1-2b</td>
<td>S .4</td>
<td>ts2 P 4</td>
</tr>
<tr>
<td>1-6c</td>
<td>S .3</td>
<td>ts2 P 9</td>
</tr>
<tr>
<td>1-3a</td>
<td>S .25</td>
<td>ts2 P 21</td>
</tr>
<tr>
<td>1-9a</td>
<td>S</td>
<td>ts2 P 20</td>
</tr>
<tr>
<td>1-5b</td>
<td>ts2 P 24.4</td>
<td>T 32 br</td>
</tr>
<tr>
<td>1-5c</td>
<td>ts2 P 23.6</td>
<td>T 25 br</td>
</tr>
</tbody>
</table>

Tl-9a is known to be in the short arm from tests with homozygous T.
Location of br is probably about L .3.
The spindle attachment may be near the map position of as or between as and br.
2. Translocations involving chromosome 4.

<table>
<thead>
<tr>
<th>Translocation</th>
<th>Cytological position</th>
<th>Linkage map position</th>
</tr>
</thead>
<tbody>
<tr>
<td>T4-6b</td>
<td>S .8</td>
<td>Near Ts5; T 9 su</td>
</tr>
<tr>
<td>4-7</td>
<td>S .6</td>
<td>su ± 1.5</td>
</tr>
<tr>
<td>4-8</td>
<td>S .6</td>
<td>Near Ts5 and su</td>
</tr>
<tr>
<td>1-4</td>
<td></td>
<td>Near Ts5 and su</td>
</tr>
<tr>
<td>4-5c</td>
<td></td>
<td>su ± 1</td>
</tr>
<tr>
<td>4-10b</td>
<td></td>
<td>su ± 5.5</td>
</tr>
<tr>
<td>4-5d</td>
<td>L .2</td>
<td>su 1 T Tu</td>
</tr>
<tr>
<td>4-6a</td>
<td>L .2</td>
<td>su 4.5 T 14.6 Tu</td>
</tr>
<tr>
<td>2-4a</td>
<td>L .4</td>
<td>su 3.6 T 13.9 Tu</td>
</tr>
<tr>
<td>2-4c</td>
<td></td>
<td>su 9.1 T 30 Tu</td>
</tr>
<tr>
<td>2-4d</td>
<td></td>
<td>Near Tu</td>
</tr>
<tr>
<td>2-4b</td>
<td></td>
<td>su Tu gl3 15 T</td>
</tr>
<tr>
<td>4-9b</td>
<td>L .6</td>
<td>su Tu gl3 21.9 T</td>
</tr>
</tbody>
</table>

Not listed above T4-5a, 4-5c, 4-6c, 4-9a
The spindle attachment is probably somewhere near su.

E. G. Anderson

3. Translocations involving chromosome 2.

<table>
<thead>
<tr>
<th>Translocation</th>
<th>Cytological position</th>
<th>Linkage map position</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2-3a</td>
<td></td>
<td>close to lg</td>
</tr>
<tr>
<td>2-3e</td>
<td></td>
<td>close to lg</td>
</tr>
<tr>
<td>2-6b</td>
<td>S .75</td>
<td>gl12 4.2 T 1.4 B</td>
</tr>
<tr>
<td>2-3c</td>
<td>L .5</td>
<td>gl12 B 0.5 T sk</td>
</tr>
<tr>
<td>2-9a</td>
<td>S .6</td>
<td>Near sk</td>
</tr>
<tr>
<td>1-2b</td>
<td>S .6</td>
<td>Near sk</td>
</tr>
<tr>
<td>2-8</td>
<td></td>
<td>B 4.7 T 6.0 ts</td>
</tr>
<tr>
<td>2-3d</td>
<td></td>
<td>sk 8.5 T 12.6 v4</td>
</tr>
<tr>
<td>2-4d</td>
<td></td>
<td>sk 28.4 T 8.8 v4</td>
</tr>
<tr>
<td>2-6a</td>
<td></td>
<td>B 43 T</td>
</tr>
<tr>
<td>1-2a</td>
<td></td>
<td>T 11 v4 (Brink & Cooper)</td>
</tr>
<tr>
<td>2-9b</td>
<td>S .1</td>
<td>ts 5.3 T 7.8 v4</td>
</tr>
<tr>
<td>2-5a</td>
<td>L .1</td>
<td>sk 17.1 T 7.5 v4</td>
</tr>
<tr>
<td>2-5b</td>
<td>L .2</td>
<td>ts T v4</td>
</tr>
<tr>
<td>2-10</td>
<td>L .2</td>
<td>ts 11.4 T 6.6 v4</td>
</tr>
<tr>
<td>2-7b</td>
<td>L .25</td>
<td>ts 15.3 T 5.4 v4</td>
</tr>
<tr>
<td>2-7a</td>
<td>L .3</td>
<td>ts 7.2 T 1.1 v4</td>
</tr>
<tr>
<td>2-6 (78)</td>
<td></td>
<td>sk T 1.5 v4</td>
</tr>
<tr>
<td>2-6c</td>
<td>L .3</td>
<td>ts 11.4 T 1.6 v4</td>
</tr>
<tr>
<td>1-2c</td>
<td>L .3</td>
<td>ts 8.3 T 1.1 v4</td>
</tr>
<tr>
<td>2-4a</td>
<td>L .3</td>
<td>v4 ± 1.5</td>
</tr>
<tr>
<td>2-6d</td>
<td>L .4</td>
<td>v4 ± 5.0</td>
</tr>
<tr>
<td>2-7c</td>
<td>L .3+</td>
<td>ts 17.5 v4 1.1 T</td>
</tr>
<tr>
<td>2-3c</td>
<td></td>
<td>ts 4v 4.0 T</td>
</tr>
<tr>
<td>2-4b</td>
<td>L .6</td>
<td>ts 4v 5.6 T</td>
</tr>
<tr>
<td>2-4c</td>
<td></td>
<td>ts v4 19.0 T 29.2 Ch</td>
</tr>
</tbody>
</table>

The spindle attachment appears to be about half way between ts and v4.

E. G. Anderson and I. W. Clokey

1. Crosses were made in which pollen was collected from individual flowers located in white and green sectors, respectively, of the tassels of iojap plants. The pollen from each flower was used individually on the silks of a plant of an inbred line. The F₂ progenies of these crosses were obtained and grown to determine whether pollen from flowers of the two types of tassel tissue differed with respect to transmission of the iojap character. No differences of any kind could be observed between the F₂ progenies from crosses made with pollen from the two kinds of sectors.

2. Data obtained on a 4-point backcross involving 3039 individuals indicate the following order of the chromosome 7 genes involved:

\[
\text{o2} \quad \text{8.2} \quad \text{v5} \quad \text{8.0} \quad \text{ra} \quad \text{2.4} \quad \text{gl}
\]

Data obtained on a 3-point backcross involving only 192 individuals indicate the order of the three loci involved to be as follows:

\[
\text{i1} \quad \text{18.8} \quad \text{Bn} \quad \text{37.5} \quad \text{bd}
\]

3. In 1932 one of the selfed ears obtained from a selfed line previously inbred for 6 generations was segregating for sugary seeds. Since there was no evidence of out-crossing and none of the ears from numerous sister plants selfed in 1938 and in the same progeny replanted in 1939 from remnant seed segregated for sugary seeds, it seems certain that the sugary gene arose as a mutation. Crosses made in 1939 identified the mutant gene as su.

M. T. Jenkins

4. Deficiencies. A v2 deficient plant from X-rayed pollen had a small internal deficiency in the long arm of chromosome 5 near the knob probably proximal to it. A B deficient plant from ultraviolet treated pollen had an apparently terminal deficiency of 2/3 to 3/4 of the short arm of chromosome 2.

5. Translocations from ultraviolet. In a population from pollen treated with ultraviolet 9 decidedly off-type plants (in addition to marked deficiencies) were examined. Presumably all were deficient, though the deficiencies were not marked. The diakinesis configurations were as follows:

- 5 plants had 10 II, 2 with obvious deficiencies.
- 1 plant had 8 II and a ring of 4, a typical interchange complex.
- 1 plant had 7 II and an open complex of undetermined number.
- 2 plants had 8 II and a 3 chromosome open complex.
In each of these last two plants with a 3 chromosome complex a chromosome bridge was frequently seen at anaphase I, and segregations of 9-10, 10-10, and 9-11 were observed. The diakinesis configurations and anaphase segregations can be explained on the hypothesis that two chromosomes with terminal deficiencies have united to form a single chromosome with two adjacent centromeres, the terminal portions having been lost. This hypothesis depends on the assumption that such a chromosome could persist through the life of the plant.

Lillian Hollingshead Hill

6. Summary of Ws3 - Lg - G12 backcross data.

<table>
<thead>
<tr>
<th>F1 genotype</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>1, 2</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>787</td>
<td>808</td>
<td>82</td>
<td>82</td>
<td>146</td>
</tr>
<tr>
<td>ws3 Lg g12</td>
<td>8.2%</td>
<td>14.9%</td>
<td>0.2%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

These three loci are all in the short arm of chromosome 2. A high degree of interference is indicated by the coincidence value 0.15.

7. Summary of Bm Bt Pr backcross data

<table>
<thead>
<tr>
<th>F1 genotype</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>1, 2</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ bt pr</td>
<td>135</td>
<td>462</td>
<td>8</td>
<td>3</td>
<td>92</td>
</tr>
<tr>
<td>bm +</td>
<td>1.13%</td>
<td>37.04%</td>
<td>0.41%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bm-Bt = 1.5% Bt-Pr = 37.5%

The inequality of the complementary classes is due to the poor germination of bt seed.

8. Summary of Bm Bt backcross data

<table>
<thead>
<tr>
<th>Linkage Genes Phase</th>
<th>3m Bt</th>
<th>Bm Bt</th>
<th>bm Bt</th>
<th>bm bt</th>
<th>Total</th>
<th>% Recomb.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bm Bt</td>
<td>11</td>
<td>359</td>
<td>900</td>
<td>8</td>
<td>1278</td>
<td>1.5</td>
</tr>
</tbody>
</table>

The inequality of the complementary classes is due to poor germination of bt seed.

9. Linkage of Dt with loci in chromosome 9. Data published in 1938 suggested that Dt was linked with G. To test this indication the following data were obtained:

<table>
<thead>
<tr>
<th>Linkage Genes Phase</th>
<th>XY</th>
<th>Xy</th>
<th>XY</th>
<th>XY</th>
<th>Total</th>
<th>% Recomb.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dt Wx</td>
<td>C S</td>
<td>1663</td>
<td>525</td>
<td>690</td>
<td>118</td>
<td>2996</td>
</tr>
<tr>
<td>Dt Wx</td>
<td>C B</td>
<td>682</td>
<td>462</td>
<td>472</td>
<td>677</td>
<td>2296</td>
</tr>
<tr>
<td>Dt Sh</td>
<td>C S</td>
<td>679</td>
<td>100</td>
<td>156</td>
<td>138</td>
<td>1073</td>
</tr>
</tbody>
</table>
These data definitely prove that Dt is in chromosome 9 and further indicate that Dt should lie close to yg2. Tests with yg2 have been handicapped by the fact that all available yg2 stocks are homozygous for recessive c and it has been necessary to extract a yg2 c stock.

10. Effect of varying dosages of Dt. Previous data have shown that a non-linear effect was obtained when different dosages of Dt were present in the aleurone. However the demonstration of several modifying factors affecting the a-Dt reaction made it necessary to secure data bearing on this relationship in an iso-genic stock. Such an iso-genic stock was obtained through repeated self-fertilization of a Dt dt stock -- heterozygous Dt dt seed being used in every generation to further the inbreeding. After 5 years of selfing the F6 seed was classified into Dt Dt, Dt dt and dt dt classes. For the dosage relation between 1 and 2 Dt genes exact reciprocals were made between Dt Dt and dt dt plants. It was necessary to self Dt Dt individuals to obtain data on the effect of 3 Dt genes. The following data were obtained:

<table>
<thead>
<tr>
<th>Pedigree</th>
<th>Dt dt dt class (1 Dt)</th>
<th>Dt Dt dt class (2 Dt)</th>
<th>Dt Dt Dt class (3 Dt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6134-13 x 6131-7</td>
<td>6.8</td>
<td>19.5</td>
<td></td>
</tr>
<tr>
<td>reciprocally</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6134-6 x 6131-14</td>
<td>5.9</td>
<td>19.6</td>
<td></td>
</tr>
<tr>
<td>reciprocally</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6134-1 x 6131-2</td>
<td>7.8</td>
<td>19.9</td>
<td></td>
</tr>
<tr>
<td>reciprocally</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6134-2 x 6131-9</td>
<td>9.1</td>
<td>23.9</td>
<td></td>
</tr>
<tr>
<td>reciprocally</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6385-24 x 6386-13</td>
<td>6.7</td>
<td>24.9</td>
<td></td>
</tr>
<tr>
<td>reciprocally</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6385-9 x 6386-19</td>
<td>8.3</td>
<td>26.6</td>
<td></td>
</tr>
<tr>
<td>reciprocally</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6385-11 x 6390-17</td>
<td>8.4</td>
<td>24.1</td>
<td></td>
</tr>
<tr>
<td>reciprocally</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mean ratio for 1 Dt : 2 Dt = 1 : 3

6131-18 selfed | 110.1 |
6131-8 selfed | 126.7 |
6386-2 selfed | 128.7 |

In each determination at least 50 seeds were used. The figures represent the average number of mutations (i.e. dots of color) in the aleurone layer. The mutation frequency in the 3 Dt class is too low. With such large numbers of dots per seed there is considerable overlapping of the mutant areas. Error also enters from the fact that an earlier mutation of one a allele will obscure a latter mutation of a second allele. In the case of 1 and 2 dosages of Dt this is
an insignificant matter but it must be taken into account in considering the data from 3 doses of Dt. Due to the extreme difficulty in counting the dots on the 3 Dt class only 3 ears were counted. They were in no way different from the numerous uncounted ears of the same constitution. These data confirm the earlier conclusion that the effect of varying doses of the Dt allele is a non-linear one.

11. Effect of temperature on mutation rate of a allele when plants were matured at two levels of temperature after fertilization. Plants of a Dt constitution were grown at a temperature of approximately 70 degrees F. until flowering. Immediately after pollination they were divided at random into two lots and one placed in a greenhouse maintained around 60 degrees F. and the second lot placed in an adjoining house maintained at or near 80 deg. F. The two lots of plants were left at the two temperature levels until seed was ripened. The mutation rates at the two temperatures were determined by counting the number of aleurone dots. The average mutation rate was determined by counting the number of dots on fifty seeds of each ear except for those ears marked by asterisks where less than fifty seeds were available. The data obtained are given below:

<table>
<thead>
<tr>
<th>Pedigree</th>
<th>Mutations per seed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>60 deg. F.</td>
</tr>
<tr>
<td>6279 x 6329-2</td>
<td>50.2</td>
</tr>
<tr>
<td>"</td>
<td>47.2</td>
</tr>
<tr>
<td>"</td>
<td>37.5</td>
</tr>
<tr>
<td>" x 6329-3</td>
<td>41.2</td>
</tr>
<tr>
<td>"</td>
<td>44.9*</td>
</tr>
<tr>
<td>"</td>
<td>29.5*</td>
</tr>
<tr>
<td>Total</td>
<td>250.6</td>
</tr>
<tr>
<td>Mean</td>
<td>41.8</td>
</tr>
</tbody>
</table>

The results listed above are somewhat astonishing and to the writer entirely unexpected. A similar experiment is being conducted this year on a more extensive scale. If the same effect is found it should be possible to determine the critical period at which the temperature change has its effect. It also will permit inferences, or if you wish, guesses, as to the nature of the a-Dt reaction.

12. Mutation of a to different alleles. The frequency of mutation of recessive a in the presence of Dt to the a^B allele as compared to the frequency to the A and A^B alleles can be ascertained by the classification of the aleurone dots into pale and deep colored. However in the aleurone it is impossible to differentiate between the A and A^B alleles and to determine the relative frequency of mutation to these two alleles it is necessary to test the relatively rare
germinal mutations against the P gene. To date twelve germinal mutations giving deep colored aleurone and purple plants, with B P\textsubscript{1}, have been tested. Eleven proved to be identical to the \textit{A} allele while the remaining one gave brown pericarp. Since \textit{Ab} produces a dominant brown pericarp it will be necessary to test this allele against \textit{A} in order to find if the brown pericarp color is dominant to the red of \textit{A} before one can draw the conclusion that it is a mutation to \textit{Ab}. Irrespective of the outcome of this test it is an allele different from \textit{A} and \textit{aP} and mutations of \textit{a} to three different alleles have occurred.

There are only two \textit{a} alleles of different origin. Both of these are mutable in the presence of Dt. It is of some interest that on four occasions mutations of an \textit{a} allele unstable with Dt have apparently occurred to an \textit{a} allele which is stable with Dt. Stadler has found an \textit{a} allele stable with Dt which arose as a mutation in his ultra-violet treatments.

13. Linkage of reverted \textit{A} alleles with \textit{lg2}. Four different germinal mutations to \textit{A} have been tested for linkage against \textit{lg2}. As expected all four showed approximately 30 percent recombination with \textit{lg2}. All evidence available indicates that the changes occurring at the \textit{a} locus are true gene mutations.

14. Effect of Dt on \textit{PVv}. Plants heterozygous for Dt and carrying the variegation allele for pericarp color were backcrossed by dt p individuals. The \textit{F\textsubscript{1}} seed was classified into Dt and dt classes and the ensuing ears graded for variegation in a way similar to that employed by Emerson in his studies on variegation. The data are as follows:

<table>
<thead>
<tr>
<th>Dt seed</th>
<th>dt seed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>Number</td>
</tr>
<tr>
<td>ears</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>34</td>
</tr>
<tr>
<td>22</td>
<td>19</td>
</tr>
<tr>
<td>22</td>
<td>31</td>
</tr>
<tr>
<td>17</td>
<td>11</td>
</tr>
<tr>
<td>32</td>
<td>35</td>
</tr>
<tr>
<td>30</td>
<td>38</td>
</tr>
<tr>
<td>21</td>
<td>28</td>
</tr>
<tr>
<td>Total 167</td>
<td>Mean 190</td>
</tr>
</tbody>
</table>

These data show there is no effect of the Dt allele on the unstable pericarp gene.
15. Further studies with chromosome 10. Longley (1937, 1938) discovered that certain strains of maize as well as teosinte have an abnormal type of chromosome 10. It differs from the normal in that it has a very considerable piece of chromatin attached to the end of the long arm. Since the locus of R is known to be in the distal 22 percent of the long arm (Stadler, 1933) it should be possible to determine the amount of recombination between R and the end of the long arm if the extra piece is used as a marker. Dr. Longley was kind enough to furnish a strain with the abnormal tenth. His strain proved to be homozygous for recessive r and a ratio of 1 R : 1 r resulted when pollen from two different strains of R r constitution was applied. Plants from the colored seeds of each F₁, heterozygous for both R and the abnormal tenth, were backcrossed reciprocally by r testers with normal chromosomes 10. The following results were obtained (since the two F₁'s gave similar results they are considered together): When the F₁ plants were used as the female parent the ratio of R : r was 2676 : 7214 while the reciprocal gave close to the expected 1 : 1 ratio. The shortage of R seeds suggests that the normal chromosome 10 fails to be included in the functioning megaspore. There are at least two possible explanations: (1) competition among the megaspores so that one with the abnormal tenth develops into the embryo sac irrespective of its position in the linear tetrad of megaspores or (2) selective segregation at meiosis so that the basal megaspore receives an abnormal tenth. On either basis, if there are no exceptions, the R class represents crossovers. There was no sterility on the ear proving that the abortion of r megaspores cannot be accepted as an explanation. Studies are under way to determine the cause of this unusual ratio as well as to ascertain the recombination value between R and the end of the long arm. In connection with the latter problem it is apparent that the true length of a genetic map can never be had from ordinary linkage studies because one never knows how much crossing over occurs beyond the most distally placed locus studied. It is only when cytological markers are used, such as terminal knobs, that the total map length can be measured. This has already been accomplished for the short arm of chromosome 9 by Creighton. This investigation is being conducted by Virginia H. Rhoades.

16. Crossover values in male and female flowers. Studies on the frequency of crossing over for different regions of chromosome 5 in mega- and microsporocytes have been continued. Earlier work by Emerson and Hutchison, Stadler, Eyster, Collins and Kempton, and Rhoades and Rhoades have shown no consistent difference in crossing over for chromosomes 2, 4, 9, and 10 in the male and female flowers. However, a considerable amount of data have been accumulated which show that this does not hold for chromosome 5. These data prove that in the male flowers the frequency of crossing over is greater than in the female. Because of ease in
classifying most of the data are for the a2-bt region. Two different stocks have been used. In one of them a relatively high amount of recombination occurs while in the second stock a much lower value was found. The difference between the high and low stocks is not known but in both higher crossover values in the male flowers was found. Exact reciprocals were made in obtaining male and female crossover percentages.

Summary of high a2-bt line (10 pairs of reciprocals)

<table>
<thead>
<tr>
<th></th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2 Bt</td>
<td>1156</td>
<td>1284</td>
</tr>
<tr>
<td>A2 bt</td>
<td>420</td>
<td>256</td>
</tr>
<tr>
<td>a2 Bt</td>
<td>414</td>
<td>278</td>
</tr>
<tr>
<td>a2 bt</td>
<td>1103</td>
<td>1290</td>
</tr>
<tr>
<td>% Recomb</td>
<td>27.0</td>
<td>17.2</td>
</tr>
</tbody>
</table>

Summary of low a2-bt line (16 pairs of reciprocals)

<table>
<thead>
<tr>
<th></th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2 Bt</td>
<td>2348</td>
<td>1902</td>
</tr>
<tr>
<td>A2 bt</td>
<td>373</td>
<td>110</td>
</tr>
<tr>
<td>a2 Bt</td>
<td>410</td>
<td>120</td>
</tr>
<tr>
<td>a2 bt</td>
<td>2590</td>
<td>1827</td>
</tr>
<tr>
<td>% Recomb</td>
<td>13.7</td>
<td>5.8</td>
</tr>
</tbody>
</table>

In addition to the above data on the a2 bt region, data have been obtained on the a2 bm, bm Pr and bt Pr regions. There is a consistent and highly significant increase in crossingover in the male flowers for all of these regions. The data also suggest that the greatest reduction occurs in those regions adjacent to the centromere, i.e. there is a proportionately greater reduction in the a2 bm and a2 bt regions than in the bm Pr and bt Pr regions but, owing to the difference in length of these regions, this point has not been statistically established as yet.

In order to determine if the crossover difference for the two sexes found for chromosome 5 is a cellular characteristic affecting all chromosomes indiscriminately or is peculiar to chromosome 5, tests were made involving the c wx region in 9 and the bm Pr region in 5 simultaneously. No difference in crossingover in the two sexes was found for the c wx region.

M. M. Rhoades

Connecticut Agricultural Experiment Station, New Haven, Conn.

1. Further evidence indicating a physiological change in cell activity resulting from breaks and rearrangements of chromosome parts has been obtained from the paired mosaics in the endosperm. In the majority of cases of paired losses of C and Pr, C and Su, Pr and Su, no change in size, arrangement or numbers of cells is apparent. In a few cases marked changes in some or all of these respects are noted. In the same material one part of the paired mosaic area may be affected, in other cases the other part is affected. This means that many chromosomal rearrangements are without any effect upon cell activity other than the subtraction of the
usual action associated with the dominant allele. In the few cases where profound physiological alterations occur it seems apparent that specific places of breakage and reattachment are involved. If the alteration resulted from a shift of growth-controlling regions of the chromosomes or a general unbalance in amount or kind of chromatin material, paired alterations showing the changes in growth would be expected more frequently and both parts of the paired mosaic areas would be affected. A few cases of this latter type are noted but they are not general.

2. Height of plant is noticeably affected by shading. Short plants grown between tall plants at the time of rapid elongation are usually taller than when grown in an unshaded location. Several lots of hybrid sweet corn grown under tobacco shade cloth were taller than the same lots grown in the open. Some inbreds seem to respond to shading more than others. Iowa Kr (Os1) (from Lindstrom) grown between two first generation hybrids was taller in the middle of the row than at either end. Height graduated evenly from both ends toward the center where there was the most shading. Height is also affected by time of planting. Plantings of the same lots of seed at weekly intervals usually show the second planting to be taller than the first. This also may be due in part to the shading of the later plantings by the earlier.

D. F. Jones

3. recessive sun red. A sun red that segregates as a recessive was obtained from a Whipple sweet corn inbred, 850-17. The color is intense, is sun limited, and the stock has wine colored silks, and red glumes and anthers.

4. Sectorial sun red (Genetics 24:108) induced by ultraviolet pollen treatment, is changed to sectorial purple when crossed by dilute purple A B P. Also sectorial sun red shows a linkage (F2 data) with gl2 and y4. C.C. percent gl2 and sectorial sun red = 19; between y4 and sectorial sun red = 32%. These values approximate the crossover values with B, 19 and 21 percents respectively. This is evidence the recessive sun red represents a change from the original factor that was treated and is not another independent factor acting upon the B gene. This character is being studied further.

5. Effect of female stock on the functioning of sp pollen. In 1938 pollen of sp su/ + + plants was put on two su inbreds Purdue 39 and Connecticut 81. The su seeds obtained (the crossover class with no sp survival) were 39 percent for P39 and 17% for C81. These figures are both too high for the crossover value (6%), and suggested the possibility that the two sweet inbreds had influenced differently the functioning of sp male gametes. Pollen examination of plants produced by these two pollinations verified this assumption. The su seeds from the P39 cross produced plants, 87% of which
were segregating for \(sp \). There was only 56\% of segregating plants from the C61 cross. By correcting the original "crossover" percents for \(su \) and \(sp \) in order to eliminate \(sp \) survival in the pollen, the true crossover values of 5.1 and 7.4 are obtained. These are both close to the 6\% value previously found. These results are soon to be published in the Proc. Nat. Acad. Sci.

6. Fine mottling may completely inhibit color. On an ear segregating for coarse and fine mottling (Maize Coop. 1939 letter) there were six colorless seeds. These produced 5 plants in 1939. One was a contamination, a self-pollination. The other four were segregating for color. In the case of these four seeds the fine mottling factor completely inhibited color production.

W. R. Singleton

7. A method has been developed for studying mitoses in developing endosperm, particularly to correlate types of figures observed with the occurrence of endosperm and aleurone mosaics. Collections made six days after pollination usually had many divisions. Material was fixed according to Randolph's chromo-acetic formula (Randolph, L. F. J. Agr. Res. 53:881-916). Whole mounts or free hand sections were stained by the usual Feulgen method with the omission of destaining or washing off excess fuchsin in \(SO_2 \) water (by putting the tissue from the fuchsin-sulphurous acid directly to water and, as the nuclei become stained, changing the water several times before the usual dehydrating and mounting). Preliminary observations show 4-10 percent abnormal divisions in endosperms collected from stocks giving high rates of mosaic formation.

F. J. Clark

8. In connection with a determination of the germinating ability of \(sp \) in competition with normal pollen it was found that pollen could be germinated by placing it on sucrose-agar (10% sucrose and \(.7% \) agar from Andronescu, 1915) in depression slides. The method seemed to be applicable, however, only if the humidity is low, since trials in the early summer when the humidity was very high resulted in failure as the pollen grains would burst before germination started.

F. J. Clark

9. A distinctive defective endosperm character was found in an open-pollinated variety that had been selfed one generation. The defectiveness is different from other defective endosperm characters on which histological work has been reported in that it does not result from arrested development but from a breaking down of the endosperm tissue after it has formed. A cavity is formed in the upper central part of the endosperm by the disintegrating process, and the mature seeds are smaller and have a dull mottled milky appearance. The defective seeds also show a tendency to germinate while still on the ear. This character, disintegrated endosperm, (\(di \)),

282
is controlled by a single recessive factor, and evidence indicates that it is located on chromosome 2 at approximately 25 crossover units from the B factor and 45 crossover units from Lg.

L. M. Roberts
Cornell University, Ithaca, N.Y.

1. In tetraploid maize unimodal curves were obtained from hybrids between self-fertile and self-sterile lines back-crossed to the self-fertile parent; in the back-cross to the self-sterile parent a bimodal curve was obtained, 250 or more individuals being involved in each population. In the F2 population of the same crosses unimodal or very weakly bimodal curves were obtained.

The F1 of the incompatible matings between the self-compatible lines (B Lg and sy) of tetraploid maize reported in the last News Letter was found to be self-fertile, and the back-crosses to the parent lines were also compatible, as indicated by observations on 50 or more ears from each cross. An incompatible mating between the cross-sterile B Lg line and a self-sterile B Lg line showed an intermediate degree of self-fertility (37%) in F1. The backcross to the B Lg parent was 37% compatible (28 ears) while the back-cross to the B Lg parent was only 15 percent compatible.

Harold E. Fischer

2. Monosomic Maize. A plant monosomic for one of the shorter chromosomes (undetermined) appeared as a parthenogenetic diploid in a tetraploid stock of maize. A detailed study of meiosis with special reference to the behavior of the univalent was made. The univalent in fifty percent of the 770 cases observed was found to go to one of the poles in division I. In the remaining cases the univalent was not included in the daughter nuclei of division I but remained in the cytoplasm forming a micro-nucleus. Most (+/*] of these free dyad univalents were apparently reincorporated into the spindle of division II. This was indicated by a marked reduction in number of free dyad groups in metaphase II as compared with the frequency of micronuclei at interkinesis. Such cells produce microspores with a normal chromosome complement. In cases where the dyad univalent fails to be reincorporated in the spindle of division II, it often forms an independent spindle and divides. As a result of this, microspores containing a micronucleus in addition to the macronucleus are formed (in 1.8% of the microspores). The univalent was observed to divide in 10% of the first division figures. The resultant chromatids do not divide again in the following division but lag or move to one of the poles giving a 10-9 distribution in anaphase II. Pollen examination shows that 54% of the grains are abortive, due presumably to lack of a full chromosome complement. Selfing of the monosomic plant resulted only in diploid progeny and
the same result was obtained when it was used as a pollen
parent with normal diploid plants.

Harold E. Fischer and John Einset

3. Vivipary designated as vp5, found in Dr. Wiggans'
cultures, is closely linked with yellow endosperm, as can be
seen from the F_2 data presented below. If it is Y, which it
probably is, then vp5 is located in chromosome 6. Classifi-
cation of vp5 is good. In cultures where germination has
gone too far resulting in discoloration of kernels, classifi-
cation of endosperm color is difficult.

Last summer's data in regard to pb-x confirm the previ-
ous observation of its close linkage to Y, as shown below.
Four pb genes are listed in the Linkage Summary, all of them
have been lost. Therefore pb-x will be designated as pb5
although it has not been tested for allelism with the other
four.

Backcross data for vp5 and pb5 follow:

<table>
<thead>
<tr>
<th>Genes</th>
<th>Phase</th>
<th>XY</th>
<th>Xy</th>
<th>XY</th>
<th>xy</th>
<th>Total</th>
<th>Recomb.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yp5 Y</td>
<td>CB</td>
<td>1489</td>
<td>35</td>
<td>33</td>
<td>482</td>
<td>2039</td>
<td>3.3</td>
</tr>
<tr>
<td>Pb5 Y</td>
<td>CB</td>
<td>231</td>
<td>1</td>
<td>2</td>
<td>250</td>
<td>484</td>
<td>0.6</td>
</tr>
</tbody>
</table>

G. A. Lebedeff

4. Backcross data involving chromosome 7. Of the three
cultures included in the three-point test, the first was
grown in the greenhouse in the winter of 1938-39, the second
in the garden in the summer of 1939, and the third in the
greenhouse in 1939-40.

<table>
<thead>
<tr>
<th>F_1 genotype</th>
<th>0</th>
<th>1</th>
<th>1,2</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>$+$ v5 g1</td>
<td>1690</td>
<td>137-48</td>
<td>254-298</td>
<td>71-21</td>
</tr>
<tr>
<td>in + +</td>
<td>1258</td>
<td>72-36</td>
<td>137-134</td>
<td>61-6</td>
</tr>
<tr>
<td></td>
<td>1426-1362</td>
<td>87-53</td>
<td>220-230</td>
<td>17-6</td>
</tr>
<tr>
<td></td>
<td>4374-4281</td>
<td>296-137</td>
<td>611-662</td>
<td>169-33</td>
</tr>
<tr>
<td></td>
<td>8655</td>
<td>433</td>
<td>1273</td>
<td>202</td>
</tr>
</tbody>
</table>

The marked difference between complementary classes of
region 1 and double crossovers are not to be accounted for
by differential viability of recessives; for, of the total,
in plants constitute 48.4%, v5 plants 48.8%, and g1 plants
50.1%. A comparison of frequencies of double recessives
with those of corresponding double dominants shows that the
one double recessive, in v5, is principally responsible for
the differences between complementary classes. The frequency
relations of double recessives to corresponding double dom-
inants are as follows:
In view of the approximate equality of \(V_5 \) and \(v_5 \) plants in this back-cross progeny, it is hard to account for the deficiency of \(v_5 \) plants either on the basis of errors in classifying or a suppressing effect of \(v_5 \) upon the expression of \(V_5 \), like that of \(R \) upon \(r \). A further study will be made of this second possibility.

A two-point back-cross gave the following:

<table>
<thead>
<tr>
<th>Phase</th>
<th>In Tp</th>
<th>In tp</th>
<th>in Tp</th>
<th>in tp</th>
<th>Total</th>
<th>% Recomb.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CB</td>
<td>147</td>
<td>65</td>
<td>60</td>
<td>124</td>
<td>396</td>
<td>31.6</td>
</tr>
</tbody>
</table>

The order of these genes is:

\[
in \quad 6 \quad V_5 \quad 14 \quad g_1 \quad Tp
\]

A. C. Fraser

5. The \(g_3 \)h reported last year is allelomorphic with \(g_4 \).

6. \(mg \) often is completely germless. \(F_2 \)s of one cross contained many germless or even completely empty seeds and few truly \(mg \) ones. \(F_2 \)s of another cross had many fewer non-viable seeds and many truly \(mg \) ones. \(mg \) seeds are definitely slower to germinate (many never germinate) than normal seeds, and their plants seem to mature 7 to 10 days later than plants from normal seeds. However, the \(mg \) seeds produce normal sized plants.

7. Several crosses have produced seeds with purple plumules. From \(F_2 \) counts it seems that at least 3 and perhaps 4 dominant complementary genes are involved. Classification of \(F_3 \) seems satisfactory in yellow or white seeds.

8. \(sb \) continues to be abnormal. Many \(sb \) plants last summer had stiff, very narrow leaves. In some cases these consisted of little but midrib. Plants with such leaves were usually sterile. Pollen was obtained from two for crosses. Ratios in \(sb \) crosses were again atypical. One \(F_2 \) contained \(177N:34sb \ (5:1) \). Several back-cross cultures contained:

<table>
<thead>
<tr>
<th>Culture</th>
<th>Sb</th>
<th>sb</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>46</td>
<td>36</td>
</tr>
<tr>
<td>3</td>
<td>50</td>
<td>31</td>
</tr>
<tr>
<td>4</td>
<td>53</td>
<td>30</td>
</tr>
<tr>
<td>5</td>
<td>45</td>
<td>46</td>
</tr>
<tr>
<td>Total</td>
<td>234</td>
<td>173</td>
</tr>
</tbody>
</table>

John Shafer, Jr.
My presence in Europe last summer had, it turns out, a deleterious effect on my summer's work at Ithaca - a result not un-foreseen. For such results as I am able to report, I am indebted to Dr. Lebedeff who did my work in addition to his own.

9. Tassel-seed 3 and tassel-seed 6. - In the News Letter of March 23, 1937 (p. 6), Lindstrom reported Ts6 as about 26 units from gs. At about that time I had found that Ts3 and an were closely linked. Since an and gs are about 27 units apart and since both Ts3 and Ts6 are dominant genes, it seemed possible that the two were alleles. Data obtained during the past summer though not wholly satisfactory indicate that Ts3 and Ts6 are not allelic. The data follow. (See also Lindstrom's report in this News Letter.)

<table>
<thead>
<tr>
<th>F1 genotype</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>1, 2</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ Ts3 +</td>
<td>62-70</td>
<td>17-0</td>
<td>5-22</td>
<td>7-0</td>
<td>183</td>
</tr>
<tr>
<td>an + gs</td>
<td>132</td>
<td>17</td>
<td>27</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.3%</td>
<td>14.8%</td>
<td>3.8%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ + Ts6</td>
<td>58-37</td>
<td>16-6</td>
<td>13-7</td>
<td>10-5</td>
<td>152</td>
</tr>
<tr>
<td>an gs +</td>
<td>95</td>
<td>22</td>
<td>20</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14.4%</td>
<td>13.2%</td>
<td>9.9%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ + Ts3</td>
<td>59-26</td>
<td>10-1</td>
<td>18-24</td>
<td>2-1</td>
<td>141</td>
</tr>
<tr>
<td>an bm2 +</td>
<td>85</td>
<td>11</td>
<td>12</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.8%</td>
<td>4.2%</td>
<td>2.1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ + Ts6</td>
<td>81-41</td>
<td>23-4</td>
<td>5-0</td>
<td>0-0</td>
<td>154</td>
</tr>
<tr>
<td>an bm2 +</td>
<td>122</td>
<td>27</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17.5%</td>
<td>3.3%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If taken as they stand, these data indicate that Ts3 is between an and gs, while Ts6 is to the right of gs and probably to the right of bm2. It will be noted, however, that homologous recombination classes are far from equal. The first entry of the table shows a considerable deficiency of Ts3 plants and the second entry exhibits a similar deficiency of an plants. In the third and fourth entries, respectively, Ts3 and Ts6 are in excess of 50 percent, while an and bm2 are deficient. But such evidence as is available, if any, suggests that Ts3 is near an and Ts6 near bm2.

10. Locus of knotted. - In the News Letter of March 26, 1938 (p. 5), Bryan reported Kn 26 units from br and 24 units from bm2. These data suggest that Kn is between an and gs. The few data obtained last summer are in agreement with this indication, as follows:
If, as is suggested above, Kn and Ts3 are between an and gs and Ts6 near bm2, Kn should show much closer linkage with Ts3 than with Ts6. This is borne out only in part by the following back-cross data.

<table>
<thead>
<tr>
<th>Fl genotype</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>1, 2</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ Kn + an +</td>
<td>49-32</td>
<td>9-14</td>
<td>0-8</td>
<td>2-1</td>
<td>115</td>
</tr>
<tr>
<td>+ Kn + an + bm2</td>
<td>56-44</td>
<td>26-7</td>
<td>24-14</td>
<td>7-0</td>
<td>178</td>
</tr>
</tbody>
</table>

If, as is suggested above, Kn and Ts3 are between an and gs and Ts6 near bm2, Kn should show much closer linkage with Ts3 than with Ts6. This is borne out only in part by the following back-cross data.

<table>
<thead>
<tr>
<th>XY</th>
<th>Xy</th>
<th>xy</th>
<th>XY</th>
<th>XY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kn Ts3</td>
<td>3</td>
<td>9</td>
<td>16</td>
<td>2 = 16/30 = 16.7%</td>
</tr>
<tr>
<td>Kn Ts6</td>
<td>8</td>
<td>27</td>
<td>47</td>
<td>13 = 21/95 = 22.1%</td>
</tr>
</tbody>
</table>

11. The order of br f an. - There were published in the Linkage Summary 1935 (p. 35), three-point tests involving 960 individuals which indicated that the order is as given above. Bryan, in the 1938 News Letter (p. 5), reported four-point tests with 293 individuals involving br, f, Kn, and bm2 which indicated that f is to the left of br. An attempt was made last summer to check this situation. A total of 1352 individuals were noted, but only 34 per cent of them were recorded as f. Moreover both orders of the genes indicated double crossovers as more numerous than singles in one region and equal to singles in the other region. It is obvious that many f plants were recorded as normal. This is not unlikely in cultures such as these in which f was poorly expressed. It seems likely that plants recorded as f were certainly of that nature. The following data, therefore, include only the f plants.

<table>
<thead>
<tr>
<th>Fl genotype</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>1, 2</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ + + br f an</td>
<td>347</td>
<td>22</td>
<td>77</td>
<td>7</td>
<td>453</td>
</tr>
</tbody>
</table>

12. Further data on chromosome 1 translocations. In my paper on z1 (Genetics 1939, p. 382), in which many previously unpublished data from Anderson were used, it was shown that T1-5b, l-5c, and l-3a have their breaks between F and br, and that the T1-2c break is near sr. A few further data are now available, and are presented in the accompanying table.
<table>
<thead>
<tr>
<th>F<sub>1</sub> genotype</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>1, 2</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tl-2c + + + sr F</td>
<td>6251</td>
<td>23</td>
<td>2018</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>+ P + sr + Tl-9c</td>
<td>99</td>
<td>112</td>
<td>17</td>
<td>22</td>
<td>1</td>
</tr>
<tr>
<td>+ br P + Tl-9c</td>
<td>30</td>
<td>21</td>
<td>4</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>Tl-9c + + + br an</td>
<td>16</td>
<td>22</td>
<td>23</td>
<td>21</td>
<td>3</td>
</tr>
<tr>
<td>+ + Tl-5b + sr P</td>
<td>59</td>
<td>40</td>
<td>28</td>
<td>19</td>
<td>8</td>
</tr>
<tr>
<td>+ br P + Tl-5b +</td>
<td>52</td>
<td>60</td>
<td>11</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>Tl-3a + + + br an</td>
<td>75</td>
<td>54</td>
<td>28</td>
<td>53</td>
<td>13</td>
</tr>
<tr>
<td>+ + Tl-9b + + br bm2</td>
<td>26</td>
<td>35</td>
<td>1</td>
<td>2</td>
<td>10</td>
</tr>
</tbody>
</table>

Although these data are not wholly consistent, they indicate that Tl-2c is near sr and to its left, that Tl-9c is near P and to its right, and that Tl-9b is near br and probably to its left.

13. Tests of miscellaneous genes with chromosome 1 markers. - Six genes, not previously linked, have been tested with several loci of chromosome 1. On the next page are shown the number of individuals and per cent of recombination in each F₂ test.

<table>
<thead>
<tr>
<th>New</th>
<th>sr</th>
<th>msl7</th>
<th>P</th>
<th>br</th>
<th>an</th>
<th>gs</th>
<th>bm2</th>
</tr>
</thead>
<tbody>
<tr>
<td>genes</td>
<td>no.</td>
<td>%</td>
<td>no.</td>
<td>%</td>
<td>no.</td>
<td>%</td>
<td>no.</td>
</tr>
<tr>
<td>at</td>
<td>149</td>
<td>50</td>
<td>113</td>
<td>42</td>
<td>149</td>
<td>51</td>
<td>49</td>
</tr>
<tr>
<td>na2</td>
<td>17</td>
<td>42</td>
<td>47</td>
<td>48</td>
<td>72</td>
<td>50</td>
<td>85</td>
</tr>
<tr>
<td>ms5</td>
<td>148</td>
<td>43</td>
<td>100</td>
<td>40</td>
<td>290</td>
<td>50</td>
<td>142</td>
</tr>
<tr>
<td>ms43</td>
<td>80</td>
<td>32</td>
<td>258</td>
<td>49</td>
<td>258</td>
<td>45</td>
<td>83</td>
</tr>
<tr>
<td>yg3</td>
<td>44</td>
<td>8</td>
<td>38</td>
<td>53</td>
<td>82</td>
<td>55</td>
<td>38</td>
</tr>
<tr>
<td>v19</td>
<td>82</td>
<td>52</td>
<td>88</td>
<td>58</td>
<td>88</td>
<td>51</td>
<td>88</td>
</tr>
</tbody>
</table>
These tests, though mostly quite inadequate, are suggestive of one and perhaps two linkages (Relatively little seed was obtained from the Florida plantings last spring; adequate material is available for tests next summer.) Suggestion of linkage of ms43 with either sr or an is probably of no significance because of the great deficiency of msu3 in the one instance and of an in the other. There were few yg3 plants in the test with sr. It seems likely that yl9 may be linked with bm2. The F2 distribution was 42-25-21-0.

14. Differential dominance in number of kernel rows. - One of the F1's used by Dr. Wiggans in the production of double-cross 29-3 is a cross of a 12-row inbred line #2 (Onondaga White) with an 8-row line #1 (Luke's Favorite). The F1 plants show a high percentage of 8-row ears. Golden Cross Bantam, on the other hand, has a considerable percentage of 12-row ears, though also a cross of a 12-row line (Purdue 39) with an 8-row line (Purdue 51). This striking difference suggested a comparison of F1's from crosses of the two 8-row lines, 1 and 51, noted above, with ten 12-row lines, including 2 and 39 noted above. The results of one season's test are given in summary form in the accompanying tabular statement which shows the mean number of kernel rows in F1 of crosses between 8-row and 12-row inbred lines.

<table>
<thead>
<tr>
<th>Inbred lines</th>
<th>F1 crosses with Line 1</th>
<th>F1 crosses with Line 51</th>
<th>Difference in mean number of rows</th>
</tr>
</thead>
<tbody>
<tr>
<td>Designation</td>
<td>Number plants</td>
<td>Number rows</td>
<td>Mean</td>
</tr>
<tr>
<td>1</td>
<td>57</td>
<td>7.84</td>
<td>82</td>
</tr>
<tr>
<td>51</td>
<td>88</td>
<td>7.95</td>
<td>92</td>
</tr>
<tr>
<td>2</td>
<td>49</td>
<td>12.04</td>
<td>66</td>
</tr>
<tr>
<td>3</td>
<td>59</td>
<td>12.27</td>
<td>71</td>
</tr>
<tr>
<td>4</td>
<td>63</td>
<td>12.38</td>
<td>75</td>
</tr>
<tr>
<td>39</td>
<td>95</td>
<td>12.02</td>
<td>46</td>
</tr>
<tr>
<td>II</td>
<td>59</td>
<td>12.34</td>
<td>92</td>
</tr>
<tr>
<td>III</td>
<td>69</td>
<td>11.80</td>
<td>75</td>
</tr>
<tr>
<td>VI</td>
<td>50</td>
<td>12.04</td>
<td>46</td>
</tr>
<tr>
<td>VII</td>
<td>107</td>
<td>12.28</td>
<td>120</td>
</tr>
<tr>
<td>B</td>
<td>97</td>
<td>12.10</td>
<td>85</td>
</tr>
<tr>
<td>G</td>
<td>74</td>
<td>12.11</td>
<td>93</td>
</tr>
</tbody>
</table>

In every case the F1 row number was higher (0.25 to 1.59) where line 51 was the 8-row parent than where line 1 was used; and the average difference was one kernel row. Of the twenty F1 lots, the lowest row number was in the cross of 1 with 2 and the highest in 51 with 39. The frequency distribution of the four F1 lots from crosses of these four lines are as follows:
Inbred lines Frequency distribution for row number

$$\begin{array}{cccccc}
\text{8-row} & \text{12-row} & \text{8} & \text{10} & \text{12} & \text{14} \\
1 & 2 & 51 & 31 & 82 & 8.76 \\
2 & 39 & 16 & 47 & 81 & 9.77 \\
51 & 2 & 14 & 45 & 86 & 10.34 \\
51 & 39 & 1 & 29 & 90 & 11.36 \\
\end{array}$$

Not only do the two 8-row lines differ, #1 tending more strongly than #51 to give low row number in F1, but #39 tends more strongly to give high row number than does #2.

15. Heterosis of number of kernel rows. - In every one of the crosses of the #1 8-row line with the ten 12-row lines, the average row-number of the two parent lines is greater than that of the corresponding F1. Of the ten F1's involving the same 12-row lines with 8-row line 51, four have mean row-numbers greater than, four less than, and two equal to the average of the two parental lines. It is perhaps noteworthy that the F1 mean of the 1-2 cross differs from the parental average by +1.9 rows, of the 1-39 cross by -0.16, of the 51-2 cross by +0.35, and of the 51-39 cross by +1.36. If the last of these crosses alone had been under observation the result might well have been termed heterosis - and perhaps correctly so. There is certainly nothing in the general averages to suggest heterosis of row-number. The average of all F1's involving line 1 is less than the average of parental means by 0.81 rows and of those involving line 51 is greater than the parental averages by one 0.17 rows.

Records were also obtained last season from F1 cultures whose parental lines had approximately equal numbers of kernel-rows. The data are given in the accompanying table showing the mean number of kernel rows of inbred lines and their F1 progenies.

$$\begin{array}{cccc}
\text{Inbred lines Mean number rows} & \text{Average} & \text{F1 progenies Mean number rows} & \text{Differences} \\
\text{Designation} & \text{rows} & & \text{rows} & \\
1 & 7.34) & 7.90 & 8.10 & 0.20 \\
51 & 7.95) & & & \\
2 & 12.04) & 12.21 & 12.41 & 0.20 \\
4 & 12.38) & & & \\
2 & 12.04) & 12.19 & 12.61 & 0.42 \\
11 & 12.34) & & & \\
2 & 12.04) & 12.03 & 12.37 & 0.34 \\
39 & 12.02) & & & \\
2 & 12.02) & 12.20 & 12.58 & 0.38 \\
39 & 12.38) & & & \\
4 & 12.38) & & & \\
\end{array}$$
Individually, most of these differences in number of kernel rows are not statistically significant. They are, however, all positive and, as a whole, are definitely significant. In general it appears, therefore, that some, though slight, heterosis is shown in number of kernel rows.

16. Influence of soil fertility on kernel-row number. Some years ago two 12-row inbred lines and the F₁ cross were grown on sand of extremely poor fertility and on very rich soil. The test was carried on during two seasons and the number of plants involved were 281 on rich soil and 257 on poor. The row-number means are compared in the following table:

<table>
<thead>
<tr>
<th></th>
<th>Rich Soil</th>
<th>Poor Soil</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inbred A</td>
<td>12.6</td>
<td>11.1</td>
<td>1.5</td>
</tr>
<tr>
<td>Inbred B</td>
<td>12.3</td>
<td>10.6</td>
<td>1.7</td>
</tr>
<tr>
<td>F₁ A-B</td>
<td>12.4</td>
<td>11.5</td>
<td>0.9</td>
</tr>
<tr>
<td>All</td>
<td>12.4</td>
<td>11.1</td>
<td>1.3</td>
</tr>
</tbody>
</table>

The effect of extreme differences in soil fertility on number of kernel rows is obviously greater than that shown as heterosis. Neither effect is sufficient seriously to mask genetic differences in studies of kernel-row numbers.

R. A. Emerson

17. Brittle stalk-2 (bk2). Plant appears normal, but the leaves, stalk, ear, and all parts break easily under pressure. Viability good. Classification good at all stages of development by bending the leaves sharply.

The seed was originally received by the Maize Genetics Cooperation from L. C. Raymond, of Quebec. A test for allelism with bk was negative (News Letter, March 23, 1937, p. 1). Brittle stalk-x (bk-x) reported by Wiggans (News Letter, March 6, 1938, p. 12) proved to be an allele of bk2 (News Letter, April 15, 1939, p. 12).

Bk2 is linked with sh and wx in chromosome 9 as shown by the following F₂ data:
F1 genotype

F2 progenies

<table>
<thead>
<tr>
<th>sh wx +</th>
<th>sh wx bk2</th>
<th>sh + bk2</th>
<th>sh + sh</th>
<th>+ sh bk2</th>
<th>+ bk2 bk2</th>
<th>+ bk2 wx</th>
<th>+ wb bk2</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>29</td>
<td>3</td>
<td>11</td>
<td>95</td>
<td>37</td>
<td>11</td>
<td>0</td>
</tr>
</tbody>
</table>

Total = 204

sh - wx = 22%
wx - bk2 = 15%
sh - bk2 = 35%

18. Chromosome 9. - Linkage of g4 and wx:

<table>
<thead>
<tr>
<th>Genes</th>
<th>Linkage Phase</th>
<th>G4 Wx</th>
<th>G4 wx</th>
<th>g4 Wx</th>
<th>g4 wx</th>
<th>Total</th>
<th>% Recomb</th>
</tr>
</thead>
<tbody>
<tr>
<td>G4</td>
<td>Wx</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>379</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>G4 Wx</td>
<td>11</td>
<td>32</td>
<td>426</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

19. Vestigial glume (Vg) and Tunicate (Tu). The two dominant genes Vg (Sprague, 1939) and Tu (Collins, 1917) have opposite effects on the length of the glumes in both the staminate and pistillate inflorescences of maize. Vestigial glume, as the name implies, exposes the anthers and removes most of the glumes from the ear; whereas Tunicate incloses the anthers in long glumes and the individual kernels in husk-like structures. In view of these differences, would a plant with the genetic constitution Vg Tu be like Vg? or Tu? or neither of them? In the progeny of a cross of Vg/vg x Tu/tu four types of plants were observed:

<table>
<thead>
<tr>
<th>Phenotype (length of glumes)</th>
<th>Staminate Inflorescence</th>
<th>Pistillate Inflorescence</th>
<th>Probable Genotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vestigial</td>
<td>Long like Tu, but more</td>
<td></td>
<td>Vg vg Tu tu</td>
</tr>
<tr>
<td></td>
<td>narrow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vestigial</td>
<td>Vestigial</td>
<td></td>
<td>Vg vg tu tu</td>
</tr>
<tr>
<td>Tunicate</td>
<td>Tunicate</td>
<td></td>
<td>vg vg Tu tu</td>
</tr>
<tr>
<td>Normal</td>
<td>Normal</td>
<td></td>
<td>vg vg tu tu</td>
</tr>
</tbody>
</table>

Since ordinarily the length of the glumes in the tassel is directly correlated with the length of those on the ear, it is difficult to explain why, in plants with the genetic constitution Vg Vg Tu tu, Vg shows epistasis to Tu in the tassel and not on the ear. It has been noted, however, that some times plants heterozygous for Tu do not have exceptionally long glumes in the tassel. Perhaps there is an upper limit to the length of glume that Vg is able to reduce to a miniature size. Further tests should be made to note the appearance of plants with the genetic constitutions Vg Vg Tu Tu, Vg Vg Tu Tu, and Vg Vg Tu Tu. This material would not be easy to obtain as plants homozygous for Tu are usually male and female sterile. Likewise, Vg Vg plants are difficult to produce as Vg Vg must be grown under very favorable greenhouse conditions to obtain viable pollen.

D. G. Langham, Estacion Experimental, El Valle, D. F. Venezuela
1. In an F₂ population of perennial teosinte obtained from seed brought from the original station in Mexico, an aberrant individual appeared in which the meiotic chromosome behavior was similar to Beadle's "asynaptic." Synapsis was essentially normal up to early diakinesis. Thereafter desynapsis caused an almost complete disappearance of quadrivalents and bivalents at metaphase. The scattered arrangement of univalents in the meta-anaphase stage strikingly resembled incompatible hybrid chromosome behavior. The mutant is highly cross- and self-sterile although the pollen was approximately 35% well filled. Fortunately, it can be maintained easily for further tests by vegetative propagation.

L. F. Randolph and Harold E. Fischer

2. Attempts to produce true breeding, highly self-fertile and highly self-sterile lines of tetraploid maize by inbreeding and selection thus far have not been very successful. Lines inbred 5-8 years continue to segregate for varying degrees of self-fertility. However, relatively high levels of fertility can be maintained by selecting the most fertile ears in each generation, and self-sterile ears tend to produce mostly self-sterile progeny.

3. Haploid frequencies reported in the News Letter of March, 1938, from untreated and X-rayed pollen involving 150,000 seedling counts indicated that X-raying the pollen materially increased haploid frequencies in maize. Since then additional counts have been made and the numbers at this time are sufficiently large to warrant a comparison not only of frequencies from X-rayed and untreated pollen, but also frequencies in different stocks. These stocks included an inbred line, designated A in the table; a 3-way hybrid involving this same inbred line as one of the 3 inbred parents (B); a commercial strain of Golden Bantam sweet corn (C); a genetic a-tester stock (D); and a group of miscellaneous stocks (E), no one of which was large enough for significant comparison. Haploid frequencies per thousand plants in the several stocks from untreated and from X-rayed pollen (1500 r) are given in the following table:

<table>
<thead>
<tr>
<th>Stock</th>
<th>Number of plants</th>
<th>Frequency per 1000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>untreated</td>
<td>X-rayed</td>
</tr>
<tr>
<td>2N</td>
<td>N</td>
<td>2N</td>
</tr>
<tr>
<td>A</td>
<td>23,230</td>
<td>24</td>
</tr>
<tr>
<td>B</td>
<td>21,010</td>
<td>13</td>
</tr>
<tr>
<td>C</td>
<td>51,845</td>
<td>27</td>
</tr>
<tr>
<td>D</td>
<td>53,427</td>
<td>6</td>
</tr>
<tr>
<td>E</td>
<td>21,922</td>
<td>20</td>
</tr>
<tr>
<td>Total</td>
<td>171,434</td>
<td>90</td>
</tr>
</tbody>
</table>

Mean
There was a consistent increase in the frequency of haploids among the X-ray progenies, the average increase being 50 per cent. The dosage used (1500 r) decreased the yield of viable seed approximately 50 per cent and also materially increased the difficulty of making classifications. If odds of 40:1 be taken to indicate significance, the least significant difference in frequency of haploids per thousand between untreated and X-rayed pollen in any one stock is 0.18. The least difference observed (stock A) is 0.23 with odds of 66:1 against such a difference being due to errors of random sampling. By the same criterion, the least significant difference for the five stocks together is 0.11, while the observed mean difference is 0.32. The odds here are many thousands to one against so consistent a difference being due to chance alone.

A similar comparison of the different stocks shows that stock A is not significantly different from stock E, and B not different from C. Stock C, and possibly stock B, differs significantly from stock A, and stock D differs from all the others. (See also Stadler, this News Letter). It was expected that the haploid frequency in inbred lines and their hybrids would be relatively high, due to the elimination during inbreeding of deleterious genes which might be lethal in the haploid state; but there is no obvious explanation of the extremely low frequency noted in the a-tester stock (D). The haploids which did appear in this stock were as vigorous on the average as those in the other stocks with the exception of the inbred line and the 3-way hybrid whose haploids were uniformly more vigorous than those of the other stocks.

The identification of the haploids was made with the aid of recessive endosperm and seedling genes, stomate examination in the seedling stage, and final verification with root tip chromosome counts. The frequencies thus obtained are to be interpreted as minimum frequencies, since it is unlikely that all of the haploids were identified. Only seeds with hybrid (presumably triploid) endosperms were included in the study. All of the haploids obtained were maternals, although paternal haploids were looked for in some of the crosses which involved easily recognizable recessive seedling characters contributed by the pollen parent.

L. F. Randolph
Duke University, Durham, North Carolina

\(Lg_3 \) is not an allele of \(Lg_2 \). This has been shown by the presence of normal plants in backcross and \(F_2 \) from the cross \(Lg_2 \times Lg_3 \). The following three-point data indicate that \(Lg_3 \) lies about two points to the left of \(Rg \). (The linkage map for chromosome 3 should have \(a \) at the left end and \(b \) at the right. The Linkage Summary was in error. R. A. E.)
Iowa State College, Ames, Iowa

1. Three point test on chromosome 1, involving a new dominant tassel-seed, Ts6, originating from a 'freak ear' in the Iowa Corn Show about 9 years ago:

<table>
<thead>
<tr>
<th>F1 genotype</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>1.2</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ + Ts6</td>
<td>93</td>
<td>83</td>
<td>94</td>
<td>59</td>
<td>11</td>
</tr>
<tr>
<td>br bm2 +</td>
<td>176</td>
<td>153</td>
<td>2</td>
<td>1</td>
<td>324</td>
</tr>
</tbody>
</table>

Ts6 is recommended as a first class, useful marker exhibiting sharp segregation and producing good normal ears (rows characteristically irregular) when tassel is pulled early.

2. Two point tests on chromosome 1.

<table>
<thead>
<tr>
<th>Genes</th>
<th>Phase</th>
<th>XY</th>
<th>Xy</th>
<th>xy</th>
<th>Total</th>
<th>% Recomb.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ts6 F</td>
<td>CB</td>
<td>21</td>
<td>17</td>
<td>20</td>
<td>32</td>
<td>90</td>
</tr>
<tr>
<td>Ts6 Gs</td>
<td>CB</td>
<td>128</td>
<td>37</td>
<td>46</td>
<td>113</td>
<td>324</td>
</tr>
</tbody>
</table>

Order of genes in chromosome 1 would then be: br f ge bm2 Ts6. (See also Emerson, this News Letter)

3. Natural mutation of Y gene from Yy to yy in one kernel among 12 crossed ears (totaling over 7200 kernels). Female parent in crosses was a standard long-time inbred yellow dent line; male parent a white, Hickory King inbred.

E. W. Lindstrom

Iowa State College and Division of Cereal Crops and Diseases, U.S.D.A.

4. The first group of F2 data, below, suggests that g2 is on chromosome 7. Mumm's soft starch character, hh, carries an inhibitor for japonica. Neither bm3 nor vl3 show close linkage with 1.

<table>
<thead>
<tr>
<th>Genes</th>
<th>Phase</th>
<th>XY</th>
<th>Xy</th>
<th>xy</th>
<th>Total</th>
<th>% Recomb.</th>
</tr>
</thead>
<tbody>
<tr>
<td>G2 Lg</td>
<td>RS</td>
<td>353</td>
<td>102</td>
<td>116</td>
<td>40</td>
<td>611</td>
</tr>
<tr>
<td>G2 Wx</td>
<td>RS</td>
<td>371</td>
<td>109</td>
<td>98</td>
<td>33</td>
<td>611</td>
</tr>
<tr>
<td>G2 Rg</td>
<td>CB</td>
<td>75</td>
<td>69</td>
<td>62</td>
<td>74</td>
<td>280</td>
</tr>
<tr>
<td>G2 Ij</td>
<td>RS</td>
<td>310</td>
<td>118</td>
<td>101</td>
<td>3</td>
<td>532</td>
</tr>
<tr>
<td>Bd G2</td>
<td>RS</td>
<td>221</td>
<td>94</td>
<td>89</td>
<td>13</td>
<td>417</td>
</tr>
<tr>
<td>J Bm3</td>
<td>RS</td>
<td>216</td>
<td>81</td>
<td>65</td>
<td>13</td>
<td>377</td>
</tr>
<tr>
<td>J V13</td>
<td>RS</td>
<td>168</td>
<td>74</td>
<td>38</td>
<td>12</td>
<td>292</td>
</tr>
</tbody>
</table>

G. F. Sprague
1. I have tested yellow green-3 with a trisomic for chromosome 3, and have found evidence that yg3 is not in that chromosome.

2. The gl4 which was reported by Dr. Hayes to be linked with wx; is genetically different from the one that Sprague is calling glossy-4, as shown by an intercross between the two. Since the linkage relations of this one are known, may I suggest that this one be called gl4 and the one of Sprague's given a new number; unless there are some reasons why this is not feasible.

3. I spent most of my time last summer recuperating my stocks, some of which had reached such an age that I had difficulty in getting them to germinate. However, we had an extremely favorable season and in most cases I was able to get material established. I used a few of the trisomic stocks from the Coop, last year. While I did not study them intensively, it did seem that certain of them needed further checking to be certain that they are still satisfactory for linkage work. One of the difficulties seems to be the presence of 8 types which was mentioned by Dr. Langham at the time he sent them to me. However, one or two of the other stocks also seemed to have some other difficulties. The stock of No. 5, for example, did not seem to behave as usual; in fact I was unable to recognize any trisomic plants in the field.

C. R. Burnham

Burnham is not alone in having trouble with the trisomics. It's a job for some cytogeneticists—which I am not. R.A.E.

University of Missouri, Columbia, Missouri and Division of Cereal Crops and Diseases, U.S.D.A.

1. Etched endosperm-virescent seedling. This character symbol et, arose as a mutant in an X-ray progeny, and the endosperm and seedling effects are very closely if not completely linked. The endosperm is similar to some of the scarred endosperms previously reported but is more distinctly marked and usually permits a good separation. The seeds are sometimes reduced in size but have good viability. The seedling type is an excellent one, both for sharpness of segregation and for viability. Data from a three-point test, as given below, indicate the order of genes to be lg2 a et, with et the outermost gene on the long arm of chromosome 3, about 12 units beyond a.

<table>
<thead>
<tr>
<th>F1 genotype</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>1,2</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ a et</td>
<td>126</td>
<td>135</td>
<td>60</td>
<td>20</td>
<td>3</td>
</tr>
<tr>
<td>1g2 + +</td>
<td>261</td>
<td>115</td>
<td>45</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>
2. Notes on haploids. In seedling progenies grown from X-rayed pollen and ultraviolet treated pollen, a large number of haploids was found. The frequency of haploids in the ultraviolet progenies was somewhat higher than in the X-ray progenies, though in both cases the frequency was not very greatly increased over the control. An interesting feature was a distinct tendency for haploids to occur more frequently in progenies of certain female parents than of others; in fact, the untreated female parent had a greater influence on the haploid frequency than the treated male parent. This suggests that the factor limiting haploids may be their inability to survive to the seedling stage, and that a considerable number of haploids may be included among the "germless seeds" resulting from the use of irradiated pollen. (See also Randolph, this News Letter)

Fifty-five haploids were transplanted to the field and grown to maturity. They showed rather surprising fertility. Forty-one of them produced silks, several from two ears, and all of the ears were pollinated. Twenty-seven of the forty-one plants set seed, and ten of these yielded ten or more seeds per plant. The highest numbers of seeds harvested per plant were 97, 47, and 43 respectively, in each case from a two-eared plant.

L. J. Stadler

North Carolina Experiment Station, Raleigh, N. C.

1. Last spring a total of 1203 first generation selfed ears were examined for deficient kernels. Out of this lot 84 ears were found which appeared to be segregating for deficient kernels. This means that on the average 6.98% of all plants selfed in the eighteen Southern varieties were heterozygous for some deficient kernel character. Chi-square applied to these data proved definitely that these varieties do not have the same gene frequency for deficient kernels. Indian Chief has significantly fewer heterozygous plants (0.7%), Mathewson's Golden Prolific and Wood's Golden Prolific approached significance in having fewer than average heterozygous plants. Golden Queen (20.0%) and Biggs' Two Ear (10.5%) have significantly more heterozygous plants than the average of all varieties.

2. In an inbred strain of Yellow Horsetooth two selfed ears were found to be segregating for rootless. Dr. Jenkins pointed out this character last June in our breeding field. The rootless segregates have all the characteristics of plants of rt rt type (Jenkins, 1930; Cornell Memoir 180, p. 20, 1935). If crosses with rt stock prove it to be the same mutant it will be the second occurrence of this distinct root mutation. Our strain has never been grown in close proximity to any rt stock.

Paul H. Harvey
1. Further studies on chromosome knobs of South American varieties have shown that the majority of varieties from Peru, Bolivia, and Ecuador have knobless chromosomes. This supports our previous suggestion that the Andean region, which we regard as the primary center of domestication of maize, is the only region where pure maize has not been largely replaced by Tripsacum-infected varieties. If this is true most of the stocks of North American maize with which the majority of genetic and cytological studies are conducted are probably polyploid for certain regions of the chromatin. This may account for the fact that some very minute deficiencies are quite deleterious while other larger deficiencies have no appreciable effect.

2. There seems to be a possibility that a wild or feral type of maize is still in existence in Paraguay. A botanical collector in Paraguay with whom we have been in correspondence has sent us a specimen of a maize plant which he claims to have found growing in a colony in a clearing in the forests miles away from human habitation. The specimen was small and earless but bore at the base of the unbranched tassel, pistillate spikelets enclosed in glumes. It differed from any stunted corn which we have previously seen in having the staminate and pistillate portions of the inflorescence distinctly separated. Seed of this peculiar type has not yet been obtained but seed from a variety cultivated by the Guarany Indians in the same general locality gave rise to plants with knobless chromosomes. This is the first variety of maize with knobless chromosomes which we have received from the lowlands of South America. We should, of course, on the basis of our hypothesis expect wild maize to have knobless chromosomes.

3. Additional linkage studies in crosses of Florida teosinte with various genetic stocks show that translocation segments A and C are located at opposite ends of chromosome 4, as indicated by our previous data. Both show linkage with su and gl3. Segment B is located on chromosome 1 showing fairly close linkage with P and a slight indication of linkage with bm2. Segment D appears to be located on chromosome 9 and shows linkage with wx.

4. When Chalco and New teosinte are crossed the F1 hybrid has paired pistillate spikelets although both parents have unpaired spikelets.

Florida, Durango, Nobogame, and New teosinte have been crossed with a uniform inbred strain and the F1 hybrid back-crossed to the same strain to obtain populations in which all the genetic variation is due to segregation of genes from teosinte. These populations show that the major part
of the segregation is due to the four blocks of genes or translocation segments which we assume to have been derived from Tripsacum. Durango has the same four segments found in Florida, but they have less effect which suggests that they may be smaller and contain fewer Tripsacum genes. Nobogame teosinte contains only three of the four segments found in Florida and Durango teosinte. The New teosinte hybrids have not yet been classified. All of the data support our assumption that the Guatemalan teosintes represent the primary products of the hybridization of Zea and Tripsacum, while the Mexican teosinte are secondary or tertiary products.

P. C. Mangelsdorf and R. G. Reeves

III. MAIZE PUBLICATIONS

Maize publications that have appeared since the 1939 News Letter was issued together with a few earlier papers are listed below.

Cooper, D. C. and Brink, R. A. - Chromosome homology in races of maize from different geographical regions. Amer. Nat. 71: 582-587. 1937.

- New developments that may affect the corn industries. The importance of corn hybrids to the corn industry. Contr. Iowa Corn Res. Inst. 1: 208-212. 1939.

IV. INVENTORY OF COOPERATION STOCKS

The following is a complete list of all seed stock now in the possession of Maize Genetics Cooperation. The labels on the ears, in many instances, give no indication of the genotype concerned. In such cases, the record cards were examined for such information as they afford. This list was compiled and the index made by Dr. Lebedeff. The symbol (x) = selfed and # = sib crossed.

R. A. E.

1934 crop

Co 1 (x) y, segregating g3, 3 ears
 2 (x) seg. d5, 4 ears
 4 (x) seg. d5, may seg. gl2 py, few seeds
 6 (x) b gs2 lg, 7 ears
 7 (x) y lg gl2 v4 in various combinations, 28 ears
 9 (x) and # seg. Y pg2 d, 6 ears
 10 (x) Y, g, may seg., pg d, 1 ear
 11 (x) y, seg. d2 lg, 7 ears
 12 (x) seg. d2 lg pr, 6 ears
 13 (x) and # seg. yt, 2 small ears
 14 (x) y a C R pr wx lg, 1 small ear
 15 (x) and # y a C R pr, seg. lg, 9 ears
 16 (x) a ts4 or lg in various combinations, 20 ears
 17 (x) mostly # a ts4 sr lg in various combinations, 15 small ears
 18 (x) and # a pr, seg. lg ts4 C R, 5 ears
 19 (x) and # a wx, seg. or lg ts4, 4 small ears
 21 (x) and # a lg, seg. g na ts4, 3 small ears
 24 (x) a na cr gl v5 Y, 2 small ears
 25 (x) a na or Y, seg. lg v5, 2 small ears
 26 (x) sh cr ms3 pk in various combinations, also seg. v and g, 8 ears
 27 (x) Y seg. sp su Pr, 6 ears
 28 (x) seg. Y sp su, 4 ears
 29 (x) Y y + +/ lo su, 5 ears
 30 (x) y lo +/+ su, 9 ears
 31 (x) # pr, seg. bm tn, 2 ears
 32 (x) # pr, seg. bm tn, 3 ears
 33 (x) bm, seg. pr sh bv v, 10 ears
 34 (x) pr wx sh bm, seg. cr, 2 ears
 35 (x) and # pr bt, seg. v2, 3 ears
 36 (x) and # v2 pr, seg. ys sh, 6 ears
 37 (x) # pr bv v2, 3 ears
 38 (x) A C R pr bm sh wx su, 6 ears
 40 (x) and # A a2 C R B P1 Y, 7 ears
 41 (x) seg. v3 Pr ys, 8 ears
 43 (x) bm bt, seg. pr, 2 small ears
 44 (x) and # A C R pr bm sh wx seg. su, 2 ears
 45 (x) and # A C R pr bm sh wx seg. su, 3 ears
 46 (x) and # pr sh bm, seg. ys, 4 ears
 48 (x) pr seg. v bm vp2, 2 ears
Co 49 (x) Pr seg. vp2, 2 small ears
 50 (x) and # A C R Pr, seg. v3, 7 ears
 51 (x) A C R pr, seg. v3 su, 2 ears
 52 (x) pr bv bm, may seg. v2, ms, 5 ears
 53 (x) pr bm, seg. bv Ig, 7 ears
 54 (x) pr bm bv, seg. su, 8 ears
 55 (x) seg. bm Pr ms18, pg, lg, 3 ears
 56 (x) white aleurone, seg. pg, lg, 4 ears
 57 (x) and # y pl sm, seg. b py, 3 ears
 58 (x) and # Y pl sm, seg. b py, 5 ears
 59 (x) and # Y A, seg. b pl sm py, 6 ears
 60 (x) and # B Pl sm, seg. py lg, 7 ears
 61 (x) and # pl sm, seg. b py, 7 ears
 62 (x) and # Y ra gl sl, 1 ear
 63 (x) ra sl, 2 ears
 64 (x) Tp/gl v5 x pr ra gl v5, 3 ears
 65 (x) gl, seg. Y, 5 ears
 66 (x) Y y gl, seg. fr tr2, 4 ears
 67 (x) g4 sh ar Bn, seg. Y, 4 ears
 68 (x) c sh wx bp, 6 ears
 69 (x) P bp, 6 ears
 70 (x) seg. c sh wx d3, 7 ears
 71 (x) su, may seg. vl4, d3, 1 ear
 72 (x) wx g# cr, seg. sh lg, 5 ears
 73 (x) and # seg. ms2, 17, and brachytic-like plants, 7 ears (1/ = ell 7 = luteus 7)
 74 (x) and # Y seg. ms2, 17, sh aleurone color and brachytic-like plants, 9 ears
 75 (x) and # seg. Y, sh, ms2, 17, and aleurone color, 8 ears
 76 (x) and # seg. y sh ms2 17, 13 ears
 77-78 (x) and # seg. y sh ms2 17, 13 ears
 79 (x) wx may seg. sh 16, 8 ears
 80 (x) pk sh fl1, seg. v, 4 ears
 81 (x) A C R pr wx, homo for term. knob on 9, 1 ear
 82 (x) sh wx, seg. wll, 1 ear
 83 (x) seg. sh wx wll, 2 ears
 84 (x) C sh wx, 5 ears
 85 (x) C sh, seg. wx wll, 2 ears
 86 (x) sh wx, seg. c, 2 ears
 87 (x) sh, seg. c wx wll, 2 ears
 88 (x) cr seg. Y vp4, 5 ears
 89 (x) A C Rr Pr seg. vp, 8 ears
 90 (x) y Pr pr, may seg. 14, 6 ears
 91 (x) Pr pr may seg. 14, 8 ears
 92 (x) Pr, seg. pg, R, 8 ears
 93 (x) mottled aleurone, seg. R vl18, may carry 14, 8 ears
 94 (x) y, seg. vl18, 14, 5 ears
 95 (x) seg. Pr, vl18, 14, 7 ears
 96 (x) lg, seg. v20, 6 ears
 97 (x) and # pr. seg. Y, g, R, 6 ears
 98 (x) pr, seg. Y, g, R, 5 ears
 99 (x) pr, seg. 12, g, su, R, 6 ears
 100 (x) seg. g, R Y Pr, 3 ears
 101 (x) Y, seg. ms20, v, 5 ears
 102 (x) and # Y, seg. ms2c, gl v or, 8 ears
Co 105 (x) and # A b pl R^R^R pr P^P, may seg. C, 10 ears
 106 (x) y su r^T, 3 ears
 107 (x) and # A, seg. R^R^R R^R, Pr pg, 10 ears
 109 (x) Pr R^R^R^R^R, 6 ears
 110 # A C R^R^R pr, 1 small ear
 111 (x) A C R^R^R^R^R pr, may seg. j, 6 ears
 112 (x) and # A C R^R^R^R^R, 5 ears
 113 (x) A C R^R^R^R^R pr, seg. gl, 5 ears
 114-115 (x) A B pl pr bv, seg. v^4, 20 ears
 116-118 (x) and # bm, lg, sk in various combinations, also seg. Pr A B Pl Y, 50 ears
 119 (x) B lg v^2 pr, seg. Pl su, 6 ears
 120 (x) and # A B lg v^2, seg. Pr
 122 (x) and # A B Pl su, 40 ears
 123 # a Bb lg Y pl R c wx pr su, 3 ears
 124 # a j lg B C r^T pr Y pl, 9 ears
 125 # A or C R^R pr su y pl b lg j, 5 ears
 126 (x) and # a B Pl C R Pr Y, 7 ears
 127 # a pr in Y C R, 7 ears
 128 # a B lg Pl Y c sh wx R pr su, 1 small ear
 129 # a pr in wx C R^R, seg. su, 10 ears
 130 # A B lg y pl C R^R Pr Sox, 5 ears
 131 # A C R Pr B Pl Y or, 2 small ears
 132 # A R^R c wx pr su P seg. sh, 3 ears
 133 # a B Pl C R Pr Y lg, 7 ears
 134 # A b pl C r^T pv lg bm2, seg. su, Bu j, 9 ears
 135 # A R^R y pl b lg bm2 j, seg. C Pr In su Ts2 v, 11 ears
 136 (x) and # A c R^R g pr In Y pl b lg, bm2, j, seg, su ts2, 12 ears
 137 (x) and # a C R pr in y j lg, 9 ears
 138 (x) a P sh wx f, seg. su, lg, 7 ears
 139 (x) a P sh wx su lg f, 5 ears
 140 # a B Pl lg v^4 Y, 8 ears
 141 (x) and # ts4 lg B Pl in various combin., also seg. a Y or na, 20 ears
 142 (x) su pr ts4, seg. Y and white aleurone, 6 ears
 143 # a^P B P, seg. Pl and striped, 2 ears
 144 (x) Y bl, 3 ears
 145 (x) Y seg. f^12, su, gl, 9 ears
 146 (x) and # Y f^12, seg. gl, 13 ears
 147 (x) and # y gl2, 5 ears
 148 (x) Y h, 8 ears
 149 (x) and # Y O A B Pl, 4 ears
 150 (x) y 02, 4 ears
 151 (x) F^1 of rs x A B Pl Kn, 3 ears
 152 (x) Pr, seg. v^8 and d, 5 ears
 153-156 (x) seg. v^8 su d and de, 10 ears
 157 (x) A c R^R su, seg. Pr, may seg. v^9, 14 ears
 158 (x) seg. Pr su, may seg. v^9, 9 ears
 161 (x) Y, seg. v^7 striped, 6 ears
Co 162 (x) seg. Y v6 cr d, 10 ears
163 (x) y, seg. v6 d, 6 ears
164 (x) may seg. v5, seg. striped, 2 ears
165 (x) y, seg. v7, 6 ears
166 (x) and # Y, seg. sk, 8 ears
167 (x) and # seg. sk, v 9 ears
168 (x) and # Y, seg. sk d bl, 7 ears
169 (x) and # Y, seg. sk d bl, 12 ears
170 (x) and # Y, seg. sk, striped, 6 ears
171 (x) seg. bk v ts, 8 ears
172 (x) Y seg. bd, 10 ears
173 (x) yx x new ys, seg. Pr sh, 9 ears
175 (x) bt2, seg. gl, 5 ears
176-189, Stadler's X-ray mutants
176 (x) seg. Y d wx v, 20 ears
177 (x) seg. A Rd j b lg gld, 10 ears
178 (x) seg. d wx Pr R Y v, 10 ears
179 (x) seg. A R6 r Y wx yg, 12 ears
180 (x) pr, seg. A R6 r C Y wx new d, 6 ears
181 (x) pr, seg. A 0 R6 r Y wx new d, 11 ears
182 (x) seg. A R B lg j new fi, 15 ears
183 (x) seg. R Fr Y d wx glc, 15 ears
184 (x) seg. Pr R Y wx glb, 12 ears
185 (x) seg. A B j lg R d, new pg, 10 ears
186 (x) seg. su j lg Y, new pg, 10 ears
187 (x) seg. new pg, 7 ears
188 (x) seg. A R6 r Y wx su, new ar-like striping, 7 ears
189 (x) seg. A R6 r Y su wx, new pg, 12 ears
190 (x) seg. w w2 w3, 5 ears
191 (x) seg. w3 R C, 2 ears
192 (x) seg. w3 R C Pr, 6 ears
193 (x) seg. w2 R, few seeds
194 (x) seg. w2 R Pr, 1 ear
197 (x) Pr Ts-8, 10 ears
198 (x) Y T8-9, 8 ears
199 (x) Y T3-5, seg. su, 4 ears
200 (x) y Ts-7b, seg. Pr, 10 ears
201 (x) Tl-10, seg. Y Pr, 11 ears
202 (x) Tl-2, 9 ears
203-214, Inbreds for smut resistance tests
203 (x) Cornell 11, 9 ears
204 (x) " inbred 10 years, 10 ears
205 (x) " inbred 11 years, 10 ears
206 (x) Leaming dent, inbred 8 years, 5 ears
207 (x) " inbred 11 years, 10 ears
208 (x) U.S. # 204 dent, inbred 12 years, 3 ears
209 (x) Bloody Butcher, inbred 10 years, 12 ears
210 (x) Oil Dent, inbred 8 years, 7 ears
211 (x) West Branch dent, inbred 8 years, 7 ears
212 (x) Silver King inbred 13 years, 14 ears
213 (x) Onondaga White dent, inbred 11 years, 6 ears
214 (x) Dutton's flint, inbred 11 years, 4 ears
215 (x) Y cr, seg. pg2 lg wx, 7 ears
Go 216 (x) seg. as ms17 zl pr, 9 ears
" 217 (x) and # may seg. bm v2 ya pr, 25 ears
" 220) (x) and # seg. A B Fl lg gl2 v4 ts, 6 ears

1935 crop

Co 225 (x) gl13, also x gl16 and glc, 4 ears
" 226 (x) gl15, also x gl1, gl14, gl16, gl19, glb, 9 ears
" 227 (x) gl16, also x gl12, gl13, gl14, gl16, gl17, gl19, 13 ears
" 228 (x) gl17, also x gl1, gl13, gl14, gl16, gl19, glc, glb, 17 ears
" 229 (x) gl18, also x gl1, gl13, gl14, gl17, gl19, glc, glb,
 seg. w wx, 14 ears
" 231 (x) gl10, also x other glossies, seg. Bn sl, 9 ears
" 234 lg gl12 b v4 x gl15, gl16, gl110, 3 ears
" 236 gl13 su x other glossies, 3 ears
" 237 gl13 su Tu tu x other glossies, 4 ears
" 239 lg gl14 # and x other glossies, 13 ears
" 242 gl16 # and x other glossies, 5 ears
" 243 gl17 v17 x other glossies, 5 ears
" 246 # gl16, 5 ears
" 248 glc (x) and x other glossies, 4 ears
" 249 glc (x) " " " " " 4 ears
" 250 glc (x) " " " " " 5 ears
" 251 glb (x) " " " " " 5 ears
" 252 glb (x) " " " " " 6 ears
" 253 glb (x) " " " " " 2 ears
" 255 # seg. rs2 gl1, 5 ears
" 256 (x) seg. Rs gl1, 4 ears
" 258 # seg. at v gl1, may seg. bv, 6 ears
" 259-260 # seg. bd, 12 ears
" 261 (x) cr3, very few seeds
" 262) # bs (Hadjinov) similar to bs (Woodworth), seg. v.
" 263 # seg. ba v, 2 ears
" 264 # seg. ba2 v, 3 ears
" 266 (x) seg. variable bv, 6 ears
" 267 # f bm2, seg. P v5, 5 ears
" 268 (x) and # f bm2, seg. br, 6 ears
" 259-270 (x) and # seg. sr an bm2, few seeds
" 271 (x) bm2, seg. P, 4 ears
" 272 (x) lg, seg. gs2 B v4, 8 ears
" 273 # A B lg gl12 v4 pl, 1 ear
" 274 # A b pl lg gl12 v4, 6 ears
" 275 # A b pl lg g2 v4, 2 ears
" 276 # lg gl12 v4, seg. ts, 2 ears
" 277 # lg gl12, seg. v4 ts, 4 ears
" 278-279 # lg gl12, seg. v4 ts, 3 ears
" 280 (x) sb and x testers, 8 ears
" 281 (x) al "
Co 287 # d^S, 7 ears
" 288-289 # d^M, 11 ears
" 290 # d^S, 3 ears
" 291 # la su, 2 ears
" 292 # la su, seg. Tu gl13, 1 ear
" 293 # la su, seg. Tu gl13 pr, 1 ear
" 294 (x) pr bm, seg. ys v2, 7 ears
" 295 # A a2 C R, seg. pr Y, 9 ears
" 296 # v2 pr bm, 3 ears
" 297 # bm, seg pr bt, 5 ears
" 298 # A C R A2 a2 bv pr bt, 2 ears
" 299 # A A2 C R bv bt pr, 5 ears
" 301 # A A2 C R bv pr v2, 5 ears
" 302 # A A2 C R bv bt pr, 2 ears
" 304 # A B seg. Pl Y py sm, lg, 12 ears
" 305 (x) A B pl Y sm, 1 ear
" 306 (x) B pl Y zg3, 2 ears
" 307 (x) B Pl zg3, 1 ear
" 308 # ra gl ij, 2 ears
" 309-310 # gl ij, 12 ears
" 313 # gl ij ra, 1 ear
" 314 (x) seg. vp4, 3 ears
" 315 (x) lg gl14, seg. v, 5 ears
" 317 (x) seg. c sh wx v gl14, 4 ears
" 318 (x) wx, hetero. for large internal knot on long arm of chrom. 9, 3 ears
" 319 (x) R g nl x zb5 cross, 8 ears
" 320 (x) lg g colorless aleurone, may seg. d7, 6 ears
" 321 (x) r zb5 colorless aleurone, 1 ear
" 322 (x) A C Rr g li, 1 ear
" 323 (x) li, seg. gl v18, su, 1 ear
" 324 (x) y li, seg. gl v18 su, 4 ears
" 326 (x) A B Pl Y3, seg. Y, 6 ears
" 327 (x) A B Pl, seg. Y, 4 ears
" 328 (x) A B pl Y, seg. Y3 al, 6 ears
" 330 (x) A B pl Y, seg. Y3, 6 ears
" 331 (x) A B pl, seg. Y3 al, 1 ear
" 332 (x) Y3, seg. Y Pl, 1 ear
" 334 (x) Y Y3, seg. Pl, 6 ears
" 336 (x) deep yellow endosperm, 8 ears
" 337 (x) and # A bm2 su y pl b lg j C R5 Pr in seg. ts2, 2 ears
" 338 (x) and # A bm2 su y pl lg b j C R5, seg. v Ts2, 4 ears
" 339 (x) and # A bm2 pr in su y pl lg b j seg. cr na, 4 ears
" 340 # A c R5 g pr in y pl lg b j, bm2 PVV Bn su, seg. ts, 3 small ears
" 342 (x) and # A c R5 g pr in Bn su y pl lg b j bm2, seg. ts, 5 ears
" 343 # A c R5 cr pr Bn y pl lg b j bm2, seg. g in su ts2 d, 5 ears
" 344 (x) A c R5 g pr Bn y pl b lg j bm2, seg. d in ts2, 2 ears
Co 345 (x) and # Y a C R^e pr in b pl Bn, 5 ears
" 346 # A C r^e sh wx, seg. su, 5 ears
" 347 # a C r pr wx y, seg. ys, 10 ears
" 348 (x) and # A c R^e F^v wx pr su y in, seg. sh, 7 ears
" 349 (x) and # a C R^e pr in wx su, 5 ears
" 350 (x) and # a j lg B C R^e pl Y, 6 ears
" 352 (x) and # seg. bt vp, 10 ears
" 355 # seg. bt, 4 ears
" 356 # seg. tiny plants, 2 ears
" 357 o.p. Y Caspe Flint, few seeds
" 359 (x) and # (ws x P br f bm2), 6 ears
" 360 (x) and # (a Pr 1g2 x ws), 5 ears
" 361 (x) (su gl3 x ws2), 2 ears
" 362 (x) (Y Pl Py py x ws2), 2 ears
" 363 (x) and # seg. pr Y ws py, 7 ears
" 364 # (Bn gl v5 x ws2), 8 ears
" 365 (x) and # (j fast8 x ws2), 6 ears
" 366 # (ws x c sh / + wx gl14), 2 ears
" 367 (x) and # (R g 11 x ws2), 6 ears
" 368 (x) and # (P br f bm2 x nl12), 6 ears
" 369 (x) and # (A / + nl12 x a B Pl 1g2), 7 ears
" 370 (x) and # (Pr nl12 x pr bm A or d), 6 ears
" 371 (x) and # (su gl3 x nl12), 7 ears
" 372 (x) and # (bm pr v2 x nl12), 4 ears
" 373 (x) and # (gl v5 x nl12), 6 ears
" 374 # (A c R su x a C R nl12), 6 ears
" 375 # (A C r j x nl12), 6 ears
" 376 (x) and # A a nl12 x A R g nl1), 3 ears
" 377 # seg. j fast8, 2 ears
" 378 # seg. j R^m fast8, 3 ears
" 379 # seg. j R^m R^m fast8, 2 ears
" 380 # seg. j R^m R^m fast8, 3 ears
" 381 # seg. j R^m R^m fast8, 3 ears
" 382 # seg. j R^m j R^m fast8, 3 ears
" 383 (x) and # Leaming inbred 9 yrs., 4 ears
" 384 (x) and # Oil Dent inbred 9 years, 3 ears
" 385 (x) and 32 Bloody Butcher inbred 11 years, 6 ears
" 386 (x) U.S. # 204 inbred 13 years, 3 ears
" 387 (x) and # Silver King inbred 14 years, 8 ears
" 388 (x) and # Onondaga White inbred 12 years, 6 ears
" 389 (x) and # West Branch inbred 9 years, 9 ears
" 390 (x) and # Dutton's Flint inbred 12 years, 5 ears
" 391 (x) and # Northwestern Dent inbred 9 years, 8 ears
" 392 # Rustler (844 x 846) F6, 6 ears
" 394 (x) and # Hays and Johnson S283, 6 ears
" 395 (x) and # Hays and Johnson 7 years, inbred Gold.
Bantam, 9 ears
" 396 A B PI x lg gl12 b v4, 5 ears
" 397 lg gl12 b v4 x A B pl, 3 ears
" 401 # seg. j or ij and l6, 3 ears
" 402 # seg. po, 5 ears
" 403 # may seg. st, 6 ears
" 404 # a c r A2 pr y, 6 ears
" 405 (x) and # ap B Pl, few seeds
Co 406 # a B pl, 2 ears
 # 407 # a b Pl, 3 ears
 # 408 # A B pl, 2 ears
 # 409 open poll. a b pl, 6 ears
 # 410-411 (x) a b pl, few seeds
 # 412-415 F2 involving A B pl sm py W, 75 ears
 # 416 (x) seg. 13, 2 ears
 # 420 (x) F2 involving A B lg gl2 v4 Pl ts, 5 ears
 # 422 (x) F2 involving A B pl gl2 v4 lg gs2, 5 ears
 # 424 (x) and # a yt na ts4 in various combinations, 6 ears
 # 425 (x) a lg2 Dt, very few seeds
 # 428 (x) A C R a2 b v2 pl, seg. bm2, 1 small ear
 # 431 (x) and # A Bb Pl sm, 7 ears
 # 432 # seg. ra gl ij bd, 2 ears
 # 433 # seg. j, ms3, few seeds
 # 434 (x) F2 involving gl14 yg2 c sh wx, 9 ears
 # 436 (x) Pr g seg. R nl zb5, 1 ear
 # 437 (x) zb5, may seg. g nl, 1 ear
 # 439 (x) seg. bs vp, 4 ears
 # 441 (x) seg. bs vp and striped, 4 ears
 # 446-448 (x) j r/r^m, seg. su, 15 ears
 # 449 (x) j r/r^mb, 1 ear
 # 450 (x) seg. j r R^mb bm, 2 ears
 # 451 (x) seg. j r R^mb 4 ears
 # 452-454 (x) seg. j r R^6P^w
 # 456-457 (x) j+r/r^R^j, 3 ears
 # 458 (x) j+r/r^R^j, 1 ear
 # 459 (x) j+r/r^R^j Pl, 4 ears
 # 460 (x) j+r/r^R^j, seg. sr
 # 472 (x) may seg. hf, 3 ears
 # 476 # A B Pl, seg. su ba2, 3 ears
 # 479 # may seg. bd, 3 ears
 # 481 (x) Tu su, 1 ear
 # 485 (x) Oil Dent inbred 10 years, 4 ears
 # 486 (x) U.S. # 204 x wx; br wx; bm3; A b pl lg gl2 v4, 4 ears
 # 487 (x) West Branch inbred 10 years, x g4 wx; A b pl lg gl2 v4, 2 ears
 # 488 (x) Dutton's Flint inbred 13 years, 2 ears
 # 489 (x) Rustler inbred 7 years, 1 ear
 # 490 (x) Kvakan's smut resistant x A C R a2 b pl v2, 1 ear
 # 491 (x) Bryan's inbreds, 9 ears
 # 492 (x)
 # 493 (x)
 # 494 (x) Open pollinated. Au au2 sh, few seeds
 # 495 # du au au2 sh, few seeds
 # 497 (x) Dt, also na lg ts4 g in various combinations, 5 ears
 # 498 # g4 wx, may seg. 16, 2 ears
 # 499 # Tp gl ra v5 in various combinations, 3 ears
 # 500 (x) a, seg. Dt lg C R Pl, 5 ears
 # 501 # ar wx, few seeds
 # 502 (x) open pollinated g2 A b Pl, 1 ear
Co 505 (x) A Bb P1 seg. Kn, 2 ears
Co 507 (x) gi, 2 ears
Co 508 (x) gi5, 2 ears
Co 509 (x) and # gi8, 2 ears
Co 510 (x) seg. Y su gi3 la, 5 ears
Co 514 (x) r, seg. mr Fr Mt, 6 ears
Co 518 (x) seg. f v, 5 ears
Co 522 (x) A C R a2 bt bv pr, few seeds
Co 523 (x) A C R a2 bt pr, v few seeds
Co 524 (x) A C R A2 bt bv pr, few seeds
Co 525-526 # fr2, seg. ij gl fr, 10 ears
Co 528 # Supergold Popcorn inbred, 6 ears
Co 529 # A B pl, seg. Y4, It, 2 ears
Co 531 # Y4 It a c r pr i, 3 ears
Co 532 (x) and # Y4 gi4, seg. It, 5 ears
Co 541 (x) Y sk from Australia, 1 ear
Co 544 Open pollinated No. 3 Trisome, 3 ears
Co 545 No. 5 Trisome, 4 ears
Co 546 No. 6 Trisome, 1 ear
Co 552 # P br f bm2, may seg. Ts2, 3 ears
Co 554 # A B pl seg. yg2, 1 small ear
Co 555 A C Re seg. r mr Pr, 1 ear
Co 556 "Sweet Brittle" (x) and x bs, 6 ears
Co 557 (x) Singleton C2 inbred, 3 ears
Co 558 (x) " C6 " , 2 ears
Co 559 (x) " Cl3 " , 5 ears

1937 crop

Co 37-1 Bryan's inbred (x) and x red pigment in seedling leaves, 7 ears
Co 37-2 West Branch inbred (x) and x g4 wx, 9 ears
Co 37-3 U.S. No. 204 inbred (x) and x g4 wx, 7 ears
Co 37-4 " (x) and x ar wx, 4 ears
Co 37-5 " (x) and x bm3, 8 ears
Co 37-6 Oil Dent inbred x bm3, 1 ear
Co 37-7 U.S. No. 204 inbred x ra gl ij bl, 9 ears
Co 37-8 (x) and # lg B v4 A P1, seg. gl2 Ts, 1 ear
Co 37-9 F2 involving g4 gi4 yg2 c h wx, 8 ears
Co 37-10 " ra gl ij bd, 1 ear
Co 37-11 (x) gl ij, seg. ra fr fr2, 7 ears
Co 37-12 (x) F2 involving ra gl ij bd, 3 ears
Co 37-13 (x) A b P1, seg. py sm, 2 ears
Co 37-14) F2 involving West Branch inbred and lg b
Co 37-15) " gs v4 gl2, 6 ears
Co 37-16 Luce's Favorite (x) and x Onondaga White Dent,
Co 37-18 Cornell 11 (x) and x Luce's Favorite, 3 ears
Co 37-20 (Luce's Favorite x Onondaga Wh. Dent) x
Co 37-21 (Bloody Butcher x Cornell 11), 11 ears
Co 37-22 (Bl. Butcher x Cornell 11) x
Co 37-23 West Branch (x) and x U.S. no. 204; pbx; Sx Pr;
p ad an; yg3; bushy; o sh wx bp; 20 ears
Co 37-26 U.S. no. 204 (x) and x West Branch;
 c sh wx bp; zb5; p ad an; Ch; pbx; bushy;
 25 ears

 37-28 (x) c sh wx bp, 2 ears

 37-49 F₂ involving tu su da, 3 ears

 37-53 (x) a lg2 Dt, few seeds

 37-54 (x) A C R a2 bt bv pr y, 2 ears

 37-55 (x) a na cr gl v5 Y, v. few seeds

 37-57 (x) A C R a2 pl B Y, 2 ears

 37-58 (x) v zb5 y, seg. nl, 5 ears

 37-60 (x) A C R a2 bt bv, seg. v₂, 2 ears

 37-62 (x) g2 A b, seg. Pl, 2 ears

 37-63 (x) a y Dt, v, few seeds

 37-64 (x) a y Dt, seg. su lg₂, 2 ears

 37-67 (x) v5 gl₁, seg. Tp ra, 5 ears

 37-68 (x) v5 gl₁ Tp ra, 1 ear

 37-69 (x) a, seg. na lg₂ te₄, 2 ears

 37-72 (x) au au₂ sh, 2 ears

 37-73 (x) F₂ involving su gl₃ j₂, 2 ears

 37-74 (x) and # A C R A₂ Pr, seg. Pl, 2 ears

 37-75 (x) seg. Pr V₁₂, 1 ear

 37-77 (x) and # seg. V₁₃, 3 ears

 37-80 # seg. va₁₂, 4 ears

 37-81 (x) and # seg. wa, 2 ears

 37-82 # Pr Y, seg. ma₂, 2 ears

 37-84 # seg. ma₅ reddish yellow, 4 ears

 37-85 (x) and # seg. ma₆ Pr, 2 ears

 37-86 ms₆ x West Branch, 2 ears

 37-87 (x) and # A B Pl Y, seg. ma₈ lg, 3 ears

 37-88 # Y, seg. ma₉, 4 ears

 37-89 # seg. ma₁₀, 5 ears

 37-90 (x) and # seg. ma₁₁, 6 ears

 37-91 (x) and # seg. ma₁₂ white stripes, 4 ears

 37-92 (x) and # seg. ma₁₃, 6 ears

 37-93 (x) and # seg. ma₁₄, 7 ears

 37-96 (x) pv₂, may seg ma₃₄, 3 ears

 37-97 (x) and # seg. ma₃₇, 4 ears

 37-98 (x) and # seg. ma₃₉ Pr Tu, 7 ears

 37-99 ms₄₂ x inbred, 2 ears

 37-100 (x) F₂ involving Pl sm pbx Pr, 2 ears

 37-101 (x) A B Pl j, seg. 1 w, 3 ears

 37-103 (x) and # seg. yellowish green seedlings, 4 ears

 37-104 (x) and # rather light green foliage, 10 ears

 37-105 (x) rather light green foliage, seg. a v, 5 ears

 37-106 and 107 dark green foliage, 6 ears

 37-109 (x) v₁₂, seg. fr, 4 ears

 37-110 (x) y, seg. gl₁₀, 6 ears

 37-111 (x) su am du, 2 ears

 37-114 (x) F₂ involving A b pl Y su₂ sb, 4 ears

 37-116 (x) y su₂, may seg. sb, 4 ears

 37-117 (x) y, seg. pbx

 37-119 (x) Pr wx da ar sa, 3 ears

 37-120 (x) A B Pl Sx Pr, few seeds

 37-121 (x) Y b gs₂ lg

 37-122 (x) sy, 10 ears
Co 37-123 (x) y, seg. Pc, 7 ears
37-124 (x) a lg2 d, seg. ts4, 3 ears
37-125 (x) and # A lg2 d, may seg. ts4, 3 ears
37-126 (x) Y a lg2 ra2, 5 ears
37-127 (x) su, silks all over ear, 3 ears
37-128 (x) F2 involving Ga su cross, 5 ears
37-130 (x) Ch, seg. gl v5, few seeds
37-131 (x) p ad, seg. an, 5 ears
37-133 (x) F2 involving Ga su, 5 ears
37-134 (x) F2 involving Ts3 v4 Rg, 2 ears
37-135 (x) F2 involving Ts3 v4 Rg 0 sh wx, also seg. Pr Y, 4 ears
37-136 (x) p ad, may seg. an, few seeds
37-137 (x) seg. Pr bm3 yg3, 6 ears
37-138 (x) Y P, seg. og, 5 ears
37-139 (x) Y og, 3 ears
37-140 (x) su, may seg. w4, 1 ear
37-141 (x) F2 involving og and La inbred, 4 ears
37-142 (x) A B Pl 1, may seg. w, 1 ear
37-143 (x) A C R A2 pr i, 7 ears
37-144 (x) wi su gl3 in various combinations, 3 ears
37-145 (x) F2 involving wi Ts5 su, 2 ears
37-146 (x) gl3, seg. su wi
37-147 (x) seg. su gl3 Y, 4 ears
37-148 (x) Ts5 su y, seg. gl, may seg. la, 3 ears
37-149 (x) a lg2, seg. Dt na, 4 ears
37-150 (x) na, seg. ts4, 2 ears
37-152 (x) seg. w, 1 ear
37-155 (x) Y gl1, seg. de, 6 ears
37-156 (x) Y, seg. de, 5 ears
37-157 (x) Y a yt, seg. na, 1 ear
37-158 (x) Y, seg. bushy, 1 ear
37-159 (x) and # ij gl1 bd in various combinations, 4 ears
37-160 (x) y, seg. ra, 3 ears
37-161 (x) y br f, may seg. bm2, 1 ear
37-162 (x) seg. Y, 2 ears
37-164 (x) y pbx, 2 ears
37-165 (x) pr, seg. Vg, 2 ears
37-167 (x) an2, 1 ear
37-170 (x) Y fine stripe, 1 ear
37-171 (x) B.C., seg. A b lg gl12 v4, few seeds
37-172 (x) seg. na2 su Pr, 3 ears
37-175 (x) A lg gl12 b v4 Yx corrugated leaf, few seeds
37-176 (x) y Dt, seg. na ts4 lg2 su, 1 ear
37-177 (x) su, may seg. la, 1 ear
37-179 (x) y v2 A C R a2 b pl, 7 ears
37-180 (x) A C R A2 bv bt, seg. Pr, 4 ears
37-181 (x) Y A b Pl am, seg. py, 2 ears
37-184 (x) j, seg. ms, 1 ear
37-185 (x) yg2 lg c sh wx, seg. gl4, few seeds
37-187 (x) A C R a2 b pl v2 y, may seg. bm, 2 ears
37-188 (x) F2 involving A C R st r B (mottled red), 2 ears
37-190 (x) y, seg. bk, 3 ears
Co 37-198 (x) y gl, seg. bk, 1 ear
" 37-199 (x) F2 involving bk bk2, seg. gl, 4 ears
" 37-200 (x) seg. de, may seg. mi, 1 ear
" 37-201 (x) seg. an2 d, 5 ears
" 37-202 (x) F2 involving Trucker's Favorite and mi, 2 ears
" 37-203 (x) A C R a2 bv bt pr, 1 ear
" 37-205 (x) Wo Y, 1 ear
" 37-208 No. 2 trisome x U.S. no. 204, 3 ears
" 37-209 No. 3 " x " , 2 ears
" 37-213 No. 6 " x " , 1 ear
" 37-214 No. 7 " x " , 3 ears
" 37-215 No. 8 " x " , 1 ear
" 37-217 No. 10 " x " , 3 ears
" 37-219 # seg. j ms8 vl6, 3 ears
" 37-220 and 221 (x) yellow striped seedlings, 1 ear
" 37-222 (x) homo virescent seedlings, 2 ears
" 37-223 # yell. striped seedlings on very dark green base, 3 ears
" 37-224 and 225 (x) virescent seedlings, 2 ears
" 37-226 (x) and # seedlings tiny, virescent and white striped, 3 ears
" 37-227 # crinkly seedling leaves, 2 ears
" 37-228 (x) Amargo from Horowitz, 1 ear
" 37-229 # seg. vl19, 1 ear
" 37-230 # su du, 2 ears
" 37-231 T1-2b x T1-2b, 1 ear
" 37-233 Australian x Siamesis, 3 ears

1938 crop

Inbred I = U.S. No. 204 (W-R)
Inbred II = West Branch (W-W)

Co 38- 1 F2 involving inbreds I and II, 1 ear
" 38- 2 (x) pr, seg. Y ms7, 3 ears
" 38- 3 (x) seg. Y ms12, 2 ears
" 38- 4 (x) Y, seg. ms42 su, 6 ears
" 38- 5 (x) F2 involving H mg, 3 ears
" 38- 6 (x) F2 involving inbred II and yg3 bm3, 2 ears
" 38-9 and 10 (x) F2 of no tillers x many tillers cross, 15 ears
" 38-11 F2 involving inbred II and c sh bp wx, 5 ears
" 38-12 (x) F2 involving inbred I and c sh bp wx, 7 ears
" 38-13 (x) " II and p ad an?, 1 ear
" 38-14 (x) " I and " , 4 ears
" 38-15 (x) " II and y ph+, 8 ears
" 38-16 (x) " I and " , 7 ears
" 38-17 Inbred I x y ra sl; g4 wx; bm3, 3 ears
" 38-18 Inbred II x y ra sl; g4 wx; bm3, fx2 Pu?, 4 ears
" 38-19 (x) In, seg. Pr w, 5 ears
" 38-20 # seg. sk, 2 ears
" 38-21 (x) Pr y sp su, 5 ears
" 38-23 (x) Y d6, 6 ears
" 38-24 (x) a3 g, seg. Pr, 2 ears
" 38-25 (x) y Og, may seg. a3, 3 ears
38-27 (x) Y zb4, 5 ears
38-28 (x) F2 involving inbred I and zb5 and possibly
 nl g, 7 ears
38-30 (x) Y fs, 2 ears
38-31 (x) Y ms, 2 ears
38-33 (x) y Hs, seg. Tu, 3 ears
38-37 (x) dec y, 5 ears
38-40 (x) Y v7, 4 ears
38-44 (x) seg. ms, may seg. vl9, 3 ears
38-45 (x) Y v20 lg, 2 ears
38-46 (x) Y o, 6 ears
38-47 (x) y oz, v. few seeds
38-48 (x) Y h, 3 ears
38-49 (x) Y fl2 may seg. ms, 7 ears
38-50 (x) Y fl2 gl, seg. su, 7 ears
38-51 (x) a C R5 pr in wx y, seg. su, 6 ears
38-52 (x) a C R Y pr in, 4 ears
38-55 (x) Pr, seg. vp, 4 ears
38-56 (x) Y, seg. vp4, 1 ear
38-58 (x) r8t, 1 ear
38-59 (x) Rm b, 2 ears
38-60 (x) A C Rnj Pr, 2 ears
38-62 (x) A C Rj Pr P, 2 ears
38-64 (x) y rf su, 6 ears
38-65 # seg. ms2, 6 ears
38-66 (x) seg. ms2, may seg. 17, 5 ears
38-70 and 71 (x) and # seg. ms11 and ar-like stripe, 13
ears
38-72 (x) Y, seg. v, 7 ears
38-78 (x) F2 involving lg2 pm d, 5 ears
38-81 (x) y, seg. d2, 1 ear
38-82 (x) Y sh, seg. d3, 7 ears
38-85 (x) Y, seg. d5, 4 ears
38-90 (x) sh wx, may seg. 16, 1 ear
38-92 (x) Y, seg. 17, 6 ears
38-93 (x) Y, seg. w2, 3 ears
38-95 (x) Y, seg. w3, 1 ear
38-96 (x) Y wx, seg. crinkly leaf, 3 ears
38-97 (x) sh wx Pr, seg. w11, 3 ears
38-98 (x) pr, may seg. v5, 4 ears
38-100 (x) seg. y9, 7 ears
38-101 (x) A C Rj su, seg. v9, 4 ears
38-102 (x) seg. vl3, 11 ears
38-103 (x) seg. vl3, 11 ears
38-104 (x) y vl8, 1 ear
38-105 (x) y vl8, may seg. 14, 1 ear
38-106 (x) and # lg gs2, may seg. gl2 v4 b, 2 ears
38-107 (x) and # ws3 lg, may seg. gl2, 7 ears
38-108 (x) F2 involving Y gl2 lg v4 fl, 10 ears
38-109 # lg gl2 ts v4 in various combinations, 4 ears
38-112 (x) su gl3, seg. w1, 1 ear
38-114 # P Pl ms, seg. py, 2 ears
38-117 # seg. j ms6 vl6, 3 ears
38-119 # Ts6 O6, 3 ears
Co 38-122 # wx g4, 6 ears
" 38-123 # wx g4, 1 ear
" 38-126 (x) bm3, 2 ears
" 38-121 # pr sk, 1 ear
" 38-122 A B Pl Pr bm, seg. sk lg, 2 ears
" 38-133 (x) Pr lg, seg. sk, 2 ears
" 38-134 (x) may seg. lo, 2 ears
" 38-135 # Y, seg. hf, 6 ears
" 38-136 # seg. Pr T6-6 su, 3 ears
" 38-138 # y, seg. lg3 Rg and possibly d, 1 ear
" 38-140 # Y wx, seg. ar, 5 ears
" 38-143 (x) and # Pr, seg. g tw3, 3 ears
" 38-144 (x) seg. bax, 1 ear
" 38-145 # seg. ba, 3 ears
" 38-146 # seg. ba2, 2 ears
" 38-147 (x) may seg. ra2, 2 ears
" 38-148 (x) Ya lg2 ra2, 2 ears
" 38-150 (x) F2 involving pr zb f ys, 4 ears
" 38-153 (x) seg. at, 1 ear
" 38-154 (x) gl, seg. bk, 2 ears
" 38-155 (x) Y bk2, 3 ears
" 38-159 (x) Y gl fl2, 1 ear
" 38-179 (x) zb4 br f, may seg. bm2, few seeds
" 38-187 (x) and # Og g li, 4 ears
" 38-189 (x) A B Pl C R Pr Y, 5 ears
" 38-191 (x) A C r g y, 3 ears
" 38-192 (x) A B pi C Rg Pr Scx Y lg, 8 ears
" 38-193 (x) A b Pl Y sm, seg. py, 3 ears

1939 crop

Co 39- 1 (x) F2 involving inbred I and g4 wx, 8 ears
" 39- 2 (x) F2 " " " " " " " and sl ra, 5 ears
" 39- 3 (x) F2 " " " " " " " and bm3, 8 ears
" 39- 4 (x) F2 " " " " " " " II and sl ra, 7 ears
" 39- 5 (x) F2 " " " " " " " and bm3, 10 ears
" 39- 6 (x) F2 " " " " " " " and g4 wx, 8 ears
" 39- 7 Inbred II x Rmb, In? Pr; Y o v2; zb4 br f
 bm2; A C Rg Pr P; wJ lg gl2; sp su Pr;
 RES; Rmb; r y su; yg2 sh wx gl lg;
 aP B Pl P; lg2 d; v7; Y fs; sk; y wx
 v gl4; brown striped; zb4; lg gl2 v4 f;
 Y o v2; rst 32 ears
" 39- 8 Inbred I x lg gl2 v4 fl; fs; sk; y wx v gl4;
 aP B Pl P; A C Rg pr pvv; vlg; brown
 striped; Y o v2; zb5 nl7; Rmb; v7; sh
 wx v gl4; sp su Pr; Pr In?; ws3 lg gl2;
 Y fs; yg2 sh wx gl4 lg; rst; lg2 d; zb4
 br f bm2; y wx v gl4; RES; A C Rg Pr;
 v7; a d lg2, 52 ears
" 39-10 In Pr x inbred I, 2 ears
" 39-11 # seg. sk, 3 ears

318
Co 39-12 (x) and # ap su Pr, also crossed to inbred I and II, 6 ears
39-13 # zb, also crossed to inbr. I and II, 3 ears
39-15 rs x inbred I and II, 4 ears
39-16 A C R Pr x inbred I and II, 5 ears
39-17 R Pr x inbred I, few seeds
39-18 A C R pr P x inbred I and II, 4 ears
39-19 r su x inbred I and II, 6 ears
39-20 Y v x inbred I, 1 ear
39-25 (x) and # Y f, 3 ears
39-27 (x) lg Ts v, 2 ears
39-28 (x) lg g12 ts v4 in various combinations, 3 ears
39-31 # ws3 lg g12, 1 ear
39-32 (x) lg g12 v4 f1, 3 ears
39-35 (x) gs2 g12 b v4, 1 ear
39-37 (x) d and lg2 d, 2 ears
39-38 (x) lg2 d, 1 ear
39-39 (x) lg2 d, 1 ear
39-41 # j, seg. ma8 v16, 3 ears
39-43 (x) y sh wx v g14, 2 ears
39-44 (x) yg2 sh wx lg g14, also crossed to inbred II, 3 ears
39-45 (x) and # y wx v g14, 3 ears
39-46 # Y, seg. su Ts6 Pr, 3 ears
39-47 # y zb5, may seg. nl, 1 ear
39-49 (x) zb5, seg. Y, 1 ear
39-50 (x) bm7, seg. Pr Y sh, 4 ears
39-51 # seg. ma7
39-53 # seg. ms42 g1, 5 ears
39-55 (x) seg. d2, 5 ears
39-60 (x) Y du2, seg. du su am, 1 ear
39-61 (x) Y seg. du2 du su am, 1 ear
39-67 (x) A b PI Y sm P, 6 ears

G. A. Lebedeff
V. INDEX OF SEED STOCKS

a3 " 38-24, 38-25

ad " 37-131, 37-136, 38-13, 38-193

al " 281, 282, 328-331, 39-47

an " 269, 270, 271, 37-131, 38-13, 38-14

an2 " 37-167, 37-201

ar " 67, 501, 37-119, 38-140

ara " 188

as " 216, 401

at " 258, 38-153

au " 494, 495, 37-72

au2 " 494, 495, 37-72

bax Co 263, 264, 38-144

ba " 264, 38-145

ba2 " 265, 38-146

bd " 172, 259, 260, 479, 37-10, 37-12, 37-159

be " 172

bk " 171, 352, 356, 439, 441, 37-197, 37-198, 37-199, 38-154

bk2 " 556, 37-197, 37-199, 38-155

bl " 144, 168, 169

bm2 " 134-136, 267-271, 337-344, 552, 37-161

bm3 " 130, 503, 37-5, 38-17, 38-18, 38-126, 39-2, 39-5, 39-50

bmx " 130, 239

bn " 67, 134, 232, 340, 342-345, 364

bp " 68-69, 37-28, 38-11, 38-12

br " 74, 258, 266, 359, 552, 37-161, 38-179

bs " 262

bt2 " 174, 175

bv " 33, 37, 52-54, 114, 115, 258, 298, 299, 301, 302, 522-524, 37-54, 37-60, 37-180, 37-203

C " 14-19, 36, 40, 44, 45, 50, 51, 83, 88, 89, 91, 110, 111, 124, 125, 126, 127, 129, 130, 131, 133, 137, 141, 161, 295, 298, 299, 301, 302, 322,
<table>
<thead>
<tr>
<th>Column</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>cr</td>
<td>Co 22, 23, 24, 25, 26, 125, 131, 141, 162, 215, 284, 339, 343, 37-55</td>
</tr>
<tr>
<td>da</td>
<td>"181</td>
</tr>
<tr>
<td>dh</td>
<td>"481, 37-49</td>
</tr>
<tr>
<td>dx</td>
<td>"20, 152, 162, 163, 168</td>
</tr>
<tr>
<td>d2</td>
<td>"11-12, 38-81, 39-55</td>
</tr>
<tr>
<td>d3</td>
<td>"70-72, 38-82</td>
</tr>
<tr>
<td>d5</td>
<td>"2-4, 38-85</td>
</tr>
<tr>
<td>d6</td>
<td>"38-23</td>
</tr>
<tr>
<td>d7</td>
<td>"320</td>
</tr>
<tr>
<td>da</td>
<td>"495, 37-119</td>
</tr>
<tr>
<td>dex</td>
<td>"37-155, 37-156, 37-200</td>
</tr>
<tr>
<td>f</td>
<td>"138-139, 258, 267-269, 359, 368, 401, 552, 37-161, 38-179</td>
</tr>
<tr>
<td>fia</td>
<td>"182</td>
</tr>
<tr>
<td>fl</td>
<td>"38-108, 39-32</td>
</tr>
<tr>
<td>fl2</td>
<td>"145, 146, 38-49, 38-50, 38-159</td>
</tr>
<tr>
<td>fr</td>
<td>"2 Co 66, 525, 526, 37-11</td>
</tr>
<tr>
<td>fs</td>
<td>"38-30, 39-25</td>
</tr>
<tr>
<td>fx</td>
<td>"170</td>
</tr>
<tr>
<td>g2</td>
<td>"37-62</td>
</tr>
<tr>
<td>g3</td>
<td>"1</td>
</tr>
<tr>
<td>g4</td>
<td>"67, 73, 498, 37-3, 37-9, 38-17, 38-18, 38-122, 38-123, 39-1, 39-6</td>
</tr>
<tr>
<td>gx</td>
<td>"10, 25, 26, 284</td>
</tr>
<tr>
<td>Ga</td>
<td>"37-128, 37-133</td>
</tr>
<tr>
<td>gl (b, c, d)</td>
<td>Co 177, 185, 184, 248-254</td>
</tr>
<tr>
<td>gl2</td>
<td>Co 4, 7, 220, 234, 273-279, 397, 420, 37-81, 39-28</td>
</tr>
<tr>
<td>gl3</td>
<td>"224, 236, 237, 291, 391, 39-73, 39-146</td>
</tr>
<tr>
<td>gl (5-10)</td>
<td>Co 147, 242-247, 508-509, 37-110</td>
</tr>
<tr>
<td>glx</td>
<td>Co 23, 104, 113, 175, 255-258, 323-324, 38-50, 38-159</td>
</tr>
<tr>
<td>gl (Hadjinoff's)</td>
<td>Co 225-231</td>
</tr>
<tr>
<td>gs</td>
<td>Co 401, 37-14, 37-15</td>
</tr>
<tr>
<td>gs2</td>
<td>"6, 272, 422, 37-121, 38-106, 39-35</td>
</tr>
<tr>
<td>h</td>
<td>"148, 38-48</td>
</tr>
<tr>
<td>hr</td>
<td>"257, 472, 38-135</td>
</tr>
<tr>
<td>He</td>
<td>"38-33</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>Co</td>
<td>Inbred I crossed with stocks</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Symbol</td>
<td>37-99, 38-4, 39-53</td>
</tr>
<tr>
<td>--------</td>
<td>-------------------</td>
</tr>
<tr>
<td>msx</td>
<td>29, 52, 107, 112, 280, 38-44</td>
</tr>
<tr>
<td>na2</td>
<td>37-172</td>
</tr>
<tr>
<td>nl</td>
<td>319, 376, 436, 447, 37-58, 38-28, 38-48</td>
</tr>
<tr>
<td>nl2</td>
<td>376-376</td>
</tr>
<tr>
<td>n</td>
<td>149, 38-46</td>
</tr>
<tr>
<td>d2</td>
<td>150, 38-47</td>
</tr>
<tr>
<td>Pb</td>
<td>107</td>
</tr>
<tr>
<td>pb</td>
<td>37-117</td>
</tr>
<tr>
<td>pbx</td>
<td>37-110, 37-164, 38-15, 38-16</td>
</tr>
<tr>
<td>P</td>
<td>37-123</td>
</tr>
<tr>
<td>P</td>
<td>10, 94</td>
</tr>
<tr>
<td>Pg</td>
<td>9, 215</td>
</tr>
<tr>
<td>Pg2</td>
<td>188, 189</td>
</tr>
<tr>
<td>pgx</td>
<td>55, 92, 107, 185, 187</td>
</tr>
<tr>
<td>pk</td>
<td>28, 82</td>
</tr>
<tr>
<td>P0</td>
<td>402</td>
</tr>
<tr>
<td>Fl</td>
<td>37-78</td>
</tr>
<tr>
<td>ra2</td>
<td>37-126, 38-148</td>
</tr>
<tr>
<td>rax</td>
<td>38-147</td>
</tr>
<tr>
<td>Rg</td>
<td>37-133, 38-138</td>
</tr>
<tr>
<td>Rs</td>
<td>151, 256</td>
</tr>
<tr>
<td>rs2</td>
<td>255</td>
</tr>
<tr>
<td>S</td>
<td>130</td>
</tr>
<tr>
<td>Sx</td>
<td>37-120</td>
</tr>
<tr>
<td>sa</td>
<td>37-119</td>
</tr>
<tr>
<td>sb</td>
<td>280, 417, 37-114, 37-116</td>
</tr>
<tr>
<td>Sex</td>
<td>38-192</td>
</tr>
<tr>
<td>Sc</td>
<td>130</td>
</tr>
<tr>
<td>sh</td>
<td>26, 34, 36, 38, 44, 45, 67, 68, 79-73, 75-79, 81, 82, 84-89, 128, 132, 138, 139, 149, 224, 315, 317, 323</td>
</tr>
</tbody>
</table>
si 258
sl 62, 63, 232, 38-17, 38-28, 39-2, 39-4
sp 27, 28, 38-21, 39-12
sr 269, 270
st 403
suam 37-114, 37-116
sy 37-230
su 37-122
sn 31, 32, 357
sy 37-122
tr 64, 499, 37-67, 37-68
ts 276-279, 37-8, 39-27, 39-28
ts2 134-136, 258, 337-340, 342-344, 552
ts3 37-134, 37-135
Ts5 37-145, 37-148, 37-177
Ts6 38-119, 38-136, 39-46, 39-47
tsx 23, 171, 220
Ta 238, 239, 292, 293, 361, 481, 37-49
tw3 38-143
va 178
v 317, 39-43, 39-45
v3 41, 50, 51
v6 162-164
v7 160, 161, 165, 38-40
v8 152-156
v9 157, 158, 38-100, 38-101
vl2 37-75, 37-109
vl3 37-77, 38-102, 38-103
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Co</th>
</tr>
</thead>
<tbody>
<tr>
<td>vl1</td>
<td>37-219, 38-117, 39-41</td>
</tr>
<tr>
<td>vl5</td>
<td>243</td>
</tr>
<tr>
<td>vl8</td>
<td>95-97, 323, 324, 38-104, 38-105</td>
</tr>
<tr>
<td>vl9</td>
<td>37-229</td>
</tr>
<tr>
<td>v20</td>
<td>98, 38-45</td>
</tr>
<tr>
<td>va2</td>
<td>37-80</td>
</tr>
<tr>
<td>vb</td>
<td>266</td>
</tr>
<tr>
<td>Vg</td>
<td>37-165</td>
</tr>
<tr>
<td>vp</td>
<td>61, 38-55</td>
</tr>
<tr>
<td>vp2</td>
<td>48, 49</td>
</tr>
<tr>
<td>vp4</td>
<td>90, 314, 38-56</td>
</tr>
<tr>
<td>wx</td>
<td>134, 229, 263, 310, 313, 336, 337</td>
</tr>
<tr>
<td>w2</td>
<td>190, 412-415, 37-101, 37-142</td>
</tr>
<tr>
<td>w3</td>
<td>190, 193, 194, 38-93</td>
</tr>
<tr>
<td>w4</td>
<td>137-140</td>
</tr>
<tr>
<td>wll</td>
<td>84-89, 38-97</td>
</tr>
<tr>
<td>wa</td>
<td>37-81</td>
</tr>
<tr>
<td>Wh</td>
<td>65</td>
</tr>
<tr>
<td>w1</td>
<td>37-144, 37-145, 38-112</td>
</tr>
<tr>
<td>ws2</td>
<td>359, 360, 363, 366</td>
</tr>
<tr>
<td>ws3</td>
<td>361, 362, 364, 365, 367</td>
</tr>
<tr>
<td>wx</td>
<td>38-107, 39-3</td>
</tr>
<tr>
<td>Y3</td>
<td>326, 328-334</td>
</tr>
<tr>
<td>Y4</td>
<td>529, 531, 532</td>
</tr>
<tr>
<td>yga</td>
<td>179</td>
</tr>
<tr>
<td>yg2</td>
<td>315, 434, 554, 37-9, 37-185, 39-44</td>
</tr>
<tr>
<td>yg3</td>
<td>37-137, 38-6</td>
</tr>
<tr>
<td>ys</td>
<td>36, 39, 41, 46, 47, 173, 217, 294</td>
</tr>
<tr>
<td>ysx</td>
<td>173, 347</td>
</tr>
<tr>
<td>yt</td>
<td>13, 283, 424, 37-157</td>
</tr>
<tr>
<td>zb4</td>
<td>38-27, 38-179, 39-13</td>
</tr>
<tr>
<td>zb5</td>
<td>319, 321, 436, 37-58, 38-28, 39-49</td>
</tr>
<tr>
<td>zbx</td>
<td>107, 38-150</td>
</tr>
<tr>
<td>zg3</td>
<td>306, 307</td>
</tr>
<tr>
<td>zl</td>
<td>216</td>
</tr>
</tbody>
</table>

Translocations Co 198-202, 37-231, 37-232

G. A. Lebedeff
VI. HISTORICAL NOTES ON MAIZE GENETICS COOPERATION

I. Mimeographed letter of April 12, 1929 mentions "Cornfab" held in Dr. Emerson's room in N.Y. hotel at the time of the Christmas meetings, 1928. Long folder of linkage information issued with this letter, considered News Letter 1.

II. Second folder of mimeographed information issued some time after the first one, perhaps late in 1929 or in 1930.

Cooperation of maize geneticists planned at Sixth International Congress of Genetics, at Ithaca, N.Y., August, 1932.

Correspondence by Dr. Emerson about possible grant of money for Maize Genetics Cooperation, January 1933.

Letter of Nov. 13, 1933 gave samples of news items and asked for news contributions.

April 1, 1934. Rockefeller Grant available.

IX. News Letter - March 6, 1935. 20 pages.

XII. News Letter - March 6, 1938. 38 pages, 2 maps.

XIII. News Letter - April 15, 1939. 22 pages.

XIV. News Letter - March 5, 1940. 56 pages.
Dear Colleague,

As you may know, Dr. Emerson reaches retirement age this coming June, and at that time he will have completed 27 years of active service at Cornell. While there is no indication whatever that retirement is going to affect in any way the active continuance of his corn genetics research here at Cornell, it does seem that this coming summer is an appropriate time to hold a reunion of his former students and coworkers in corn genetics.

Preliminary arrangements are now being made for such a reunion to be held at Ithaca in late August or early September, either just before or just after the summer meeting of the Genetics Society at Cold Spring Harbor. It is being planned as an informal family affair to last for at least a couple of days. No formal program is being arranged but there will most certainly be a picnic at Taughannock, and you may rest assured there will be ample opportunity for reminiscences and much good talk. If the group is interested in having one or more informal round-table discussions of recent developments in corn genetics or an inspection trip to the Plant Breeding gardens, they will be arranged. And it is possible we may be able to handle a small amount of live plant material for exhibit purposes, if anyone has something new and exciting that he would like to have on exhibit.

The names of the persons to whom this invitation to participate in the reunion is being sent are given below. The word was passed around at the recent Philadelphia meetings that plans were under way for a get-together of this sort, and the response was 100 percent favorable. The names of those who indicated that they would plan to attend are starred. If this preliminary poll is any indication of the final trend, most everyone will be on hand, and this should be a memorable occasion for Dr. and Mrs. Emerson.

Another announcement will be issued later on when a definite date has been selected and other plans have materialized. Meanwhile, any suggestions you may have will be welcomed.

Cordially yours,

D. F. Randolph

A. C. Fraser

Anderson (*) ; Beadle (*) ; Brink; Brunson; Burnham (*); Clark, Frances; Creighton (*); Demerec (*); Emerson, Sterling; Eyster (*); Fischer; Hayes; Jenkins; Jones; Kempton; Langham; Lebedeff; Lindstrom (*); Longley; McClintock (*); Mangelsdorf; Perry; Reeves; Richey; Rhoades (*); Sharp (*); Singleton; Sprague; Stadler (*); Weatherwax
At the close of the academic year in June, 1941, Dr. R. A. Emerson will have reached the age of retirement for university professors and will officially set down his old box of records after 27 years of service to Cornell University. Actually his corn genetics investigations began at Nebraska about 1911, so the present summer will mark over 30 years of research on maize. It seems highly proper at this time for The News Letter to call to the attention of the cooperators the services which Dr. Emerson has rendered to genetics in general, and to Maize Genetics Cooperation in particular.

One of his outstanding accomplishments in this long period has of course been his highly productive research in the field of maize genetics. A long series of publications testifies to his activity here. Younger men who are working with maize should remember that they have more tools to work with and they can go farther because of the foundation laid by R. A. Emerson. His researches would stand as a signal contribution even if he had done nothing else in the advancement of science.

Most men in university positions have an opportunity to influence students, to stimulate their interest in research and to instill in them certain ideals. The list of graduate students who have majored with R. A. Emerson and gone on to important positions in science is an impressive one. Many of these men are still corn geneticists, as they were in their graduate-student days, and most of them are maize cooperators along with us. One man retires, but several dozen carry on the work, with much of the same industry and high regard for the scientific approach.

By the late 1920's, the number of corn geneticists had grown considerably. Dr. Emerson began about that time to get these men together in his hotel room at the time of the A.A.A.S. meetings for so-called "cornfabs". These informal meetings served to keep the corn workers informed on what others were doing and helped them to plan for the future. They were the beginnings of Maize Genetics Cooperation. Not only has our own organization grown from these informal meetings, but corn geneticists have set an example in mutual confidence and cooperation which has been copied by several other groups.

We think that we are safe in saying that R. A. Emerson was the first to call the attention of plant geneticists to the advantages of the maize plant for genetic research, and that he did much to stimulate the present widespread interest in this plant. His writings have probably "converted" a number who did not come more directly under his influence as a teacher.
When you stop to think of it, he has done a thorough job. He has made many excellent contributions of his own, he has trained graduate students to "carry on", he has stimulated wide interest in corn genetics, and finally, he has insured, for sometime at least, the maintenance of maize stocks and a cooperation in maize research. These things will have far-reaching effects.

But this is not a eulogy. There seems to be "plenty of mileage in the old car yet", and the old record box still holds cards. The Dean of our Agricultural College has promised that office and garden space will still be available for Dr. Emerson's use, and perhaps if our New York winters get too monotonously disagreeable, southern California or Florida will come to the rescue.

Dr. Emerson, as the Maize Genetics Cooperation News Letter goes to press, your fellow cooperators take off their old straw hats to you in affectionate regard. We wish you years of real enjoyment in doing the things you most want to do.
The following pages offer verbatim scans of the second set of bound *MNL* Volumes 15-21 (1941-1947) beginning with *News Letter* 15, April 1, 1941, and including Fraser’s call of January 1, 1941. The appreciation that preceded page 1, and is listed in Coe & Kass (2005), is not included in this second bound Volume (it may be viewed at the following link https://mnl.maizegdb.org/mnl/15/02Fraser.htm). The binding on this second set of *News Letters* begins with Vol. 15 (see image on back cover; see also Kass et al. 2005, Appendix I and Coe & Kass 2005, Appendix II).

MNL Volumes 15-21 are arranged below sequentially, and interleafed with calls and other items as found in the Plant Breeding bound volumes (scanning of *MNL* bound volumes was arranged by Michael Cook).

On Emerson’s recommendation, Allan C. Fraser assumed Editorship of the *MNL* as of April 1, 1941 but, sadly, died in September of 1941. Succeeding editors through 1947 were R.A. Emerson, Robert L. Cushing, and Harold H. Smith (Coe & Kass 2005, Appendix II). It may have been Smith, in consultation with Emerson, who had the second set of *MNLs* (Volumes 15-21) bound for the Cornell Agriculture library.
The data presented here are not to be used in publications without the consent of the authors.

Department of Plant Breeding
Cornell University
Ithaca, N. Y.
January 21, 1941

To Maize Geneticists:

The call for material for the 1941 issue of the Maize News Letter has been delayed this year much longer than usual. This was the result of considerable uncertainty as to the source of support for the Maize Genetics Cooperation. While we can make no positive statements now, it seems likely that continued support of the Maize Cooperation at Cornell will be forthcoming from some quarter.

Items submitted for the 1941 News Letter should include new linkage data, descriptions of new characters, suggestions on breeding and cytological technique, and all similar material likely to be of general interest, and valuable to have on record.

We plan to print in the News Letter references to all important maize publications since our last issue. It will help to make this list more complete if you will send us the titles of papers in press, with the names of the journals which have accepted them.

The dead line on contributions is March 1, 1941. May we have your contribution soon?

Sincerely yours,

A. C. Fraser
Secretary

ACF:P
April 1, 1941

To Maize Geneticists:—

At the request of Professor Emerson, I am taking over the job of Secretary of the Maize Genetics Cooperation. It is hoped that this arrangement will give continuity to the work of maintaining stocks and will enable us better to plan ahead.

Actually most of the detailed work with the stocks is at present in the hands of James E. Welch, one of our graduate students from Honolulu. Welch has a Ph.D. major problem on corn. He has made all of the pollinations of the "co-op" material this past summer and has proved very helpful in other ways.

You will be glad to learn that the Rockefeller Foundation has made a grant to Cornell University to cover the cooperative work with the maize stocks for three years, starting February 1, 1941. The Foundation has further indicated its willingness to consider a request for the renewal of the grant at the end of this period.

A. C. Fraser
Contents of the Newsletter

I. Secretary's note Page 1
II. Editorial Policy of Genetics Page 3
III. General News Items Page 4
IV. Miscellaneous Co-op Items Page 49
V. Maize Publications Page 50
VI. New Genes Page 56
VII. Maps Pages 28 & 35.
II. Editorial Policy of GENETICS

It will doubtless interest maize geneticists to know the editorial policy of GENETICS concerning the symbolizing of genes, linkage groups and chromosomes of maize. The present policy has been in use for sometime and seems to be satisfactory.

Arabic numerals are used to designate both linkage groups and chromosomes.

Literal superscripts are used to represent different members of an allelic series.

No subscripts are used to represent different genes which give similar phenotypes. The numeral shall be raised to the same level as the rest of the symbol, i.e. \(v_3 \) and not \(v^3 \). The first member of such a series shall be designated only by the literal symbol without the accompanying numeral "one" e.g. \(b ml \) and \(a_1 \) shall be simply \(b m \) and \(a \). This will prevent the confusion which would result from such symbols as \(a \) and \(a_1 \) if the numeral "one" was used with \(a \) but not as a subscript.

All gene symbols are italicized but the symbols T, Df and In representing translocations, deficiencies and inversions, respectively, are not italicized.

M. M. Rhoades
III. General News Items

California Institute of Technology, Pasadena, California

1. Cherry pericarp - An allele of \(R \) has been found in Pueblo Indian maize in which cherry pericarp color is associated with colored aleurone (i.e. \(R^c h \)). It has been tested in back crosses to \(r \)-tester.

2. Long inversion on chromosome 2 - The inversion is well out toward the end of each arm, thus inverting four-fifths or more of the chromosome. Tests place the left break between \(gl2 \) and \(B \), the right break far beyond \(v4 \) but in the \(v4-ch \) interval. In the homozygous inversion the map order is \(lg-gl2-v4-B-ch \). Data on map distances are as follows:

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>Crossovers</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>(lg-v4)</td>
<td>851</td>
<td>321</td>
<td>37.7</td>
</tr>
<tr>
<td>(gl2-v4)</td>
<td>828</td>
<td>303</td>
<td>36.6</td>
</tr>
<tr>
<td>(v4-B)</td>
<td>2425</td>
<td>1006</td>
<td>41.5</td>
</tr>
<tr>
<td>(B-ch)</td>
<td>1205</td>
<td>300</td>
<td>24.9</td>
</tr>
</tbody>
</table>

3. Position of \(ba2 \) - A backcross culture homozygous for the long inversion but heterozygous for \(B, ba2 \) and \(v4 \) suggest that \(ba2 \) lies between \(B \) and \(v4 \). The data are

\[
\begin{array}{cccccc}
B & v4 & ba2 & 0 & 1 & 2 \\
& & & 36 & 29 & 5 \\
\end{array}
\]

E. G. Anderson

Columbia University, New York City

1. Additional data on the location of \(Dt \).

In the News Letter of March 5, 1940, backcross linkage data for \(Dt \) and \(Wx \) and \(F_2 \) data for \(Dt \) and \(Sh \) were given. These data showed 41 percent recombination between \(Dt \) and \(Wx \) and 27 percent between \(Dt \) and \(Sh \). The order apparently was \(Dt \) \(Sh \) \(Wx \) and the recombination value with \(Sh \) indicated that \(Dt \) should fall close to \(Yg2 \) near the end of the short arm of chromosome 9. The following data on the location of \(Dt \) were obtained this past year.

\[
\begin{array}{cccccc}
Dt & Sh & x & dt & sh & gave \\
\hline
617 & 266 & 305 & 588 & 1776 \\
\end{array}
\]

\(Dt \) \(Sh \) - 32 percent recombination
These data indicate that the order is \(\text{Dt Yg Sh Wx} \) and they place \(\text{Dt} \) ten units beyond \(\text{Yg} \). Creighton found only one percent recombination between \(\text{Yg} \) and the terminal knob on the short arm of 9 so there is some discrepancy here. It should be noted that in selfing a \(\text{Dt dt} \) plant three classes of seed are obtained, i.e. the \(\text{Dt Dt Dt} \), the \(\text{Dt Dt dt} \) and the \(\text{Dt dt dt} \) classes. In this latter class possessing a single \(\text{Dt} \) allele the mutation rate is so low that a considerable number of \(\text{Dt dt dt} \) seeds were classified as \(\text{dt} \) because no dots (mutations) are evident. This fact introduces some error into the recombination values but nevertheless the order should be as indicated. The locus of \(\text{Dt} \) therefore lies beyond \(\text{Yg} \) and must be very near the end of the short arm of chromosome 9.
2. Mutation of \(a\) to different alleles.

Four alleles at the \(a\) locus have been described by Emerson and Anderson. These four are \(a\), \(a^P\), \(A\) and \(A^D\). Only \(a\) has its mutation rate increased by \(Dt\). Mutation of \(a\) to five different alleles has occurred in \(a\) \(Dt\) stocks. One of the five is a mutation to an allele similar to \(a\) in its effect on aleurone, plant and pericarp color but differs in that it is stable with \(Dt\). This allele has been found several times. It is of some interest that these so-called stable alleles are not completely stable with \(Dt\); an occasional dot is found in the aleurone (about .4 dot per seed in \(Dt\ \ Dt\ \ Dt\) seed) but these dots are commonly much smaller than normally is the case indicating that the mutations when they do occur take place at a relatively late stage.

A second allele is one identical in all respects with \(A\). Out of twenty mutations tested, which give deep aleurone color and purple plant color with \(B\ \ Pl\), eighteen of them were to \(A\).

A third allele was found in the group of twenty mutations mentioned above. This allele produces deep aleurone and purple plant color but gives a recessive brown pericarp color with \(P\). This is a new allele.

A fourth allele is one like \(A\) in its effect on aleurone and plant color but produces a red-brown pericarp color that is recessive to the red color produced by \(A\) but is dominant to the recessive brown of \(a\). This is a new, previously undescribed allele.

The fifth allele found is one resembling \(a^P\) in its effect on aleurone and plant color but giving a recessive brown pericarp color instead of the dominant brown produced by \(a^P\). This is also a new allele.

The data on hand indicate that mutations of \(a\) to different alleles do not occur with equal frequencies. Although four new alleles have already been found it may be expected that additional new ones will appear as these experiments are continued.

No effect of \(Dt\) on any locus other than \(a\) has been found. This is true for the unstable pericarp allele \((P^{Vv})\) as reported before and also for the unstable waxy allele.
3. Further studies on the behavior of the abnormal tenth chromosome. (See last News Letter)

Plants heterozygous for a normal chromosome 10 and an abnormal chromosome 10, differing from the normal in that it has a piece of chromatin attached to the distal end of the long arm as described by Longley (1937, 1938), give an unusual type of behavior for these two homologues. When used as the female parent the percentage of the basal megaspores receiving the abnormal chromosome 10 is approximately 67 percent instead of the expected 50 percent. The R locus was found to lie extremely close to the end of the short arm; there being one percent of recombination between R and the distal end of the short arm. This placing of R would mean that d7 does not lie beyond R as Singh's data indicated. Crossover studies in the g R region showed no reduction in plants heterozygous for the abnormal chromosome so it is likely that the low recombination value between R and the end is the true distance and is not due to a reduction from the true value caused by the presence of the redundant piece of chromatin. Earlier, it was suggested that competition among megaspores might account for the excess number of eggs carrying the abnormal chromosome 10, i.e. in a considerable number of cases non-basal megaspores with the abnormal chromosome would develop into the embryo sac at the expense of basal megaspores with normal chromosomes 10. Examination of 200 young embryo sacs showed, however, that the embryo sac always arose from the basal megaspore so the above hypothesis can be definitely ruled out. The alternative explanation is that selective segregation during the two meiotic divisions results in the abnormal chromosome passing to the basal megaspore more frequently than expected on a random basis. This explanation is being tentatively accepted. There is no sterility on the ears so abortion of ovules with the normal chromosome 10 does not account for the discrepancy. Since the R locus is so close to the end of the long arm it may be used to mark the normal and abnormal chromosomes thus making it possible to collect a large amount of data. When pollen from a plant heterozygous for the two chromosome types is used it is found that pollen carrying the abnormal chromosome is at a disadvantage when competing with grains carrying the normal chromosome. Using the R alleles to mark the two chromosomes it was found in one experiment that 59.7 of the functioning pollen grains carried the normal chromosome. Since comparable results were obtained when different normal chromosomes 10 were used against the abnormal chromosome 10 it may be argued that the redundant piece of chromatin is not wholly inert but possesses some genetically active material.

If selective segregation is the correct explanation of the unusual results obtained on the female side it is of some interest to give the following results. In the summer of 1939, 75.7 percent of the individuals in a
population of 4,501 coming from female plants heterozygous for the two chromosome types carried the abnormal chromosome 10. A duplicate of the seed planted in 1939 was planted in 1940 but only 62.8 percent of the individuals in a population of 4,922 possessed the abnormal chromosome. Since the two lots of seed were identical it appears that environmental conditions influence the segregation of the heteromorphic bivalent. This behavior is similar to that found in certain insects where temperature differences determine whether the X or Y chromosome is extruded into the polar bodies.

4. Singleton found a marked effect of the female parent on the functioning of spl pollen. Tests were made using four different r-testers to determine if a similar situation existed for sp2. The data obtained show no indication of an effect of these female parents on the functioning of sp2 pollen.

5. Jenkins gave the writer a selfed stock homozygous for mottled aleurone. He had found it extremely difficult to get a homozygous stock in which all seeds showed mottling since the mottled condition is extremely susceptible to the action of modifiers. This strain was turned over to the writer because it seemed possible that this case was similar to the a-Dt situation where one gene stimulates the mutability of another. The mottling proved to be caused by an r allele and was not due to another gene causing r to mutate. This allele is a new member of the R series. The mottled condition resembles most closely that produced by a single dose of R. It is not the same as the marbled and stippled alleles found in certain strains from Mexico and South America.

M. W. Rhoades

Connecticut Agricultural Experiment Station,
New Haven, Connecticut

1. The "miniature seed" gene which markedly reduces the amount of tissue in the endosperm and embryo has no effect upon pollen tube growth and little or none upon plant growth. This is additional clear evidence that nuclear factors have a particular time for their action and are specific for certain tissues.

2. Wire stapling pliers are being used by many corn breeders to fasten paper bags on tassels and ear shoots in place of wire clips. The stapled bags are more secure and take less time to put on. The cost of the staples is about the same as for paper clips but more have to be used. (Stapler and staples made by Neva-Clog Products, Inc., Bridgeport, Conn.)

D. F. Jones
1. The mottling factor was given the symbol Mt in the Cornell Memoir 180. We have tested several stocks for mottling and have found all except one, C626 purple flint, to produce mottling in seeds of the constitution r r R. However C626 suppresses mottling when the pollen is applied to any r r stock. Hence, it seems to us that mottling is the recessive condition and no-mottling dominant. In 1940 evidence that the mottling factor mt and r are allelic, was obtained. The inbred C78 A C r pr mt (mottling) had been crossed by C626 A C R Pr Mt (no mottling). The F₁ hybrid was selfed and also pollen was applied to a r __ mt stock. One ear backcrossed gave 120 colored (none mottled) and 133 colorless. Three selfed ears gave 825 colored (no mottled kernels) to 268 colorless. Although these data are fragmentary they indicate that R and Mt are allelic or very closely linked, much closer than the 12% of crossing over originally calculated by Kempton. Further evidence will be obtained in 1941. I should be glad to receive additional stocks of A C R that are known not to produce mottling.

2. Status of Connecticut Sweet Corn Hybrids. Possibly the maize geneticists will be interested in an item regarding the practical phase of genetics. Sweet corn hybrids developed by the Connecticut Experiment Station are increasing in use each year. In 1940 approximately 500,000 pounds of seed were produced. This amount is sufficient to plant 50,000 acres or 10% of the total sweet corn acreage in the country. More than 95% of this production had C13 as one parent. This is an early inbred almost immune to bacterial wilt. The use of this inbred in the early hybrids has practically solved the bacterial wilt problem for early corn. This inbred was first distributed in 1936, 73 pounds being sold. Four years later it was used in the production of approximately 475,000 pounds of seed. The three principal hybrids comprising this inbred are Spancross (C4.13), Marcross (C6.13) and Carmelcross (P39. C13). Considerably more seed will be produced in 1941 as well as seed of three new hybrids, C23. P39, C27. P39, and C15 x C13. A letter of March 3 from one of the leading producers of hybrid sweet corn seed states that now Marcross (C6.13) is second to Golden Cross Bantam in poundage, and that all open pollinated varieties are falling off rapidly. Hybrid corn is one of the best examples of the contribution of Genetics to practical agriculture.

W. R. Singleton

1. Endosperm divisions have been examined further for determining types of aberrant mitoses in lines showing high rates of mosaic formation on the mature kernel. Evidence for a relation between aberrant chromosome
divisions and observed genetic changes was obtained from control pollinations. The female parent was the same in both crosses. The resulting seed of one cross gives a high frequency of variegation, whereas from the other pollen parent there are very few or no mosaics observed. Cytological study of the endosperm divisions from both pollinations (10-12 days after pollination) showed a mean difference in percent of aberrant divisions of 3.24 (3431 divisions observed. P = .01-.05). This is a highly significant difference although many of the aberrant divisions are probably associated with changes that would not be observed genetically.

F. J. Clark

Cornell University, Ithaca, N. Y.

I am indebted to Dr. M. J. Murray for indispensable help in making the records to be reported here.

1. The order of br f - as noted in the News Letter of 1940, page 17, Bryan (News Letter 1938, page 5) had questioned the published order of the genes br and f. My report of last year was not wholly satisfactory because I was obliged to limit it to plants recorded as f. The records reported here were made last summer and are taken mostly from 5-point tests involving br f an and, in addition, gs or bm2 and another chromosome-1 gene or translocation. They are assembled here for more ready reference as 3-point tests (items 1 and 2 below)

<table>
<thead>
<tr>
<th>Item</th>
<th>Genes</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>1-2</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>br f an</td>
<td>512-376</td>
<td>26-25</td>
<td>78-125</td>
<td>12-3</td>
<td>1157</td>
</tr>
<tr>
<td></td>
<td></td>
<td>888</td>
<td>51</td>
<td>203</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.4%</td>
<td>17.5%</td>
<td>1.3%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>br f an</td>
<td>1109-853</td>
<td>26-44</td>
<td>92-73</td>
<td>7-2</td>
<td>2206</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1962</td>
<td>70</td>
<td>165</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.2%</td>
<td>7.5%</td>
<td>0.4%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Item</td>
<td>Genes</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1-2</td>
<td>Total</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>----</td>
<td>-----</td>
<td>----</td>
<td>-----</td>
<td>-------</td>
</tr>
<tr>
<td>3</td>
<td>br f an</td>
<td>347</td>
<td>22</td>
<td>77</td>
<td>7</td>
<td>453</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.8%</td>
<td>17.0%</td>
<td>1.6%</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>br f an</td>
<td>760</td>
<td>40</td>
<td>156</td>
<td>4</td>
<td>960</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.2%</td>
<td>16.3%</td>
<td>0.4%</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>br f an</td>
<td>1107</td>
<td>163</td>
<td>233</td>
<td>11</td>
<td>1480</td>
</tr>
<tr>
<td>1-4</td>
<td></td>
<td>7.5%</td>
<td>16.0%</td>
<td>0.7%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>br f ad</td>
<td>975</td>
<td>47</td>
<td>141</td>
<td>3</td>
<td>1166</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.0%</td>
<td>12.1%</td>
<td>0.3%</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>as br f</td>
<td>263</td>
<td>93</td>
<td>21</td>
<td>0</td>
<td>377</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>24.7%</td>
<td>5.6%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>br f Kn</td>
<td>446</td>
<td>21</td>
<td>143</td>
<td>25</td>
<td>640</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.3%</td>
<td>23.1%</td>
<td>3.9%</td>
<td></td>
</tr>
</tbody>
</table>

Item 2 (above) includes cultures involving translocations which apparently reduced crossing over. Both lots indicate the order to be br f an. Results reported in last year's News Letter (item 3) and various records published in the Linkage Summary (items 4-6) are included for comparison. The locus of ad is very near that of an and, therefore, to the right of br as is Kn also, while as is certainly to the left of br. Bryan's records are repeated in item 7.

It is obvious from these records that, in my material, f is to the right of br. Bryan's records do not agree with mine, but they are not wholly conclusive, because, on the assumption of either order of br _f_, the double crossovers are so nearly equal to the single crossovers in the short region.

Loci of chromosome-1 translocations. Further tests of the linkage relations of several chromosome-1 translocations have been made. The genes included in these tests are br f an and either gs or bm2.

These records indicate that Tl-6a, Tl-10a, Tl-7b and Tl-7c are to the left of br in the order given here with Tl-6a relatively far from br and Tl-7c relatively near it. Tl-5a appears to be very near to and to the right of f, between it and an. Tl-3d and Tl-4 are between an and gs and relatively near an. Crossing over percentages between these several translocations and br, as reported here, are,
for the most part, in close accord with those reported by Anderson (N. L. 1938, p. 6). Agreement is good also between the placements reported here and Anderson's cytological observations, except for Tl-7c.

Five-point Translocation Tests

<table>
<thead>
<tr>
<th>Region</th>
<th>Tl-6a</th>
<th>Tl-10a</th>
<th>Tl-10a</th>
<th>Tl-7b</th>
<th>Tl-7b</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ : br</td>
</tr>
<tr>
<td>+ : f</td>
</tr>
<tr>
<td>+ : an</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Region</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>137</td>
</tr>
<tr>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>34</td>
</tr>
<tr>
<td>4</td>
<td>101</td>
</tr>
<tr>
<td>1-2</td>
<td>1</td>
</tr>
<tr>
<td>1-3</td>
<td>1</td>
</tr>
<tr>
<td>1-4</td>
<td>17</td>
</tr>
<tr>
<td>2-3</td>
<td>2</td>
</tr>
<tr>
<td>2-4</td>
<td>6</td>
</tr>
<tr>
<td>3-4</td>
<td>17</td>
</tr>
<tr>
<td>1-2-3</td>
<td>1</td>
</tr>
<tr>
<td>1-2-4</td>
<td>1</td>
</tr>
<tr>
<td>1-3-4</td>
<td>1</td>
</tr>
<tr>
<td>2-3-4</td>
<td>1</td>
</tr>
<tr>
<td>1-2-3-4</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>352</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Region</th>
<th>T-br</th>
<th>14.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-f</td>
<td>17.3</td>
<td></td>
</tr>
<tr>
<td>T-an</td>
<td>31.2</td>
<td></td>
</tr>
<tr>
<td>T-bm2</td>
<td>48.4</td>
<td></td>
</tr>
<tr>
<td>Percent</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Region</th>
<th>br-f</th>
<th>4.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>br-an</td>
<td>17.9</td>
<td></td>
</tr>
<tr>
<td>br-bm2</td>
<td>45.1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Region</th>
<th>br-gs</th>
<th>38.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>br-bm2</td>
<td>44.5</td>
<td></td>
</tr>
<tr>
<td>f-an</td>
<td>14.5</td>
<td></td>
</tr>
<tr>
<td>f-bm2</td>
<td>46.2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Region</th>
<th>an-bm2</th>
<th>39.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>an-gs</td>
<td>30.4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Region</th>
<th>T-br</th>
<th>8.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-f</td>
<td>9.4</td>
<td></td>
</tr>
<tr>
<td>T-an</td>
<td>26.3</td>
<td></td>
</tr>
<tr>
<td>T-bm2</td>
<td>47.4</td>
<td></td>
</tr>
<tr>
<td>Percent</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Region</th>
<th>br-f</th>
<th>0.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>br-an</td>
<td>18.7</td>
<td></td>
</tr>
<tr>
<td>br-bm2</td>
<td>44.5</td>
<td></td>
</tr>
<tr>
<td>f-an</td>
<td>17.0</td>
<td></td>
</tr>
<tr>
<td>f-bm2</td>
<td>46.2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Region</th>
<th>an-bm2</th>
<th>40.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>an-gs</td>
<td>15.9</td>
<td></td>
</tr>
<tr>
<td>T-br</td>
<td>5.6</td>
<td></td>
</tr>
<tr>
<td>T-f</td>
<td>3.7</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Region</th>
<th>1.7</th>
<th>1.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-bm2</td>
<td>38.5</td>
<td></td>
</tr>
<tr>
<td>Percent</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Region</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>br-f</td>
<td>4.8</td>
</tr>
<tr>
<td>br-an</td>
<td>3.9</td>
</tr>
<tr>
<td>br-bm2</td>
<td>36.9</td>
</tr>
<tr>
<td>f-an</td>
<td>4.8</td>
</tr>
<tr>
<td>f-bm2</td>
<td>36.9</td>
</tr>
<tr>
<td>an-bm2</td>
<td>33.0</td>
</tr>
</tbody>
</table>
3. Tassel-seed 3 and tassel-seed 6

The results of tests reported in the 1940 News Letter by Lindstrom (p. 25) and by me (p. 16) suggest that T_s3 is between an and gs, while T_s6 is near $bm2$ and probably to the right. The records reported by Lindstrom, the conclusive in showing that T_s6 is near $bm2$, are inconclusive with respect to whether T_s6 is to the right or the left of $bm2$. Where one region is as long as that between br and $bm2$ and the other as short as $bm2$ to T_s6, double crossovers are apt to be as frequent as singles in the short region. My last year's records, involving an and either gs or $bm2$ are unsatisfactory because of the wide differences between complementary classes of crossovers. The records

<table>
<thead>
<tr>
<th>Region</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>1-2</th>
<th>1-3</th>
<th>1-4</th>
<th>2-3</th>
<th>2-4</th>
<th>3-4</th>
<th>1-2-3-4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>160</td>
<td>142</td>
<td>119</td>
<td>59</td>
<td>185</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>125</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>Total</td>
<td>207</td>
<td>237</td>
<td>141</td>
<td>106</td>
<td>338</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Percent recombinant</th>
<th>2.9</th>
<th>8.8</th>
<th>4.2</th>
<th>2.8</th>
<th>2.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T-br$</td>
<td>6.3</td>
<td>9.4</td>
<td>7.8</td>
<td>8.5</td>
<td>3.6</td>
</tr>
<tr>
<td>$T-f$</td>
<td>12.6</td>
<td>26.3</td>
<td>9.2</td>
<td>9.4</td>
<td>7.7</td>
</tr>
<tr>
<td>$T-an$</td>
<td>16.9</td>
<td>47.4</td>
<td>13.4</td>
<td>40.6</td>
<td>40.5</td>
</tr>
<tr>
<td>$T-gs$</td>
<td>6.3</td>
<td>0.3</td>
<td>3.5</td>
<td>5.7</td>
<td>2.4</td>
</tr>
<tr>
<td>$br-f$</td>
<td>10.6</td>
<td>18.7</td>
<td>4.9</td>
<td>6.6</td>
<td>5.9</td>
</tr>
<tr>
<td>$br-an$</td>
<td>17.9</td>
<td>44.5</td>
<td>17.6</td>
<td>39.6</td>
<td>40.4</td>
</tr>
<tr>
<td>$f-an$</td>
<td>5.8</td>
<td>17.0</td>
<td>1.4</td>
<td>2.8</td>
<td>4.1</td>
</tr>
<tr>
<td>$f-gs$</td>
<td>14.5</td>
<td>46.2</td>
<td>8.5</td>
<td>35.8</td>
<td>40.2</td>
</tr>
<tr>
<td>$an-gs$</td>
<td>15.0</td>
<td>40.8</td>
<td>8.5</td>
<td>38.7</td>
<td>41.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>$br-f$</th>
<th>$br-f$</th>
<th>$br-f$</th>
<th>$br-f$</th>
<th>$br-f$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$br-f$</td>
<td>8.8</td>
<td>4.2</td>
<td>2.8</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>$br-T$</td>
<td>6.3</td>
<td>9.4</td>
<td>7.8</td>
<td>8.5</td>
<td></td>
</tr>
<tr>
<td>$br-an$</td>
<td>12.6</td>
<td>26.3</td>
<td>9.2</td>
<td>9.4</td>
<td></td>
</tr>
<tr>
<td>$br-bm2$</td>
<td>16.9</td>
<td>47.4</td>
<td>13.4</td>
<td>40.6</td>
<td>40.5</td>
</tr>
<tr>
<td>$f-T$</td>
<td>0.3</td>
<td>3.5</td>
<td>5.7</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>$f-an$</td>
<td>10.6</td>
<td>18.7</td>
<td>4.9</td>
<td>6.6</td>
<td></td>
</tr>
<tr>
<td>$f-gs$</td>
<td>17.9</td>
<td>44.5</td>
<td>17.6</td>
<td>39.6</td>
<td></td>
</tr>
<tr>
<td>$an-T$</td>
<td>5.8</td>
<td>17.0</td>
<td>1.4</td>
<td>2.8</td>
<td></td>
</tr>
<tr>
<td>$an-bm2$</td>
<td>14.5</td>
<td>46.2</td>
<td>8.5</td>
<td>35.8</td>
<td></td>
</tr>
<tr>
<td>$T-gs$</td>
<td>15.0</td>
<td>40.8</td>
<td>8.5</td>
<td>38.7</td>
<td></td>
</tr>
<tr>
<td>$T-bm2$</td>
<td>8.8</td>
<td>4.2</td>
<td>2.8</td>
<td>2.4</td>
<td></td>
</tr>
</tbody>
</table>

The results of tests reported in the 1940 News Letter by Lindstrom (p. 25) and by me (p. 16) suggest that T_s3 is between an and gs, while T_s6 is near $bm2$ and probably to the right. The records reported by Lindstrom, the conclusive in showing that T_s6 is near $bm2$, are inconclusive with respect to whether T_s6 is to the right or the left of $bm2$. Where one region is as long as that between br and $bm2$ and the other as short as $bm2$ to T_s6, double crossovers are apt to be as frequent as singles in the short region. My last year's records, involving an and either gs or $bm2$ are unsatisfactory because of the wide differences between complementary classes of crossovers. The records
presented here are equally unsatisfactory for the same reason. They are given first in a table as 4- and 5-
point tests with complementary crossover classes combined.

Four- and five-point tests with *Ts*3 and *Ts*6

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ts3</td>
<td>+</td>
</tr>
<tr>
<td>Ts6</td>
<td>+</td>
</tr>
</tbody>
</table>

0	88	68	104	82	26	152
1	4	7	11	6	2	56
2	21	15	22	32	12	35
3	21	14	19	35	22	11
4	33	30	31	1	1	16
1-2			4	1	1	1
1-3			2	1	5	1
1-4			2	1	2	
2-3			5	3	3	
2-4			3	9	16	
3-4			16	5	19	
1-2-3				4	1	
1-2-4				1	1	
1-3-4				1		
2-3-4			2	1	1	
1-2-3-4						
Total	188	151	170	235	67	271

Percent Recombination

| br-f | 2.1 | br-f | 5.9 | br-f | 11.9 | br-f | 6.8 | br-f | 4.5 | an-gs | 26.9 |
|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|
| br-an | 16.0 | br-an | 22.5 | br-an | 22.9 | br-an | 28.1 | br-an | 25.4 | an-Ts6 | 35.6 |
| br-Ts3 | 34.6 | br-Ts3| 33.0 | br-gs | 46.8 | br-Ts6| 53.7 | an-bm2| 38.0 | |
| br-gs | 42.0 | br-bm2| 44.4 | f-an | 20.6 | br-Ts6| 45.5 | br-bm2| 55.2 | gs-Ts6 | 19.2 |
| f-an | 13.9 | f-an | 16.6 | f-Ts3 | 27.1 | f-an | 23.0 | f-an | 23.9 | gs-bm2| 22.9 |
| f-Ts3 | 32.5 | f-Ts3 | 28.5 | an-Ts6| 17.1 | f-gs | 46.8 | f-Ts6 | 52.2 | Ts6-bm2| 4.4 |
| f-gs | 41.0 | f-bm2 | 41.1 | f-Ts6 | 45.5 | f-bm2| 53.7 | | | |
| an-Ts6| 20.8 | an-Ts3| 13.3 | an-gs | 27.2 | an-Ts6| 37.2 | | | |
| an-gs | 30.3 | an-bm2| 36.5 | an Ts6| 39.6 | an-bm2| 38.8 | | | |
| Ts3-gs | 28.7 | Ts3-bm2| 31.2 | | | | | | | |
The data, as presented in the accompanying table indicate that Ts3 is between an and gs, and Ts6 near bm2 and to its left. The unsatisfactory nature of the data is well shown when arranged as 2-point tests involving an and either Ts3 or Ts6, as follows:

\[
\begin{array}{c|cccc|c}
+ & Ts3 & ++ & anTs3 & an+ & Total \\
\hline
an & + & \multicolumn{4}{c|}{64} \\
& & 39 & 0 & 85 & 188 \\
& & 56 & 4 & 75 & 151 \\
& & 63 & 4 & 78 & 170 \\
\hline
Total & 183 & 80 & 8 & 238 & 509 \\
\end{array}
\]

\[
\begin{array}{c|cccc|c}
\text{Total Ts3} & = & 191, & \text{non-Ts3} & = & 318 \\
\text{an} & = & 246, & \text{non-an} & = & 263 \\
\end{array}
\]

\[
\begin{array}{c|cccc|c}
+ & Ts6 & ++ & anTs6 & an+ & Total \\
\hline
an & + & \multicolumn{4}{c|}{77} \\
& & 80 & 13 & 65 & 235 \\
& & 24 & 9 & 18 & 67 \\
& & 112 & 28 & 68 & 271 \\
\hline
Total & 213 & 159 & 50 & 151 & 573 \\
\end{array}
\]

\[
\begin{array}{c|cccc|c}
\text{Total Ts6} & = & 263, & \text{non-Ts6} & = & 310 \\
\text{an} & = & 201, & \text{non-an} & = & 372 \\
\end{array}
\]

In the cultures involving Ts6, an was strikingly and Ts6 somewhat deficient. In the Ts3 cultures, an was slightly and Ts3 decidedly deficient. The striking feature of these records, however, is the discrepancy between complementary crossover classes, ++ to an Ts6 being over 3 to 1 and ++ to an Ts3 10 to 1.

It seems likely that some, perhaps many, plants recorded as +Ts6 may have been an Ts6. The tassels were not removed and in many cases, ears failed to develop, and it is difficult to determine an from the tassels alone of Ts6 plants. With Ts3 and an, experience of some years has led me to question whether there may be an inhibiting effect such that, when heterozygous Ts3 and homozygous an are together, both characters generally fail to develop. But no adequate test of such a notion has been attempted.

4. The locus of vestigial - A 5-point test of Vg with br f an bm2 has given the following results from the F1 genotype

\[
\begin{array}{c|cccc|c}
+ & Vg & + & + & + \\
\hline
br & + & f & an & bm2 \\
\end{array}
\]

348
Per cents of recombination are as follows:

<table>
<thead>
<tr>
<th>genotype</th>
<th>per cent</th>
</tr>
</thead>
<tbody>
<tr>
<td>br-Vg</td>
<td>3.3</td>
</tr>
<tr>
<td>br-f</td>
<td>3.9</td>
</tr>
<tr>
<td>br-an</td>
<td>19.6</td>
</tr>
<tr>
<td>br-bm2</td>
<td>44.8</td>
</tr>
<tr>
<td>Vg-f</td>
<td>0.6</td>
</tr>
<tr>
<td>Vg-an</td>
<td>18.4</td>
</tr>
<tr>
<td>Vg-bm2</td>
<td>44.8</td>
</tr>
<tr>
<td>f-an</td>
<td>18.1</td>
</tr>
<tr>
<td>f-bm2</td>
<td>45.1</td>
</tr>
<tr>
<td>an-bm2</td>
<td>35.9</td>
</tr>
</tbody>
</table>

Sprague (Jour. Heredity 30: 143-145, 1939) has shown that Vg is between br and f, a locus supported by the data presented here. I cannot, however, agree with his suggested order of f Vg br bm2. His three-point test, involving a very short region with a very long one, is unsatisfactory as pointed out by him, but the data as reported suggest the order br Vg bm2. His four-point test, again involving a very long region with very short ones, as a whole indicates the order suggested by him, but, when bm2 is disregarded, the resulting three-point data are:

<table>
<thead>
<tr>
<th>genotype</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>1-2</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ Vg +</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>br + f</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>2</td>
<td>6</td>
<td>0</td>
<td></td>
<td>61</td>
</tr>
</tbody>
</table>

These data, obviously, afford no evidence of the order of the genes except that Vg is between br and f.

5. Tests of knotted, perhaps involving an inversion - Bryan (N.L. 1938, p. 5) reported Kn in this relation: br 7.2 f 27.0 Kn 24.1 Bm2. My last year's report (N.L. 1940, p. 17) was: an 22.5 Kn 25.2 Bm2 and an 22.6 Kn 9.6 gss. These 1940 reports were condensed from five-point tests including also br and f. In the five-point records given here those reported last year are combined with those obtained last summer.
Tests involving Kn

<table>
<thead>
<tr>
<th>Regions</th>
<th>+ : br</th>
<th>+ : f</th>
<th>+ : an</th>
<th>+ : gs</th>
<th>+ : bm2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>82</td>
<td>140</td>
<td>107</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>23</td>
<td>46</td>
<td>44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-2</td>
<td>7</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-3</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-4</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-4</td>
<td>1</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-2-3</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-2-4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>133</td>
<td>256</td>
<td>151</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>br-f</th>
<th>br-f</th>
<th>br-f</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12.8</td>
<td>4.7</td>
<td>0</td>
</tr>
<tr>
<td>Per cent</td>
<td>br-an</td>
<td>br-an</td>
<td>br-an</td>
</tr>
<tr>
<td></td>
<td>6.8</td>
<td>2.7</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>br-Kn</td>
<td>br-Kn</td>
<td>br-Kn</td>
</tr>
<tr>
<td></td>
<td>26.3</td>
<td>28.1</td>
<td>29.1</td>
</tr>
<tr>
<td></td>
<td>br-gs</td>
<td>br-bm2</td>
<td>f-an</td>
</tr>
<tr>
<td></td>
<td>30.8</td>
<td>35.9</td>
<td>0</td>
</tr>
<tr>
<td>Recombination</td>
<td>f-an</td>
<td>f-Kn</td>
<td>f-Kn</td>
</tr>
<tr>
<td></td>
<td>12.0</td>
<td>27.1</td>
<td>27.3</td>
</tr>
<tr>
<td></td>
<td>f-gs</td>
<td>f-bm2</td>
<td>an-Kn</td>
</tr>
<tr>
<td></td>
<td>30.1</td>
<td>35.1</td>
<td>26.2</td>
</tr>
<tr>
<td></td>
<td>an-gs</td>
<td>an-bm2</td>
<td>Kn-gs</td>
</tr>
<tr>
<td></td>
<td>27.1</td>
<td>35.5</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td>Kn-bm2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

It is obvious from these records that Kn is between an and gs and relatively near the latter. The recombination percentages for regions to the right of an are about those usually observed, but those in regions between br and an are far from normal. These differences in the two regions to either side of an are seen more readily perhaps when the data are assembled as three-point tests:-

<table>
<thead>
<tr>
<th>+ Kn +</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>1-2</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>an + gs</td>
<td>96</td>
<td>29</td>
<td>7</td>
<td>1</td>
<td>133</td>
</tr>
<tr>
<td></td>
<td>21.8%</td>
<td>5.3%</td>
<td>0.8%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ Kn +</td>
<td>146</td>
<td>47</td>
<td>43</td>
<td>20</td>
<td>256</td>
</tr>
<tr>
<td>an + bm2</td>
<td></td>
<td>18.4%</td>
<td>16.8%</td>
<td>7.8%</td>
<td></td>
</tr>
<tr>
<td>+ + +</td>
<td>507</td>
<td>12</td>
<td>4</td>
<td>17</td>
<td>540</td>
</tr>
<tr>
<td>br f an</td>
<td></td>
<td>2.2%</td>
<td>0.7%</td>
<td>3.1%</td>
<td></td>
</tr>
</tbody>
</table>
The data of the \textit{br-f-an} array might indicate that the order of genes is not that given here. But the only order suggested by these data, on the basis of the usual criteria of three-point tests, is \textit{br-an-f}. Since the chromosome-1 tester stocks employed in these tests are the same ones used in other tests (sections 1 and 2 of this report), no such assumption is tenable. It seems more likely that we are here dealing with a heterozygous inversion involving much of the region from \textit{br} to \textit{an}. This assumption is supported by the marked reduction in observed percentage of recombination, particularly in the \textit{f-an} region, and by the appearance of more double crossovers than of singles in either region.

6. Tests of miscellaneous genes with chromosome-1 markers - Twelve genes, whose linkage had not been previously determined, have been tested with several chromosome-1 markers. Tests of some of these were reported last year (N. L. 1940, p. 18) with only one clear indication of linkage, namely, \textit{bm2} with \textit{vl9}. The data given in the accompanying table were obtained from \textit{F\textsubscript{2}} cultures of last summer. Percentages of recombination have been calculated with the help of Immer's tables. Many of the relatively large deviations from 50 per cent are not statistically significant. Percentages that show significant deviations from 50, or deviations on the border line of significance, are accompanied by their respective probable errors. The tests of this year are inadequate for much of the short arm of chromosome 1, since, except for \textit{sr}, the markers used are all in the long arm.

The frequency arrays for \textit{bm2} and \textit{vl9} from last year's report and from records of last summer are:

<table>
<thead>
<tr>
<th></th>
<th>+ bm2</th>
<th>++</th>
<th>bm2+</th>
<th>+vl9</th>
<th>bm2</th>
<th>vl9</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{vl9}</td>
<td>+</td>
<td>42</td>
<td>25</td>
<td>21</td>
<td>0</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>N. L. 1940, p.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New cultures</td>
<td>60</td>
<td>42</td>
<td>37</td>
<td>6</td>
<td></td>
<td>145</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>102</td>
<td>67</td>
<td>58</td>
<td>6</td>
<td></td>
<td>233</td>
<td></td>
</tr>
</tbody>
</table>

Recombination percentage \(= 16 \pm 4.3\)

It seems clear that \textit{vl9} is in chromosome 1. Attempted tests with \textit{gs} have failed. It is not known, therefore, whether \textit{vl9} is to the left or the right of \textit{bm2}.
Tests of non-linked genes

Chromosome-1 markers

<table>
<thead>
<tr>
<th>New genes</th>
<th>sr</th>
<th>msl7</th>
<th>br</th>
<th>f</th>
<th>an</th>
<th>gs</th>
<th>bm2</th>
</tr>
</thead>
<tbody>
<tr>
<td>at</td>
<td>58</td>
<td></td>
<td>49</td>
<td>54</td>
<td>52</td>
<td>43</td>
<td>42</td>
</tr>
<tr>
<td>bm3</td>
<td>50</td>
<td></td>
<td>57</td>
<td>48</td>
<td>57</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>g2</td>
<td>51</td>
<td></td>
<td>40</td>
<td>46</td>
<td>46</td>
<td>36±4.5</td>
<td>34±3.7</td>
</tr>
<tr>
<td>ms5</td>
<td>60+</td>
<td></td>
<td>38±4.2</td>
<td>47</td>
<td>37</td>
<td>41</td>
<td>53</td>
</tr>
<tr>
<td>ms6</td>
<td>55</td>
<td></td>
<td>41</td>
<td>41</td>
<td>34±5.9</td>
<td>35</td>
<td>42</td>
</tr>
<tr>
<td>ms9</td>
<td>36</td>
<td></td>
<td>32±7.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ms10</td>
<td>-</td>
<td></td>
<td>47</td>
<td>37±4.9</td>
<td>44</td>
<td>-</td>
<td>52</td>
</tr>
<tr>
<td>ms13</td>
<td>53</td>
<td></td>
<td>46</td>
<td>49</td>
<td>49</td>
<td>60+</td>
<td>-</td>
</tr>
<tr>
<td>ms14</td>
<td>-</td>
<td></td>
<td>41±4.2</td>
<td>41±4.2</td>
<td>40±4.3</td>
<td>49</td>
<td>-</td>
</tr>
<tr>
<td>na2</td>
<td>48</td>
<td>55</td>
<td></td>
<td>-</td>
<td>-</td>
<td>38</td>
<td>40</td>
</tr>
<tr>
<td>yg3</td>
<td>46</td>
<td>-</td>
<td>47</td>
<td>47</td>
<td>38</td>
<td>-</td>
<td>38</td>
</tr>
<tr>
<td>vl9</td>
<td>42</td>
<td>E52</td>
<td>58</td>
<td>-</td>
<td>51</td>
<td>-</td>
<td><19</td>
</tr>
<tr>
<td>*vl9</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* From N. L. 1940, p. 18

R. A. Emerson

1. Some additional data on chromosome VII. Field counts.

(a) \[\frac{+}{v5} \frac{+}{ra} \frac{gl}{v5} \] \(\frac{+}{ra} \frac{gl}{gl} \)

\[\begin{array}{cccccc}
0 & 1 & 2 & 1 & 2 & \text{Total} \\
686 & 52 & 41 & 3 & 782
\end{array} \]

(b) \[\frac{+}{ra} \frac{gl}{gl} \] \(\frac{i j}{i j} \)

\[\begin{array}{cccccc}
0 & 1 & 2 & 1 & 2 & \text{Total} \\
169 & 10 & 35 & 4 & 218
\end{array} \]

(a) \[\frac{v5}{v5} \frac{7}{ra} \frac{6}{6} \frac{gl}{gl} \]

(b) \[\frac{ra}{ra} \frac{6}{6} \frac{gl}{gl} \frac{18}{18} \frac{i j}{i j} \]
(c) Antherless (at), unlinked, is very clear cut and gives sharp classifications in the field. An F2 involving at, v5, and ra showed at to be independent of the other two genes.

(d) In making notes on v5, it is best not to wait until toward the close of the growing season. A number of plants often develop stripes only on the lowest leaves. These should be marked, since if seasonal or soil conditions are adverse, the lower leaves may die and such plants will be classed as green.

A. C. Fraser

(a) Any virescent-1 stock coming from the Co-op or from me must be used cautiously; there seems to be another virescent mixed in. Can anyone send me a stock known to be v1?

(b) In a backcross of about 400 seedlings the alien virescent mentioned above showed no linkage with wx. Of the 182 virescents in this backcross, 108 of them showed normal green stripes. This is suspiciously close to a 9:7 ratio.

(c) A number of chlorophyll types (g, w, l and v) are being inbred by repeated backcrossing to the same inbred. The purpose is to get genetically uniform types for physiological study. Seed of the various types (twice backcrossed) are available to any one desiring it.

(d) In connection with the above mentioned inbreeding program, I should like very much to obtain seeds of two or three different pale greens (esp. lethal ones) and of any other green seedlings that die. Will several of you who have such stocks send in a few seeds, please?

(e) Can anyone send me some g3 seed? That in the Co-op seems not to carry g at all.

(f) A summary table of all my slit blade cultures is given below to show some of the abnormal ratios obtained. The division of the F2 cultures into groups is arbitrary and hard to justify except on the grounds of convenience. Note that both B.C. & F2 totals show too many Sb plants.
1. **Trisomic stocks.** An effort was made during the summer of 1940 to assemble a set of all the known trisomic stocks, to produce stocks of those which were missing, and to make appropriate crosses to build up reserve stocks of all of the trisomes for the future use of cooperators. It was found that seed was available of all of the trisomes except one and four. Individual trisomic plants lacking B chromosomes were selected by actual chromosome counts in each of the eight available stocks. Genetic tester stocks were also examined cytologically in an effort to get together two complete sets of testers lacking B chromosomes, each set to have different endosperm or seedling genes with one good gene in each chromosome. These two sets of testers to be used for crossing alternately with the different trisomic stocks in order to maintain vigorous, genetically identifiable trisomic stocks for general use. Unfortunately, several of the present trisomic stocks are very much lacking in vigor and uniformity and are segregating for various lethals, with the result that although we started the season with five or more trisomic seedlings in each of the eight stocks, at

<table>
<thead>
<tr>
<th></th>
<th>Sb</th>
<th>sb</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sum of B.C.</td>
<td>495</td>
<td>384</td>
<td>1.29:1</td>
</tr>
<tr>
<td>Sum of F₂ (less than 4:1)</td>
<td>3083</td>
<td>1001</td>
<td>3.08:1</td>
</tr>
<tr>
<td>Sum of F₂ 4:1-7:1</td>
<td>2138</td>
<td>458</td>
<td>4.67:1</td>
</tr>
<tr>
<td>Sum of F₂ (greater than 7:1)</td>
<td>633</td>
<td>69</td>
<td>9.2:1</td>
</tr>
<tr>
<td>Sum of all F₂</td>
<td>5854</td>
<td>1528</td>
<td>3.83:1</td>
</tr>
</tbody>
</table>

(g) Small F₂'s last summer showed no linkage of bm³ or wa to sh, wx, or gl₄; nor of sb to lg₂, Ts₅, j, sh, wx, gl₄ or gl. Several attempts have failed to show any linkage of my gl₄ to vg, sh, or wx. (This is not the gl₄ of Burnham.)

John Shafer

Cornell University and the
United States Department of Agriculture

354
the end of the season we had not more than one or two poor trisomic ears from two or three of the stocks. But from the other trisomic stocks we have anywhere from 3 to 10 good trisomic ears.

It is especially important in working with trisomic plants to have vigorous, uniform stocks. A number of the trisomic types are inherently weak. In fact the trisomic plants in most of the trisomic stocks apparently come chiefly from the smaller seeds and are apt to be weaker than their disomic sibs in the seedling stage; at least it was our experience that from 75 to 90 percent of the smallest seeds from trisomic ears of the 8 different trisomics we worked with produced trisomic individuals. It would be highly desirable also to maintain a high degree of uniformity of plant type in the trisomic stocks in order to be able to pick as many as possible of the trisomic individuals on the basis of their phenotypic appearance. As an experiment in this direction, we crossed a number of different trisomic plants with pollen of several different inbreds which were known to contain no B chromosomes to see what the trisomics would look like in the various F$_1$ populations. In our cultures last summer we could, with reasonable accuracy, distinguish the trisomic plants from their disomic sibs in our stocks of numbers 5, 8, and 9, with indications that at least several others could be detected phenotypically in more uniform material.

Another procedure for obtaining very uniform trisomic stocks is to isolate the various trisomes from the selfed progeny of triploids obtained by intercrossing diploids and tetraploids derived from a common inbred parent. In attempting to do this we have learned from experience that it is advisable to start with a very vigorous inbred; otherwise the triploid progenies from which the trisomes must be isolated are rather weak and not too satisfactory to work with.

It is expected that the two missing trisomes, numbers one and four, will be available for distribution next year. Selfed ears showing trisomic ratios for su and similar material segregating for bm2 were obtained last summer from individual plants in triploid progenies known from chromosome counts to have from one to three extra A chromosomes.

Technical assistance for much of the routine cytological work in connection with these trisomic stocks was furnished by the Maize Cooperation.

Genetics of the B chromosomes and their derivatives. The B chromosomes are by no means genetically impotent as was formerly believed and is still being reiterated in current literature on maize cytogenetics. It is true that in small
numbers they appear to produce no discernible effects; they are transmitted more readily than any known A chromosome fragments through both pollen and egg and their presence in genetic stocks seems not to have interfered with genetic analysis of mendelizing characters. But this does not necessarily mean that they are genetically inert or devoid of hereditary potentialities. In summarizing my data on the behavior of the B chromosomes that have been accumulated over a period of years in attempts to solve the enigma of their origin and fundamental nature, there are some rather interesting conclusions that can be drawn with reasonable assurance that they may mean something.

Although individual plants with relatively few B chromosomes are indistinguishable from their no B sibs, higher numbers of B chromosomes produce marked effects: More than 13-15 cause some reduction in fertility; more than 23-25 cause a marked reduction in both fertility and vigor; more than 30 occur rarely and the plants are very weak, produce mostly aborted pollen and set little or no seed.

In reciprocal crosses of plants with 1 B x 0 B, the B chromosome is transmitted about equally well by the pollen and egg to about one-third of the progeny. Exceptional plants with 2 or more Bs appear in these crosses more frequently when the B is carried by the pollen parent.

Reciprocal crosses involving 2, 3, and 4 Bs with no B plants are markedly dissimilar: when the Bs are carried by the seed parent, the numbers in the progeny tend to be intermediate between the parental numbers, but when they are carried by the pollen, the 0 B, 2 B and 4 B classes are predominant. This was true of both meiotic and somatic counts, the total number of individuals involved in these crosses being 398.

The B chromosome plants do not breed true for any given number of B chromosomes, regardless of whether the number is odd or even. When selfed, or when plants with the same number of Bs are sib crossed, less than one-third of the progeny have the parental number of B chromosomes. Various numbers are represented in the populations, the mean number being approximately the same or slightly less than the parental number for plants with from 1 to 17 B chromosomes. The total number of plants studied in these selfed and sib-crossed progenies was 988.

Numbers higher than either parent appeared frequently in crosses between plants with different numbers of Bs ranging from 1 to 20, but in the progenies of plants with more than 20 Bs they appeared less frequently. The mean
number of Bs in the progenies of plants with from 1 to 10 Bs when intercrossed was essentially the same as the mean parental number; with higher parental numbers whose means ranged from 11 to 20.5 the mean number in the progeny was less than the parental mean by from 10 to 30 percent. These data were from 65 cultures which included a total of 983 plants.

Irregular assortment in meiosis, somatic nondisjunction and double division in somatic mitosis possibly due to irregular timing of centromere division, are some of the characteristics of B chromosome behavior responsible for the extreme variation in number observed in the progenies of B chromosome plants. Although the number of Bs in an individual plant is not necessarily the product of the contributing gametic numbers since changes in number may occur in outogency due to mitotic irregularities there is little evidence of selective elimination of gametes except among very high B chromosome plants. There is no evidence from these experiments on the breeding behavior of the Bs to support the contention of Darlington, presented in a recent discussion of "the activity of the inert chromosomes" (sic) in maize, that there exists a population pressure maintaining an equilibrium distribution of the B chromosomes at relatively low levels in different stocks. In fact the results suggest that higher numbers than are present in most natural populations would readily be tolerated. It seems quite possible that the B chromosomes are on the increase in at least some varieties of maize.

No disturbed ratios were obtained from \(F_2 \) and backcross data involving B chromosome stocks crossed with 43 known genes distributed throughout the 10 linkage groups. The linkage relations of these genes are indicated on the accompanying map in which the tested genes are underscored. This map also includes tentative assignments of centromere positions based on information kindly furnished by Anderson, Rhoades and Burnham, the more definitely placed centromeres being represented by an oval drawn with a solid line and those less definitely placed being similarly represented by a dotted line. Disturbed ratios have been obtained with the gene \(\text{s}_b \), together with some evidence that the reduction in the number of recessives in the segregating progenies was proportional to the frequency of the B chromosomes. (See also Shafer's discussion of \(\text{s}_b \) ratios in this News Letter) This would be expected if the B chromosomes carried the normal \(\text{S}_b \) allele. Unfortunately the linkage relations of \(\text{s}_b \) are unknown.

These gene tests involving the B chromosomes have an important bearing on the fundamental question of the origin of the B chromosomes. If the centromere positions indicated on the linkage maps are even approximately correct, it is
apparent that the tested genes giving undisturbed ratios in the presence of B chromosomes are distributed among 17 of the 20 normal A chromosome arms. Only 3 arms, the short arm of 8 and 10 and the long arm of 9, do not include at least one tested gene. If a test of one or a few genes were sufficient to exclude a particular chromosome arm from further consideration as the source of the B chromosome, the problem of the origin of the Bs would be much simplified, but in my opinion such tests would not be sufficient. It is altogether possible, in my opinion, that only part of a particular arm is represented in the B chromosome. For example, it might consist of an A chromosome centromere plus some adjacent euchromatin, but not necessarily all of the euchromatin of any particular arm, and in addition heterochromatin from the same or some other chromosome. This suggestion as to the possible mode of origin of the typical B chromosome may seem unnecessarily involved. However, there is a rapidly accumulating body of evidence that the chromosome is not as stable a unit as it was once thought to be. In fact it is surprising that chromosomes maintain any individuality whatever as separate and distinct morphological entities for extended periods of time in the light of the numerous types of reorganization to which they are subject. Furthermore, the typical B chromosome has a distinctive prophase morphology unlike that of any one region of similar length among the A chromosomes ordinarily present in existing types of maize. This is not an off-hand statement based on casual observation, but is the conclusion arrived at after making a very critical survey of the meiotic prophase morphology in well over fifty varieties of maize representing all of the known types of flour, flint, dent, pop and sweet corn, a survey that was conducted primarily to throw light on the origin of the B chromosomes. This does not mean that there may not be in existence today types of maize containing an A chromosome or segment thereof that is identical with the B chromosome. Or it may be that such a chromosome existed in primitive strains of maize that are no longer in existence. The fact that the B chromosome ordinarily does not synapse with any of the A chromosomes suggests that it is not of recent origin, but synaptic behavior alone should not be considered as proof of this assumption.

There is the further possibility that hybridization with relatives of maize may have been involved in the origin of the Bs, but in my opinion the possibilities of a more direct mode of origin are by no means exhausted.

In a further search for clues to the origin of the Bs, it would seem highly desirable to examine additional types of maize especially from regions where primitive stocks may still be in existence. Also more extensive tests of known genes should be made in the search for alleles of B
chromosome genes; possibly Sb is one such allele, but additional cytological and genetical tests are needed to establish this. If the suggestion made above concerning the origin of the Bs is valid, and if there is a tendency in maize as in Drosophila for heterochromatic regions to be populated with fewer genes than are the euchromatic regions, the best chance of finding alleles of known genes in the B chromosome would be to test especially genes lying near the centromeres in the linkage maps. These genes may actually be an appreciable distance cytologically from the centromeres. But if the proximal euchromatic region of the B is in approximately the same relative position with reference to the centromere that it was in the A chromosome from which it originated, some of these nearby genes should be represented by alleles in the euchromatin of the B, which constitutes approximately one-third of the total length of the chromosome. A certain number of these nearby genes have already been tested as indicated on the linkage map. An especially good test involved chromosome 5 in which Rhoades' data from his telocentric fragment has given us the best evidence we have of the location of a particular centromere relative to neighboring genes. His evidence tells us that the closely linked genes, bm and bt, are definitely on opposite sides of the centromere. These two genes, as well as a2 in the short arm and bm, pr and v2 in the long arm of this chromosome gave normal backcross and F_2 ratios in the presence of B chromosomes. Thus these tests would seem to exclude the possibility that the regions in which they are located are involved in the makeup of the B chromosome.

A notable characteristic of the B chromosomes is that they are like the A chromosomes in being susceptible to breakage, with the resultant loss of acentric segments of chromatin or rearrangement of parts. But there is this distinction that the supernumerary B chromosomes can undergo a greater variety of such morphological changes than can the A chromosomes without deleterious effects, and their monocentric derivatives can be readily maintained in culture for further study. Over a period of years a considerable number of such B chromosome derivatives have arisen in my stocks, the first of these being the C chromosome that was described back in 1928. Since most of these elements have been detected in root tip figures being examined for chromosome count, they have been grouped for convenience in four reasonably distinct size classes or types, based on their appearance in the somatic metaphase. These include (a), the C type that is somewhat shorter than the B chromosome but definitely elongated in contrast to (b), the D type that is essentially spherical with a diameter roughly equivalent to the diameter of an ordinary chromosome, (c), the E type that is of approximately the same size as the undivided satellite of chromosome 6, and (d), the F type that is distinctly smaller than the E type and in fact is
only slightly above the lower limit of visibility of the photomicroscope.

On the basis of this classification there can be no additional new types of still smaller B chromosome derivatives, at least not until the electron microscope is utilized in the study of chromosomes. (Incidentally, this series of chromosome types from B to F, if interpreted in the reverse order, makes a very convincing demonstration of the de novo origin of chromosomes.) In the meiotic prophase morphological distinctions within these size groups can be detected and may be classified accordingly.

The B chromosome derivatives are proving very useful in studies of the relative genetic potency of different parts of the B chromosome. Data are available at the present time which suggest that the sterility-inducing effects of the B chromosome are to be attributed to factors localized chiefly in the proximal euchromatic region of the chromosome.

There is some evidence that other mutant derivatives of the typical B chromosome, such as extensions of the long arm or additions to the rudimentary short arm, occur from time to time, but these are less easily detected in somatic figures because of their greater similarity to the shorter A chromosomes.

The occurrence of distinctly dibranchial B type chromosomes in maize has been described from somatic figures by Darlington and others in recent years. But in these cases the position of the centromere has very probably been misinterpreted. The typical B chromosome when viewed in somatic metaphases often exhibits what appears to be a subterminal constriction, especially after fixation with fluids that shrink the chromosomes. This is not a true centric constriction but is actually the weakly chromatic region between the proximal knob adjoining the centromere and the distal heterochromatic portion of the chromosome. This interpretation is quite obvious if one is familiar with the pachytene structure of the B chromosome and follows the transformation accompanying the shortening of the B chromosome during the late prophase and early metaphase of the first microspore division where the distinction between euchromatin and heterochromatin in these stages is clearly apparent in good preparations. Many pachytene figures of the typical B chromosome do, however, show the presence of a rudimentary short arm consisting of a very few small chromosomes. This arm is often folded back against the proximal knob on the opposite side of the centromere, thus making the centromere appear truly terminal.

L. F. Randolph
MAIZE LINKAGE MAPS
WITH TENTATIVE ASSIGNMENTS OF CENTROMERE POSITIONS

1

2

3

4

5

6

7

8

9

10
In further studies on genes h (starchy endosperm) and fl2 (floury endosperm), h was found to be hypostatic to sul and wx; and fl2 hypostatic to sul. Gene h is linked with fl2 with 4% crossing-over, and with dl, with 25% crossing-over. This puts both genes in chromosome 3, but the exact loci are not yet determined. If it is assumed that h is approximately at 60, then fl2 would be near ta4 or Rg.

W. J. Mumm

A sugary type of endosperm which was discovered at this Station several years ago appears to be identical with su2 as indicated by crosses. In inbred Os 426, one of our hybrid corn producers, Robert Bear, Decatur, Illinois, found an ear segregating for yellow vs. white endosperm, and normal vs. viviparous kernels. All the normal kernels were yellow and all the white viviparous. The gene for vivipary involved is likely vp5 which Doctor Lebedeff reported in the 1940 News Letter. Another of our hybrid corn producers, Royal Oakes, Bluffs, Illinois, discovered a dwarf in a double cross. This dwarf as grown in 1940 was 56 cm. high; tassel, large, spreading, and productive of pollen; and leaves large and dark green giving a vigorous appearance to the plant. Crosses indicate the gene involved is not dl, and the new dwarf does not answer the description of other dwarfs listed in Cornell Memoir 180.

C. M. Woodworth

A valuable mutation. The ministry of agriculture in Venezuela has received numerous requests from the farmers for a variety of sweet corn which would do well under tropical conditions. There has been no way of filling these requests, however, because Venezuela has no sweet corn of its own, and all the imported varieties have failed to give desirable results.

Instituto Experimental De Agricultura,
Caracas, Venezuela
There are at least two ways of getting good sweet corn for this country. One is to import unadapted varieties of sugar corn and cross them with the adapted varieties of starchy corn and continue selfing and backcrossing until the sugary character becomes established in an adapted variety. Another method is to make a large number of selfs in the best varieties of starchy corn and watch for the appearance of sugary as a result of a mutation. This is the procedure that was chosen, mainly because inbred lines were needed anyway for the production of hybrids. In September, 1939, 135 varieties of open-pollinated corn from various countries were planted to select the best ones and to make selfs.

During the first two generations of inbreeding, there were no mutations to sugary in approximately 3,000 selfs. In the third generation, however, in which there were approximately 1,500 selfs, two ears segregated for sugary. One of these was in the best inbred line that had been developed from an open-pollinated variety from Cuba and is probably sugary-1 (su). It segregated 216 Su to 72 su. The other sugary appeared in another inbred line from the same source and may be suam. This ear had 478 kernels of which 10 were very sugary, 106 had a dull endosperm, and in the remaining 362 kernels there was a continuous gradation from slightly dull to clear endosperm. Test for allelism with known stocks of su and suam will be made.

Some of the seeds from these two ears have been planted and there should be no question about the development of suitable sweet corn varieties in the near future.

2. Late plants. Two second generation inbred lines segregated for late-maturing plants in 1940, but there were numerous differences between the late segregates of one culture and those of the second culture. Inbred line number 40-156 consisted of 10 plants of which 8 grew normally and produced ears, one grew about 7 months without shedding pollen, and one which was apparently a late type was broken by a workman. Inbred line number 40-290 consisted of 5 plants of which 3 were like the normal plants of 40-156 and two were late like those of the other culture but differed from them in that they were dwarfs instead of giants.
<table>
<thead>
<tr>
<th>Culture</th>
<th>Type</th>
<th>Pollen nodes</th>
<th>Days to pollen</th>
<th>Total number of nodes</th>
<th>Nodes with brace roots above ground</th>
<th>Height cm.</th>
<th>Nodes</th>
<th>5 first 5 internodes cm.</th>
<th>Average circumference of first 5 internodes cm.</th>
</tr>
</thead>
<tbody>
<tr>
<td>40-156 Late</td>
<td>207++</td>
<td>26</td>
<td>15</td>
<td>255</td>
<td>11.0</td>
<td>10.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40-156 Normal</td>
<td>104</td>
<td>14</td>
<td>1</td>
<td>184</td>
<td>12.6</td>
<td>7.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40-290 Normal</td>
<td>98</td>
<td>13</td>
<td>1</td>
<td>175</td>
<td>12.0</td>
<td>7.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40-290 Late</td>
<td>207++</td>
<td>21</td>
<td>11</td>
<td>33</td>
<td>1.2</td>
<td>6.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The late types died about January 15, 1941 from lack of water. The giant plant from culture 40-156 subdivided near its top, producing 10 branches each of which contained a small tassel that was nearly exposed at the time the plant died. This giant type may be the same mutant character that was originally reported by Brunson and has since appeared in the cultures of Bryan and Emerson.

The dwarf type of late plant in culture 40-290 still had its tassel deeply enclosed in the leaves when it died from lack of water. Perhaps this mutant form of plant is the same as the one described by Antonio E. Marino in "Una variacion 'tardia' en maiz" (A late variation in maize), Revista Argentina Agron. 6 (3): 237-240, 1939.

3. In three different inbred lines of corn, ears have been found in which there is no definite orientation of the kernels in spite of the straightness of the rows. The germ of the kernel may face the tip, or the butt, or either side. Other ears in the same cultures were normal.

4. Twin kernels. One ear in a second generation inbred had 287 kernels of which 68 were normal; 210 had streaks on the backs of the kernels, indicating a tendency toward the production of another germ; and 9 had two fully developed germs, one on each side of the kernel. Apparently the tendency toward twinness segregates about 3 to 1.

5. Hard starch vs. soft starch. Among 140 self-pollinated ears in second generation inbred lines developed from an open-pollinated variety of flint corn, one ear was found in which 130 kernels were of the flint type and 41 were capped with soft starch. The segregation was discontinuous. There were no "dents" in any of the kernels.

D. G. Langham
Iowa State College, Ames, Iowa

Linkage Tests

Chromosome 10.

<table>
<thead>
<tr>
<th>Genes</th>
<th>Phase</th>
<th>XY</th>
<th>Xy</th>
<th>xY</th>
<th>xy</th>
<th>Total</th>
<th>% Recom.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Og na2</td>
<td>CB.</td>
<td>39</td>
<td>20</td>
<td>37</td>
<td>50</td>
<td>146</td>
<td>39</td>
</tr>
<tr>
<td>Og na2</td>
<td>CS</td>
<td>129</td>
<td>40</td>
<td>39</td>
<td>21</td>
<td>229</td>
<td>42</td>
</tr>
</tbody>
</table>

Note on na2 = Material from Cornell under No. Co 37-172 and designated na2.

\[g1 \ d7 \ CS \ 53 \ 9 \ 17 \ 4 \ 83 \ 45 \]

Mutation - \(XY \rightarrow Xy \). Verification of this one-kernel mutant from over 7200 kernels reported in 1940 News Letter. This white was tested against the \(y \) gene in Evergreen sweet corn, in a white dent inbred and in Hickory King. All progeny were white, indicating that this mutant involved the standard \(Y \) gene.

E. W. Lindstrom

North Carolina Agricultural Experiment Station, Raleigh, N. C.

"Intersectional" hybrids (Corn Belt lines crossed with local strains) of the following types have been tested: single crosses, top crosses, multiple top crosses, three-way crosses, and double crosses. The average of all "intersectional" hybrids was 20.8 percent in 1939 and 18.2 percent in 1940, higher than the average grain yield of the local varieties. These hybrids were made up entirely at random except for morphological observations of the parent lines. Besides grain yield the "intersectional" hybrids approach or equal the local varieties in pest resistance and grain quality. When compared with Corn Belt double crosses, the "intersectional" hybrids are much superior in general adaption to North Carolina conditions.
In six locations across the state 5 x 5 lattice square designs on 1/140 acre plots were utilized in 1940. The lattice square design showed an average gain in precision of at least the equivalent of an extra replication in a complete randomized block design. Complete randomized blocks of more than 30 entries have proved very unsatisfactory in our studies. Since 5 x 5 lattice squares have been of doubtful value in the Corn Belt, it seems worthwhile to mention our results on the heterogeneous soils of the Southeast.

Paul H. Harvey

University of Minnesota, St. Paul, Minnesota

A new gene for pollen abortion, pa, is located in chromosome 1. Plants heterozygous for pa are semisterile in the pollen and have normal ears. It is transmitted rarely if at all through the pollen, but gives normal ratios through the eggs. The locus of pa is between P and br, the recombination values bring: P−30−pa 34 br. It differs from sp and sp2 in that pollen carrying it is for the most part devoid of starch.

Cytological examination shows no visible deficiency in chromosome 1.

C. R. Burnham

The following chromosome map shows the loci of those interchanges for which there is cytological information. It is based on data presented in previous Coop Letters, whatever has been published and in addition unpublished data of Dr. C. R. Burnham. The scheme Anderson has used is followed, the breakage points being measured from the spindle fiber insertion region in tenths of the length of the particular arm in which the break occurred. Interchanges for which only genetic information is available are not listed.

As is customary, the map presents the cytological lengths of the chromosome which are in proportion, using chromosome 10 as 100 units. The length of each arm is given at the spindle fiber attachment region, the total chromosome length being the total of the two arm lengths. The long arm/short arm ratio is given at the bottom of the map.
The following example illustrates the use of the map: translocation 1-2a is listed as 2a on chromosome 1 opposite .7 on the long arm; on chromosome 2 it is listed as la opposite the locus .6 on the long arm. When more than one break has occurred at the same point, they are grouped together. For example, there are 5 translocations at locus .3 on the long arm of chromosome 2. Breaks which have occurred in the satellite of chromosome 6 are grouped in that region but their position in the satellite arm is not definitely known. 6-9a occurred in the nucleolus-organizer region. 2-6a and 5-9a involved the short arm of chromosome 6, but their relation to the spindle fiber insertion region is not known, hence they are given 0+ ratings.

On completing this map Dr. C. R. Burnham has given advice and suggestions and a final check on the figures.

References:

Anderson, Maize Coop Letter, March 5, 1940
Anderson, Maize Coop Letter, April 15, 1939
Anderson, Maize Coop Letter, March 6, 1938
Anderson, Maize Coop Letter, March 4, 1936
Anderson, Maize Coop Letter, March 6, 1935
Anderson, Genetics 23: 307-, 1938
Anderson, Genetics 24: 385-, 1939
Anderson and Brink, Genetics 25: 299-, 1940
Clarke and Anderson, 1934
Emerson, Maize Coop Letter, March 5, 1940
Emerson, Maize Coop Letter, March 23, 1937
Burnham and Cartledge, Journ. Amer. Soc. Agron. 31: 924-, 1939

Edward Garber
MAIZE CHROMOSOME MAPS

with locations of cytologically placed translocations

[Diagram showing chromosome map with arm ratios]

arm ratios

1.23 1.42 2.00 1.63 1.07 7.10 2.60 3.00 2.00 2.60
Comparison of the Genetic Effects of Xrays and Ultraviolet Treatment. In 1939 and 1940 an attempt was made to determine the relative frequency of mutation and other types of genetic alteration induced by comparable doses of Xrays and ultraviolet. Since there is no physical basis for equating doses of the two radiations, it is necessary to make the comparison on the basis of some biological equivalent, for example, to determine the effect upon mutation of two doses equal in inducing deficiencies or translocations. But since previous studies had shown that the deficiencies and translocations induced by ultraviolet are of types different from those produced by Xrays (or include various types in widely different proportions), the doses equivalent on the basis of one chromosomal effect would be widely different from those equivalent on another.

The doses used therefore were chosen arbitrarily at levels suited to the significant determination of mutation frequency, and their equivalence may be judged only by the frequencies of the various alterations detected. The Xray doses used are relatively low, so as to permit the survival of as many plants as possible and the production of well-filled ears, which is essential for the determination of mutation rates. The ultraviolet doses used are close to the tolerance limit for the wave lengths represented.

Since both types of radiation produce defective plants of various kinds, it is essential to reduce losses to a minimum and to consider the individuals lost as well as the survivors in the interpretation of the results. The populations used represent the entire seed population from the treated ears, and special precautions were taken to secure maximum germination and survival. Plants which died early or which failed for other reasons to yield a pollen specimen were classified as "+" (apparently normal plants, accidentally lost) and "-" (apparently defective plants). The treatments compared, populations used, frequency of endosperm deficiency (A, Pr, Su), and losses to pollen shedding are shown below:
Frequency of Pollen Segregation in F\textsubscript{1}. In populations so large as those required for the determination of mutation rates (particularly with low doses and control progenies), it is not feasible to determine the frequency of deficiencies and translocations by the direct cytological examination of every plant. Some indications regarding the frequency of chromosomal derangements may be obtained from the frequency and type of pollen segregation in F\textsubscript{1}. Pollen segregation was recorded as to percentage and type of defective pollen, the types ranging from "a" (significant reduction in size but normal development of contents) to "e" (practically empty).

In the table which follows, types a and b are listed as "subnormal", types c, d, and e as "aborted," and segregations of both classes in the same individual as "mixed,"

The following facts determined from investigations in previous seasons are of help in the interpretation of the pollen records:

(1) "Directed segregation" in maize translocations is absent or extremely rare. The plants with segregating defective pollen therefore include all of those in which translocation has occurred as well as those with deficiencies.

(2) Gametophytic lethals at points of translocation are absent or very rare. If, as a result of "position-effect" or other causes, there were a tendency for mutational effects at the breakage points, it might be expressed by failure in development or functioning of the pollen carrying the translocation chromosomes. This does not occur. It is therefore possible to discriminate between segregating defective pollen due to translocation and that due to deficiency by transmission tests.
(3) F_1 plants with segregating defective pollen include many with cytologically detectable deficiencies not associated with translocation. Among pollen segregating plants from X-ray treatment, these deficiencies include some which are obviously intercalary. Most of the cytologically detectable deficiencies are found in plants with "aborted" pollen, but in short intercalary deficiencies defective pollen is frequently of the "subnormal" class. The deficiencies from UV observed cytologically include none which is clearly intercalary. In all of the UV deficiencies so far observed cytologically the segregating pollen is of the "aborted" type.

(4) Among the plants with segregating defective pollen, the proportion due to translocation is much lower with ultraviolet than with Xrays. With high doses of ultraviolet, translocations unquestionably are induced, but the great majority of these are "deficiency-translocations"; that is, plants in which one or both of the chromosomes involved in the translocation has lost a segment. These deficiency-translocations are usually very defective plants, and their frequency depends in large part upon the precautions taken to insure survival of the poorest plants of the progeny. Translocations of this type may not be detected by transmission tests; they may be identified only by direct cytological examination of the F_1.

The frequency of segregating defective pollen in these cultures is listed in the next table. The numbers and percentages given in parentheses represent the frequencies when each "high-sterile" is taken to represent two segregating factors for sterility.

<table>
<thead>
<tr>
<th>No.</th>
<th>Semi-sterile</th>
<th>High-sterile</th>
<th>Low Sterile</th>
<th>Total</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>13022</td>
<td>159</td>
<td>10 15</td>
<td>1 0 2 3</td>
<td>32(37)</td>
<td>20.1(23.3)</td>
</tr>
<tr>
<td>12967</td>
<td>136</td>
<td>13 8</td>
<td>0 1 2 1</td>
<td>2 27(31)</td>
<td>19.9(22.8)</td>
</tr>
<tr>
<td>250 r</td>
<td>384</td>
<td>13 23</td>
<td>2 0 8 2</td>
<td>1 49(59)</td>
<td>12.8(15.4)</td>
</tr>
<tr>
<td>500 r</td>
<td>188</td>
<td>9 21</td>
<td>6 0 12 6</td>
<td>5 59(77)</td>
<td>31.4(41.0)</td>
</tr>
<tr>
<td>Control</td>
<td>975</td>
<td>3 4</td>
<td>0 0 0 0</td>
<td>2 9(9)</td>
<td>0.9(0.9)</td>
</tr>
</tbody>
</table>

Low Deficiency Rate in Embryo vs. Endosperm with UV. In both UV progenies the frequency of plants with segregating defective pollen was about 20 per cent. There is reason to believe that many of these are due to causes other than deficiency (notably to mutations producing subnormal pollen). But even if all were due to deficiency, their frequency is
far lower than would be anticipated from the endosperm deficiency rates. The seeds planted showed endosperm deficiencies amounting to about 36 per cent for the marker genes A, Pr, and Su; these could represent only a small fraction of the deficiencies present in the entire ten chromosomes of the treated gamete. With equal deficiency frequency in the embryo, almost all of the F1 plants should have segregating defective pollen due to deficiency, and many should have several deficiencies.

At one marked locus, a direct comparison may be made. The seeds planted in the two UV progenies included 71 endosperm deficiencies for A; the F1 plants included no A-deficiencies.

Although induced deficiencies are relatively rare in the F1 embryos, it is certain that they are not wholly absent. The treated pollen carried the dominant markers A B Pl Rr; the UV families included five genetically marked deficiencies and several unmarked deficiencies which were identified cytologically in defective plants. Only one deficiency (a monosomic for chromosome #6) was found in the much larger control population.

Frequency of Translocation. In certain cultures, translocation frequency was determined by direct cytological examination of the F1 plants in every plant with segregating defective pollen. The cultures examined included the entire population given the ultraviolet treatment "X2967" and the entire population from one ear given the Xray dose "250 r" and one ear given "500 r." The results are shown below:

<table>
<thead>
<tr>
<th>Population</th>
<th>Segregating Pollen</th>
<th>Diakinesis Association</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Semi-Sterile</td>
<td>High-Sterile</td>
</tr>
<tr>
<td>X2967</td>
<td>136</td>
<td>21</td>
</tr>
<tr>
<td>250 r</td>
<td>97</td>
<td>14</td>
</tr>
<tr>
<td>500 r</td>
<td>83</td>
<td>20</td>
</tr>
</tbody>
</table>

It is noteworthy that deficiency-associations are found with Xray as well as UV treatment, but in the former they occur with a larger number of interchange-associations, while with the latter they do not.

Frequency of Translocation in Control. The spontaneous frequency of translocation is of interest in determining whether the occurrence of chromosome interchanges following
ultraviolet treatment is an effect of the treatment. Among the translocations observed in UV-treated progenies to date, although as previously mentioned the majority are deficiency-translocations, there are two or possibly three which appear to be regular segmental interchanges. Although such translocations have previously been found in untreated maize populations, there is no basis for an estimate of their spontaneous frequency. The large control in this experiment included only nine plants with segregating defective pollen; the progeny tests from these showed that two of them transmitted through pollen the factor for aborted pollen segregation. Diakinesis examination in these progenies showed in both cases the presence of chromosome interchange producing a ring-of-four at diakinesis. The spontaneous frequency of chromosome interchange thus appears to be appreciable, and the number of interchanges observed following ultraviolet treatment is not significantly higher than that in untreated material.

The results suggest that UV treatments produce a significant increase in the frequency of deficiency-translocations, without appreciable effect upon the frequency of segmental interchanges.

Mutation. The mutations determined were those involving endosperm characters, defective seeds, germless, and seedling abnormalities. Each of these types may be determined by examination of the selfed ears of the F₂ plants or of the 100-seedling progenies grown from each of these ears. All of the mutations which are not clear-cut and unmistakable in the F₂ culture are checked for recovery in F₃ from heterozygous F₂ plants. The analysis of the check-progenies of 1940 is not yet completed, and the data therefore are given separately for number of mutations and number of doubtful mutations, the latter being those subject to the F₃ check. The percentages in the table are provisional percentages representing the clear-cut mutations plus half the doubtful mutations. Confirmation tests so far completed indicate that the final percentages will be somewhat higher than those here given.

<table>
<thead>
<tr>
<th>Endosperm</th>
<th>Germless</th>
<th>Seedling</th>
</tr>
</thead>
<tbody>
<tr>
<td>n M M? %</td>
<td>n M M? %</td>
<td>n M M? %</td>
</tr>
<tr>
<td>3022</td>
<td>62</td>
<td>5 5 12.1</td>
</tr>
<tr>
<td>2967</td>
<td>93</td>
<td>4 8 8.6</td>
</tr>
<tr>
<td>250 r</td>
<td>250</td>
<td>1 2 0.8</td>
</tr>
<tr>
<td>500 r</td>
<td>143</td>
<td>5 7 5.2</td>
</tr>
<tr>
<td>Control</td>
<td>613</td>
<td>0 7 0.6</td>
</tr>
</tbody>
</table>
The mutations included, together with many useless types, a scattering of promising viable mutants affecting endosperm and seedling characters. The number of mutants is considerably larger than that shown in the table, since several other treatments were handled similarly. In all of these the F2 ears which yield the mutations are segregating for Y and PI, permitting a three-point test for chromosome 6 mutants, and are segregating also for single markers on chromosome 2, 3, 4, 5, 9, and 10. Doctor C. R. Burnham is undertaking the location of some of the more promising mutants.

Comparative Mutation Rate from Xray and UV. As the table indicates, mutations were considerably more frequent from UV than from Xrays, in spite of the fact that the Xray doses used produced considerably more translocations and probably more deficiencies.

Actually the mutation rate from UV is considerably higher than is indicated by these data. Among a sample of pollen grains treated with UV, because of the high absorption in passing through the pollen grain contents, only a small proportion receive a heavy dose at the site of the gametic nucleus, and many receive no effective dose at all. The mutation rate among the effectively-treated pollen grains therefore is much higher. Many of these include two or more independent mutations.

It is probable also that many of the segregating pollen defects (particularly of the subnormal class) are due to mutation expressed in the gametophyte generation rather than to deficiency. Since intercalary deficiencies are so rare with UV treatment, it seems probable that the high frequency of subnormal pollen segregation following UV treatment is largely or wholly the result of gametophytic mutations, and is another expression of the high frequency of mutation induced by this agent.

Technic for Identification of Gametophytic Mutations. In the mutation technic used in the experiment just described, gametophytic mutations are not detected if they have no visible effect upon pollen development; and if they produce defective pollen, they are not distinguishable from short deficiencies. Another difficulty is that many of the sporophytic mutations are questionable because of possible over-lapping of the normal phenotype.

Both of these difficulties may be avoidable, for limited chromosome regions, by the use of inversions to inhibit crossing-over. A trial of this method with one inversion was made in 1940, in an experiment comparing UV and Xray treatments in a manner otherwise similar to that of the experiment just described. The method may be used more effectively with a combination of inversions in various chromosomes.
The treated parent was I wx; the untreated parent carried rearrangement-9 (McClintock 1939) with i Wx. This rearrangement eliminates crossovers in a large part of chromosome 9. The F2 seeds therefore are of three types — one fourth I wx, homozygous for the treated normal chromosome; one fourth i Wx, homozygous for the untreated chromosome; and one half I wx, heterozygous for the treated and untreated chromosomes. Induced chromosome 9 alterations are linked with I wx. They are manifested in three ways:

(1) By pollen defects linked with wx. In iodine-stained pollen specimens extremely slight effects on pollen size or development may be recognized, far below the limit of detection in unlinked segregation.

(2) By modified ratios for I and Wx. Gametophyte mutations or deficiencies without visible effect on pollen development, if they prevent functioning of pollen, modify the 3:1 ratios to 2:2 and 4:0 respectively. If they permit reduced functioning, they permit the segregation of a reduced proportion of wx seeds. (A reduced proportion of wx seeds may result also from a Ga-mutation inhibiting functioning if separated from the rearrangement by crossing-over.)

(3) By seed and seedling mutations linked with I Wx. Here also the linkage permits the detection of some mutants which would be doubtful or undetectable without linkage.

The mutants are crossed with C Wx (normal chromosome) for genetic location in three-point tests. Gametophyte mutations not transmitted through pollen may be recovered from the heterozygous I Wx seeds, and when pollinated by C Wx (normal) yield heterozygotes in which the location of the Ga-factor may be determined by crossing on C wx or c wx. Deficiencies and other chromosomal alterations not lethal to the female gametophyte may be recovered similarly, for cytological examination in plants free from the rearrangement.

The spontaneous frequency of the various types of alteration is shown in the same F2 ears by segregations of the same kinds linked with i Wx instead of I wx.

The results of this experiment, as regards chromosomes other than #9, were similar to those of the previous experiment, except for differences incidental to the use of different wave lengths and dosages, which will not be discussed here.
The number of chromosome 9 alterations of each type identified is shown below:

<table>
<thead>
<tr>
<th>Treated Chromosome-9</th>
<th>UV (X2967)</th>
<th>UV (X2537)</th>
<th>Xray 600 r</th>
<th>Untreated Chromosome-9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>457</td>
<td>263</td>
<td>288</td>
<td>1008</td>
</tr>
<tr>
<td>(1) Defective Pollen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aborted</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Subnormal</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>2</td>
<td>0</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>(2) Low Transmission</td>
<td>12</td>
<td>4</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>(Pollen Normal)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3) Mutation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endosperm</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Germless</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Seedling</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>6</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

These constitute a representative sample of the genetic alterations induced by X-rays and UV, all located within a region well suited for critical comparison genetically and cytologically.

Qualitative Comparison of Induced Mutations. The very high frequency of UV mutations, with the much lowered frequency of chromosomal derangements, suggests that these may include types of mutation not included among the X-ray mutants, and may be relatively free from the various sorts of pseudo-mutation which occur under X-ray treatment as by-products of induced chromosomal derangement.

The problem is to find criteria which may be applied to distinguish types of "mutation." Possible criteria available in maize include the following:

(1) Gametophyte viability. Many induced mutations are of lowered viability in the gametophyte, particularly as shown by reduced transmission through male germ cells. Differences in viability among mutants are usually regarded as characteristic of the different mutant alleles, the higher viability of standard alleles being considered the result of natural selection.

This view is contradicted by results with the known spontaneous mutations in maize. A large number of mutants representing various endosperm genes is available, and in
these gametophyte viability and male transmission are regularly normal. This suggests that the low viability of induced mutants may be due to the loss of something more than the dominant allele which is assumed to have mutated.

Transmission of the mutant through pollen, in competition with the normal non-mutant pollen grains, provides a very rigorous test of gametophyte viability, which may be applied to mutations at any locus.

(2) Use of genes which mutate normally to an intermediate allele. Spontaneous mutations of R^F, identified by colorless seeds, are regularly mutations to small r^F, as previously reported. Recent studies have shown that R^F mutates also, and with comparable high frequency, to R^g. It does not mutate spontaneously, or at most does so very rarely, to r^g. This may mean that the effect of R^F on anthocyanin coloration of the aleurone and of the plant is due to two separate but very closely linked genes, but whether this is true or not, the fact provides a convenient method for distinguishing between spontaneous mutations at this locus and the type of pseudo-mutation which could result from haplo-viable deficiencies.

A similar situation may apply at certain other loci. Recent trials show that the gene A^b also mutates spontaneously, with a fairly high frequency, to an intermediate allele. The results of an experiment in which the suspected mutations were identified by loss of aleurone color and all were subsequently checked by progeny tests show the following frequencies:

<table>
<thead>
<tr>
<th>Stock</th>
<th>Mutation to a^p</th>
<th>Mutation to a</th>
</tr>
</thead>
<tbody>
<tr>
<td>A^bA^b</td>
<td>0/55,765</td>
<td>25/36,661</td>
</tr>
<tr>
<td>A^bA</td>
<td>0/19,587</td>
<td>0/9,431</td>
</tr>
</tbody>
</table>

The a^p mutants, when combined with the appropriate complementary genes, have the red-brown plant color and brown pericarp characteristic of the standard a^p, although some of the mutants show a somewhat deeper color in aleurone and plant than the standard. Nine of these mutants have been tested for dominance of the brown pericarp effect. In all of these the effect is dominant as in the standard a^p.

(3) Reverse mutability. The analysis of the action of Dt by Rhoades makes possible the effective application of this criterion in the case of apparent mutations to a.

- 44 -
It is not applicable to the a^D mutations from A^b, since Dt is without effect on a^D. Whether it is applicable to all mutant a's, or to the colorless mutations from all A's, also remains to be seen, since the present stocks of a, on which Dt is effective, trace to not more than two original sources. Reversibility of a mutant a under the influence of Dt is good evidence against deficiency, but failure of a mutant to be reverted by Dt is not convincing evidence against intragenic mutation.

(4) Detailed analysis of phenotypic effect. In the case of the genes affecting anthocyanin pigmentation, mutant phenotypes may be compared quite precisely by the use of methods developed by Karrer, Robinson, Scott-Moncrieff, and others for the identification of the various anthocyanin pigments. A study of the anthocyanin pigments in maize now being made by J. E. McClary indicates that there is a very rich variety of these pigments in maize, including several which do not commonly occur among the flower pigments genetically studied by the English workers.

One of these is the anthocyanin pigment which occurs together with a flavonol in the a^P stock. In the presence of B and P, A^b, like A, produces chrysanthemin, but a^P produces an anthocyanin of distinctly different properties. The dark a^P obtained by mutation from A^b apparently produces the same pigment in larger quantity.

Comparison of X-ray and UV Induced Mutations of A.
Mutations and deficiencies involving the A locus may be identified by seedling examination of F_1 plants from the cross $a \times A^b B^P P^L R^f$. A very large number of plants of this constitution have been examined following treatment of the male parent with X-rays, and the green seedlings saved for identification of the mutation or deficiency. The majority of such plants turn out to be distinctly defective in growth and to have segregating aborted pollen. A small proportion approximate normal growth, but these also have defective pollen. Among them a few are found with segregating pollen of the subnormal type. Two plants were found in which the A effect had been lost, the plant was of normal vigor, and the pollen was completely normal in appearance. Both plants had the phenotypic appearance of typical $A^b B^P P^L$. They are designated a^X_4 and a^X_6. In addition one plant of $A^b B^P P^L$ phenotype and normal vigor, but with segregating subnormal pollen, was included in the further tests. It is designated a^X_1.
In similar progenies of plants from UV treated pollen, the frequency of loss of the A effect is very much lower, as noted in connection with the experiment first described. Such plants may be found, however, by growing large enough progenies of F₁ seedlings, and we have so far identified about fifty of them. Among these, four individuals showed loss of the A effect but fully normal pollen. All of the others had aborted pollen, and in all cases this was empty or nearly empty. Three of the four mutants showed the phenotype of a B P1. They are designated a^U3, a^U5, and a^U18. The fourth mutant, though green as a seedling, showed faint anthocyanin coloration in later growth and deepened to a light purple at maturity. It is designated A1t.

The chief characteristics of these induced mutants, with reference to the criteria which have been mentioned, are as follows:

(1) Phenotype. Except in the case of A1t no consistent difference has been found in the phenotype of the mutants and that of a. In all six the aleurone is wholly colorless with C B A2, and the plant is typically brown with B P1. The pericarp is red with A P but has not yet been seen with a P. With a^U3 B P1 a considerable amount of purple pigmentation was observed, chiefly in the upper half of the lower leaf sheaths, but similar coloration has been found in a B P1 plants extracted from the same culture. In segregating progenies from a^mutant/ a x a B P1 and a^mutant/ a x aP B P1, it was not found possible to distinguish the mutant a from the standard a in any of these six cases.

The phenotype of A1t is clearly distinguishable from A, a, and aP in plant color, but it is not always distinguishable from aP in aleurone color. The plant color at maturity (with B P1) is more similar to A than to aP, and the plant does not appear brown at any stage. The cob is reddish purple. The extracted pigment includes a considerable quantity of anthoxanthin as well as anthocyanin. The purified anthocyanin is distinct from both chysanthemin (A) and the anthocyanin of aP.

(2) Gametophyte viability. aXL is transmitted through female germ cells but in reduced proportion, seldom in more than 30 per cent of the expected number. Seeds heterozygous for the variant are reduced in size. There is no transmission of the type through pollen of the heterozygous plant.

aXL and aX6 show full viability in the female gametophyte, and the seeds are full size. Although the pollen in both these types is fully normal in appearance, transmission of
the mutant is reduced in pollinations from heterozygous plants, ordinarily to 25 to 40 per cent of the expected numbers.

Self-fertilization of \(A/a^X\) plants yields no colorless seeds, even though the same pollen used on a \(C/R\) testers both before and after selfing shows transmission of the mutant \(a^X\). This type therefore appears to be zygotically lethal when homozygous. The same result is obtained with \(a^X\), though the trials in this case are less extensive.

\(a^U3\), \(a^U5\), and \(a^U8\) show full male and female viability and transmission. \(A^It\) is also fully viable in male and female gametophytes and regular in transmission.

(3) Relation to \(Dt\). The reaction to \(Dt\) is determined chiefly by examination of the aleurone of seeds produced by the cross \(a^\text{mutant}/a^P\) \(Dt\) \(Dt\) \(x\) \(a^\text{dotless}\) \(Dt\) \(Dt\) in comparison with sister ears of \(a^P\) \(Dt\) \(Dt\) similarly pollinated. Supplementary determinations have been made in other ways.

None of the mutants show regular dotting comparable to that of \(a\). Occasional seeds may show a single dot, but this may be ascribed to the \(a^\text{dotless}\) tester as well as to the \(a^\text{mutant}\). Evidence on dotting in the homozygous \(a^\text{mutant}Dt\) combination is still scanty and has shown no dots so far.

L. J. Stadler, J. W. Cameron, K. O. DeBoer,
Herschel Roman

University of Puerto Rico, Rio Piedras, Puerto Rico

Although I am concerned primarily with corn breeding, I have started genetical studies of corn grown in Puerto Rico. There are many mutants found in local corn, such as white and yellow seedlings, various other chlorophyll deficiencies, male and female sterility, narrow leaf, tassel seeds, vivipary, brown midrib, red pericarp, variegated pericarp, and others. Whether these mutants have been introduced from the North, and subsequently incorporated into local corn, or are local in origin it is difficult to tell with certainty. However, it is well known that corn from the mainland is not adaptable to local conditions, and the few attempts to
introduce it to Puerto Rico have failed. The corn imported from other regions, such as Santo Domingo, Cuba and Argentine is used exclusively for feed.

Many crosses were made between some of these mutants and unrelated stocks, and F2's and backcrosses are expected to be raised this spring. For the present I want to mention two interesting cases: brown midrib and tassels, and forked or split stem.

Brown midrib and tassels. The F1 data suggest that we have a new dominant mutant, tentatively designated Bm-b, for the development of brown pigment in midrib and tassels. The color appears rather late, before tasseling, and varies in intensity especially in tassels, sometimes approaching color of tassels of a B PI plants.

This mutant was found in one of the inbred lines. Bm-b plants were selfed and crossed to three unrelated stocks. The selfed plants had also red pericarp and cob. The five F1 crosses segregated in the following ratio:

\[
\begin{array}{ccc}
\text{Bm-b P} & \text{Bm-b p} & \text{bm-b P} & \text{bm-b p} \\
193 & 2 & 0 & 183
\end{array}
\]

The result suggests that Bm-b is closely linked with P. The presence of the red pericarp in Bm-b plants, as well as the development of anthocyanin in seedlings of all F1 plants indicate that the development of brown color in tassels and midrib is not due to a. Also there is evidence that we are dealing with red and not cherry pericarp, as there is no PI involved in these crosses.

Forked or split stem. A number of plants were observed in several cultures in which the stem is split or forked. The forking may occur in any node. If forking takes place at the node below the ear, then two ears and tassels are formed.

From two selfed forked ears 44 plants were raised, all of which were normal, non forked. The F1 between forked and normal plants yielded:

<table>
<thead>
<tr>
<th>Normal</th>
<th>Forked</th>
</tr>
</thead>
<tbody>
<tr>
<td>153</td>
<td>2</td>
</tr>
<tr>
<td>22</td>
<td>2</td>
</tr>
<tr>
<td>26</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>216</td>
</tr>
</tbody>
</table>

G. A. Lebedeff
IV. Miscellaneous Co-op Items

1. Co-op stocks. An effort is being made to grow each stock in our collection at least once every three years. To maintain vigor, especially in the naturally weaker stocks, we shall follow a practice started a few years ago. The co-op stocks are crossed with standard inbreds I (U.S. No. 204) and II (West Branch). The desired characters are then recovered from each of these hybrids, and crosses are then made between these desired sorts from the two sources.

2. Assignments of chromosomes for mapping. In News Letter 12, April 15, 1939, page 39, there is given a list of persons who are mainly responsible for linkage studies on the different chromosomes, and for the building up of linkage stocks. At the Christmas meetings in 1940, this list was examined by the co-operators present, and a few changes were made. The revised assignments follow:

<table>
<thead>
<tr>
<th>Chromosome</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Emerson</td>
</tr>
<tr>
<td>2</td>
<td>Rhoades and Clokey</td>
</tr>
<tr>
<td>3</td>
<td>Brink and Woodworth</td>
</tr>
<tr>
<td>4</td>
<td>Singleton and Brunson</td>
</tr>
<tr>
<td>5</td>
<td>Burnham and Cartledge</td>
</tr>
<tr>
<td>6</td>
<td>Burnham, Lebedeff and Stadler</td>
</tr>
<tr>
<td>7</td>
<td>Jenkins and Fraser</td>
</tr>
<tr>
<td>8</td>
<td>Sprague and Perry</td>
</tr>
<tr>
<td>9</td>
<td>Shafer and Eyster</td>
</tr>
<tr>
<td>10</td>
<td>Lindstrom</td>
</tr>
</tbody>
</table>

3. Personals.

(a) Carlos A Krug of Sao Paulo, Brazil, is spending a year in this country, with the special purpose of studying the genetics and cytology of citrus, at Riverside, California. Krug brought to the U.S.A., 60 types of maize collected by his assistant in Bolivia, Peru, Ecuador, and Columbia. These have been added to the Co-op stocks. Small amounts of seed can be spared to cooperators who are especially interested.

(b) D. G. Langham of Venezuela is in this country for a few months, for the purpose of collecting corn and of working on a special problem in connection with his research.

(c) Two of our number, M. M. Rhoades and B. McClintock, will be at Cold Spring Harbor this summer, along with Muller, Wright, Nebel and other geneticists.

(d) R. A. Emerson left Ithaca early in February for a six-weeks vacation in Florida.
V. Maize Publications

Since the preparation of the list of publications in News Letter 14, March 5, 1940, the following articles have appeared in print:

Granor, E. do A. - Variacoes do valor de "linkage". Revista Agr. (Piracicaba) 15: 168-175, 1940. (Eng. Sum.)

Huelson, W. A. - Sweet-corn hybrids for canning and market. Illinois A.E.S. Circ. 504. 20 p. 1940.

Schmidt, C. G. - Cultural and genetic studies on Ustilago zeae, Phytopath. 30: 381-390, 1940.

Anon. - Corn comes of age. (A readable story about hybrid corn - its past, its present and a look into its future). Fert. Rev. 15: 8-9, 11, 1940. (Based on interview with Jenkins).
Papers in Press

VI. New Genes

1. Five alleles of a for aleurone color. No symbols given as yet. See contribution by M. M. Rhoades, Columbia University, item 2.

2. A new member of the r series for aleurone color. See report by M. M. Rhoades, item 5.

The data presented here are not to be used in publications without the consent of the authors.

Department of Plant Breeding
Cornell University
Ithaca, N. Y.
December 10, 1941

To Maize Geneticists:

Circumstances beyond the control of mortal man have again laid Maize Genetic Cooperation on my doorstep. It is, of course, too early to know what can be done next summer by any of us. But I feel that such fundamental and long-time undertakings as ours should not be lightly abandoned. I plan, therefore, to assemble material for a Maize Genetics News Letter to be mailed on or about the first of February next. Since I shall be away from my office during much of February and March, I must have your reports by January 15. Even if you cannot make a complete report by that time, please send me whatever you can get ready.

Sincerely,

R. A. Emerson

RAE:P

R. A. Emerson
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Professor Fraser</td>
<td>1</td>
</tr>
<tr>
<td>II. Reports from cooperators</td>
<td>2</td>
</tr>
<tr>
<td>Columbia University</td>
<td>2</td>
</tr>
<tr>
<td>Connecticut Agricultural Experiment Station</td>
<td>6</td>
</tr>
<tr>
<td>Cornell University</td>
<td>8</td>
</tr>
<tr>
<td>Harvard University</td>
<td>19</td>
</tr>
<tr>
<td>Illinois University</td>
<td>21</td>
</tr>
<tr>
<td>Minnesota University</td>
<td>21</td>
</tr>
<tr>
<td>Missouri Botanical Garden</td>
<td>22</td>
</tr>
<tr>
<td>Missouri University</td>
<td>24</td>
</tr>
<tr>
<td>U. S. Department of Agriculture and Iowa State College</td>
<td>33</td>
</tr>
<tr>
<td>Wisconsin University</td>
<td>34</td>
</tr>
<tr>
<td>III. Maize publications</td>
<td>35</td>
</tr>
<tr>
<td>IV. Inventory of seed stocks propagated in 1940 and 1941</td>
<td>38</td>
</tr>
<tr>
<td>V. Index of seed stocks propagated in 1940 and 1941</td>
<td>50</td>
</tr>
</tbody>
</table>
Somewhat more than a year ago, when I expected to retire at the end of June, I persuaded Professor Fraser to take charge of Maize Genetics Cooperation. I did not retire, and now Professor Fraser has gone. He assembled the material for the 15th News Letter. It was done in his characteristically careful way. It has pleased me a lot to hear more than one of you say that last year's News Letter was the best one so far put out.

Without the knowledge of any of us, Professor Fraser had been treated by a specialist for over a year. He did not meet his class in advanced genetics after the spring vacation, but he did prepare seed for planting and staked glossy seedlings in the field. Dr. Murray and I made pollinations for him in the summer and Dr. Murray made the final records from his cultures. Some of these are reported in this News Letter.

Professor Fraser was primarily a teacher. He was unusually successful with both undergraduate and graduate students. Many of you, who had courses with him, have told me this and more. You who were thus associated with him for a few years will feel this loss. To those of us who had been his colleagues for many years, his death came as a profound shock. Our memory of many things about him is small consolation. His ability, his determination, his untiring energy and resourcefulness, his never failing cheerfulness - he "kept his chin up" to the end - his willing helpfulness, and withal his unassuming manner, all these memories of him force upon all of us an ever growing sense of our loss.

R. A. Emerson
II. REPORTS FROM COOPERATORS

The presentation of data in these News Letters is not regarded as constituting publication. These data should not, therefore, be used in published papers without the consent of the authors.

R. A. Emerson

Columbia University, New York City

1. Location of Dt in the short arm of chromosome 9. - F2 data presented in the 1941 News Letter indicate that Dt is situated close to the yg2 locus at the end of the short arm of chromosome 9. These data also suggested that Dt was about ten units beyond yg2. However, Creighton found only one percent recombination between yg2 and the terminal knob. Backcross tests recently completed prove that Dt does lie approximately seven units beyond yg2. The low recombination value of one percent for the yg2-knob region may be ascribed to the disturbing effect on crossing over of the large heterozygous knob present in Creighton’s set-up. The backcross data are as follows:

<table>
<thead>
<tr>
<th></th>
<th>Dt +</th>
<th>+yg2</th>
<th>+sh</th>
<th>wx</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>333</td>
<td>278</td>
<td>22</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>611</td>
<td>45</td>
<td></td>
<td></td>
<td>656</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>76</td>
<td>86</td>
<td>32</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>162</td>
<td>146</td>
<td>3</td>
<td>5</td>
<td>176</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>394</td>
<td>394</td>
<td></td>
<td></td>
<td>788</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Dt-Yg2</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5.2%</td>
<td>611</td>
</tr>
<tr>
<td>Dt-Yg2</td>
<td>7.4%</td>
<td>534</td>
</tr>
<tr>
<td></td>
<td>23.7%</td>
<td>176</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Dt +</th>
<th>+yg2</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>306</td>
<td>228</td>
<td>534</td>
</tr>
<tr>
<td>0</td>
<td>18</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>33</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>83</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>1-2</td>
<td>93</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>2-3</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1-3</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>767</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Dt+</th>
<th>Dt-Yg2</th>
<th>++</th>
<th>+yg2</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dt+</td>
<td>283</td>
<td></td>
<td>24</td>
<td></td>
<td>307</td>
</tr>
<tr>
<td>+yg2</td>
<td></td>
<td>25</td>
<td></td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>Dt-Yg2</td>
<td>7.8%</td>
<td>7.8%</td>
<td></td>
<td></td>
<td>7.8%</td>
</tr>
</tbody>
</table>

| | | | 4 | 0 | 4 |
| | | | 0 | 0 | 0 |

| | 293 | 625 | | | |

2. In a culture with A B pl and A b pl plants the R⁷ and R⁸ alleles were segregating. A b pl R⁸ plants had green anthers with colored glumes. There was no color at the base of the culm but an occasional small blotch of color was found along the culm. Possibly a new R allele.

3. Jenkins gave the writer a selfed ear of inbred Hy that was segregating for what appeared to be a green seedling character. This new recessive mutant is linked with either C or R. Inasmuch as A B pl plants homozygous for this gene have a deep bronze color instead of the usual red, this gene has been tentatively designated "bronze" (symbol bz). A b pl and A b pl plants homozygous for bz are not green but have a bronze color at the base of the culm. Some strains of A b pl and A b pl plants homozygous for bz have chocolate colored anthers while other strains have green anthers. Some interactions with the R alleles may be involved here. The effect of bz on the color of A B pl plants or on pericarp color has not yet been determined. The effect of bz on aleurone color is also unknown since it arose in a line homozygous for recessive c and r and its being linked to one of these factors makes the aleurone effect difficult to determine. The bz gene has a rather remarkable pleiotropic effect. In addition to affecting the anthocyanin system it also causes considerable pollen abortion. The sterility effect of bz is variable from season to season. At Arlington, Virginia in the summer of 1940 the amount of aborted pollen was so great that the anthers were shriveled and many failed to dehisce while in the summer of 1941 at Cold Spring Harbor little or no pollen abortion was evident.

4. Location of dwarf-7. Singh reported that d⁷ belonged in the tenth linkage group approximately 27 units to the right of R. Singh's placement of d⁷ rested upon the linkage of d⁷ with aleurone color in F₂ populations segregating for both C and R, and upon an F₂ population of 109 individuals segregating for d⁷ and golden-1 where he found 35 percent recombination.
between d7 and g. Singh’s placing of d7 in chromosome 10 rests entirely upon the loose and dubious linkage of d7 with g. The writer has been unable to find linkage of d7 with genes in chromosome 10. F2 data from cultures segregating for d7 and shrunken show 24 percent recombination. Apparently d7 belongs in chromosome 9 and since d3 shows 25 percent recombination with sh it is not unlikely that d7 and d3 are identical. At any rate it is clear that the d7 locus should be dropped from the map of the tenth linkage group.

5. Inasmuch as the writer was assigned chromosome 2 he has from time to time collected additional data on the location of certain genes placed in the map by two-point tests. The floury locus was placed between sk and ts by two-point data. This has been confirmed by three-point tests. Some of the data involving floury are presented below:

\[
\begin{align*}
\text{lg gl B Fl v4} & \quad \text{x} \quad \text{lg gl b V4 v4} \\
\text{B.C. for lg gl B Fl} & \quad \text{F2 for V4} \\
\text{Lg-gl 16%; Gl-B 16%; B-Fl 16%; Fl-V4 14%; B-V4 23%} \\
\text{The order is lg gl B Fl V4}
\end{align*}
\]

\[
\begin{align*}
\text{B Fl ts v4} & \quad \text{x} \quad \text{b Ts-v4} \\
\text{b Fl Ts V4} & \quad \text{ts-V4} \\
\text{B.C. for B Fl} & \quad \text{F2 for ts and v4} \\
\text{B-Fl 19%; Fl-Ts 3%; B-Ts 21%; Fl-V4 18%; B-V4 32%} \\
\text{The order is B Fl ts v4}
\end{align*}
\]

Summary of unpublished linkage data for chromosome 2

<table>
<thead>
<tr>
<th>XY Genes</th>
<th>Phase</th>
<th>XY</th>
<th>Xv</th>
<th>XY</th>
<th>XY</th>
<th>XY</th>
<th>XY</th>
<th>Total</th>
<th>Percent recombination</th>
</tr>
</thead>
<tbody>
<tr>
<td>B Fl</td>
<td>CB</td>
<td>549</td>
<td>135</td>
<td>129</td>
<td>663</td>
<td>1476</td>
<td></td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>B Ts</td>
<td>RS</td>
<td>254</td>
<td>101</td>
<td>413</td>
<td>27</td>
<td>795</td>
<td></td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>B V4</td>
<td>RS</td>
<td>480</td>
<td>204</td>
<td>716</td>
<td>76</td>
<td>1476</td>
<td></td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>Fl Ts</td>
<td>RS</td>
<td>376</td>
<td>243</td>
<td>768</td>
<td>7</td>
<td>1394</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Fl V4</td>
<td>RS</td>
<td>569</td>
<td>281</td>
<td>891</td>
<td>60</td>
<td>1801</td>
<td></td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Gs2 Fl</td>
<td>RS</td>
<td>161</td>
<td>212</td>
<td>113</td>
<td>19</td>
<td>505</td>
<td></td>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>

M. M. Rhoades

6. The following experiment was undertaken to determine if the pollen tubes obtain nutriment from the silks as they grow downward or whether food materials stored in the pollen grains are the chief source of energy.
Pollinations were made one day after cutting back the silks, so that brushes of silks approximately 1 1/2 inches long were available. Following pollination that portion of the silk (with the attached pollen grains) extending beyond the husks was cut off at intervals of 1/2, 3/4, 1, 1 1/2, 2, 2 1/2, 3, 3 1/2, 4, and 6 hours after pollinating. Silks removed at different intervals of time were fixed in alcohol and later stained with carmine-chloral hydrate.

It was found that germination occurred within the first half-hour. Germinated grains on silks removed at the different time intervals were examined cytologically to determine whether or not the two sperm cells and the tube nucleus had passed into the silk. The data are given as follows:

Table 1. Percent of germinated grains with no (0), one (1), and two (2) sperm nuclei, and having (1) or lacking (0) a tube nucleus on silks removed at different time intervals after pollination.

<table>
<thead>
<tr>
<th>Hours after pollination</th>
<th>No. of grains examined</th>
<th>0 sperm</th>
<th>1 sperm</th>
<th>2 sperm</th>
<th>0 tube nucleus</th>
<th>1 tube nucleus</th>
<th>2 tubes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2</td>
<td>12</td>
<td>92</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>2</td>
<td>50</td>
</tr>
<tr>
<td>3/4</td>
<td>80</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>12</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>1</td>
<td>82</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>1 1/2</td>
<td>59</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>20</td>
<td>13</td>
<td>61</td>
</tr>
<tr>
<td>2</td>
<td>17</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>9</td>
<td>69</td>
<td>120</td>
</tr>
<tr>
<td>2 1/2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>95</td>
<td>20</td>
</tr>
</tbody>
</table>

The average number of grains on each examined silk was approximately twenty but considerable variation was found. Every silk examined, however, had a number of established grains.

Most of the sperm and tube nuclei pass out of the pollen grains between one and two hours after pollination. The sperm cells usually precede the tube nucleus in passing into the pollen tube. Four hours after pollination the pollen grains are nearly empty. The pollen grains retained a considerable portion of their contents two hours after pollination, even though the sperm nuclei and the tube nucleus had entered the silk. Pollen grains cut off before all of the food reserves had passed into the pollen tubes might not achieve fertilization for lack of sufficient nutriment if the growing tubes obtain little or no nourishment from the stylar tissue. The pollen tubes would contain the sperm and tube nuclei, but only part of the total food material stored in the pollen. If the pollen tubes obtained nutriment from the silk, they would continue to grow and all the ovaries would be fertilized.

If, however, the pollen tube could not obtain sufficient
nutriment from the silk, it would grow only until the available food material in the pollen tube was exhausted. Many of the ovaries at the bottom of the ear would not be fertilized, because the pollen tubes lacked the energy to grow a longer distance.

Seed set was determined at maturity.

Table 2. Number of ears, total number of seeds, and the percent of seeds found in the upper half of all the ears of corn for each time interval.

<table>
<thead>
<tr>
<th>Series A</th>
<th>Hours after pollination</th>
<th>1</th>
<th>2</th>
<th>2½</th>
<th>3</th>
<th>3½</th>
<th>4</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of ears</td>
<td></td>
<td>3</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>9</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>Total no. of seeds</td>
<td></td>
<td>1</td>
<td>193</td>
<td>862</td>
<td>337</td>
<td>1233</td>
<td>2607</td>
<td>1380</td>
</tr>
<tr>
<td>Percent seeds in upper half</td>
<td></td>
<td>-</td>
<td>64</td>
<td>71</td>
<td>75</td>
<td>72</td>
<td>58</td>
<td>52</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Series B</th>
<th>Hours after pollination</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>oo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of ears</td>
<td></td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>Total no. of seeds</td>
<td></td>
<td>5</td>
<td>26</td>
<td>81</td>
<td>408</td>
<td>3132</td>
</tr>
<tr>
<td>Percent seeds in upper half</td>
<td></td>
<td>-</td>
<td>78</td>
<td>69</td>
<td>68</td>
<td>52</td>
</tr>
</tbody>
</table>

(Note: oo = silks were not removed)

The number of seeds in the upper half of the ear was consistently greater than in the lower half at the time intervals when food material still remained in the pollen grain at the time of removal. Inasmuch as nearly all of the contents of the pollen grain had been discharged into the pollen tube by four hours after pollination but there were an appreciable number of unfertilized ovules at the base of the ear it seems that practically all of the stored reserves are needed for the long journey to the basal ovules. It is doubtful if the stylar tissue offers any nourishment to the growing pollen tube.

Sidney Wiesner

Connecticut Agricultural Experiment Station
New Haven, Connecticut

1. Paired red and dark purple mosaic areas in light purple seeds, heterozygous for Pr pr pr, rarely show growth changes. In some of these cases the red area grows out beyond the normal cells, sometimes the dark area. In the few cases that have been examined so far no growth changes accompany the exchange of both Pr and Bt. Since Bt is close to the centromere, presumably, paired changes that include Pr and Bt involve an exchange of almost the entire right arm of chromosome 5. If the alteration in growth were due to a loss or accumulation of specific growth regulating genes or to a general chromosome
unbalance it would be expected that all of the paired changes involving both Bt and Pr would be altered. Since they are not, this is a strong indication that growth changes result from breaks and reattachments at critical places in the chromosomes.

2. Paired pericarp mosaics, especially those that may occur in plants heterozygous for \(Pr^W\) and \(P^WR\), would make possible a distinction between reciprocal translocation and somatic crossing over. In plants of this composition red-seeded, red-cobbled ears would show colorless seeds underlaid with red cob adjacent to colored seeds over white cob. Any mosaics of this type should be examined cytologically and put on record. The writer would appreciate having any of these mosaics, especially where the areas involved cover several seeds.

D. F. Jones

3. Effect of environment on aleurone color - Marcross sweet corn with the aleurone constitution \(A_C_rPr\) was changed to a purple aleurone (phenotype \(A_C_RPr\)) by growing in the greenhouse in the winter time with no additional light. The corn was planted on January 21, 1941 in soil fertility plots where different types of phosphorous fertilizers were being tested. The fertility in all plots was sufficient to produce a normal crop of corn. In some cases ears were produced in the tassels as is characteristic of corn grown in this latitude with no extra light. Many fully purple kernels were found on the main ears as well as those produced in the tassel. One tassel ear had all the kernels fully colored similar to any \(A_C_RPr\) stock. Examination showed this color to be in the aleurone layer. Seeds from the fully colored tassel-ear were planted in the field in the summer of 1941. Three selfed ears showed no aleurone color. The kernels were all \(Y_{su}\). Ears crossed by \(A_C_rPr\) were entirely purple, also those crossed by \(a_C_rpr\) and \(A_cR\). Ears crossed by \(ACr\) were colorless showing the aleurone constitution to be \(A_C_rPr\). No explanation is readily available for the apparent changing of \(r\) or \(R\) when grown in the greenhouse. The experiment is being repeated in the greenhouse in 1942.

W. R. Singleton

4. In a field corn test in 1938, 311 different hybrids and inbreds were grown. A total of 14,916 ears were picked and of this number 26 (from 22 different lines) were classified as semi-sterile. This is not a good determination of the frequency of changes giving semi-sterility, but is an indication of the types of changes that occur. Progeny of 24 of the 26 ears have been grown for one to three generations to test the transmissibility of these sterilities. Twelve were definitely transmitted, three had questionable transmission and nine were not transmitted and were probably due to environmental or physiological causes. Nine of the twelve have been examined cytologically, and in these the following changes were found:
asynapsis, a 1-6 translocation, a 6-8 translocation, a pollen
lethal character with no apparent chromosomal change or defi-
ciency, and a long inversion in chromosome 1 including the
centromere. It is of particular interest that the inversion in
chromosome 1 was found in three different hybrids having as one
parent, the inbred U.S. 4-8. It would be desirable to know if
4-8 has been found to have this inversion in the heterozygous
condition and whether any unusual number of semi-sterile ears
have been found in hybrids with 4-8. The 4-8 inbred used in
the hybrids grown in Connecticut was not homozygous for the
inversion since all the ears were not semi-sterile. It could
have been obtained by contamination, but it seems unlikely that
three hybrids with one parent in common would have been so af-
fected. The inversions are apparently the same cytologically
although crosses between them have not been made as yet to
detect any differences.

Twelve semi-sterile ears, obtained from other field corn
tests and sweet corn trials, have been tested for transmissi-
bility. Five were not transmitted, one possibly is transmitted
and six were transmitted. From the last six a lethal ovule
character was found, a 2-5 translocation and a 6-9 transloca-
tion. Three have not been examined cytologically.

5. An unusual example of a somatic change was found in a
plant heterozygous for the translocation T5-9a. The ear on
this plant had approximately half the silks green and half red.
Other plants from the same cross had green silks, with the ex-
ception of two plants having a few red silks and all others
green. Although the ear which was about half red and half
green was open pollinated, tests are being made to determine if
the change was only in maternal tissue.

F. J. Clark

Cornell University, Ithaca, N. Y.

1. White-capped red pericarp - E. G. Anderson reported
(Genetics 9:442-453. 1924) an allelic series of maize pericarp
and cob colors with their genes at the locus of P. These in-
cluded self red pericarp with red cob R-R (Anderson's symbols
are used here, the first letter representing pericarp and the
second cob color), colorless pericarp with red cob W-R, color-
less pericarp with white cob W-W, variegated pericarp and cob
V-V, mosaic pericarp and cob M-M, white-capped red pericarp
with red cob C-R, and white-capped red pericarp with white cob
C-W. That these combinations of pericarp and cob colors con-
stitute an allelic series has not been questioned heretofore,
so far as I am aware, and is not now questioned except for C-R
and C-W. In fact, all the data with which I am familiar tend
to substantiate Anderson's conclusions except for white-capped
red pericarp. Heretofore I have regarded C-R and C-W as be-
longing to the P series of alleles and long ago (Nebr. Agr.
Exp. Sta. Rpt. 24: 57-90. 1911) published records for C-W -
involving exceedingly few individuals - in support of this idea. Anderson's records involved adequate numbers. For the backcross (C-W x W-R) x W-W, the two parental types only were obtained, 1634 C-W and 1751 W-R. But he reported that: "This cross is not wholly satisfactory, since heterozygous C-W is light colored, making immature ears difficult to separate from white." He found no red-cobbed ears with white-capped red pericarp, while the white-cobbed ones all exhibited this pericarp color. But, in his description of W-R, he said: "Pericarp white (colorless) in some varieties, pale orange in others."

If these statements seem to imply that both Anderson and I were wrong in our early interpretations respecting C-W, I must admit that I have no evidence to support such an implication. But for C-R I shall here present evidence which indicates that the white-capped red pericarp of Bloody Butcher is conditioned by multiple genes. The C-W combination studied earlier by Anderson and by me is that seen in Northwestern Dent. The color patterns of the pericarp of these two varieties are identical in appearance and the intensity of pigment of both is reduced noticeably when made heterozygous by crossing with colorless pericarp types. In this respect both differ from self-red, variegated red, and mosaic red. It seems strange, therefore, that white-capped red of Northwestern Dent, C-W, should differ in inheritance from the apparently identical pericarp color of Bloody Butcher, C-R. Both Anderson (1924) and I (1911) reported crosses of C-W x W-R and of most of the other possible combinations of pericarp and cob color patterns, but neither one of us reported results of C-R x W-W.

All the crosses to be reported here involve a single one of Dr. Wiggans' inbred strains of Bloody Butcher (C-R), his inbred #4. This was crossed with three others of his inbreds; namely, Cornell 11 inbred #3 (W-R), Luce's Favorite inbred #1 (W-W) and Onondaga White inbred #2 (W-W). Generations F_2 and F_3 and repeated backcrosses to W-W have been studied. Since in one of the crosses, C-R x W-R, white cob color is not involved, both parents having red cobs, I shall present first the evidence involving pericarp color alone from all the crosses. In the presentation to follow the intensity of pericarp color is indicated in six grades. Grade 0 indicates pericarp in which no tinge of color can be seen, grade 6 the color intensity of the Bloody Butcher parent, grade 5 that of most F_1 ears, grade 1 a barely discernible tinge of color and 2, 3, 4 intermediate grades, in ascending order of color intensity. The mean grade of color intensity is presented both for all ears and for ears with some color in the pericarp. In table 1 are given the records of nine different F_2 cultures of the three crosses and of nine backcrosses of F_1 to colorless pericarp.
The ratio of plants with colored to those with colorless pericarp is 4.8:1 for F2 and 1.4:1 for backcrosses instead of 3:1 and 1:1, respectively. The frequency distributions of individuals of grades 1 to 6 are those typical of multiple-gene inheritance. The mode and the mean grade are somewhat lower in the backcross than in F2, just as F1 is of lower grade than the colored parent.

Progenies of selfed F2 and of selfed backcross plants with diverse grades of pericarp color are recorded in table 2.

Table 2

<table>
<thead>
<tr>
<th>Number of cultures</th>
<th>Parent grade:</th>
<th>Progeny grades: 1 2 3 4 5 6</th>
<th>Total: All: Colored ears: ears</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0</td>
<td>104</td>
<td>104: 0</td>
</tr>
<tr>
<td>2</td>
<td>0?</td>
<td>35 12</td>
<td>47: 0.3: 1.0</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>171 227 38</td>
<td>446: 0.7: 1.1</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>29 58 43 20 8 4</td>
<td>162: 1.5: 1.9</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>46 28 46 65 38 9</td>
<td>232: 2.2: 2.7</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>19 8 10 17 28 16</td>
<td>98: 2.8: 3.4</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>1 2 9 26 48 23</td>
<td>109: 4.7: 4.7</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>- 1 1 9 35 32</td>
<td>78: 5.2: 5.2</td>
</tr>
</tbody>
</table>

Individuals of various pericarp-color grades of the first backcross generation were backcrossed a second or third time. The progenies of these backcrosses are reported in table 3.

Table 3

<table>
<thead>
<tr>
<th>Number of cultures</th>
<th>Parent grade:</th>
<th>Progeny grades: 1 2 3 4 5 6</th>
<th>Total: All: Colored ears: ears</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0 x 0</td>
<td>206</td>
<td>206: 0</td>
</tr>
<tr>
<td>1</td>
<td>0? x 0</td>
<td>74 4</td>
<td>78: 0.05: 1.0</td>
</tr>
<tr>
<td>4</td>
<td>1 x 0</td>
<td>65 63</td>
<td>128: 0.5: 1.0</td>
</tr>
<tr>
<td>4</td>
<td>2 x 0</td>
<td>59 20 64 9</td>
<td>152: 1.2: 1.9</td>
</tr>
<tr>
<td>1</td>
<td>3 x 0</td>
<td>35 - 13 13</td>
<td>61: 1.1: 2.3</td>
</tr>
<tr>
<td>6</td>
<td>4 x 0</td>
<td>46 34 35 42 19 2 1</td>
<td>179: 1.8: 2.4</td>
</tr>
<tr>
<td>1</td>
<td>5 x 0</td>
<td>38 - 5 40 7</td>
<td>90: 2.3: 4.0</td>
</tr>
</tbody>
</table>

Tables 2 and 3 not only exhibit frequency distributions characteristic of multiple-gene inheritance, but also demon-
strate that selection is effective in isolating diverse types, as in most instances of quantitative inheritance.

In many of the crosses reported above, cob color, as well as pericarp color, was involved. In table 4 the data for F₂ and the first backcross generations are presented for red-cob and white-cob ears separately.

Table 4

<table>
<thead>
<tr>
<th>Generation</th>
<th>Parent Grades: Color</th>
<th>Progenies Mean Grades: Total All</th>
<th>Colored Ears</th>
</tr>
</thead>
<tbody>
<tr>
<td>F₂</td>
<td>(R 32 4 45 58 72 113 17)</td>
<td>341: 3.6: 4.0</td>
<td>118: 1.6: 2.8</td>
</tr>
<tr>
<td></td>
<td>(W 49 4 24 25 13 3 -)</td>
<td>212: 2.7: 3.4</td>
<td>202: 1.4: 3.3</td>
</tr>
<tr>
<td>bc x 0</td>
<td>(R 48 6 38 41 40 37 2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(W 119 2 7 41 23 5 -)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The segregation of cob colors was sharp without appreciable intergrades between red and white. The ratios of red-cob to white-cob ears, 341:118 and 212:202 in the F₂ and backcross generations, respectively, are approximately the 3:1 and 1:1 ratios expected where a single gene pair is concerned. The mean grades for pericarp color were somewhat higher in the red-cob than in the white-cob lots. This is the more pronounced when mean grade is calculated from all ears, because a higher percentage of the white-cob ears have colorless pericarp than is true of red-cob ears.

From the cross C-R x W-W, there have been obtained the four combinations; namely, C-R, W-R, C-W, W-W, expected on the basis of independent inheritance of pericarp and cob colors. The numerical relations, however, do not fit those of independent inheritance - 9:3:3:1 and 1:1:1:1 - as indicated in table 5.

Table 5

<table>
<thead>
<tr>
<th></th>
<th>C-R</th>
<th>W-R</th>
<th>C-W</th>
<th>W-W</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>F₂</td>
<td>Observed</td>
<td>309</td>
<td>32</td>
<td>69</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>Calculated</td>
<td>258</td>
<td>86</td>
<td>86</td>
<td>29</td>
</tr>
<tr>
<td>bc</td>
<td>Observed</td>
<td>164</td>
<td>48</td>
<td>83</td>
<td>119</td>
</tr>
<tr>
<td></td>
<td>Calculated</td>
<td>103.5</td>
<td>103.5</td>
<td>103.5</td>
<td>103.5</td>
</tr>
</tbody>
</table>

If we were dealing with dihybrid inheritance, these data would indicate linkage of pericarp and cob colors with 26% or 31% of crossing over for F₂ or backcross progenies, respectively. It is conceivable that there is one primary gene for white-capped red pericarp which is modified in its expression by other genes.
Records of F_2^*, and of F_2 after one or more backcrosses, are summarized in table 6.

<table>
<thead>
<tr>
<th>Number of Parent cultures: grade</th>
<th>Progeny: Cob color</th>
<th>Mean grades: Total All Colored ears: ears</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1 2 3 4 5 6</td>
</tr>
<tr>
<td>5</td>
<td>(R) 27 94 35</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(W) 31 3</td>
<td>34 1.1 1.0</td>
</tr>
<tr>
<td>2</td>
<td>(R) 7 40 13 2</td>
<td>62 1.2 1.3</td>
</tr>
<tr>
<td></td>
<td>(W) 12 3</td>
<td>15 0.2 1.0</td>
</tr>
<tr>
<td>3</td>
<td>(R) 16 12 16 25 17 3</td>
<td>89 2.3 2.8</td>
</tr>
<tr>
<td></td>
<td>(W) 7 2 4 4 4</td>
<td>21 1.8 2.7</td>
</tr>
<tr>
<td>1</td>
<td>(R) 3 10 7 11 1</td>
<td>32 1.9 2.1</td>
</tr>
<tr>
<td></td>
<td>(W) 11</td>
<td>11 0</td>
</tr>
<tr>
<td>5</td>
<td>(R) 16 12 7 17 44 24</td>
<td>120 3.1 3.6</td>
</tr>
<tr>
<td></td>
<td>(W) 9 2 3 12 10 4</td>
<td>40 2.6 3.4</td>
</tr>
</tbody>
</table>

Individuals of various pericarp-color grades among backcross and F_2 progenies were backcrossed to $W-W$, with the results shown in table 7.

<table>
<thead>
<tr>
<th>Number of Parent cultures: grade</th>
<th>Progeny: Cob color</th>
<th>Mean grades: Total All Colored ears: ears</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1 2 3 4 5 6</td>
</tr>
<tr>
<td>3</td>
<td>(R) 2 91</td>
<td>93 1.0 1.0</td>
</tr>
<tr>
<td></td>
<td>(W) 80</td>
<td>80 0</td>
</tr>
<tr>
<td>1</td>
<td>(R) 7 8</td>
<td>15 0.5 1.0</td>
</tr>
<tr>
<td></td>
<td>(W) 17 8</td>
<td>25 0.3 1.0</td>
</tr>
<tr>
<td>1</td>
<td>(R) 8 7 7 1</td>
<td>23 1.0 1.6</td>
</tr>
<tr>
<td></td>
<td>(W) 20</td>
<td>20 0</td>
</tr>
<tr>
<td>6</td>
<td>(R) 38 38 9 17 20 17</td>
<td>139 2.0 2.7</td>
</tr>
<tr>
<td></td>
<td>(W) 39 8 19 13 11 15</td>
<td>105 1.9 3.1</td>
</tr>
</tbody>
</table>

Tables 6 and 7 show at least that low grade pericarp color is closely linked with red cob color. That even this very low grade pericarp color cannot be allelic to cob color is shown by the occurrence of cultures in which the red-cob ears, as well as
the white-cob ones, exhibit no discernible trace of pericarp color.

In addition to the cultures that segregated for cob color, there occurred, in F₁ and backcross generations of the cross C-R x W-W, progenies that bred true for red or for white cob color, as shown in table 8.

<table>
<thead>
<tr>
<th>Number of cultures</th>
<th>Mean grades of Parent: Cob</th>
<th>Pericarp grade: 0 1 2 3 4 5 6</th>
<th>Total: All Colored ears: ears</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1</td>
<td>R</td>
<td>15 23</td>
<td>38 : 0.6 1.0</td>
</tr>
<tr>
<td>2 1</td>
<td>W</td>
<td>18 15</td>
<td>33 : 0.5 1.0</td>
</tr>
<tr>
<td>3 2</td>
<td>W</td>
<td>10 15 30 18 8 4</td>
<td>85 : 2.1 2.4</td>
</tr>
<tr>
<td>3 3</td>
<td>W</td>
<td>9 4 19 25 16 6</td>
<td>79 : 2.7 3.0</td>
</tr>
<tr>
<td>1 5</td>
<td>R</td>
<td>1 2</td>
<td>37 : 4.3 4.3</td>
</tr>
<tr>
<td>1 5</td>
<td>W</td>
<td>1 2</td>
<td>27 : 4.4 4.4</td>
</tr>
<tr>
<td>2 6</td>
<td>R</td>
<td>1 1</td>
<td>32 : 5.2 5.2</td>
</tr>
<tr>
<td>0 x 0</td>
<td>W</td>
<td>197</td>
<td>197 : 0</td>
</tr>
<tr>
<td>1 1</td>
<td>W</td>
<td>66 73 2</td>
<td>141 : 0.5 1.0</td>
</tr>
<tr>
<td>2 2</td>
<td>W</td>
<td>5 4 16 6</td>
<td>31 : 1.7 2.1</td>
</tr>
<tr>
<td>3 3</td>
<td>W</td>
<td>86 2 27 28 17 1</td>
<td>161 : 1.3 2.6</td>
</tr>
<tr>
<td>4 x 0</td>
<td>W</td>
<td>24 12 15 28 7</td>
<td>96 : 1.8 2.5</td>
</tr>
</tbody>
</table>

It will be noted from table 8 that six cultures produced nothing but W-W ears like one parent of the original cross; that three cultures produced only C-R ears like the other parent but with considerable variation in intensity of pericarp color; that one culture had only C-W ears like Northwestern Dent but with some variation in pericarp color intensity; that, while no true breeding W-R lots have been obtained, two cultures (table 7) contained only W-R and W-W ears, from which homozygous W-R stocks can presumably be obtained.

From all this it seems obvious that white-capped red pericarp of Bloody Butcher is not a member of the _P_ allelic series but is conditioned by multiple genes one or more of which are linked with red cob and therefore with P. So far as the _P_ allelic series is concerned, Bloody Butcher is apparently W-R to which has been added other genes for pericarp color not of that series.

Since white-capped red pericarp of Northwestern Dent is identical with that of Bloody Butcher in appearance and in having its intensity reduced in the heterozygous condition, it will be interesting to discover whether Anderson and I were wrong in our earlier interpretation and, if then right, what relation exists between C-W of Northwestern Dent and the C-W that has come from the cross of C-R x W-W. The study is underway.

R. A. Emerson
2. Linkage data involving an and Ts\textsubscript{3} or Ts\textsubscript{6} - Striking differences between complementary crossover classes were reported by Emerson 1941 News Letter (p. 13-15). These records may not have been wholly accurate for the following reason. Some of the Ts plants failed to develop ears since the tassels were not removed at the time of emergence. Classification of an from the tassel when combined with Ts is difficult. Therefore, similar progenies were repeated this summer and the classification of an based on the ear.

<table>
<thead>
<tr>
<th>+ Ts\textsubscript{3}/an +</th>
<th>+ Ts\textsubscript{3} ++ an Ts\textsubscript{3} an +</th>
</tr>
</thead>
<tbody>
<tr>
<td>1941, tassels removed</td>
<td>174 109 5 288</td>
</tr>
<tr>
<td>1940, tassels not removed</td>
<td>183 80 8 238</td>
</tr>
<tr>
<td>+ Ts\textsubscript{6}/an +</td>
<td>+ Ts\textsubscript{6} ++ an Ts\textsubscript{6} an +</td>
</tr>
<tr>
<td>1941, tassels removed</td>
<td>75 36 17 67</td>
</tr>
<tr>
<td>1940, tassels not removed</td>
<td>213 159 50 151</td>
</tr>
</tbody>
</table>

The results of both plantings are essentially alike. One may conclude that the unequal nature of the complementary crossover classes is not primarily due to inaccuracies of classification but rather to some other cause.

Using the totals of both seasons, the following ratios occur:

- **Ts\textsubscript{3}** cultures
 - $370 \text{Ts}_3 : 715 +$ \hspace{1cm} D/PE = 0.9 for 1:2 ratio
 - $546 + : 539 \text{an}$ \hspace{1cm} D/PE = 0.4 for 1:1 ratio

- **Ts\textsubscript{6}** cultures
 - $355 \text{Ts}_6 : 413 +$ \hspace{1cm} D/PE = 3.1 for 1:1 ratio
 - $483 + : 285 \text{an}$ \hspace{1cm} D/PE = 3.3 for 2:1 ratio

In the Ts\textsubscript{3} data, Ts\textsubscript{3} is deficient while an is normal; whereas, in the Ts\textsubscript{6} data, Ts\textsubscript{6} is only slightly deficient and an greatly so. If these effects are due to an interaction between an and either Ts\textsubscript{3} or Ts\textsubscript{6} as Emerson 1941 News Letter (p. 15) suggests, the interaction is presumably different for the two tassel-seed genes.

M. J. Murray

3. Chromosome 7 linkage data - Professor A. C. Fraser made the following field plantings last spring and marked the seed-
lings. I assume all responsibility for the records on the mature plants and the following summary of the results (table 1).

Table 1

<table>
<thead>
<tr>
<th>+ + +</th>
<th>in v5 gl</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td>552</td>
</tr>
</tbody>
</table>

Recombination percentages: in-v5 2.4, v5-gl 4.8

Ratios: 573+ : 481 in, 593+ : 461 v5, 585+ : 469 gl

Percent non-germination of In seeds 20.6, of in seeds 23.4.

Fraser in News Letter 1938 (p. 11) reported in-V5 = 4.3%
V5-gl = 12.2% where n = 1017 and in News Letter 1940 (p. 14)
in-V5 = 6.3% V5-gl = 14% where n = 10,563. The present records
are obviously different from the previous ones in that crossing
over in the V5-gl region is markedly reduced. While all the
recessives were somewhat deficient, this in itself probably
does not account for the reduced crossing over. Fraser (News
Letter 1940) indicated that he was investigating the reason for
marked differences in the complementary crossover classes in
the in-V5 region. A study of the lineage of all these cultures
may perhaps clarify the present results.

Table 2. + + +/v5 ra gl

<table>
<thead>
<tr>
<th>+ + +</th>
<th>v5 ra gl</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td>832</td>
</tr>
</tbody>
</table>

Recombination percentages: v5-ra 6.2, ra-gl 20.2

Ratios: 909+ : 831 v5, 879+ : 861 ra, 1214+ : 526 gl

Fraser (News Letter 1941 p. 19) reported crossover percentages as follows: v5-ra 7, ra-gl 6, gl-ij 13. The present records agree for the first region but not for the second. However, the ratio of glossies to non-glossies is roughly 1:2.

Table 3. + + +/ra gl ij

<table>
<thead>
<tr>
<th>+ + +</th>
<th>ra gl ij</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td>340</td>
</tr>
</tbody>
</table>

Recombination percentages: ra-gl 18.9, gl-ij 30.8,

The region ra-gl was also studied in another culture where 20.2 percent of crossing over was obtained. These two sets of data agree in fixing the length of this region at about 13-20 units. However, this is in contrast to the result of 6 units obtained by Fraser (News Letter 1941). The region gl-il is longer (30.8) than in the previously reported data 18 (Fraser News Letter p. 19).

No final interpretation of these data will be attempted until I have had an opportunity to study the origin of all cultures. Even then, further work will probably be necessary.

M. J. Murray

4. Trisomics - Seed weight. In order to get a relatively high frequency of trisomic plants the smaller seeds are often selected from a trisomic ear. A study was made to find how close a correlation exists between weight of seed and chromosome number and whether this correlation varies in different trisomic stocks.

Random samples of from 50 to 150 seeds were taken from trisomic ears. In some cases, however, only relatively small numbers of seeds were available. Each seed was weighed to the nearest .01 gram and placed in its weight class. In most cases the weights when plotted against number formed a unimodal curve. In some, however, bimodal curves resulted (see III x 1g2). The seeds were germinated in trays and roots taken before transplanting to the field. The results are expressed in table 1.
<table>
<thead>
<tr>
<th>Relative length of extra chromosome</th>
<th>Trisomic Stock</th>
<th>Weight of seed mg</th>
<th>% trisomics</th>
<th>No. of indi-</th>
<th>No. of indi-</th>
</tr>
</thead>
<tbody>
<tr>
<td>85</td>
<td>II x L.F. Inbred</td>
<td>140-210</td>
<td>82</td>
<td>38</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>220-230</td>
<td>53</td>
<td>59</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>240-260</td>
<td>19</td>
<td>42</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>II x Inbred II</td>
<td>160-220</td>
<td>14</td>
<td>7</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td></td>
<td>230-240</td>
<td>56</td>
<td>16</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>250-280</td>
<td>30</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>II x C. II Inbred</td>
<td>130-200</td>
<td>87</td>
<td>30</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td></td>
<td>210-230</td>
<td>49</td>
<td>35</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td></td>
<td>230-260</td>
<td>18</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>II x lg</td>
<td>130-180</td>
<td>80</td>
<td>5</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td></td>
<td>190-200</td>
<td>61</td>
<td>18</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td></td>
<td>210-240</td>
<td>17</td>
<td>29</td>
<td>29</td>
</tr>
<tr>
<td>79</td>
<td>III x L.F. Inbred</td>
<td>150-240</td>
<td>69</td>
<td>16</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>250-300</td>
<td>6</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>III x Inbred II</td>
<td>100-150</td>
<td>50</td>
<td>12</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>160-180</td>
<td>40</td>
<td>20</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td></td>
<td>190-230</td>
<td>15</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>III x lg 2</td>
<td>140-160</td>
<td>100</td>
<td>31</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td></td>
<td>170-180</td>
<td>50</td>
<td>16</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td></td>
<td>190-240</td>
<td>5</td>
<td>44</td>
<td>44</td>
</tr>
<tr>
<td>78</td>
<td>V x Inbred II</td>
<td>120-160</td>
<td>65</td>
<td>52</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td></td>
<td>170-230</td>
<td>32</td>
<td>37</td>
<td>37</td>
</tr>
<tr>
<td>60</td>
<td>VI x su2</td>
<td>140-200</td>
<td>77</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>210-220</td>
<td>12</td>
<td>42</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>230-260</td>
<td>10</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>VII x L.F. Inbred</td>
<td>70-110</td>
<td>73</td>
<td>11</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td></td>
<td>120-150</td>
<td>18</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>VII x Inbred II</td>
<td>70-120</td>
<td>63</td>
<td>16</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>130-140</td>
<td>39</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>150-200</td>
<td>21</td>
<td>19</td>
<td>19</td>
</tr>
</tbody>
</table>
Table 1 continued

<table>
<thead>
<tr>
<th>Relative length of extra chromosome</th>
<th>Trisomic Stock</th>
<th>Weight of seed in mg.</th>
<th>% tri-vids</th>
<th>No. of tri-vids</th>
<th>No. of random vids</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>VIII x L.F. Inbred 110-170</td>
<td>63</td>
<td>38</td>
<td>32</td>
<td>146</td>
</tr>
<tr>
<td></td>
<td>170-180</td>
<td>44</td>
<td>43</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>190-220</td>
<td>6</td>
<td>65</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VIII x j</td>
<td>200-230</td>
<td>33</td>
<td>18</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>240-260</td>
<td>33</td>
<td>18</td>
<td></td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>270-320</td>
<td>0</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>IX x v wx</td>
<td>120-160</td>
<td>46</td>
<td>13</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>170-180</td>
<td>71</td>
<td>24</td>
<td></td>
<td>113</td>
</tr>
<tr>
<td></td>
<td>190-220</td>
<td>3</td>
<td>76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>X x L.F. Inbred 220-250</td>
<td>48</td>
<td>54</td>
<td>26</td>
<td>149</td>
</tr>
<tr>
<td></td>
<td>260-270</td>
<td>12</td>
<td>52</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>280-310</td>
<td>12</td>
<td>43</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>X x vl8</td>
<td>200-230</td>
<td>58</td>
<td>12</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>240-250</td>
<td>35</td>
<td>20</td>
<td></td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>260-270</td>
<td>24</td>
<td>17</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Relative length of extra chromosome</th>
<th>Trisomic stock</th>
<th>Percent 2n + 1 plants</th>
<th>No. of individuals in progeny</th>
<th>Percent microspores with n + 1 chromosomes</th>
<th>No. of individuals</th>
</tr>
</thead>
<tbody>
<tr>
<td>85</td>
<td>II. x L.F.</td>
<td>50</td>
<td>139</td>
<td>50</td>
<td>212</td>
</tr>
<tr>
<td>79</td>
<td>III. x lg2</td>
<td>45</td>
<td>91</td>
<td>41</td>
<td>167</td>
</tr>
<tr>
<td>45</td>
<td>X x L.F.</td>
<td>26</td>
<td>149</td>
<td>34</td>
<td>190</td>
</tr>
<tr>
<td></td>
<td>X x vl8</td>
<td>37</td>
<td>49</td>
<td>33</td>
<td>109</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Relative length of extra chromosome</th>
<th>Trisomic stock</th>
<th>Percent microsporocytes with univalents in Met. I individuals</th>
<th>No. of individuals</th>
</tr>
</thead>
<tbody>
<tr>
<td>85</td>
<td>II. x L.F.</td>
<td>30</td>
<td>247</td>
</tr>
<tr>
<td>79</td>
<td>III. x lg2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>45</td>
<td>X x L.F.</td>
<td>49</td>
<td>372</td>
</tr>
<tr>
<td></td>
<td>X x vl8</td>
<td>37</td>
<td>300</td>
</tr>
</tbody>
</table>
5. Frequency of transmission of the extra chromosome in trisomes. Different trisomic stocks derived as maternal 21 chromosome plants from tetraploids show decided differences in percentage of trisomic plants in the progenies. Marked differences have also been observed in univalent frequencies, frequency of lagging in anaphase I and II and in other details of meiosis. A stock in which 40% of the progeny was found to be trisomic had one of the longer chromosomes in triplicate. Another stock producing 24% trisomic progeny had one of the shorter chromosomes in triplicate.

In order to test whether length of the extra chromosome can be correlated with frequency of transmission, known stocks have been studied. The data presented are incomplete but may be of some interest.

As the table indicates, the frequency of transmission of the extra chromosome through the egg varies from 22% to 52%. Different stocks of the same trisome show considerable variability in frequency of 2n + 1 progeny. However, there is a strong positive correlation between length of the extra chromosome and the frequency with which it is transmitted through the egg. Several of the cases which are out of line may be due to the small number of seeds available.

Such explanations as abortion of ovules or differential seed viability would not seem to account for the observed differences in frequency of transmission since a close correspondence is found between the percentage of progeny which is 2n+1 and the percentage of microspores with the n+1 number (see table 2).

Sporocyte studies, which have not yet been completed, indicate a greater frequency of univalents in the shorter chromosome stocks with more lagging in Met. I. and the formation of a greater number of micronuclei.

John Einset

Harvard University, Cambridge, Massachusetts

The readers of this Newsletter may be interested in some of my observations on maize in Mexico. I spent the months of July and August in that country, travelled approximately 8,000 miles in fifteen states and visited a number of the experiment stations.

Maize is the universal crop in Mexico. It is grown from sea level to altitudes of approximately 10,000 feet. One sees it everywhere, planted between peach and apple trees in temperate regions; between bananas and pineapples in the tropics. It is frequently encountered as an ornamental plant in front yards and parks. Volunteer maize plants appearing in a garden or field devoted to other crops are usually allowed to remain.
The average Mexican apparently has the same feeling toward the maize plant which the Southern negro exhibits toward a watermelon vine. It distresses him to see it destroyed.

The diversity of maize in Mexico is enormous. Near El Seco we saw many fields in which the plants were tasseling out at a height of about two feet. Near Monterey we saw fields irrigated with sewage water with stalks fifteen feet in height. We did not see the famous giant corn of the Jala Valley except in experimental plantings at the station near Leon.

Much of the diversity, however, is environmental. In many respects Mexican maize is quite uniform. Practically all of the maize plants of the great central plateau of Mexico are highly pubescent and uniformly pigmented, either sun red or purple. Practically all of the maize in all parts of Mexico shows strong external indications of contamination with Tripsacum.

It is a common opinion in Mexico that maize reverts easily to teosinte. A very intelligent Canadian manager of a large estate assured us that teosinte-like segregates appear in the maize fields even when there is no teosinte in the vicinity to cause contamination. He is of the opinion that the potentialities for producing teosinte by recombination exist in many Mexican varieties.

A well-planned program of maize-breeding under the direction of Ing. Edmundo Taboado, Dirección de Agricultura, Mexico, D.F., is in progress at several stations. Ing. Eduardo Limon in charge of the Campo Experimental at Leon, Guanajuato, is one of the most enthusiastic of maize breeders.

Because of the Mexican trip, I missed for the first time in twenty years, the usual summer pollinating season. However the work carried on by J. W. Cameron during my absence has resulted in several interesting developments. The most important of these is a study of knob numbers on the chromosomes of Guatemalan varieties. Two hundred varieties were grown and knob numbers determined for 162 of these. The number varies from 1 to 16, and involves every previously encountered knob position in maize as well as two unusual positions on No. 10. Knob number is correlated with several other factors. Pubescent varieties had an average of 6.2 knobs as compared to 11.6 for non-pubescent types. Varieties with low knob numbers usually have tender brittle stalks which lodge easily; those with high numbers usually possess strong tough stalks. There is a relation between the altitude at which the corn was collected and knob number. Tentative averages based on the altitude data so far available are as follows:

<table>
<thead>
<tr>
<th>Altitude (meters)</th>
<th>Knob Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>12.6</td>
</tr>
<tr>
<td>1000</td>
<td>10.7</td>
</tr>
<tr>
<td>1500</td>
<td>10.8</td>
</tr>
<tr>
<td>2000</td>
<td>7.5</td>
</tr>
<tr>
<td>2500</td>
<td>5.5</td>
</tr>
</tbody>
</table>
Finally, types described on the basis of the general appearance of the ear as "Andean" proved to have a low number of knobs, 4.7, as compared to the population as a whole, 7.9. The results are in general agreement with the hypothesis (Mangelsdorf and Reeves) that corn with knobless chromosomes was introduced from South America into Central America where it hybridized with Tripsacum to produce teosinte and new Tripsacum-contaminated varieties of maize with knobby chromosomes. The South American types apparently still persist in a relative state of purity at the higher altitudes in Guatemala.

P. C. Mangelsdorf

University of Illinois, Urbana, Illinois

1. The gene rt appears to be close to d (chromosome 3). In a progeny of eight plants (backcross repulsion phase), all the normal plants were rt and dwarf plants Rt.

2. The dwarf types reported in the 1941 News Letter may be located in chromosome 3, at about 24 (assuming the chromosome reversed with cr at 0).

3. A leaf spotting has been discovered in one of our inbred lines. It is a simple recessive to the normal.

C. M. Woodworth

University of Minnesota, University Farm, St. Paul, Minnesota

1. A new sugary, located by Horovitz in chromosome 6, was sent to me. A test with su2 indicates these two genes are probably alleles, although the test was not very clearcut.

2. Glossies - The third-leaf glossy, gl4 according to tests at that time, reported by Hayes as being linked with waxy (8% recombination, Coöp Letter April 1939), is the same as the Coöp, glossy 10, Coöp number C37-110 (1) (x). This glossy 10 is different from Sprague's glossy 10.

3. A group of unlinked genes is being tested for linkage in chromosome 6.

C. R. Burnham

4. Further studies have been made with chromosomal interchanges and the Minn. #13 smut resistant inbred line first reported by Saboe and Hayes, Jour. Amer. Soc. Agron. 33: 463-470. The long arms of #3, #7, and #8 and the short arm of #6 seem definitely to carry factors for smut reaction.

Lewis C. Saboe
Missouri Botanical Garden, St. Louis, Missouri

1. Tripsacum. With Dr. Hugh Cutler a preliminary survey of the genus Tripsacum has been published (separates available on request). The most important new fact turned up is a Tripsacum indigenous to South America from the Amazon Basin to Colombia. The numerous specimens from that region have at least one unique character and cannot therefore be recent introductions as had previously been supposed. The genus is so complex that it will take a decade to work out a complete and detailed monograph. In the meantime we shall be grateful for viable seeds or for chromosome counts of any species of Tripsacum from known localities.

2. Races of Maize. Cutler's collections of Mexican and Guatemalan maize have made it possible to begin another long-time project, the determination and description of the races of maize. While Sturtevant's classification (dents, flints, pops, etc.) is adequate as a cataloguing device there is also need for at least a rough grouping indicating general relationships in somewhat the same way that anthropologists analyze human variation. For such a grouping it is necessary to know as much as possible about the entire plant, tassel and leaf as well as ear and grain. We have therefore built up an herbarium of as many corn varieties as possible, including with the ear, herbarium specimens of seedlings, leaves, and tassels and notes on the number of nodes above the ear, the height of the plant, etc. For a considerable number of our collections duplicate specimens have been prepared in St. Louis, Texas, and Cuba. In addition to Cutler's collections we grew George Carter's extensive collection of Indian varieties from the southwest and a few unusual varieties such as Louisiana Gourdseed.

From an examination of the herbarium material the following characters were chosen as most indicative of general relationship: row number; kernel width, length, and thickness; mid cob width; number of tassel branches; length of glume (tassel); percentage of condensed internodes in tassel; pedicel length of pedicillate spikelet; percentage of sub-sessile pedicillate spikelets; length of sterile zone at base of tassel branches; pubescence of sheath.

By the use of these criteria our Mexican and Guatemalan collections can be divided into at least three main races, Big Grains, Mexican Pyramidals, and small-seeded Tropical Flints. The Big Grains are big cobbled and big kerneled with more or less enlarged butts. While they may be flour or flint they are characteristically more or less dented. The small-seeded Tropical Flints are not only exceedingly straight-rowed but the kernels are very uniform in diameter so that a row of them looks like a stack of pearl buttons seen from the side. They are all flints, have small cylindrical ears, and are prevailingly bright-colored. The Mexican Pyramidals are the common race in Mexico City and adjacent portions of the plateau. Important to U.S. corn breeding because most of their distinguish-
ing features, in a more or less diluted form, are found in cornbelt dents. They have a short pyramidal ear with long (often pointed) kernels. They are nearly all dents or semi-dents and the majority of them are white. They have few tassel branches and large glumes so that they are strikingly different from most other races and have been commented upon by Bonafous and Bukasov. The Indian corns of the southwest go into two races, the Pima-Papago and the Pueblo, the latter being closely allied to the Big Grains. Median values for representatives of these five races (and subraces) in our collections are as follows:

<table>
<thead>
<tr>
<th></th>
<th>Guatemala Big Grain</th>
<th>Tropical Flints</th>
<th>Pueblo</th>
<th>Pima-Papago</th>
<th>Mexican Pyramidal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mid-cob width</td>
<td>30</td>
<td>22</td>
<td>26</td>
<td>22</td>
<td>20</td>
</tr>
<tr>
<td>Kernel width</td>
<td>10</td>
<td>7</td>
<td>9</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Kernel thickness</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Kernel length</td>
<td>10</td>
<td>9</td>
<td>10</td>
<td>8</td>
<td>14</td>
</tr>
<tr>
<td>No. of tassel branches</td>
<td>20</td>
<td>21</td>
<td>18</td>
<td>10</td>
<td>14</td>
</tr>
<tr>
<td>Length of sterile zone</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Percent condensed internodes</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>40</td>
</tr>
<tr>
<td>Percent sub-sessile spikelets</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>50</td>
</tr>
</tbody>
</table>

It will be seen that on the whole the Big Grains are at one extreme and the Mexican Pyramidals are at the other. It is also to be noted that the Pima-Papago race while similar to the Tropical Flints in cob-size and grain-size is far removed from them in all other characters. Collins (in Guernsey and Kidder 1921) was therefore in error in identifying the prehistoric Basketmaker corn (which is practically identical with the modern Pima-Papago) with the Tropical Flints.

3. Southwestern races of maize. In the southwestern United States our collection of varieties is complete enough and the situation is so comparatively simple that we can generalize more completely than in Central America. Southwestern maize goes in two races plus a few obvious recent admixtures and an extensive series of intermediates between the two extremes. One race (the Pima-Papago) has been in the country a much longer time and is not now commonly grown by the Pueblo-dwelling Indians.

The Pueblo race is the big-shanked, long-eared, usually bright colored maize which is commonly sold to tourists. While it may be either flour or flint it has a strong tendency to be at least slightly dent. Characteristically it has short internodes immediately above the node of the upper ear and its tillers are morphologically unlike stalk in height, tassel, and ear. It is grown by all the Pueblo-dwelling Indians as well as
by the Navahos and Apaches.

The Pima-Papago corn, though extensively grown, is from districts so remote that it is seldom seen in collections. It is small-grained and small-cobbed and either white or bright light yellow. It is small-shanked and ears often taper as much to the butt as to the tip. While the kernels are in rows, the sulci between them are scarcely apparent and the kernels have somewhat the appearance of tiles in a mosaic. Characteristically the internodes of the main stem do not shorten above the ear and the tillers, in height, ear, and tassel are similar to the main stalk. It is grown by the Pima and the closely allied Papago and to a lesser extent by neighboring tribes. It is of peculiar interest because its ears are almost identical with those of the prehistoric Basketmaker Corn which according to dendrochronological reckoning appeared in the southwest about A.D. 300.

Since everyone to whom we have shown the collection has asked whether our work gives evidence for or against Mangelsdorf and Reeve's theory, it may be well to add that while in general it supports them, we have as yet no conclusive evidence for or against. It is already abundantly clear, however, that maize has had a complicated career in Central America.

We will be grateful for viable seed of old or unusual varieties.

Edgar Anderson

University of Missouri, Columbia, Missouri

1. Comparison of Xray and Ultra-violet Mutations of A.
The origin of the Xray and UV mutants compared in this study, and observation on their phenotypic effects, viability and reaction to Dt, were given in the last News Letter. All three Xray mutants showed more or less reduction in gametophytic viability and were zygotically lethal; all four UV mutants were fully viable, regularly transmitted through male and female germ cells, and readily established as homozygous recessives.

This suggests that the Xray mutants are probably deficiencies too small for cytological identification and too slight in effect to be lethal in haplophase, but it leaves open the possibility that they are alleles of A with lowered viability.

With losses too small for cytological detection, the only proof of deficiency is genetic evidence of the loss of associated loci. McClintock's study of Bm ring-chromosomes showed the possibility of identifying loci in a deficiency through their effects upon tissue within a sector made homozygous deficient by loss or modification of the covering ring.

We were fortunately able to obtain a ring including the A
locus. The origin of this ring is an interesting story in it-
self, but it will not be included here. The ring carries the
gene A^b, and its behavior is similar to that described by
McClintock. It is maintained in a stock otherwise homozygous
for a. Crossed on standard a stocks it gives sectors of a tis-
sue in both the aleurone and the plant.

Ring bearing plants otherwise homozygous for the Xray
mutant a^X were obtained for comparison by crossing and back-
crossing as follows:

\[(1) \ a^X \ a^P \times a \ a \ A^b \text{-ring} \]
\[(2) \ a^X \ a^P \times a^X \ a \ A^b \text{-ring} \]
\[(3) \ a^X \ a^P \times a^X \ a^X \ A^b \text{-ring} \]

Cross (1) gives mostly pale and colorless seeds, but also
a considerable number of colored seeds, all of which are mosaic
for pale or colorless. These are the ring-bearing individuals.
Cross (2) yields mosaic colored seeds similarly, but among them
there is included a new class in which the mosaic regions are
of shriveled, degenerate tissue. These are the $a^X \ a^X \ a^X \ A^b$-ring
individuals. In cross (3) this class comprises nearly half of
the mosaic seeds. The remainder (without degenerate tissue)
are all phenotypically a^P in the mosaic regions, and represent
the $a^X \ a^P \ A^b$-ring class.

The sectors produced in plants grown from these two types
of seed are very different. In the plants with a^P the sectors
are of wholly normal tissue, lacking only the anthocyanin char-
acteristic of A^b. They include both large and small sectors.
In the plants homozygous for a^X the sectors are small, and many
show reduced growth leading to distorted development of the
plant. Their most conspicuous feature is lack of chlorophyll.
These sectors, whenever they occur in regions in which antho-
cyanin develops, show normal anthocyanin. In other words, they
do not show the loss of A^b. Very rarely a sector is found with
loss of anthocyanin and with no loss of chlorophyll. In four
cases we have found narrow sectors showing loss of both antho-
cyanin and chlorophyll, and each of these occurred as a second-
ary sector within a larger sector showing loss of chlorophyll
without loss of anthocyanin.

We interpret this to mean that the mutant a^X represents
the loss of not only the A factor but also of a separable fac-
tor essential to chlorophyll development, and possibly of
another essential to tissue survival. If the sectors showing
loss of chlorophyll without loss of anthocyanin have the
genetic constitution indicated by their phenotype, the separable
viability factor must be assumed. The absence of primary sec-
tors showing loss of both chlorophyll and anthocyanin would
indicate that simultaneous loss of the two factors is lethal,
while the occurrence of sectors deficient for both as a result
of consecutive losses would show that the lethal effect is not
due merely to deficiency of these two factors. It would there-
fore have to be ascribed to a separable portion of the ring
which is regularly eliminated when A and the chlorophyll fac-
tors are lost simultaneously. It is possible however that the
sectors are in fact deficient for A^6. Their anthocyanin pig-
mentation is normal, but since the sectors are small it is pos-
sible that this may be a result of diffusion from the neighbor-
ing non-deficient tissue. If this is true, the assumption of a
viability factor separable from A and the chlorophyll factor is
not required.

The description given above for a^- a^-Ring plants applies
also to the compounds a^X4 a^X1-Ring and a^X6 a^X6-Ring. This shows
that a^X1 and a^X6 also lack the associated factor or factors. We
have not yet succeeded in producing a plant which could be
proved to be homozygous a^X1 a^X1 Ab-ring or a^X6 a^X6 Ab-ring. It
is possible that both a^X1 and a^X6 involve more loss than a^X4.
a^X6 is distinctly lower in male transmission than a^X4, while
a^X1 is distinct from both in having visibly defective pollen
and no male transmission. The most extreme mutant, a^X1, reduces
crossing-over between A and E_t, though there is no visible indi-
cation of deficiency in the pachytene chromosome.

The results indicate that the apparent mutations of A in-
duced by Xray treatment are in fact minute deficiencies. The
original series of Xray-induced A-losses from which the mutants
were selected included, in addition to obvious extreme defi-
ciences, several less defective plants with segregating pollen
not wholly aborted but distinctly sub-normal in development.
a^X1 was a representative of this class. The A-losses with
normally developed and partially functional pollen, a^X4 and
a^X6, apparently represent simply the extreme of the continuous
series of intercalary deficiencies of varying length induced by
Xray treatment.

On the contrary, the UV mutants, a^U3, a^U15, and a^U18, sim-
ilarly tested with the ring-chromosome, behave precisely as do
the standard alleles, aP and a, and their sectors are pheno-
typically identical with those of standard a.

The UV mutants, unlike the X-ray mutants, appear in the F1
from treated pollen as a class distinct from the deficiencies
produced by the treatment. The series of UV-induced A-losses
included, in addition to the three mutant a's and the inter-
mediate allele A^1b, a large number of extreme deficiencies with
distinctly defective growth and aborted pollen, but none of the
intermediate type with subnormal pollen. This may be due to
the rarity of intercalary deficiencies induced by this agent.
Although it is reasonable to assume that intercalary deficien-
cies may sometimes be induced by UV (since translocations are),
it is clear that the UV mutations are much too frequent to be
accounted for in the way suggested above for the Xray mutations.
If the UV mutants are deficiencies they are deficiencies of a
different order. They show no difference from standard a ex-
cept in their failure to mutate under the influence of Dt. As
previously stated (News Letter 1941: 45), this is not convinc-
ing evidence against intragenic mutation.

L. J. Stadler and Herschel Roman

2. Translocations involving B chromosomes. Eight translo-
cations between A and B chromosomes have been obtained from B-
bearing pollen treated with X-rays. The A chromosome of six of
these has been identified and the approximate position of break-
age points determined, as follows:

<table>
<thead>
<tr>
<th>Translocation</th>
<th>Cytological Position</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A chromosome</td>
</tr>
<tr>
<td>T1-B</td>
<td>S .1</td>
</tr>
<tr>
<td>T2-B</td>
<td>S .2-.3</td>
</tr>
<tr>
<td>T4-B</td>
<td>S .2</td>
</tr>
</tbody>
</table>
| T6-B | S (dividing nuc-
 | leolar organ-
 | izing body) | heterochromatin? | |
| T7a-B | L .9-1.0 | junction |
| T7b-B | L .35 | euchromatin |

*This is the junction of the euchromatic region and the
large heterochromatic region.

All of these except T7a-B were tested for male and female
transmission. The female transmission was quite normal but the
male transmission was distinctly low. For example, a plant
heterozygous for T2-B in which the translocation was marked by
V4 and the normal chromosome by v4, when used as the male
parent on homozygous v4, gave 80 V4 : 164 v4 F1 seedlings.
There is considerable crossing over between V4 and the point of
breakage so that the frequency with which the translocation is
transmitted is less than the ratio indicates. Similar crosses
with T4-B, in which the translocation was marked by Su and the
normal chromosome 4 by su, when crossed on su gave 253 Su : 797
su. Since very little, if any, crossing over occurs between Su
and the point of breakage the ratio of Su : su probably repres-
ts a close approximation of the frequency with which T4-B is
transmitted.

Evidence that a heterozygous A-B translocation when used
as the male parent produces hypo- and hyperploid F1 plants sug-
gested that the low male transmission was a result of non-
disjunction in the second microspore division. Hyperploid
plants from T1-B, T2-B, T4-B, T7a-B, and T7b-B were identified
cytologically and were found to contain the heterozygous trans-
location plus an extra translocation chromosome. Thus the
extra chromosome must have resulted from non-disjunction either
at meiosis or elsewhere. In every case the extra chromosome
was the translocation chromosome which possessed the B chromosome centromere.

The production of hypoploids was demonstrated when plants heterozygous for an A-B translocation and carrying only dominant factors were crossed on plants carrying appropriate recessives. The data from this type of cross are given in the following table.

<table>
<thead>
<tr>
<th>Crosses</th>
<th>Frequency of recessives appearing in F<sub>1</sub></th>
<th>Per Cent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Su su x T4-B/normal, Su Su</td>
<td>52 su/423</td>
<td>25*</td>
</tr>
<tr>
<td>su x T4-B/normal, Su Su</td>
<td>31 su/92</td>
<td>34</td>
</tr>
<tr>
<td>02 gl x T7b-B/normal, 02 02 Gl Gl</td>
<td>0 02/63</td>
<td>0</td>
</tr>
<tr>
<td>Li Li Gl gl x T7b-B/normal, Li Li Gl Gl</td>
<td>21 gl/63</td>
<td>33</td>
</tr>
<tr>
<td>Li Li Gl gl x T7b-B/normal, Li Li Gl Gl</td>
<td>6 Li gl/42</td>
<td>28*</td>
</tr>
</tbody>
</table>

*These values have been corrected for the fact that the female parent was heterozygous rather than homozygous recessive.

The appearance of the recessive character in the F₁ is due to the loss of the translocation chromosome bearing the factor for the corresponding dominant. Since Gl is nearer the end of the long arm of chromosome 7 than 02, the loss of Gl without the loss of 02 must mean that the absent chromosome is the one possessing the B chromosome centromere.

Proof that non-disjunction occurs at the second microspore division was obtained from a cross using a hyperploid plant from T2-B as the male parent. Twenty-three F₁ plants were examined cytologically. Of the twenty-three, twelve were hyperloid like the male parent; seven were euploid, heterozygous for the translocation; and four were euploid, homozygous normal. The occurrence of twelve hyperploid plants, which could have resulted only from non-disjunction, and the absence of other classes that would be expected with the same frequency from non-disjunction elsewhere show that non-disjunction occurs only at the second microspore division.

The frequency with which non-disjunction occurs may be roughly estimated from the data in the table demonstrating hypoploidy. The maximum frequency with which the recessive may appear is 25% (corresponding to 100% non-disjunction) if the hypoploid plants are viable (as they certainly are in the case of T7b-B and probably also in T4-B). The fact that the observed frequencies equal and exceed this value cannot be taken too seriously since these data were obtained from a limited series of crosses and may be effected by the presence of associated transmission factors. It is known from cytological
evidence that the frequency of non-disjunction is not 100%. But the data do suggest a very high frequency and further experiments to determine this with accuracy in each of the A-B translocations are in progress.

Will non-disjunction account for the anomalous male transmission of the intact B chromosome? The combined data of Longley and Randolph, from a cross of a 1B male on a O8 female, gave 108 plants with no B chromosomes, 35 with 1, 20 with 2, and 2 with 3 B chromosomes. We should expect, from 50% non-disjunction, 105 plants with no B's, 41 with 1, 21 with 2, and none with 3 B chromosomes. The observed 3 B chromosome plants may be accounted for in other ways. The close fit indicates that the mechanism for the aberrant male transmission of A-B translocations is identical with that of the intact B chromosome.

Can we localize the cause of non-disjunction within the B chromosome? The heterochromatic region may be excluded as a factor in non-disjunction for in T7b-B the chromosome undergoing non-disjunction does not contain this region. Furthermore, non-disjunction is not related merely to the shortness of the chromosome for in the case of T1-B the translocation chromosome undergoing non-disjunction is longer than the normally behaving short A chromosomes. Consequently, the cause of non-disjunction is related to the position or the special nature of the B chromosome centromere or to some factor in the proximal portion of the euchromatic region of the chromosome.

3. Some uses of A-B translocations. The B chromosome provides a centromere to which specific segments of A chromatin may be translocated. The exceptional behavior of the resultant chromosome in the second microspore division provides a mechanism for the accumulation of this chromosome for various cytogenetic problems in which duplications are useful. One application of this, now in progress, is a study of the effect of accumulation on the phenotype of recessive and intermediate alleles, using T2-B for a comparison of B, B^w, and b in various doses.

The fact that A-B translocations produce functional gametes deficient for as much as a whole arm of an A chromosome provides a tool for the location of recessive genes in the physical chromosome in a single generation. One would simply cross known A-B translocations on the recessive in question. If the locus of this gene is in the translocation chromosome with the B centromere, the recessive phenotype will appear in the F1. For example, if the recessive is located in the distal four-fifths of the short arm of chromosome 4, it will appear in the F1 of a cross by T4-B. The results summarized in the table place Su in this region. Likewise G1 and Ij are in the distal two-thirds of the long arm of chromosome 7, whereas O2 is not in this segment. An extensive planting for new A-B translocations involving different segments of the A chromosomes is planned for this summer.

Herschel Roman
4. The Anthocyanin Pigments of Corn. According to Sando et al, the plant pigment of purple corn (\(\text{A B Pl R}^2\)) is chrysanthemin. The anthocyanin pigments present in other types have not previously been reported.

The anthocyanins which occur most commonly as flower color pigments (glycosides of pelargonidin, cyanidin, delphinidin, peonidin, malvidin and petunidin) may be identified by simple qualitative tests outlined by Robinson and Robinson. The reactions of many less commonly occurring anthocyanins and of some synthetic anthocyanins not known to occur naturally have been summarized by Karrer.

Robinson's qualitative tests have been applied to the pigments extracted from numerous genetic types of corn. Although some of the pigments were identifiable with the qualitative tests, there were several which proved to be distinctly different in their reactions from the common flower pigments listed above.

An \(F_2\) of the hybrid \(a_{Fr} b_{Fr} p l R^2 \times A_{Fr} B_{Fr} P l R^P\) was closely examined for color variations. In addition to the familiar plant color types expected from this cross, there were various minor modifications which have not previously been analyzed genetically. Plant material was taken from many of these plants for analysis, and all of the plants were self-fertilized.

The "A" type plants (\(A B Pl\)) in this hybrid population fall into three fairly distinct groups: (1) deep bluish purple, (2) deep reddish purple (maroon) and (3) light, distinctly reddish purple (dilute). The anthocyanins extracted from these plants included typical pelargonidin as well as typical chrysanthemin, and also in several cases pigments giving a typical reaction. The pigment differences are not always evident from the external appearance of the plant. Both chrysanthemin and pelargonidin are found among the deep bluish purple plants and among the maroon plants, but chrysanthemin is not found in the "dilute" class.

In \(F_3\), pure breeding families of the above described types were established. One deep bluish-purple family contained typical chrysanthemin. One deep bluish purple, indistinguishable from the chrysanthemin family except by anther color, contained a pigment which differed only slightly in reactions from pelargonidin 3-monoside, and one family of reddish purple (maroon) had pigment apparently identical to that of the deep purple pelargonidin type. A pure breeding "dilute" family showed typical pelargonidin 3-monoside reactions.

The pigment of "B" type plants (\(A B pl\)) showed reactions not typical of any of the commonly occurring anthocyanin types. Although there was variation in intensity of pigmentation comparable to that among the "A" type plants, no differences in the pigment of the different "B" type plants have been established.
The variation in intensity of the "E" type (aBFl) plants is correlated, at least to a large extent, with that of "A" type plants. In families with "A" type plants mostly deep purple, the "E" types were mostly deep brown and in families of "dilute" pigmentation it was difficult to distinguish a B Fl from a B Pl plants until the plants were nearly mature.

The pure breeding pelargonidin families of this stock were recessive pr but in many plants of this hybrid the Pr separation was doubtful. Therefore tests were made on different hybrids with positive Pr separation to establish this relation. In the first planting, the Pr plants, (6 in number) all contained chrysanthemin and the pr plants (8 in number) pelargonidin 3-monoside. In tests on the Pr and pr plants from six ears of the progeny of this family (self-fertilized or back-crossed) the same results were obtained. The pigment was found to be the same in all parts of the plant, including roots, coleoptile, sheath, husks, cob and aleurone.

Analyses have been made of pigments characteristic of other A alleles, in plants with B and Fl. Ab gives chrysanthemin indistinguishable from that of A plants of the same culture. Standard Ap, several mutant A's (by spontaneous mutation from A), and Alt, (an ultraviolet mutant of A), all give mixtures of anthocyanin and flavonol in varying proportions. The anthocyanin in these mixtures, however, is distinct from that produced by A and Ab, and resembles in some reactions the pigments of sun-red plants.

J. E. McClary

5. Experiments on Gene Action in Anthocyanin Synthesis. In those genotypes which normally produce anthocyanin in the root, excised roots cultured on media containing glucose and mineral nutrients produce anthocyanin abundantly. Anthocyanin therefore may be synthesized by the cell from externally supplied glucose, without the intercession of other substances derived from the overground parts of the plant. The genes essential for root color in the dark are A (or Ab), A2, Fl, and a suitable R allele (Rch, Rch, and some but not all R's and r's). B is not essential and does not replace R.

It may be possible to learn something of the course of synthesis of anthocyanin, and of the role of various genes affecting it, by physiological experiments with excised tissues, testing the effects of postulated intermediates between glucose and anthocyanin, of specific enzyme inhibitors, of diffusible substances extracted from plants of contrasting genotype, etc.

Experiments with intermediates supplied in place of glucose cannot well be made with excised root-tip cultures, because the addition of some glucose or fructose is necessary to keep the roots growing. An intermediate would have to replace glucose in general metabolism as well as in anthocyanin.
synthesis to give positive results. Minimal quantities of sugar will maintain slow growth with little or no anthocyanin production, and experiments may be made with intermediates added to increase the anthocyanin yield.

A more satisfactory technique is to use sections of mesocotyl or leaf blade from young seedlings, since cell division is not a factor and since differentiated cells capable of anthocyanin production are present from the start. These sections remain alive for several days in buffer solutions, dilute salt solutions, or pure water. In suitable genotypes, they fail to produce anthocyanin unless sugar is added, while with added glucose or fructose they produce anthocyanin abundantly. Although these sections may contain reserve carbohydrate which may be used in the synthesis of anthocyanin, they cannot complete the synthesis without something which they obtain from added glucose.

Leaf blades from mature plants also serve very well in A^c stocks (with A^b P^l), and quite well in R^c. Anthocyanin is produced poorly in mature leaf tissues with the best of the R^p and P^p alleles tested, and not at all with some. Mature leaves are convenient material, especially for producing the quantities of pigment required for chemical analysis.

Several preliminary experiments of this type were performed this winter, and some of the results are summarized below.

Galactose, which does not support the growth of excised root tips, may be substituted for glucose in the production of anthocyanin in leaf or mesocotyl tissue. On the contrary, mannose, l-sorbose, and l-rhamnose give no anthocyanin.

The pentoses, xylose and lyxose, give a good yield of anthocyanin, while arabinose (both d- and l-forms) and ribose fail.

Some modifications of the C$_1$ and C$_6$ groups in the glucose molecule may be made without preventing the production of anthocyanin. Sorbitol and glucuronic acid yield anthocyanin; -methyl-glucoside and gluconic acid do not.

The trioses, glyceraldehyde and dihydroxyacetone, in phosphorylated form, are produced from glucose in the normal course of respiration. Either glyceraldehyde or dihydroxyacetone (unphosphorylated), supplied in place of glucose, will permit the production of some anthocyanin, more in the case of glyceraldehyde than of dihydroxyacetone.

Various specific enzyme inhibitors or poisons have been supplied over a range of concentration extending to the toxic limit, without producing a distinct reduction in the yield of anthocyanin from glucose. These include cyanide, azide, iodoacetate, fluoride, malonic acid, urethane and maleic acid. Certain other inhibitors show possible effects which are still
under study. The only substance which in catalytic concentra-
tions shows inhibition of the production of anthocyanin from
glucose, in the trials made so far, is 2-4-dinitrophenol. This
is a well-known stimulant of respiration and glycolysis, and
may reduce anthocyanin synthesis competitively by diverting
glucose to other channels. At concentrations of the order of
10^{-5} molar it inhibits anthocyanin production, and at lower
concentrations it reduces materially the quantity of anthocya-
nin produced.

A possible hypothesis is that anthocyanin is produced by
condensation of two phenol derivatives, related to phlorogluc-
inol and catechol, with a 3C unit derived from glyceraldehyde.
The effect of A would be a reduction in the 3C unit, which
might occur either before or after the condensation. If the
reduced 3C substance in A stocks were glyceraldehyde itself, it
might be possible to produce anthocyanin in tissue lacking the
A gene by supplying this substance. This was tried, unsuccess-
fully, with a, a^D, a^L, and a^2. Similar trials with dihydroxy-
acetone, glycerol, and hydroxypyruvic aldehyde (all of which
produce some anthocyanin in A tissue) also failed. Experiments
in this direction with various 3C substances are being contin-
ued, together with analogous experiments with catechol deriv-
atives and 6C-3C compounds in relation to the Fr effect.

The experiments mentioned are of course merely exploratory
trials, made chiefly to test the feasibility of the general
approach and to determine which aspects, if any, have suffi-
cient promise to justify more intensive study. Obviously,
neither the positive nor the negative effects of specific sub-
stances upon anthocyanin production may be interpreted in terms
of the place of these substances in biosynthesis, without care-
ful study of their other physiological effects.

L. J. Stadler

United States Department of Agriculture
and Iowa State College, Ames, Iowa

Backcross data indicating the order of the genes $gs2$, B
and lg are given below.

\[+ B lg\]

\[
gs2 + + \quad 211 \quad 11 \quad 84 \quad 4 = 310
\]

The linear order and map distances are: $gs2$ 4.8, B 23.4, lg.

G. F. Sprague
University of Wisconsin, Madison, Wisconsin

Below are given the results of a backcross test with Golden 2 against translocation 3-7b. In the light of our earlier report (M.G.C. N.L., 3-23-37, p. 14) that g_2 was possibly linked with d, the indication is that g_2 is in chromosome 3. Chromosome 7, however, is not excluded.

\[
\begin{array}{cccc}
T^{+} & T_{g2} & ++ & +g_2 \\
139 & 19 & 19 & 160 = 337 \\
\end{array}
\]

Percent recombination = 11.3

R. A. Brink and D. C. Arny
There is presented here a list of papers on maize, probably an incomplete one. No long search of the literature has been made. Fraser did a better job last year.

R. A. Emerson

Clark, Frances J. - Preliminary investigations in Zea mays of the germination capacity of pollen with aberrant nuclei. Abst. in Genetics 27, p. 137. 1942.

__________ - Genetic characteristics of the B chromosomes in maize. Genetics 26: 608-631. 1941.

__________ - The influence of heterozygosis on fertility and vigor in autotetraploid maize. Abst. in Genetics 27, p. 163. 1942.

Roman, Herschel - Translocations involving "B" chromosomes in maize. Abst. in Genetics 27, p. 167. 1942.

IV. Inventory of Seed Stocks Propagated in 1940 and 1941

A complete list of all Coop stocks on hand at the close of the 1939 season appeared in the 1940 News Letter. The symbol (x) = selfed and # = sib crossed.

1940

Co 40-1 and 2 (x) Inbred I (U.S. 204) PWR Y A b pl, also pollinated with y Hadjinov's gl5, may seg. v_x (93); may seg. pr yg_a (83); PWR Y cr "white stripe", may seg. wx pg2 lg_x (95); gl4, may seg. y pr c sh wx ws (113); may seg. y wx B Pl f Hadjinov's gl5 (101); seg. at, may seg. y I? si ts2 br f bv (107); pr v3, may seg. su (51); lg B/A/Pr/ y pl/C RGE/bmX S_X, may seg. v_x (69); PWR, may seg. y pr RGE RHj? su B Pl lg_x g d7 v_x (115); suam? ba2, may seg. y pr Pl v_x f? lg_x (112); Y rt, may seg. pr Pl dx bl? (124); PWR Y f_x pk? sk_x, may seg. ms_x dx (74); Y A b Pl vb, may seg. P v_x (109); P a sh wx f lg_x, may seg. su (71); ws2?, may seg. y pr li g (119); sh pk, may seg. y lg_x v_or l_x (64); may seg. pr su wx? pga (94); y a C r pr wx, may seg. ys_x (116); wx? may seg. y Bn? an_x v6 dx cr_x (81); P a br f, may seg. bm2 nl2 w_x (123); may seg. dx a d^D (114); A B pl Rg Lg3 d^a, may seg. y Bn? anx (129); 34 ears

40-3 and 4 (x) Inbred II (West Branch) Y A b pl, also pollinated with PWR Y cr "white stripe", may seg. wx pg2 lg_x (95); lg B/A/Pr/ y pl/C/RGE/bmX S_X, may seg. v_x (69); Y rt, may seg. pr Pl dx bl? (124); may seg. pr su pg_a (94); Pr, may seg. P pg g (65); 14 ears.

40-5 and 6 (x) Dutton's Flint Inbred Y, also pollinated with PWR, may seg. y pr RGE RHj? su B Pl lg_x g d7 v_x (115); Y rt also Rg, may seg. pr Pl dx bl? (124); PWR Y f_x pk? sk_x, may seg. ms_x dx (74); Y cr_x, may seg. Bn? v6 dx cr_x (81); "Deep Y" lg gl4, may seg. v_x bm_x (103); lg B/A/Pr/ y pl/C/RGE/ bmX S_X, may seg. v_x (69); seg. sk, may seg. PWR y dx blx v_x cr_x (84); sh pk, may seg. y lg_x v_or l_x (64); f, may seg. y wx B Pl Hadjinov's gl5 (101); Y wx?, may seg. pr su ar_a (93); 19 ears

40-7 (x) F2 involving PWR Y Pr wx, may seg. yg_a; 3 ears

40-8 (x) F2 involving P sk, may seg. v_x lg_x; 4 ears

40-9 (x) F2 involving P wr Y y pr su sp?; 4 ears

40-10 (x) F2 involving P wr Y zb4; 3 ears

40-11 (x) F2 involving PWR Y R^B, may seg. j; 1 ear

40-12 (x) PWR Y y Rst Pr; 1 ear

40-13 (x) PWR Y y A C RHj Pr wx?; 5 ears

40-14 (x) PWR Y y RGE Pr; 3 ears

40-15 (x) PWR P^v Y y A C R^G Pr su; 4 ears
Co 40-16 (x) F₂ involving PWR Y v7-striped; 3 ears
" 40-17 (x) " PWR Y o B vx; 5 ears
" 40-18 (x) " P Y aP B Pl, seg. b pl; 5 ears
" 40-19 (x) " PWR Y y wx? v18; 4 ears
" 40-20 (x) " PWR Y fs; 5 ears
" 40-21 (x) " PWR Y y zb4 br f bm2 wx?; 3 ears
" 40-22 (x) " PWR Y A b lg gl2 ts v4, seg. Pl; 4 ears
" 40-23 (x) " PWR Y y A b pl ws3 lg gl2; 4 ears
" 40-24 (x) " PWR Y y A b pl lg gl2 fl v4; 5 ears
" 40-25 (x) " PWR Y y d lg2, seg. anX, may seg. pm; 5 ears
" 40-26 (x) " PWR Y y d a lg2, may seg. ts4; 5 ears
" 40-27 (x) " PWR Y y sh wx gl4 vx; 3 ears
" 40-28 (x) " PWR Y yg2 sh wx gl4 lg; 5 ears
" 40-29 (x) " PWR Y y wx gl4 vx; 4 ears
" 40-30 (x) " PWR Y y zb5, may seg. g nl; 3 ears
" 40-31 (x) " PWR Y y Pl "brown stripe", may seg. small ar-like stripe; 2 ears
" 40-32 (x) " Y Pr wx, may seg. yg4; 4 ears
" 40-33 (x) " P Y y sk, may seg. v4 lgX; 4 ears
" 40-34 (x) " Y y Rst? Pr su sp?; 3 ears
" 40-35 (x) " Y zb4; 5 ears
" 40-36 (x) " Y Rmb, may seg. j; 4 ears
" 40-37 (x) " Y y Rst Pr; 4 ears
" 40-38 (x) " Y y Rgg Pr; 4 ears
" 40-39 (x) " PYY A C Rgg Pr pr wx?; 5 ears
" 40-40 (x) " Y y Wh? su rrr; 3 ears
" 40-41 (x) " PWR Y v7-striped; 4 ears
" 40-42 (x) " Y o Vx; 3 ears
" 40-43 (x) " P Y y ap B Pl, seg. b pl p; 4 ears
" 40-44 (x) " Y fs; 2 ears
" 40-45 (x) " Y y zb4 br f bm2 wx?; 4 ears
" 40-46 (x) " Y y vx? ws3 lg gl2; 5 ears
" 40-47 (x) " Y y lg gl2 fl v4; 4 ears
" 40-48 (x) " PWRY d lg2, may seg. pm; few seeds
" 40-49 (x) " Y yg2 sh wx gl4 lg; 4 ears
" 40-50 (x) " Y y wx gl4 vx; 5 ears
" 40-51 (x) " Y y "brown stripe", seg. B Pl P, may seg. small ar-like stripe; 4 ears
" 40-52 (x) F₃ " Inbred I and PWR Y wx g4; also crossed with Y wx g4 (59); 11 ears
" 40-53 (x) " Inbred I and PWR Y y ra sl, also crossed with Y y ra sl (56); 14 ears
" 40-54 (x) " Inbred I and PWR Y bm3, also crossed with Y bm3 (57); 15 ears
" 40-55 (x) " Inbred I and PWR Y wx g4, also crossed with Y wx g4 (58) and Y wx g4 (59); 14 ears
" 40-56 (x) and #F₃" Inbred II and Y y ra sl; 13 ears
" 40-57 (x) " Inbred II and PWR Y bm3, also crossed with Y bm3 (54); 20 ears
Co 40-58 (x) and #F3 involving Inbred II and Y wx g4, also
crossed with Y wx g4 (52) and Y wx g4 (55); 13 ears

" 40-59 (x) F3 involving Inbred II and Y wx g4, also crossed
with Y wx g4 (52); 12 ears

" 40-60 (x) y, may seg. g3 lv, (freezing injury, poor germination); 1 ear

" 40-61 (x) pr v3, seg. su, also pollinated with Inbred
(1) and Inbred II (3) and reciprocally with Inbred I (1); 6 ears

" 40-62 (x) pwr y, seg. ms18 bm lgx, may seg. pgx or lV
also pollinated with Inbred I (1 and 2); 3 ears

" 40-63 (x) and # gl, seg. Wh slx, also pollinated with In-
| bred II (3); 4 ears

" 40-64 (x) and # sh pk, seg. y lgx, may seg. lv or lv,
also crossed onto Inbred I (1) and
Dutton's Flint Inbred (5); 3 ears

" 40-65 (x) and # Pr g, seg. P pg, also pollinated with In-
| bred II (3) and reciprocally with
Inbred II (4); 6 ears

" 40-66 (x) y r g, may seg. pr su 12, also pollinated with
Inbred I (1); 3 ears

" 40-67 (x) Seg. Pr pr msx, may seg. pg? pb? zb? and usually
completely sterile plants with
necrotic leaves, also pollinated
with Inbred I (1), Inbred II (3)
and y +/po (121); 7 ears

" 40-68 (x) Seg. y Rst Pr, may seg. lv msx, also pollinated
with Inbred I (1 and 2) and Inbred
II (3); 10 ears

" 40-69 (x) and # lg B/A/Pr/y pl/C/REG/bm x, may seg. lv,
also pollinated with Inbred I
(2) and reciprocally with Inbred
I (1), Inbred II (3) and Dutton's
Flint Inbred (5); 9 ears

" 40-70 (x) and # y a C R pr in j lg, also pollinated with
Inbred I (1); 8 ears

" 40-71 (x) and # P a sh wx f, seg. su lgx, also pollinated
with Inbred I (1) and Inbred II
(3) and reciprocally with Inbred
I (1 and 2); 10 ears

" 40-72 (x) P a sh wx su lg f (freezing injury, poor germination);
4 ears

" 40-73 (x) and # a B Pl lg v4, seg. y ts; 7 ears

" 40-74 (x) pwr Y pk?, seg. skx; msx, may seg. dx fx, also
pollinated with Inbred I (2) and
reciprocally with Inbred I (1)
and Dutton's Flint Inbred (5);
3 ears

" 40-75 (x) su, seg. y sh, may seg. vl4 d3 wx; 2 ears

" 40-76 (x) and # P A B pl sh, seg. crx wx?, may seg. 16;
3 ears
Co 40-77 (x) and # Pr, seg. sh Ts, may seg. v3 dX, also pollinated with Inbred I (1 and 2), (freezing injury, poor germination); 10 ears
" 40-78 (x) and # Y, seg. su flX vX crX, may seg. dX v6, also pollinated with Inbred I (1) and Inbred II (3); 12 ears
" 40-79 (x) y su, seg. fX, may seg. dX v6, also pollinated with Inbred I (2), (freezing injury, poor germination); 2 ears
" 40-80 (x) Y, seg. su flX v X, may seg. v6 dX, also pollinated with Inbred I (2) and Inbred II (3); 8 ears
" 40-81 (x) wx?, seg. pwr y Bn? dX anX, may seg. v6 crX, also pollinated with Inbred I (2) and reciprocally with Inbred I (2); 10 ears
" 40-82 (x) and # Y crX, seg. Bn?, may seg. dX v6, also crossed onto Dutton's Flint Inbred (5 and 6), (freezing injury, poor germination); 3 ears
" 40-83 (x) and # pwr y gs?, seg. fl?, may seg. v6, also pollinated with Inbred I (1 and 2); 6 ears
" 40-84 # pwr crX, seg. y sk, may seg. dX blX vX, also pollinated with Inbred I (1) and reciprocally with Dutton's Flint Inbred (5 and 6); 2 ears
" 40-85 (x) Seg. Pr pr, may seg. yga, also pollinated with Inbred II (3) and Dutton's Flint Inbred (5) and reciprocally with Inbred I (1); 6 ears
" 40-86 (x) Y, seg. pr wx, may seg. da, also pollinated with Inbred I (1); 7 ears
" 40-87 (x) and lgX, seg. y, may seg. pgX; 3 ears
" 40-88 (x) Y wx?, seg. su, may seg. arX, also pollinated with Inbred II (3); 4 ears
" 40-89 (x) Y wx?, seg. Pr pr su, may seg. arX, also crossed onto Dutton's Flint Inbred (6); 4 ears
" 40-90 (x) Seg. Pr pr su wx?, may seg. pgX, also pollinated with Inbred II (3), and reciprocally with Inbred I (2) and Inbred II (3 and 4); 7 ears
" 40-91 (x) and # lgX, seg. y, may seg. pgX; 3 ears
" 40-92 (x) Y wx?, seg. su, may seg. arX, also pollinated with Inbred II (3); 4 ears
" 40-93 (x) Y wx?, seg. Pr pr su, may seg. arX, also crossed onto Dutton's Flint Inbred (6); 4 ears
" 40-94 (x) Seg. Pr pr su wx?, may seg. pgX, also pollinated with Inbred II (3), and reciprocally with Inbred I (2) and Inbred II (3 and 4); 7 ears
" 40-95 (x) and # pwr Y cr, seg. wx pg2 "white stripe", may seg. lgX, also pollinated with Inbred I (1 and 2) and reciprocally with Inbred I (1) and Inbred II (3); 7 ears
" 40-96 (x) A Pl, seg. y Pr pr lg gl2 B v4, may seg. tsX; 3 ears
" 40-97 (x) y Hadjinov's gl5, seg. vX, also pollinated with Inbred II (3) and reciprocally with Inbred I (1); few seeds
Co 40-99 (x) y Hadjnov's gl6; few seeds
" 40-100 (x) y, may seg. Hadjnov's gl7; 3 ears
" 40-101 (x) Seg. y B Pl f, may seg. wx Hadjnov's gl8, also
pollinated with Inbred I (2) and
reciprocally with Inbred I (1) and
Dutton's Flint Inbred (6);
3 ears
" 40-102 (x) P Y Hadjnov's gl10, also pollinated with Inbred
I (1 and 2) and Inbred II (3);
4 ears
" 40-103 (x) and # "Deep Y" lg gl4, may seg. v x bm x, also
pollinated with Inbred I (1 and 2),
and reciprocally with Dutton's
Flint Inbred (5 and 6); 9 ears
" 40-105 (x) and # Y, seg. rs2 glx; 5 ears
" 40-107 (x) and # Seg. y Fr I? Hadjnov's at si ts2 br? bv?,
may seg. f, also pollinated with
Inbred I (1 and 2) and reciprocally
with Inbred I (1); 6 ears
" 40-108 (x) Pwr Y, may seg. Hadjnov's bs v x; 1 ear
" 40-109 (x) and # Y A b Pl, seg. P vb, may seg. v x, also
pollinated with Inbred I (1) and
reciprocally with Inbred I (1);
6 ears
" 40-110 (x) and # y A Pl (zg3) lgx, seg. B d x, also pol-
linated with Inbred I (1); 7 ears
" 40-111 # A, seg. y Pr RBB su B Pl ba, may seg. v x, also
pollinated with Inbred I (2);
11 ears
" 40-112 (x) and # A suam?, seg. y Pr pr Pl ba2 v x f? lgx,
also pollinated with Inbred II
(3) and reciprocally with Inbred
I (1); 6 ears
" 40-113 (x) and # y a lgx, seg. ts4 gx cr x, may seg. v x,
also pollinated with Inbred I (1);
8 ears
" 40-114 Crossed onto Inbred I (2), may seg. d x s d
" 40-115 (x) Pwr, seg. y Pr pr RBB RBB su B Pl lgx, may seg.
g d7 v x, also crossed onto Inbred
I (1) and Dutton's Flint Inbred
(5); 15 ears
" 40-116 (x) and # y a C r pr wx, may seg. ys x, also pollin-
ated with Inbred I (1) and Inbred
II (3) and reciprocally with In-
bred I (2); 6 ears
" 40-117 (x) and # Seg. y Bn v5 gl, may seg. ws2; 5 ears
" 40-118 (x) and # Seg. Pwr y Pr pr c sh wx ws gl4, also
crossed onto Inbred I (1); 6 ears
" 40-119 (x) and # Seg. y Fr pr g?, may seg. li ws2, also
crossed onto Inbred I (1); 4 ears
" 40-120 (x) a B Pl wx?, seg. y as lgx "white stripe", may
seg. gs, also pollinated with In-
bred I (1); 5 ears
" 40-121 (x) and # Seg. Pr pr po; 10 ears
Co 40-122 Y, may seg. st vx; 2 ears

Co 40-123 P a, may seg. br f bm2 nl2 wx, also crossed onto Inbred I (2); 2 ears

Co 40-124 Y, seg. Pr pr Pl Rg rt bl?, may seg. d, also crossed onto Inbred I (1 and 2), Inbred II (3) and Dutton's Flint Inbred (5 and 6); 5 ears

Co 40-125 pvv - bm2/lg-b/y?-pl/ c-wx/g - R&E/j/pr pk?; few seeds

Co 40-126 pvv and p-bm2/lg-b/A-Cr cr + cr/Su and su/y? - pl/c-wx/g - R&E/pr/j; few seeds

Co 40-127 Seg. Pwr y Pr vp5, also pollinated with Inbred I (2); 8 ears

Co 40-128 w Y o2 v5 ra gl; 1 ear

Co 40-129 w A B pl d?, anx, seg. y Bn? Lg3?, also crossed onto Inbred I (2); 2 ears

Co 40-130 Rg d? anx, seg. y; few seeds

Co 40-131 Y, seg. su? bt?, also open pollinated ear somewhat like Tp; few seeds

Co 40-133 y pr, seg. Rst? wx? g, may seg. mr; 3 ears

Co 40-134 and # P A br f bm2, may seg. ts2; 3 ears

Co 40-135 Seg. y4 vx It Pr pr; 5 ears

Co 40-136 Hadjinov's gl6, seg. y Wh?; 3 ears

1941

Co 41-1 Inbred I (U.S. 204) Pwr Y A b pl, pollinated with Y A b pl nl, seg. R, may seg. d g zb5 (113); y gl10, may seg. wx (69); Y a lg2 ra2 ? (21); Y cr na a v5 gl, may seg. lgx (54); Y A b pl su vl4, may seg. sh d3 (166); F Y A b pl, may seg.d5 v5 (57); Y A b pl rs2, may seg. glx vx (12); A b Pl Kn (36); Y A b pl gax, seg. ms11, may seg. lgx "ar-like" stripe (103); y A b pl v18, may seg., 149 (91); y A b pl pg2, seg. d (126); may seg. vp v? (171); pr A b Pl bm ys, may seg. v2 (180); "small anthers", may seg. pr su (170); nl2, may seg. br f bm2 glx (116); Y A b pl Rs, may seg. glx (13); Y A b pl crX, may seg. vp4 (174); Y A b pl blx (47); bv? may seg. g pg (126); pr A b pl v3?, may seg. su (156); Y A B pl lg pk?, may seg. pgX bx "white stripe" (132); Y a na yt, may seg. ts4 (182); Y A b pl ds, seg. anx (14); 28 ears

Co 41-2 Inbred II (West Branch) Y A b pl, also pollinated with Y A b pl nl, seg. R, may seg. d g zb5 (113); Y A B pl lg bmX pk?, may seg. pgX "white stripe" (132); pr A b Pl bm v2, may seg. ys (180); 4 ears

Co 41-3 y A b pl, may seg g3 lx; 1 ear

Co 41-7 P sh A B pl, may seg. 16; 1 ear

Co 41-9 y su A b pl "yellow flecked leaves", may seg. v8 dx; 1 ear

Co 41-10 # Bn? A b pl cr?, may seg. v6 d; 1 ear
Co 41-11 (x) and # y A b pl Hadjinov’s gl6; 3 ears
" 41-12 # Y A b pl, seg. rs2, may seg. glx vx, also crossed onto Inbred I(l); 3 ears
" 41-13 (x) and # A b pl Rs, seg. y, may seg. glx, also crossed onto Inbred I(l); 2 ears
" 41-14 # Y A b pl dx an, also crossed onto Inbred I(l); 3 ears
" 41-15 (x) and # A b pl gl4, seg. y Pr pr wx? ws; 7 ears
" 41-16 # Pvv - bm2/lg-b/y-pl/c-wx/g-RdG/j/pr pk?, also pollinated with 17, same genotype; 5 ears
" 41-17 (x) and # Pvv - bm2/lg-b/y-pl/c-wx/g-RdG/j/pr pk?; 5 ears
" 41-19 (x) and # Y A b pl, seg. Fr pr su in y; 3 ears
" 41-20 (x) and # Y a C R pr in yx; 6 ears
" 41-21 # Y a lg2 ra2?, also pollinated with Y a C R pr in yx (20), and with Inbred I (1), and reciprocally with Inbred I (1); 4 ears
" 41-22 Y a C R Pr B Pl pollinated with Y a lg2 ra2? (21); 1 ear
" 41-23 (x) and # y su a Dt, may seg. lg2; 4 ears
" 41-24 (x) and # y a2 A C R v2, seg. Pwr, may seg. bm; 4 ears
" 41-25 # y a2 A C R pr bt bv; 5 ears
" 41-26 (x) and # y a3 (A B pl?) 0g; 3 ears may
" 41-28 (x) and # Seg. Pwr y su Ts6 al? ij?/seg. glx; 6 ears
" 41-29 (x) and # Pwr Y A b pl, may seg. an2 vx glx dx; 6 ears
" 41-30 (x) and # Y wx, seg. ar; 9 ears
" 41-31 # Y wx ar A b pl ar sa, seg. Fr pr; 3 ears
" 41-32 (x) and # y, seg. Pvv B zl as, may seg. ms17; 6 ears
" 41-33 (x) and # y Pr, seg. B RdG ms17 as, may seg. zl; 9 ears
" 41-34 # Seg. y at si lx ts x f f1?, may seg. bv br zb sx vx glx; 3 ears
" 41-35 Y sh A b pl au au2 crx, pollinated with Inbred I (1), may seg. vp?; 3 ears (includes 2 very small ears)
" 41-36 (x) and # Fr Sx A B pl RdG lgx bm; 2 ears
" 41-37 (x) and # y Pr A B pl C RdG Sx lg bm2, seg. g? v? may seg. j d cr ts2; 10 ears
" 41-38 # Y a B Pl C R Pr, may seg. vx; 4 ears
" 41-39 # Pcw A b pl, may seg. bax; 1 ear
" 41-40 (x) P A pl, seg. y su B ba, may seg. bax vx; 16 ears
" 41-41 (x) P Y A Pl, seg. Pr su B ba2, may seg. bax vx; 13 ears
" 41-42 # Y gl ij, seg. P bd; 2 ears
" 41-43 (x) and # A b, seg. y F1 ra gl ij bd; 10 ears
" 41-44 (x) and # Y A b pl bk glx; 3 ears
" 41-45 (x) and # Y bk2; 5 ears
" 41-46 # P Y A b pl, seg. sk lgx, may seg. dx vx bl? cr?; 1 ear
" 41-47 Y A b pl blx, crossed onto Inbred I (1)
" 41-48 # A B Pl lgx, seg. y Pr sk x, may seg. RdG bm; 1 ear
" 41-49 (x) and # y a2 A C R b pl v2, seg. Pwr; 15 ears
" 41-51 (x) and # Y, seg. Pwr sh wx vx, may seg. bp zb?; 17 ears
Co 41-52 # pwr Y A b pl bt2, may seg. glx "white stripe", 1 ear
" 41-53 (x) and # y c, seg. su, may seg. v9; 3 ears
" 41-54 y cr na a v5 gl, crossed onto Inbred I (1), may seg. lg
" 41-55 Y A b pl, pollinated with Inbred I (1), seg. pwr Tu
dy "white stripe", may seg. su; 3 ears
" 41-56 (x) and # p Y sh wx c, may seg. d3; 4 ears
" 41-57 p Y A b pl, crossed onto Inbred I (1), may seg. d5 v5
" 41-58 (x) and # y wx?, seg. nl?, may seg. db ms?; 2 ears
" 41-60 Y de A b pl, pollinated with Inbred I" (1), seg. mi?;
 2 poor seeds
" 41-61 (x) and # y a Dt lg, seg. ts4 na su, may seg. g; 6 ears
" 41-62 # pwr Y fl2 glx; 2 ears
" 41-63 (x) and # y A b pl 0g li g; 2 ears
" 41-65 (x) and # Y, seg. su, may seg. Ga; 6 ears
" 41-68 (x) pwr Y wx gl3 crx, seg. su, may seg. wl, also
 pollinated with Inbred I (1); 3 ears
" 41-69 # y gl10, may seg. wx, also crossed onto Inbred I
 (1); 2 ears
" 41-72 (x) and # y A b pl gl6, seg. P?; 3 ears
" 41-74 (x) and # y A b pl, seg. gl7 v17 Radjinov's gl7, may
 seg. "white stripe"; 4 ears
" 41-75 (x) pwr Y A b pl, seg. gl9; 1 ear
" 41-76 (x) and # Seg. pwr y lg v4 gs2, may seg. gl2; 15 ears
" 41-77 pwr Y A b pl h, pollinated with Inbred I (1); few
 seeds
" 41-78 (x) and # pwr Y A b pl, seg. wx hr vx, may seg. Rg?,
 also crossed onto Inbred I (1); 3 ears
" 41-79 # y A b pl Hs; 2 ears
" 41-80 # y A c R2E pr in su, seg. pvv sh wx, may seg. vx;
 3 ears
" 41-82 (x) and # Seg. y4 and or yx It Pr, may seg. srx;
 6 ears
" 41-83 y4 It It a c r pr i pollinated with Inbred I (1);
 1 ear
" 41-84 (x) and # A b pl, seg. y sh Wc? ms8 j glx, may seg.
 vl6; 4 ears
" 41-85 (x) and # Y A b pl gl3, seg. su, may seg. j2; 5 ears
" 41-86 # A, seg. y B pl Kn, also crossed onto Inbred I (1);
 3 ears
" 41-87 (x) P A B pl lgx bk?, may seg. 1 w; 1 ear
" 41-88 (x) and # r, seg. y su Fl "white stripe", may seg. g
 12; 8 ears
" 41-89 # pwr Y "white stripe", may seg. 13; few seeds
" 41-90 (x) and # pwr Y "white stripe" li?, seg. Pr, may seg.
 13; 4 ears
" 41-91 y A b pl vl8, may seg. 14, pollinated with Inbred I
 (1) and reciprocally with Inbred I (1); few seeds
" 41-92 pwr Y A b pl, may seg. sh 17 ms2, pollinated with
 Inbred I (1); 2 ears
Co 41-93 (x) Y su A B pl Ts5 ?, may seg. la; 1 ear; also su A B pl la pollinated with (94) su A B pl Ts5 la lgx, may seg. glx; few seeds

" 41-95 (x) PWR Wc ? A b pl glx, seg. y, may seg. msx; 2 ears

" 41-97 (x) and # A b Pl, seg. PWR Pr pr Rst r pl? may seg. g mr "white stripe"; 2 ears

" 41-98 Y A b pl, seg. PWR ms2, may seg. 17 brx, pollinated with Inbred I (1); 2 ears

" 41-99 P A b pl, seg. ms5, may seg. lgx, pollinated with Inbred I (1); 1 ear

" 41-100 (x) and # P Y A B pl, seg. Pr pr ms6, may seg. gx; 4 ears

" 41-101 # A b pl, seg. y ms9; 2 ears

" 41-102 # PWR, seg. ms10 "white stripe", also pollinated with Inbred I (1); 3 ears

" 41-103 # Y, seg. P ms11 g? x, may seg. lgx, "ar-like stripe", also crossed onto Inbred I (1); 2 ears

" 41-104 (x) Y A b pl, may seg. ms12 bm x "white stripe" v?; 1 ear

" 41-105 # y, seg. ms13; 4 ears

" 41-106 # Y, seg. wx sh ms14; 4 ears

" 41-107 (x) and # PWR, seg. Pr pr bm, may seg. ms18 l x lgx dx; 2 ears

" 41-109 (x and # P b Pl, seg. A b? ms37; 5 ears

" 41-111 PWR y A b pl, may seg. v19 msx, pollinated with Inbred I (1); 2 ears

" 41-112 # Seg. PWR y Pr pr su B Pl na2, may seg. "white stripe"; 2 ears

" 41-113 # Y A b pl nl, seg. r Pr, may seg. g zb5 dx, also crossed onto Inbred I (1) and Inbred II (2); few seeds

" 41-114 # P Pr A b pl g, may seg. nl zb5 glx, also pollinated with (113) Y A b pl nl; 2 ears

" 41-115 (x) and # PWR y A b pl r zb5, may seg. nl g; 7 ears

" 41-116 (x) and # a, seg. P br f bm2, may seg. nl2 glx, also crossed onto Inbred I (1); 5 ears

" 41-117 # Y o A B pl, seg. vx; 5 ears

" 41-118 PWR y o2 A b pl, pollinated with Inbred I (1); 1 ear

" 41-119 # P A b Pl sm, seg. py; 1 ear

" 41-120 (x) Seg. Pr pr zb? pg? pb?, may seg. msx and usually completely sterile plants with necrotic leaves; 1 ear

" 41-122 (x) and # y A b pl pb4, seg. glx; 7 ears

" 41-123 (x) Y wx, may seg. pbx lgx "white stripe"; 1 ear

" 41-124 # PWR, seg. y B pbx, also pollinated with Inbred I (1); 2 ears

" 41-126 # PWR Pr bv?, may seg. g pg, also crossed onto Inbred I (1); few seeds

" 41-128 # y A b pl, seg. pg2 d, also crossed onto Inbred I (1); 1 ear

" 41-129 (x) Pr, seg. su, may seg. pg5; 2 ears

" 41-130 (x) and # y A b pl, seg. lgx; 8 ears

" 41-131 (x) and # y lgx, seg. pgx; 11 ears
(x) and # Y lg pk?, seg. B "white stripes", may seg. pgx bmX, also crossed onto Inbred I (1) and Inbred II (2); 4 ears
41-133 # pwr y A b pl bm, may seg. pgx ms18 lgX "white stripe", also pollinated with Inbred I (1); 6 ears
41-134 # PWR", seg. y pm lg2; 9 ears
41-135 # pr A b Pl; 4 ears
41-136 (x) and # A b pl RSE Pr; 5 ears
41-137 # P A b pl, seg. ra2?; 2 ears
41-138 (x) and # P, seg. Fr a lg2 ra2 raX; 9 ears
41-139 (x) and # Seg. y lgx glX dx "light green", may seg. wx v4; 12 ears
41-140 # y su2 lgx, seg. pwr sb ms?; 5 ears
41-141 y A b pl sb pk?, may seg. sh, pollinated with Inbred I (1); 1 ear
41-142 (x) and # Seg. pcr pcw y sb msx; 6 ears
41-143 # Y blyx, seg. Pr si et br f bv? ts2?, may seg. vx glx, also pollinated with Inbred I (1); 7 ears
41-144 (x) and # y A b pl ar bm2, seg. pwr Pr an; 10 ears
41-145 # PWR o2 A b pl v5 re glx, seg. y; 6 ears
41-146 # suam du A b pl, seg. y; 6 ears
41-147 # sy A b Pl, may seg. st; 4 ears
41-148 # ra2? y A b pi, seg. ra2?; 5 ears
41-149 # Y y A b pi v5?, may seg. su, also crossed onto Inbred I (1); 1 ear
41-150 (x) and # A b pl, seg. Bn? tn vx dx; 5 small ears
41-151 # y ra gl v5, also pollinated with Inbred I (1); 2 ears
41-152 # v5 gl, seg. y Pr pr wx? ra Tp; 3 ears
41-153 (x) and # A, seg. y su RSE Pr pr Bn? v5 ra gl Tp B Pl; 6 ears
41-154 # P br f bm2, seg. a, may seg. ts2; 2 ears
41-155 (x) and # y, seg. Pr Mt? tv3 gx arx glx, may seg. biXx, 7 ears
41-156 # pr' A b pl v3?, may seg. su, also crossed onto Inbred I (1); 1 ear
41-157 (x) and # A b pl, seg. y Pr pr v3, may seg. vx; 4 ears
41-158 # PWR Y A b pl v7-striped; 2 ears
41-159 (x) and # PWR Y A b pl, seg. v7-striped; 4 ears
41-160 # y vl2, seg. pr, may seg. lgx, also pollinated with Inbred I (1); 4 ears
41-161 (x) and # Seg. y Pr pr Pl vl3; 11 ears
41-162 # Y su A b pl, may seg. sp lx; 1 ear
41-163 (x) and # Seg. P y su, may seg. sp; 7 ears
41-164 (x) and # Y su A b pl v14, seg. sh, may seg. d3, also crossed onto Inbred I (1); 2 ears
41-165 (x) and # wx? 11, seg. y su Pl, may seg. wx; 10 ears
41-166 (x) pwr Y v20 lgX, also pollinated with Inbred I (1); 4 ears
41-167 (x) and # P y A b pl, seg. va2, also pollinated with Inbred I (1); 6 ears
41-168 "small anthers", may seg. pr au, crossed onto Inbred I (1)
41-169 (x) y Pr A b pl, seg. r vp, may seg. vx, also crossed onto Inbred I (1); 1 ear
41-170 (x) pr vx pk?, seg. vp2?, may seg. bmX; 4 ears
Trisomic stocks

The program began by Randolph in 1940 of improving and building up reserve stocks of all the available trisomes was continued in the summer of 1941. Trisomes one and four are still missing.

Root tip counts were made on over 1500 plants to determine the trisomic plants. Over 300 ears were harvested.

In making crosses several inbred stocks were used as well as different genetic tester stocks. These were all checked to make sure that no B chromosomes were present.

Selected ears have been turned over to the Coöp and are here listed under Coöp numbers.

Co 41-196 No. 2 trisome x Luce’s Favorite Inbred
1. (x) - 2 ears
2. x L. F. Inbred - 5 ears
3. x lg - 2 ears
Co 41-197 No. 2 trisome x Cornell 11 Inbred
1. (x) - 4 ears
2. x L.F. Inbred - 1 ear
3. # - 3 ears

" 41-198 No. 2 trisome x Inbred II (West Branch)
1. (x) - 1 ear
2. x L.F. - 3 ears
3. # - 1 ear

" 41-199 No. 2 trisome x lg
1. x L.F. - 4 ears
2. # - 2 ears

" 41-200 No. 3 trisome x lg2
1. (x) - 6 ears
2. x L.F. - 2 ears
3. # - 3 ears

" 41-201 No. 3 trisome x L.F. Inbred
1. x L.F. - 2 ears

" 41-202 No. 3 trisome x Inbred II
1. x L.F. - 3 ears

" 41-203 No. 5 trisome x Inbred II
1. (x) - 1 ear
2. x L.F. - 5 ears
3. x bt - 2 ears

" 41-204 No. 6 trisome x su2
1. (x) - 3 ears
2. x L.F. - 5 ears
3. # - 2 ears

" 41-205 No. 7 trisome x L.F. Inbred
1. x L.F. 2 ears (all ears of trisome 7 poor)

" 41-206 No. 7 trisome x Inbred II
1. x L.F. - 2 ears
2. x gl - 1 ear
3. open - 1 ear

" 41-207 No. 8 trisome x L.F. Inbred
1. (x) - 2 ears
2. x L.F. - 5 ears
3. # - 2 ears

" 41-208 No. 8 trisome x j
1. (x) - 2 ears
2. # - 2 ears

" 41-209 No. 9 trisome x wx (No. 9 also wx)
1. (x) - 2 ears
2. x L.F. - 4 ears
3. # 1 ear

" 41-210 No. 10 trisome x L.F. Inbred
1. (x) - 1 ear
2. x L.F. - 4 ears
3. x vl8 - 2 ears

" 41-211 No. 10 trisome x vl8
1. (x) - 2 ears
2. x L.F. - 2 ears

John Einset
V. Index of Seed Stocks Propagated in 1940 and 1941

A complete index of all Coop stocks on hand at the close of the 1939 season appeared in the 1940 News Letter. The culture number of an inbred is followed by the number in parenthesis of the male parent carrying the gene in question. m.s. may segregate.

A

Ab?

sP

" 40-18, 40-43

a2

" 41-109

a3

" 41-24, 41-25, 41-49, 41-194, 41-195

al

" 41-26

al?

" 41-149 (m.s.), 41-179 (m.s.)

an

" 41-145

an2

" 41-29 (m.s.)

anX

" 40-2 (81, m.s.), 40-2 (129, m.s.), 40-25, 40-31, 40-129, 40-130, 41-1 (14), 41-14

"anthers small" Co 41-1 (170)

ar

Co 41-30, 41-31

ara

" 40-6 (93, m.s.), 40-92 (m.s.), 40-93 (m.s.)

as

" 40-120, 41-32, 41-33

at

" 40-1 (107), 40-107, 41-34, 41-143

au

" 41-35

au2

B

BW?

" 41-176

ba

" 40-111, 41-40

ba2

" 40-1 (112), 40-112, 41-41

bax

" 41-39 (m.s.), 41-40 (m.s.), 41-41 (m.s.)

bd

" 41-42, 41-43

bk

" 41-44

bk2

" 41-45

bk?

" 41-87

blx

" 40-5 (84, m.s.), 40-6 (84, m.s.), 40-84 (m.s.), 41-1 (47), 41-34, 41-143, 41-155 (m.s.)

bl?

" 40-1 (124, m.s.), 40-2 (124, m.s.), 40-3 (124, m.s.)

40-5 (124, m.s.), 40-6 (124, m.s.), 40-124, 41-46 (m.s.)

bm

" 40-62, 41-1 (180), 41-2 (180), 41-24 (m.s.), 41-48 (m.s.), 41-107, 41-133, 41-180, 41-194, 41-195
bm2 Co 40-2 (123, m.s.), 40-21, 40-45, 40-123 (m.s.),
 40-125, 40-126, 40-134, 41-1 (116, m.s.), 41-16,
 41-17, 41-37, 41-116, 41-145, 41-154

bm3 " 40-54, 40-57

bm? " 40-1 (69), 40-3 (69), 40-5 (103, m.s.), 40-6 (103,
 m.s.), 40-5 (69), 40-69, 40-103 (m.s.), 41-1 (132,
 m.s.), 41-2 (132), 41-36, 41-104 (m.s.), 41-132
 (m.s.), 41-172 (m.s.), 41-173 (m.s.)

Bn " 40-117

Bn? " 40-2 (81, m.s.), 40-2 (129, m.s.), 40-5 (82, m.s.),
 40-6 (82, m.s.), 40-81, 40-82, 40-129, 41-10,
 41-150, 41-153

bp " 41-51 (m.s.)

br " 40-1 (107, m.s.), 40-2 (123), 40-21, 40-45, 40-123
 (m.s.), 40-134, 41-1 (116, m.s.), 41-34 (m.s.),
 41-116, 41-143, 41-154

br? " 41-98 (m.s.)

bs Hadjinov Co 40-108 (m.s.)

bs? Co 40-67 (m.s.), 41-120 (m.s.)

bt " 41-25, 41-194, 41-195

bt2 " 41-52

bt? " 40-131

bv " 40-1 (107, m.s.), 41-25, 41-34 (m.s.)
 41-1 (126), 41-126, 41-143

bv? " 40-107

b? " 40-1 (118, m.s.), 40-118, 40-125, 40-126, 41-16,
 41-17, 41-53, 41-56, 41-80, 41-83

cr " 40-1 (95), 40-3 (95), 40-95, 40-126, 41-1 (54),
 41-37 (m.s.)

crx " 40-2 (81, m.s.), 40-5 (82), 40-6 (82), 40-5 (84,
 m.s.), 40-6 (84, m.s.), 40-76, 40-78, 40-81 (m.s.),
 40-82, 40-84, 40-113, 41-1 (174), 41-35, 41-68,
 41-174, 41-175

cr? " 41-10, 41-46 (m.s.)

d " 40-2 (114, m.s.), 40-2 (129), 40-25, 40-26, 40-48,
 40-129 (?), 40-130 (?), 41-1 (128), 41-1 (14),
 41-14, 41-37 (m.s.), 41-128

d3 " 40-75 (m.s.), 41-1 (166, m.s.), 41-56 (m.s.),
 41-166 (m.s.), 41-177

d5 " 41-1 (57, m.s.)

d7 " 40-1 (115, m.s.), 40-5 (115, m.s.), 40-115 (m.s.)

da " 40-89 (m.s.)

db " 41-58 (m.s.)

dH " 40-1 (124, m.s.), 40-2 (124, m.s.), 40-1 (74, m.s.),
 40-2 (81, m.s.), 40-2 (114, m.s.), 40-3 (124, m.s.),
 40-5 (124, m.s.), 40-6 (124, m.s.), 40-5 (74, m.s.),
 40-5 (82, m.s.), 40-6 (82, m.s.), 40-5 (84, m.s.),
 40-6 (84, m.s.), 40-74 (m.s.), 40-77 (m.s.), 40-78
 (m.s.), 40-79 (m.s.), 40-80 (m.s.), 40-31, 40-32
 (m.s.), 40-84 (m.s.), 40-110, 40-124 (m.s.), 41-1
 (113, m.s.), 41-2 (113, m.s.), 41-9 (m.s.), 41-10
 (m.s.), 41-29 (m.s.), 41-46 (m.s.), 41-107 (m.s.),
 41-113 (m.s.), 41-139, 41-150
da " 41-31
h? Co 41-19
hf " 41-1 (78), 41-78
Hs " 41-79
I? " 40-1 (107, m.s.), 40-107
ij " 41-42, 41-43, 41-63
ij? " 41-28
in " 40-70, 41-20, 41-80
It " 40-135, 41-82, 41-83
j " 40-11 (m.s.), 40-36 (m.s.), 40-70, 40-125, 40-126, 41-16, 41-17, 41-37 (m.s.), 41-84
j2 " 41-85 (m.s.)
Kn " 41-1 (86), 41-86
Knob " 41-187
l " 41-37 (m.s.), 41-88 (m.s.)
12 " 40-66 (m.s.), 41-90 (m.s.)
13 " 41-1 (91, m.s.), 41-91 (m.s.)
14 " 40-76 (m.s.), 41-7 (m.s.)
16 " 41-92 (m.s.), 41-98 (m.s.)
17 " 40-1 (64, m.s.), 40-5 (64, m.s.), 40-60 (m.s.), 40-62 (m.s.), 40-64 (m.s.), 41-3 (m.s.), 41-107 (m.s.), 41-163 (m.s.)
1x " 41-37
1a " 40-1 (69), 40-3 (69), 40-5 (103), 40-6 (103), 40-5 (69), 40-22, 40-23, 40-24, 40-28, 40-46, 40-47, 40-49, 40-69, 40-70, 40-72, 40-73, 40-96, 40-103, 40-125, 40-126, 41-1 (132), 41-2 (132), 41-16, 41-17, 41-37, 41-61, 41-76, 41-132
lg " 40-25, 40-26, 40-48, 41-1 (21), 41-21, 41-22, 41-23 (m.s.), 41-134, 41-138
lg2 " 40-2 (129)
Lg3 " 40-129
Lg3? " 40-1 (95, m.s.), 40-1 (115, m.s.), 40-1 (112, m.s.), 40-1 (71), 40-2 (71), 40-1 (64, m.s.), 40-3 (95, m.s.), 40-5 (115, m.s.), 40-5 (64, m.s.), 40-8 (m.s.), 40-33 (m.s.), 40-62, 40-64, 40-71, 40-91, 40-95 (m.s.), 40-110, 40-112, 40-113, 40-115, 40-120, 41-1 (54, m.s.), 41-1 (103, m.s.), 41-36, 41-46, 41-48, 41-87, 41-93, 41-99 (m.s.), 41-103 (m.s.), 41-107 (m.s.), 41-123 (m.s.), 41-130, 41-131, 41-133 (m.s.), 41-139, 41-140, 41-160 (m.s.), 41-168
lgx " 40-1 (119, m.s.), 40-119 (m.s.), 41-65, 41-167, 41-178
l1 " 40-1 (95, m.s.), 40-1 (115, m.s.), 40-1 (112, m.s.), 40-1 (71), 40-2 (71), 40-1 (64, m.s.), 40-3 (95, m.s.), 40-5 (115, m.s.), 40-5 (64, m.s.), 40-8 (m.s.), 40-33 (m.s.), 40-62, 40-64, 40-71, 40-91, 40-95 (m.s.), 40-110, 40-112, 40-113, 40-115, 40-120, 41-1 (54, m.s.), 41-1 (103, m.s.), 41-36, 41-46, 41-48, 41-87, 41-93, 41-99 (m.s.), 41-103 (m.s.), 41-107 (m.s.), 41-123 (m.s.), 41-130, 41-131, 41-133 (m.s.), 41-139, 41-140, 41-160 (m.s.), 41-168
l1? " 41-90
m1? " 41-60
mr " 40-133 (m.s.), 41-97 (m.s.)
ms2 " 41-92 (m.s.), 41-98
ms5 " 41-99
ms6 " 41-100
ms8 " 41-84
ms9 " 41-101
ms10 " 41-102
ms11 " 40-31 (m.s.), 40-51 (m.s.), 41-1 (103), 41-103
ms12 " 41-104 (m.s.)
ms13 " 41-105
<table>
<thead>
<tr>
<th>ms14</th>
<th>Co 41-106</th>
</tr>
</thead>
<tbody>
<tr>
<td>ms17</td>
<td>41-32 (m.s.), 41-33</td>
</tr>
<tr>
<td>ms18</td>
<td>40-62, 41-107 (m.s.), 41-133 (m.s.)</td>
</tr>
<tr>
<td>ms37</td>
<td>41-109</td>
</tr>
<tr>
<td>msx</td>
<td>40-1 (74, m.s.), 40-5 (74, m.s.), 40-67, 40-68 (m.s.), 40-74, 41-95 (m.s.), 41-111 (m.s.), 41-120 (m.s.), 41-142</td>
</tr>
<tr>
<td>ms?</td>
<td>41-58 (m.s.), 41-140</td>
</tr>
<tr>
<td>Mt?</td>
<td>41-155, 41-178, 41-180</td>
</tr>
<tr>
<td>na</td>
<td>41-1 (54), 41-1 (182), 41-61, 41-182</td>
</tr>
<tr>
<td>na2</td>
<td>41-112</td>
</tr>
<tr>
<td>nl</td>
<td>40-30 (m.s.), 41-1 (113), 41-2 (113), 41-113, 41-114, 41-115 (m.s.)</td>
</tr>
<tr>
<td>nl2</td>
<td>40-2 (123, m.s.), 40-123 (m.s.), 41-1 (116), 41-116 (m.s.)</td>
</tr>
<tr>
<td>nl?</td>
<td>41-58</td>
</tr>
<tr>
<td>o</td>
<td>40-17, 40-42, 41-117</td>
</tr>
<tr>
<td>o2</td>
<td>40-128, 41-113, 41-146</td>
</tr>
<tr>
<td>0g</td>
<td>41-26, 41-65</td>
</tr>
<tr>
<td>pcw</td>
<td>41-39, 41-142</td>
</tr>
<tr>
<td>per</td>
<td>41-142</td>
</tr>
<tr>
<td>pvv</td>
<td>40-15, 40-39, 40-125, 40-126, 41-16, 41-17, 41-32</td>
</tr>
<tr>
<td>p</td>
<td>41-80, 41-176</td>
</tr>
<tr>
<td>P?</td>
<td>41-72</td>
</tr>
<tr>
<td>pb4</td>
<td>41-122</td>
</tr>
<tr>
<td>pbx</td>
<td>41-123 (m.s.), 41-124</td>
</tr>
<tr>
<td>pb?</td>
<td>40-67 (m.s.), 41-120</td>
</tr>
<tr>
<td>pg</td>
<td>40-4 (65, m.s.), 40-65, 41-1 (126, m.s.), 41-126 (m.s.)</td>
</tr>
<tr>
<td>pg2</td>
<td>40-1 (95, m.s.), 40-3 (95, m.s.), 40-95, 41-1 (128), 41-128</td>
</tr>
<tr>
<td>pgA</td>
<td>40-2 (94, m.s.), 40-3 (94, m.s.), 40-4 (94, m.s.), 40-94 (m.s.), 41-129 (m.s.)</td>
</tr>
<tr>
<td>Instruction</td>
<td>Values</td>
</tr>
<tr>
<td>-------------</td>
<td>--------</td>
</tr>
<tr>
<td>pgx</td>
<td>40-62 (m.s.), 40-91 (m.s.), 41-1 (132, m.s.), 41-2 (132, m.s.), 41-131, 41-132 (m.s.), 41-133 (m.s.)</td>
</tr>
<tr>
<td>pg?</td>
<td>40-67 (m.s.), 41-120</td>
</tr>
<tr>
<td>pk</td>
<td>40-1 (64), 40-5 (64), 40-64</td>
</tr>
<tr>
<td>pk?</td>
<td>40-1 (74), 40-5 (74), 40-74, 40-125, 41-1 (132), 41-2 (132), 41-16, 41-17, 41-132, 41-141, 41-172, 41-173</td>
</tr>
<tr>
<td>pm</td>
<td>40-25 (m.s.), 40-48 (m.s.), 41-134</td>
</tr>
<tr>
<td>po</td>
<td>40-67, 40-121</td>
</tr>
<tr>
<td>py</td>
<td>41-119</td>
</tr>
<tr>
<td>Rgs</td>
<td>40-15, 40-39</td>
</tr>
<tr>
<td>Rgg</td>
<td>40-1 (69), 40-1 (115, m.s.), 40-3 (69), 40-5 (115, m.s.), 40-5 (69), 40-14, 40-38, 40-69, 40-111, 40-115, 40-125, 40-126, 41-16, 41-17, 41-33, 41-36, 41-37, 41-48 (m.s.), 41-80, 41-136, 41-153, 41-187 (?)</td>
</tr>
<tr>
<td>rrr</td>
<td>40-40</td>
</tr>
<tr>
<td>rgg</td>
<td>41-187 (?)</td>
</tr>
<tr>
<td>rnj</td>
<td>40-13</td>
</tr>
<tr>
<td>rnj?</td>
<td>40-1 (115, m.s.), 40-5 (115, m.s.), 40-115</td>
</tr>
<tr>
<td>rmb</td>
<td>40-11, 40-36</td>
</tr>
<tr>
<td>rst</td>
<td>40-12, 40-37, 40-68, 41-97</td>
</tr>
<tr>
<td>rat?</td>
<td>40-34, 40-133</td>
</tr>
<tr>
<td>ra</td>
<td>40-53, 40-56, 40-128, 41-43, 41-63 (m.s.), 41-146, 41-151, 41-152, 41-153</td>
</tr>
<tr>
<td>ra2</td>
<td>41-138</td>
</tr>
<tr>
<td>ra2?</td>
<td>41-1 (21), 41-21, 41-22, 41-137</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>r<sub>x</sub></td>
<td>Co 41-138</td>
</tr>
<tr>
<td>Rg</td>
<td>40-2 (129), 40-6 (124), 40-124, 40-130</td>
</tr>
<tr>
<td>Rg?</td>
<td>41-1 (78, m.s.), 41-78 (m.s.)</td>
</tr>
<tr>
<td>Rs</td>
<td>41-1 (13), 41-13</td>
</tr>
<tr>
<td>rs<sub>2</sub></td>
<td>40-105, 41-1 (12), 41-12</td>
</tr>
<tr>
<td>rt</td>
<td>40-1 (124), 40-2 (124), 40-3 (124), 40-5 (124), 40-124</td>
</tr>
<tr>
<td>S<sub>x</sub></td>
<td>40-1 (69), 40-3 (69), 40-5 (69), 40-69, 41-36, 41-37</td>
</tr>
<tr>
<td>sa</td>
<td>41-31</td>
</tr>
<tr>
<td>sb</td>
<td>41-140, 41-141, 41-142</td>
</tr>
<tr>
<td>sh</td>
<td>40-1 (118, m.s.), 40-1 (71), 40-2 (71), 40-1 (64), 40-5 (64), 40-27, 40-28, 40-49, 40-64, 40-71, 40-72, 40-75, 40-76, 40-77, 40-118, 41-1 (166, m.s.), 41-7, 41-35, 41-51, 41-56, 41-80, 41-84, 41-92 (m.s.), 41-106, 41-141 (m.s.), 41-166, 41-175 (m.s.), 41-180</td>
</tr>
<tr>
<td>si</td>
<td>40-1 (107, m.s.), 40-107, 41-34, 41-143</td>
</tr>
<tr>
<td>sk</td>
<td>40-5 (84), 40-6 (84), 40-8, 40-33, 40-84, 41-46</td>
</tr>
<tr>
<td>sk<sub>x</sub></td>
<td>40-1 (74), 40-5 (74), 40-74, 41-48</td>
</tr>
<tr>
<td>sl</td>
<td>40-53, 40-56</td>
</tr>
<tr>
<td>sl<sub>x</sub></td>
<td>40-63</td>
</tr>
<tr>
<td>sm</td>
<td>41-119</td>
</tr>
<tr>
<td>sp</td>
<td>40-9 (m.s.), 40-34 (m.s.), 41-163 (m.s.), 41-164 (m.s.)</td>
</tr>
<tr>
<td>sr</td>
<td>41-145</td>
</tr>
<tr>
<td>sr<sub>x</sub></td>
<td>41-82 (m.s.), 41-155</td>
</tr>
<tr>
<td>st</td>
<td>40-122 (m.s.), 41-147 (m.s.)</td>
</tr>
<tr>
<td>su</td>
<td>40-1 (61, m.s.), 40-1 (115, m.s.), 40-1 (71, m.s.), 40-2 (71, m.s.), 40-2 (94, m.s.), 40-4 (94, m.s.), 40-5 (115, m.s.), 40-5 (93, m.s.), 40-9, 40-15, 40-34, 40-40, 40-61, 40-66 (m.s.), 40-71, 40-72, 40-75, 40-78, 40-79, 40-80, 40-92, 40-93, 40-94, 40-111, 40-115, 40-126, 41-1 (166, m.s.), 41-1 (170, m.s.), 41-1 (156, m.s.), 41-9, 41-23, 41-28, 41-40, 41-41, 41-53, 41-55 (m.s.), 41-61, 41-67, 41-68, 41-80, 41-85, 41-88, 41-93, 41-112, 41-129, 41-153, 41-156 (m.s.), 41-163, 41-164, 41-166, 41-167</td>
</tr>
<tr>
<td>su<sub>am</sub></td>
<td>41-148</td>
</tr>
<tr>
<td>su<sub>am</sub></td>
<td>40-1 (112), 40-112</td>
</tr>
<tr>
<td>su<sub>x</sub></td>
<td>41-140</td>
</tr>
<tr>
<td>su<sub>x</sub></td>
<td>41-19</td>
</tr>
<tr>
<td>su</td>
<td>40-131</td>
</tr>
<tr>
<td>sy</td>
<td>41-149</td>
</tr>
</tbody>
</table>

T - Translocations Co. 41-187, 41-191, 41-192

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tn</td>
<td>Co 41-150</td>
</tr>
<tr>
<td>Tp</td>
<td>41-152, 41-153</td>
</tr>
<tr>
<td>Tp<sub>x</sub></td>
<td>40-131</td>
</tr>
<tr>
<td>Trisome 2</td>
<td>Co 41-196, 41-197, 41-198, 41-199</td>
</tr>
<tr>
<td>Trisome 3</td>
<td>41-200, 41-201, 41-202</td>
</tr>
<tr>
<td>Trisome 5</td>
<td>41-203</td>
</tr>
<tr>
<td>Trisome 6</td>
<td>41-204</td>
</tr>
<tr>
<td>Trisome 7</td>
<td>41-205, 41-206</td>
</tr>
<tr>
<td>Trisome 8</td>
<td>41-207, 41-208</td>
</tr>
<tr>
<td>Trisome 9</td>
<td>41-209</td>
</tr>
</tbody>
</table>
Trisome 10 Co 41-210, 41-211

<table>
<thead>
<tr>
<th>ts</th>
<th>Co</th>
<th>40-22, 40-73</th>
</tr>
</thead>
<tbody>
<tr>
<td>ts2</td>
<td></td>
<td>40-1 (107, m.s.), 40-107, 40-134 (m.s.), 41-37 (m.s.), 41-154 (m.s.)</td>
</tr>
<tr>
<td>ts2?</td>
<td></td>
<td>41-143</td>
</tr>
<tr>
<td>ts4</td>
<td></td>
<td>40-26 (m.s.), 40-113, 41-1 (182, m.s.), 41-61, 41-182 (m.s.)</td>
</tr>
<tr>
<td>Ts5</td>
<td></td>
<td>41-93</td>
</tr>
<tr>
<td>Ts5?</td>
<td></td>
<td>41-93</td>
</tr>
<tr>
<td>Ts6</td>
<td></td>
<td>41-28</td>
</tr>
<tr>
<td>tsx</td>
<td></td>
<td>40-96 (m.s.), 41-34</td>
</tr>
<tr>
<td>Tsx</td>
<td></td>
<td>40-77</td>
</tr>
<tr>
<td>Tw3</td>
<td></td>
<td>41-55</td>
</tr>
<tr>
<td>v2</td>
<td></td>
<td>41-1 (180, m.s.), 41-2 (180), 41-24, 41-49, 41-180</td>
</tr>
<tr>
<td>v3</td>
<td></td>
<td>40-1 (61), 40-61, 41-1 (156) (?), 41-156 (?), 41-157</td>
</tr>
<tr>
<td>v4</td>
<td></td>
<td>40-22, 40-24, 40-47, 40-73, 40-96, 41-76, 41-139 (m.s.)</td>
</tr>
<tr>
<td>v5</td>
<td></td>
<td>40-117, 40-128, 41-1 (54), 41-1 (57, m.s.), 41-146, 41-151, 41-152, 41-153</td>
</tr>
<tr>
<td>v6</td>
<td></td>
<td>40-2 (81, m.s.), 40-5 (82, m.s.), 40-5 (82, m.s.), 40-81 (m.s.), 40-82 (m.s.), 40-83 (m.s.), 41-10 (m.s.)</td>
</tr>
<tr>
<td>v7</td>
<td></td>
<td>40-16, 40-41, 41-158, 41-159</td>
</tr>
<tr>
<td>v8</td>
<td></td>
<td>40-77 (m.s.), 40-78 (m.s.), 40-79 (m.s.), 40-80 (m.s.), 41-9 (m.s.)</td>
</tr>
<tr>
<td>v9</td>
<td></td>
<td>41-53 (m.s.)</td>
</tr>
<tr>
<td>v12</td>
<td></td>
<td>41-160</td>
</tr>
<tr>
<td>v13</td>
<td></td>
<td>41-161</td>
</tr>
<tr>
<td>v14</td>
<td></td>
<td>40-75 (m.s.), 41-1 (166), 41-166</td>
</tr>
<tr>
<td>v16</td>
<td></td>
<td>41-84 (m.s.)</td>
</tr>
<tr>
<td>v17</td>
<td></td>
<td>41-74</td>
</tr>
<tr>
<td>v18</td>
<td></td>
<td>40-19, 41-1 (91), 41-91</td>
</tr>
<tr>
<td>v19</td>
<td></td>
<td>41-111 (m.s.)</td>
</tr>
<tr>
<td>v20</td>
<td></td>
<td>41-168</td>
</tr>
<tr>
<td>vx</td>
<td></td>
<td>40-1 (98, m.s.), 40-1 (69, m.s.), 40-1 (115, m.s.), 40-1 (112, m.s.), 40-1 (109, m.s.), 40-1 (64, m.s.), 40-3 (69, m.s.), 40-5 (115, m.s.), 40-5 (103, m.s.), 40-6 (103, m.s.), 40-5 (69, m.s.), 40-5 (64, m.s.), 40-6 (84, m.s.), 40-5 (64, m.s.), 40-8 (m.s.), 40-17, 40-27, 40-29, 40-33 (m.s.), 40-42, 40-50, 40-64 (m.s.), 40-69 (m.s.), 40-78, 40-80, 40-84 (m.s.), 40-98, 40-103 (m.s.), 40-108 (m.s.), 40-109 (m.s.), 40-111 (m.s.), 40-112, 40-113 (m.s.), 40-115 (m.s.), 40-122 (m.s.), 41-1 (78, m.s.), 41-1 (12, m.s.), 41-12 (m.s.), 41-29 (m.s.), 41-34 (m.s.), 41-38 (m.s.), 41-40 (m.s.), 41-41 (m.s.), 41-46 (m.s.), 41-51, 41-78, 41-80 (m.s.), 41-117, 41-143 (m.s.), 41-150, 41-157 (m.s.), 41-171 (m.s.), 41-172, 41-173 (m.s.), 41-192 (m.s.)</td>
</tr>
<tr>
<td>v?</td>
<td></td>
<td>41-1 (171, m.s.), 41-37, 41-104 (m.s.)</td>
</tr>
<tr>
<td>va2</td>
<td></td>
<td>41-169</td>
</tr>
<tr>
<td>vb</td>
<td></td>
<td>40-1 (109), 40-109</td>
</tr>
<tr>
<td>vp</td>
<td></td>
<td>41-1 (171, m.s.), 41-171</td>
</tr>
<tr>
<td>vp2?</td>
<td></td>
<td>41-172, 41-173</td>
</tr>
</tbody>
</table>
vp 4 Co 41-1 (174, m.s.), 41-175 (m.s.)
vp 4? 41-174
vp 5 40-127
vp? 41-35 (m.s.)
w 41-37 (m.s.)
wx 40-2 (123, m.s.), 40-75 (m.s.), 40-123 (m.s.), 41-1 (69, m.s.), 41-69 (m.s.), 41-139 (m.s.), 41-167 (m.s.), 41-179 (m.s.)
wa 41-176
Wc 41-177
wc? 41-34, 41-95
Wh 40-63
Wh? 40-40, 40-136
"white stripe" Co 40-1 (95), 40-3 (95), 40-31 (m.s.), 40-51 (m.s.), 40-95, 40-120, 41-1 (103, m.s.), 41-1 (132, m.s.), 41-2 (132, m.s.), 41-52 (m.s.), 41-55, 41-74 (m.s.), 41-88, 41-89, 41-90, 41-97 (m.s.), 41-102, 41-103 (m.s.), 41-104 (m.s.), 41-112 (m.s.), 41-123 (m.s.), 41-132, 41-133 (m.s.), 41-176, 41-177 (m.s.)
w 41-68 (m.s.)
w 40-1 (118, m.s.), 40-118, 41-15
ws 40-117 (m.s.), 40-119 (m.s.), 41-178
ws2 40-1 (119)
ws2? 40-23, 40-46
ws3 40-1 (95, m.s.), 40-1 (118, m.s.), 40-1 (101, m.s.), 40-1 (71), 40-2 (71), 40-2 (116), 40-3 (95, m.s.), 40-6 (101, m.s.), 40-7, 40-27, 40-28, 40-29, 40-32, 40-49, 40-50, 40-52, 40-55, 40-58, 40-59, 40-71, 40-72, 40-89, 40-95, 40-101 (m.s.), 40-116, 40-118, 40-125, 40-126, 41-1 (78, m.s.), 41-16, 41-17, 41-20, 41-30, 41-31, 41-51, 41-56, 41-68, 41-78, 41-80, 41-106, 41-123, 41-180, 41-181, 41-182
J. E. Welch
The data presented here are not to be used in publications without the consent of the authors.

Department of Plant Breeding
Cornell University
Ithaca, N. Y.
December 10, 1942

To Maize Genetics Cooperators:

This is the annual call for copy for the next News Letter. I have set January 31, 1943, as the deadline date for this material. Please send copy to the Department of Plant Breeding, Cornell University, where it will be assembled and forwarded to me at Pasadena, California.

Since the emergency has doubtless made it impossible for some of you to continue your genetic studies, those who have material suitable for the News Letter should make an effort to get it to me on time.

Sincerely,

R. A. Emerson

R. A. Emerson
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I Reports from cooperators</td>
<td>2</td>
</tr>
<tr>
<td>Bureau of Plant Industry Station</td>
<td>2</td>
</tr>
<tr>
<td>California Institute of Technology</td>
<td>3</td>
</tr>
<tr>
<td>Columbia University</td>
<td>5</td>
</tr>
<tr>
<td>Connecticut Agricultural Experiment Station</td>
<td>8</td>
</tr>
<tr>
<td>Cornell University</td>
<td>8</td>
</tr>
<tr>
<td>Duke University</td>
<td>16</td>
</tr>
<tr>
<td>Georgia University</td>
<td>16</td>
</tr>
<tr>
<td>Harvard University</td>
<td>30</td>
</tr>
<tr>
<td>Missouri Botanical Garden</td>
<td>17</td>
</tr>
<tr>
<td>Missouri University</td>
<td>19</td>
</tr>
<tr>
<td>U.S.D.A. and Cornell University</td>
<td>23</td>
</tr>
<tr>
<td>Venezuela Instituto Experimental de</td>
<td></td>
</tr>
<tr>
<td>Agricultura y Zootecnia</td>
<td>27</td>
</tr>
<tr>
<td>II Maize Publications</td>
<td>32</td>
</tr>
<tr>
<td>III Inventory of seed stocks propagated in 1942</td>
<td>37</td>
</tr>
</tbody>
</table>
I. REPORTS FROM COOPERATORS

The data presented here are not to be used in publications without the consent of the authors.

R. A. Emerson

Bureau of Plant Industry Station, Beltsville, Md.

Several backcross progenies involving genes located on chromosomes 3 and 7 were grown in 1941. They were not reported in the last News Letter as the data had not been summarized, hence they are reported now. A few additional backcross progenies were grown during the past season and are reported. Cold, wet weather following planting resulted in very poor stands in both seasons, but it is felt that the segregations obtained are not sufficiently distorted to modify gene order.

1. Backcrosses involving genes on chromosome 7.

\[
\begin{array}{cccccc}
\text{gl} & \text{ij} & \text{bd7} \\
+ & + & + \\
0 & 1 & 2 & 1-2 & \text{Total} \\
69 & 53 & 4 & 4 & 68 & 94 & 4 & 2 & 230 \\
122 & 8 & & & & 6 \\
\end{array}
\]

Linear order and map distances are: gl - 6.1 - ij - 43.5 - bd7
(500 seeds were planted, 46.0% produced mature plants.)

\[
\begin{array}{cccccc}
\text{gl} & \text{sl} & \text{ij} \\
+ & + & + \\
0 & 1 & 2 & 1-2 & \text{Total} \\
268 & 182 & 32 & 52 & 2 & 5 & 0 & 2 & 543 \\
450 & 84 & 7 & 2 & & & & & \\
\end{array}
\]

Linear order and map distances are: gl - 15.8 - sl - 1.7 - ij
(1,000 seeds planted, 54.3% produced mature plants.)

\[
\begin{array}{cccccccccc}
02 & \text{ra} & \text{gl} & \text{ij} \\
+ & + & + & + \\
0 & 1 & 2 & 3 & 1-2 & 1-3 & 2-3 & 1-2-3 & \text{Total} \\
273 & 213 & 24 & 28 & 6 & 3 & 49 & 56 & 1 & 1 & 5 & 7 & 0 & 2 & 1 & 0 & 669 \\
486 & 52 & 9 & 105 & 2 & 12 & 2 & 1 & & & & & & & & & \\
\end{array}
\]

Linear order and map distances are: 02 - 10.0 - ra - 2.1 - gl - 17.9 - ij
(1,000 seeds planted, 66.9% produced mature plants.)

455
02 ij bd7

+ + +

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>1-2</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>69</td>
<td>56</td>
<td>24</td>
<td>44</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>24</td>
<td>28</td>
<td>44</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>7</td>
<td>4</td>
<td>2</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>299</td>
</tr>
</tbody>
</table>

Linear order and map distances are: 02 - 30.8 - ij - 35.5 - bd7
(500 seeds were planted, 59.8% produced mature plants.)

2. Backcross involving lg2 and genes on Chromosome 3.

rt + lg2 + +

Rg + + +

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>1-2</th>
<th>1-3</th>
<th>2-3</th>
<th>1-2-3</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>58</td>
<td>77</td>
<td>7</td>
<td>6</td>
<td>36</td>
<td>38</td>
<td>28</td>
<td>28</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>135</td>
<td>13</td>
<td>74</td>
<td>63</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>11</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>135</td>
<td>13</td>
<td>74</td>
<td>63</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>11</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Linear order and map distances are: rt - 8.3 - Rg - 32.9 - lg2 - 29.8 - a
(500 seeds planted, 63.0% produced mature plants.)

Merle T. Jenkins

California Institute of Technology, Pasadena, California

Much detailed information has been collected on the numerous translocations under study. I do not feel that this information would be of enough general interest to be reported in raw form in the News Letter. Some time I hope to get it organized in more useful form. Here are a few miscellaneous items, and a brief statement on the practical use of translocations.

1. A plant homozygous for Tl-2c but heterozygous for striate and pericarp color (repulsion) backcrossed gave +P28, +P49, sr P43, sr p25 showing linkage with about 37 per cent crossing over. Since Tl-2c is very close to sr, this places it to the left of sr, substantiating the indications from previous data submitted by Emerson and by myself.

2. A crossover has been obtained between Yl and T6-9b, which may help to determine the position of Yl on the chromosome. The position of Yl has been made difficult by the great amount of suppression of crossing-over which has characterized all translocations thus far studied in the proximal half of the long arm of chromosome 6.

3. A number of new translocations have been isolated and some information collected. They include the following which have been
identified as to chromosomes involved.

<table>
<thead>
<tr>
<th>Index number</th>
<th>Chromosomes</th>
<th>Index number</th>
<th>Chromosomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>a-33</td>
<td>1-3</td>
<td>F-2</td>
<td>2-10</td>
</tr>
<tr>
<td>c-43</td>
<td>1-3</td>
<td>a-101</td>
<td>3-5</td>
</tr>
<tr>
<td>g-3</td>
<td>1-3</td>
<td>a-22</td>
<td>3-8</td>
</tr>
<tr>
<td>c-15</td>
<td>1-3</td>
<td>a-94</td>
<td>3-9</td>
</tr>
<tr>
<td>a-37</td>
<td>1-5</td>
<td>a-26</td>
<td>4-9</td>
</tr>
<tr>
<td>a-30</td>
<td>1-6</td>
<td>c-31</td>
<td>4-9</td>
</tr>
<tr>
<td>B-49</td>
<td>1-7</td>
<td>F-22</td>
<td>4-9</td>
</tr>
<tr>
<td>D-5</td>
<td>1-7</td>
<td>B-45</td>
<td>4-10</td>
</tr>
<tr>
<td>B-42</td>
<td>1-8</td>
<td>B-10</td>
<td>5-8</td>
</tr>
<tr>
<td>C-36</td>
<td>1-10</td>
<td>B-70</td>
<td>5-10</td>
</tr>
<tr>
<td>a-29</td>
<td>2-4</td>
<td>a-66</td>
<td>6-9</td>
</tr>
<tr>
<td>c-40</td>
<td>2-8</td>
<td>F-33</td>
<td>8-10</td>
</tr>
</tbody>
</table>

4. One complex translocation (Index No. B-2) involves four chromosomes 1, 3, 4, and 5. It is closely linked to su. It is also close to bm with much suppression of crossing-over between bm and pr. No linkage information has been obtained on chromosomes 1 and 3.

5. Utilization of translocations with endosperm markers in the study of economic traits. In studying the inheritance of any difficult trait, a simple test can be made for linkage with an endosperm character such as su or wx, especially if the multiple recessive combination occurs in one of the commercial inbred lines. For example, in studying resistance to bacterial wilt, a resistant line can be crossed with a susceptible sugary, and the F1 crossed to a susceptible sugary inbred. Comparison can then be made between the resistance of plants from starchy vs. sugary seeds of the backcross ear. This tests for resistance genes in the central portion of chromosome 4. If this test is negative then a similar test can be made involving translocation 1-4a. (Resistant x su T1-4a) x susceptible sugary inbred. A test of plants from su vs. su seeds then becomes a test for resistance genes in the long arm of chromosome 1. From the standpoint of testing technique, it means that su can be used as a marker for any chromosome or part of a chromosome for which the proper translocation is available. And the same recessive sugary inbred line can be used for all backcrosses. The suppression of crossing-over in the neighborhood of the translocation aids in making the method more efficient in detecting linkages. If an appropriate series of translocations existed, it would be possible to cover the entire chromosome complement with the use of one endosperm gene such as su.

The series of translocations available at present is not sufficient to cover all chromosomes using only one marker gene. By using two series, one with su, the other with wx, it is possible to have at least one translocation for each chromosome. More translocations are being isolated and it is hoped that, year by year, the series available for this purpose will be greatly improved and simplified.
Work on the inheritance of economic traits by using endosperm marked translocations is being taken up at several of the corn belt experiment stations. To facilitate these programs I have made the F_{1} crosses here at Pasadena with such translocations as are now available. These were:

{su series} - 1-4a, 2-4a, 2-4c, 4-5b, 4-5d, 4-6a, 4-8, 4-9a, 4-10b and a new 2-4 (a-29)

For sweet corn lines I was able to add 4-7a, a new 4-9 (F-22), 4-10 (B-45) and a multiple 1-3-4-5 (B-2)

{wx series} - 1-9a, 1-9c, 2-9b, 3-9a, 3-9b, 3-9c, 4-9b, 6-9a, 8-9a, 9-10b and new 4-9 (F-22), and 6-9 (a-66)

{pr series} - 1-5a, 1-5c, 2-5b, 3-5b, 3-5c, 4-5c, and 4-5d

The above is too large a series for completion of tests, except for such traits as can easily be tested in the seedling stage. But the additional F_{1}'s may serve as a reserve for checking any indications of linkage.

6. Use of translocations in corn breeding. Once any significant gene for an economic trait is located, it should be possible to transfer that gene to any commercial inbred line with only a minimum of alteration of the inbred line itself. In simplest form, the inbred line would first be crossed with the proper translocation (one near the locus of the gene). The F_{1} would then be backcrossed recurrently to the inbred line selecting always the semisterile plants. Then on selfing, the homozygous translocation inbred can be isolated. The next step consists of crossing the translocation inbred with the desired gene, and backcrossing to the translocation inbred. Then, on selfing and eliminating the translocation, the result should be essentially the inbred line homozygous for the desired gene. The length of time required is considerable, but can be reduced by various shortcuts. No great number of plants need be grown, nor is much labor required. And an economic gene could be transferred to any number of inbred lines simultaneously. This method is suggested only for such traits as are difficult to follow, such as for example resistance to disease, insects, drought or cold. It is essentially an indirect method which controls the valuable but difficult character by substitution of pollen semisterility which can be easily and precisely followed.

E. G. Anderson

Columbia University, New York City

1. Relation between knobs and chromocenters of interkinetic nuclei. - Resting nuclei of maize stained with Feulgen contain discrete, deeply-staining bodies in addition to diffuse chromatic material. These deeply-staining bodies are called chromocenters. A good correlation was found between the number of chromocenters in the interkinetic nuclei and the
number of knobs present in the pachytene chromosomes. In strains free from conspicuous knobs but possessing B chromosomes a good correlation was found between the number of B chromosomes and the number of chromocenters. The chromocenters derived from B chromosomes are not as large as those from some of the larger knobs — evidently all of the heteropycnotic material observed in the B chromosomes at pachytene is not represented in the chromocenter. That portion of the B chromosome immediately adjacent to the centromere of the B is more knob-like in appearance than other portions of the chromosome and it is believed that it is this proximal portion which forms the chromocenter. Plants free from conspicuous knobs and B chromosomes have a great majority of their interkinetic nuclei free from any structures which might be interpreted as chromocenters (except for the two nucleolar organizer regions on chromosome 6). That chromocenters often fuse is indicated by the range in number and size. Strains with knobs of approximately uniform size have chromocenters of uniform size — barring fusion — while strains with different sized knobs have a marked range in size of chromocenters. The data obtained are summarized in the following table.

<table>
<thead>
<tr>
<th>Tissue studied</th>
<th>Knob No. at B chrom.</th>
<th>Number nuclei counted</th>
<th>Mean No. chromocenters</th>
<th>Range</th>
<th>Modal class</th>
</tr>
</thead>
<tbody>
<tr>
<td>root A</td>
<td>9</td>
<td>100</td>
<td>8.16</td>
<td>4-11</td>
<td>8</td>
</tr>
<tr>
<td>style A</td>
<td>9</td>
<td>100</td>
<td>8.00</td>
<td>4-12</td>
<td>8</td>
</tr>
<tr>
<td>root B</td>
<td>6</td>
<td>100</td>
<td>5.05</td>
<td>2-8</td>
<td>5</td>
</tr>
<tr>
<td>root C</td>
<td>6</td>
<td>100</td>
<td>5.22</td>
<td>2-6</td>
<td>5</td>
</tr>
<tr>
<td>root D</td>
<td>0</td>
<td>100</td>
<td>3.27</td>
<td>1-5</td>
<td>4</td>
</tr>
<tr>
<td>root E</td>
<td>0</td>
<td>100</td>
<td>0.22</td>
<td>0-1</td>
<td>0</td>
</tr>
</tbody>
</table>

Occasionally the number of bodies classified as chromocenters was greater than the number of conspicuous knobs. This may be due to the misclassification of diffuse heterochromatin as chromocenters or more likely to the failure to distinguish small knobs at pachytene. Fusion of two or more of these small knobs might give rise to recognizable chromocenters. In every strain studied the number of chromocenters was determined before that of knob number. All preparations were stained with the Feulgen reaction.

D. T. Morgan, Jr.

2. The interaction of bronze (bz) with factors determining anthocyanin colors. — The bronze (bz) gene modifies the pigments involved in plant color. A B Pl bz plants are not purple but are a deep reddish-brown. A B pl bz plants have a bronze instead of a sun red color — the bronze color is also a sun color. A b Pl bz and A b pl bz plants are pigmented but the normal red pigment of the culm and glumes is transformed into a brownish pigment. The bronze gene is not concerned with the primary reactions determining the presence or absence of color but does modify in some way the pigment molecule. Aleurone color is also affected by bronze — the effect being a 'bronzing' of the purple (Pr) and red (pr) pigments. Pericarp
color is not affected i.e. plants of A P bz constitution have red pericarp.
The action of bz on both the plant and aleurone colors may indicate a
close chemical relationship of these pigments. The following linkage
data on the location of bz have been obtained:

<table>
<thead>
<tr>
<th>Percent recombination</th>
<th>Number of individuals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yg2-Bz self</td>
<td>13</td>
</tr>
<tr>
<td>Bz-C Bz</td>
<td>5</td>
</tr>
<tr>
<td>Bz-C Bz self</td>
<td>5</td>
</tr>
<tr>
<td>Bz-Sh Bz self</td>
<td>8</td>
</tr>
<tr>
<td>Bz-Sh Bz self</td>
<td>10</td>
</tr>
<tr>
<td>Bz-Wx Bz self</td>
<td>24</td>
</tr>
<tr>
<td>Bz-Wx Bz self</td>
<td>30</td>
</tr>
<tr>
<td>Bz-V self</td>
<td>33</td>
</tr>
</tbody>
</table>

On the basis of the above data, which are mostly F2, the bz gene
falls between yg2 and C. Inasmuch as Dt is 7 units beyond yg2 the
revised linkage map of chromosome 9 is tentatively as follows:

<table>
<thead>
<tr>
<th>Dt</th>
<th>Yg2</th>
<th>Bz</th>
<th>C</th>
<th>Sh</th>
<th>Bp</th>
<th>Wx</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>7</td>
<td>21</td>
<td>26</td>
<td>29</td>
<td>44</td>
<td>59</td>
<td>71</td>
</tr>
</tbody>
</table>

3. Gametophyte factor in chromosome 3. A gamete factor having an
adverse effect upon the ability of pollen grains possessing it to effect
fertilization has been located in chromosome 3. This new gamete factor
is independent of the genetic constitution of the silks and hence is
different in this respect from the gamete factors in chromosomes 4 and 5.
Pollen with this factor is not visibly different from normal. Approxima-
tely 12.7% of the functioning pollen from heterozygous plants carry
the gamete factor. The linear order in chromosome 3 is Lg2 A with the
gamete locus some 10-12 units from A. Presumably it should lie close
to Iched (et).

4. The preference of Jap beetles for liguleless-l leaves. The severe
infestation of Japanese beetles in the summer of 1942 at Irvington, N. Y.
made possible the observation that these beetles found the leaf tissue
of liguleless-l (lgl) plants very much to their liking. Leaves of all lg
tester strains were nearly destroyed and many plants died. In all cultures
segregating for lgl an accurate classification for lg and Lg could be
made from the amount of leaf tissue eaten by the insects. Lg plants
adjacent to sister lg plants were nearly free from beetles while the
lg plants literally swarmed with them. Plants homozygous for Lg2 had the
same, or nearly so at any rate, degree of infestation as did their normal
sibs.

M. M. Rhoades
1. A late flowering mutation arising in one of the long inbred
flowering strains, C14, shows no appreciable differences in plant or
seed size at full maturity. At two weeks after planting the late plants
are about half as tall as the normal inbred plants. These slow­
growing plants are about six days later in silking but continue rapid
growth longer and finally arrive at approximately the same height at
the end of the season. This is an example of a deleterious recessive,
not easily detected, that slows physiological activity.

2. Reciprocal crosses between inbred strains may show small differ­
ces in amount of growth in early stages after germination due to
differences in embryo size or seed condition. These differences usually
disappear by the time the plants flower. In crosses of a Rice pop inbred
with very small seeds and a yellow dent inbred with large seeds marked
differences were obtained in the reciprocals. Three weeks after planting
the dent parent was nearly twice as tall as the pop parent and proportionally
larger in overall size dimensions. At this stage the dent x pop F1 is
taller than the dent parent while the pop x dent F1 occupies an inter­
mediate position between the two parents. The hybrids and parents tassel
and silk in the same order as their initial embryo weights: (1) dent
x pop, (2) dent parent, (3) pop x dent, (4) pop parent. At the end of
the season the two reciprocal crosses are equal in production of grain
and in height and both are taller and more productive than either parent.
Production of grain of the hybrid is about 15 times that of the pop
parent and nearly twice as much as the dent. Both reciprocals reach full
maturity at about the same time but the one that is smaller at the start
continues rapid growth longer to reach eventually the same height and
production of grain in approximately the same length of time. Since one
of the hybrids starts smaller after germination and ends up larger in the
amount of material produced than the larger parent, in the same period
of growth, one is growing at a faster rate than the other.

The parents and reciprocal crosses also differ in the number of
tillers. The dent inbred averages .03, dent x pop 2.06, pop x dent 1.24,
and pop inbred 2.83 tillers per plant. The larger number of tillers
is shown by the hybrid with the non­tillering seed parent. In these
reciprocal crosses having the same genic constitution, tillering is an
expression of initial vigor large enough to overcome any differences in
maternal effect. Differences that may exist in the cytoplasm of these
two widely diverse reciprocal crosses have no effect on the final reaction
product between the external environment and the nuclear construction of
the hybrids.

D. F. Jones

Cornell University, Ithaca, N. Y.

1. Aberrant pericarp-color ratios. - A few years ago I reported a
recessive zygotic lethal, zl, with its locus near P in chromosome 1 of
maize (Genetics 24: 368­384. 1939). The effect of zl is to prevent,
with rare exceptions, homozygosis of genes with which it is closely linked, and thereby to change a 3:1 to a 2:1 F_2 ratio when z_1 is linked with a dominant gene or to prevent the occurrence of one class when linked with a recessive gene. When a plant heterozygous for z_1 is crossed with one lacking z_1, there is, of course, no disturbance of ratios in the resulting progeny. The locus of z_1, relative to other chromosome-1 genes is

\[
\begin{array}{c}
\text{sr} \\
\text{ms}_{17} - ts_2 - P - z_1 \\
1.7 \\
\end{array}
\]

Another case of disturbed pericarp-color ratios has occurred in at least three supposedly unrelated lines, all of which, however, are found to have had one individual plant as a common ancestor a few generations back, namely, a chromosome-1 marker with the genotype P br an gs. This suggests that the disturbance is associated with P rather than with its recessive allele.

Two selfed red-eared plants gave progenies totaling 83 red to 89 white, while three other selfed reds gave progenies with normal 3:1 ratios. The former also gave aberrant and the latter normal ratios when used as the pollen parent in crosses with white-eared plants. Fourteen cultures, resulting from white pollinated by heterozygous red, have had a total of 329 plants with red and 1148 with non-red ears. Some of these crosses have involved also T_1-3a, the totals being 404 T and 120 non-T. Two cultures involved ms_{17}, P, and T_1-3a, from the cross:

\[
ms + + / ms + T
\]

This 3-point test gave the following results:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>1,2</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>18</td>
<td>152</td>
<td>10</td>
<td>18</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>170</td>
<td>6</td>
<td>23</td>
<td>2</td>
<td>13.6%</td>
</tr>
</tbody>
</table>

The percent of recombination is: $ms - P = 3.9$, $P - T = 14.6$. The recombination value for $P - T$ is less than that indicated by Anderson (News Letter 14 p.2. 1940). The striking thing, however, is the ratios of dominant to recessive markers, as follows:

\[
+ : ms = 28 : 178 \\
P : + = 36 : 170 \\
+ : T = 42 : 164
\]

From these aberrant ratios it may be inferred that the locus of the disturbing element is to the left of ms_{17}. Whether the disturbing factor is transmitted through the egg is not known. It is transmitted through the pollen. Only a part of the red ears of a culture that shows the aberrant ratio yield such ratios in the following generation.

The nature of the responsible gene, if gene it is, is not known. It is certain, however, that it is not a recessive zygotic lethal and not a
complete pollen lethal. So far as now known, it might be a pollen semi­lethal or a gamete factor, but if the latter, it differs in some respects from the Ga gene that disturbs the ratios of the starchy­sugary pair and other characters of chromosome 4.

2. White­capped red pericarp. — In last year's News Letter I presented data which I interpreted as showing that white­capped red pericarp of such varieties of maize as Bloody Butcher is not allelic to ordinary red pericarp, P, as had been supposed, but is conditioned by multiple genes at least one of which is linked with red cob color and therefore with P. I presented data from F2, F3, and backcrosses of the cross of colorless pericarp and white cob, W-W, with white­capped pericarp and red cob, C-R. From this cross, the four possible combinations of pericarp and cob colors were obtained, namely, C-R, C-W, W-R, W-W. Grades of pericarp color from 0, no color, to 6, the color intensity of the Bloody Butcher parent, were reported and the behavior in inheritance was shown to be that typical of quantitative characters.

This year I present data from further F3 cultures and also from F4 cultures. For brevity in the accompanying table, I have grouped together cultures which have about the same ranges of variation, and may, therefore, in so doing, have combined genetically heterogeneous material.

Certain conclusions may be drawn from these data: (1) From the cross W-W x C-R, there have appeared in F3 or F4 in relatively true breeding form, the four possible combinations of pericarp and cob colors, namely, W-W (item 1), W-R (item 2), C-W (items 21, 28), and C-R (items 20, 25, 29, 30, 33). (2) There have appeared types that breed relatively true for pericarp color while still segregating for cob color: W-R and W-W (item 3), C-R and C-W (items 22, 26, 27). (3) Some cultures still show marked variation in intensity of pericarp color while breeding true for red cobs (items 11, 17) or white cobs (items 10, 16). (4) In all cultures that have any pericarp color and that are segregating for cob color, the ears with red cobs have a higher mean grade of pericarp color than do those with white cobs. (5) In a few cases, the ears with white cobs have no pericarp color while some or all of those with red cobs have more or less pericarp color (items 5, 6, 7, 18). (6) The gene or genes conditioning pericarp color in these instances (5 and 6 above) may be assumed to be in chromosome 1 near the locus of P. (7) Selection is effective in establishing lines with diverse intensities of pericarp color.

From the trisomic cultures of Mr. Einset has come the suggestion that one or more genes affecting white­capped red pericarp color may be in chromosome 5. In a culture segregating for trisome 5 and for this type of pericarp color, the ears of trisomic plants had unmistakably more intense pericarp color than did those of disomic ones. This behavior is to be expected of characters that show a gene­dosage effect as white­capped pericarp color does. A beginning has been made in the use of the other trisomes in an attempt at a further genetic analysis of this pericarp color.

3. Differential dominance in number of kernel rows. — In the 1940 News Letter (14: 19­21), I reported differences in relative dominance of ten inbred lines of 12­row maize and of two 8­row inbred lines in crosses
<table>
<thead>
<tr>
<th>Item</th>
<th>No. cultures</th>
<th>Parent color</th>
<th>Cob</th>
<th>Pericarp-color grades</th>
<th>Progenies</th>
<th>Mean grade</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 1 2 3 4 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>W</td>
<td>0</td>
<td>134</td>
<td>134</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>R</td>
<td>0</td>
<td>116</td>
<td>116</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>R</td>
<td>0</td>
<td>73</td>
<td>73</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>R</td>
<td>0</td>
<td>51 4</td>
<td>55</td>
<td>0.1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>R</td>
<td>0</td>
<td>32 6</td>
<td>38</td>
<td>0.2</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>R</td>
<td>1</td>
<td>2 10</td>
<td>12</td>
<td>0.8</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>W</td>
<td>1</td>
<td>13 19 6 1</td>
<td>39</td>
<td>0.9</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>W</td>
<td>2</td>
<td>6 8 16 12</td>
<td>42</td>
<td>1.8</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>W</td>
<td>2</td>
<td>9 5 12 10</td>
<td>36</td>
<td>1.6</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>W</td>
<td>3</td>
<td>56 36 46 66 17</td>
<td>221</td>
<td>1.8</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>W</td>
<td>3</td>
<td>2 1 2 3 13 5</td>
<td>26</td>
<td>3.5</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>9 2 3 6 2</td>
<td>11</td>
<td>1.5</td>
</tr>
<tr>
<td>13</td>
<td>3</td>
<td>W</td>
<td>3</td>
<td>- 14 17 29 8</td>
<td>68</td>
<td>2.5</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>R</td>
<td>3</td>
<td>- 6 16 13 11</td>
<td>46</td>
<td>2.6</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>R</td>
<td>3</td>
<td>- - 6 5</td>
<td>11</td>
<td>3.5</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>R</td>
<td>4</td>
<td>14 3 8 11 19 5</td>
<td>60</td>
<td>2.6</td>
</tr>
<tr>
<td>17</td>
<td>2</td>
<td>R</td>
<td>4</td>
<td>13 20 12 25 12 3</td>
<td>85</td>
<td>2.1</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>W</td>
<td>4</td>
<td>- 6 4 10 4</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>2</td>
<td>R</td>
<td>4</td>
<td>- 6 9 19 29 9</td>
<td>67</td>
<td>3.6</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>R</td>
<td>4</td>
<td>- - 3 21 12 1</td>
<td>37</td>
<td>3.3</td>
</tr>
<tr>
<td>21</td>
<td>4</td>
<td>R</td>
<td>4</td>
<td>- - 7 76 70 2</td>
<td>155</td>
<td>3.4</td>
</tr>
<tr>
<td>22</td>
<td>2</td>
<td>W</td>
<td>4</td>
<td>- - 10 49 10</td>
<td>69</td>
<td>4.0</td>
</tr>
<tr>
<td>23</td>
<td>2</td>
<td>W</td>
<td>5</td>
<td>- - 4 13 6</td>
<td>23</td>
<td>3.1</td>
</tr>
<tr>
<td>24</td>
<td>1</td>
<td>R</td>
<td>5</td>
<td>9 7 4 16 17 21</td>
<td>75</td>
<td>3.2</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>R</td>
<td>5</td>
<td>- - 3 21 12 2</td>
<td>23</td>
<td>1.8</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>R</td>
<td>5</td>
<td>- 1 10 12 9</td>
<td>32</td>
<td>3.9</td>
</tr>
<tr>
<td>27</td>
<td>1</td>
<td>W</td>
<td>5</td>
<td>- - 1 8 16</td>
<td>25</td>
<td>4.6</td>
</tr>
<tr>
<td>28</td>
<td>1</td>
<td>W</td>
<td>5</td>
<td>- - 4 2</td>
<td>6</td>
<td>4.3</td>
</tr>
<tr>
<td>29</td>
<td>3</td>
<td>W</td>
<td>5</td>
<td>- - 12 34 73</td>
<td>126</td>
<td>4.6</td>
</tr>
<tr>
<td>30</td>
<td>2</td>
<td>R</td>
<td>5</td>
<td>- - 25 55</td>
<td>81</td>
<td>4.7</td>
</tr>
<tr>
<td>31</td>
<td>1</td>
<td>R</td>
<td>6</td>
<td>- 1 2 6</td>
<td>9</td>
<td>2.6</td>
</tr>
<tr>
<td>32</td>
<td>1</td>
<td>R</td>
<td>6</td>
<td>- 1 3 9 34</td>
<td>59</td>
<td>4.9</td>
</tr>
<tr>
<td>33</td>
<td>2</td>
<td>R</td>
<td>6</td>
<td>- - 12 42 33</td>
<td>87</td>
<td>5.2</td>
</tr>
</tbody>
</table>
of 12-row with 8-row lines. I now present further data on the crosses previously reported and tests of a few inbred lines not represented in the earlier report. The accompanying table includes the earlier as well as the later data.

Number of individuals and mean row number of Fₙ crosses of 8-row with 12-row inbreds

<table>
<thead>
<tr>
<th>12-row lines</th>
<th>8-row lines</th>
</tr>
</thead>
<tbody>
<tr>
<td>lines</td>
<td>1</td>
</tr>
<tr>
<td>VI</td>
<td>60-8.9</td>
</tr>
<tr>
<td>IV</td>
<td>178-9.1</td>
</tr>
<tr>
<td>III</td>
<td>75-9.0</td>
</tr>
<tr>
<td>VII</td>
<td>120-9.2</td>
</tr>
<tr>
<td>2</td>
<td>346-8.9</td>
</tr>
<tr>
<td>II</td>
<td>29-9.7</td>
</tr>
<tr>
<td>4</td>
<td>258-9.4</td>
</tr>
<tr>
<td>39</td>
<td>625-9.6</td>
</tr>
<tr>
<td>G</td>
<td>93-9.1</td>
</tr>
<tr>
<td>B</td>
<td>221-9.1</td>
</tr>
<tr>
<td>b</td>
<td>80-9.8</td>
</tr>
<tr>
<td>c</td>
<td>91-10.5</td>
</tr>
</tbody>
</table>

Averages of comparable means

:	9.4	10.4	:	:
:	9.5	10.5	9.0	:
:	9.4	10.5	:	9.1
:	9.4	10.6	:	9.7
:	9.0	10.5	:	9.7

Key to line designations:

1. Luce's Favorite (Wiggins)
2. Onondaga White (Wiggins)
4. Bloody Butcher (Wiggins)
39. Golden Bantam (Purdue)
51. Golden Bantam (Purdue)
II. Westbranch
III. Queen's Golden
IV. White Pop
VI. Dutton's Flint
VII. Early Pride
R. Flt. Red Flint
Snf. W. Sanford White
Y. Flr. Yellow Flour
Y. Flt. Yellow Flint
B \{ Segregates from crosses
G \} of 8-row with 16-row
b \} lines
c

Of the 8-row inbreds, Sanford White and Yellow Flour are somewhat more nearly dominant even than Luce's Favorite, while Yellow Flint and Red Flint are less nearly recessive than Golden Bantam. Similar differences are shown by different 12-row lines. Such differences are well illustrated by the following frequency distributions for number
of kernel rows in crosses of two 12-row with two 8-row lines:

<table>
<thead>
<tr>
<th>Cross</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>14</th>
<th>Total</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 with 2</td>
<td>199</td>
<td>144</td>
<td>3</td>
<td></td>
<td>346</td>
<td>3.9</td>
</tr>
<tr>
<td>1 " 39</td>
<td>151</td>
<td>437</td>
<td>37</td>
<td></td>
<td>625</td>
<td>9.6</td>
</tr>
<tr>
<td>39 " 2</td>
<td>61</td>
<td>183</td>
<td>145</td>
<td>2</td>
<td>391</td>
<td>10.5</td>
</tr>
<tr>
<td>39 " 39</td>
<td>13</td>
<td>196</td>
<td>497</td>
<td>10</td>
<td>716</td>
<td>11.4</td>
</tr>
</tbody>
</table>

That these differences in behavior are conditioned by gene differences rather than by cytoplasmic diversity is indicated by the fact that reciprocal crosses are essentially alike. The following data from reciprocal crosses are all that are now available:

<table>
<thead>
<tr>
<th>Cross</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>14</th>
<th>Total</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 x 1</td>
<td>69</td>
<td>58</td>
<td>2</td>
<td></td>
<td>129</td>
<td>9.0</td>
</tr>
<tr>
<td>1 x 2</td>
<td>79</td>
<td>55</td>
<td>1</td>
<td></td>
<td>135</td>
<td>8.8</td>
</tr>
<tr>
<td>39 x 1</td>
<td>65</td>
<td>227</td>
<td>19</td>
<td></td>
<td>311</td>
<td>9.7</td>
</tr>
<tr>
<td>1 x 39</td>
<td>70</td>
<td>187</td>
<td>10</td>
<td></td>
<td>267</td>
<td>9.6</td>
</tr>
<tr>
<td>39 x 51</td>
<td>9</td>
<td>135</td>
<td>371</td>
<td>5</td>
<td>520</td>
<td>11.4</td>
</tr>
<tr>
<td>51 x 39</td>
<td>3</td>
<td>32</td>
<td>67</td>
<td>3</td>
<td>105</td>
<td>11.3</td>
</tr>
</tbody>
</table>

It is not surprising that 12-row lines exhibit differences in relative dominance, because several of them at least are known to have different row-number genotypes. But 8-row types have been assumed to have the same genotype for number of kernel rows. Negative evidence in support of this notion is: (1) Crosses of 8-row inbreds have not resulted, in my experience, in the production of other than 8-row types. (2) Crosses of 8-row with 12-row inbreds have not resulted in types with more than 12 kernel rows. It is, of course, conceivable that genes responsible for the 8-row condition may be alleles with the same effect on row number but with somewhat different dominance behavior.

4. Genetic diversity of 12-row lines. - Data indicating genetic heterogeneity of certain 12-row inbred lines of maize have long been available, but have not been reported heretofore in this "unpublished publication". A brief summary of some of these data follow.

Numerous 12-row lines have been obtained from various sources. Some (A, B, G, b, c) from crosses of 8-row flints with 16-row dents and others (III, IV, VI, VII) by selection from varieties of dent, flint, and popcorn. No 12-row type produces only 12-row ears. There are always some 10-row and 14-row ears and occasionally an 8-row or a 16-row ear. To determine whether a 12-row line is homozygous it is necessary to grow progenies from selfed ears of the more extreme variants. To get such selfed ears it is necessary to hand-pollinate many plants. This has been accomplished for the 12-row types involved in this account. A single example of the results obtained is given here.

Line b had in F9 a distribution ranging from 8 to 16 rows with
frequencies of 4-18-49-14-1. In F10, progenies from selfed ears of diverse row numbers were produced as follows:

<table>
<thead>
<tr>
<th>Parent row number</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>14</th>
<th>16</th>
<th>Total</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>1</td>
<td>19</td>
<td>7</td>
<td>1</td>
<td>28</td>
<td></td>
<td>12.6</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>22</td>
<td>9</td>
<td>1</td>
<td>36</td>
<td></td>
<td>12.2</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>27</td>
<td>6</td>
<td>2</td>
<td>40</td>
<td></td>
<td>12.2</td>
</tr>
<tr>
<td>14</td>
<td>4</td>
<td>25</td>
<td>3</td>
<td>2</td>
<td>34</td>
<td></td>
<td>12.2</td>
</tr>
<tr>
<td>16</td>
<td>4</td>
<td>34</td>
<td>9</td>
<td>1</td>
<td>52</td>
<td></td>
<td>12.0</td>
</tr>
</tbody>
</table>

The other lines gave similar results. It was concluded, therefore, that all were approximately homozygous. When any two of the nine 12-row lines were crossed, except only b x c, it was easily possible to establish lines of different row number. For example, the cross b x IV exhibited row-number ranges from 10 to 16 in F1 and 8 to 18 in F2 with these frequencies, respectively, 1-43-8-1 and 2-12-37-21-7-2. In F3 the following frequency distributions were observed:

<table>
<thead>
<tr>
<th>Parent row number</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>14</th>
<th>16</th>
<th>Total</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>34</td>
<td>12</td>
<td>2</td>
<td>7</td>
<td>2</td>
<td>48</td>
<td>8.7</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>1</td>
<td>33</td>
<td>7</td>
<td>2</td>
<td>45</td>
<td>12.3</td>
</tr>
<tr>
<td>14</td>
<td>6</td>
<td>16</td>
<td>14</td>
<td>1</td>
<td>37</td>
<td></td>
<td>14.5</td>
</tr>
</tbody>
</table>

Given different genes for row number in the several 12-row types, it should be possible, by multiple crossing followed by selection, to assemble the row-number genes of the several 12-row lines into a single line of high row number. In the accompanying table are shown the frequency distributions of all of the ears produced by seven inbred lines during several generations when selected for twelve rows and similar data from certain single, double, and multiple crosses of these lines when selected for high row number.

The seven inbred lines had frequency distributions ranging mostly from 8 to 16 rows with strong modes at 12 rows and means very near 12. During the five to eight generations shown in the table and among the total of more than six thousand ears, not a single ear had more than 16 rows. After repeated intermittent crossing followed by selfing with selection for high row number, lines have finally been established with modes at 24 rows and means near 23. Two of these lines have not produced an ear with so few as 16 rows.
Frequency distributions of number of kernel rows of inbred lines and their single, double, and multiple crosses

<table>
<thead>
<tr>
<th>Inbred lines and crosses</th>
<th>Generations</th>
<th>Number of kernel rows</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(F)</td>
<td>3</td>
</tr>
<tr>
<td>A</td>
<td>5-9</td>
<td>8</td>
</tr>
<tr>
<td>B</td>
<td>5-12</td>
<td>19</td>
</tr>
<tr>
<td>G</td>
<td>3-13</td>
<td>2</td>
</tr>
<tr>
<td>III</td>
<td>3-8</td>
<td>2</td>
</tr>
<tr>
<td>IV</td>
<td>3-10</td>
<td>8</td>
</tr>
<tr>
<td>VI</td>
<td>4-10</td>
<td>5</td>
</tr>
<tr>
<td>VII</td>
<td>3-9</td>
<td>-</td>
</tr>
<tr>
<td>A x B</td>
<td>4-5</td>
<td>-</td>
</tr>
<tr>
<td>A x G</td>
<td>4-5</td>
<td>-</td>
</tr>
<tr>
<td>IV x VI</td>
<td>4-5</td>
<td>-</td>
</tr>
<tr>
<td>VI x VII</td>
<td>5-6</td>
<td>-</td>
</tr>
<tr>
<td>III x IV</td>
<td>5-6</td>
<td>-</td>
</tr>
<tr>
<td>IV x VII</td>
<td>5-6</td>
<td>-</td>
</tr>
<tr>
<td>A-B x VI-VII</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>A-B x IV-VI</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>A-B x III-IV</td>
<td>3-5</td>
<td>-</td>
</tr>
<tr>
<td>A-G x VI-VII</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>A-G x IV-VII</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>III-IV x IV-VII</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>III-IV x VII</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>A-B x III-IV</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>A-B x VI-VII</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>III-IV x VI-VII</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>A-G x VI-VII</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>A-B x III-IV</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>A-B x VI-VII</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>x</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>A-G x IV-VII</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>III-IV x VI-VII</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>A-B x III-IV</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>A-B x VI-VII</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>x</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>A-G x VI-VII</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>III-IV x IV-VII</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

468
I am now ready to admit that number of kernel rows in maize is a much more complex quantitative character than I assumed it to be when I began a study of its inheritance.

R. A. Emerson

Duke University, Durham, North Carolina

Controlling starchy contaminations in sweet corn by the use of Ga. - The gene Ga converged on Purdue 51 gives inbreds whose hybrids ("sixty-three sixty-fourths" Golden Cross Bantam) are resistant to pollen contaminations by field corn. In testing it was not found practicable to duplicate field conditions since the inclusion of "unadulterated" Golden Cross Bantam as a check, diluted the proportion of available Ga pollen.

Where this dilution was greatest, with four check rows to one row with Ga, Ga reduced contaminations by 71.6±20.4% (S.E.). Where the proportion of Ga pollen was higher, the reduction was 76.6±11.8%. When the proportion was still higher (approaching field conditions) the reduction was 82.0±12.3%. Since the differences between these values are not significant, one can only guess that if Ga were introduced into both parents of the hybrid thus doubling the proportion of Ga pollen, Ga might under field conditions reduce contaminations by as much as 90%.

H. S. Perry

The University of Georgia, Athens, Georgia

Translocation 3-5d. - T 3-5d was isolated in an early dent corn from northern Wisconsin in 1938. (Shuman, John R., A chromosomal interchange in maize giving both chain and ring configurations and low sterility. Summaries of Doctoral Dissertations, University of Wisconsin Press 4: 57-58. 1940.) The strain was not subjected to any treatments known to induce chromosomal changes.

Interchange configurations at diakinesis were examined in 239 microsporocytes from a heterozygous plant, and 225 were classified as follows: 90.6% of the cells had chains of four chromosomes; 4.4% had four chromosomes in an open ring, 3.2% had closed rings of four chromosomes and 1.8% had 10 "bivalents". These observations were interpreted as evidence of a reciprocal translocation in which a comparatively short segment had been exchanged with a longer non-homologous one.

At Anaphase I, 79 microsporocytes from a heterozygous plant had an alternate disjunction of the chromosomes of the complex, and 97 showed an adjacent separation. These frequencies do not differ significantly from equality.
Diakinesis figures from hybrids combining the interchange under investigation with T 1-2a, T 2-9b, T 4-9a, T 6-8 had two independent complexes of four chromosomes and six bivalents; with T 3-8a and T 5-7a there was one complex of six chromosomes and seven bivalents; and with T 3-5b there was one complex of four chromosomes and eight bivalents. Hence chromosomes 3 and 5 were involved in the interchange; and it was labeled d since three T 3-5's were previously described.

Three plants heterozygous for T 3-5d had 24.4% of 2274 pollen grains aborted, and 26.3% of 1315 possible kernels missing from the corresponding ears. These two percentages do not differ significantly from each other, nor from the assumed 25% abortion.

Normal plants as the seed parent crossed with T 3-5d heterozygous resulted in 47.2% of 182 plants from two families with 25% pollen abortion. This per cent of partially sterile plants does not differ significantly from 50%, i.e. a 1 (normal) : 1 (25% sterile) plant ratio. T 3-5d heterozygous as the seed parent crossed with normal plants gave 37.4% of 251 plants from two families with 25% abortion. T 3-5d heterozygous plants sibbed produced 37.7% of 212 plants from two families with 25% abortion. Neither of the latter two distributions differ significantly from each other or from 33 1/3%, i.e. a 2 ("normal") : 1 (25% sterile) plant ratio.

It was therefore postulated that of the four equally frequent classes of spores expected in the heterozygote, only that class deficient for the longer interchanged segment is aborted. The class of spores deficient for the shorter segment but duplicate for the longer one survived through the seed - but not through the pollen parent - despite the fact that 75% of the pollen grains appeared normal. Normal plants, those heterozygous and homozygous for the interchange were morphologically indistinguishable. Plants homozygous for the translocation were completely fertile.

John R. Shuman

Missouri Botanical Garden

1. Maize from Michoacan. - Professor Ralph Beals of the University of California in making a detailed ethnographic study of two neighboring Tarascan villages in Michoacan, Mexico, collected 43 varieties of maize which were loaned me for study. There were 55 ears in all, from each of which I grew ten or more plants at the Blandy Experimental Farm during 1942. The ears were photographed, herbarium specimens were made of the leaves and tassels, measurements and notes were made on the living plants, and these data in condensed tabular form will eventually appear as an appendix to Professor Beals' monograph.

As a whole, the maize belongs to the race which Cutler and I have recently termed "Mexican Pyramidal". The ears taper sharply and regularly, most of them show more or less denting, and there is a strong but variable tendency to irregular rows. The plants are coarse
but the leaves break readily in the wind. They are very susceptible to smut. The tassels have few branches or none at all. At least three sub-races are grown in these two neighboring villages. For two of these there was enough material to define the central core of their variation. BLACK MAIZE is grown only below 8500 feet in gardens close to the homes. Characteristically it has large smoothly-dented kernels with blue or purple aleurone, on a tapering ear about 15 cm. long. TULUKENIO varieties are grown only above 8500 feet in small isolated plots in the mountains. In size the ears vary from as large as Black Maize to very small nubbins. Their kernels vary greatly in size and shape but tend to be small, more or less pointed, and slightly dent. While a few have colorless seedcoats, most of them are lightly suffused or stained with red or reddish brown. None of them have dark aleurone.

In such technical tassel characters as glume length, tassel branch number, and percentage of condensed internodes, the Tulukeno varieties are closer to Pima-Papago maize than to Mexican Pyramidal. The extreme variants of Tulukeno are small-cobbed, non-tapering, early seasoned, flinty, undented, and many tillered. They may possibly reflect a primitive small-cobbed race something like the maize of the prehistoric Basket Makers. Taken in conjunction with Mangelsdorf and Cameron's recent analysis of knob number in Guatemalan maize, the differences between the Tulukeno and the Black Maize varieties from the same village demonstrate the importance of considering altitude above sea level in interpreting the history and development of *Zea mays*.

Of the three Tulukeno varieties which were examined cytologically, two had 'B' chromosomes and the total knob numbers were 4, 4, and 7. The two Black Maize varieties which we examined had no 'B' chromosomes and had total knob numbers of 5 and 6. Most of the knobs were small, compared to those in the maize from western Mexico (Jalisco).

2. Glume bar and its inheritance. - Many central American and southwestern varieties of maize are characterized by a bar or spot of intense color at the base of the glume in the tassel. It is rather rare in modern dent corn; of eighty inbreds examined at Beltsville, 62 were without any indication of it and in only four was it strongly developed. In certain lines and under certain conditions it segregates sharply. It is apparently independent of both the B and R series though its expression is affected by them. It is easiest to score when the tassel has just emerged. I have used the following grades in scoring it.

- readily apparent without handling the tassel ++
- readily apparent only upon handling the tassel +
- of slight and variable expression ±
- altogether lacking 0

The only data I have on its inheritance are derived from a series of inbreds from one strain of Papago Flour corn. In two cases the same lot of seed was grown in different places and different years. One second generation inbred was scored as all ++ at Cold Spring Harbor, L.I.; in 1941 and likewise at Boyce, Virginia in 1942. On the other hand the first generation inbred P-3 segregated sharply in Missouri in 1940, 10 ++ to 26 0. At Cold Spring Harbor in 1941 the second
planting gave a higher percentage of plants with glume bar but in many of these it was not strongly marked (43, +; 5, +; and 17, 0). In three of the inbreds glume bar segregated independently from the B and R loci. (Since the B and R allelomorphs in this material are apparently different from those in most genetic stocks, no attempt has been made to define them precisely).

P-2. leaf sheath slightly sun red, anthers pink, glume bar +. First selfing, 29 plants all sun red but in varying degree, anther color and glume bar segregating as follows: pink anthers, +, 11; pink anthers, 0, 11; green anthers, +, 4; green anthers 0, 1.

P-6. leaf sheath green, bright pink anthers, glume bar ++. First selfing, 27 plants segregating sharply for glume bar and plant color as follows: red sheath, ++5; green sheath, ++, 13; red sheath, 0, 3; green sheath, 0, 6.

P-8. parental type unscored. First selfing, 66 plants all strongly sun red, silks green, segregating for glume bar and anther color, red anthers, +, 37; green anther, +, 15; red anthers, 0, 7; green anthers, 0, 7.

3. Average values for certain characters in Beals' collections from Cherán and Nahuatzen (Urumpa) Michoacan, Mexico.

<table>
<thead>
<tr>
<th>Character</th>
<th>Black Maize</th>
<th>Tuluenenio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of ears</td>
<td>25</td>
<td>26</td>
</tr>
<tr>
<td>Row number</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>(from collected ears)</td>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td>Glume length in mm.</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>Tassel branch number</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>Percentage of condensed</td>
<td>50</td>
<td>70</td>
</tr>
<tr>
<td>internodes in tassel</td>
<td>scattered</td>
<td>heavy</td>
</tr>
<tr>
<td>Percentage of sub-sessile</td>
<td>0</td>
<td>0-1</td>
</tr>
<tr>
<td>upper spikelets</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pubescence of sheath</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tillers on ten plants</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Edgar Anderson

University of Missouri, Columbia, Missouri

1. Some Alleles of R. Detailed phenotypic comparisons were made between R alleles derived from relatively unrelated individual plants. The original stocks were mostly of strains cultivated by various American Indian tribes, specimens of which were supplied by J. H. Kempton. Twenty-two alleles with colored aleurone and colored plant effects (R^R series) were included (abstract in Genetics, 28: 90-91). In addition a number of alleles of the R^R series are included in a
The effect of different R alleles upon plant color differs widely, as to both intensity and distribution of pigmentation. Since the associated independent effect upon aleurone color provides a completely linked marker, it is possible to identify even very slight differences due to the R alleles, as distinguished from the effects of modifying factors.

The series is non-linear, in that various cases occur in which one allele produces distinctly more effect than another upon some tissues and distinctly less upon others. Such cases might be expected to occur if the alleles differ only in the extent of their effect upon some single reaction, for it might be expected that pigmentation would increase with "strength of action" up to a given point and then decline, and that this optimum point might differ in the various tissues concerned. The effects observed do not fit this hypothesis in any reasonably simple form. They suggest rather that the effect of R alleles upon plant color is a complex of two or more types of action, independent in the sense in which the aleurone color effect and the plant color effect are independent.

For a major portion of the plant color effect, however, the reaction of different tissues is quite closely correlated. The R^r alleles may be arranged in a single sequence to represent their effect upon occurrence and intensity of pigmentation in mesocotyl, coleoptile, seedling leaf tip and margin, seedling leaf sheath, mature plant basal sheaths, tassel glume, and anther. For example, the occurrence of seedling leaf tip color marks a level beyond which full anther color is developed and below which anther color is distinctly weak. Full coleoptile and mesocotyl color are reached below this level, though the color of these organs is deeper and more rapidly developed in the types with tip color. Distinct seedling sheath color does not occur until a higher level is reached, and is accompanied by deepened coloration of the tassel glumes and anthers. In their effect upon this character complex the R alleles studied may be regarded as differing merely in level of action, and the varying thresholds of response in the tissues studied provide a sensitive means of detecting differences in the level of action of the alleles compared.

L. J. Stadler and Seymour Fogel

2. New Alleles of A. As previously noted (News Letter, 1941: 44) the gene A^b mutates spontaneously at a fairly high rate to a type resembling a^P. The mutants, identified by the pale aleurone effect, produce plants which like a^P produce both anthocyanin and anthoxanthin pigment. Nine of the mutants were checked for the dominant brown pericarp effect present in A^b and a^P, and all showed this effect also.

In plant color with R and P, the mutants were in general more deeply colored and more reddish than the standard a^P. They varied rather widely in degree of redness, ranging from a deep brown to a maroon shade approaching purple at maturity. The original mutants, and various others which have occurred in later experiments with A^b,
form an apparently continuous series between the two extremes. No mutant of \(A^b \) to a colorless aleurone type or to a type producing only anthoxanthin pigment in the plant has been found.

Four representative mutants were selected for further study, to determine whether the differences in expression were due to differences in the mutant alleles. The factor \(st \), an X-ray induced chromosome 3 mutant, located 11 units distal to \(A \), was combined with one of the mutants and also with standard \(aP \), and the phenotypic effects were compared in backcross progenies in which the various alleles could be compared in plant color (with \(B \) and \(Pl \)) in sib plants. The results show that the four mutants represent distinguishable alleles of \(A \), each producing a mixture of anthocyanin and anthoxanthin pigments but differing in the relative quantity of anthocyanin produced. These are designated mahogany (\(A^b-m \)), cedar (\(A^b-c \)), chestnut (\(A^b-ch \)) and walnut (\(A^b-w \)).

The aleurone color of the mutant \(A^b \)'s described, as identified in \(st \)-marked segregations, is paler than that of \(A^b \) or \(A \), but not so pale as \(aP \). Seed separation may be made effectively in segregations against either \(A \) or \(aP \). There is also a recognizable difference in aleurone color between some of the mutant types, which sometimes is distinct enough for individual classification.

There are some interesting differences in the action of these pale aleurone mutants of \(A^b \) and the two pale aleurone mutants at hand which arose from other members of the \(A \) series. If (News Letter, 1941: 46) is an ultra-violet mutant of \(A \), which has a pale aleurone and reddish purple plant color, yielding anthocyanin and anthoxanthin pigment. \(A^w \) is a mutant of \(a \), which occurred as a sector with pale purple anthers in a plant of \(aP \). It also produces pale aleurone and a reddish plant color, yielding anthocyanin and anthoxanthin. Qualitative tests show a distinct difference in the anthocyanin produced by \(A^t \) and \(A^w \), on the one hand, and by \(A^b-m \), \(A^b-c \), \(A^b-ch \), \(A^b-w \), and \(aP \) on the other.

The pale \(A^b \) mutants, like \(aP \), show little or no difference in the aleurone color of homozygous seeds vs. seeds heterozygous for \(a \). Both \(A^t \) and \(A^w \), in selfed ears of plants heterozygous for \(a \), show clearly cumulative effects, the heterozygous seeds being distinctly pale and the homozygous seeds often being indistinguishable from full \(A \).

In compounds among the pale \(A^b \) mutants and between these mutants and \(aP \), the plant color effect of the redder member is distinctly dominant, and in those cases in which aleurone color is distinguishable the darker type is dominant. \(A^t \) produces a redder plant color than the \(A^b \) mutants or \(aP \), but the hybrid \(A^t/aP \) is intermediate, with a pronounced increase in anthoxanthin content. \(A^t \times aP/a \) yields progeny of two very distinct types, the \(A^t/aP \) plants showing a distinct dominant effect of \(aP \) on anthoxanthin production as compared with the \(A^t/a \) sibs. This dominant effect of \(aP \) is not evident in crosses with \(A \) or \(A^b \), so far as the appearance of the plants is concerned. It is evident, however, in crosses with \(A^bP \), a \(Dt \)-mutant obtained by Rhoades, (News Letter, 1941: 6)
which resembles A in plant and aleurone color but does not give red pericarp. In crosses of $A^{br} x a^{D}/a$ there is a distinct diminution of red and increase of brown in the plant color of A^{br}/a^{B} vs. A^{br}/a sibs. A similar effect is shown by cedar, chestnut and walnut, the only A^{b} mutants tried in this combination. It is wholly absent in $A^{br} x a^{lt}/a$, the A^{br}/a^{lt} plants being indistinguishable from the A^{br}/a sibs.

3. The Action of R and B. No anthocyanin pigment is produced in maize except in the presence of suitable alleles of A_1, A_2, and either R or B. For certain tissues B will serve as well or better than R; for others R is essential regardless of the presence of B. In those tissues which may be colored by the action of either R or B, the essential step in anthocyanin synthesis which is accomplished by R must be accomplished also by B, or it must be made unnecessary by some alternative step accomplished by B.

The effects of varying R action are shown by the phenotypes of the various R alleles, and a similar comparison may be made for B by comparing it with the weakened B alleles described by Emerson in 1921. Several additional R alleles intermediate in action between B and b have been picked up in exotic strains and in dent corn varieties. Their study is not quite as convenient as that of the R alleles, but is facilitated by the use of Anderson's chromosome 2 inversion to intensify the linkage with seedling markers. The B alleles, like the R alleles, differ in the occurrence and the intensity of the pigmentation of various organs, and in their major plant color effect they may be arranged in a single sequence of increasing strength on the assumption of different thresholds of response in different tissues. The order of response of the different tissues is however quite different from that found for the R alleles. The standard B used produces rather strong pigmentation of the seedling leaf sheath, coleoptile and mesocotyl, and deep pigmentation of the mature sheath, blade, culm, tassel, and cob. With successively weaker B alleles, blade color is restricted to the midrib and soon disappears, sheath color becomes weakened first in the lowermost sheaths and last in the middle sheaths. Glume color diminishes first at the tip region of the glume, and with successive steps is limited more and more closely to the base of the glume. In the weakest allele distinguishable from b, plant color is limited to a narrow transverse line at the base of the glume and to scattered streaks of color on the culms and sheaths of the middle internodes of the plant. The pigmentation of mesocotyl, coleoptile, and seedling sheath disappears early in this sequence, and most of the alleles give wholly colorless seedlings.

The response of R and B genotypes to sugar feeding of excised tissues (News Letter 1942: 31; Amer. Jour. Bot., 29: 175) is sharply different. Sib plants of $r^{ch} b$ and $R r^{E}$ (with A_1, A_2, P_1) are about equally colored in coleoptile and seedling leaf sheath. In later growth the latter becomes much more deeply colored in leaf sheath and blade. Excised leaf sections of the r^{ch} plants, in seedling or later stages, produce anthocyanin abundantly with externally supplied glucose, the amount of anthocyanin varying with the glucose concentration. Seedling leaf sections of the R
plants produce no anthocyanin, regardless of the glucose concentration, and leaf sections taken at a stage when anthocyanin is being produced in the leaf show no effect of added sugar upon the rate of anthocyanin production. The presence of B in addition to R^{CH} does not increase the rate of anthocyanin production by the excised leaf sections, and the addition of B to weaker alleles of R, which produce anthocyanin at a lower rate than R^{CH}, does not increase their response to added glucose.

L. J. Stadler

U.S.D.A. and Cornell University

1. The number 4 trisome is now available in a stock segregating for su. Also, all of the other trisomes, with the exception of number 1, are available in vigorous stock cytologically determined to be free of B chromosomes. To make these trisomic stocks more suitable for use in the corn belt and elsewhere, they have been outcrossed to different commercial inbred lines, including the corn belt lines Hy and 137-2 and somewhat earlier maturing New York State lines of Luces Favorite and Cornell II.

2. The embryo culture technic was utilized to obtain hybrids of tetraploid corn and tetraploid Tripsacum. Tetraploid corn was pollinated with a mixture of pollen from An corn and An Tripsacum by stripping down the husks and sprinkling the pollen over the silks exposed throughout their entire length. The husks were then drawn up about the ear shoot and held in place with rubber bands and a glassine bag to prevent excessive evaporation. Ears pollinated in this manner were harvested 18 to 21 days after pollination, the embryos of the partially developed kernels were excised and transferred to a sterile agar nutrient medium in 2 oz. bottles. After their root systems were well established, usually after 10 days to 2 weeks, the seedlings were transplanted to soil. The 56 chromosome hybrids are slow-growing and thus far show no evidence of hybrid vigor. At the present time (January), An corn plants of the same age and similarly derived from excised embryos originating from pollinations made last August have passed the silking and pollen-shedding stage, while the hybrids are still making exclusively vegetative growth and show no evidence of stem elongation, although they are sturdy, healthy plants. Since these Tripsacum-corn hybrids, unlike those previously obtained by Mangelsdorf and Reeves, have two sets of chromosomes from each parent, they should be highly fertile; but this remains to be seen.

3. Tetraploidy may be induced in the shoot apex of very young maize seedlings by introducing a dilute aqueous solution of colchicine through the cut end of the primary seminal root, or later in seedling development after the secondary seminal roots are established by introducing the colchicine solution through the base of the epicotyl following excision of the seed. Immersion alternately in .05% colchicine and water for 24-hour periods, usually for 4 days, effectively induced sizeable sectors of An tissue that persisted to maturity and affected both tassel and ear shoot. In some instances both ear shoot and tassel apparently were entirely tetraploid, and selfing such plants produced tetraploid seed. External applications of colchicine to ear-shoots and seedlings prove
unsatisfactory as a practical method of chromosome doubling.

This seedling treatment technic is being adapted to the production of diploids from haploids in an attempt to obtain homozygous diploids from heterozygous maize stocks, especially commercial hybrids, in one generation.

4. The origin of the perennial rhizome habit of Euchlaena perennis Hitch. has puzzled students of species relationship in the tribe Maydeae for many years. All other American representatives of the tribe are annuals, with the exception of Tripsacum, which is perennial but grows in dense clumps and has very short rhizomes unlike the elongate freely-spreading rhizomes of perennial teosinte. The annual teosinte of Central America and Florida that has been examined cytologically is diploid. The perennial teosinte, known only from one very restricted area in Mexico, is tetraploid and has multivalent synapsis of its chromosomes and other characteristics which indicate that it is either a true autotetraploid or an allotetraploid of two closely related species or ecotypes.

Diploid forms of perennial teosinte and tetraploid forms of annual teosinte are unknown in nature. However, a somatic mutation from the annual to the perennial habit occurred in a plant of Durango teosinte grown in the greenhouse in 1931. The annual portion of this plant (1359-10) was diploid and its selfed progeny were diploid annuals with the exception of one plant (1625-B-1), which was tetraploid and perennial. The perennial rhizome sector of plant 1359-10 was propagated vegetatively, and several root-tips collected from it soon after it was discovered were examined cytologically and found to be entirely tetraploid. However, of 15 seedlings produced during the following flowering period from selfed seed of the perennial mutant one was triploid and 14 were tetraploid, and the mutant pollinated during this same period by tetraploid corn produced 11 tetraploids and one triploid, suggesting that diploid tissue persisted in the mutant sector up to the time the first crop of seed was produced sufficient to form at least 2 female gametes with a monoploid set of chromosomes.

The spontaneous occurrence of this somatic mutation from the annual diploid to the perennial tetraploid condition was interpreted as strong evidence in support of the assumption that E. perennis was simply a tetraploid mutant of E. mexicana.

To test this assumption further, tetraploidy was induced experimentally in stocks of Durango, Chalco and Florida teosinte with the heat-treatment technic. These artificial tetraploids had the annual growth habit of the parent diploids and exhibited no perennial characteristics whatever.

Another test of the relation between tetraploidy and the perennial habit involved the identification of parthenogenetic diploids in the progeny of E. perennis to determine whether they would be annual or perennial. In diploid maize parthenogenetic haploids occur with an average frequency of about 1:2000, and in tetraploid maize parthenogenetic diploids occur with an average frequency of about 1:1000. Data from greenhouse material of perennial teosinte (teosinte is a short-day plant which normally flowers during November in this latitude) accumulated during the past 10 years
indicate that haploid parthenogenesis is extremely rare in this species. In this experiment, the results of which are summarized in the accompanying table, various stocks of perennial teosinte were used, including a culture from rhizomes collected at the type locality in Mexico (E16-515), a seedling from seed harvested from the type material in Mexico (E13-533), selfed progeny of E16-515 (2660), selfed progeny of E13-533 (2661), the spontaneous tetraploid mutant (1359-10) and the tetraploid seedling (1625 B-1) from the annual portion of this plant.

Seedling progenies obtained from various perennial teosinte X diploid corn crosses, 1932-1941

<table>
<thead>
<tr>
<th>Perennial teosinte stocks</th>
<th>2660</th>
<th>2661</th>
<th>3449</th>
<th>Misc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>EL3-533</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EL6-515</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1359-10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1625 B-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16-515</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13-533</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2661</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1932</th>
<th>1933</th>
<th>1934</th>
<th>1935</th>
<th>1936</th>
<th>1937</th>
<th>1938</th>
<th>1939</th>
<th>1940</th>
<th>1941</th>
</tr>
</thead>
<tbody>
<tr>
<td>2660</td>
<td>15</td>
<td>1023</td>
<td>565</td>
<td>570</td>
<td>149</td>
<td>16</td>
<td>91</td>
<td>1125</td>
<td>134</td>
<td>177</td>
</tr>
<tr>
<td>2661</td>
<td>80</td>
<td>1417</td>
<td>126</td>
<td>860</td>
<td>1263</td>
<td>1410</td>
<td>1345</td>
<td>263</td>
<td>405</td>
<td>1148</td>
</tr>
<tr>
<td>3449</td>
<td>2614</td>
<td>1359</td>
<td>435</td>
<td>875</td>
<td>166</td>
<td>142</td>
<td>310</td>
<td>263</td>
<td>11</td>
<td>320</td>
</tr>
<tr>
<td>Misc.</td>
<td>42</td>
<td>1132</td>
<td>317</td>
<td>784</td>
<td>22</td>
<td>34</td>
<td>47</td>
<td>44</td>
<td>68</td>
<td>43</td>
</tr>
</tbody>
</table>

Totals 2745 9179 2614 1359 3451 9502 306 705

Grand Total 29,869

Perennial teosinte is propagated vegetatively with the greatest of ease and no difficulty is experienced in maintaining individual clones indefinitely. To facilitate the identification of parthenogenetic individuals in the seedling stage, the perennial teosinte stocks were crossed with corn pollen of the constitution A B F1 C R6 Pr or a B F1 1g. The triploid hybrid seedlings of these crosses would be purple and under suitable cultural conditions could be distinguished readily from maternal, weak sun-red seedlings. Parthenogenetic seedlings of paternal origin would be either purple with green anthors at maturity or green liguleless. One parthenogenetic maternal diploid
and one parthenogenetic paternal haploid were identified among the 29,861 seedlings from the perennial teosinte X diploid corn crosses grown during the period from 1932 to 1941 inclusive. The maternal diploid appeared in the 1936 progeny of culture 2661, which in that year contained 1156 seedlings. This exceptional diploid had the annual growth habit. It tillered profusely, but produced no rhizomes and after forming a few aborted tassels the plant died at about the same time annual teosinte plants of the same age mature and then die. The parthenogenetic haploid of paternal origin had narrow leaves and otherwise resembled teosinte in the early seedling state, except that it was a diminutive seedling and had the purple color of the pollen parent; later in ontogeny it became typically maize-like and was indistinguishable from ordinary maternal haploids of the same stock.

In addition to these two exceptional seedlings there occurred each year a small number of maternal tetraploid seedlings. These were at first assumed to be contaminations, but the prevalence among them of recessive chlorophyll mutants suggested that at least some of them may have originated from unfertilized, normally-reduced diploid eggs followed by chromosome doubling in early embryogenesis. If this is happening, it would help to explain the low frequency of maternal diploids obtained from this perennial teosinte X corn cross.

The perennial rhizome habit of E. perennis does not behave as a simple Mendelian recessive. The F1 perennis X 4n corn is intermediate in that it can be maintained by careful subdivision and occasionally produces short rhizomes. The character does not segregate sharply in F2 and back-cross progenies but behaves like typical quantitative characters that are dependent on the interaction of multiple factors. In these segregating progenies most of the plants tillered much more profusely than did the 4n corn parent, but very few developed any appreciable rhizome system during the summer season. A much longer growing season than we have at Ithaca is needed to make really satisfactory classification for rhizome habit in material of this kind. However, it is apparent from the general character of the segregating populations and the intermediate nature of the F1 plants with respect to rhizome habits that a dosage effect is involved, and it is therefore conceivable that cumulative gene action accompanying chromosome doubling might transform an annual into a perennial in the presence of a suitable genotype.

Some such interpretation of the origin of the perennial rhizome habit of E. perennis is supported by the occurrence of the parthenogenetic maternal diploid lacking the perennial rhizome habit in the progeny of E. perennis, and by the occurrence of the spontaneous perennial, tetraploid chimera in an annual plant of E. mexicana. The persistence of the annual habit in the experimental autotetraploids of E. mexicana may mean that the stocks from which they were produced lacked the essential genes requisite to the production of the perennial habit in the tetraploid state. It is generally believed that most annual forms of teosinte possess admixtures of maize genes. This would provide ample opportunity for displacement of genes of annual teosinte having perennial prepotencies by maize genes with strong annual prepotencies and would account for the appearance of the perennial habit in some annual teosinte tetraploids and not in others.

L. F. Randolph
1. Corn Breeding in the Tropics. Perhaps a few observations on corn breeding in Venezuela, latitude N 12, would be of interest to geneticists in other parts of the world.

A preliminary survey of the existing corn varieties in Venezuela made in September, 1939, revealed that all of them were of inferior productive capacity with a tendency to grow extremely tall and set the ear high on the stalk. Most varieties had white seeds, primarily because the people depend to a large extent on "arepas", ground corn in the form of a small, thick pancake, for food. Yellow "arepas" are preferred in some regions of the country, but white "arepas" are more commonly used. For years, negative selection has been going on in corn because the people eat the best seeds and plant the leftovers.

Some of the best varieties and hybrids from the United States and from many tropical and subtropical countries, including Cuba, Puerto Rico, Santo Domingo, and Colombia, were collected and planted together with the Venezuelan varieties in three different experiment stations. The types from the United States were vigorous in the seedling stage but they came into flower too early, as was expected, due to the difference in length of day. They became weak and were attacked by many diseases and insects. A Puerto Rican variety, Mayorbella, obtained from Dr. Arturo Roque, was vigorous in the seedling stage, then became weak, and later vigorous again and produced relatively large ears. The Venezuelan varieties gave their usual rank plant growth but did not set desirable ears. A yellow seeded type from Cuba with sturdy stalk of medium height set two ears at the proper distance from the ground. This type outyielded the others by at least 100 per cent. In further tests it has made the unusual performance of giving relatively high yields all over Venezuela from altitudes of 40 feet to 4,000 feet. In three years in which six generations of mass selection have been made, it has become the most popular variety in the country in spite of its color.

Its origin is interesting. A representative from this government collected two varieties from Cuba in 1938, but the seeds of the two were mixed in handling. About two years later several hundred sound seeds were salvaged from a bag of weevil-eaten material, and from these seeds the present selection has been developed. This selected type is being distributed in this country and in other neighboring countries under the name of VENEZUELA-1.

The main project is the development of hybrid corn adapted to the climatic conditions of Venezuela. Six generations of inbreeding of the heterogeneous material has resulted in approximately 300 selected lines, some of which have a desirable appearance and have done well in top crosses and single crosses. The first double crosses are now being tested.

It is interesting to note that most of the varieties collected from Venezuela and other countries of this latitude degenerate rapidly with intensive inbreeding. Outcrossing followed by sib crossing has been
accepted as the best practice for utilizing these varieties.

The Cuban type is a striking exception to this rule. Selfing has resulted in a multitude of types, but most of them are relatively vigorous and some are exceptionally impressive.

Inbreeding has resulted in the usual number of hidden recessives and the isolation of new mutations. Male sterile, barren stalk, brown mid-rib, virescents, white seedlings, zebra, tassel seed, suscoid, and many others have been observed.

A small but important change in breeding technique has been necessary due to the larvae of an octitud fly, *Duxesto stigma* Laew. It is not advisable to cut back the husks of the ear shoot to obtain a uniform brush of silks because the insects enter and destroy the ear. It is better to wait as long as possible for the silks to come out naturally before pollinating.

There can be no doubt that in the near future hybrid corn will be available for distribution in a country which has no seed companies and little knowledge of seed improvement. In the meantime, however, the type VENEZUELA-1, improved by mass selection, has been widely distributed.

2. Sweet Corn in Venezuela. The mutation to sugary corn which occurred in a variety of dent corn adapted to the climatic conditions of Venezuela (Maize Genetics Cooperation News Letter, April 1, 1941) has been the basis of the development of sweet corn in this country. This corn has been named VENEZUELA-2 and is now widely distributed throughout the entire country and in other South American countries that have requested it. Some of the details of its development may be of interest.

Until 1942, the majority of the people in Venezuela had never tasted true sweet corn and most of them had never heard of it. Some who had travelled in the United States, imported seeds of a few varieties and planted them in Venezuela, but the plants were always weak, badly diseased, attacked by insects and consequently unable to produce ears.

Corn known as "jojotos" has always been consumed in Venezuela and is sold in the markets of the cities. This is the native type, a mixture between dent and flint, that is harvested not in the milk stage but in the soft dough stage. It is eaten directly from the cob or cut off and used to make certain Venezuelan dishes such as "cachapas", a pancake-like preparation. The true sweet corn now available in Venezuela has such a contrasting flavor to the dent-flint mixture that it is widely accepted by the people of all classes.

In 1939 when a modern program of corn improvement was initiated in Venezuela, approximately 3,000 self pollinations were made in the best local and imported varieties to develop inbred lines. Some of the first generation ears were planted in progeny rows in 1940 and about 3,000 of the best plants were selfed. None of these second generation ears segregated for sweet corn. But one of the second generation plants gave, on selfing, an ear with 216 starchy kernels and 73 sugary kernels. Five plants in the same progeny gave ears with only starchy kernels.
Since there had been no sweet corn planted anywhere near these fields and no sugary kernels had appeared in the first two generations of inbreeding, it is extremely likely that this was a mutation to sweet corn.

Fortunately, it occurred in one of the most vigorous lines which had such desirable characters as deep green color, relatively early maturity, two ears per stalk and, most important of all excellent husk covering of the ears.

Some of the sugary seeds and the starchy seeds from this ear were planted and self-pollinated. As was expected the sugary kernels gave ears of 100% sugary type, whereas some of the starchy kernels bred true for starchy and others segregated sugary. Seeds from the sugary ears were planted. When these plants had tassels and pollen, a field of the original variety of starchy corn was nearing the completion of its flowering period. Ten plants in this field were pollinated with pollen from the sweet corn inbred. The seeds from these ten ears were mixed and planted in a small field at the Instituto Experimental de Agricultura y Zootecnia in January, 1942. Vigorous plants were obtained. There was no attempt to control the pollination. All of the ears segregated approximately 25 per cent sugary kernels.

The sugary kernels from these ears were planted in one field and the starchy kernels in another. There was no attempt to control the pollination in either field.

The ears harvested from the first field were of the sugary type, but there was considerable variation in the kernels. Some of them were entirely translucent while others showed various degrees of starchiness.

In the second field where theoretically one-third of the seeds planted were homozygous starchy (Su Su) and two-thirds heterozygous for sugary (Su su), the expected ratio of starchy to segregating ears was 1:2. Actually, there were 9,347 ears with all the kernels starchy and 22,147 ears segregating for sugary.

Theoretically, the segregating ears should have had a ratio of 5 Su to 1 su kernels. One hundred of these ears taken at random gave ratios from 20 Su : 1 su to 3 Su : 1 su, but the total count was 39,742 Su kernels and 9,099 su kernels, or a ratio of 4.36 : 1. This discrepancy from 5 : 1 ratio is probably due to a position effect of the plants in the field.

On October 7, 1942 a demonstration of the history of sweet corn in Venezuela was made to an audience in the auditorium of the Sociedad Venezolana de Ciencias Naturales. At the close of the demonstration, packages of the new sweet corn were distributed to all present. Considerable seed has been distributed since then.

From a scientific point of view this sweet corn will not be of maximum yield because it is the third generation of a cross between an inbred line and a variety. In spite of this, however, it is being distributed because it has yielded sufficiently well to give the public a taste of sweet corn.
Since the first ear of this corn was discovered it has been crossed with a number of selected varieties of ordinary corn which do well under the climatic conditions of Venezuela. The plants from these numerous crosses have been self-pollinated, and inbred lines are being developed in a number of types. When there is an abundance of inbred lines involving the sugary gene, they will be crossed to give hybrid sweet corn for Venezuela. In the meantime the other topcross type will be propagated.

D. G. Langham

Harvard University, Cambridge, Mass.

Studies of chromosome knob numbers of the maize varieties of Latin-America have been continued with the following results:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Brazil</td>
<td>8</td>
<td>5-9</td>
<td>6.6</td>
</tr>
<tr>
<td>Colombia</td>
<td>2</td>
<td>12-13</td>
<td>12.2</td>
</tr>
<tr>
<td>Costa Rica</td>
<td>4</td>
<td>10-12</td>
<td>11.0</td>
</tr>
<tr>
<td>Cuba</td>
<td>6</td>
<td>11-12</td>
<td>11.2</td>
</tr>
<tr>
<td>Mexico</td>
<td>33</td>
<td>4-13</td>
<td>10.0</td>
</tr>
<tr>
<td>Nicaragua</td>
<td>15</td>
<td>9-14</td>
<td>12.8</td>
</tr>
<tr>
<td>Panama</td>
<td>4</td>
<td>12-14</td>
<td>12.6</td>
</tr>
<tr>
<td>Paraguay</td>
<td>5</td>
<td>2-6</td>
<td>4.8</td>
</tr>
<tr>
<td>Peru</td>
<td>15</td>
<td>1-2</td>
<td>1.3</td>
</tr>
</tbody>
</table>

Although the sampling of individual countries is still far from adequate, the data tend to support the previous conclusion, that low-knob varieties are confined in Central America to Western Guatemala and to the immediately adjoining regions in Mexico. In all other parts of Central America and Mexico and in Cuba as well, only high-knob varieties have been encountered. Western Guatemala and the adjoining state of Chiapas in Mexico continues to appear to be the center of maize diversity in Central America.

It appears also that Paraguay must now be added to Peru and Bolivia as a region of low-knob varieties in South America. Although only five varieties from Paraguay have been examined cytologically, the majority of varieties collected are of the same general type as these and will probably prove to have but few knobs.

Dr. Hugh C. Cutler has now spent more than a year in Brazil, Paraguay and Bolivia collecting native corn varieties and searching for wild maize. His first goal is being successfully achieved; the second is still elusive. Several reports of maize growing in the wild have been investigated with wholly negative results. The "wild" maize in each case was either cultivated maize obviously escaped from cultivation or not maize at all. The cultivated corn collected from Paraguay and
Southwestern Brazil is of considerable interest. The cobs are quite flexible; the pedicels on both staminate and pistillate spikelets longer than normal.

A variety of maize obtained from Amantina Island in Lake Titicaca in Peru at an altitude of about 12,500 feet, probably the highest altitude at which corn is grown in any part of the world has proved to be early and cold-resistant. These characters may make it valuable for plant breeding in spite of the fact that it is very susceptible to smut.

P. C. Mangelsdorf and James W. Cameron
Maize Publications

There is presented here a partial list of publications on maize.

M.J. Murray and R. Morris

Kochler, R. - Natural mode of entrance of fungi into corn ears and some symptoms that indicate infection. Jour. Agric. Res. 64: 421-442. 1942.

Lindstrom, E. W. - Experimental data on the problem of dominance in quantitative character inheritance in maize and tomatoes. Abst. in Gen. 28, p. 81. 1943.

- Gene action in anthocyanin synthesis in maize.

Tavcar, A. - The immediate effect of crossing small and large seeded genotypes on the character of the kernels of Zea Mays L. Poljopr. Naucna Smotra, Zagreb. 2: 77-96. 1940.

Wilson, W. E. - Physiological studies of two species of Diplodias parasitic on corn. Phytopath. 32: 130-140. 1942.

III. Inventory of Seed Stocks Propagated in 1942

In 1942 I planted and hand-pollinated only such stocks as were sent me last spring or as Dr. Welch told me should be replenished. A total of 140 ears were obtained.

- **42-1**: $+ p as \text{gs}^{+}\text{sr}^{+}\text{bm}^{2} / + \text{ts}^{2}$, 9 ears.
- **42-2**: $+ p as \text{gs}^{+}\text{sr}^{+}\text{pm}^{R} / +$, 7 ears.
- **42-3**: as/42-1, 5 ears.
- **42-5**: zb6 (from Burnham), 3 ears.
- **42-6**: br, smut resistant stock (from Burnham), 3 ears.
- **42-7**: A C R Pr cr, brown pericarp (from Burnham), 5 ears.
- **42-8**: A C R pr cr (from Burnham), 3 ears.
- **42-9**: A C R pr cr (from Burnham), 1 ear.
- **42-10**: F$_2$ of a C R na ta$/+$ (from Burnham), 14 ears.
- **42-11**: $+ p as /+-$, 7 ears.
- **42-12**: $+ p as /+-$, 7 ears.
- **42-13**: $+ p as /+$, 7 ears.
- **42-14**: $+ p as /+$, 7 ears.
- **42-15**: A C R pr cr, brown pericarp (from Burnham), 5 ears.
- **42-16**: A C R pr cr (from Burnham), 3 ears.
- **42-17**: A C R pr cr (from Burnham), 1 ear.
- **42-18**: A C R pr cr (from Burnham), 1 ear.
- **42-19**: F$_2$ of a C R na ta$/+$ (from Burnham), 14 ears.
- **42-20**: $+ p as /+$, 7 ears.
- **42-21**: $+ p as /+$, 7 ears.
- **42-22**: $+ p as /+$, 7 ears.
- **42-23**: $+ p as /+$, 7 ears.
- **42-24**: $+ p as /+$, 7 ears.
- **42-25**: $+ p as /+$, 7 ears.
- **42-26**: $+ p as /+$, 7 ears.
- **42-27**: $+ p as /+$, 7 ears.
- **42-28**: $+ p as /+$, 7 ears.
- **42-29**: $+ p as /+$, 7 ears.
- **42-30**: $+ p as /+$, 7 ears.
- **42-31**: $+ p as /+$, 7 ears.
- **42-32**: $+ p as /+$, 7 ears.
- **42-33**: $+ p as /+$, 7 ears.
- **42-34**: $+ p as /+$, 7 ears.
- **42-35**: $+ p as /+$, 7 ears.
- **42-36**: $+ p as /+$, 7 ears.
- **42-37**: $+ p as /+$, 7 ears.
- **42-38**: $+ p as /+$, 7 ears.
- **42-39**: $+ p as /+$, 7 ears.
- **42-40**: $+ p as /+$, 7 ears.
- **42-41**: $+ p as /+$, 7 ears.

490
Supplement to News Letter 17

Two reports received too late for inclusion with the others are:

<table>
<thead>
<tr>
<th>University</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minnesota University</td>
<td>38</td>
</tr>
<tr>
<td>São Paulo University</td>
<td>38</td>
</tr>
</tbody>
</table>
1. There is an indication of linkage between interchange 1-9c (breaks near P1 and wx-13-T), and the dominant white cap (Wc), a small backcross population having:

\[Wc = 12 \text{ normals} + 29 \text{ semisteriles}; \text{ yellow cap} = 27 \text{ normals} + 13 \text{ semisteriles}; \text{ or about } 35\% \text{ c.o.} \pm 5\% \text{ S.E.} \]

2. Dr. Sprague furnished us with a complete set of his glossy testers. As reported last year, the Coöp gl 10 is the same as Hayes' gl 4 (shows 3% c.o. with wx). Tests show it is genetically different from Sprague's glossy 1, 2, 3, 4, 5, 6, 8, 9, 10 (probably different from 7), leaving gl 11 and 12 to be tested.

Also:
- Coöp gl 3 - same as Sprague gl 3
- " gl 5 - " " " gl 5
- " gl 8 - different from Sprague gl 8

3. Crosses between interchanges involving the same two chromosomes were studied for pollen and ear sterility and as a possible source of viable deficiencies. If two are crossed which involve exactly the same loci in the two chromosomes, the F1 should show no sterility.

Where the breaks are not at the same loci, the result depends on the positions of the breaks relative to the spindle fiber. In certain cases, gametic combinations should be possible which carry a deficiency for the piece between the breaks.

In a series of such crosses, one showed about 20% sterility and another 25% where the parents crossed with normals showed semisterility. Variation in size of the filled pollen grains was observed. Crosses with genes which have a chance of being near these loci have been made for deficiency tests; also crosses with sifted pollen.

4. Stocks of zebra-1, zebra-2, and zebra-3 have been revived from some old crosses made at Ithaca in 1929 or 1930. (These will be turned over to the Coöp)

C. R. Burnham

"Luiz de Queiroz" - University of São Paulo
Piracicaba, São Paulo, Brazil

Since North American colleagues probably are not familiar with the working possibilities in the relatively new Department of Genetics and Cytology at Piracicaba, a few words will be said about it. Our College is situated in relatively flat country at 500 m. altitude and with a subtropical climate. There is a difference between summer and winter, more due to the difference of rain than of temperature. The total rainfall is of about 1 m. per year, but from June to September there is hardly any rain; but morning fogs from the river and heavy dew give still much moisture. Tropical crops grow well in the hot and rainy season (December to March) while cabbages, carrots, sweet peas, snapdragons, etc. grow in the winter and dry season (April to
The main crops of the region are sugar cane and oranges. With irrigation corn may be grown practically the whole year around but we prefer, in order to get good ears, consecutive sowings from October to early February. There are only a few fungus diseases, and none of them serious. Insect attacks are generally only of small scale, though the sugar cane borer has recently become rather dangerous. The only really serious problem is the large scale attack by the grain weevils and moth, especially now with the difficulties of obtaining naphthaline.

1. Breeding Experiments

Ordinary Brazilian corn is composed of extremely heterogeneous and hardly improved varieties. Many of them seem to be equal or even inferior to the corn still grown by "wild" Indians. Modern breeding work has been started at Campinas and at Piracicaba.

A - Sweet Corn (Pedigree breeding): Sweet corn is practically not grown in Brazil and the imported strains which we have been able to observe hardly survive for more than a few generations. Since I had been engaged, while in England, in breeding for earliness, the scope of the experiment had to be revised completely. Extracts from the cross: (Tirol (white flint) x Golden Bantam) x Banting (Canadian, white early) were crossed with "Santa Rosa" (white dent) and with "Cateto" (orange flint) and we have now obtained several good lines of yellow-orange and of white sweet corn, well adapted to field conditions and resisting the heavy rains and winds; with mean plant height (without tassel): 2 m., mean height of ear: 1.2 m., time from sowing to silking: 65 days, one or two ears per stalk, absence of tillers, mean ear weight (dry): 100 g.

B - Early Corn (Pedigree breeding): Brazilian corn is very slow in growing, producing generally very tall plants with the ears at about 3/5 to 2/3 the height of the plant. Crosses were made between extracts of "Tirol x Early Canadian" (white flint, 40 days from sowing to silking) with Santa Rosa (white dent, 70-80 days to silking) and Cateto (orange flint, 60-70 days to silking.) It was not possible to combine tallness and earliness and it was difficult to suppress completely tillering in the early lines. Reasonably well adapted lines were obtained with the following characteristics; 45-50 days to silking, plant without tassel, 1.3 m., ear height 50 cm., mean ear weight 70 g per ear. Since the plants are completely different from the local varieties, it seems doubtful if these lines will be acceptable to the farmer, especially since earliness is not a necessity in the State of São Paulo.

The experiment was used to study the segregation of quantitative characters and to try out methods of statistical analysis. Some results may be summarized:

The standard error of distribution can be used as a measure of variability only if the means are of more or less the same magnitude. In order to compare P, F₁, F₂, etc.; a weighted measure has to be used. As can be shown theoretically, and has been proven experimentally, the coefficient of variation (standard error of distribution/mean x 100) should not be used
but instead, a term called the "variance index": (standard error of distribution/square root of mean). Using this term, it can be shown for this index that, as expected:

\[
(P) = (F_1) (F_2) (F_3)
\]

The segregation for earliness can be shown only by comparing \(F_2 \) families. The inevitable phenotypic variation with an error of more in \(F_2 \).

In studying the relative position (height) of the ear, the ordinary coefficient of linear correlation \(r \) is of no use. The correlation for plant and ear height was found in all lines, hybrids or segregates, to be nearly constant and equal to 0.6 (positive and significant). However, the index: "ear height/plant height" should be used and varies significantly with the following values: imported early lines 0.20, Brazilian commercial lines 0.60, some native corn up to 0.7 or 0.8 improved corn 0.5.

F. G. Brieger

- Inbreeding and Outbreeding: Inbreeding was started in 1936 with "Santa Rosa", a commercial variety of white endosperm, essentially to obtain material for the demonstration of the value of the method. Single and double crosses are being carried on and a new population composed of several single crosses is also being tried. Recently work on orange flint and on orange dent corn was started also.

E. A. Graner

- Population Breeding: Since it was thought that the method of pure-line breeding and subsequent crossing is a method too lengthy and costly for the actual status of maize growing here, an intermediate method is being tried out. Brazilian commercial corn is extremely heterogeneous, contains many defective plants and shows many undesirable traits. A vigorous selection was carried out, combined with selfing during a few (2-3) generations, and finally followed by sib and strain crossing. The results thus far obtained in small plots seem satisfactory and better than those obtained by mass selection without controlled pollination, though inferior, especially in homogeneity, to authentic hybrid corn.

F. G. Brieger and E. A. Graner

- Late Sugary Strains: Some good sugary strains, very late for Connecticut, were given to us by Dr. W. R. Singleton and are now growing in our department. They include a strain segregating for a very late type that does not flower there but is expected to flower here. The plants in the field are now 40 days old.

E. A. Graner

2. Experiments about the Origin of Corn

- Native Indian Corn: We were able to obtain through the help of Brazilian colleagues, of Dr. Cardenas of Cochabamba and of Dr. Cutler, authentic "wild Indian" corn. The Bolivia corn from Cochabamba grew very well at the low altitude of Piracicaba, flowered generally well, but
produced very poor ears. Material from the lowlands of Mato Grosse (Brazil), from Paraguay and the Bolivian Chaco is much more satisfactory. But in nearly all cases it was rather difficult to maintain the strains, since they degenerate very rapidly with more or less close inbreeding. The following material has been studied genetically.

"Acre" from the territory of Acre (Brazil). The plants are very tall without tillers, ears long and slender with 8 rows, grains large, round and soft, exhibiting the following colors: dominant purple (ACR Pr), red (pr pr) or recessive colorless (probably rr), brown aleurone (lost), yellow or white endosperm.

"Chavantes" (from the State of Mato Grosso, Brazil). Very tall plants, segregating semi-dwarf, ears big and heavy, 12 or more rows, grains large, soft, white or sometimes tinged, purple (pr), red (pr pr) or light pink (pericarp?). The constitution of these grains is probably AA CiCi RR as shown by the following test cross with C sh: (F2):

<table>
<thead>
<tr>
<th>C¹ - Sh</th>
<th>C¹ - sh sh</th>
<th>CC Sh</th>
<th>CC sh sh</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>obs.</td>
<td>861</td>
<td>34</td>
<td>61</td>
<td>127</td>
</tr>
</tbody>
</table>

The dominant inhibitor C¹ is not completely dominant and varying percentages of the kernels with the constitution C¹-Sh- are not white, but very pale purple and red. It seems as a whole that the Indians selected modifiers which reduce all possible color in the kernels as much as possible.

White endosperm is only incompletely recessive to yellow and there is present some kind of pericarp color which however becomes clearly visible only after outcrossing.

"Diamantino" (from Mato Grosso, Brazil). We received three lots of seeds. In all of them the ears originally were heavy and many rowed. The color of grains varied.

Diamantino I, had deep red pericarp (P) segregating normally after crossing.

Diamantino II, had dirty brownish-orange kernels, due to orange, white or colorless pericarp on yellow-orange endosperm and sometimes yellow-brown aleurone. The segregation for pericarp color was interesting in so far as its existence could be verified only in some years, and in one year only classification between orange and colorless pericarp was very easy. In this year orange pericarp was in some instances so intense as to give a bright red color.

Diamantino III, contained colored and colorless aleurone over orange endosperm, sometimes covered by orange pericarp (white cob). Absence of aleurone color may be due either to a dominant or recessive inhibitor. The former is certainly an allele to the C factor as shown by the linkage test with CC sh sh. But there are a large number of modifiers acting and disturbing the ratios. The ears collected after selfing fell into two groups. In the first there was an excess of colorless-shrunken grains combined with a deficiency of the colored-shrunken grains. In the other group of ears, besides this deviation,
there appeared a deficiency in the number of the normal grains and a corresponding excess is the colored-shrunken grains.

<table>
<thead>
<tr>
<th></th>
<th>C¹ - Sh</th>
<th>C¹ sh sh</th>
<th>CC-sh</th>
<th>CC sh sh</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st group</td>
<td>1.270</td>
<td>146</td>
<td>52</td>
<td>232</td>
<td>1.700</td>
</tr>
<tr>
<td>1st group</td>
<td>771</td>
<td>99</td>
<td>201</td>
<td>212</td>
<td>1.283</td>
</tr>
</tbody>
</table>

Plant color in most strains of all three forms of native corn, Acre, Chevantes and Diamantino, is either dilute purple or dilute sun red. But the culm is very frequently heavily colored, and this color seems, at least partially, independent from A-B-Pl mechanisms.

In the shucks various colors were observed which may be either "sun red", deep purple, dilute purple, red and reddish-brown.

Finally, the glumes and the whole base of the grains may be deep or light purple or red, independent from cob color. Apparently somehow this color depends upon the same factors as the color of the shucks.

So far the existence of these different colors in vegetative organs has been registered; but it has not yet been possible, owing to lack of time, to start on a detailed genetic analysis.

If we take all characters into consideration, it seems that the indigenous strains from Mato Grosso together with the material collected by Cutler in Paraguay and the Bolivian lowlands form a natural group. Similar traits may be found also in local forms, cultivated in São Paulo. In all of them there appears, with more or less frequency, all or some of the following characters.

Slender and long ears with flexible rachis. Grains half covered by their glumes. Kernels more or less round or pointed, containing soft starch. Anthocyanin generally absent in the aleurone owing to the presence of inhibitors at the C-locus. On the other side there is a tendency for the appearance of brownish-orange colors, in the aleurone, endosperm, and pericarp.

Three characters seem to me especially important: the brownish-orange color of the kernels which may be considered as an approximation to a natural "wild" color, the slender and flexible rachis and the development of large glumes which may be taken as a change in the direction of pod corn. Their widespread occurrence can hardly be considered as a coincidence, in view of the old hypothesis, recently taken up again by Mangelsdorf and Reeves, that pod corn is the most primitive of all the different types of maize and that the lowlands on both sides of the Rio Paraguay, i.e., the triangle formed by lower Bolivia, western Mato Grosso and Paraguay, may be the geographic centre of the origin of maize. On the contrary, I think our observations, very briefly reported above, support strongly this hypothesis.

F. G. Brieger

B - Pod corn: Has been obtained from two sources. "São Paulo Pod" and "Bolivia Pod". The latter was sent to us by Dr. Cardenas and later by Dr. Cutler. The other type came from one ear left casually in our department.
by a student and about which we know only that it came from São Carlos, that is, from an inhabited and cultivated region only about 300 Km. from São Paulo and where we cannot expect to find "native Indian" corn. In all its characters, except of course being pod corn, it corresponds to the Brazilian corn of the region.

The studies of Bolivian pod corn are still in the beginning and we have met again the difficulties mentioned above, that corn from the Bolivian highlands grows well, but hardly produces ears in our altitude. Thus we can say only so far that it contains a dominant Tu gene.

São Paulo pod corn is also due to a dominant gene which is normally transmitted through the female while there is a strong selection against Tu-pollen tubes. At the most, half of them may eventually function, but generally less.

The original ear was large and well filled with a slender but very hard rachis. The seeds covered by large glumes, were small and more or less pointed and stood at the end of a long pedicel, of about the same length as the seed itself. The tassels of the first tunicate generation grown had drooping branches, with nearly normal or somewhat enlarged glumes and occasionally some silks.

Owing to the degeneration after inbreeding, the original line had to be outcrossed, and native Indian corn was used for this purpose.

The Tu ears in later generations varied very much, the extremes being silkless sterile ears, sterile ears with abnormally large glumes, ordinary fertile Tu ears and, finally, fertile ears with the kernels hardly covered by their glumes. The rachis remained always thin and rigid. In extremely large fertile ears the circumference necessary for the base of the kernels differed very much from the circumference of the rachis. In these cases the rachis split open lengthwise, the rows of grains remaining together in fours, with one group of two remaining when the total number was not a multiple of 4.

A successful selection was carried out to increase femaleness in the tassel. Finally a heavily bearded tassel was obtained with some 400 seeds and in its offspring the majority of all tunicate plants were again heavily bearded. In some cases it seems that each spikelet contained at least one female or perfect flower.

These hermaphroditic tassels were very large and drooping from the beginning. With the setting of seeds they became very heavy and tended to upset somewhat the balance of the plants. But one must not forget that a tassel with a total length of 40 cm. is small on a plant of over 3 m.!

There seems to occur in these tunicate plants an increase in the number of nodes between tassel base and ear, but the internodes remain short and the corresponding leaves show transformations in the direction of shucks.

However the most interesting transformations are to be found in the structure of the spikelets. The ordinary spikelets of the tassel with two male flowers are substituted, in different tassels, by a large variety of other combinations: 1 male or sterile and 1 female or perfect flower,
2 female flowers, 1 female and one perfect flower. But the most outstanding cases occurred in the spikelet of one tassel where one male flower was followed by up to four female flowers. At the same time a tendency appeared for splitting the ends of the individual silks into two arms, often of unequal size. Thus the Tu gene causes the appearance of characters long lost in the group of the Maydeae and the related Andropogoneae: many flowered spikelets.

The observations, reported above were mainly made on plants heterozygous for Tu. Owing to the elimination of the Tu pollen tubes, the number of Tu-Tu homozygotes must naturally be small. The phenotype of the homozygotes registered with certainty so far does not exceed the limits of variation of heterozygotes.

If we leave aside the effect of provoking the excessive development of glumes in the ear, then we may consider as next important feature in "São Paulo Pod" corn the accentuation of female tendencies in the tassel and the reappearance of characters lost in the phylogeny of many grasses: the re-establishment of hermaphroditism in individual flowers and the occurrence of spikelets with more than two flowers. But this does not necessarily mean that the immediate wild ancestors had these characteristics and may thus have belonged to another group of grasses, not the Maydeae or Andropogoneae. We may have to deal with still older characteristics of primitive grasses.

Recently Mangelsdorf and Reeves have modified the theory that pod corn with its covered grains in the ears is an approximation to the wild ancestor of maize, assuming that this ancestor was a plant without the lateral ears, but with covered seeds in the tassel. If this would be true, we should expect that the lateral branches, instead of having still normal, but sterile ears, should also terminate in some sort of bearded tassel. Selection in this direction has been started, but in order to obtain positive results it seemed necessary to substitute the modifiers of cultivated corn by modifiers of a "wild" form. This seemed possible only by crossing pod corn to teosinte.

F. G. Brieger

C - Hybrids between teosinte and "São Paulo Corn" - Hybrids were produced between teosinte and heterozygous "São Paulo Pod" corn, consisting of tunicate and non-tunicate plants.

The tu plants in F₁ corresponded as a whole with the descriptions given by other authors, and we shall withhold discussion until the analysis of F₂ and backcrosses, now under way, are terminated.

The F₁ tunicate plants, however, showed many unexpected characteristics, some of which only will be mentioned here:

The Tu effect on the tassel was completely recessive-hypostatic and it was impossible to classify the F₁ plants as in the original "São Paulo Pod", according to the transformation of the tassel. Thus the tassels of Tu plants and their normal tu sisters were identical.

The ears, however, were very different in Tu and tu hybrids. In the latter the rows were mainly single, or when the paired row was not suppressed, they contained female spikelets only. Two paired rows appeared generally in
the Tu plants, one being an ordinary female spikelet, with one sterile and one female flower, while the other spikelet became pedicelled and contained two male flowers. Furthermore, there was a pronounced tendency to produce not only 2 double rows, but 3 or even 4.

The scales formed by the rachis and which cover more or less the grains in teosinte or in Tu F₁ plants, were smaller and soft in Tu plants while the glumes became pointed.

The rachis and glumes of the tu hybrids are extremely horny, and it was very hard work to shell the seeds. On the other side, the rachis in Tu F₁ plants is extremely brittle and it was nearly impossible to harvest complete mature ears, since they fell apart immediately after removing the shucks.

Thus the Tu gene has a very different phenotypic effect in pure corn and in teosinte-corn hybrids. In the former we observe a pronounced tendency to introduce femaleness into the tassel, while in the latter maleness appears in the ears, or better on the lateral branches. A selection experiment is under way with the end of fixing this condition, just as it was possible to fix more or less the bearded tassel.

The fact that the Tu-gene acts in nearly opposite directions according to the modifier complex present, should warn us not to draw premature conclusions on gene action. The appearance of covered kernels is a universal effect of the Tu gene, while everything else depends upon the modifier back-ground. The Tu F₁ plants described above seem to me much more likely to be a replica of an ancestral wild grass than the Tu corn plants with bearded tassel, especially considering the following points:

a) the rachis is extremely brittle; b) the lateral branches are not suppressed, but grow perfectly normally, producing terminally a tassel or an ear, and laterally still more branches or higher order with a varying number of additional ears; c) instead of a reduced or sterile ear, we encounter ears, where one female spikelet tends to be associated with a male spikelet.

While I think that the general structure of the Pod-Corn-Teosinte hybrid is a more likely reproduction of a hypothetic wild ancestor of corn as compared with the bearded Pod Corn, I do not believe that this ancestor actually was a hybrid.

There have been proposed several hypotheses to explain the morphological nature of the many ranked corn ear. Here again our Pod-Corn-Teosinte hybrids offer valuable material since the paired spikelets are often different, one being sessile and the other pedicelled. In two-ranked ears or in tassel branches we find in general a very regular situation. Both sessile spikelets are localized near the ventral side of each alveolus and the pedicelled spikelets on the dorsal side. But this symmetry seems to be the consequence of some physiological conditions. In many-ranked ears I did not find a regular position of two spikelets of the alveoli of each double row. The sessile spikelet may be on the left or on the right side of the pedicelled spikelet.

Other interesting observations could be made in some of the F₂ plants. In several instances, an alveolus contained one sessile spikelet
and one "branch" which carried one spikelet more or less in the middle and another at the end. If the pedicel was shortened three spikelets appeared close together in the alveolus. In one instance an alveolus contained 4 spikelets which probably were derived from two reduced branches with 2 spikelets each.

Finally all observations seem to indicate that the only constant orientation of the alveolus may be the longitudinal row, sometimes obscured by a twisting of the rachis, or altered by the intercalation of new double rows. The appearance of 3 rows of alveoli, the transition of this arrangement into one with either 2, by suppression, or of 4 double rows, by intercalation, is quite frequent. The alveoli may be all at different levels, or at the same level. Neither yoking nor a spiral arrangement could be observed with any regularity.

Thus the Tu F₁ and F₂ plants offer very interesting material, especially when studied at flowering time and not when their ears have become hard and mature. There cannot be any doubt that this material will finally permit a critical discussion of the hypothesis of the nature of the ear and the formulation of a new, combined theory, containing to some extent elements of older views. But the final discussion will be delayed until the analysis of the mature F₂ and backcross ears is completed.

F. G. Brieger

D - A histological study was carried out on several strains of native and cultivated corn and of a North-American pop corn. The structure of the latter was identical with that described by Randolph. In corn of the Paraguay river group, as defined above, the following structural elements were the most striking:

The spikelets appear to have a pronounced pedicel.

At the lower base of the pedicel and at its sides a scaly outgrowth of the rachis appears which thus surrounds the alveolus on three sides, and which corresponds to the cover of the kernels in Tripsacum and Euchlaena.

The spikelets of Paraguayan corn which when mature had the kernels half covered by glumes, had at flowering time the same structure as "São Paulo Pod" corn with well developed glumes.

F. G. Brieger and H. C. Cutler

E. Tripsacum australis:

Seeds and rootstocks of this species collected by Cutler were planted. Only two seedlings germinated and grew slowly. One of the rootstocks gave a large plant which started to flower in November and is still in bloom. The second is starting now in January.

F. G. Brieger and H. C. Cutler

It has 13 normal pairs at meiosis.

E. A. Graner
3. Genetics of Aleurone Color

It is generally accepted that the presence of anthocyanin in the aleurone is due to the presence of certain alleles of the locus: \(A_1 - A_2 - C - R \). But, as I have pointed out elsewhere, the action of the genes at these four main loci is conditioned by the coordinate action of the modifier complex. This could be shown by several selection experiments.

A line of red brittle, originally from Cornell, served to demonstrate that by selection, completely colorless ears may be obtained. In the original line occasionally a colorless grain occurred, and it was possible, by selection for higher number of colorless grains and for paler color of the still colored ones, to extract a line which was completely colorless. When backcrossing to colored lines, no clear segregation could be obtained.

Some of the brittle kernels of the original line appeared to be nearly black, which was attributed to the effect of an intensifier absolutely linked with \(bt \), or to the action of the respective \(bt \) allele itself. All selection against this factor was useless. In the extracted colorless lines there still appeared a segregation for a recessive gene, producing deep black brittle kernels. Thus a gene which in the original material was only an intensifier and as such difficult to analyze and classify, became in the extracted lines a recessive determiner of anthocyanin color.

Since no crossing over has been observed so far, we suppose that the original line contained two alleles of \(bt \): the ordinary \(bt \) without effect on aleurone color and the new allele \(bt^r \) which causes a deep black color and which is epistatic, when homozygous, over the modifier complex which dominates otherwise the action of \(ACR \). In formulas, we represent the situation:

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(bt)</td>
<td>(bt)</td>
<td>(A_1)</td>
<td>(A_2)</td>
<td>(C)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>original modifier</td>
</tr>
</tbody>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(bt^r)</td>
<td>(bt^r)</td>
<td>(A_1)</td>
<td>(A_2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The opposite result was obtained in "Chavantes" which as mentioned above has probably the constitution: \(A_1 A_2 C^1 R \) where \(C^1 \) represents a dominant inhibitor at the \(C \) locus. Pale purple (Pr) or red (pr pr) kernels occurred in the original material and, by selection, ears could first be extracted which segregated colored kernels in various proportions until finally fully colored ears appeared.

A corresponding situation was found in "Diamantino III" where a sharp segregation occurred for black or orange kernels. But black grains gave ears which segregated for a recessive orange while orange kernels gave ears segregating for a recessive black. The classification was generally
easy, but the ratio colored : colorless did not correspond to any standard Mendelian ratio.

It is remarkable that some lines segregate normally in some crosses, and show the modifier effect in others. Thus a "Golden Bantam", when crossed to a cc sh sh - test line was shown to be AA CC rr giving a 9:7 ratio in F2, but crossed with the red-brittle line a mono-factorial segregation was obtained only in part of the offspring and a selection for both low and high ratios of colorless was successfully carried out.

These results may be summarized in the following form:

There are some lines where the modifier complex is well established and in balance with the determiners, not interfering with their action. Such lines give sharp segregations with normal Mendelian ratios.

Other lines have an unbalanced modifier complex and here selection experiments may give positive results. Thus it was possible to shift the color from red to white in the red-brittle line and from white to purple or red in "Chavantes".

The experiments are being continued and it is hoped that eventually a more complete understanding of the physiological action and interaction of determiners and modifiers may be obtained.

The selection line of "Chavantes" was very instructive in showing that we must distinguish between modifiers which act as plant characters and others which are evidently only aleurone characters. It may at first seem strange that aleurone characters may be dependent upon genes of the mother-plant, and not only upon their own genes. However, the effect of plant genes upon the endosperm seems to be quite general. The difference between flint and dent, between round or pointed kernel, to a large extent the difference between flint and floury, are inherited as a plant character. Now, if sporophytic genes control the type and distribution of starch in the kernel, there is no reason why one should not accept the same for the formation of anthocyanin.

F.G. Brieger and George O'Neill Addison

4. Yellow-orange Endosperm

Studies on the genetics of the yellow-orange endosperm started at Piracicaba, Brazil, (1937), were continued at Columbia, Missouri, in 1942, through the help of a fellowship from the Guggenheim Foundation.

A deep orange endosperm from Brazil (commercial strain) was used and crossed with several white endosperm strains. These crosses gave only segregation for one pair of factors. Some were continued until F4 and the white endosperm strains checked proved to be yl yl Y3 Y3. Crosses with some white endosperm testers segregated again 3 colored : 1 colorless and showed independent assortment for chromosome 2 (lg 1), 4 (su 1) and 9 (df 3) indicating that the yellow gene segregating should be the Yl in chromosome 6.

The same deep orange strain when crossed with a tester received from Dr. Jose Ma. Andres, Argentine and called A-(alal B-) (Pl-yl yl) showed a clear segregation of 9 orange : 3 yellow : 4 white. The numbers of 3 ears
taken at random are the following:

<table>
<thead>
<tr>
<th>No. of the ear</th>
<th>Orange</th>
<th>Yellow</th>
<th>White</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 - 12D ± 1942</td>
<td>156</td>
<td>42</td>
<td>61</td>
<td>259</td>
</tr>
<tr>
<td>31 - 12D ± 1942</td>
<td>154</td>
<td>56</td>
<td>62</td>
<td>272</td>
</tr>
<tr>
<td>Sib 49 x 17 12D 1942</td>
<td>137</td>
<td>43</td>
<td>49</td>
<td>229</td>
</tr>
<tr>
<td>Total</td>
<td>447</td>
<td>141</td>
<td>172</td>
<td>760</td>
</tr>
</tbody>
</table>

Linkage was found with the P_1 gene (repulsion phase) and all yellow seeds were albescents a_1, the white ones segregating 3 A_1: 1 a_1. As the a_1 gene is probably the same as y_2 or very closely linked to it, it could be said that the deep orange Brazilian strain has both Y_1 and Y_3. The linkage with chromosome 2 in this cross was also shown by the segregation of B. The a_1 strain when crossed with L_1 showed absolute linkage (repulsion phase). By the segregation of A it was found that chromosome 3 was not involved.

The 9 : 3 : 4 instead of a 9 : 7 ratio as found by Perry and Sprague (1936) seems to indicate the existence of another complementary gene, probably to Y_1, which probably is a plant character, since its segregation was not shown in the F_2 seeds. The F_2 plants are now growing, but have not flowered to this moment.

The F_1 of the same cross was used at Columbia, Missouri, for crossing with other Y-testers, received from Dr. H. S. Perry and the plants are growing at Piracicaba. Some unexpected ratios, were found in these crosses and will be checked in the next generation.

The deep orange Brazilian strain planted at Columbia did not flower there. So this strain could not be crossed with other testers. However, it was possible to use an Argentine strain called Colorado Casilda and belonging to Dr. L. J. Stadler's collection. This strain has practically the same color as that of the Brazilian one and its name indicates the same variety used by Dr. J. M. Andres in Argentine (1939) and giving results similar to those reported here. This Argentine variety will be now crossed to the orange Brazilian strain, but to save time, it has been crossed to testers for all chromosomes. The collection of testers used was prepared at Columbia, Missouri, and includes material from Cornell (Coop) and from other corn geneticists of the States. These crosses are being checked now at Piracicaba, Brazil, where the plants are just flowering, but the situation is rather complicated since we do not know the background of the testers used with respect to the Y genes. Also, it should not be expected that we have to deal with only one sporophytic gene but several may be acting as modifiers, giving the shades found in different yellow-orange endosperm strains.

Other strains of yellow-orange corn of different origin are also being tested. Some pop-corn ears from Brazilian material showed segregation approximately of 3 white : 1 yellow-orange, and we don't know if we have here to deal with a new Y factor or only with an inhibitor of the known Y genes.
Seeds of Y4 and Y5 received from Dr. W. R. Singleton proved to be identical with Y1 and Y2, respectively. I think also the Y2 of Dr. W. Eyster in chromosome 5 is the same as Y1; so, the general situation of the yellow-orange endosperm for the present could be simplified with only the Y1 and Y2 as complementary factors and one or more plant-character genes modifying its shade or being complementary to them. Besides this should be kept in mind, the possibility of the existence of other seed genes for yellow endosperm color, as reported by Dr. G. F. Sprague (1938).

E. A. Graner

5. Yellow Aleurone

In the crosses with deep orange endosperm of Brazilian strains and white ones, segregation of a yellow-aleurone gene was found. The interaction of this gene is very variable and in some backgrounds difficult to classify. Also, the dosage in the endosperm makes the problem difficult since it was found that "simple" is not different from "multiplex" white seeds when the yellow-aleurone strain is used as male parent. Until now it is possible to say that this strain did not show linkage with chromosome 2, 3, 5 and 6. Thus, it is not the Bn2 reported by Dr. G. F. Sprague (1934). It has now been crossed with the Bnl in chromosome 7 and with testers for the remaining chromosomes. The gene gives, in some cases with the yellow-orange endosperm, a segregation of 12 orange : 3 yellow-aleurone : 1 white or 15 colorless : 1 colorless.

E. A. Graner

6. Linkage Tests

A small number of linkage testers, of Cornell origin, was brought over from England and some others from Cornell. It was soon evident that these North-American strains are difficult to grow in Brazil. They were all rather small and weak, so that it was necessary to plant them in especially prepared beds. They seem to grow and produce reasonably well when planted in the first part of summer, that is, during the period when the length of the day is still increasing. For crossing purposes, it was always advisable to make several successive plantings, with the hope that sometimes the flowering period of the strains to be crossed may coincide.

Crosses between these imported lines and local lines, such as Cateto, or with native Indian corn (Diamantina III), Chavantes, etc.) were carried out and the extracts from these hybrids, are promising.

F. G. Brieger

A good collection of recessive and dominant genes in all chromosomes was organized at Columbia, Missouri with material received from Cornell (Coop) and from Drs. L. J. Stadler, H. Roman, L. F. Randolph, H. S. Perry, C. R. Burnham, A. A. Brink, W. R. Singleton and others. The plants are now growing at Piracicaba, Brazil, and they are growing very reasonably. After some experience we think it possible to grow in Brazil some of the American strains in the months of November to January, when we have the maximum of light, about 15 hours a day. Plants sown in December are flowering in 50 days as compared with the same strains in Columbia, Missouri, flowering in 55 days.
The problem of genetical tests for Brazil consists in the transference of the genes to late Brazilian strains, but we don't think this solution satisfactory since some segregating plants will be so late as to make our work difficult.

The principal genes in all chromosomes were crossed in Columbia with an Argentine strain and the hybrids look good for our conditions. We think it will be possible to isolate the segregating genes in this background and in plants not too late and promising for Piracicaba.

Deficiency testers produced by X-ray in chromosomes 3, 4, 5, 6, 9 and 10 were introduced into our collection from material of Dr. L. J. Stadler. The deficiency in chromosome 5 is linked with Pr, in chromosome 6 with Yl and in chromosome 9 with I. The deficiencies in chromosome 3, 4, and 10 were crossed respectively with Rg, Tu and Og in order to get these dominant genes linked with them.

Translocation-B testers from Dr. H. Roman for chromosomes 1, 4, and 7 were also brought to Brazil. The Tb-4 test has been useful in checking the su gene in many of our experiments.

A collection of trisomics from Cornell will be crossed with the respective recessives in order to facilitate its conservation without the necessity of cytological work.

The use of all these tests was started at Columbia, Missouri, in checking new mutants and will be continued at Piracicaba, Brazil.

E. A. Graner

7. Brazilian Stock Treated by Ultra-violet

A Brazilian hybrid corn that flowered normally at Columbia, Missouri, was treated by ultra-violet. Pollen grains were treated and used for pollinating untreated plants. The 600 seeds collected from 3 ears were sown in Brazil, giving good germination (80%). The plants are growing and the mutants in this background, proper for Piracicaba, will be used as testers after their localization in their respective chromosomes.

E. A. Graner
To Maize Geneticists:

In the Indian Journal of Genetics and Plant Breeding (2: 184-186, 1942) is a review by B. S. Kadam entitled: Maize Genetic Cooperation News Letter No. 16. 1942. The review of this News Letter seems to me to have been fairly well done. The point at issue is that no request was made for permission to publish such a review. News Letter No. 16 included this statement:

"The presentation of data in these news letters is not to be regarded as constituting publication. These data should not, therefore, be used in published papers without the consent of the authors."

The above statement was quoted in connection with the review and no data were published in the review. It includes only summary statements about the reports contained in the News Letter. It is evident, therefore, that Kadam obeyed the letter of the quoted injunction. I cannot, therefore, do what I was at first inclined to do, namely, to notify him that his name would be removed from our mailing list.

We have for years sent the News Letter on request to numerous workers in other fields of genetics. The principal objection that I see to such use as Kadam has made of these Letters is the confusion that may come from it. The Letters are not available in the libraries of the world. Such reviews as that published by Kadam are apt to bring numerous requests for the originals. Perhaps Cook was not far wrong in his objection to such "unpublished publications". The question that I wish you would answer for me is: should we send the News Letters only to workers in maize genetics? Please give me your opinion.

Sincerely,

R. A. Emerson

This is being sent to -

E. G. Anderson
R. A. Brink
C. H. Burnham
H. K. Hayes
M. T. Jenkins
D. F. Jones
E. W. Lindstrom
Barbara McClintock
P. C. Mangelsdorf
L. F. Randolph
M. M. Rhoades
G. F. Sprague
L. J. Stadler
January 31, 1944

The data presented here are not to be used in publications without the consent of the authors.

Department of Plant Breeding
Cornell University
Ithaca, N. Y.
CONTENTS

<table>
<thead>
<tr>
<th>I. Important Notice</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>II. Foreword</td>
<td>1</td>
</tr>
<tr>
<td>III. Reports from Cooperators</td>
<td>2</td>
</tr>
<tr>
<td>Bureau of Plant Industry Station</td>
<td>2</td>
</tr>
<tr>
<td>Bureau of Plant Industry and Purdue University</td>
<td>2</td>
</tr>
<tr>
<td>Carnegie Institution of Washington, New York City</td>
<td>24</td>
</tr>
<tr>
<td>Columbia University</td>
<td>3</td>
</tr>
<tr>
<td>Connecticut Agricultural Experiment Station</td>
<td>4</td>
</tr>
<tr>
<td>Cornell University</td>
<td>7</td>
</tr>
<tr>
<td>Cornell University and Georgia University</td>
<td>9</td>
</tr>
<tr>
<td>Duke University</td>
<td>26</td>
</tr>
<tr>
<td>Florida University</td>
<td>11</td>
</tr>
<tr>
<td>Iowa State College</td>
<td>15</td>
</tr>
<tr>
<td>Minnesota University</td>
<td>15</td>
</tr>
<tr>
<td>Missouri University</td>
<td>18</td>
</tr>
<tr>
<td>Venezuela Instituto Experimental de Agricultura y Zootecnia</td>
<td>27</td>
</tr>
<tr>
<td>IV. Maize Publications</td>
<td>29</td>
</tr>
<tr>
<td>V. Seed Stocks Propagated in 1943</td>
<td>32</td>
</tr>
</tbody>
</table>
I. IMPORTANT NOTICE

The Maize Genetic Cooperation News Letters carry a statement to the effect that the presentation of data in them is not regarded as constituting publication and that no such data are to be used in publications without the consent of the authors. A foreign geneticist and plant breeder, not working with maize, has published a review of News Letter 16, 1942. He was aware of the injunction and quoted it in the review. He included none of the data but did include the perhaps tentative conclusions drawn from the data by the authors. While, therefore, he obeyed the letter of the injunction, it can hardly be maintained that he accepted the spirit of the rule.

I conferred by letter with a number of the more active cooperators in this country. Replies ranged from one extreme to the other. Some thought that even such publication as had occurred might be disastrous and that, in the future, the News Letter should be sent only to those cooperators who contributed material. Others saw little danger, at this stage of our work, from such a review as had been published and suggested no change other than a wording of the injunction. Most replies suggested a middle course between these extremes. I am, therefore, adopting the following procedure. This News Letter is being sent to those who are now cooperating or who have furnished material in the not too distant past. Further copies will be held here to be sent on request to other geneticists or breeders. I shall have to depend on my own judgment (good or bad) in determining whether particular requests shall be honored.

R. A. Emerson

II. FOREWORD (Swan Song)

I have been connected more or less intimately with Maize Genetic Cooperation from its beginning. Some years I have had to devote considerable time to it and other years almost none. On the whole I feel that I have probably done less than I should and certainly less than I am credited with having done. I am now an "emeritus" and rather enjoy it. I am anxious to complete (before my number comes up) certain maize genetic problems that have been underway for a long time and which will require yet further years of work. I am willing to admit no more than that I am not growing younger as the years go by. Any way I feel that, whether well or poorly, I have about done my stint and that some one else should soon assume responsibility for this cooperative effort. An appropriate time for a change is now when our most recent grant from the Rockefeller Foundation is to be closed out.

I shall, of course, retain an interest in this undertaking. If no other prior arrangement is made, I shall probably find myself planting certain genetic stocks again next spring and at pollination time shall wonder why I haven't yet learned to limit my planting to what I can take care of.
During the past year, many genetic stocks that were most in need of replenishment were grown and pollinated by Dr. M. J. Murray and Miss Rosalind Morris. Miss Morris has grown in the greenhouse many cultures showing seedling characters. When resort must be had to ears from normal plants of segregating cultures, it is important to determine which of the normals are heterozygous for the characters in question. Dr. Murray also spent much time in a study of the stocks on hand and of the available records and succeeded in bringing at least some measure of order into the rather chaotic situation that I had allowed to develop.

R. A. Emerson

III. REPORTS FROM COOPERATORS

Bureau of Plant Industry Station, Beltsville, Maryland

A cross involving opaque-2 made in 1942 and selfed in 1943 segregated for an endosperm-color gene very closely linked with opaque. The gene has not been identified but since no gene affecting endosperm color previously has been reported in this region of Chromosome 7, the preliminary data are presented in the following table:

<table>
<thead>
<tr>
<th>Flinty</th>
<th>Opaque-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dark</td>
<td>Lemon</td>
</tr>
<tr>
<td>Yellow</td>
<td>Yellow</td>
</tr>
</tbody>
</table>

| 2337 | 21 | 42 | 752 | 3152 |

The data are not too satisfactory as considerable difficulty was experienced in classifying the opaque seeds for color. They indicate about 2 percent crossing over between the two loci. No symbol is suggested for the endosperm-color gene as too little information is available on it at the present time.

Merle T. Jenkins

Bureau of Plant Industry and Purdue University
Department of Botany, Lafayette, Indiana

In 1941 one plant from a very uniform appearing ear-row of inbred Kys produced a self-pollinated ear segregating approximately 3:1 for salmon yellow and ivory colored kernels. When planted in a germinating bed the yellow seeds produced all green seedlings and the white seeds produced only albinos. In 1942 a row was grown from the yellow segregates and each plant self-pollinated. Of the 20 ears produced, 7 were homozygous yellow and 13 were segregating for yellow and white. Seedlings grown from these segregating ears gave the following totals:
Ten of the 11 exceptional green seedlings from white seeds were successfully transplanted and grown to maturity. Because of unfavorable conditions only five of the attempted self-pollinations were successful, but in every case both yellow and white kernels were produced. It appears probable that a single gene with a dual effect was involved in the original mutation, and that the aberrant seedling types were due to hetero-fertilization.

A. M. Brunson

Columbia University, Department of Botany, New York City

1. In a stock homozygous for the dominant Bt-1 allele a mutation occurred from Bt to bt. This new allele is unstable and mutates with a high frequency to Bt. Seeds of bt bt constitution are mosaics of normal and brittle tissue. Germinal mutations are numerous - 7.5% of the seeds on selfed bt bt plants are reverse mutations. The Bt alleles obtained by reverse mutation are stable. The bt allele occasionally mutates to a stable bt allele which is indistinguishable from the old bt allele. While genetic modifiers influencing the mutability of the bt allele exist it is evident that this allele is intrinsically unstable, and this case is not similar to the a Dt situation.

2. Goldschmidt in the Proc. Nat. Acad. Sci. 1943 reports a situation in Drosophila melanogaster where the interaction of alleles at two different loci gives results somewhat similar to those reported for unstable genes. He suggests that the idea of unstable genes be abandoned, and that the so-called unstable genes of Drosophila and maize can be accounted for in terms of factor interaction, epistasis, and threshold conditions. He specifically cites the a-Dt case in maize. According to his interpretation the apparent mutations of a to A, believed to be induced by the Dt gene, are in reality cases where a new Dt allele (which will be represented DtA) produces the color ascribed to the A allele. He also states that no published data exist which negate his interpretation. Actually two decisive experiments have been published which establish the correctness of the mutation hypothesis. (1) The A alleles obtained by mutation from recessive a show the expected linkages with genes in chromosome 3. On Goldschmidt's scheme the color-producing allele would be in chromosome 9 since Dt is in that chromosome. (2) When a mutation of a to A occurs in a cell of a a Dt Dt constitution the constitution of that cell following mutation is A a Dt Dt. On Goldschmidt's scheme it should be a a DtA Dt.

M. M. Rhodes

3. The vascular bundles of corn leaves are surrounded by a single layer of bundle sheath cells possessing plastids differing in size and shape from the chloroplasts of the mesophyll cells. The plastids of the
mesophyll cells contain no starch; the sugars they produce are moved into the bundle sheath cells and there transformed to starch. Starch increasingly accumulates in the bundle sheath plastids in the day; during the night the starch is changed to soluble carbohydrates and translocation occurs. The plastids of the bundle sheath cells are usually devoid of starch by morning. These plastids contain a green pigment, presumably chlorophyll, but are of a lighter green color than are the chloroplasts of the mesophyll. Photosynthesis may occur in the bundle sheath plastids. However, the green color of the bundle sheath plastid is similar to that of the guard cells of the stomata. Sayre found that the guard cells of Rumex contained a light green pigment which was not chlorophyll. In view of the above facts it will be of interest to ascertain whether or not the green pigment in the bundle sheath plastids is chlorophyll.

Each of the bundle sheath plastids contains numerous, discrete regions, which may be likened to pyrenoids, in which the starch is deposited. It is surprising that the structure and functions of these unusual plastids have not been adequately described. Kieselbach (1916 and cited in Weatherwax 1923) noted their abnormal size and shape but did not mention their function in starch synthesis. He believed these plastids had different shapes in fixed from those in living material. We have observed, however, the same variation in size and shape in both fixed and living cells.

M. M. Rhoades and Alcides Carvalho

Connecticut Agricultural Experiment Station
New Haven, Connecticut

1. Long-inbred lines of corn infrequently show heritable variations. A search among all the inbred material available over a period of several years has revealed deviating lines that differ from the original type in some distinct morphological or physiological character. Presumably these variations are single point mutations, although it is difficult to separate primary changes from delayed segregations. All variations so far found appear to be degenerative changes, reducing the ability of the plant to grow and to reproduce itself. They include delayed flowering, leaf blotching, narrow leaf, reduced plant size at maturity, crooked stalk and chlorophyll alterations.

All of these have occurred naturally. In X-rayed material less conspicuous variations have been found but these are not sufficiently well marked to segregate clearly.

Four of the natural variations have been crossed back with the normal lines from which they come. All have given the surprising result of a hybrid-vigor effect. The F1 plants are either taller, greener, broader in leaf and stalk, earlier in flowering or more productive of grain. The differences are small but measurable. If it is proved that these differences involve only a single gene this would be clear evidence that heterosis is something more than an accumulation of non-allelic dominant favorable growth factors.
It may also be questioned fairly whether these are actually the degenerate types that they seem. From evidence previously reported these reduced lines may give superior results in outcrosses. Since these mutations presumably originate in the heterozygous condition, the plants containing them should be more vigorous than the homozygous individuals in the same line and are likely to be selected for propagation. This was actually the case in the blotched leaf line that came originally from a plant selected as superior in height of stalk and ear development to the other plants in the same self-fertilized progeny. This is additional evidence to show why inbred lines are difficult to maintain in a constant and uniform condition.

It may also explain why some of the poorest lines are so useful in production of commercial hybrids. For example, Iowa L317, C.I. 540 and 4-8 are notably unsatisfactory as inbreds but are used in hybrids that are widely grown. Combining ability results from a complementary action that is not clearly indicated in the homozygous condition and apparently involves an equilibrium of genic material that is not as yet fully understood.

2. The reciprocal crosses reported last year, made between inbreds with extreme differences in kernel size (Rice pop and Reid dent) again showed significant differences in early growth. These differences almost entirely disappeared by flowering time. The combined average days to tasseling and silking were 81 for the pop inbred and 66 for the dent. The two reciprocal crosses were 66 and 65. The crossed plants from the larger seeds flowered one day earlier. Differences in tillering also went with the larger initial growth, where the seed was produced by the non-tillering parent. The average number of tillers this year is dent 0, dent x pop 2.7, pop x dent 2.1 and pop 2.9.

3. Plants grown in the greenhouse and transplanted to the field are sometimes shorter at maturity than plants grown from the same seed sown directly in the field. Very small, immature seeds from ears that are harvested at an early milk stage usually produce plants that grow to normal height and productiveness. This suggests that tall plants that are difficult to pollinate might temporarily be reduced in height advantageously. Possibly better means could be devised to do this, such as bending the plants to the ground in the early stages of growth and allowing them to grow upright. The basal part could be held down by covering with soil, fastening with a wire staple or tying to adjacent plants.

D. F. Jones

4. Considerable heterosis is manifest when Purdue 39 is crossed with Connecticut 30, a reduced type of P39. The P39-C30 hybrid in 1942 produced 25-30% more grain than P39. The hybrid also grew faster than either parent. The C30 type plant is recessive to P39 and the P39-C30 hybrid gives good monogenic ratios in both F2 populations and in backcrosses to C30. C30 arose in 1933 in a selfed ear of the P39-16 stock of the Crookham Company, Caldwell, Idaho. Since there was no evidence of outcrossing it is assumed that C30 is a mutation. The interesting question is whether the heterosis found last year in the P39-C30 cross was produced by the same factor causing the C30 plant to be reduced or due to other factors that may have mutated since the C30 was separated from Purdue 39. Crosses made last year may give information on this point. C30 was crossed by several different sub lines of Purdue 39 maintained in different places and quite distinct in themselves. It will be interesting to see if as much hybrid vigor is obtained when P39-16 is crossed by C30 as when other more remotely related lines are crossed. The data on hand are insufficient to justify any conclusion regarding the nature of the hybrid vigor encountered in this intra-inbred hybrid. It could be explained by the
interaction of alleles, divergent in function as suggested by East. Further study is necessary to determine whether the factors responsible for heterosis are allelic or not. Whatever the explanation this phenomenon like hybrid vigor between different inbreds, may have its practical application before we understand fully the cause of the hybrid vigor. If the yield of Purdue 39 can be increased 25\% or even 10\% by first crossing with C30 it would seem logical for the seedmen to use the C30-P39 hybrid in production fields wherever P39 is ordinarily used as the seed parent. Since it has been found that C30 hybrids are equal if not superior to P39 hybrids, seedsmen might well utilize the hybrid vigor of the P39-C30 hybrid in their seed fields to increase their seed yield without sacrificing in any way the quality of the finished hybrid.

5. Effect of C30 on the production of new mutants.

In the cross of P39 x C30 several cases of defective and germless seeds have been encountered. The number of segregating progenies has been small and consequently no rate has as yet been determined. It is our belief that a rate exceeding the normal mutation rate will be found when more data are accumulated. Besides germless and defective seeds, a virescent seedling was found to be segregating in a selfed progeny of the cross P39 x C30. No such virescents have been observed in either P39 or C30. The virescent when selfed produced 100\% virescent seedlings. The inheritance of the new virescent will be determined. Also P39, C30 and the F1 hybrid will be examined cytologically.

6. A light yellow factor or yellow reducer has been found in a stock of white sweet corn, Early Pearl. In changing Early Pearl from white to yellow this character was observed. Such yellow reducers are common in certain of the late white varieties of field corn grown in the south but are not frequently encountered in sweet corn. The ones we have always observed it in are Early Pearl, Sugarsweet or Cupid, and Hayes White. These varieties are similar and probably have a common origin. The new light yellow is dominant over the intermediate or darker yellow and in the F2 gives a good ratio in most sweet corn crosses of 3 light yellow: 1 darker yellow. When backcrossed to the regular yellow a good 1:1 ratio of light: dark is obtained. If backcrossed to light yellow the kernels are all light. The light yellow condition is homozygous in one of our commercial inbreds C33, derived from the Yellow Pearl. At the eating stage of ears heterozygous for light yellow no segregation for the light yellow factor can be detected, the color being a good medium yellow. Apparently the color is reduced during the drying process.

7. "First" Maize Breeder had Crossing Plot at New Haven in 1836.

In the 1845 issue (Vol. 2, p28) of the Cultivator magazine occurs an interesting letter from Noyes Darling, a New Haven lawyer and judge, telling how he developed a variety of sweet corn. The full letter will be published shortly, probably in the Journal of Heredity. We enclose an excerpt giving his procedure the first year, 1836.

"First year. I had a very early yellow corn, but quite diminutive in its growth - the stalks not over 3 feet in height, and the ears not over 4 inches in length. Late in the season I planted this in a patch of sweet or shriveled corn, then considerably grown. As soon as the tops or blossoms of the yellow corn protruded, they were cut off, in order that the early corn might be impregnated only by the sweet corn. The result this year was yellow corn of the usual size and appearance."

This then appears to be the first crossing plot in which one variety was detasseled to be pollinated by another although James Logan had cut tassels of corn 100 years earlier in his experiments to determine whether pollen was necessary for fertilization. However Darling's experiment seems to be the first time a maize breeder had detasseled a variety of corn in order to make a controlled pollination. From the sweet-flint cross, by selection he produced
an early white sweet corn that matured on July 18 in New Haven, a very early corn. He described his experiment in a concise, accurate fashion that would serve as a model for scientific reporting today.

W. Ralph Singleton

Cornell University, Department of Plant Breeding, Ithaca, New York

Aberrant pericarp-color ratios. In last year's News Letter (17:8-10, 1943), I reported a disturbance of pericarp-color ratios unlike that caused by the recessive zygotic lethal, zl. Selfed red ears gave progenies with approximately equal numbers of red and of white eared plants instead of the expected 3:1 ratio. Such red eared plants, when used as pollen parents in crosses with white gave progenies with about four times as many whites as reds. Only part of the red ears of such cultures gave aberrant progenies. The possibility of this disturbance being transmitted thru the egg had not been determined.

More data of the same kind and a few new data are now available. The new and older data are summarized in the accompanying table.

Normal and aberrant pericarp and cob-color ratios

<table>
<thead>
<tr>
<th>Line of line</th>
<th>No.</th>
<th>No.</th>
<th>genotypes</th>
<th>Parental Progeny</th>
<th>No. of cultures</th>
<th>R-R : W-R : W-W</th>
<th>Progeny Phenotypes and No.</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>W-R × R-R</td>
<td>2</td>
<td>26</td>
<td></td>
<td>Normal</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td></td>
<td>W-R (x)</td>
<td>R-R</td>
<td>11</td>
<td>651 : 182</td>
<td>3:1</td>
<td>Normal</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>" (x)</td>
<td>3</td>
<td>175 : 153</td>
<td>1:1</td>
<td>Aberrant</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td></td>
<td>W-W × W-R</td>
<td>R-R</td>
<td>9</td>
<td>402 : 391</td>
<td>1:1</td>
<td>Normal</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
<td>"</td>
<td>7</td>
<td>290 : 1125</td>
<td>1:4</td>
<td>Aberrant</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td></td>
<td>W-W × W-W</td>
<td>R-R x W-W</td>
<td>6</td>
<td>197 : -</td>
<td>199</td>
<td>Normal</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td></td>
<td>W-W (x)</td>
<td>W-W x W-W</td>
<td>8</td>
<td>225 : 203</td>
<td>1:1</td>
<td>Normal</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td></td>
<td>R-R (x)</td>
<td>W-W</td>
<td>8</td>
<td>125 : -</td>
<td>114</td>
<td>Aberrant</td>
</tr>
<tr>
<td>9</td>
<td>7</td>
<td></td>
<td>W-R (x)</td>
<td>W-W</td>
<td>6</td>
<td>-</td>
<td>140 : 40</td>
<td>Normal</td>
</tr>
<tr>
<td>10</td>
<td>7</td>
<td></td>
<td>" (x)</td>
<td>W-W</td>
<td>1</td>
<td>-</td>
<td>14 : 11</td>
<td>Aberrant</td>
</tr>
</tbody>
</table>

The pollen parents of the two F_r cultures shown in line 1 were from the same stocks of chromosome 1 markers, P br f an g_s, both homozygous for red pericarp and red cob, R-R. The pistillate parents were from unrelated stocks with colorless pericarp and red cob, W-R. Of 14 F_r cultures, 11 (line 2) showed normal 3:1 segregation and 3 (line 3) gave aberrant ratios approaching 1:1. Other F_r R-R plants were backcrossed as pollen parents to stocks with colorless pericarp and white cobs, W-W. Of 16 such backcross cultures, 9 (line 4) gave
normal 1:1 ratios and 7 (line 5) gave aberrant ratios approaching 1:2. Six red eared plants (line 6) and eight red-cob whites (line 7) of the aberrant backcross cultures were again backcrossed this time as pistillate parents; and all gave normal 1:1 ratios. Eight red eared plants (line 8) from these normal second backcross cultures when selfed gave only aberrant cultures. Finally, six red-cob whites from the second backcross cultures (line 9) gave normal ratios on selfing and one (line 10) gave an apparently abnormal ratio.

In summary, it should be noted that red eared plants of aberrant cultures when selfed or used as pollen parents in backcrosses to white, transmit the disturbance to some but not to all cultures of the next generation. When used as pistillate parents in such backcrosses, no disturbance is shown in the following generation, but both red eared plants and red-cob whites of that normal generation give aberrant results when grown one further generation.

From all this, it is clear that the disturbing factor is carried by a part (presumably one-half) of the female gametes and by a part (materially less than half) of the functioning male gametes. In its adverse effect on the functioning of male gametes, it is similar to the Ga reported by Rhodes (News Letter 17:7, 1943). I am, therefore, assigning to it tentatively the symbol Ga4.

Since there is evidence (too slight) of crossing over between Ga4 and the pericarp-color locus and of differential functioning of male gametes, these two variables can be evaluated by use of F2 or backcross ratios only when adequate data are available for a third nearby gene. The percent of crossing over can be determined directly, however, from the ratios of aberrant to normal cultures from (1) F3 from reds of aberrant F2 cultures and (2) from progenies of reds and/or red-cob whites of backcross cultures where Ga ga reds are used as the pistillate parents of the backcrosses. In these cases, the ratios of aberrant to normal cultures should be quite independent of the percent of functioning Ga pollen.

Limits can be set for the two variables by use of F2 and backcross ratios of red to white. Thus, the observed 53 percent red eared plants of F2 might be accounted for by various combinations of the two variables with extremes from zero crossing over with 6% functioning Ga pollen to 6% crossing over with zero functioning Ga pollen. But the observed 27 percent red eared plants in backcross cultures indicate very different limits for the two variables, namely, from zero crossing over with 27% functioning Ga pollen to 20% crossing over with 12% functioning Ga pollen. Since the crossover percentage must be the same for the two types of cultures, one of these conclusions must follow, namely, (1) my hypothesis is wrong (2) my calculations are wholly inaccurate, or (3) pollen functioning is affected adversely much more when the pistils to which it is applied are heterozygous for Ga than when they carry only ga. If the latter is true, the gamete factor, Ga4, may be regarded as dominant as is Gal.

R. A. Emerson
Chromosome 1.

Cross \(\frac{Ts_3}{+} + \frac{Kn}{Kn} \times \text{inbred (ts}_3\text{ Kn)} \)

<table>
<thead>
<tr>
<th>Ts_3</th>
<th>Ts_3 Kn</th>
<th>+ +</th>
<th>+ Kn</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>73</td>
<td>2</td>
<td>5</td>
<td>68</td>
<td>153</td>
</tr>
</tbody>
</table>

% recombination = 4.6

Chromosome 2. Tetraploids

In the course of his intensive work on tetraploids, L. F. Randolph created a stock containing the genes \(l_g, g_l, b, v_4 \) and a corresponding stock containing the dominants. Both stocks were homozygous \(A_1, A_2, A_3 \) and also \(l_g^6 \) which is necessary for definite classification of the genes \(b-b \) in the seedling stage. The stocks were multiplied and then selected for distinct expression of the four marker genes. Following this, J. E. Welch studied the linkage relations of plants duplex for each of the four genes when backcrossed to the multiple recessive. Beginning at this advanced point, I can contribute some additional information.

The cross of a plant duplex for all four markers \(+ + + +\)

by a multiple recessive one \(l_g^6 g_l b v \)

should give as a parental class ratio four plants simplex for all genes \(l_g^6 g_l b v \) to one \(l_g g_l b v \)

plant duplex for all genes \(l_g g_l b v \) to one multiple recessive plant \(l_g^6 g_l b v \).

Numerous other arrangements are possible in plants derived from crossover gametes; but for any one gene, the individual plant should have the recessive allele represented either two, three or four times. The last type is obvious phenotypically since it is homozygous for a recessive marker. Further, a cross of this nature should and did segregate in the ratio of 3 : 6 : 5 dominants : 1 recessive for each of the four genes.
If several individuals with dominant phenotype are selected from such a backcross progeny, and again backcrossed to the multiple recessive, one should find that certain of their progenies give simplex ratios for all four gene members.

Twenty individuals were tested; their distribution is as follows:

2 dumplex ratios for all four genes
1 dumplex ratios for lg, gl and b; simplex ratio for v
1 dumplex ratios for gl, b, and v; simplex ratio for lg
1 dumplex ratios for lg and v; simplex ratio for gl and b
4 dumplex ratio for v; simplex ratios for lg, gl and b
2 dumplex ratio for lg; simplex ratios for gl, b and v
9 simplex ratios for all four genes

The study of progenies, derived from backcrossing plants simplex for each gene to the multiple recessive stock, should give the most direct measure of recombination frequency in a tetraploid for comparison with those in similar diploid stocks.

While 4,315 mature plants were studied, obviously only part of these may be used in the calculation of recombination frequencies from simplex ratios for any given region. The data are tabulated as a three-point test for lg, gl and b and as a two-point test for b and v. This enables one to utilize larger numbers than would be possible in a four-point tabulation. No records were used unless the ratio of dominant to recessive allele was a good fit for a 1:1 ratio. In this manner, any possible effects of either differential viability or poor expression are kept at a minimum. Note that the total is smaller for the 2-point test as a number of cultures were not usable since the v4 class was deficient.

The diploid recombination values used in the following table are taken from Fraser, Jour. Hered. 30: 375-378, 1939.

4n 2n Difference

<table>
<thead>
<tr>
<th></th>
<th>4n</th>
<th>2n</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>lg - gl</td>
<td>16.8±0.46</td>
<td>19.5±0.40</td>
<td>2.7±0.61</td>
</tr>
<tr>
<td>gl - b</td>
<td>17.2±0.47</td>
<td>21.6±0.41</td>
<td>4.4±0.62</td>
</tr>
<tr>
<td>b - v4</td>
<td>43.8±0.83</td>
<td>33.2±0.47</td>
<td>10.6±0.95</td>
</tr>
</tbody>
</table>

The observed differences between 2n and 4n are significant, but a discussion of the possible causes is too lengthy for this preliminary report.
Certain stocks of the late Professor A. C. Fraser, and several of the co-op stocks as well, contain a factor for defective seeds. This recessive factor reduces seed size to \(\frac{1}{16} \) that of normal and is somewhat variable in expression. Defective seeds entirely fail to germinate in weak lines but may produce \(\frac{1}{4} \) sized plants in vigorous stocks. As a new defective seed mutant, this one would hardly command any attention. However, this semi-lethal was isolated by selfing cultures containing the genes in \(y_y z F Z z \) and these same cultures had previously shown unequal parental and crossover classes in 3 point tests. One may presume that this semi-lethal is linked rather closely with these markers and is the cause of these aberrant ratios. It is unlikely that this recessive by itself can account for the marked differences obtained in linkage results in different lines, unless it has an effect on crossing over when present in the heterozygous condition. This has not been studied. One might easily ascribe ears segregating for this gene to the effects of poor pollination, but ears segregating approximately 3:1 have been recovered from normal seeds taken from a segregating ear.

M. J. Murray

Florida University, Department of Agronomy
Gainesville, Florida

Quantitative characters and dominance

Use of third degree statistics with this problem has been illustrated by Fisher, Immer, and Tedin (Genetics 17:107, 1932).

The less powerful but more ready attack with means does not require so extensive nor intricate data. Essentially the method is to test for departure from the additive scheme except for dominance by comparing \(F_2 \) mean with the mid-point of \(F_1 \) and parents, and backcross mean with mid-point of \(F_1 \) and parent. Some extension of the method is proposed and illustrated below.

Denote: \(n \) - number gene pairs heterozygous in cross; \(n_1 \) - plus pairs in parent farther from \(F_1 \); \(n_2 \) - pairs in near parent; \(n_1 + n_2 = n \); \(\alpha \) - \(AA \) effect minus \(aa \) effect; \(k \) - dominance factor, \((AA-aa)/(aA-aa) \); \(R \) - minimum phenotype summing effects of pairs \(aa \) or \(AA \) in both parents and \(aa \) effects of \(n \) pairs; \(FP \) - parent farther from \(F_1 \); \(NP \) - near parent; - etc.

For the additive scheme with pure parents:

\[
FP = n_1 \alpha + n_1 k \alpha + R
\]
\[
NP = n_2 \alpha + n_2 k \alpha + R
\]
\[
F_1 = n \alpha + R
\]
\[
F_2 = \frac{3}{4} n \alpha + \frac{1}{4} nk \alpha + R
\]
\[
FB = \frac{1}{2} n \alpha + \frac{1}{2} (1 + k) n_1 \alpha + R
\]
\[
NB = \frac{1}{2} n \alpha + \frac{1}{2} (1 + k) n_2 \alpha + R
\]
Eliminating R from (1) to (6) and combining n_1 and n_2 provides seven not entirely independent estimates of $(1-k) n\alpha$ and an eighth comparison $(2F_2-B) = 0$. Take: P - sum of parents; F - sum of F_1 and F_2; and β - sum of backcrosses. For Lindstrom's data on relative yields of three inbred lines of maize and their hybrids (Proc. 7th. Int. Gen. Cong.):

<table>
<thead>
<tr>
<th>$(1-k) n\alpha$</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>$4(F_1-F_2)$</td>
<td>136.8% F_1</td>
</tr>
<tr>
<td>$4/3(F-P)$</td>
<td>124.5</td>
</tr>
<tr>
<td>$2(B-P)$</td>
<td>142.0</td>
</tr>
<tr>
<td>$(2F_1-P)$</td>
<td>127.6</td>
</tr>
<tr>
<td>$2(2F_2-P)$</td>
<td>118.4</td>
</tr>
<tr>
<td>$4(F-B)$</td>
<td>89.6</td>
</tr>
<tr>
<td>$2(2F_1-B)$</td>
<td>113.2</td>
</tr>
<tr>
<td>Mean</td>
<td>121.7</td>
</tr>
</tbody>
</table>

Lindstrom's data probably are a fair representation of the usual result - see Neal, J. Am. Soc. Agron. 27: 666.

The seven estimates of $(1-k) n\alpha$ are expected to be homogeneous and $(2F_2 = 8)$ on the additive scheme, with no restrictions as to linkage, or as to degree, direction or other variation of dominance, or variation of α.

In the event of no significant departure from the additive scheme the mean estimate of $(1-k) n\alpha$ may be of value to the breeder without further resolution into its factors. The quantity $(1 + k) n\alpha$ or $(n\alpha + nk\alpha)$ estimates total range of genetic variation for the specific cross with free assortment. Distance from the lower extremity to F_1 is $n\alpha$; from F_1 to upper extremity is $nk\alpha$. The two are equal with no dominance. With dominance their difference is $(1-k) n\alpha$. Total depression by inbreeding is $1/2(1-k) n\alpha$; depression from F_1 to F_2 is $1/4 (1-k) n\alpha$.

Taking the present case as additive, $k = (-121.7/n\alpha) + 1$. Then, $n\alpha$ must be as great as 121.7% F_1 if the conclusion of negative k is to be avoided. The factor k varies from unity for no dominance, through zero for complete dominance to negative values for over-dominance, "super-dominance," or "diverse alleles". With the conclusion of "complete" dominance ($k = 0$) $n\alpha$ must be taken 121.7 and the minimum phenotype minus 21.7. Taking the minimum at zero, $n\alpha$ is 100% and k is minus 21.7. The correct explanation of heterosis for yield in maize may lie somewhere between those somewhat arbitrary limits, involving both negative R and negative k. Note that on the additive scheme F_1 will not exceed the sum of parents without negative R or negative k, yet most maize inbred yields are less than one-half of F_1 yield. If k be negative, selection for increased
The obtained value of 121.7 places expected yield of a homozygote from these crosses at 39.2% F₁, which is higher than usually obtained. The example may not be strictly additive. For further illustration of method, four of the seven estimates of (1 - k) nα involve (-P) with average deviation plus 6%, indicating that slightly higher inbred yields may be expected with the present hypothesis.

Cross of heterozygous maize varieties - Tuxpan x Golden Cross Bantam

<table>
<thead>
<tr>
<th></th>
<th>F₂</th>
<th>F₂*</th>
<th>Backcross to G.C.B.</th>
<th>(1-k)nα</th>
<th>S.D.</th>
<th>F₂</th>
<th>sk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number leaves</td>
<td>13.7</td>
<td>13.9</td>
<td>12.0</td>
<td>11.6</td>
<td>+1.7</td>
<td>1.47</td>
<td>-3</td>
</tr>
<tr>
<td>Height, feet</td>
<td>7.5</td>
<td>7.3</td>
<td>5.4</td>
<td>5.9</td>
<td>+2.7</td>
<td>1.00</td>
<td>-2</td>
</tr>
<tr>
<td>Days to silking</td>
<td>73.9</td>
<td>70.9</td>
<td>66.6</td>
<td>65.2</td>
<td>-6.9</td>
<td>4.47</td>
<td>+3</td>
</tr>
<tr>
<td>Tassel length, ins.</td>
<td>17.4</td>
<td>16.6</td>
<td>14.6</td>
<td>14.7</td>
<td>+3.2</td>
<td>2.28</td>
<td>-1</td>
</tr>
<tr>
<td>Silking shoots</td>
<td>4.7</td>
<td>4.8</td>
<td>5.5</td>
<td>5.5</td>
<td>+2.8</td>
<td>2.30</td>
<td>+4</td>
</tr>
<tr>
<td>Ear diameter, cm.</td>
<td>4.4</td>
<td>4.6</td>
<td>4.2</td>
<td>4.3</td>
<td>+0.1</td>
<td>0.37</td>
<td>0</td>
</tr>
<tr>
<td>Cob diameter, cm.</td>
<td>2.5</td>
<td>2.5</td>
<td>2.3</td>
<td>2.3</td>
<td>-0.1</td>
<td>0.26</td>
<td>0</td>
</tr>
<tr>
<td>Husk length, cm.</td>
<td>24.0</td>
<td>24.6</td>
<td>21.1</td>
<td>22.8</td>
<td>-3.2</td>
<td>2.96</td>
<td>0</td>
</tr>
<tr>
<td>Ear length, cm.</td>
<td>19.1</td>
<td>19.6</td>
<td>18.1</td>
<td>18.6</td>
<td>+5.3</td>
<td>2.84</td>
<td>-1</td>
</tr>
<tr>
<td>Husk extension, cm.</td>
<td>5.0</td>
<td>5.2</td>
<td>3.0</td>
<td>4.3</td>
<td>-8.0</td>
<td>3.33</td>
<td>+3</td>
</tr>
<tr>
<td>Number tillers</td>
<td>0.9</td>
<td>0.97</td>
<td>1.1</td>
<td>1.3</td>
<td>+0.9</td>
<td>0.91</td>
<td>+5</td>
</tr>
<tr>
<td>No. kernel rows</td>
<td>13.4</td>
<td>13.3</td>
<td>11.6</td>
<td>12.0</td>
<td>+0.4</td>
<td>2.27</td>
<td>+1</td>
</tr>
</tbody>
</table>

* Mid-point between F₁ and mean of parents.
** Mid-point between F₁ and Golden Cross Bantam.
sk Inspection grade of skewness: grade 5 as 1/2 of a normal distribution.

Although these records are from heterozygous parents they show generally good agreement with the additive hypothesis. Interpretation for any character will involve first the comparison of F₂ and backcross means. Where agreement seems good, (1 - k) nα is next compared with skewness as to magnitude and direction. Finally, (1 - k) nα as a measure of dominance bias is considered with some measure of variation. Number of silking shoots and number of tillers have apparent skewness opposed in direction to the dominance bias. For tillers the explanation seems to lie in a piling up of nearly half of the frequency in the zero class; the character is not expressed to the left of or below zero. No explanation for silking shoots is apparent.

It is indicated that continued inbreeding would increase total husk length 1.6cm., while ear length would be shortened 2.6 cm. Husk extension would then increase about 4.0 cm. with inbreeding and decrease with crossbreeding of inbreds.
Powers (J. Agr. Res. 63: 161) presents records on plant height in centimeters for four tomato crosses. Mean estimates of \((1 - k)\) are:

<table>
<thead>
<tr>
<th></th>
<th>Danmark</th>
<th>Johannisfeur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red Currant</td>
<td>25.3</td>
<td>10.3</td>
</tr>
<tr>
<td>Johannisfeur</td>
<td>13.8, 7.1*</td>
<td>1.1</td>
</tr>
<tr>
<td>Bonny Best</td>
<td>1*</td>
<td>1.1</td>
</tr>
</tbody>
</table>

* Records for two years

The seven individual estimates on which each of the above is based do not show marked heterogeneity within any set in the writer's judgment. Variance of \((1 - k)\) is apparently much greater between than within these crosses. Deviation from 0 of \((2F_2 - B)\) is slight in each case. The cross Johannisfeur x Bonny Best was discussed separately by Powers. He found departure of \(F_1\) from mid-point of the parents not significant. \(F_1\) and \(F_2\) seem almost identical. Yet the seven estimates of \((1 - k)\) are, 0.24, 1.31, 1.28, 1.04, 1.24, 1.36, 0.30; all positive, suggesting the expected mean may be some small positive value due to some degree of dominance bias, geometric interaction, or non-linear scale of environmental effects. Since \((2F_2 - B) = 0.28\), dominance may be the favored conclusion.

For the cross Danmark x Red Currant the far parent is 16.6 cm. from \(F_1\). Since \((1 - k) = 25.3\) cm. the minimum phenotype, \(R\), is 25.3 cm. farther from \(F_1\) than is the maximum. It would appear that the far parent Red Currant has plus gene values not found in the other parent sufficient to explain the excess of \(F_1\) over the taller parent. The writer sees no suggestion of negative \(k\) or negative \(R\) in the three crosses which have \(F_1\) taller than the taller parent.

Powers has noted that dominance bias may be affected by environment, which view is supported by the two records for separate years on one cross. Extensive analysis by higher order statistics, not being easily repeated, might be of doubtful value, if confined to one season or location.

There is of course, no new principle involved in the analysis by comparison of means suggested here. More efficient statistics for judging significance in some of the comparisons may be developed perhaps. If values of \(k\), \(n\), and \(\alpha\) could be resolved by extensive analysis the quantity \((1 - k) n\) would still be of prime interest as a measure of dominance depression of efficiency of selection. Progress in breeding towards an objective involving several quantitative characters may sometimes be hastened by an efficient balancing of backcross and selection pressures. Those characters which have strong dominance depression away from the objective will be more difficult to recover from crosses by selection. Insofar as possible such characters should be collected in the recurrent parent, and thus largely recovered by backcrossing.

In the event of negative \(k\) (\(aa\) increment exceeds \(AA\) increment), regression of phenotype on number of plus genes \((A)\) will rise to a point beyond which the mean effect of an \((A - a)\) substitution is negative because of increasing homozygosity. From this point the \(F_2\) distribution of
phenotype will be doubled back on itself with respect to gene number values. Analysis by comparison of means will not be distorted. Presumably, analysis by higher order statistics may also not be distorted but that must be investigated.

Analysis by comparison of means would seem to be a ready method where more extensive analyses cannot be employed or a reasonable preliminary to more powerful methods.

Fred B. Hull

Iowa State College, Department of Agronomy
Ames, Iowa

Linkage relations of L_{14}

\[
\begin{array}{cccccc}
\text{su Gl}_4 \text{Tu} & \text{Su gl}_4 \text{tu} & \times & \text{su Gl}_4 \text{tu} \\
20 & 3 & 9 & 33 & 18 \\
\text{su Gl}_4 \text{tu} & \text{Su gl}_4 \text{tu} & \text{Su gl}_4 \text{tu} \\
7 & 1.7 & 6 & 30 & 8 & 20 & 6 \\
\text{Su} & \text{Gl}_4 & \text{Tu} & 43 & 3
\end{array}
\]

G. F. Sprague

University of Minnesota, Department of Agriculture
University Farm, St. Paul, Minnesota

1. Middcob color. This character is difficult to study in this climate. Samples of the same inbred material were grown in 1941 and in 1942. In several cases a line that had red middcobs in 1941 was classified as having colorless ones in 1942. The ears in both cases were brought in at maturity and dried in the drier for final classification. 1942 was an unusually wet year, especially during August and September. Even under conditions where the ears matured and dried well in the field as in 1942, many ears classified in the field as having colorless middcobs were found to be colored after drying. Proper conditions for complete maturity and drying appear to be essential.

In 1943, apparent linkage was found between an interchange T5-6 and middcob color (30% recombination in 172 plants), indicating at least one middcob color factor may be in chromosome #5 or #6. A new factor for shrunken endosperm (sh_2), one of Stadler's x-ray mutants is linked with pr. Backcross data: 150 $Pr Sh + 45 Pr sh + 51 pr Sh + 164 pr sh$ indicate 23.4% recombination. Its location in the chromosome has not been determined.
2. Dominant White Cap (Wc) appears to be in chromosome 1 based on
the linkage observed with interchange 1-9c and the lack of linkage with
9-10a. Also there was no linkage with wx (using pollen classification for
wx). Data with 1-9c (1942 and 1943): Wc = 80 semisteriles + 28 normals;
yellow cap = 47 semisteriles + 74 normals or about 33% recombination.
Dr. Hayes' earlier tests with bm2 were negative, while with gs there was a
loose but significant linkage (P = .05 -.02). Such a linkage value would
indicate Wc might be near br.

1939) was crossed with zb1, zb2, and zb3 and found to be genetically
different from these three.

zb1 is not in chromosome 6, as shown by a trisomic test (C. Lazaro)

4. Fasciated ear appears from my F2 results to be a dominant character,
not a recessive as listed in the Cornell Linkage Summary. (This stock is
Coop. #39-25-6).

5. Crosses between interchanges involving the same two chromosomes.

<table>
<thead>
<tr>
<th>Cross</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2-4a x 2-4c</td>
<td>semisterile F1</td>
</tr>
<tr>
<td>T2-4a x 2-4b</td>
<td>"</td>
</tr>
<tr>
<td>T2-4b x 2-4c</td>
<td>"</td>
</tr>
<tr>
<td>T2-6c x 2-6d</td>
<td>20% sterility on ears, pollen also low</td>
</tr>
<tr>
<td>T2-9c x 2-9b</td>
<td>semisterile</td>
</tr>
<tr>
<td>T5-7a x 5-7c</td>
<td>20% sterility on ears (pollen also low)</td>
</tr>
</tbody>
</table>

The low sterility was thought to be the result of survival of a certain
class of spores which ordinarily aborts. In crosses involving two inter-
changes in which the two breaks are close together and in the same relative
position with respect to the spindle fiber (the same interchange having its
break in each chromosome closer to the spindle fiber than does the other one)
certain spore classes should be deficient for only one short region.
According to the cytological data available, in T2-6c the breaks are in the
long arms at .3 and .25 respectively from the S.F. in chromosomes 2 and 6;
while in 2-6d they are also in the long arms but at .4 and .4. Deficiency
tests for genetic loci in the two F1 hybrids showing low sterility were
all negative:

for T2-6c x 2-6d : ms, si, pb were tested for chromosome 6
AR gl, va, ba2, ba were tested for chromosome 2.

T5-7a x 5-7c : by gl for chromosome 5
sl, lb, pl, ru 1d for chromosome 7

It seems probable that none of the genes tested is in the region suspected
of being deficient.

C. R. Burnham

6. Red glume collar. Certain inbred lines and genetic stocks show a
band of red color near the base of the glumes of the tassel. Most stocks
are green at this point. The color may show only when the tassel is fully
out of the boot, but it may show earlier. A few segregating progenies indicate
that in these cases the red differs from green by a single dominant factor. A backcross test involving this character and also Y and P expresses red glume collar is closely linked with P (6.6% recombination), but the data did not indicate the probable order.

Another red glume collar character is found in B pl stocks, but in cultures segregating B-b, the collar color has always been associated with B.

C. Lazaro and C. R. Burnham

Young tassels of both types b pl red collar and B pl red collar were wrapped up in black paper to exclude the light. In the first type (linked with P), the collar color developed in all cases in the absence of light. When the second type (associated with B) was bagged, the sun red color on the glumes did not develop, but the collar was colored, although not as intensely as that in the type linked with P. It appears, therefore, that the collar color is not a sun red color even in the type which is associated with B.

C. Lazaro

7. Trisomic tests with unlinked genes. Trisomic tests for chromosome 6 and the following genes were negative: Zb, gl6, gl9 (trisomic plants had an excess of pl progeny as compared with the 2n), and Y9. A seedling dwarf (one of Stabler's designated temporarily as de-3) may be in chromosome 6 by this trisomic test.

Linkage data with other factors were obtained along with the tests for linkage in chromosome 6. The possible linkages are as follows:

<table>
<thead>
<tr>
<th>Genes</th>
<th>N</th>
<th>Segregating for new characters</th>
<th>(\chi^2) for indep. test</th>
<th>Recom. ± S.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>pr - ws</td>
<td>104</td>
<td>3:1</td>
<td>P = 0.02</td>
<td>35.5±6.1</td>
</tr>
<tr>
<td>Wc - sl??</td>
<td>164</td>
<td>15:1</td>
<td>P = 0.02</td>
<td>38.5±3.8</td>
</tr>
<tr>
<td>Y - gl-11</td>
<td>283</td>
<td>3:1</td>
<td>P < 0.01</td>
<td>27.0±3.8</td>
</tr>
<tr>
<td>Y - w (in gl6</td>
<td>202</td>
<td>3:1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>culture)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fl - gls-3</td>
<td>276</td>
<td>3:1</td>
<td>P < 0.01</td>
<td>12.0±3.6</td>
</tr>
<tr>
<td>gls-3 - tw3??</td>
<td>276</td>
<td>excess for 15:1</td>
<td>P < 0.01</td>
<td>1.0±1.7</td>
</tr>
<tr>
<td>Fl - tw3</td>
<td>276</td>
<td>"</td>
<td>P < 0.01</td>
<td></td>
</tr>
<tr>
<td>1 aleur. factor</td>
<td></td>
<td>"</td>
<td>P = 0.1</td>
<td>38.0±6.2</td>
</tr>
<tr>
<td>- tw3</td>
<td>579</td>
<td>"</td>
<td>P = 0.02</td>
<td>28.0±5.6</td>
</tr>
<tr>
<td>Fl - tw3</td>
<td>218</td>
<td>"</td>
<td>P < 0.01</td>
<td></td>
</tr>
<tr>
<td>gl - tw3</td>
<td>561</td>
<td>"</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* This silky is one that appeared in an F2 of a single cross here.
** This tw was linked in coupling with the gls-3, one of Stabler's mutants.

Negative results by the \(\chi^2 \) for independence test were obtained for the following linkage tests: Zb with lg; ws with Y P 3 R 3 S; gls-1 with B Lk ml?; ml? with B lg; de-3 with sa, pr Y colorless aleurone (9:7); gl6 with Y; gl9 with Y bh? and zg3 with Y and colorless aleurone (3:1)

C.R. Burnham and N. Klein
Gene Variability. The study of R alleles which Fogel and I reported in the 1943 News Letter has been continued, with the addition of a series of R^F types and with further study of specific modifiers of R action and of environmental conditions affecting it. All or nearly all of the 22 R^F's originally included appear to be distinguishable in their effect upon plant color, but since some of these differences are slight, they require confirmation in experiments in which modifier action may be excluded more critically than is possible by repeated parallel backcrossing.

For this purpose we have used colorless aleurone mutants of several of the original R^F alleles, since as previously reported spontaneous mutations of R^F→R^f have no appreciable effect upon the plant-color action. For example, six R^F alleles (Boone, 997, Cornell, Quapaw, Ponca, and Black Beauty) form a group characterized by rather strong pigmentation, though distinguishable in parallel backcrosses by slight though consistent differences. Colorless aleurone mutants of Cornell and Quapaw were crossed with other members of the group, and backcrossed by r^F. This yields progenies in which the Cornell or Quapaw phenotype may be compared with the phenotypes of similar alleles in sib plants, the aleurone color difference providing a completely linked marker. Such comparisons, so far as they have gone, confirm the reality of the small differences observed between members of this group. A similar method may be used for the study of "non-linear" variation in the action of the different alleles (News Letter 1943, page 20), and here the mutant R^F's may be supplemented by naturally occurring r^F's.

We are using the latter chiefly for this purpose.

The alleles of B (News Letter 1943, page 22) appear to be fully as variable as those of R, and since the range in plant-color phenotype is even wider, they may be better suited to the identification of small differences. Among 14 R^F's compared, 6 were selected as standards to represent distinct levels spaced roughly between b and B, and in each of these a stock of B-gl r^F was established. These alleles listed in ascending order of effectiveness, are designated as follows:

1. R^F (Boone) 3. R^F (Clarage) 5. R^F (Lockout)
2. R^F (Young) 4. R^F (La Paz) 6. R^F (Seattle)

Additional R^F's, both from existing stocks and from mutations of various B's, have been crossed each with the standard R^F-gl strains which appear to be just below and above them in effectiveness, and backcrosses of these hybrids will determine their position in the series. For further mutation work, Anderson's In2 (Y4 B Gl Ig) stock is being extracted in homozygous combination with r^F since R^F mutations induced in this stock may be crossed with the naturally-occurring alleles to produce backcross progenies with virtually complete linkage of marker genes.

Miss Elizabeth Somers is making a detailed histological study of the development and distribution of anthocyanin under the action of R and of B.

Gene Action. Among tissues capable of anthocyanin production there are marked differences in response; cells of certain types produce...
anthocyanin readily with any R-allele above the $R3$ level, while cells of
other types may produce anthocyanin only in the presence of the strongest
P alleles. For example, among epidermal cells of the leaf, there are
distinctive differences in the reaction of the long, narrow cells over the
veins, the long and short surface cells, the stomatal cells, the hairs
and the specialized cells at the base of the hairs, and the paired
dilicateous and suberized cells. Anthocyanin is formed much more readily
in the epidermis than in the underlying mesophyll cells, but in the
chlorophyll-lacking sectors of japonica plants it is produced abundantly
in mesophyll cells also. The same is true of certain white and virescent
types, and in normal green plants the mesophyll cells of the auricles
(which lack chlorophyll) are well colored by even relatively weak alleles.
With strong R alleles, green mesophyll cells containing anthocyanin are
more frequently found.

The alleles of R and P thus provide a series of reagents, so to
speak, for the study of tissue differentiation. Thirty years ago Keeble,
Atkins, and others showed certain interesting relations between anthocyanin
patterns and the occurrence of oxidase systems detectable by the use of
histochemical test-substances. Mr. Fogel has undertaken a study of this
kind with maize, which is however still in a preliminary stage.

The study of competitive action of certain A alleles (News Letter 1943,
page 21) is being continued in collaboration with John R. Laughman. The
dominant action of Ap upon plant color is manifested with all of the
visibly weakened A alleles tested (A^w, A^{at}, A^{br}, A^{rb}). The alleles A^{br}
and A^{rb} (both obtained by Rhoades, out of a by Bt) are purple plant types
distinguished from A by their reduced effect upon pericarp color. When
these are compared with A in sib plants (in backcross progenies marked by
St), they show slight but distinct reduction in anthocyanin pigmentation
of the plant as well.

The dominant effect of Ap upon plant color is shown also, to a slight
extent, by certain A's which appear to have full plant color and pericarp
color effect. The different A's used were extracted, after parallel
backcrossing to $a C R$, from various stocks, chiefly the Indian strains used
as foundation material for the H and B studies. With some A's the difference
between A/aP and A/a sibs is clear enough to permit reasonably accurate
prediction of the genotype at the flowering stage, and this identification
may be made somewhat more accurately by testing the extracted pigment. The
difference is due to the presence of varying quantities of yellow pigment in
addition to the purple. With other A's and with A^b, no difference is found.
The Ap reaction thus serves as a sensitizer for the recognition of differences
between the A alleles, and indicates the occurrence of considerable
additional allelic variability at this locus. Conversely, the extent of
the effect varies among different pale alleles obtained by mutation from
A^b (News Letter, 1943, page 21), when these are tested against a common A.
All of the pale alleles showing the dominant plant color effect have
dominant brown pericarp action; the two pale aleurone alleles with recessive brown pericarp (A^w and A^lt) give negative results in parallel tests.

Mr. Laughnan is making a chemical and spectrographic study of the pigments involved in the action of the A alleles, and is developing methods for the quantitative study of the mixed pigment phenotypes.

3. Spontaneous Mutation. The frequency of spontaneous mutation to colorless aleurone types varies widely in different R alleles. The most mutable of the alleles studied is R^F (Cornell), which yields R mutations at the rate of about 2 per 1000 gametes. At the other extreme are a few alleles which give no mutations in populations of 25,000 to 100,000 gametes.

As previously reported, differences in mutability are inherent in the gene itself, since they are maintained when a highly mutable and a rarely mutable allele are combined in a heterozygote, so that the mutations must occur in precisely comparable cells. This comparison is made possible by the fact that the mutations affecting aleurone color do not affect plant color, and in a heterozygote R^1 R^2, in which plant color is distinct in the two alleles combined, the identity of the gene mutating is readily determined. For example, when R (Cornell) is combined with an R^E of low mutability, the mutants produced by the F_1 plants are almost exclusively R (Cornell).

In addition, however, there is a pronounced effect of modifiers upon the frequency of R -> R^F mutation. Homozygous R (Cornell) stocks extracted from crosses of the type mentioned show lowered mutation rates, in some cases much lowered. Different homozygous strains extracted from the same F_1 plant show distinctly different rates.

Mutations to colorless plant types (R^F -> R^E) occur at appreciable rates in certain alleles, and the variation between R^F alleles in frequency of mutation to R^E appears to be uncorrelated with that of mutation to R^F. R (Cornell) is very low in frequency of mutation to R^E, while certain other R alleles yield plant color mutations at moderately high rates, none however approaching the frequency of aleurone color mutations in R (Cornell). The frequency of mutation to R^F and to R^E in the same plant (male germ cells) was tested extensively in 2 plants of R (Columbia), with the following results:

<table>
<thead>
<tr>
<th>Plant</th>
<th>Mutations to R^F</th>
<th>Mutations to R^E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6/12,525</td>
<td>3/11,304</td>
</tr>
<tr>
<td>2</td>
<td>5/8,452</td>
<td>3/8,020</td>
</tr>
<tr>
<td>Total</td>
<td>11/20,984</td>
<td>6/19,324</td>
</tr>
</tbody>
</table>

Mutations of R^F to intermediate levels appear to be very rare. On the contrary R mutates frequently to intermediate levels, and no mutations of R to R^F have been found. The R^E alleles occurring by mutation differ widely in level of action. In this respect R resembles a^b, which as previously reported mutates frequently to different levels of a^P type and rarely if ever mutates spontaneously to a.
Comparison of X-ray and Ultra-violet Mutation. Following the experiment on X-ray and ultra-violet mutation of A previously reported (News Letter 1941, page 45-47, 1942, page 24-27), Roman and I set up a somewhat similar experiment with A°. This was designed to take advantage of the fact that the spontaneous mutations of A° are to an intermediate allele and are therefore clearly distinguishable from the effects of deficiency. The previous experiment had shown that the apparent mutations induced by X-rays were in fact minute deficiencies, and that the apparent mutations induced by ultra-violet were distinctly different and behaved as if they represented a transformation of the gene to a recessive allele. It did not, however, exclude the possibility that the ultra-violet mutations were still more minute deficiencies, or cases of destruction of the single gene. With A° this distinction could be made, if ultra-violet mutations actually are mutations of the type represented by spontaneous mutation of the same gene.

Extensive pollinations with untreated, UV-treated, and X-rayed pollen of a single A° plant were made upon ears of a D°, and numerous deficiencies and mutations were identified in the progeny. But the experiment failed in its main objective, because the natural frequency of mutation of A° to D° is so high that no significant increase in D° mutations was produced by the treatments used.

The results, however, give additional support to the indication that the UV mutations are true gene mutations in two ways.

1. No apparent mutation of A° to a was found in the very extensive ultra-violet series.

2. Among the endosperm mosaics induced by ultra-violet treatment, there were several cases in which a mosaic of clearly pale aleurone tissue showed typical dots of D° type. Although an endosperm sector does not permit progeny testing, these can only have resulted from mutation of A° to D°, induced by the ultra-violet treatment. An endosperm mosaic of pale appearance could result from any one of numerous causes, but it could not provide a background for visible dots of A tissue unless it resulted from a change in A-action, and this background could not be pale if the A loss were due to deficiency.

The effect of ultra-violet treatments upon A° mutation is sufficiently frequent for detection in the endosperm and not in the embryo because of the much higher frequency of induced alterations in endosperm than in embryo, which has previously been reported as characteristic of ultra-violet treatment.

This heightened frequency of endosperm alterations may be used to simplify various studies involving ultra-violet effects, and to make possible certain studies which otherwise could not be carried out. For example, it would be very desirable to determine the effect of varying ultra-violet wave lengths on the frequency of mutation. The action spectrum for A°-losses in endosperm has been determined, but these include both deficiencies and mutations, and presumably consist very largely of deficiencies. It would not be possible to make significant comparisons of wave length effectiveness in inducing mutation if the mutations could be identified only by the growing and testing of progeny plants.
The use of \(A^b \), with recognition of mutants by the \(a^b \) phenotype, as described above, is effective for identifying positive cases of mutation in the endosperm, but it is not suited to quantitative work because of frequent failure of \(a^P \) sectors to color positively. Laughnan and I have therefore made use of a different method, which permits identification of the alterations in the endosperm but with confirmatory tests on the plant grown from the accompanying embryo.

Pollen of homozygous \(A^A \) with the recessive markers \(g^13 \) and \(j \) was used on ears of \(a-\times^1/a^P \). The x-ray mutants \(a-\times^1, a-\times^2 \), etc., are inviable when homozygous and in all possible combinations inter se, and sectors homozygous or hemizygous for them are also inviable (News Letter, 1942, page 25). If all x-ray induced \(A \)-losses involve the loss of the associated viability factor, X-rayed pollen will never yield a colorless seed or sector; if any apparently colorless or sectorially colorless seed is found, it may be tested by growing the plant to determine whether the female gamete was \(a-\times^1 \) or \(a^P \). A colorless seed yielding a plant not heterozygous for \(a^P \) is selfed or tested for the recessive markers to exclude the possibility of pollen contamination.

The \(A \)-losses shown by \(a^P \) tissue include the deficiencies plus the mutations among the seeds from \(a^P \) gametes; those shown by \(a \) tissue include the mutations alone among the seeds from \(a-\times^1 \) gametes. Control pollination by \(a^C/r \) on a number of ears of the female stock show that \(\phi \) gametes of \(a^P \) and \(a-\times^1 \) functioned in approximately equal numbers.

In the limited populations now completed, X-ray treatment has failed to yield colorless seeds or sectors. Ultra-violet treatment has given 3 proven cases of colorless sectors. The total number of \(A \)-losses in endosperm in the ultra-violet population on which the tests have been completed was 92. This indicates a ratio of deficiency to mutation of about 86:3 under ultra-violet treatment for the \(A \) stock used in the experiment. This is not greatly different from the proportion found among progeny plants representing \(A \) losses in the embryo.

The induced alterations classified as mutations are subject to the same reservations regarding their genetic nature as are the ultra-violet mutations identified in progeny plants following treatment of \(A \). The method permits the determination of relative frequency of mutation (in this sense), with a fraction of the effort required in determining mutation from progeny plants. By this method it is feasible to compare the effect of different wave lengths upon deficiency and mutation simultaneously, and to compare different \(A \) alleles in relative frequency of mutation. With slight modifications the method may be used also for the identification of gene mutations of \(A^b \) critically distinguishable from the effects of gene-deficiency.

The results of the above experiment have a further interest in connection with the problem of the endosperm-embryo difference in frequency of ultra-violet alterations. The cause of this difference is unknown, and the most plausible guess has been that it is somehow connected with the difference in breakage-fusion phenomena in endosperm and embryo, which might appropriately be termed the McClintock effect. It might be expected that deficiencies, initiated by equal effects of the treatment upon the two sperm nuclei, might differ greatly in frequency of realization under
the very different conditions of endosperm and embryo. But this experiment indicates that the heightened frequency of alterations in the endosperm applies to mutations as well as deficiencies.

While the various experiments with induced mutation of A and \(A^b \) indicate that ultra-violet treatment produces true gene mutation and that X-ray treatment does not, they are disappointing in their failure to yield induced gene mutations which may be established in stocks subject to critical analysis. This is due to the failure of the \(A^b \) experiment described on an earlier page of this report. The advantage of regular spontaneous mutation to an intermediate allele, which makes \(A^b \) suitable for this experiment, applies also to \(R^F \), since its spontaneous mutations are regularly to \(R^2 \) rather than to \(R^F \). In the case of \(R^F \) distinct alleles are available, including types with varying frequency of spontaneous mutation. Mrs. Elena Perak has undertaken an extensive study of the effects of X-ray and ultra-violet treatment upon mutation of various \(R^F \) alleles.

5. Effect of X-rays upon Dominant Mutation of \(a \). No dominant mutations have been found in X-ray progenies of maize in experiments in which hundreds of recessive mutations have been observed. The evidence against the occurrence of dominant mutation induced by X-ray is however inconclusive, for the following reasons:

(1) The number of genes capable of showing dominant mutation may be much smaller than the number capable of showing recessive mutation, since many genes may be already fixed by natural selection at a level maximal for gene action. The possibility of inducing dominant mutation can, therefore, be tested critically only with known recessives.

(2) Among known recessives many may be themselves deficiencies and, therefore, incapable of dominant mutation. Critical evidence of failure to mutate to a dominant allele therefore may be obtained only from recessive genes which have previously been known to mutate to a dominant allele.

(3) The only recessive alleles which meet this requirement are the variegation genes, which may be regarded as unstable recessive mutating frequently to a dominant allele. In these the spontaneous frequency of dominant mutation is so high that an effect of X-rays in inducing additional dominant mutation probably would not be appreciable.

It is possible to avoid these difficulties in the case of one gene. The recessive \(a \) has several known dominant alleles. The effect of \(D_t \) proves that it is capable of dominant mutation. In the absence of \(D_t \) it is not mutable, and would therefore permit recognition of even a slight effect of X-rays in inducing mutation. Since the effect of mutation is recognizable in minute sectors the treatment may be applied in a fairly advanced stage of endosperm development, so that many hundreds of cells are tested for mutation by the examination of a single endosperm. It is therefore possible to test for the occurrence of this mutation in practically unlimited populations.

The seed to be irradiated was produced by the cross \(a \ a \times A \ A \ a \), both parents being homozygous for \(d_t \ d_t \) and for the complementary factors required for aleurone color. The endosperms of half of the seeds produced are \(A \ a \ a \). These serve to indicate the size of sectors resulting from genetic
alterations induced by irradiation at the stage chosen, since induced deficiencies of \(A \) result in sectors of colorless aleurone. In the colorless seeds, induced dominant mutation of any one of the 3 \(A \) genes would result in a corresponding sector of colored aleurone. The colored seeds thus provide a basis for calculation of the number of opportunities for detectable mutation in the colorless seeds, and a basis for comparison of the relative frequency of induced dominant mutation and deficiency. Treatment was applied 73-31 hours after pollination.

The mutability of the \(A \) gene in both parental stocks was tested by crossing with all \(Bt \), all being an \(A \) allele with negligibly low dominant mutation rate in the presence of \(Bt \). From the results of these crosses the number of dominant mutations which would be expected in the \(A A A \) seeds under the influence of various doses of \(Bt \) may be calculated.

The results show failure of X-rays to induce dominant mutation in a population estimated at 5,700,000 cells, each containing three \(A \)'s capable of mutation. The cell population of equal size in sib seeds yielded approximately 100,000 losses of \(A \) (deficiencies or recessive mutations) from cells containing only one \(A \) gene each. The number of mutations to \(A \) which would have occurred in the same populations under the influence of \(Bt \), calculated from the test crosses mentioned, was over 16,000 for a single dose of \(Bt \), or about 16 times this number for homozygous \(Bt Bt Bt \) seeds.

L. J. Stadler

Carnegie Institution of Washington
Department of Genetics, Cold Spring Harbor, Long Island, N.Y.

During the past few years, a number of terminal deficiencies of the short arm of chromosome 9 have been isolated. Each deficiency arose as the consequence of a meiotic breakage of the short arm of chromosome 9 following crossing over in plants heterozygous for a chromosome 9 with a duplication of the short arm or a structural rearrangement of the segments of chromosome 9. In each case, the extent of the deficiency was determined at pachytene in the \(F_1 \) plants which had received a normal chromosome 9 from one parent and a recently broken (deficient) chromosome from the other parent. Tests showed that deficiencies which ranged from minute to one-third of the distal segment of the short arm were all female transmissible. Those which extended into the first distinct chromosome were transmissible through the pollen. None of the longer terminal deficiencies were male transmissible. Because of the male and female transmission of the very short terminal deficiencies, plants which were heterozygous for these deficiencies were self-pollinated to determine if viable endosperms and embryos could be obtained which were homozygous for these deficiencies. In these \(F_1 \) plants, the normal chromosome carried \(C \) and the deficient chromosome carried \(c \). The \(C \) mutant is located in the short arm within the 5th or 6th chromomere from the distal end. In these \(F_1 \) plants, 30 individuals were classified as having received a broken chromosome 9 which was deficient for only the knob. Self-pollinations of these heterozygous deficient plants gave typical ratios of 3 \(C \) to 1 \(c \). The endosperms and embryos in both classes of kernels were normal. Plants arising from both the \(C \) and \(c \) kernels were likewise normal in appearance. Cytological
examination of some of these F2 plants showed the presence of the two deficient chromosomes 9. It may be concluded that a homozygous deficiency of the knob does not obviously alter the appearance and functioning of any tissues.

Seven of the original F1 plants were classified as having a chromosome 9 which was deficient for the knob and the adjacent segment of thin chromatin which joins the knob with the first distinct chromomere. Self-pollinations of these plants likewise gave typical ratios of 3 C to 1 c. The endosperms and embryos were normal in appearance. In all 7 cases, the seedlings arising from these kernels segregated in the ratio of 3 green to 1 pale-yellow. The pale-yellow seedlings are normal in morphology but die following exhaustion of food supplies in the kernels. Linkage of the pale-yellow phenotype with C, carried by the deficient chromosome, was obvious in each case. Through genetic and cytological means, it was possible to determine in each case that the recessive pale-yellow phenotype is produced as a consequence of the homozygous deficiency. Interccrosses between plants heterozygous for these 7 pale-yellow mutants showed that all 7 were either identical or allelic. The recessive mutant yg2 is known to be located close to the end of the short arm of chromosome 9. Combinations of a chromosome 9 carrying yg2 with any of the 7 deficient chromosomes 9 produced only normal green seedlings and plants. It may be concluded that the deficiencies which produce the pale-yellow phenotype are not long enough to include the Yg2 locus.

In six F1 plants, the broken chromosome 9 was classified as being deficient for a terminal segment which extended into and included a part of the first distinct chromomeres. These deficiencies were slightly longer than those which produced the pale-yellow phenotype. Following self-pollinations of these plants, normal F2 ratios of 3 C to 1 c appeared in four of the six cases and a slight reduction of the C class in two of these cases. When these kernels were germinated, white seedlings segregated in ratios expected from a recessive mutant. In all cases, linkage of the white seedling mutants with C was obvious. It was possible to determine for each case that the white seedling phenotype resulted when these seedlings were homozygous for the deficient chromosomes 9. Interccrosses of heterozygous deficient plants of all 6 cultures were made to determine the allelic relations of the white seedling mutants. White seedlings segregated in the F1 following all 15 combinations, indicating that the white seedling mutants were allelic if not identical. Interccrosses between plants heterozygous for the 7 pale-yellow producing deficiencies and the 6 white producing deficiencies gave rise to the typical pale-yellow phenotype in one-fourth of the progeny of all 42 crosses. It was determined that the pale-yellow phenotype arose following combinations of the two deficient chromosomes in a zygote. Thus, the deficiency mutants pale-yellow and white are allelic. Pale-yellow is dominant over white. This would be expected because the residual homozygous deficiency following combinations of the two deficient chromosomes is only that which would produce the pale-yellow phenotype.

Plants heterozygous for the 6 white seedling producing deficiencies were crossed by plants homozygous for yg2. In the progeny of all 6 crosses, a ratio of 1 green plant to 1 yellow-green plant appeared. Appropriate tests showed that the yellow-green plants were those which had received the
deficient chromosome 9 from the heterozygous parent. Therefore, it may be concluded that the white mutants are allelic to \(y_g2 \), with \(y_g2 \) dominant over white. This would be expected if the terminal deficiencies causing the white seedling mutants included the locus of \(y_g2 \). From the point-of-view of genetic analysis, the pale-yellow and white seedling mutants are comparable in all ways to other known recessive mutants in maize. The allelic expressions of pale-yellow and white and \(y_g2 \) and white, and the non-allelic expression of pale-yellow and \(y_g2 \) would be difficult to interpret following a purely genetic analysis. Those results are readily interpretable when the cytological conditions are known. The phenotypic expression following combinations of any two of the three mutants may be considered a reflection of the residual effects of over-lapping deficiencies.

The mutants pale-yellow and white are repeatedly produced following the meiotic breakage of chromosome 9. Among 2577 such recently broken chromosomes 9 which were tested, 55 gave rise to the pale-yellow phenotype and 33 to the white phenotype. In contrast to most mutation inducing agents, the chromosomal breakage mechanism is a "mutation" inducing process which "induces" the same mutant time and again.

Barbara McClintock

Duke University, Department of Botany, Durham, N.C.

Unfortunately, I have been unable to make any worth while contribution to the News Letter. For the past few years my genetic research has been largely restricted to an attempt to keep some of my stocks from extinction in hope of better times to come.

I have, however, made fairly satisfactory progress with the sweet corn breeding. In a randomized block test that I ran last summer one of my hybrids out-yielded Golden Cross Bantam by about 35% (dry weight of shelled grain) and yielded about 90% as much as Trucker's Favorite. This Hybrid is perhaps 10-14 days earlier than T. F. and might average a little, perhaps a day, later than G.C.B. In quality, it is about the same as G.C.B. In what amount to "blind-fold" tests since the culture numbers meant nothing to the tasters, this hybrid got 15 votes and G.C.B. got 13 in direct comparison, a pretty good 1:1. Ears are slightly bigger but not quite so smooth as those of G.C.B.

In a smaller yield test planted about six weeks later, (hotter, drier weather and shorter days) this hybrid showed up much better in comparison with G.C.B.

Ioana and G.C.B. are the two sweet corns recommended for this area. Ioana was a little better than G.C.B. in the early tests but not nearly so good in the later test.

H. S. Perry
1. Flint and Dent Corn. The improved yellow corn, Maiz Amarillo VENEZUELA-1, which is being distributed to the farmers of this country for commercial production, is neither dent nor flint corn but rather an intermediate between the two, with variations toward both extremes. This intermediate type, often referred to as tropical flint, is preferred to dent corn because it is more resistant to damage by the ever-present grain weevil.

Considerable difficulty has been encountered in maintaining this variety as a tropical flint. The farmers who make no selection in their corn complain that after two or three generations VENEZUELA-1 degenerates, that is, the amount of soft starch increases. Even in the Experiment Station where there has been selection for tropical flint ears during the past eight generations, the soft starch type reappears in considerable quantity at each harvest. The ears of the true flint type are scarce.

In this connection it is worthy to note that the dent corn from the United States and from Argentina become extremely soft under these conditions and little hard starch is developed.

2. Tall Corn. In the lowlands of this country where the soil is relatively fertile nearly all the local varieties of corn are extremely tall and the ears are often six to ten feet from the ground. The improved type, VENEZUELA-1, was especially popular when introduced to the public because it was shorter than the local varieties and had a low set ear. It has been discouraging to find that each year this corn is becoming taller and the ears are farther from the ground. Mass selection for low growing plants with their corresponding low set ears has been practiced for eight generations with little permanent success.

3. White Corn. Corn, prepared in a multitude of ways, is the principal food of the people of this country. Due to custom, the people of the central part prefer white corn while those of the eastern and western parts prefer yellow corn. When the corn improvement program was initiated in 1939, emphasis was placed on the selection of high yielding varieties of yellow corn with the hope that the people in the central region would take advantage of the improved seeds and perhaps learn to like yellow corn over a period of time, and thereby improve their diet. During the past two years this faint hope has been realized in certain areas in which the improved yellow corn, VENEZUELA-1, has given as much as 100% increase in yield over the local white varieties.

But in spite of this indication that a change in custom might be possible, we have finally yielded to public pressure to develop improved varieties of white corn (as a matter of fact, both white and yellow corn have been included in the corn improvement program since 1939, but the hybrids and the improved varieties of white corn have not been publicized). The few kernels of white corn which always appear in some of the ears of the variety Maiz Amarillo VENEZUELA-1 have been used as the basis of a new variety, Maiz Blanco VENEZUELA-3. From many thousands of ears of VENEZUELA-1, several hundred ears segregating white kernels were shelled together and planted in a small field. Before pollination the weakest plants
were eliminated. At the time of harvest, two kinds of ears were found: those with all of the kernels yellow and those with some kernels white and some yellow. The yellow ears were discarded. Of the ears with both white and yellow kernels, the best were shelled together and the seeds were placed on tables where a group of women picked out the white kernels by hand. (The white kernels were not all pure white; some were a faint yellow). They were planted in several experiment stations and with several farmers for propagation.

The harvest from these propagation plots was not completely white but is commercially acceptable. Further selection is being carried on to improve this new variety, VENEZUELA-3, but this slightly mixed type is being distributed to the farmers for commercial production. In the yield tests conducted in five different states this year, the varieties, VENEZUELA-3 and VENEZUELA-1, were nearly identical in plant type and in yield.

D. G. Langham
IV. MAIZE PUBLICATIONS

Dungan, G. H. Relative photosynthetic capacity of stalks, leaf sheaths, and leaf blades in maize as measured by the contribution each makes to the development of the grain. Ill. State Acad. Sci. Trans35 (2): 42-44. Dec. 1942.

Alice W. Brown
Columbia University

V. SEED STOCKS PROPAGATED IN 1943

Dr. Murray and Miss Morris grew over 200 cultures and hand-pollinated approximately 1600 ears. These cultures consisted mostly of stocks that had been listed in earlier News Letters, that were in need of replenishing, or that were several years old and liable to loss of viability.

R. A. Emerson
The data presented here are not to be used in publications without the consent of the authors.

Department of Plant Breeding
Cornell University
Ithaca, N. Y.
CONTENTS

I. Reports from Cooperators

<table>
<thead>
<tr>
<th>Institution</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bureau of Plant Industry and Cornell University</td>
<td>2</td>
</tr>
<tr>
<td>Bureau of Plant Industry and Purdue University</td>
<td>4</td>
</tr>
<tr>
<td>California Institute of Technology</td>
<td>5</td>
</tr>
<tr>
<td>California Institute of Technology and Cornell University</td>
<td>8</td>
</tr>
<tr>
<td>Columbia University</td>
<td>13</td>
</tr>
<tr>
<td>Connecticut Agricultural Experiment Station</td>
<td>15</td>
</tr>
<tr>
<td>Cornell University</td>
<td>16</td>
</tr>
<tr>
<td>Florida University</td>
<td>21</td>
</tr>
<tr>
<td>Harvard University</td>
<td>27</td>
</tr>
<tr>
<td>Minnesota University</td>
<td>30</td>
</tr>
<tr>
<td>Missouri Botanical Garden</td>
<td>32</td>
</tr>
<tr>
<td>Missouri University</td>
<td>33</td>
</tr>
</tbody>
</table>

II. Maize Publications

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>

III. Seed Stocks Propagated in 1944

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
I. REPORTS FROM COOPERATORS

Bureau of Plant Industry Station and Cornell University,
Beltsville, Md. and Ithaca, N. Y.

1. Tetraploid maize-Tripsacum hybrids. In 1942 the excised embryo technic was utilized to obtain two hybrids of tetraploid corn and tetraploid Tripsacum. Since these hybrids received two sets of chromosomes from each parent it was anticipated they would be fertile if the chromosomes comprising these sets synapsed to form bivalents. But these two hybrid plants proved to be completely sterile. They not only produced no functional pollen but when used as the seed parent in backcrosses to their parents no viable seed was obtained from them. A variable number of bivalents were formed and in addition there were always present from one to several multivalent complexes that could not be fully analyzed.

Compared with the elaborate technic of Mangelsdorf and Reeves a relatively simple procedure was employed to obtain these hybrids. The husks of the earshoots were opened sufficiently to permit a mixture of Tripsacum and corn pollen to be sifted in about the bases of the silks, the husks were then replaced about the earshoot and held in position by the glassine earshoot bag reinforced with rubber bands. Approximately three weeks after pollination the embryos of the partly developed kernels were excised and cultured in two ounce screw cap bottles on the sterile nutrient medium employed by Randolph and Cox for the culture of iris embryos (Proc. Amer. Soc. Hort. Sci. Vol. 43, 1943). As soon as a root system and seedling leaves were formed the seedlings were transferred to soil.

The two hybrids produced in 1942 resulted from the pollination of 14 earshoots of a synthetic tetraploid corn hybrid involving 5 different yellow dent lines (Stock A in accompanying table) with a mixture of tetraploid Tripsacum and tetraploid corn pollen carrying a full complement of genes for colored aleurone. Corn pollen was included with the Tripsacum pollen because Mangelsdorf and Reeves found that the presence of a certain number of normally developing corn grains on the ears aided the development of any rare hybrid kernels that might result from the functioning of Tripsacum pollen. Colored aleurone was involved to facilitate the separation of hybrid from the non-hybrid seeds.

In 1943 a further attempt was made to obtain additional hybrids for a more adequate study of their characteristics. Four vigorous tetraploid hybrids of commercial lines of yellow dent corn were selected as the seed parents. From a total of 88 pollinations 68 immature embryos or embryo-like structures were cultured. Most of these were inviable and the eight seedlings obtained from them proved to be non-hybrid corn seedlings.
The stocks used in 1911 to repeat the cross differed from those used in the preceding two years. These are listed as stocks B-F in the following table which summarizes the results obtained in 1912 and 1911. Stock B was a multiple recessive tetraploid combination of one or more recessive genes in each of the ten chromosomes (Pv-bm2, b-lg, A-cr, su, pr, y-pl, in, j, c-wx, R6-g). Stocks C, D and E were, with respect to most of these recessives, duplex heterozygotes, the recessive stock having been crossed with an aB PI lg type to produce C, and AB PI R6 type to produce D and with the inbred 187-2 to produce E. Stock F was an F1 hybrid of two commercial yellow dent lines, one of which was 187-2.

<table>
<thead>
<tr>
<th>Stock</th>
<th>Ears poll.</th>
<th>Embryos cultured</th>
<th>viable hybrid seedlings, corn seedlings</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>14</td>
<td>78</td>
<td>2</td>
</tr>
<tr>
<td>B</td>
<td>22</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>6</td>
<td>13</td>
<td>5</td>
</tr>
<tr>
<td>D</td>
<td>8</td>
<td>14</td>
<td>4</td>
</tr>
<tr>
<td>E</td>
<td>7</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>F</td>
<td>10</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Perhaps the most interesting conclusion to be drawn from the results of these attempts in 3 different years to obtain hybrids between tetraploid corn and tetraploid Tripsacum is that hybrids may be obtained much more readily from certain stocks than from others. Gene differences affecting crossability may be involved, or, if the suggestion of Mangesdorf and Reeves that corn carries segments of Tripsacum chromatin is to be taken seriously the possibility that such segments were present in the stocks which crossed most readily should be considered. However, there were no pronounced differences in knob frequency in the Stocks A-F; all had relatively few knobs.

The hybrids obtained in 1944 have not yet reached the sporocyte stage. One of the hybrids obtained in 1942 produced abundant tillers and has been maintained by vegetative propagation without difficulty; the other 1942 hybrid was less vigorous, produced few tillers and could not be kept alive by vegetative propagation. Extreme differences in the vigor of the 11 hybrids obtained from the 1944 crosses suggest that they may differ appreciably with respect to their chromosomal configurations.

2. Trisomic stocks. The number 1 trisome has been identified cytologically in stocks which gave trisomic ratios for bm2. All of the 10 trisomes have now been isolated and stocks of these are available in cultures known to be free of supernumerary B-type chromosomes.

L. F. Randolph
Inheritance of susceptibility to Helminthosporium carbonum Race I. There are here submitted preliminary data on the linkage relations of the gene hm governing susceptibility to infection by $H. \text{carbonum}$ Race I.

Earlier studies (Jour. Agri. Res. 63:331-334, 1941) and (Phytopathology 34: 214-222, 1944) have shown susceptibility to infection by $H. \text{carbonum}$ Race I to be inherited as a monogenic recessive. Appropriate crosses were made by Dr. E. G. Anderson using a series of translocation stocks in which su endosperm was used as a translocation marker. The parents Pr and $K61$ are homozygous susceptible inbred lines of normal dent corn. The F_1 material was backcrossed with pollen from double recessives (sugary susceptible plants). Kernel separations were made of the backcross progenies, planted in the greenhouse and seedling inoculated at the 3-4 leaf stage. One week after inoculation disease readings were made. The data in table 1 definitely indicate that the gene hm is located on chromosome 1.

In table 2 a summary is given of a four-point test involving 9 backcross progenies. Further studies are underway in which backcross progenies $P \times Hm Br \times P Hm Br$ will be used. A series of translocations all involving chromosome 1, and supplied by Dr. E. G. Anderson, will also be under observation in 1945.

Table 1. Segregation of seedlings in which su endosperm was used as a marker for translocations

| F_1 | Number Kernels Planted | Sugary Starch | Chi Square | Range of "p"
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>suT1-4a x Pr</td>
<td>1344 1149</td>
<td>921 317</td>
<td>767.0</td>
<td>< .01</td>
</tr>
<tr>
<td>K61 x suT1-4a</td>
<td>924 894</td>
<td>664 176</td>
<td>642.0</td>
<td>< .01</td>
</tr>
<tr>
<td>suT2-4a x Pr</td>
<td>408 475</td>
<td>173 207</td>
<td>3.1</td>
<td>.2 - .3</td>
</tr>
<tr>
<td>K61 x suT2-4a</td>
<td>541 675</td>
<td>223 259</td>
<td>3.6</td>
<td>.1 - .2</td>
</tr>
<tr>
<td>suT2-4c x Pr</td>
<td>566 512</td>
<td>266 239</td>
<td>1.5</td>
<td>.3 - .5</td>
</tr>
<tr>
<td>K61 x suT2-4c</td>
<td>516 511</td>
<td>240 237</td>
<td>.3</td>
<td>.5 - .9</td>
</tr>
<tr>
<td>suT4-5b x Pr</td>
<td>458 476</td>
<td>199 206</td>
<td>.1</td>
<td>.5 - .9</td>
</tr>
<tr>
<td>K61 x suT4-5b</td>
<td>250 273</td>
<td>120 114</td>
<td>.3</td>
<td>.5 - .9</td>
</tr>
<tr>
<td>Pr x suT4-6a</td>
<td>478 495</td>
<td>190 205</td>
<td>1.3</td>
<td>.5 - .9</td>
</tr>
<tr>
<td>K61 x suT4-6a</td>
<td>443 484</td>
<td>187 181</td>
<td>3.0</td>
<td>.2 - .3</td>
</tr>
<tr>
<td>Pr x suT4-8</td>
<td>336 437</td>
<td>157 161</td>
<td>.2</td>
<td>.5 - .9</td>
</tr>
<tr>
<td>Pr x suT4-9a</td>
<td>548 545</td>
<td>227 219</td>
<td>.8</td>
<td>.5 - .9</td>
</tr>
<tr>
<td>K61 x suT4-9a</td>
<td>252 251</td>
<td>114 109</td>
<td>3.2</td>
<td>.2 - .3</td>
</tr>
<tr>
<td>K61 x suT4-10b</td>
<td>257 245</td>
<td>127 125</td>
<td>.2</td>
<td>.5 - .9</td>
</tr>
</tbody>
</table>

* Also represents kernel ratio found on ears
Table 2. Four-point test for the gene hm, the F1 genotype being \(\text{hm} + + + \), the Fp genotype being \(+ br f bm2\)

<table>
<thead>
<tr>
<th>Parental Combinations</th>
<th>Reg. 1</th>
<th>Reg. 2</th>
<th>Reg. 3</th>
<th>1 & 2</th>
<th>1 & 3</th>
<th>2 & 3</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>31.3</td>
<td>11.3</td>
<td>0</td>
<td>2.19</td>
<td>43.3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>61.3</td>
<td>50.1</td>
<td>20.2</td>
<td>2</td>
<td>6.47</td>
<td>53.9</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>45.3</td>
<td>54.8</td>
<td>19.2</td>
<td>2</td>
<td>10.40</td>
<td>45.7</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>46.3</td>
<td>53.11</td>
<td>12.12</td>
<td>2</td>
<td>10.33</td>
<td>36.4</td>
<td>4.6</td>
</tr>
<tr>
<td>5</td>
<td>58.3</td>
<td>53.8</td>
<td>6.1</td>
<td>1</td>
<td>7.46</td>
<td>51.4</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>47.3</td>
<td>52.12</td>
<td>19.3</td>
<td>3</td>
<td>6.55</td>
<td>45.6</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>53.3</td>
<td>62.13</td>
<td>13.1</td>
<td>1</td>
<td>8.29</td>
<td>54.3</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>73.4</td>
<td>37.22</td>
<td>4.22</td>
<td>0</td>
<td>6.29</td>
<td>44.7</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>45.4</td>
<td>46.12</td>
<td>3.12</td>
<td>3</td>
<td>7.12</td>
<td>64.6</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>897.3</td>
<td>713.4</td>
<td>14.60</td>
<td>32.7</td>
<td>43.5</td>
<td>49.15</td>
<td>60</td>
</tr>
</tbody>
</table>

The indicated genetic map is:

\[\text{hm} \quad 18.3 \quad \text{br} \quad 10.3 \quad f \quad 44.3 \quad \text{bm2} \]

Arnold J. Ullstrup and A. M. Brunson

California Institute of Technology,
Pasadena, California

The following tables are compiled for the benefit of those using or wanting to use the sugary and waxy series of translocations for the study of economic or other characters in maize. The data included in tables 1 and 2 are the per cent of crossing over with su or wx in the heterozygous translocation plants, the position of the break in the other chromosome, and which alleles of Su or Wx are present in each translocation. Tables 3 and 4 give a list of new semisteriles which small test plantings have shown to be linked to su or wx.
Table 1. Translocations closely linked with sugary.

<table>
<thead>
<tr>
<th>Crossing over with</th>
<th>Chromosomal position</th>
<th>Linkage</th>
<th>Gene Combinations available</th>
</tr>
</thead>
<tbody>
<tr>
<td>su</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-4a</td>
<td>3.0</td>
<td>1</td>
<td>br-20-T-45-bm2</td>
</tr>
<tr>
<td>2-4(X-10)</td>
<td>(2*)</td>
<td>2</td>
<td>near B (±8)</td>
</tr>
<tr>
<td>2-4(C-31)</td>
<td>close</td>
<td>2</td>
<td>near B (±17)</td>
</tr>
<tr>
<td>2-4a</td>
<td>3.5</td>
<td>2</td>
<td>2L.2</td>
</tr>
<tr>
<td>2-4C</td>
<td>9.2</td>
<td>2</td>
<td>B-T-1.5-YT</td>
</tr>
<tr>
<td>2-4(A-29)</td>
<td>6.1</td>
<td>2</td>
<td>V4--19.0-T-29.2-Ch</td>
</tr>
<tr>
<td>4-5C</td>
<td>1.1</td>
<td>5</td>
<td>V4--22.3-T</td>
</tr>
<tr>
<td>4-5d</td>
<td>1.9</td>
<td>5</td>
<td>bm-3.5-T-15.5-pr</td>
</tr>
<tr>
<td>4-5(X-6-77)</td>
<td>9.0</td>
<td>5</td>
<td>bm-2.5-T-5.5-pr</td>
</tr>
<tr>
<td>4-5a</td>
<td>4.5</td>
<td>6</td>
<td>pr ±16.4</td>
</tr>
<tr>
<td>4-6a</td>
<td>close</td>
<td>7</td>
<td>very close to Y</td>
</tr>
<tr>
<td>4-6C</td>
<td>2*</td>
<td>6</td>
<td>very close to Y</td>
</tr>
<tr>
<td>4-7a</td>
<td>close</td>
<td>8</td>
<td>7L.3</td>
</tr>
<tr>
<td>4-8a</td>
<td>close</td>
<td>8</td>
<td>T-34-mg8-j</td>
</tr>
<tr>
<td>4-9(F-22)</td>
<td>4.2</td>
<td>9</td>
<td>c-wx-6.9-T</td>
</tr>
<tr>
<td>4-9a</td>
<td>{3*</td>
<td>9</td>
<td>c-wx-ll.5-T</td>
</tr>
<tr>
<td>4-9(A-26)</td>
<td>close</td>
<td>9</td>
<td>not tested</td>
</tr>
<tr>
<td>4-10 b</td>
<td>4.0</td>
<td>10</td>
<td>near g</td>
</tr>
<tr>
<td>4-10(B-45)</td>
<td>close</td>
<td>10</td>
<td>T-8.8-g-R</td>
</tr>
<tr>
<td>1,3,4,5,(B-2)</td>
<td>close</td>
<td>1,3,5</td>
<td>not tested, 3 near t4, 5 near bm</td>
</tr>
</tbody>
</table>
Table 2. Translocations closely linked with waxy.

<table>
<thead>
<tr>
<th>Crossing over with wx</th>
<th>Chromosome</th>
<th>Cyto-logical position</th>
<th>Linkage</th>
<th>Gene combinations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-9C</td>
<td>12.1</td>
<td>1</td>
<td>18.6</td>
<td>P-0.8-T</td>
</tr>
<tr>
<td>1-9a</td>
<td>11.2</td>
<td>1</td>
<td>18.6</td>
<td>P-21.2-T-35.6-br</td>
</tr>
<tr>
<td>2-9b</td>
<td>7.5</td>
<td>2</td>
<td>28.1</td>
<td>ts1-5.3-T-7.8-V7</td>
</tr>
<tr>
<td>3-9a</td>
<td>3.6</td>
<td>3</td>
<td>near ts4</td>
<td></td>
</tr>
<tr>
<td>3-9c</td>
<td>7.6</td>
<td>3</td>
<td>3L.1</td>
<td>near ts4</td>
</tr>
<tr>
<td>3-9b</td>
<td>6.8</td>
<td>3</td>
<td>lg2-7.9-T-18.0-a1</td>
<td>Wx wx</td>
</tr>
<tr>
<td>4-9 (F-22)</td>
<td>6.9</td>
<td>4</td>
<td>su-4.2-T-Tu</td>
<td>Wx wx</td>
</tr>
<tr>
<td>4-9b</td>
<td>3.1</td>
<td>4</td>
<td>4L.6</td>
<td>su-Tu-71.3-21.9-T</td>
</tr>
<tr>
<td>5-9a</td>
<td>2.0</td>
<td>5</td>
<td>5L.6</td>
<td>bmr-pr-25-T</td>
</tr>
<tr>
<td>5-9 (X-14-111)</td>
<td>near wx</td>
<td>5</td>
<td>(near pr)</td>
<td></td>
</tr>
<tr>
<td>6-9a</td>
<td>9.4</td>
<td>6</td>
<td>68.5</td>
<td>T-12.9-Y-Pl</td>
</tr>
<tr>
<td>6-9b</td>
<td>3.8</td>
<td>6</td>
<td>near Y</td>
<td></td>
</tr>
<tr>
<td>6-9 (a-66)</td>
<td>12.2</td>
<td>6</td>
<td>near Y</td>
<td></td>
</tr>
<tr>
<td>6-9 (X-25-78)</td>
<td>3.4</td>
<td>6</td>
<td>near Y</td>
<td></td>
</tr>
<tr>
<td>8-9a</td>
<td>13.7</td>
<td>8</td>
<td>8L.2</td>
<td>T-30-mg-j</td>
</tr>
<tr>
<td>9-10b</td>
<td>5.7</td>
<td>10</td>
<td>10L.9</td>
<td>g-R-3.2-T</td>
</tr>
</tbody>
</table>

Table 3. New semisteriles linked with sugary.

<table>
<thead>
<tr>
<th>Backcrosses with su</th>
<th>Gene Combinations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Crossovers</td>
<td></td>
</tr>
<tr>
<td>u-57</td>
<td>36</td>
</tr>
<tr>
<td>1-10</td>
<td>38</td>
</tr>
<tr>
<td>K-17</td>
<td>107</td>
</tr>
<tr>
<td>X-1-1</td>
<td>39</td>
</tr>
<tr>
<td>X-2-64</td>
<td>36</td>
</tr>
<tr>
<td>X-17-108</td>
<td>near su</td>
</tr>
<tr>
<td>X-19-5</td>
<td>near su</td>
</tr>
<tr>
<td>X-47-41</td>
<td>39</td>
</tr>
<tr>
<td>X-57-31</td>
<td>30</td>
</tr>
</tbody>
</table>
Table 4. New semisteriles linked with waxy.

<table>
<thead>
<tr>
<th>Backcrosses with wx</th>
<th>Gene Combinations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>Crossovers</td>
</tr>
<tr>
<td>a-76</td>
<td>34</td>
</tr>
<tr>
<td>F-24</td>
<td>96</td>
</tr>
<tr>
<td>bp</td>
<td>near wx</td>
</tr>
<tr>
<td>X-7-39</td>
<td>40</td>
</tr>
<tr>
<td>X-10-6</td>
<td>37</td>
</tr>
<tr>
<td>X-11-73</td>
<td>37</td>
</tr>
<tr>
<td>X-22-92</td>
<td>39</td>
</tr>
<tr>
<td>X-23-158</td>
<td>39</td>
</tr>
<tr>
<td>X-26-3</td>
<td>35</td>
</tr>
</tbody>
</table>

E. G. Anderson

California Institute of Technology and Cornell University

Translocations and centromere positions. Translocations are especially useful in determining the location of genes in relation to the centromere and other visibly differentiated regions of the chromosome, due to the fact that their position in the chromosome can be determined cytologically and their linkage relations with known genes also can be determined. The following is a summary of available data on the relative positions of translocations and genes in the neighborhood of the centromeres in chromosomes 1 to 9 inclusive, with a few records for chromosome 10. These data were compiled chiefly from Dr. Anderson's records while in residence at the California Institute of Technology for several months in 1942 and 1944.

Chromosome 1. - Information on translocations in the short arm of chromosome 1 was summarized by Anderson in 1941. The gene P is about two-thirds of the distance out on the short arm. A minimum map distance from P to the centromere may be determined from $\% 1-9a$, which is known to be located in the short arm. On the basis of 730 plants the per cent of crossing-over between P and $T 1-9a$ was found to be 21.2 ± 2.5. Thus the location of the centromere in the linkage map is 21.2 units or more to the right of P.

A number of translocations in the long arm of chromosome 1 give less than 5 per cent of the crossing-over with brachytic. These are distributed from about L2 to about L6. The gene br is probably located in the neighborhood of L3 or L4. Only 2 of the translocations in the long arm are definitely placed to the left of br. T 1-6a was reported by Burnham and Cooper and Cooper and Burnham to be in the
long arm of chromosome 1 a short distance from the spindle insertion. From their diagrams and figures a position of about L2 is indicated, which is also in accord with other data. The map position, based on 75 plants, is given as 13.4 units to the left of br. T 1-6b has been described by Burnham. The locus in chromosome 1 is given as L2.5. Very good linkage data involving 952 plants place the translocation to the left of br with 3.8 per cent of crossing over. (Data by Burnham cited by Emerson, Fraser and Beadle, 1935). These data merely show that br is between one-quarter and one-half the distance out on the long arm. The map position of the centromere must be somewhere between the locus of T 1-9a, 21.2 units to the right of P and the locus of T 1-6a, 13 units to the left of br. This is a very long region. If crossing over were equally distributed over this portion of the chromosome we might expect the centromere to be about midway between P and br.

Chromosome 2. — The map location of the centromere can be rather closely delimited by a number of translocations in the interval between ts and vα. Several of these will be considered. T 2-9b is located cytologically at 2S1 and 9L2. Linkage tests give the order definitely as B-ts-T-vα. Crossing over between the nearest genes was

\[
\begin{align*}
 ts-T &= \frac{33}{622} = 5.0 \text{ per cent} \\
 t-vα &= \frac{121}{1528} = 7.9 \text{ per cent}
\end{align*}
\]

Since the break in chromosome 9 is known to be in the long arm (Anderson, 1938), the wx gene is carried in the g2 chromosome. Tests of linkage relations in the homozygous translocation can be used to verify the location of the break in chromosome 2. These tests gave the following results, showing that the break is between ts and vα.

\[
\begin{align*}
 B - ts &= 27\% \\
 ts - vα &= 55\%, \text{ or independence.} \\
 wx - B &= 21.3\% \\
 wx - vα &= \text{repulsion series} = 51.5\% \\
 wx - vα &= \text{coupling series in 50.1\%}
\end{align*}
\]

The wx gene is carried in the g2 chromosome.

The linkage of wx with B and its independence of vα establishes the break in the short arm of chromosome 2 between B and centromere. The linkage of B and ts shows the break in to the right of ts and the independence of ts and vα locates the break between those genes. Thus the centromere is at least 5 units to the right of vα.

T 2-5a was studied by Rhoades and described cytologically as in the long arm of chromosome 2 near the centromere. Linkage tests give the order as B-T-vα with 7.3 per cent of crossing over between T and vα.
T 2-10a is located at L2, with the break in chromosome 10 well out on the long arm, 2 to 3 cross-over units to the left of g. The order on chromosome 2 is ts-T-v₄ and the data on crossing over are as follows:

\[
\begin{align*}
\text{ts-T} &= 11.4 \text{ per cent} \\
\text{T-v₄} &= 6.6 \text{ per cent}
\end{align*}
\]

Linkage data in the homozygous translocations are as follows:

\[
\begin{align*}
\text{B-ts} &= 16.4 \text{ per cent} \\
\text{B-k} &= 20 \text{ per cent}
\end{align*}
\]

Since g is distal to the break in chromosome 10 the B-ts section of chromosome 2 must include the centromere, i.e., the translocation must be in the long arm of chromosome 2.

These data may be summarized as follows:

- T 2-9b ts-5.0-T-7.9-v₄
- T 2-5a ts-7.3-T-7.3-v₄
- T 2-10a ts-11.4-T-6.6-v₄

The centromere must be 5 or more cross-over units to the right of ts and 7.3 or more units to the left of v₄. Since there is usually some suppression of crossing over in the heterozygous translocations, the total map distance of the ts-v₄ interval is uncertain. The normal value is probably about 20 units. The centromere is probably a little closer to ts than to v₄.

Chromosome 3. - The summary of translocations involving chromosome 3 published by Anderson and Brink places the centromere in the general neighborhood of ts₂. Since then additional data on T 2-3b has indicated that ts₂ is in the long arm of chromosome 3. This translocation shows about 4 per cent of crossing over with v₄. The order is probably B-sk-v₄-T. Linkage tests in homozygous T 2-3b stocks give the following cross-over values.

\[
\begin{align*}
\text{B-sk} &= 39/399 = 9.8\% \\
\text{B-v₄} &= 128/289 = 44.3\% \\
\text{B-ts₂} &= 495/1171 = 42.3\% \\
\text{ts₂-LG} &= 27/135 = 20.0\% \\
\text{v₄-ts₂} &= 10/59 = 17.4\%
\end{align*}
\]

These data all agree in placing the translocation beyond v₄, consequently in the long arm of chromosome 2. The linkage of ts₂ with B and v₄ in the homozygous translocation places the break between the centromere and ts₂, and shows that it is the long arm that is involved. From this it may be concluded that the centromere is to the left of ts₂, i.e., between d and ts₂.
Chromosome 4. - A number of translocations in the proximal regions of both arms of chromosome 4 adjacent to the centromere all show close linkage with su, usually accompanied by much suppression of crossing over. These data indicate that the centromere is in the general region of the su locus. Data on T 2-4c place su in the short arm. This translocation is very near the centromere in the short arm of chromosome 4, and is far out on the long arm of chromosome 2 between \(v_4 \) and \(ch \). Linkage data from homozygous T 2-4c show ts and su to be linked and su to be independent of Tu. Thus the break is to the right of su. Further data on this homozygous translocation areas follows:

\[
\begin{align*}
\text{su-}\overset{4}{v} & = \frac{401}{1057} = 37.94 \text{ per cent} \\
\text{su-}\overset{ch}{c} & = \frac{2.7}{525} = 47.0 \text{ per cent} \\
\text{Tu-}\overset{ch}{c} & = \frac{193}{429} = 44.9 \text{ per cent}
\end{align*}
\]

From heterozygous stocks of this translocation chromosome 2 linkage relationships and adjacent to the break were:

\[
\begin{align*}
\overset{4}{v} - 19.94 - T - 29.3 - \overset{ch}{c} \\
\text{su-}9.1 - T - 30.8 - \text{Tu}
\end{align*}
\]

The linkage of su with \(v_4 \) in the homozygous translocation demonstrates that the translocation must be between su and the centromere of chromosome 4. This places the centromere at least 9 units to the right of su on the linkage map.

Chromosome 5. - The position of the centromere in relation to the known genes of chromosome 5 was determined very accurately by Rhoades in 1936, with the aid of a fragment of chromosome 5, which apparently consisted of the centromere and the entire short arm of the chromosome. In the metaphase of the first meiotic division in the microsporocytes the fragment formed a trivalent with the two normal number 5 chromosomes in approximately half of the cells; in the remainder of the cells it was present as an univalent that was rarely included in either daughter nucleus. From the known cytological behavior of the fragment the expected back cross ratio from fragment plants of the constitution \(A_aA_a \) with \(a \) in one of the normal chromosomes was calculated to be 5A:3a or 37.5 per cent of recessives. This ratio differs sufficiently from the ordinary 1:1 back cross ratio of disomic inheritance so that with the aid of the fragment chromosome genes located in the short arm could be distinguished from those located in the long arm of chromosome 5.

Another test employed by Rhoades to identify the genes in the short arm was the occurrence of fragment-carrying plants homozygous for the recessive gene in the back cross progenies of fragment plants carrying a recessive allele in one of the normal number 5 chromosomes. If the locus under consideration was in the short arm none of the
fragment-carrying plants would be homozygous for the recessive allele, barring rare exceptions resulting from chromatic crossing over.

Utilizing these tests it was found that the \(A_2 \) and \(bm \) loci were in the short arm and \(bt \), \(pr \), \(ve \), \(v_2 \) and \(v_{12} \) were in the long arm of chromosome 5. The available cytological and genetical data from translocations involving chromosome 5 confirm the findings of Rhoades relative to the position of the centromere between the \(bm \) and \(bt \) loci.

Chromosome 6. - There are available six translocations recorded cytologically at about 6L2 or 6L2.5. These are T 1-6c, 2-6c, 4-6c, 4-6b, 4-6c and 6-9b. All are closely linked with \(Y \) and are definitely to the left of \(Pl \). All show a reduction of crossing over between \(Y \) and \(Pl \) to 5% or less, in the heterozygous condition. Proven cross-overs with \(Y \) have not as yet been obtained for study. With so much suppression of crossing over, little can be inferred as to the location of the \(Y \) locus with reference to the centromere. Translocations in the satillite or nucleolar region are located well to the left of \(Y \). Data on 3 translocations between the centromere and the nucleolar region are too meagre to give any satisfactory evidence as to the position of the centromere.

Chromosome 7. - Translocation 2-7b is located about one-fourth of the way out on the long arm of chromosome 7 and at about the same relative position on the long arm of chromosome 2. Linkage tests place it near \(ra \), with slightly less than one per cent of crossing over. Linkage tests in the homozygous translocation show linkage of \(ra \) and \(pl \), which places the translocation to the left of \(ra \). This is also confirmed by the linkage of \(B \) and \(ra \) (B-ra=167/462=36.1%). Since \(B \) is in the short arm of chromosome 2 and is thus in the 2' chromosome \(ra \) must be in the translocated portion of chromosome 7. Several translocations in the short arm of chromosome 7 have been tested for linkage with \(ra \) as follows:

<table>
<thead>
<tr>
<th>Translocation</th>
<th>Type</th>
<th>Crossing Over</th>
</tr>
</thead>
<tbody>
<tr>
<td>T 1-7d</td>
<td>(S_4)</td>
<td>5/231 = 2.2%</td>
</tr>
<tr>
<td>T 2-7c</td>
<td>(S_1+)</td>
<td>24/376 = 6.4%</td>
</tr>
<tr>
<td>T 5-7d</td>
<td>(S_1)</td>
<td>14/153 = 9.2%</td>
</tr>
</tbody>
</table>

Chromosome 8. - The only gene known to be located in chromosome 8 are in the distal region of the long arm. From the data of Anderson (1939) the location of the centromere must be 30 units or more to the left of \(msg \).

Chromosome 9. - Translocation 5-9a is located in the short arm of chromosome 9 near the centromere and is about 2 cross-over units to the right of \(wx \). This places the centromere at least two units to the right of \(wx \). T 3-9a in the long arm of the chromosome gave 3.6% of crossing over with \(wx \), indicating that the centromere is probably not far beyond the minimum of 2 units. The gene \(y \) has not
been located definitely but is believed to be in the long arm not far from the centromere (Beadle 1932, Burnham 1934b). Its map position is 12 units from wx.

Chromosome 10. - The only chromosome 10 genes which have been tested with translocations are g and R. Both are located far out on the long arm, apparently beyond L.6. Translocations to the left of L.3 have given from 9 to 23 per cent of crossing over with g. Probably there are different amounts of suppression involved. The centromere must lie at least 15 units to the left of g.

E. G. Anderson and L. F. Randolph

Columbia University, New York City, New York

1. Linkage relations of the bronze locus. F2 data suggested that bronze (bz) belonged in chromosome 9 and was located to the left of C. Backcross data obtained this past year show that the order is C-sh-bz with bz approximately 2 cross-over units from sh.

Summary of C Sh bz x c sh bz

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>Sh</th>
<th>bz</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>sh</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>bz</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1396</td>
<td>1354</td>
<td>76</td>
<td>65</td>
</tr>
</tbody>
</table>

C-Sh 4.8% recombination
Sh-Bz 1.6% "
C-Bz 6.4% "

554
Summary of $\text{Sh} \times \text{sh}$

<table>
<thead>
<tr>
<th></th>
<th>Sh</th>
<th>Sh</th>
<th>sh</th>
<th>sh</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sh</td>
<td>2952</td>
<td>54</td>
<td>62</td>
<td>2972</td>
<td></td>
</tr>
<tr>
<td>Bz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6040</td>
</tr>
</tbody>
</table>

Sh-Bz 1.92% recombination

2. Cross sterility. A new mutant was found in 1942 showing a chlorophyll striping. No seeds were obtained from a large number of crosses in which this mutant plant was used as the female parent although these plants were self-compatible. Normal siblings were self- and cross-compatible. In many ways this situation is comparable to that previously reported by Demerec for crosses involving rice pop as the female parent.

3. Blotched aleurone. In the 1935 linkage summary the blotched aleurone gene (Bh) was shown to give 26% recombination with γ; no other linkages involving Bh were reported. This past summer I obtained data showing that Bh was close to Pl. I mentioned this to Dr. Emerson and he dug up from his old records data which show the same close linkage. I was interested in the Bh locus because of the Bh-c interaction. As Emerson found out years ago seeds of A Bh are not colorless but have irregular patches or blotches of color in the aleurone. In order to test the hypothesis that Bh was a gene stimulating the mutability of recessive c in the same way that Dt affects a I made a number of crosses involving a chromosome 9 lacking the C locus. The deficient chromosome 9, obtained from McClintock, had lost that portion of the short arm from the terminal knob to including the C locus. Sh was not included in the deficiency. Plants carrying this deficient chromosome with the Sh allele and a normal chromosome 9 with recessive c and sh were pollinated by c sh Bh pollen. The Sh seeds had the C locus represented by a single recessive c allele while the sh seeds had three recessive c alleles. The two classes of seeds were examined for the grade of blotching. The data clearly show that seeds with one c allele have less aleurone color than do seeds with three c alleles. The Sh and sh phenotypes have no effect on the degree of blotching. This dosage effect of c would seem to indicate that the Bh-c situation is comparable to the Dt-a.

M. M. Rhoades
1. Six deviating lines, originating as mutations in long inbred strains, have been compared in the heterozygous condition with their normal and deviating homozygous parental lines. In all cases there was an increase in size of plant (height, width of leaf, width of stalk) and in yield of grain and a hastening of the time of flowering when compared to the mean of the parents. When compared to the larger or earlier parent in each case there are definite increases in yield in four cases ranging from 17 to 104 per cent. Increases in height in four cases varied from 3 to 9 per cent over the taller parent. Time of flowering was intermediate in two cases and earlier than the earlier parent in two cases.

When outcrossed to unrelated normal lines and compared to the same crosses made with the normal parent the differences are small and show significant increases for the deviating line in only one case. Due to the very dry season and poor location this trial is not as conclusive as it may be possible to obtain.

In every case except one the deviating line is less productive than the line from which it originated and thus appears to be a degenerative change. A narrow leaf variation produces taller plants which flower earlier than the normal line. The stalk is more slender and has much less leaf area. This deviating line in previous years has been noticeably less productive but in the replicated yield test this last year it proved to be considerably more productive. Possibly this is due to the earlier maturity in a very dry year. If it proves to be more productive from now on it will be the first variation in inbred corn to be better in ability to reproduce its kind.

2. Attempts to shorten corn plants for convenience in pollination were not entirely successful. Two single crosses (Hy x L317 and Hy x 540) planted at two different times, May 27 and June 3, were bent to the ground and tied with binder twine to the adjoining plant on July 14. At this time the first planting was 3-4 feet and the second planting about 2 feet high. The plants were about one foot apart in the row. All of the plants had such a strong pull toward the erect position that all were injured to a certain extent by the string cutting into the stalks. Some plants were completely severed below the growing point and thus committed suicide rather than be tied down! Short plants were tied above the growing point. These bowed upwards between the base and place of attachment and tried to grow out of the leaf sheaths and were badly stunted. The treated plants in both plantings were shortened about 15 inches in ear height. The first planting was shortened 22 inches in average height of stalk to tip of tassel and the second planting 11 inches. The treated plants were also delayed a day or two in time of tasseling and silking. Both
pollen and seed production were seriously reduced by this treatment. Possibly the plants can be tied more loosely using a larger and softer cord. Care must be taken to tie the plants well below the growing point.

Plants that were bent over and covered with soil straightened out and were not reduced in height or delayed in flowering. Plants with half of each leaf cut off before flowering were not shortened in height but were so delayed in flowering that many of them never produced either tassels or ears.

Plants grown from seeds in which the embryo was cut out and attached to endosperms of the same or different genetic constitution were kept in the greenhouse for several weeks and later set in the field. Compared with untreated plants of the same type these plants were noticeably shortened. Since other plants grown for an equal length of time in the greenhouse were not shortened it may be that the embryo excision had something to do with this change.

D. F. Jones

Cornell University, Ithaca, New York

1. White-capped red pericarp. In News Letters 16 and 17 (1942 and 1943), I presented data indicating that white-cap red pericarp of such varieties of maize as Bloody Butcher is not a member of the multiple allelic series at locus P as has been supposed and suggested that this color is conditioned by multiple genes as in quantitative inheritance, one or more of which are closely linked with P. In Bloody Butcher white-cap red pericarp is associated with red cob (C-R), while in Northwestern Dent an apparently identical pericarp color is associated with white cob (C-W). Northwestern Dent alone was involved in the earlier work which had lead to the idea that white-cap red was allelic to P, and Bloody Butcher alone was involved in the results reported in recent News Letters. It became important, therefore, to repeat the study with Northwestern Dent in order to determine whether the apparently identical pericarp color of the two varieties is inherited in the same way. Results to date indicate that intensity of color of white-cap red of Northwestern Dent also is conditioned by multiple genes, one or more of which are linked with P. But certain complications have arisen which give the whole problem added interest—not to say added perplexity.
For comparison with more recent data, there are here presented records from News Letter 16 (1942), including F₂ and backcrosses of Bloody Butcher, C-R, with colorless inbreds, W-W. Pericarp-color grade "0" is colorless and "6" is about the intensity of Bloody Butcher.

Table 1.

<table>
<thead>
<tr>
<th>Cob Color</th>
<th>Pericarp-color grades</th>
<th>Total</th>
<th>Mean grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-R/W-W</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>0 4 5 6 7 8</td>
<td>17</td>
<td>3.6</td>
</tr>
<tr>
<td>W</td>
<td>49 4 24 25 13 3</td>
<td>118</td>
<td>1.6</td>
</tr>
<tr>
<td>C-R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W-W/W-W</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>48 6 38 41 40 37 2</td>
<td>212</td>
<td>2.7</td>
</tr>
<tr>
<td>W</td>
<td>119 2 7 41 28 5</td>
<td>202</td>
<td>1.4</td>
</tr>
</tbody>
</table>

Cob color here shows approximately normal mono-genic segregation, but the ratios of colored to colorless are not those typical of mono-hybrids. The mean grade of pericarp color of red-cob segregates is materially higher than that of white-cob ones. The four possible combinations of cob color and pericarp color appear with frequencies indicating linkage.

The same type of cross was repeated with F₄ C-R and W-W segregates from the original Bloody Butcher cross. The results are:

Table 2.

<table>
<thead>
<tr>
<th>Cob</th>
<th>0 1 2 3 4 5 6</th>
<th>Total</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-R/W-W</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>-- 5 5 17</td>
<td>34</td>
<td>3.6</td>
</tr>
<tr>
<td>W</td>
<td>5 5 7 11 2</td>
<td>--</td>
<td>2.0</td>
</tr>
<tr>
<td>C-R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W-W/W-W</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>-- 1 4 30 29 9</td>
<td>73</td>
<td>3.6</td>
</tr>
<tr>
<td>W</td>
<td>31 5 14 15</td>
<td>--</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Here again segregation of cob color is normal and the mean pericarp-color grade is higher for red-cob than for white-cob segregates. But one color-class, W-R, did not occur and the ratios of colored to colorless pericarp are far from those typical of mono-hybrids.
White-cap red pericarp of Northwestern Dent, associated with white cob, C-W, also has now been studied. Crosses of this variety with a red-cob colorless-pericarp inbred, W-R, selfed and crossed with W-W are recorded below.

Table 3.

<table>
<thead>
<tr>
<th>Cob</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>Total</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-W/W-R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>31</td>
<td>19</td>
<td>33</td>
<td>24</td>
<td>12</td>
<td>2</td>
<td></td>
<td>142</td>
<td>2.3</td>
</tr>
<tr>
<td>W</td>
<td>--</td>
<td>2</td>
<td>3</td>
<td>9</td>
<td>11</td>
<td>13</td>
<td>7</td>
<td>45</td>
<td>4.0</td>
</tr>
<tr>
<td>C-W/W-R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>83</td>
<td>--</td>
<td>1</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>84</td>
<td>2.02</td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>1</td>
<td>16</td>
<td>18</td>
<td>5</td>
<td>--</td>
<td>--</td>
<td>59</td>
<td>2.2</td>
<td></td>
</tr>
</tbody>
</table>

Northwestern Dent was also crossed with an F1/W-R segregate from the original cross of Bloody Butcher with W-W, and F1 was out-crossed with an F1/W-W segregate of the same original cross. The data obtained are given below.

Table 4.

<table>
<thead>
<tr>
<th>Cob</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>Total</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-W/W-R</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>41</td>
<td>16</td>
<td>27</td>
<td>28</td>
<td>26</td>
<td>3</td>
<td>2</td>
<td>167</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>W</td>
<td></td>
<td>4</td>
<td>24</td>
<td>18</td>
<td>22</td>
<td>9</td>
<td>1</td>
<td>78</td>
<td>4.1</td>
<td></td>
</tr>
<tr>
<td>C-W/W-R</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>60</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>69</td>
<td>1.13</td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>2</td>
<td>10</td>
<td>24</td>
<td>54</td>
<td>11</td>
<td>1</td>
<td></td>
<td>102</td>
<td>2.6</td>
<td></td>
</tr>
</tbody>
</table>

The two crosses behaved essentially alike. There was some departure from 3:1 and 1:1 ratios for cob color. The striking features of these records are (1) the absence of the W-W color class in F2 and the near absence of it in the out-cross to W-W, (2) the relatively few ears and low grade of the C-R class in the out-cross, and (3) the higher mean grade of white cob than of red-cob ears in both F2 and the out-cross. Thus, in the Northwestern Dent crosses pericarp color, particularly of the higher color grades, tends to be associated with white cob rather than with red cob the reverse of that in the Bloody Butcher crosses. In short, the tendency is to maintain the parental associations of cob and pericarp colors.
Crosses of C-W with W-R, not involving Northwestern Dent but rather C-W and W-R segregates from the original crosses of Bloody Butcher, C-R, with W-W inbreds, have given results wholly unlike those in which Northwestern Dent was used as the C-W parent. The available data are given below.

Table 5.

<table>
<thead>
<tr>
<th>Cob</th>
<th>0-1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>Total</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-W/W-R</td>
<td>R</td>
<td>15</td>
<td>17</td>
<td>27</td>
<td>20</td>
<td>6</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>12</td>
<td>4</td>
<td>5</td>
<td>12</td>
<td>1</td>
<td>34</td>
</tr>
<tr>
<td>C-W/W-R</td>
<td>R</td>
<td>20</td>
<td>20</td>
<td>16</td>
<td>--</td>
<td>--</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>24</td>
<td>12</td>
<td>14</td>
<td>--</td>
<td>--</td>
<td>50</td>
</tr>
</tbody>
</table>

Here again cob color segregated normally. The striking features of these data are (1) the relatively high frequency of the W-W class—all but absent in the Northwestern Dent crosses—(2) the high frequency of the C-R class in the out-cross, and (3) the higher color grade of red-cob ears. In short the behavior of these crosses of C-W/W-R, in both F_2 and the out-cross generations, was much less like the behavior of crosses of the same color types when C-W came from Northwestern Dent than like the cross of C-R/W-W when C-R came from Bloody Butcher.

Eight F_3 cultures have been grown from the three color classes, C-R, C-W, and W-R, obtained in F_2 from the cross of Northwestern Dent, C-W, with an inbred W-R. The results are given below.

Table 6.

<table>
<thead>
<tr>
<th>F_2 Color</th>
<th>Pericarp grade</th>
<th>F_3 Progenies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cob</td>
<td>Cob Color</td>
<td>Pericarp-color grades</td>
</tr>
<tr>
<td>R</td>
<td>0</td>
<td>R</td>
</tr>
<tr>
<td>R</td>
<td>2</td>
<td>R</td>
</tr>
<tr>
<td>R</td>
<td>3</td>
<td>R</td>
</tr>
<tr>
<td>R</td>
<td>4</td>
<td>R</td>
</tr>
<tr>
<td>R</td>
<td>5</td>
<td>R</td>
</tr>
<tr>
<td>R</td>
<td>6</td>
<td>R</td>
</tr>
<tr>
<td>W</td>
<td>3</td>
<td>R</td>
</tr>
<tr>
<td>W</td>
<td>6</td>
<td>R</td>
</tr>
</tbody>
</table>
As in F₂, the pericarp-color grade is higher when associated with white than with red-cob; and as in F₂, the W-W class did not occur. In one case the F₂ recombination class C-R apparently bred true in F₃ for the presence of both cob and pericarp color. It is evident that diverse intensities of pericarp color can be isolated by inbreeding and selection when Northwestern Dent is involved in crosses with colorless pericarp just as is true of Bloody Butcher crosses as reported in News Letter 17 (1943).

From this report and earlier ones, it can be said that the intensity of white-capped red pericarp of such maize varieties as Bloody Butcher and Northwestern Dent and of their crosses with colorless pericarp strains, is influenced by genes whose action is like that of genes conditioning other quantitative characters. It can also be said that some of these genes are linked with the gene for red or white cob.

To assume that some of the effective genes of Bloody Butcher are represented by ineffective alleles in Northwestern Dent and that the reverse is true of other such genes, and further to suppose that some of them are more closely linked with the cob-color alleles, is of little help without the added assumption of interaction of some intensity genes with red cob and of others with white cob. On such assumptions it might be expected that an F₃ C-R individual from a cross involving Bloody Butcher would have at least some of the genes of Bloody Butcher with the same linkages and interaction with red cob as in Bloody Butcher. Such C-R plants might then be expected to behave differently in crosses with W-R from that of the C-R plants of Northwestern Dent. It is not worth while at the present stage of the study to go into further detail about this complex and somewhat hazy hypothesis. The principal thing to be said in its favor is that it seems amenable to experimental genetic test.

2. Linkage of 4-row ears. Some years ago, I obtained results suggesting that a gene for the 4-row type of ear is in chromosome 6 well to the right of Pl. Four-row cultures were, therefore, crossed with 8-row translocation 6-10a. Y and Pl, pl were also involved. Backcross progenies were grown last summer. There was marked deficiency of 4-row plants as has been observed frequently before in dealing with this character. From a total of 295 plants of the backcross, the following per cents of recombination were found:

<table>
<thead>
<tr>
<th>Trait</th>
<th>Y-Pl</th>
<th>P1-T</th>
<th>Y-T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y-Pl</td>
<td>29.5</td>
<td>34.2</td>
<td>49.5</td>
</tr>
<tr>
<td>P1-T</td>
<td>34.2</td>
<td>44.7</td>
<td>51.2</td>
</tr>
<tr>
<td>Y-T</td>
<td>49.5</td>
<td>51.2</td>
<td>51.2</td>
</tr>
</tbody>
</table>

From these results it is clear that, if a gene for the 4-row condition is in chromosome 6, its locus is to be sought to the left of Y rather than to the right of Pl.
3. Among the seed stocks belonging to the late Dr. A. C. Fraser were several noted as "segregating for w and 1." Seed from a few of these cultures was planted in the greenhouse for student use and they were found, without exception, to be segregating for a dwarf as well as for w or 1. The dwarf was later identified as pigmy and the white seedling as w. Lebedeff, News Letter of March 6, 1938, reported 4.8% recombination between w and px, assuming one w px, none of which were actually found. Among 413 seedlings we likewise found no w px plants, further indicating the close linkage between these loci.

<table>
<thead>
<tr>
<th></th>
<th>++</th>
<th>+ py</th>
<th>w +</th>
<th>w py</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>++</td>
<td>212</td>
<td>98</td>
<td>103</td>
<td>0</td>
<td>413</td>
</tr>
<tr>
<td>+ py</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>w</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The origin of the luteus in this material is unknown. There is no record of outcrossing and, so far as we can determine, it first appeared in S_4 of the cross $+/w \times py/py$. Whatever luteus this may be, it is also linked with pigmy, as indicated by the following data:

<table>
<thead>
<tr>
<th></th>
<th>++</th>
<th>py</th>
<th>l +</th>
<th>l py</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>++</td>
<td>635</td>
<td>253</td>
<td>292</td>
<td>2</td>
<td>1182</td>
</tr>
<tr>
<td>l py</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

E. T. Bullard and R. L. Cushing

Florida Agricultural Experiment Station,
Gainesville, Florida

Heterosis, grain yield. For homozygous parents and linear interaction of non-allelic genes, in the notation of Fisher et al Genetics 17:107, 1932, d is $(AA-aa)/2$, h is the deviation of aA from the midpoint between aa and AA.

\[
P_1 = 2n_1d + R \quad F_1 = n(d + h) + R \quad B_1 = \frac{1}{4} n(d + h) + n_1d + R
\]
\[
P_2 = 2n_2d + R \quad F_2 = n(d + \frac{1}{2}h) + R \quad B_2 = \frac{1}{4} n(d + h) + n_2d + R
\]
\[
P = 2nd + 2R \quad F = 2nd + \frac{3}{2}nh + 2R \quad B = 2nd + nh + 2R
\]
\(\phi \) is the phenotype, \(n \) is number loci heterozygous in \(F_1 \), \(R \) is the least homozygote available by segregation.

Analysis of data

<table>
<thead>
<tr>
<th>Maize yield</th>
<th>Tomato, Powers(^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neal(^1)</td>
<td>Danmark x Red Current Johannis x Red C</td>
</tr>
<tr>
<td>Lindstrom(^2)</td>
<td>Red Current</td>
</tr>
<tr>
<td>Height</td>
<td>Fruit wt.</td>
</tr>
<tr>
<td>Fruit wt.</td>
<td>Fruit wt.</td>
</tr>
</tbody>
</table>

Estimates of 2nh (All records per cent of \(F_1 \))

<table>
<thead>
<tr>
<th>Expression</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>(4(F_1-F_2))</td>
<td>148.1, 136.8, 76.0, +7.2, +36.0</td>
</tr>
<tr>
<td>((2F_1-P))</td>
<td>124.4, 127.6, 58.5, -751.7, -625.1</td>
</tr>
<tr>
<td>(2(2F_1-B))</td>
<td>113.2, 62.8, -241.6, -228.8</td>
</tr>
<tr>
<td>(2(2F_2-P))</td>
<td>130.3, 118.4, 41.0, -1310.6, -1486.3</td>
</tr>
<tr>
<td>(4/3(F-P))</td>
<td>126.4, 124.5, 52.6, -1004.7, -845.0</td>
</tr>
<tr>
<td>(4(F-B))</td>
<td>89.6, 49.6, -490.4, -493.6</td>
</tr>
<tr>
<td>(2(B-P))</td>
<td>142.0, 54.2, -1261.8, -1025.1</td>
</tr>
</tbody>
</table>

Mean 2nh

<table>
<thead>
<tr>
<th>Expression</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean 2nh</td>
<td>132.3, 121.7, 56.4, -750.5, -666.3</td>
</tr>
<tr>
<td>((F_2-B))</td>
<td>-5.9, -3.3, -67.5, -67.3</td>
</tr>
<tr>
<td>(P)</td>
<td>75.6, 72.4, 141.5, 950.7, 836.6</td>
</tr>
</tbody>
</table>

The close agreement of Neal's and Lindstrom's data in the above analysis seems to indicate strongly that grain yield is a function of heterozygosis. For any locus, \((aA-aa)-(AA-aa)=(h+d) - \left(\frac{h+d}{2}\right)^2 = 2h\). The interval from the least homozygote to the heterozygote minus the interval from the heterozygote to the top homozygote is \(2h\) for one locus or \(2nh\) for \(n\) loci, if \(h\) and \(d\) values are essentially the same for all loci.

For all values of \(h\) or \(h/d\) (any degree of dominance) the 7 estimates of \(2nh\) (table) are a homogenous set, except for non-genetic fluctuations. Heterogeneity indicates interaction of non-alleles.

The three quantities, \((P = 2nd+2R)\), \((F_1 = nh+nd+R)\), \(2nh\) must lie in that or the reverse order with each interval in any case equal to \(\frac{1}{2}(h-d)\). If \(h=d\) (dominance complete) the intervals are estimates of \(R\). On that assumption the mean estimate of \(R\) for the two maize records is minus 26.5. If \(R\) cannot be negative the minimum estimate of \(R\) equal zero provides the minimum estimate of \(h\) equal 1.7d.

The top homozygote is \((P-R)\). For these records it cannot be estimated larger than 74.5\(F_1\) if negative \(R\) is to be avoided.
The data on tomato weight and estimates of $2nh$ from them may seem to suggest a complication of interactions, although the two sets of $2nh$ are quite similar. It is proposed to separate allelic from any regular non-allelic interaction graphically. The points P_1, P_2, P_3, P_4, P_5, and P_6 are plotted with the scale on the y axis being that of the actual data and on the x axis that of allelic but no non-allelic interaction. Lay off a wide interval from P_1 to P_2 on the x axis. Trial positions of F_1 may then be taken with F_2 midway between F_1 and the mean of parents and each backcross midway from F_1 to the recurrent parent. The best trial position of F_1 should be $2(F_1 - F_2)$ from the mean of parents in the direction indicated by the data, since F_1 and F_2 have the same gene number and their comparison will be least affected by non-allelic interaction. If the 6 plotted points do not seem to lie on a smooth curve F_1 is to be shifted right or left with F_2 and backcross shifts being 2 of the F_1 shift until the best fit to a smooth curve is obtained. The curve presumably represents regular non-allelic interaction or regular interaction with environment. Allelic interaction is evident in the 7 estimates of $2nh$ which should be a uniform set.

In this way, close fits to smooth curves were obtained with Power's data on the crosses Danmark x Red Current and Johannisfeur x Red Current with F_1s just slightly to the right of the parental midpoint towards heavier fruit. The curves lie between $0 = kx^3$ and $0 = bx$ over most of the range. Both agree closely with the hypothesis of very slight dominance of heavier fruit and strong, regular interaction of non-alleles. The interaction may of course be little more than the cubic relation of weight or volume to linear dimension.

A slightly poorer fit was obtained for Johannisfeur x Bonny Best but the same dominance bias and interaction is evident. The two records on Danmark x Johannisfeur did not provide consistent solutions, perhaps because the parents are too close together. That difficulty would always appear with yield records on inbred maize.

Complementary interaction is not regular in the above sense. It might become evident in the $F_2 - \frac{3}{5}B$ comparison and in aberrations from regular interaction in the above graphical analysis. With 2-factor interaction, F_2 is $9/16$ and F_3 is $8/16$ of the interval from $\frac{1}{2}P$ to F_1; both are $8/16$ without interaction. There is no evidence of complementary interaction as a factor of heterosis of maize yield or of tomato plant height. There seems to be no evidence for complementary interaction for tomato weight except in the cross Johannisfeur x Bonny Best. If the curve for that cross is plotted by neglecting the F_2 to obtain the best fit with F_1 and backcrosses the F_2 deviation from the curve is large and positive which may indicate complementary interaction for heavier fruit. Plotting $3\sqrt{\phi}$ or log ϕ might bring the complementary interaction out more clearly.
The reader should be warned that application of the above graphical analysis to data involving little or no non-allelic interaction and strong interaction of alleles as in tomato plant height may produce a straight line with the 6 values spaced the same on both axes or a smooth curve through P₁, B₁, F₂, B₂ and P₂. In the latter event the six values will agree with the hypothesis of no allelic interaction on the x axis. The factor of curvature here is h. I do not now have the function.

For linear interaction of non-alleles, theoretical regressions in F₂ and backcross of φ on x (gene number) are:

F₂; \[\phi = \frac{-hx^2 + (2n-1)dx + 2nhx + R}{2n-1} \]
\[\frac{d\phi}{dx} = d + \frac{(2n-2x)h}{2n-1} \]

Bn; \[\phi = \frac{nd + (n-2n_0)hx + 2n_0hx + R}{n} \]
\[\frac{d\phi}{dx} = d + \frac{(n-2n_0)h}{n} \]

n is the number of loci heterozygous in F₁; n₀ is the number of n loci fixed AA in the recurrent parent.

These equations seem to be mainly useful for the solution of theoretical problems. For example, the backcross distribution is not skewed by any degree of dominance even though the recurrent parent is fixed AA at all n loci, (n₀ = n). The slope is then (d-h) or zero if h = d. If h > d the slope is negative — φ decreases as the number of plus genes increases. If n₀ is zero the slope is (d+h) — positive unless h is negative and greater than d.

F₂ regression is a second degree parabola with slope a function of -2hx. The F₂ distribution is skewed by dominance. The familiar case (h = d) involves the left branch of the parabola from (0,R) rising with decreasing slope to the vertex at (x = 2n-1), then dropping slightly to (x = 2n). This function may be employed with the normal frequency table to construct a theoretical distribution for any number of loci and any degree of dominance to show that maximum skewness is reached when h = d, and that skewness then decreases with increasing h. The demonstration is facilitated by working with one pair of genes. Thus if A'A' equals AA, and A'A is some greater value, d is zero and h is relatively large. The F₂, \[\frac{1}{2} A'A' + \frac{1}{2} A'A \] becomes \[\frac{1}{2} A'A', AA + \frac{1}{2} A'A \]. This distribution or the product of any number of such distributions is symmetrical. If d is now allowed to take increasing positive values, skewness increases up to h = d. East's alleles of divergent function would not intensify skewness of F₂.

The conclusion of h > d for maize yield is supported by failure of mass and ear row selection, by failure of synthetic combinations of selected inbreds, by superiority of hybrids of inbreds
of diverse origin, and by the success of modern maize breeding itself. If \(h \) is not greater than \(d \), mass or ear row selection will probably continue to surpass present maize breeding technic, because of more frequent recurrence of selection. But if \(h > d \), present technic is the only method so far tried which should effect appreciable improvement. No degree of allelic interaction will confuse selection among \(F_1 \) hybrids of homozygous lines. However, selection favoring the heterozygote loses efficiency rapidly. It is questionable if the expectation of continuing success with present technic can be supported in Mendelian theory.

Selection may be measured by the deviation of the mean of a selected group from the original mean in terms of the standard deviation of the original. Thus "student" noted selection effects of 12 and 7 sigma for high and low oil in the Illinois experiments. If the selected group may be represented by a tail of the normal area cut off above \(x = t \), and the mean of the tail is \(s \); \(s = (\text{ordinate at } t)/(\text{area beyond } t) \), or \((P_t) \). Then \(1/P_t \) is the number of individuals from which selection of the top one may be expected to effect a selection differential of the given value of \(s \). The highest value of \(s \) calculable from a 15-place table of areas and ordinates of the normal curve, (W.P.A. City of New York) is 8, for which \(1/P_t \) is 222,222,000,000,000. This is roughly 2000 times the number of maize plants grown in the world in one season. That the low oil result (\(s = 7 \)) might have been obtained by selection among 400,000,000 homozygous lines is plausible. The high oil result (\(s = 12 \)) is 4 billion million times as difficult. Selection of the top 10 from 26 provides an \(s \) of one in the absence of gene interaction and environmental effects. Eight recurrences of such selection will effect an \(s \) value of 8 if variability is maintained as it was in the selection for oil. A total of 208 plants is required. From this viewpoint the oil selection results do not seem improbable as the work was done; they do seem very improbable in the face of much inbreeding.

The \(s \) value of the top one of 11,185 singlecrosses from at least 150 inbred lines is about 4. This might be a yield increase of about 40% over original stock. The genetic variance of singlecrosses is the same as for single plants of original crossbred stock. Sigma in this case is then 10% of the original mean yield. This seems a fair estimate of the present Florida situation. The problem now is how much effort will be required for further gains. If each cycle of inbreeding must begin at the same level as the first, as indicated by the yield of synthetic combinations of selected lines and nearly all other available evidence, it will be necessary to identify the best single cross among 1,300,000 from 1600 homozygous lines to effect a further improvement of 10%. Gaining 10% again beyond that will be truly difficult, even though the genetic variation may remain unimpaired in the process as suggested by oil selection results.
A breeding technique has been proposed to deal with the case of alleles affecting dominance and heterosis. Hull, Recurrent Selection for Specific Combining Ability in Corn, J.A.S.A. in press. The method is recurrent selection in a crossbred lot for combining ability with a specific homozygous line. Selection is among testcrosses of single plants of the crossbred lot to the homozygous tester line. For any locus heterozygous in the crossbred lot and aa in the tester the testcrosses are: aa, (aa+aA)/2, and aA, or if the tester is AA they are: aA, (aA+AA)/2, and AA. The three testcrosses are separated by equal intervals, (d+h)/2 in the first case and (d-h)/2 in the second. The essential point is that the three values are equally spaced as would be the three genotypes in a crossbred population without dominance. This type of selection avoids the confusion of dominance or allelic interaction even though h>d. The price is some loss of variance. It also allows maximum frequency of recurrence of selection. Maximum frequency of recurrence with respect to resistance to insects and diseases as well as to yield and any other desirable characters would seem to be obtained by simultaneous selection.

Tomato weight and height have been included for contrast with maize yield. Estimates of 2nh involving (-B) are smaller than those involving (-P) for both maize yield and tomato weight. B values might suffer less distortion from non-allelic interaction than P values since the former are nearer the center. The slightly excessive value of B in Lindstrom's data may indicate nothing more than a little heterozygosity remaining in the parent lines. Strong allelic interaction is indicated for maize yield. Tomato weight records indicate very slight allelic interaction but strong non-allelic interaction. Both the maize yield and tomato weight situations seem improbable. If the tomato weight interaction is the cubic relation of volume to linear dimension, why does not this function appear in the relations of aa, aA and AA at one locus? Why would it not appear in the maize yield between non-alleles? Why does h>d appear only in grain yield of maize; not in components, e.g., ear length and diameter, plant height, stalk diameter etc.? Tomato height in F1 exceeds the greater parent but not the sum of parents (P). There is no evidence here of h>d and slight evidence of non-allelic interaction.

The enormous selection intensities available by properly controlled recurrent selection provide a tool for investigation of physiological limits, limits of recombination, and perhaps detection of aggregates of natural or induced mutations in a group of numerous small genes.

Appendix - January 10, 1945: Hayes et al, J.A.S.A. 36:998, 1944; data on synthetic, mean of parent lines and mean F1. From F1 minus synthetic the estimate of 2nh is 160% F1. The (2F1 - P) estimate of 2nh is 127% F1. If h = d, and R = 0, then F1 = 2nh. Decline from F1 to F2 or synthetic is 2nh/2N, where N is number of lines. On the foregoing assumptions, expected decline of Hayes' synthetic is 100/16 or 6.25 % F1. If R is 20% F1, expected decline of synthetic is 5 %F1.
The actual decline of 10% F₁, may be evidence of h > d, non-allelic interaction, or R > 0. Taking R = 0, no interaction, then h = 4d for the F₁ - synthetic comparison, and h = 1.74d for (2F₁ - P).

Kiesselbach, J.A.S.A. 22:614, 1930; F₂ and F₃ of 21 single-crosses, h = 1.98d.

Richey et al, J.A.S.A. 26:196, 1934; F₂ 10 double crosses, h = 1.55d.

Neal, loc. cit., F₂ 10 double crosses, h = 1.72d.

If R is some positive value all of the above estimates of h must be revised upward.

Fred H. Hull

Harvard University, Cambridge, Mass.

1. Pod corn. The sterility of homozygous pod corn is largely due to an excessive vegetative proliferation which may take various forms. T₅₅ is an important modifier to Tu; it brings Tu under "control" and prevents some of the unrestrained proliferation which characterizes Tu under some conditions.

Tu can also be brought under control by various unidentified genes in the modifier complex. It can be assumed that Tu is frequently a monstrous character because it is the product of the "wild" gene superimposed upon modern varieties which lack the modifiers which in wild maize must have kept the character under control. If this assumption is sound then modifiers of Tu should be particularly abundant in primitive varieties of maize. The nearest approach to "primitive" maize which we have so far discovered is the maize of the Guarany Indians of Paraguay. When this is crossed with Tu and the hybrid repeatedly backcrossed to Guarany, the glumes of the Tu tu plants are decidedly reduced. Other stocks are now being tested for their modifier complexes with regard to Tu.

We now have a homozygous true-breeding pod corn. Tu Tu plants with both staminate and pistillate fertility were found some years ago but such plants are very difficult to self because of the long interval between silking and anthesis. Selfing, however, has finally been accomplished.

The hybrid of pod corn and Guarany mentioned above has unexpectedly furnished a most striking demonstration of the real nature of the ear of maize. Under certain conditions Guarany maize has a tendency to produce a partially indeterminate ear, which once protruding beyond the husks elongates considerably. Tu accentuates this
tendency. During the past year we have obtained ears which are normal at the base but enormously elongated at the tip. This "stretching" shows that the ear of maize is fundamentally a simple spike with pairs of spikelets in whorls at the nodes of the rachis.

2. Maize-teosinte crosses. Studies of the genetics of maize-teosinte crosses have been greatly facilitated by the development of a stock with a marker gene on each of nine chromosomes, ten if the other parent is pr. (bm2 1p a su pr y/y pl 1 wx e) This stock has been inbred and is uniform. Needless to say it is weak, so weak that most of the plants are barren and many do not shed pollen. But difficult as it is to maintain the stock is extremely valuable, it imparts considerable vigor to its crosses and it permits the investigator to control nine of the ten chromosomes in a single cross.

This stock was crossed with two varieties of teosinte, Durango and Nobogame. F2 results are shown in the accompanying table. In the Nobogame cross the nine marked chromosomes segregate independently of each other as would be expected if no translocations, "sticky" chromosomes or other complicating factors are involved. In the Durango cross there are two significant deviations, one in the direction of linkage between Su and J and another indicating "repulsion" between Wx and G1. There are additional deviations approaching statistical significance in the Durango cross.

In addition to the nine marker genes the plants in both crosses were scored for five characteristics, in which maize and teosinte differ. One of these, a red spot at the base of the staminate glumes, Bs, is also found in some maize varieties, particularly South American and is not regarded as an important character from the standpoint of differentiating maize and teosinte. The remaining four are characters involved in interspecific differences. They are (with the teosinte characters listed first):

1. Tr Two-ranked vs. many-ranked ear or central spike.
2. Pd Single vs. paired spikelets.
3. Sd Strong vs. weak response to length of day.
4. G. S. (Glume Score) Prominent horny glumes vs. inconspicuous membranous glumes.

Langham's symbols for the first three characteristics are used although the characters involved did not prove to be simple monofactorial in their inheritance in these crosses. All of these characters showed linkage with each other and all but the second showed linkage with one or more of the nine marker genes.

3. Chromosome segments from Florida teosinte. The segments of chromatin or blocks of genes which distinguish Florida teosinte and maize have been transferred by repeated backcrossing to a uniform inbred strain of maize. Two of these have now been crossed with the nine-gene multiple tester stock previously mentioned and backcrossed
to the multiple recessive. Here we are studying only the dominant effects of the chromatin segments from teosinte.

One of these segments proved to be linked with A on the third chromosome the other with Su on the fourth. In both cases the segments are somewhere near the center of the chromosome, the segment on the fourth includes the Su locus, the segment on the third shows approximately 25% crossing over with A, which is known to be near the end of the chromosome. Both segments have the same kinds of effects. Both reduce the number of rows of grain, the size of the seed and affect the development of the pistillate glume structure.

The segment on the third chromosome is usually inherited intact but that on the fourth is frequently broken as a result of crossing over. Parts of the segment have the same general effects as the entire segment, but in a smaller degree.

It is quite possible that the problem of inheritance of row number in maize is complicated by small segments of this kind originally derived from Tripsacum through admixture with teosinte. The crosses of Nobogame and Durango teosinte previously mentioned showed that genes involved in the difference between the two-ranked and the many-ranked condition occur on at least seven of the nine chromosomes tested. These are probably the same kind of genes which account for differences in number of rows of grain in some varieties of maize.

Summary of Linkages in Teosinte Crosses

<table>
<thead>
<tr>
<th>Nobogame x Multiple Tester - F2</th>
<th>Bm₂</th>
<th>Lg</th>
<th>A</th>
<th>Su</th>
<th>Y</th>
<th>Gl</th>
<th>J</th>
<th>Wx</th>
<th>G</th>
<th>Tr</th>
<th>Sd</th>
<th>Pd</th>
<th>G.S.</th>
<th>Rs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bm₂</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lg</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>A</td>
<td>-</td>
<td>I</td>
<td>-</td>
<td>-</td>
<td>I</td>
</tr>
<tr>
<td>Su</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Y</td>
<td>-</td>
</tr>
<tr>
<td>Gl</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>I</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>J</td>
<td>-</td>
<td>I</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Wx</td>
<td>-</td>
<td>-</td>
<td>I</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>I</td>
</tr>
<tr>
<td>G.S.</td>
<td>-</td>
<td>I*</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Rs</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

+ = Linkage
I = Indication of Linkage
- = Independent Inheritance
* = Deviation in Direction of Repulsion

P. C. Mangelsdorf
1. Glossies. Glossy S-2 (one of Stadler's mutants) is the same as gl6, leaving gl S-1 and gl S-3 which are not completely tested.

2. White Cap. Additional backcross data show linkage between W^c and T_l-9b (31.3% recomb. in 208 plants); W^c and T_l-9c (26.0% in 127 plants) and new data show no linkage with T_l-10a (149 plants). The breaks in chromosome 1 are: .6 long arm, .8 short arm, and .4(-) long arm respectively. The breaks in chromosome 9 in the first two interchanges are at .5 long arm and .2 long arm respectively. These data indicate chromosome 1 is not the one carrying white cap. A previous test with $9-10a$ (break at .3 long arm of 9) had shown no positive evidence of linkage from which it was concluded that W^c is in chromosome 1 (1944 news letter). Closer examination of these data shows 35.4%±S.E.1% recombination in one culture, independence in a second, while the combined results do not deviate significantly from 50%. In a backcross linkage test on 190 plants there was no linkage between W^c and P. In the same culture P was segregating 3:1 with no indication of linkage. W^c, therefore, is probably not in chromosome 1, but in chromosome 9. If so it is probably in the long arm since a test with waxy showed no linkage (1944 news letter).

3. Midcob color. Some evidence of linkage between red mid-cob color and yellow endosperm was obtained, although the results were complicated by the presence of both W^c and pale yellow endosperm. Certain cultures segregate clearly 3 red:1 colorless midcob; others show an excess of the colorless midcob class.

4. Miscellaneous. The character brown midrib-3, bm3, is closely linked with sugary-1. F2 repulsion data were: 111 Su Bm, 63 Su bm, 57 su Bm.

Vivipary-5 (vp5), reported by Lebedeff (coop. letter of March 5, 1940, page 14) as closely linked with yellow (probably Y) is not linked with the Y in chromosome 6; since vp5 and ms1 segregate independently. On ears segregating 9 yellow : 7 white or pale yellow, vp5 showed about 1% of recombination with yellow.

Another vivipary from C.M. Woodworth which has not been tested against vp5 shows close linkage with yellow on ears segregating 3 yellow : 1 white.

Before the ears had dried in the field, viviparous seedlings from both sources were transferred to soil in the greenhouse. In all cases they proved to be albinos. Although many of these had shown some pale green color underneath the husks, this color soon disappeared.
Piebald-5 (pb5) was reported by Lettedeff in the same news letter to be linked with Y and P1. This is confirmed by a test which shows close linkage with ms1, and also by the independent segregation of E25 and Y25.

I have been unable to identify the zg3 character obtained originally as Co 306-1 (x) - A B pl Y zg3.

5. Partial sterility studies. One case with about 75% pollen abortion and a ring of 8 chromosomes (originated by x-ray treatment of a homozygous 5-7 interchange stock) was identified by Mr. Lazaro as involving chromosomes 1, 5, 6 and 7. In new data from crosses of normal x 75% sterile plants, the offspring included 75% sterile:semisterile:normal::273:71:181. Six different semisterile plants derived from the ring-of-8 were shown by him to have a single ring of 4 chromosomes one of which was number one, while in no case was number 6 involved.

A stock homozygous for the interchanges involved in the ring-of-8 (1-5-6-7) has been established.

6. Chromosome disjunction. In an abstract (Records Genetics Society-1944, p. 14) it was reported that chromosome disjunction in a plant heterozygous for interchange T5-6c was markedly changed when the position of the chromosome 5 centromere was shifted nearer the center of the cross by the presence of a homozygous inversion in chromosome 5. It was also reported that the amount of cytologically observed crossing-over when the inversion was heterozygous was different depending on whether the inversion was present in the interchanged chromosome 5 or in the non-interchanged 5. Cytologically the pairing configurations in the two cases should be similar. It was thought possible that some additional change might have accompanied the crossing-over by which the inversion was introduced into the interchanged chromosome 5. Accordingly a prophase study of the following homozygous stocks has been made: inversion in chromosome 5 T5-6c, and T5-6c plus inversion. Fortunately one of the breaks in the inversion and in T5-6c was in a heavy chromosome region, while the second was in a region with small chromosomes. Positions of breakage and rearrangement could be clearly recognized. The stock combining both also appeared to have the exact morphology expected. The differences in crossing over mentioned above appear to result from some other cause.

Chas, R. Burnham assisted by Gertrud Stanton
Maize in Mexico. Maize in Mexico may ultimately be of practical importance to the U. S. corn belt because it constitutes such a reservoir of genic variability. We may also find that we must study Mexican varieties in order to understand our own, since our ultimately came from the south. This will be rather difficult since the whole pattern of variation in Mexican maize is so different and so much more complex than that in the U.S. The over-all morphological diversity in the maize of a single Mexican town may be as great as in all of the U.S., yet in another Mexican region 300 miles away the varieties may be entirely different but quite as varied. These regional differences are due in part to the great differences in altitude, temperature, rainfall, and growing season which characterize Mexican agriculture.

During my six months in Mexico I attempted to make a reasonably complete survey of the regions around Guadalajara (Jalisco, western Mexico) and Mexico City, with scattering collections through the intervening area. A random sample of 25 ears was taken from each field or corn crib and 15 measurements were made on each ear. A few collections have been examined cytologically for knob number and tested genetically for \(c, f, \) and \(pr \). The following generalizations are already established.

1. Maize of western Mexico. In spite of much variation in color, row number, and kernel size, the maize of western Mexico is prevailingly long and slender-eared, tapering somewhat to the base and long and irregularly to the apex. Its husks are so tight that there are usually conspicuous striations running lengthwise of the ear. The row number is commonly 8 to 12, the kernels are frequently broad, seldom pointed, and the denting is slight or none. The plants are strong-rooted and stiff stalked. Chromosome knob numbers are high (10 or more) and the knobs are large. The recessive genes \(f, c, \) and \(pr \) are common.

2. Maize of the Mexico City Region. The maize of this region is prevailingly short-eared and sharply and regularly tapering to the apex. Row numbers are usually above 12, the kernels are more or less pointed and are frequently strongly dented. Chromosome knobs are 0 or a very few. The plants are shallow rooted, the tassel branches few in number and the leaves broad.

In the intervening area between Mexico City and Jalisco an intermediate and variable type is commonly grown. This is particularly true of the Mexican corn belt (the "Bajio"), centered about the state of Guanajuato.

A few outstanding varieties have wide distribution and deserve special attention.
1. Maíz dulce, the sweet corn of western Mexico is in general unlike the corn of that region and shows striking similarities to similar sweet varieties in highland South America. Dr. Kelly and I have published a detailed report on it. (Ann. Mo. Bot. Gard. 1943).

2. Cachuazintle, a large kernelled white flour corn grown in the region around Mexico City and southward. Its plant type is strikingly unlike the other maize of that region. It is "popped" by cooking in rapidly boiling water.

3. "Elote" corns with colored aleurone. Throughout all those regions varieties with colored aleurone (both Pr and pr) are almost universally grown. They are said to be sweeter than the other varieties and are favored for green corn on the cob (elote) and parched cornmeal (pinole). Some of them have fine wrinkles and look as though they might carry su and an inhibitor.

4. Popcorns. There are at least 3 popcorns in Mexico if we include cachuazintle under that name. The other two are morphologically very different from each other in everything but popping ability. They are: Maíz revientador, the Jaliscan variety for which I have recently (Ann. Mo. Bot. Gard. 1944) published a detailed report and the rice pops of Toluca and other towns near Mexico City. The latter are similar to the semi-pointed dent corns of the same region in plant and tassel characters and are grown inter-mixed with them.

Edgar Anderson

Missouri University, Columbus, Missouri

1. Gamete Selection in Corn Breeding. The method of corn improvement commonly known as "selection in self-fertilized lines" has been remarkably effective in the development of types of corn far superior to any previously existing variety in yield and in other agronomic characters of practical value.

The general experience of corn breeders and the results of the experimental studies of breeding methods which they have made indicate that, if this job were to be done over, it would be possible to make comparable advances at a much smaller cost in time and labor. The chief results of the method experiments, as related to yield improvement, may be summarized as follows:

(1) Visual selection for yield is practically ineffective. The extent to which a plant of given genotype will contribute to yield in hybrids can only be determined by yield testing of its hybrid progeny. The factor limiting the scope of breeding operations is the number of items which may be adequately tested for yield.
(2) The combining value of a given genotype varies consider-
ably in combinations with different genotypes. General
combining value may be tested effectively in practice
by crosses on mixed populations.

(3) The inheritance of yield genotype is in general in
agreement with expectation based on the hypothesis of
complementary dominant favorable factors.

(4) There is little or no advance in yield genotype in
the course of inbreeding and selection as ordinarily
practiced in the production of inbred lines. This
fact, convincingly demonstrated by Jenkins, is the
basis for current attempts to improve the efficiency
of the breeding technic, for it shows that the method
owes its success not to selection in self-fertilized
lines, but to the unrecognized differences in genotype
of the foundation plants.

Jenkins’ results suggest the possibility that an appreciable
fraction of the individual plants in open-pollinated varieties may
be as high in yield genotype as the best present inbred lines. Obviously,
the identification of these plants near the beginning rather than
near the end of the breeding operations would make for greater efficiency,
for it would concentrate the analysis upon populations with the highest
content of desirable genotypes. In the few outstanding selected strains
it would be feasible to use test-controlled selection in the first
selfed generation, where genetic variability is at its maximum. Such
selection might reasonably be expected to accomplish further improve-
ment in yield.

This is an effective and practicable method for the further
sampling of the open-pollinated varieties. It is not widely used
in corn breeding at present, chiefly for these reasons:

(1) The frequency of high yield genotypes among the
plants of open-pollinated varieties is low enough
to make their identification much less economical
than that of comparable genotypes in populations of
various types which may be produced by the use of the
highly improved lines now at hand.

(2) The exceptional genotypes identified are virtually
unselected as regards characters other than yield.
Some of these characters are very important in practice,
often more important than a considerable increment in
yield.

The critical factor determining the practical feasibility
of varietal sampling is the frequency in the varieties of genotypes
approximating the yield level of the present elite strains. The limiting data available (all for trials in single seasons) indicate rather high variability in yield genotype among plants of open-pollinated varieties, averaging about 9% of the mean yield after removal of the variance due to experimental error. The distribution of yield level in these populations is normal. The data unfortunately do not show where the present elite lines would fall upon these distribution curves. The general experience of corn breeding in the past 20 years is probably a better basis for estimating the frequency of plants in the foundation varieties which approximate the elite yield level. On this basis a fair estimate of this frequency is 1 or 2 per cent.

Despite its relatively low return, the further sampling of the open-pollinated varieties is essential. The greater part of the hybrid corn now grown is the product of various combinations of about a dozen inbred lines. Each of these represents a single gamete genotype, fixed as a homozygous diploid for controlled combination. These, with the additional lines of promise for further breeding, constitute a minute sample of the gamete populations of the foundation varieties. To confine further breeding to the recombinations of this small group of genotypes is to reduce its ultimate possibilities to an extent which cannot be accurately estimated from available evidence but which must be pretty drastic. Moreover, any new line produced from the recombinations of the old lines is limited in its practical use, for no line gives good combinations with lines to which it is related.

Now these varietal populations, in which 1 or 2 per cent of the members reach the elite level, are populations of open-pollinated plants. Each plant represents a random combination of two gametes of the varietal gamete population. The yield potential of the plant is the result of dominant factors contributed by the two parental gametes. The frequency of genotypes of unusually high (or low) yield-potential must be much higher in the gamete population than in the population of open-pollinated plants. In a variety in which plants of yield potential equal to the elite lines occur at a rate of about 1 per cent, gametes of correspondingly high average yield potential constitute almost 10% of the gametic population. This group includes the tail of the frequency curve, and the best 1-2% may be genotypes well in advance of the elite level. Gametes constituting 1% of the population represent a level of yield potential occurring among the open-pollinated plants with a frequency of only about 1 in 10,000. Such genotypes may represent a level of efficiency in grain production which has not been closely approached by selections made from the open-pollinated plants.

The term "yield potential" (YP) as here used refers to the capacity of the genotype for contributing to yield in specific hybrid combinations. Detailed definition and illustration of the concept of yield potential must be omitted here for brevity, but it may be briefly described as follows: The yield potential of a homozygous individual, with reference to any homozygous biotype used as a
tester, is (for given conditions) the excess in yield of the F_1 or test-cross over the tester biotype. The Y_P of the gamete genotype of this individual is one-half of this value. When the tester is a hybrid or mixed population, the Y_P of the tested individual is the excess of the F_1 over a hypothetical yield which would be produced by biotypes representing the gamete population of the tester. This quantity is indeterminate, but since it affects all test cross yields equally its determination is unnecessary. In practice, Y_P with reference to a hybrid or mixed tester may be determined as accurately as to a homozygous tester, since the number of plants of each test-cross required for an adequate yield test is large enough to render negligible any variation due to individual plant variability.

In the absence of direct evidence, it is necessary to make certain assumptions regarding the inheritance of Y_P. The validity of these assumptions for the present purpose does not require that they be precisely correct in specific instances but rather that they represent correctly the general or average interaction of the factors involved. All assumptions regarding inheritance of Y_P in this discussion are derivable from two postulates which are in harmony with the evidence now available but which still require direct experimental verification. These postulates are as follows:

1. The Y_P of an individual is the sum of the Y_P's of its parental gametes.

2. The mean of the Y_P's of the gametes produced by an individual is equal to the mean of the Y_P's of its parental gametes.

In the initial stage of an isolated corn breeding program, the gamete cannot be made the unit of selection, since there is no homogeneous gamete population with which the varying gametic series may be combined for comparative testing. It is therefore necessary to select among the plants produced by the random combination of gametes of all levels. After an initial series of inbreds distinctly superior to the varietal means has been established, it is possible to use these inbreds in further sampling of the varieties, and in this procedure the gamete may be the unit of selection.

Gamete selection in practice would ordinarily involve two steps:

1. The selection, on the basis of outcross yield tests, of individual plants of a variety/inbred population, and

2. A similar test-controlled selection in the first generation self-progeny of the outstanding individuals identified in the first step. This would ordinarily be followed by continued selfing, with visual selection, to fix a line homozygous for the desired agronomic characters as well as yield genotype.
For some purposes continued selfing would be unnecessary; notably for the extraction of plants of value in complex crossing. Complex crossing for the extraction of improved lines has been little used in corn breeding, chiefly because of the limited number of good lines available. But homozygosis is not essential in the strains used in complex crossing, and the heterozygous strains identified in the plant selection and gamete selection tests may be used without sacrifice of the established inbreds.

The technic may be illustrated by an experiment now in progress. The variety used is Midland, which has given exceptionally good yields among open-pollinated varieties in central and southern Missouri and in other localities in the southern Corn Belt. The inbred used is WF9, which is outstanding in performance among lines now available in the Corn Belt, though it is a little too early to make full use of the growing season in Missouri. It is one of the parents of U. S. 13(WF9/38-11 x L317/Hy) the hybrid now most widely grown in Missouri.

Each Midland/WF9 plant is selfed and is outcrossed on a tester stock, in this case L317/Hy. Each outcross tests the yield potential of one Midland gamete added to that contributed by the uniform gametes of WF9. Similar outcross tests on L317/Hy are made for comparison from the line WF9, and from F1's of WF9 with various inbreds of outstanding performance in this region.

Any Midland/WF9 plant which excels the performance of WF9 in outcross yield tests under varying and representative conditions represents a Midland gamete superior in yield potential to WF9, in a combination in which WF9 is very effective. The selfed progeny of such a plant provides a population in which further improvement by test-controlled selection should be possible. This selfed progeny is comparable to the F2 of a cross of WF9 with an unrelated elite line. As compared to such F2's it has, in addition to its possible advantage in yield genotype, the merit of avoiding interbreeding of the tested lines. A derivative of WF9 x L317 cannot be used effectively with either WF9 or L317; a derivative of WF9 x Midland can be used with any other line except WF9.

In comparison with selves of plants selected from the pure variety, the variety/inbred selves have certain distinct advantages and disadvantages. For brevity the former will be referred to as the plant-selection series and the latter as the gamete-selection series.

The chief advantage of the gamete-selection series is the expected superiority in yield potential of the best individuals in the population, or in the limited sample of the population which may be effectively tested for yield-genotype. It has in addition the following noteworthy advantages:

(1) A probably greater range of segregation for yield potential in the selfed progeny of the selected individual. This segregation is
the basis for any further improvement in yield which may be made by a second application of test-controlled selection in the selfed progeny of the selected plant. The extent of this segregation is dependent upon the difference in the specific yield-controlling genes contributed by the parental gametes. The yield potential of the selected plant would benefit as much, on the average, from five such genes, each contributed by both parents, as from ten, each contributed by only one of the parents. But the possibility of further improvement in yield potential would come only from the latter.

It would be expected that a self of an outstanding Midland plant, representing a combination of one superior Midland gamete with another, would be heterozygous for fewer yield factors than a self of a Midland/WF9 plant of equal yield potential, representing a combination of a superior Midland gamete with a superior gamete type of unrelated origin. The evidence available is very limited, but indicates that this difference is an important one.

(2) A better opportunity for extracting a line satisfactory in characters other than yield. In a series of Midland selfs, the only selection for such characters previous to yield testing would be that made among the individual foundation plants. It may be expected that the plants of highest yield potential might in many cases be unsatisfactory in other respects. The series of Midland/WF9 selfs is also virtually unselected, but since each plant is heterozygous for the favorable agronomic characters of WF9 it should be possible, in the extraction of homozygous lines from the selfed progeny, to avoid undesirable characters which are not common to the Midland selection and to WF9. This advantage will vary with the line used, but in major characters such as strength of stalk, for example, any elite line selected for use in this type of experiment would provide some insurance against the weaknesses likely to be met within unselected genotype of the open-pollinated varieties.

The chief disadvantages of the gamete-selection series are the following:

(1) In gamete selection it is impossible to fix the genotype selected from the variety; it can be used only to extract a combination of this genotype with some other genotype chosen in advance, (such as the WF9 genotype in the present example). The line ultimately derived from this combination is restricted to use in crosses not involving WF9. In plant selection a new line is derived which may be combined with other lines without restriction, and which may be crossed for further improvement with lines chosen after the properties of the selected Midland line are known.

(2) In yield testing to compare the value of the Midland gametes, the gametic genotypes compared represent only half of the genotype of the plants which are tested; in plant selection the genotypes compared are the total genotypes of the plants tested. A more accurate yield test is therefore required to detect significant
differences in the gamete-selection series. The accuracy of yield tests is limited, and this imposes a minimum limit to the difference in yield potential which may be used in breeding. Furthermore, increased accuracy is expensive, and reduction of the standard error to one-half requires yield tests about 4 times as extensive. If differences only half as large are to be detected, only about one fourth as many items could be tested with equivalent outlay.

The gamete-selection series would involve smaller differences than the plant-selection series, but the differences to be expected are considerably more than half as large. The net variability of the outcross test yields, after removal of the superimposed variability due to experimental error, is the measure of the yield potential of the plants tested. The yield potentials of a series of open-pollinated Midland plants are the sum of the yield potentials of the male and female gametes combined. These may be represented as follows:

\[
\begin{align*}
\text{YP of Male Gametes} & \quad A \pm \sigma_A \\
\text{YP of Female Gametes} & \quad B \pm \sigma_B \\
\text{YP of O. P. Plants} & \quad (A + B) \pm \sqrt{\sigma_A^2 + \sigma_B^2}
\end{align*}
\]

In wholly unselected series, A and B are equal and the yield potential of the open-pollinated plants is \(2A \pm \sqrt{2} \sigma_A\).

The yield potentials of the \(F_1\) plants of WF9 x Midland would be as follows:

\[
\begin{align*}
\text{YP of Male Gametes} & \quad A \pm \sigma_A \\
\text{YP of Female Gametes} & \quad C \pm \sigma_C \\
\text{YP of F}_1\text{ Plants} & \quad (A + C) \pm \sigma_A
\end{align*}
\]

The number of tests of adequate precision that could be made with a given outlay would be about half as great for the gamete-selection series as for the plant-selection series. In view of the increased frequency of exceptional genotypes in the gamete selection series, the smaller sample would have a much higher probability of including exceptional Midland genotypes than the larger.

During the past season direct evidence on some of these points was secured in a yield test, conducted in collaboration with D. C. Anderson, at Malta Bend, Mo. The items tested included outcross tests (on L317/Hy) of the following:

1. 41 Midland plants
2. 37 Midland/WF9 plants
3. the line WF9, (entered for increased precision as 4 items)
4. 6 other elite lines (38-11, R136, 940, C.I.7, Kys, and K4)
5. 10 \(F_1\)'s of elite lines, included to check the additive inheritance of YP.
Groups (1) and (2) each included 27 plants representing a wholly unselected sample, with additional plants from visual selection which proved unrelated to yield. These two groups thus represent respectively the zygote and the gamete population of the Midland stock used. The test was planted as a 10 x 10 triple lattice, with 12 replications.

Calculation of the data is not yet completed but the results in general are evident from direct calculation as a randomized block experiment. On this basis the least significant difference is 4.5 bu. per acre. The test-cross yields of the Midland plants varied from 60.3 to 77.8. Those of the 7 elite lines ranged from 61.8 to 77.0, that of WF9 being 64.1 bu. per acre. The test-cross yields of the F1's and parent inbred lines were in general in good agreement with expectation on the additive basis, though the differences between the lines crossed are not large enough to make this a very significant test of YP inheritance. The test-cross yields of the Midland/WF9 plants indicated yield levels for homozygotes of the Midland gamete genotypes ranging from 46.8 to 83.8 bu. per acre.

Seed was produced in 1944 for a further trial of plant and gamete selection in the varieties, Kansas Sunflower, Clarage, and Midland, with certain modifications of method. It may be desirable in practice to apply gamete selection not to the unselected gamete population but to a selected population secured from the exceptional plants identified by a preliminary test-controlled plant selection. To test the feasibility of this modification, the unselected plants in the varieties mentioned are selfed and test-crossed as before and are also crossed on the inbred line selected for use in gamete selection. The gamete selection series from unselected plants may be made up from these crosses, and that from selected plants or mixtures may be made up from them after the plant selection tests have been made. Each variety thus yields three distribution curves, representing the unselected plant population, the unselected gamete population and the selected gamete population. Among the inbred lines included for comparison are K4, a line of excellent performance which was extracted from Kansas Sunflower, K201C, an excellent line extracted from Midland; and 3 Ohio lines which represent the best extractions previously made from Clarage. The position of these lines on the plant and gamete distribution curves of their parent varieties should provide a more definite basis for estimating the possibilities of plant and gamete selection as compared with the methods used in producing our present inbreds.

L. J. Stadler

2. Redox relationships in the development of anthocyanin. Keeble and Armstrong, Wheldale-Onslow, Atkins, and others have presented evidence suggesting the presence of oxidase enzymes and an oxidation system associated with the development of anthocyanin. In repeating the studies made by these early workers it is possible, in the light of revised redox methods, to correct several of the interpretations of the
use of oxidase indicators, and it now appears that the oxidase enzyme of the earlier workers is in fact a lipid absorptive and oxidative system. It became increasingly apparent during the course of the present study that there is a localized absorption of the oxidized form of the common redox indicators in unsaturated fats present in anthocyanin bearing cells. The oxidation of p-phenelenediamine, \(\alpha \) -napthol, leuco methylene blue and related indicators prior to their introduction into sections of \(r^{ch} \) and \(r^{b} \) tissue will give, in uniform and comparably cut sections, a greater localization of colored indicator in \(r^{ch} \) tissue. An iodimetric method applied to this absorptive system, in appropriately prepared tissue, has made possible a qualitative study of differences between colored (\(r^{ch} \)) and colorless (\(r^{b} \)) tissue and has given an exact iodine number for different tissues where weak anthocyanin development, dependent upon \(R \) alleles, is to be compared with more strongly colored \(r^{ch} \) tissue.

Iodine absorption is always greater in anthocyanin bearing cells; hence practicable microscopic qualitative observations may be compared with macroscopic anthocyanin distribution, and differences in intensity of pigmentation, by using the iodine number as a qualitative guide. The higher iodine absorption of anthocyanin bearing tissue may be seen to be localized in free plasmal lipids, in lipid material localized in "mitochondrial" or lipoclastic bodies in the cell, and in lipids impregnating cellulose walls. The lipids are highly unsaturated condensation aggregates and not true glycerides. They are not readily soluble in ordinary fat solvents but are soluble in petroleum ether after preliminary hydrolysis of the tissue and extraction with an alkaline/alcoholic mixture. The unsaturated lipids in colorless (\(r^{b} \)) tissue have a higher peroxide number as determined by oxidation of ferrous ammonium sulphate. The extracted lipids from \(r^{ch} \) tissue have 40\% greater absorptive capacity (Wij's Iodine Method) than comparable extracts from \(r^{b} \) tissue. Presented in the table below are the iodine numbers of leaf tissue of \(r^{ch} \) and \(r^{b} \) sib comparisons, as determined by halogen solutions of increasing concentration. The samples were hydrolyzed to prevent iodine addition to starch and to facilitate iodine addition to unsaturated bonds; they were dried under nitrogen to constant weight and a standard iodine method with thiosulphate titration was used and endpoints were determined galvanometrically in some cases. The samples used ranged in weight from 0.020 mg. to 0.155 mg. so that the method may be applied to small samples of tissue that are held in ethyl alcohol (not above 50\%), in order to remove chlorophyll, anthocyanin, etc., with frequent changes of alcohol to facilitate elution. At all stages in the process storage under nitrogen prevents oxidative degradation and a drop in iodine values.

Halogen solutions of increasing concentration

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r^{ch})</td>
<td>3.55</td>
<td>9.24</td>
<td>12.55</td>
<td>50.54</td>
</tr>
<tr>
<td>(r^{b})</td>
<td>2.21</td>
<td>6.91</td>
<td>10.34</td>
<td>44.22</td>
</tr>
</tbody>
</table>

582
Using the methods outlined above a study was made of the development of pigment in excised leaves in culture. It was found that additions of dilute emulsions of unsaturated fats (corn oil, soybean oil, linseed oil) and various terpenes (thujone, etc.) greatly increased the production of pigment, but only when sugar was also present. Glucose solutions (16 \times 10^{-3} \text{ molar}) were less effective than glucose (8 \times 10^{-3} \text{ molar}) plus unsaturated fat emulsions (4\%). Holding the cultures under anaerobic conditions (under nitrogen) for the first two days of a culture study inhibits production of anthocyanin but increases overall pigmentation after aerobic conditions are restored. In the table below are the iodine numbers from a typical sugar culture experiment. A marked decline in iodine number in \textit{r}^\text{ch} and a final rise in \textit{r}^\text{g} with pigmentation is clearly demonstrated.

<table>
<thead>
<tr>
<th>All tissue from same leaf</th>
<th>\textit{r}^\text{ch}</th>
<th>\textit{r}^\text{g}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh Tissue</td>
<td>45.95 (colorless)</td>
<td>51.90 (colorless)</td>
</tr>
<tr>
<td>Sugar/Anaerobic</td>
<td>41.70</td>
<td>44.22</td>
</tr>
<tr>
<td>Sugar/Same as above, but exposed to air one day.</td>
<td>50.54 (Anthocyanin)</td>
<td>40.02</td>
</tr>
</tbody>
</table>

\textit{In vitro} preparations of anthocyanin extracts and unsaturated fat emulsions reveal that anthocyanin is a hydrogen acceptor and acts to dehydrogenate and oxidize the fat, and the anthocyanin becomes partially reduced and in some cases irreversibly reduced. This dehydrogenation of fat emulsions by anthocyanin is stronger when water extracts of \textit{r}^\text{ch} tissues are added to the emulsions. Microscopic sections of anthocyanin-bearing tissue held under anaerobic conditions and at a pH of 7.0 to 7.4 show a reduction (loss of color) of anthocyanin in lipid granules in the plasma under intense illumination and a restoration of color on diminishing the light. This is direct evidence of a reversible redox relationship between lipids and anthocyanin pigments.

It is generally true that anthocyanin bearing cells are epidermal, hypodermal or bundle sheath cells which have an excess of lipid material, and it is a general rule that cells low in lipids are lacking in anthocyanin. This fact may be determined by iodine staining in combination with extraction methods outlined above. It is illustrated in corn by the siliceous epidermal cell which, unlike its couplet partner, the fat-bearing suberized cell, lacks anthocyanin unless cultured in sugar/fat media under nitrogen followed by oxygen. Fatty and other organic acids, as revealed through the use of polychrome stains and direct acid value determinations are present in anthocyanin bearing cells before pigment is produced and there are apparently less free acids after pigment production.

Preliminary trials on B determined pigmentation indicate there is in lipid/pigment development a redox relationship similar to that obtaining in \textit{RF} alleles. Trials on the other higher plants
(Andropogon, Coleus, Petunia, Acer, etc.) reveal a similar redox problem in floral and autumnal anthocyanin development.

In summation, it now appears that the oxidase system, believed by early workers to be causal in anthocyanin development, is in reality a reflection of the oxidized and dehydrogenated state of lipids which absorb and possibly oxidize redox indicators. The absorption of iodine by these dehydrogenated lipids reveals qualitative but not absolute quantitative differences between pigmented and non-pigmented tissues. Anthocyanin acts in vitro to bring about the dehydrogenation of fats, and wherever anthocyanin appears in the plant associated with a lipid system the fats are more dehydrogenated than in comparable non-pigmented tissue.

D. S. Van Fleet

3. Comparison of ultraviolet and X-ray deficiencies. Earlier examinations of ultraviolet induced deficiencies in maize indicated that they were terminal, whereas X-ray deficiencies appeared to be usually, perhaps always, internal. Since non-homologous pairing of pachytene chromosomes frequently occurs, this point could be settled only by a study of a chromosome arm with a terminal cytological marker. In order to select plants with breaks in this arm, a gene affecting a seedling character was essential. Enochides reported bronze (bz) in the short arm of chromosome 9 (corn letter 1943). It was found that in the presence of certain RF alleles, distinct color developed at the tip of seedling leaves with Bz but failed to develop with bz. Deficiencies of the bronze locus were induced by irradiation of mature pollen from a knob-bed-9 stock, wx-Bz-knob. Pollinations were made on a homozygous or heterozygous bz stock, Wx-bz. The colorless-tip F1 plants which subsequently developed bronze pigment instead of anthocyanin furnished the cytological material. The usual acetocarmine smear technique was employed.

In the ultraviolet group, 3513 seedlings were examined of which 9 possibly tipless died in early seedling stage and 9 were bronze plants. In the X-ray group, 1670 seedlings were examined, of which 7 possibly tipless died in the early seedling stage and 11 were bronze plants. The cytological study of the bronze plants is summarized in the table.
Kinds of Chromosomal Change

<table>
<thead>
<tr>
<th>No. of plants</th>
<th>Haploid</th>
<th>1 break</th>
<th>2 break rearrangement</th>
<th>Not</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultra-violet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>X-ray</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

In the ultraviolet material single breaks in the short arm of chromosome 9 gave terminal deficiencies (with the loss of the knob) in 4 plants. The shortest deficiency, about one-third of the arm, removed the bronze locus and gave less than 1% crossing over between the break and the wx locus. In two cases breaks in different chromosomes were followed by rearrangement in such a way that parts of both chromosomes were lost and only one translocation chromosome survived. These have been called deficiency translocations. In pachytene the translocation chromosome pairs homologously with parts of the two normal chromosomes, and the two single strands usually pair non-homologously to give a three-armed translocation figure. At diakinesis and metaphase I, this association appears as a chain of three chromosomes or, less frequently, as a pair and a univalent. Anaphase I shows 9-10 separations or occasionally 9-9 with a lagging univalent. Pachytene preparations were not clear enough to determine exact points of breakage in the chromosomes.

All X-ray deficiencies resulted from rearrangements involving two breaks within the same cell. In one case both breaks were in the short arm of chromosome 9, giving an internal deficiency. In 3 cases breaks occurred in both arms of 9, a ring fragment which included the centromere being formed. Five deficiency translocations were found. In the case giving the best cytological preparations (involving chromosomes 9 and 5) both breaks appeared to be at or very near the spindle fiber regions. There were no cases of terminal deficiency.

Many plants with deficiency translocations (in this and other material) show a higher percentage of normal pollen than can be accounted for by random distribution of the three associated chromosomes at the first meiotic division.

Katherine O. De Boer
II. MAIZE PUBLICATIONS - 1944

__________ An Advancement in hybrid seed corn drying. Seed World 56 (10):44. 1944.

Barber, G. W. Husk development of sweet corn as affected by moisture supply, an important factor in corn earworm control. Jour. Agr. Res. 68:73-78. 1944.

——— Growth changes in maize endosperm associated with the re-location of chromosome parts. Genetics 29:420-427. 1944.

Semeniuk, G. Seedling infection of dent maize by Sclerotium bataticola. Phytopath. 34:838-843. 1944.

Standen, J. H. Chemical and physical characteristics of maize cobs in relation to the growth of Nigrospora oryzae. Phytopath. 34:315-323. 1944.

Further studies on a species of Helminthosporium parasitizing corn. Phytopath. 34:214-222. 1944.

R. L. Cushing
Cornell University
III. SEED STOCKS PROPAGATED IN 1944

Slightly more than 200 cultures were grown last summer. About half of these were the F₁ hybrids between weak stocks and non-related inbreds made by Dr. Murray in 1943. A few plants were selfed in each of these cultures. This program was carried along by growing still other weak stocks and crossing them with inbreds. It is hoped that in the course of a few years most of the useful genes can be put into vigorous combinations of this kind. In cooperation with Dr. Randolph, a beginning was made of the transfer of a good marker gene or two to each of the trisomic stocks now available. Combinations involving trisomic V, VI, IX, and X were obtained this year.

R. L. Cushing and Rosalind Morris
The data presented here are not to be used in publications without the consent of the authors.

Department of Plant Breeding
Cornell University
Ithaca, N. Y.
CONTENTS

<table>
<thead>
<tr>
<th>I. Reports from Cooperators</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connecticut Agricultural Experiment Station</td>
<td>3</td>
</tr>
<tr>
<td>Cornell University</td>
<td>4</td>
</tr>
<tr>
<td>Florida Agricultural Experiment Station</td>
<td>9</td>
</tr>
<tr>
<td>Harvard University</td>
<td>14</td>
</tr>
<tr>
<td>University of Minnesota</td>
<td>15</td>
</tr>
<tr>
<td>Missouri Botanical Garden and Pioneer Hi-Bred Corn Company</td>
<td>19</td>
</tr>
<tr>
<td>New York State Agricultural Experiment Station</td>
<td>21</td>
</tr>
<tr>
<td>Pioneer Hi-Bred Corn Company</td>
<td>22</td>
</tr>
<tr>
<td>University of S. Paulo</td>
<td>23</td>
</tr>
<tr>
<td>U. S. Department of Agriculture and Cornell University</td>
<td>25</td>
</tr>
</tbody>
</table>

II Maize Publications | 27 |

III Seed Stocks Propagated | 33 |

Report of California Institute of Technology | 34 |
ANNOUNCEMENT

Arrangements have been made to continue the Maize Genetics Cooperation at Cornell University for a period of not less than three years. Professor R. L. Cushing, who has been responsible for the work done during the past few years, will help initiate Professor H. H. Smith who will have charge of the work in the immediate future. The undersigned will enjoy looking on from the outside and offering gratuitous advice as usual.

R. A. Emerson
I. REPORTS FROM COOPERATORS

Connecticut Agricultural Experiment Station
New Haven, Connecticut

1. In the second generation from crosses of deviating lines with the original normal line, mono-factorial segregation is indicated by dwarf plant, pale top and crooked stalk. (Backcrossed ratio 52 tall; 32 dwarf where 42:42 were expected. F2 selfed 49 green straight, 9 green crooked, 23 pale straight, 3 pale crooked where 47:15:15:5 were expected.) Narrow leaf cannot be separated clearly from normal in individual plants. F3 progenies ranged in average leaf width from 74 to 93 mm compared to 72 for narrow and 92 for normal under similar conditions. Average height ranged from 92 to 103 inches compared with 91 for narrow and 95 for normal. In previous tests narrow leaf plants have been slightly taller than normal. Both the extracted homozygous normals and deviates have come out of the cross slightly enlarged, an indication that other factors are involved. Further testing is necessary to establish the significance of these differences.

Blotched leaf and late-flowering types have not yet been compared after extraction from the cross with normal.

In view of the fact that the long inbred Learning lines continued to decline in yield during 20 generations it is quite possible that these lines which have not been selfed continuously for this length of time are still segregating for minor physiological changes along with the visible morphological changes which seem to be mutations.

The normal lines, in the two cases tested, show no increases when crossed with the same normal lines from which they have been separate for many generations. Therefore, the possibility of accumulation of dominant genes from both parents seems to be ruled out. Further testing of this point is needed.

There is the possibility of mutations or delayed segregations affecting combining ability that have no visible effect in the homozygous condition or in crosses with the same line from other sources. Three of the long inbred Learning lines selfed for eight and nine generations were separated into two sub lines each and maintained separately for seven additional generations of self-fertilization. During this period they showed no visible differences but when intercrossed they all gave significant increases in some measurable character.

Two of these lines were again separated in the 17th and 22nd generations and further self-fertilized for eleven and six generations. When the first generation crosses between these sub lines were compared with their normal parents no significant differences were obtained. In one of these cases the parental lines
differed slightly in visible characters. All of this evidence indicates delayed segregation from an enforced heterozygous complex.

Five of the six deviating lines which show heterosis when crossed back to the normal line have been tested in outcrosses with unrelated lines. No significant differences in yield of grain were obtained between crosses of normal by unrelated normal compared to deviating line by the same unrelated normal. For practical purposes it is important that there were no decreases in yield.

D. F. Jones

Frequently it is necessary to have counts of root tip chromosomes, but the paraffin method for making preparations is laborious and time consuming. However, excellent figures can be obtained quickly and easily by the following technique. Fix young root tips in Carnoy's fluid for 6-24 hours. Change to 70% alcohol. (The material can be kept here until it is convenient to make the smears). Transfer to equal parts of hydrochloric acid and 95% alcohol for five minutes, then to 70% alcohol for at least five minutes. Put a thin cross-section slice of the root tip into a drop of aceto-carmine on a slide, and tease the material apart with needles, or flatten it with a scalpel. Put on a clean cover glass and press gently with the eraser end of a pencil. Heat slide several times by passing through a flame. Examine to see whether there are sufficient division figures. If not, make a smear from a different section of the root, or from a different root. A good preparation has the cells well separated but intact, with many well-stained division figures. Temporary mounts can be sealed with a gum-mastic-paraffin mixture and kept in a cool place for several weeks. Or the slides may be made permanent by McClintock's method for making sporocyte smears permanent.

Jeannette Lowe

Cornell University, Department of Plant Breeding
Ithaca, New York

G54 and pericarp-color ratios. In two earlier News Letters (17: 8-10, 1943 and 18: 7-8, 1944), aberrant pericarp-color ratios were reported and a gametic factor, G54, was postulated as interfering with the functioning of pollen carrying it. There are now available more data like those previously reported and also a few of more nearly crucial importance. The records here assembled include both the new and most of the previously reported data.
The study involves crosses of lines having red pericarp and cob with lines having colorless pericarp and either white or red cob color. In this account, cob color will be disregarded, except in one section where its designation is essential. In general red and colorless (white) pericarp will be designated, respectively, by R and W. When reference to both pericarp and cob colors is made, the following symbols will be used for the three alleles:

\[
\begin{align*}
R-R &= \text{red pericarp, red cob} \\
W-R &= \text{white pericarp, red cob} \\
W-W &= \text{white pericarp, white cob}
\end{align*}
\]

Certain plants with heterozygous red pericarp, when selfed or used as pollen parents in crosses with white, give progenies with an excess of white-eared individuals, instead of the respective 3:1 and 1:1 ratios ordinarily observed. When, however, the same red eared plants are used as pistillate parents in crosses with white, normal ratios result. The ratios of red to white that have been observed to date in all aberrant cultures of whatever generations are given in the tabular statement below, together with first and later generations of crosses in which heterozygous reds were used as pistillate parents.

<table>
<thead>
<tr>
<th>Parent plants</th>
<th>Type Number</th>
<th>Red Number</th>
<th>White Number</th>
<th>Progenies Ratio</th>
<th>% Red</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1251</td>
<td>1085</td>
<td>1.15:1</td>
<td>53.6</td>
</tr>
<tr>
<td></td>
<td>W/R (x) 49</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>W/(W/R) 25</td>
<td>491</td>
<td>1822</td>
<td>1:3.71</td>
<td>21.2</td>
</tr>
<tr>
<td></td>
<td>(W/R)/W 18</td>
<td>437</td>
<td>453</td>
<td>1:1:04</td>
<td>49.1</td>
</tr>
</tbody>
</table>

Not all red eared plants of cultures with an excess of whites, give aberrant ratios in the next generation. Of 42 plants tested from cultures resulting from W/(W/R), line 2 of the above table, 29 gave aberrant and 13 normal ratios in the following generations. Reds of aberrant cultures, which give normal ratios in later generations, are assumed to have lost Ga 4 by crossing over. But the relative numbers of aberrant and normal progenies resulting is not a measure of the percent of crossing over, because crossover pollen lacking Ga 4 is more likely to function in fertilization than pollen carrying Ga 4.

Of red eared F2 plants lacking Ga 4, two out of three in general are expected to be homozygous. Of 61 such red eared plants of aberrant cultures, only 5 were homozygous, a ratio of 11:2:1 instead of the normal 2:1 ratio. Here again, this ratio is not a measure of percent of crossing over between red and Ga 4 alone or of percent of functioning Ga 4 pollen alone, for both variables are involved together.

Of red eared plants of normal cultures resulting from (W/R)/W, line 3 of the table above (like those of the reciprocal cross W/(W/R), line 2), some have normal and some aberrant progenies in the next
generation. Of 28 such reds tested, 23 gave aberrant and 5 normal ratios in the following generation. Since there is here no question of pollen differentials, the percent of normal cultures should measure the percent of crossing over in megasporogenesis. The percent of crossing over indicated is 17.9, but the number of plants tested is far too small to give reliable results.

Of the homozygous red eared plants occurring in aberrant cultures, one was crossed reciprocally with white and two others were used only as pollen parents in crosses with white. The progenies were all red eared, but, of course, segregated in the next generation. The ratios of red to white in the segregating generation indicated that the three homozygous red parents were heterozygous for Ga 4. The available data are summarized in the following table.

<table>
<thead>
<tr>
<th>Type of cross</th>
<th>Number</th>
<th>Progenies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Red</td>
</tr>
<tr>
<td>W/ [(W/W)/(R/R)]</td>
<td>7</td>
<td>292</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>260</td>
</tr>
<tr>
<td>[(W/W)/(R/R)]</td>
<td>(x)</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>729</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>[(R/R)/(W/W)]</td>
<td>(x)</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>112</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

Of 30 segregating cultures from crosses involving homozygous red as pollen parents, 9 exhibited aberrant and 21 normal ratios. Of 11 segregating cultures from the one cross in which homozygous red was used as pistillate parent, 5 gave aberrant and 6 normal ratios. The second of these two categories (homozygous red as pistillate parent) should include equal numbers of aberrantly and normally segregating cultures, since, in homozygous red, crossing over with Ga 4 is not detectable and because Ga 4 was not present in the white pollen parent. The 5-6 ratio is as near equality as is possible with a total of eleven.

The first of the two categories (homozygous red as pollen parent) should, however, afford a direct measure of the percent of functioning Ga 4 pollen. Here crossing over in microsporogenesis cannot be detected and should have no effect on the ratio of aberrant to normal segregating cultures in the succeeding generation. Of the 30 F1 plants tested, 9 gave aberrant and 21 normal segregation ratios. This 9-21 ratio indicates that 30 percent of the functioning pollen carried Ga 4, where 50 percent would be expected if this gene did not work to the disadvantage of the pollen carrying it.
When, in heterozygous red, the \(\text{Ga}_4 \) gene is lost from red-carrying gametes, it should be picked up in an equal number of instances by gametes carrying white. For this study, a third allele, colorless pericarp with red cob, W-R, may be used. When plants heterozygous for \(\text{R-R} \) and W-W are crossed with W-R, the red eared plants are W-R/R-R or R-R/W-R and the colorless eared plants are W-R/W-W or W-W/W-R. Data involving the first of these categories have been presented without reference to cob color. In the second category, pericarp is colorless throughout, but it is perhaps less confusing to designate both pericarp and cob color by symbols for the three alleles involved.

When, by crossing over, \(\text{Ga}_4 \) is shifted from association with \(\text{R-R} \) to the \(\text{W-W} \) allele, segregating progenies should show a deficiency of white. In the studies of crosses of \(\text{R-R} \) with W-W, out-crosses with W-R, as either pollen or pistillate parent, have afforded tests of 137 W-R plants. Their progenies, classified as having normal or aberrant segregation ratios of red to white cob, are summarized as follows.

<table>
<thead>
<tr>
<th>Number</th>
<th>Progenies</th>
<th>Ratio</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>W-R</td>
<td>W-W</td>
<td>W-R:W-W</td>
</tr>
<tr>
<td></td>
<td>117</td>
<td>2830</td>
<td>1016</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>705</td>
<td>44</td>
</tr>
</tbody>
</table>

In these cob-color studies, as in the pericarp-color work reported earlier in this account, when heterozygous red (\(\text{R-R}/\text{W-W} \) or \(\text{W-W}/\text{R-R} \)) is used as the pollen parent in crosses with W-R, there are involved both variables, namely, percent of functioning \(\text{Ga}_4 \) pollen and percent of crossing over. It is, therefore, impossible to evaluate either one of them. When, however, heterozygous red with heterozygous \(\text{Ga}_4 \) is used as the pistillate parent and homozygous W-R as the pollen parent, differential fertilization because of \(\text{Ga}_4 \) is eliminated, and the percent of crossing over in megasporogenesis should be indicated by the relative numbers of normally and aberrantly segregating cultures in the succeeding generation. Data are available for 32 such cultures, as follows.

<table>
<thead>
<tr>
<th>Type</th>
<th>No.</th>
<th>Red</th>
<th>White</th>
<th>Ratio</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>((\text{W-W} + \text{W-W}/\text{W-R}))</td>
<td>28</td>
<td>693</td>
<td>232</td>
<td>2.99:1</td>
<td>25.1</td>
</tr>
<tr>
<td>((\text{R-R} \text{Ga}_4)/\text{W-R}))</td>
<td>4</td>
<td>114</td>
<td>5</td>
<td>22.8:1</td>
<td>4.2</td>
</tr>
</tbody>
</table>
Here the ratio of normal to aberrant progenies is 28:4, or 7:1. The percent of aberrant progenies — equivalent to percent of crossing over — is 12.5. It will be recalled that the study of segregating red pericarp, reported earlier in this account, involving 23 aberrant to 5 normal progenies, indicated a percent of crossing over of 17.9. The percent calculated from both the pericarp-color and the cob-color lots, 60 progenies in all, is 15.0. It will be recalled also that crosses of white with homozygous red pericarp, the latter as pollen parent, resulted in 21 normal and 9 aberrant cultures. This indicates that 30 percent of the functioning pollen carried Ga₄ and 70 percent carried its normal allele.

It remains now to see how nearly aberrant ratios correspond to ratios calculated from the indicated values of the two variables. The answer is easy. They do not fit at all well. It is realized that the number of progenies on which the evaluation of the two variables has been based is wholly inadequate — 60 for percent of crossing over and 30 for percent of functioning Ga₄ pollen.

One further method of evaluating the two variables is available. This method was used by Mangelsdorf and Jones (Genetics 11:423-455, 1926) in their study of the gamete factor in the fourth chromosome. By the use of data involving two genes both linked with Ga, they were able to evaluate the two variables simultaneously. This method can be used with data presented previously. (News Letter 17: 8-10, 1943). These are backcross data involving pericarp color and ms17, with a total of 206 plants. The method of Mangelsdorf and Jones applied to these data indicates approximately 13 percent crossing over between Ga₄ and pericarp color — not far from that calculated by the method of eliminating one variable — but only 5 — instead of 30 — percent of the effective pollen carrying Ga₄. These percentages, when applied to the data summarized in this account, show a much better fit to observed ratios than do those obtained from evaluation of the two variables independently as presented earlier in this account. A comparison of the two methods is given in the following table.

<table>
<thead>
<tr>
<th>Ratios</th>
<th>Calculated</th>
<th>Observed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>13% crossing over</td>
<td>15%</td>
</tr>
<tr>
<td></td>
<td>5% Ga₄ pollen</td>
<td>30%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coupling —</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B-C — Red to white</td>
<td>1 - 3.7</td>
<td>1 - 5.1</td>
</tr>
<tr>
<td>F₂ — Red to white</td>
<td>1.2 - 1</td>
<td>1.4 - 1</td>
</tr>
<tr>
<td>F₂ — Hetero- to homozygous red</td>
<td>11.2 - 1</td>
<td>6.2 - 1</td>
</tr>
<tr>
<td>Repulsion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F₂ — Red to white</td>
<td>16.0 - 1</td>
<td>11.3 - 1</td>
</tr>
<tr>
<td></td>
<td>3.6 - 1</td>
<td></td>
</tr>
</tbody>
</table>
The data presented in the 1943 News Letter indicate that Ga₄ is to the left of msi. On the assumption of 13 percent crossing over between P and Ga₄, the map may be given tentatively as below.

sr ← Ga₄ ← 10 → ms₁₇ ← 3 → P ← br

A further study, involving Ga₄ with sr, ms₁₇, P, and z₄, is underway, but little further evidence can be obtained short of two more years.

R. A. Emerson

Florida Agricultural Experiment Station
Gainesville, Florida

Regression Analyses of Yields of Hybrid Corn and Inbred Parent Lines.— 1. Derivation of a theoretical regression function. For n loci let the basic effect of a gene substitution be d, dominance effect kd, proportions of loci AA in F₁ and P₂ be u and w, the multiple recessive phenotype T, and gene action additive.

\[
P₁ = 2u²d + T, \quad P₂ = 2w²d + T,
\]

\[
F₁ = 2u²wd + \left[u(1-w) + w(1-u) \right] (nd + nkd) + T,
\]

\[
F₁ = (1 + k + kT/nd) P₁ + (1 + k + kT/nd) P₂ - (k/2nd)² T - kT,
\]

\[
F₁ = b₁ P - b₂ P₁ P₂ + C₁, \text{ where } P = (P₁ + P₂)/2
\]

With each generation of selfing 1/2 of dominance effects disappear. Divide each term in k by 2 for each time selfed to obtain the general function for Fₙ. This function is a surface which is curved if there is any dominance (k not zero). (Regression of F₁ on mean of parents neglects the second term of the function. A plane is fitted where a curved surface provides a closer fit if there is dominance).

Regression of F₁ on P₂ with constant P₁ (any single F₁ column in Stringfield's table below) is obtained by treating P₁ as a constant in the main function.

\[
F₁ = \left[\frac{1}{2} + \frac{k}{2} - \frac{k(P₁ - T)}{2nd} \right] P₂ + C₂
\]

The partial regression coefficient b₁ is contained in the brackets. Its value manifestly depends upon the value of constant P₁. P₂ is the independent variable. Substitution of AA for aa at one locus in P₂ provides an increment 2d. The corresponding increment of F₁ is \[\left[\frac{1}{2} + \frac{k}{2} - \frac{k(P₁ - T)}{2nd} \right] 2d\]. The first term of this expression, \(\left(\frac{1}{2}\right)2d = d\), accounts for the basic effect of an additional A allele in F₁ coming from P₂. The second term, \((k/2)2d = kd\), provides a dominance effect. If, however, P₁ is AA at that locus no dominance effect will be added to F₁ by the substitution, and the one already there will disappear. P₁ is AA at u loci, and \((P₁ - T)/2nd = u\). The third term adds \[-k(P₁ - T)/2nd\] 2d = -2ukd.
Under the assumptions, our main function calculates exactly mean \(F_1 \) for any type pair of parent values. Variance from such means, or deviations from the regression surface are due solely to variations in degree of heterozygosity. This portion of the variance is beyond parent criteria. Present parent criteria \(P \) and \(P_1P_2 \) together provide maximum estimation of \(F_1 \) by parent criteria. It is clear that the mean degree of heterozygosity is greater in crosses of good \(\times \) poor lines than in crosses of medium \(\times \) medium lines and that the product of parents \(P_1P_2 \) is included to measure that variation. It must also be clear that the various genetic interpretations inserted along have not been employed in the mathematical derivations. For the most part they were not recognized until after completion of the algebraic formulations.

Finally regression of \(bp \) on \(P_1 \) is given by the formula for \(bp \). The regression coefficient is \((-k/2nd)\) which is \(b_2 \) of the main function. It will be labeled \(b_2 \) here also since the two coefficients are identical.

2. Fitting the functions to data. An unpublished table kindly furnished by Mr. G. H. Stringfield is included to illustrate the process of fitting. Values of \(bp \) at the bottom are simply regressions of \(F_1 \) of the respective columns on \(P_2 \). Regression of the values of \(bp \) at the bottom of the table on the values of \(P_1 \) at the top is \(-0.015\), and the correlation is \(-0.93\) which is highly significant.

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
F_1 & P_1 & P_2 & & & \\
\hline
& 4-8 & 90 & Hy & 02 & WF9 & 51 \ \\
\hline
& 13.6 & 28.2 & 29.8 & 46.1 & 51.4 & 55.3 \ \\
\hline
4-8, 13.6 & 76.7 & 96.3 & 91.0 & 100.7 & 106.1 \ \\
\hline
90, 28.2 & 76.7 & 81.4 & 94.2 & 97.9 & 86.4 \ \\
\hline
Hy, 29.8 & 96.3 & 81.4 & 108.9 & 109.8 & 94.7 \ \\
\hline
02, 46.1 & 91.0 & 94.2 & 108.9 & 104.0 & 100.8 \ \\
\hline
WF9 & 51.4 & 100.7 & 97.9 & 109.8 & 104.0 & 103.4 \ \\
\hline
51, 55.3 & 106.1 & 86.4 & 94.7 & 100.8 & 103.4 \ \\
\hline
bp & 6947 & 4050 & 3433 & 2914 & 0516 & 0512 \ \\
\hline
Mean \(P_2 \) & 42.0 & 39.2 & 38.8 & 35.6 & 34.6 & 33.8 \ \\
\hline
Mean \(F_1 \) & 94.2 & 87.2 & 93.2 & 99.3 & 103.2 & 98.2 \ \\
\hline
\end{array}
\]
From this regression the estimated value of P_1 for $b_1 = 0$ is 57.1 bushels per acre which is just beyond the range of the data. The same process has been applied to the other sets of data listed in the second table. Where significant values of b_2 have been obtained the main multiple regression function has also been fitted. In each case the second estimate of b_2 agreed closely with the first one, which provides a computation check since the two are algebraically identical also in the computation formulas.

The last five items in the table were then computed by quadratic solution of the multiple regression function on the assumption that where P_1 and P_2 are both completely aa or completely AA, $P_1 = P_2 = F_1 = F_2$. Roots thus obtained are estimates of the bottom recessive and top dominant.

3. Interpretation. First I must note that I have never had any notion that yield of corn could depend upon a multiple set of genes with uniform d and kd from locus to locus. Variation of d and of kd must contribute to the variance of F_1 and thus provide additional variance from the present regression surface. Beyond that I doubt that variation of d and kd could confuse present analyses.

Evidence here for overdominance (no dominance, $k = 0$; complete dominance $k = \pm 1$; overdominance k numerically greater than one) seems to lie in the estimated values of P_1 for zero partial regression. If dominance is complete, zero partial regression will obtain only when P_1 is the top dominant. This statement agrees with long held genetic philosophy of prepotence. That it is mathematically true in present theory may be seen by setting $b_1 = 0$ and $k = 1$ in the partial regression coefficient formula and solving to find $(P_1 - T)/2nd = u = 1$. Note also that with complete dominance the top dominant and top heterozygote are equal. Since for present data, values of completely prepotent P_1, ($b_1 = 0$), are far below mean P_1, the only direct interpretation is overdominance, see values of k estimated from the data. It would seem to make no difference whether the genes of P_1 and P_2 are completely linked or completely independent, so far as immediate contributions to F_1 are concerned.

Fisher, (Genetical Theory of Natural Selection) gives the condition for equilibrium where the heterozygote has selective advantage over both homozygotes for one pair. His mathematical condition is identical with the present one for $b_1 = 0$ for any value of k (Selective advantage) except that his condition is in terms of the proportions of a and A alleles in the population at equilibrium. The present condition is in terms of u, the proportion of loci AA in P_1. If many loci are all at Fisher equilibrium in a cross breeding variety the expected value of u for a homozygote derived without bias is identical with \bar{q} for the variety. Or if \bar{q} for a group of lines is identical with \bar{q} for equilibrium the lines as a set are at equilibrium. Every line, good or poor, will then have the same general combining ability as measured by the average of its crosses with all of the other lines. Equilibrium for each locus is at the instant where a and A alleles combine equally well with the field.
Regression Analyses of Yields of Hybrid Corn and Inbred Parent Lines

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Estimated Mean F₁</th>
<th>Bottom</th>
<th>Top</th>
<th>Maximum</th>
<th>Maximum</th>
<th>(b₂)</th>
<th>(b p = 0)</th>
<th>Live Dominant</th>
<th>Open-Pollination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stringfield, (^1)F₁</td>
<td>0.30</td>
<td>-0.015**</td>
<td>57.1</td>
<td>96.8</td>
<td>-44.2</td>
<td>88.5</td>
<td>146.3</td>
<td>102.0</td>
<td>1.87</td>
<td></td>
</tr>
<tr>
<td>F₂</td>
<td>0.34</td>
<td>-0.009**</td>
<td>76.7</td>
<td>69.9</td>
<td>-48.9</td>
<td>82.7</td>
<td>159.1</td>
<td></td>
<td>2.16</td>
<td></td>
</tr>
<tr>
<td>Kinman & Sprague, (^2)F₁</td>
<td>0.42</td>
<td>-0.015*</td>
<td>54.2</td>
<td>79.9</td>
<td>-29.5</td>
<td>95.2</td>
<td>120.0</td>
<td></td>
<td>1.64</td>
<td></td>
</tr>
<tr>
<td>F₂</td>
<td>0.42</td>
<td>+0.005</td>
<td>-</td>
<td>50.8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jorgensen & Brewbaker, (^3)</td>
<td>0.04</td>
<td>-0.002</td>
<td>210.1</td>
<td>372.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Nilsson-Leissner, (^4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Dent I</td>
<td>0.28</td>
<td>-0.008**</td>
<td>154.9</td>
<td>314.5</td>
<td>-44.6</td>
<td>224.1</td>
<td>369.9</td>
<td>324.5</td>
<td>2.08</td>
<td></td>
</tr>
<tr>
<td>Dent II</td>
<td>0.22</td>
<td>-0.004</td>
<td>130.5</td>
<td>291.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flint I</td>
<td>0.36</td>
<td>-0.0002</td>
<td>2430.2</td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Flint II</td>
<td>0.62</td>
<td>-0.0008</td>
<td>888.3</td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Jenkins, (^5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>White '26</td>
<td>0.65</td>
<td>+0.018</td>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Early yellow, '26</td>
<td>0.38</td>
<td>-0.052**</td>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Later yellow, '26</td>
<td>0.10</td>
<td>+0.037</td>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>White, '27</td>
<td>-0.09</td>
<td>+0.153</td>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Yellow, '27</td>
<td>0.07</td>
<td>-0.002</td>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

1. Unpublished, see text.
3. " " " Sept., 1927
4. " " " May, 1927

* Significant
** Highly significant
Jenkins (1929) almost attained that condition (last 3 entries in present table). For those data the partial regressions are nearly as frequently negative as positive and almost uniformly small numerically. After much selection Stringfield, and Kinman and Sprague studied groups of lines which show recession from the equilibrium which well selected varieties had closely approached 20 years or more ago. Recession may be due to mixing lines from different sources in one group and probably to selection for specific combining ability (more than average heterozygosity). The ceiling for hybrids is higher if one line has fewer AA loci, but this point can hardly be fully demonstrated without a 3-dimensional figure.

From the 3-dimensional figure for overdominance of the degree indicated \(k = 2 \) it is clear that the \(F_1 \) trend for increasing \(P_1 \) and \(P_2 \) rises steeply over most of the range of present corn breeding experience which just laps over the crest. Beyond the trend is downwards. Beyond we have hardly gone, partly because of linkage as visioned by Jones and partly because present practice requires slight recession from the crest to another equilibrium between selection for specific combining ability and selection for general combining ability and excellence of lines themselves.

Present interpretations must remain in some degree tentative until lines well beyond the crest to provide significant negative partial regressions have been obtained. Before such evidence any alternative interpretation of complex, non-additive gene action would stand entirely refuted, I think. Excess of any heterozygote over the top dominant would seem to be overdominance by definition. The possibility of explaining present results by non-additive action without overdominance is very small insofar as I can tell but space does not permit more to be said here. Neither does space permit listing of every point where overdominance theory agrees with corn breeding experience more closely than does dominance theory. I have found no discrepancies and so must say that the evidence for overdominance must seem overwhelming but not crucial to any unprejudiced mind. It will be appreciated if any discrepancies are pointed out.

The same analysis has been employed with data on other characters of Jenkins (loc. cit.) with no evidence of overdominance and in most cases slight evidence of any dominance at all. Height of plant is an exception, but it depends largely on vigor. No data on ear dimensions have been available.

Fred H. Hull
1. Pod Corn. We now have fertile, true-breeding inbred lines of pod corn. These were obtained by selecting for minus modifiers of the tunicate condition. In these stocks the glumes show about the same development in the homozygous condition as is usually found in other stocks in the heterozygous condition. Seed of these inbred tunicate lines is now available in considerable quantity.

Varieties and inbred strains of maize differ greatly in their modifier complexes with respect to the tunicate character. When varieties and inbreds are crossed to the same stock of tunicate there is in the F1 considerable variation in the development of the glumes. Paraguayan and Bolivian varieties have strong minus modifier complexes. Guatemalan varieties have plus modifiers or at least are lacking in minus modifiers. North American inbred strains cover the entire range. Iowa 701 has a strong plus modifier complex while Minn 152 is so strongly minus that in some crosses with pod corn the tunicate ears are scarcely distinguishable from non-tunicate.

2. Modifiers of Secondary Pistillate Florets. The occurrence of varieties of maize in Bolivia in which there is a partial or complete development of the secondary pistillate floret, as in Country Gentleman sweet corn, suggests that this may be a primitive character. If this is the case, then there may well be differences in maize varieties in their modifier complexes with respect to this character. Preliminary studies made by crossing with an inbred strain of Country Gentleman indicate that Guatemalan varieties have strongly minus modifier complexes with respect to the development of secondary pistillate florets while Bolivian varieties have plus modifiers or are neutral. The results so far as they go, can be interpreted in terms of Tripsacum contamination in Guatemalan varieties and its absence in Bolivian varieties.

3. Nature of the Maize Ear. The hybrids of pod corn and Guarany maize, previously reported, which have been useful in demonstrating the nature of the ear of maize, have produced an additional useful abnormality. In 1945 several plants were found in which one or more ears were normal while other ears on the same stalks produced greatly elongated shanks. When this occurs the ear is more or less naked and the shucks which usually surround the ear become normal leaves spaced at intervals on an elongated lateral stem. There is no doubt that the ear was originally the terminal inflorescence of a lateral branch.

4. Derivatives of maize-teosinte crosses. The segments of chromatin or blocks of genes which distinguish various types of teosinte from maize have been transferred individually by repeated backcrossing to a uniform inbred strain of maize. Stocks derived by this procedure show that the segment which occurs on chromosome No. 4 in Florida teosinte has almost identical counterparts in Durango, Nobogame and "New" teosintes. Whether these counterparts occur on chromosome 4 in each of these teosintes remains to be determined.

These stocks are also useful for testing the effect of teosinte germplasm upon the yield of maize. Preliminary tests indicate that a small amount of teosinte germplasm may improve grain yield. When two or more segments are present, however, even in the heterozygous condition, grain yields are definitely depressed although forage yields may be somewhat improved.

P. C. Mangelsdorf
University of Minnesota, University Farm,
St. Paul, Minnesota

1. Sterility Studies:— T1-5-6-7. Mr. Constancio Lazaro has continued his study of this stock in Uruguay. He has identified the chromosomes involved in a series of semisterile plants derived from the cross: (•)8 x Normal. Of these, 16 are T1-5 translocations, 6 are 1+5 or 7 (not 6) while only one is T6+(?). In addition to the derived semisterile lines, another derived type with about 65% pollen abortion and a ring of 6 chromosomes attached to the nucleolus was found here at Minnesota. Intercrosses are growing in the greenhouse to determine which chromosome pair has been lost from the ring of 8 chromosomes. Linkage tests with the (•)8 showed the following percentages of recombination: 1 - 22%; bm - 50%; y - 16%; v5 - 9%; bm - 8%; pl - 5%; ra - 3%. Recombination values and gene order in one T (1) are:
-5 stock derived from the (•)8 are: bm 30 Pr 8,7 T; vs-T - 2%.

2. Yellow Endosperm.—One selfed ear had 112 deep yellow: 71 pale yellow: 14 white grains, a 9:6:1 ratio which may be interpreted as the interaction of two factors for pale yellow. Tassel-seed-4 was also segregating. The ratios for ts/ in the three classes suggest linkage of ts/ with one of the two pale yellow factors.

 It should be possible eventually to identify stocks for the different yellow factors by their linkage with other characters, e.g. ms1 for Y, al for one chromosome 2, vp for another, etc.

3. Chromosome 6 Linkage Studies.—A stock of ms pb has been established. The linkage of pb with Y is very close.

Classification for su2 has not been very satisfactory in material grown here at Minnesota. The data reported by me in the Coop Letter of March 23, 1937 (p. 15) indicated the order Y-pl-su2, with about 8% recombination between su2 and Pl. It was noted there that the separation for Y was poor. Since then Horovitz et al. (Anales Inst. Fitotecn. S. Catalina 3:37, 1941) reported a sux between Y and Pl. One backcross test with Pl using su2 as the female parent indicated 15% recombination, but all the recombinations were found in the non-sugary class. One test of su2 vs ms was set up as follows: (ms +) (+ su2) was crossed on a ms su2 su2 stock and the progeny grown. The open pollinated ears were examined to determine the number of homozygous Su2 and heterozygous su2 in the normal and ms classes, from which the percent recombination can be calculated. The method seems to be usable. In this case, 32.3% recombination was observed between ms and su2. These results are not satisfactory, however, since in the ms class there was 21.5% while in the non-ms class there was 45.4%. Intercrosses of su2 with Horovitz's sux have not been entirely satisfactory but they seem to indicate the two are the same.

Red glume collar in the tassel florets appears to show linkage with Pl in certain cultures, not in others.
A silky character is closely associated with antherless in the stock obtained from the Corn Coop. This silky vs \(y \) showed 16.5% of recombination.

Trisomic tests for location of new factors in chromosome 6: \(h_6 \) (barren stalk in a sweet corn), a new silky from a single cross, and a new stock of tinged (\(t_n \)) show normal disomic ratios. The midget dwarf (\(m_i \)) shows closer fit to a trisomic ratio than to disomic, although classification was not too certain.

C. R. Burnham

The following have assisted in the work at various periods: Gertrud Stanton, C. H. Li, T. J. Liang, and H. H. Highkin.

4. Miscellaneous Linkage Tests.-- For the new silky mentioned above, data from a small population suggest a linkage with \(p_r \). There is no close linkage indicated between narrow leaf-2 and: floury, yellow endosperm, colorless aleurone.

Linkage was reported previously between \(p_r \) and \(s_h_2 \) -- \(s_h_2 \) is closely linked with \(m_i \), no crossovers being found in an \(F_2 \) population of 1189.

There was a suggestion of linkage between yellow vs. pale yellow and the tinged mentioned above.

H. H. Highkin and C. R. Burnham

5. An "Oenothera" or Multiple Translocation Method of Establishing Homozygous Lines.-- A method by which a gametic combination could be made homozygous immediately should be of practical use to the plant breeder. One method, the utilization of haploids by doubling their chromosome number, has been suggested by many workers. It seems to be a feasible method in crops in which pollinations can be made on a large scale and genetic markers are available to aid in their recognition.

A second method for obtaining such homozygous lines is one I am calling an "Oenothera" or multiple translocation method. In this method, all the chromosomes of the haploid set are to be involved in translocations in such a way that the \(F_1 \) of crosses with normal stocks will have at meiosis a ring containing the entire diploid number of chromosomes. Such a plant should produce two kinds of functional spores corresponding to the two parental gametic combinations of chromosomes. Among the offspring from selfing such a plant there would be the heterozygotes with the chromosome ring recognizable by high spore abortion; and in addition two types of normals, each homozygous for one of the two parental gametic combinations. These two types of normals would have normal pollen, the normal number of chromosome pairs, and could be distinguished by crossing them with standard normal stocks.
The normal type not carrying the translocations would constitute the homozygous line.

The degree of homozygosity in these lines thus isolated depends on the amount of crossing over which has occurred at meiosis in the formation of the functional spores. Crossovers in the differential segments result for the most part in spores carrying interchanges and would be eliminated. Crossovers in the outer or interchanged arms of the chromosomes would be the ones most likely to result in recombinations of characters between the two parental gametes. The amount of recombination may not be very large, since crossing over is usually greatly reduced in regions near the translocation points and reduced to a lesser degree in regions farther away. It might be necessary, however, to establish several normal sub-lines from each F₁ plant to eliminate, or at least to measure, heterozygosity from that source.

For practical use, the multiple translocation stock would be crossed with the heterozygous source being used for new gene combinations (e.g., a variety, or a single- or double-cross hybrid). Each F₁ plant then represents a different gametic combination from that source combined with the multiple translocation gamete, and is the starting point of a different homozygous line to be established in F₂. Selected lines thus isolated could be utilized in breeding tests similar to those used with lines heretofore established by continued inbreeding. The frequency of "superior" lines should correspond to the frequency of "superior" gametes in the heterozygous population being sampled. In the "Oenothera" method the gametic combination is established in homozygous condition immediately. In Stadler's "gamete selection" method, the selected gametic combination is combined with a gamete from an inbred line. Further breeding, selection and testing are necessary to isolate lines which carry at least part of the new germ plasm.

The "Oenothera" method has not been tried but crosses are under way by which it is hoped to eventually produce such a multiple translocation stock in corn. The plan of procedure is to choose for crossing only those translocations involving one chromosome in common in which the breaks in this common chromosome are far enough apart to furnish a "differential segment." A crossover in this segment will combine the two translocations in the same gamete.

Spore abortion will undoubtedly increase as more translocations are added, but it is hoped that it will not preclude dehiscence of the anthers or the production of sufficient seeds to utilize the method. It is possible that in the larger rings more of the disjunctions will fall into the zigzag type and thus reduce the degree of spore abortion.

C. R. Burnham
5. Notes on the Use of Maximum Likelihood Formulae for the Calculation of a Single Recombination Value for Data From Several Sources—(As applied by Immer and Henderson, Genetics 28:419-440, 1943.) Two methods are available, one being to weight each value according to its standard error. The other method is to combine the separate maximum likelihood formulae for each source into one formula, place it equal to zero, and solve for a value of p which best satisfies this equation. In using the second method as outlined, difficulties were encountered which were finally solved with Immer's help. Two changes must be made in the method as outlined.

1. The separate maximum likelihood formulae must not be reduced by any factor common to that portion (since it is not common to the other formulae being added to make up the one combined formula).

2. The maximum likelihood formulae as set up apply to repulsion. When used for coupling, the entire formula for that portion must be multiplied by (-1) (as shown by redifferentiating the basic equations).

The maximum likelihood formulae for the various sources of data become for F_2 consisting of (3:1) (3:1):

1. for F_2 repulsion:

$$2p \left(\frac{a}{2+p^2} - \frac{b+c}{1-p^2} + \frac{d}{p^2} \right) = 0$$

For F_2 coupling this is multiplied by (-1). It must also be remembered in substituting that in coupling p is the non-recombination fraction or (1- the recombination fraction).

2. For "singly dominant" F_2 plants classified into their genotypes in F_2, the formula for repulsion is:

$$k - \frac{2i+k}{p} + \frac{(i+k)2p}{1-p} = 0,$$

the same as given in the paper.

For coupling the entire formula is multiplied by (-1).

3. For "doubly dominant" F_2 plants classified into the relative numbers of heterozygous and homozygous genotypes, the formula for repulsion is:

$$2st+kx - \frac{f+g}{p} - \frac{2(h+1)(1-2p)}{1-p} - \frac{(st+gh+h+1)2p}{1-2p+2p^2} = 0$$

This is also the same as given in the paper.

For coupling the entire formula is multiplied by (-1).
If linkage data from these three sources are available, these formulae are combined by addition into one maximum likelihood formula, the observed values substituted and the value of \(p \) which best satisfies this equation is determined.

The standard error to be applied to this value is calculated from the total amount of information furnished by the available data, since

\[
S.E.p = \sqrt{\frac{1}{I_p}}
\]

where \(I_p \) is the total amount of information. \(I_p \) can be calculated easily by the method in Mather "Measurement of Linkage in Heredity", page 63.

A supplementary note to the paper in Genetics had been proposed by Immer.

H. H. Kramer and C. R. Burnham

Missouri Botanical Garden, St. Louis, Mo. and
Pioneer Hi-Bred Corn Company, Johnston, Iowa

Variations in Kernel Shape and Texture in Corn-Belt Maize.--Typical kernels were selected from 140 different inbred lines of dent corn. These included as many of the standard inbreds such as 33-11, WF-9, etc. as could be obtained, together with some of the newer inbreds and various "second-cycle improvements" on older inbreds. Care was taken to obtain healthy and well-grown ears in spite of the weakness of some of the inbreds. As representative a kernel as possible was selected from each ear and the variation of the entire collection was repeatedly examined and compared with collections of open-pollinated varieties from various parts of the New World.

Much of the variation in this material, more than at first seemed possible, is accounted for by differences in the texture (hard dent, soft dent, etc.) and in the position at which the kernel shows its maximum width. The latter character varies from wedge-shaped kernels like WF-9 to broad-based, pointed ones like K 43. If a small percentage of "buckshot" and poorly developed kernels are excluded as too difficult to classify, the remainder show a clear set of transitional stages between these two extremes. At the one end is the flat, wedge-shaped kernel fairly similar to many of the older open-pollinated varieties. It is widest at its apex, and allowing for the shrinkage when it dents, it is also thicker at that point. Consequently it not only tapers to the base, it also slopes to the base (i.e. the narrowing is in two dimensions). The kernels at the other extreme are both wide and high at the base, bulging out broadly below and tapering conewise toward the apex.

Between these two extremes it is possible to select a whole series of intermediates. Those about in the middle are flattish kernels, widest in the middle and also slightly thicker there. It is
they and the ones even less pointed which are of most interest in this classification. It does not seem probable that one would have recognized what is apparently a slight degree of pointing, until he had seen all the intermediate types laid out in this way. These different kernel shapes seem to result from various intermediates between two fundamentally different growth patterns, similar to some of those which have been analyzed in Cucurbits by Sinnott.

The kernels were then classified for texture. At the one extreme (grade 1) were a few inbreds which showed no capping of soft starch. In the next class were those which were capped but not perceptibly dented. Next (grade 3) were both capped and dented but without a wrinkled pericarp due to the collapse of the soft starch area. Finally there was a class whose kernels were capped, dented, and with the pericarp distinctly wrinkled at the apex.

When these grades of denting and pointing had been determined, the entire collection was sorted out simultaneously for both characters. A few of the small kernels remained difficult to classify and there may well be other factors such as long kernels vs. wide kernels which need to be considered. However this simple two-way scheme worked surprisingly well and brought similar types together. The distribution was as follows:

<table>
<thead>
<tr>
<th>DENTING OF KERNEL</th>
<th>POINTING OF KERNEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Widest at apex</td>
<td>Widest at middle</td>
</tr>
<tr>
<td>GRADE 4</td>
<td>20</td>
</tr>
<tr>
<td>GRADE 3</td>
<td>26</td>
</tr>
<tr>
<td>GRADE 2</td>
<td>14</td>
</tr>
<tr>
<td>GRADE 1</td>
<td>7</td>
</tr>
</tbody>
</table>

Figures show No. of kernels in each class.

It will be seen that there is a fairly strong negative correlation between denting and pointing. The heavily dented kernels are all widest at the apex and the less the degree of denting the higher is the proportion of pointed kernels.

After the kernels had been laid out in this way it was apparent that certain other characters were correlated with pointing or with denting. The association of red pericarp with pointed kernels was particularly conspicuous. Of those widest at the apex only 7 percent were so affected whereas 10 percent of the medium pointed, and 53 percent of those widest at the base. This may be related to the fact that in Mexico, the supposed ancestral home of our dent corns, pointing of the kernels is very closely associated with red pericarp. Red pericarp was found to have no obvious connection with denting but blistering of the pericarp was strongly associated with denting, as well as negatively with pointing. Another feature which (though it varies greatly in its expression) is characteristic of
certain inbreds, is a silvery appearance of the pericarp, apparently due to air. This showed no association with denting but was strongly correlated with pointing.

After the above analysis had been made it was interesting to examine various inbred, single-cross, and open-pollinated varieties. The interaction of various factors in producing different types of dent corn is much clearer after such an examination. The production of a smooth, dimpled dent (such as characterizes OS 420 among the inbreds) is very evidently the combination of a high degree of denting with a fairly high degree of pointing. It is the pointing which shapes up the kernel and gives the ear its neat appearance.

Edgar Anderson (Missouri Botanical Garden)
Ray E. Snyder (Pioneer Hi-bred corn Breeding Company)

New York State Agricultural Experiment Station
Geneva, New York

In the early summer of 1944 Professor S. Horovitz, of the Phytotechnical Institute of Santa Catalina, of Argentina, sent me some seeds of his new sugary (su^x). He and coworkers reported this new sugary in the Anales del Instituto Fitotecnico de Santa Catalina (1941) 3:37-44. He says there that it is on chromosome 6, and that it interacts with su to make su dominant.

The su^x was crossed with su (the inbred, P51) as soon as possible; the F\textsubscript{1} seeds were starchy. Last summer I grew the F\textsubscript{1} and selfed four plants. Five classes of seeds appeared: starchy; su^x, which is waxy looking but stains black with I\textsubscript{2}KI; a smooth-sugary seed which is dented and translucent, but not wrinkled; ordinary sugary; and super-sugary (Horovitz's name), which is more wrinkled than ordinary sugary. Not only was there an extra class, but two of the four ears fit an extraordinary ratio, as shown below:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Starchy</td>
<td>224</td>
<td>8</td>
<td>230.0</td>
<td>87 (14)</td>
<td>224</td>
<td>8</td>
<td>230.0</td>
</tr>
<tr>
<td>Sugary - x</td>
<td>61</td>
<td>2</td>
<td>57.5</td>
<td>87B (2)</td>
<td>56</td>
<td>2</td>
<td>66.6</td>
</tr>
<tr>
<td>Smooth sugary</td>
<td>35</td>
<td>1</td>
<td>28.8</td>
<td>87B (5)</td>
<td>35</td>
<td>1</td>
<td>33.3</td>
</tr>
<tr>
<td>Sugary - 1</td>
<td>83</td>
<td>3</td>
<td>86.3</td>
<td></td>
<td>93</td>
<td>3</td>
<td>100.0</td>
</tr>
<tr>
<td>Supersugary</td>
<td>57</td>
<td>2</td>
<td>57.5</td>
<td></td>
<td>37</td>
<td>1</td>
<td>33.3</td>
</tr>
</tbody>
</table>

\[x^2 = 1.84 \quad \text{and} \quad x^2 = 3.20 \]
If the four ears are assumed to be the same and are lumped together, the total counts do not fit either ratio, but are nearer to $8-1/2$: $2:1:3:1-1/2$. The classification of the various kinds of kernels is clear except between sugary and supersugary.

John Shafer, Jr.

Pioneer Hi-Bred Corn Company, Pioneer Laboratory, Johnson, Iowa

The determination of chromosome knob numbers in the more important inbred lines of Corn Belt maize was started in the summer of 1945, of which a preliminary account may be made at this time. To date, approximately thirty inbred lines of dent corn, twelve open pollinated or inbred strains of popcorn, and five North American flints have been examined. Although these numbers are relatively small when compared with the total amount of material available, the results obtained reveal some rather interesting facts. Among the thirty dent corn inbreds studied, knob numbers are found to range from two to nine with a frequency distribution as indicated in figure (1). Knob numbers appear to be correlated with certain morphological characters of the ear. For example, those lines possessing high knob numbers have, in general, a more compressed base, more tapered ears, and higher numbers of rows of kernels than those with low numbers. There is also some evidence indicating that irregular rowing is associated with high knob number. Among the popcorn strains examined, all were found to possess median knob numbers (4-6). The most interesting observation encountered occurred in the 8-10 rowed North American flints which were found to be knobless or nearly so. Of the five lines examined, four were knobless and one contained a single knob. These data, it will be noted, are not entirely in agreement with what one would expect on the basis of the tripsacum hypothesis.

William L. Brown

![Knob Number Frequency Chart](image-url)
1. The \(al \) gene is very closely linked to \(lg1 \) according to the following data obtained in \(F_2 \) (repulsion):

<table>
<thead>
<tr>
<th>Pedigree NO.</th>
<th>++</th>
<th>(+lg1)</th>
<th>(al +)</th>
<th>(al \ lg1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>754- 1</td>
<td>108</td>
<td>67</td>
<td>46</td>
<td>0</td>
</tr>
<tr>
<td>- 4</td>
<td>151</td>
<td>58</td>
<td>83</td>
<td>1</td>
</tr>
<tr>
<td>- 5</td>
<td>103</td>
<td>42</td>
<td>45</td>
<td>0</td>
</tr>
<tr>
<td>- 6</td>
<td>131</td>
<td>62</td>
<td>54</td>
<td>1</td>
</tr>
<tr>
<td>- 7</td>
<td>196</td>
<td>88</td>
<td>106</td>
<td>0</td>
</tr>
<tr>
<td>- 8</td>
<td>114</td>
<td>57</td>
<td>39</td>
<td>0</td>
</tr>
<tr>
<td>- 9</td>
<td>180</td>
<td>80</td>
<td>87</td>
<td>0</td>
</tr>
<tr>
<td>-11</td>
<td>118</td>
<td>46</td>
<td>56</td>
<td>1</td>
</tr>
<tr>
<td>-18</td>
<td>132</td>
<td>63</td>
<td>47</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1233</td>
<td>563</td>
<td>565</td>
<td>4</td>
</tr>
</tbody>
</table>

Crosses involving \(al \), \(lg1 \) and \(gl2 \) were made this summer (1945-October) in order to get the position of \(al \) in relation to \(lg1 \) and \(gl2 \) in chromosome 2.

2. One ear segregating for \(y_3 \) showed female elimination for this condition. The cross made was \(Y_1Y_3Y_3Y_3Y_3Y_3 \times Y_1Y_1Y_3Y_3Y_3Y_3 \) and the expected ratio 1 orange \((Y_1Y_1Y_3Y_3) : 3 \) white \((Y_1Y_1Y_3Y_3) \), \(Y_1Y_1Y_3Y_3, Y_1Y_1Y_3Y_3 \) was changed to 1 orange : 1 white (81 orange seeds : 66 white seeds). The orange seeds sowed were selfed and gave in all cases ears segregating for 9 orange : 7 white. The white seeds gave normal plants which when selfed produced ears segregating for albescent seedlings.

3. Material received from Dr. A. M. Brunson was sowed and is now being crossed with several \(Y \)-testers. The white seeds always gave albino plants and the dual effect of this mutation (provisionally called \(yx \)) seems to me in favor of the hypothesis \(y_3 \) that is identical with \(ul* \).

4. Seeds received from Dr. Merle T. Jenkins were sowed and only the "dark yellow" germinated. The "lemon yellow" is very similar to some \(Y \) stocks I have and in my opinion must be called only "yellow" in order not to confuse it with the "lemon yellow" due to the yellow aleurone color. Dr. Jenkins' ratio 3 dark yellow (orange) : 1 yellow is identical with that I obtained in Brazilian strains (Maize News Letter 17:1943 and Amer. Nat. 79:187-192, 1945) and the gene producing the difference orange : yellow I called provisionally \(Y_D \). Several crosses are now being made in order to try the location of \(Y_D \) and to see its interrelations with Dr. Jenkins' gene in chromosome 7.
5. My working hypothesis on the yellow-orange endosperm is now as follows:

(a) Several \(Y \)-genes with complementary effect, similar to the \(A_{1}A_{2}A_{3}C \) series for aleurone color. Of the \(Y \)-series, the known genes are \(Y_{1} \) in chromosome 6, \(Y_{3} \) in chromosome 2 and probably \(Y_{x} \) of Dr. Brunson, chromosome unknown. The \(Y_{x} \) condition is lethal and the \(Y_{3} \) produces albescence seedlings (\(y^{*} \) gene).

(b) The \(Y_{5} \) gene, isolated from Brazilian strains is complementary to \(Y_{1} \) in producing yellow endosperm but is independent of \(Y_{3} \) and so, also, of the other \(Y \)-genes of the series.

(c) The \(Y_{D} \) gene (D-determiner) producing the difference orange : yellow, found in Brazilian material and extremely influenced by modifiers. Similar gene found recently by Dr. Jenkins in chromosome 7.

(d) The \(B_{n} \) gene in chromosome 7, producing yellow pigment only in the aleurone layer. These "lemon yellow" seeds are detectable in stocks lacking one of the complementary \(Y \)-genes for endosperm color.

6. The ratio 15 orange : 1 white was secured in one ear resulting from a cross of Brazilian strains orange \(\times \) white. The plants obtained from the orange seeds were selfed and in 46 ears the following results obtained:

Ears pure for orange	23
Ears segregating 3 orange : 1 white	14
Ears segregating 15 orange : 1 white	9

As the mutation from the recessive to the dominant condition is not probable and the ratio of ears obtained not in favor of two independent genes, some of the plants obtained from the ears segregating 15 : 1 were fixed and will be checked cytologically.

7. The location of the \(Y_{5} \) gene is being tried and the cross involving a tester of Dr. Randolph's covering most of the chromosomes gave the following results in two ears obtained from the same plant:

<table>
<thead>
<tr>
<th>Pedigree NO.</th>
<th>Orange ((Y_{1}-Y_{3}))</th>
<th>Yellow ((Y_{1}-Y_{3}Y_{5}Y_{5}))</th>
<th>White + Lemon yellow</th>
</tr>
</thead>
<tbody>
<tr>
<td>179A-1</td>
<td>231 + su1</td>
<td>69 + su1</td>
<td>109 + su1</td>
</tr>
<tr>
<td>179A-2</td>
<td>112 + su1</td>
<td>34 + su1</td>
<td>37 + su1</td>
</tr>
<tr>
<td>TOTAL</td>
<td>343 + su1</td>
<td>103 + su1</td>
<td>146 + su1</td>
</tr>
</tbody>
</table>

As the mutation from the recessive to the dominant condition is not probable and the ratio of ears obtained not in favor of two independent genes, some of the plants obtained from the ears segregating 15 : 1 were fixed and will be checked cytologically.
The segregation for sup is normal. The yellow seeds not sup, where the classification was good, were sowed giving most of them al plants. Few plants not al came from Rn seeds since this gene was present in Dr. Randolph's stock. Segregation for bm2 and or1 was normal and only one plant seemed to be gi and none Rg. Proper tests for chromosome 10 are being prepared but we don't know if plant character markers combined with al will be easy to classify.

3. Markers in all chromosomes and in background favorable for the State of S. Paulo (Brazil) and probably for South America conditions are now available. Trisomic stocks for chromosomes 2 to 10 segregating recessive genes in the respective chromosomes are now available and the trisomic segregation will be checked again this summer. The transference of deficiencies in chromosomes 3, 4, 5, 6, and 9 (material from Dr. Stadler) to Brazilian strains is being continued.

9. Treatment of seedlings by artificial light during 15 days and four hours every day, in one very early and other very late stocks did not show significant difference in flowering when compared with plants that did not receive treatment. Also, plants with daylight reduced to 10 hours every day, during 15 days, flowered normally when compared with the control.

E. A. Griner

United States Department of Agriculture

and

Cornell University, Ithaca, N. Y.

1. In the preceding News Letter it was reported that tetraploid hybrids of Tripsacum and maize had been produced from experimental autotetraploids of maize pollinated by a natural autotetraploid Tripsacum from the Eastern United States. Repeated attempts to obtain seed from these hybrids by backcrossing to the parents failed. Since they produced only aborted pollen, with the possible exception of a very few grains partly filled with reserve food material, extensive attempts to self or sib cross these hybrids were not made. But very recently it was noted that a few partly developed seeds had formed on two of the 13 hybrid plants being wintered over in the greenhouse. These seeds apparently resulted from sib-crossing. By culturing the embryos of these seeds four seedlings have been obtained from which it may be possible to procure additional progenies.

During 1945 an initial attempt was made to repeat the cross of diploid corn and diploid Tripsacum made by Mangelsdorf and Reeves in 1930. A diploid Tripsacum from Kansas was used rather than the Texas form used by Mangelsdorf and Reeves. Very little difficulty was experienced in making the cross; 35 hybrids each with 28 somatic chromosomes were produced by pollinating 56 ear shoots of corn. The comparable frequency obtained by Mangelsdorf and Reeves was 29 hybrids from 382 ears.
Sporocyte examination of these hybrids is now in progress. The observations to date indicate that there is an appreciable amount of loose pairing at pachytene. Associations of 2, and not infrequently 3 chromosomes are prevalent at diakinesis. However, very few chiasmata apparently are formed as configurations suggesting chiasmata are rare at diakinesis and very few bivalent or trivalent associations persist to the metaphase stage. About one third of the figures have no bivalents on the metaphase plate and most of the other cells have not more than one or two bivalents at this stage.

The meiotic behavior of the chromosomes in these diploid Tripsacum-maize hybrids indicates that there has been very little if any exchange of parts of chromosomes during the meiotic prophase. The functioning of any mechanism for the transfer of Tripsacum chromatin to corn is conspicuous by its absence. It is quite possible that an occasional exchange of parts between the Tripsacum and corn chromosomes may take place as a result of something approaching typical crossing over, or fortuitous translocations; but it would be extremely difficult, on the basis of the observed cytological behavior of the chromosome in these hybrids, to account for a transfer of complete sets of knobs from Tripsacum to corn, as postulated by Mangelsdorf and Reeves.

However, the inference to be drawn from the observed meiotic behavior of the chromosomes in the F₁ Tripsacum-corn hybrids, namely, that there has been little or no exchange of parts between the corn and Tripsacum chromosomes is in full agreement with the observation of Mangelsdorf and Reeves that the plants with no Tripsacum chromosomes in the progeny of triploid Zea-Tripsacum hybrids backcrossed to corn, "were for the most part, normal corn plants differing in no way from ordinary corn plants--most of the Zea chromosomes segregated out intact and completely uncontaminated by their association with those of Tripsacum." (M. and R., 1939, pp. 142-143).

2. From a comparison of pachytene figures in different inbred lines it is apparent that consistently "good" figures may be obtained from some lines and consistently "bad" figures from others. Hybrids of good and bad lines have bad figures and plants with good figures are recovered in backcrosses to lines with good figures with a frequency suggesting that a single major recessive gene for good pachytene figures is involved.

Lines having consistently good pachytene figures include Luces Favorite (parent of 29-3 hybrid), 4-8d, L 289, 005, OS 26. Lines with badly clumped pachytene figures of poor quality include B 164, OS 420, WF 9, 38-11 and OS 008.

The observations on the quality of the pachytene figures were made under a wide variety of climatic conditions in New York and southern California, involving appreciable differences in temperature, humidity, and time of day when fixations were made. The quality of the cytological preparations was remarkably uniform under a wide diversity of environmental conditions.

L. F. Randolph
II. MAIZE PUBLICATIONS — 1945

(Including certain 1944 publications not previously listed and some early 1946 publications.)

Addendum to Bibliography

Since preparation of the above bibliography abstracts of papers presented at the St. Louis meetings of the Genetics Society of America have been published in Genetics 31:211-237, 1946. The following additional papers have also been noted.

H. H. Smith

624
III SEED STOCKS PROPAGATED

A complete inventory of material on hand was presented in News Letter 14 and additional lists were given in News Letter 16. Inasmuch as there appear to have been relatively few stocks added to the Coop collection since 1941, it has seemed unnecessary to present additional lists. Most of the propagation of material during the past few years has merely involved the growing of cultures from old seed, so that genes would not be lost. However, Dr. Murray began in 1943 to outcross weak genetic stocks to inbreds, in order to make material available in more vigorous combinations. This has been continued and a number of such combinations are ready for use. Progress has also been made in the transfer of marker genes to trisomic stocks.

R. L. Cushing and Rosalind Morris
Linkage and cytological data on translocations involving chromosomes 1, 2, and 3.

<table>
<thead>
<tr>
<th>Translocation</th>
<th>Chromosome</th>
<th>Locus of break</th>
<th>Linkage</th>
<th>Chromosome</th>
<th>Locus of break</th>
<th>Linkage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2b</td>
<td>1</td>
<td>S.2</td>
<td>ts₂-P-3.8-T</td>
<td>2</td>
<td>S.6</td>
<td>B-sk-1.4-T</td>
</tr>
<tr>
<td>1-2c</td>
<td>1</td>
<td>T-L₁-sr-P</td>
<td></td>
<td>2</td>
<td>L.2</td>
<td>ts₁±2.8</td>
</tr>
<tr>
<td>1-3a</td>
<td>1</td>
<td>S.25</td>
<td>P-18.7-T-36.9-br near br</td>
<td>3</td>
<td>ts₁±2.8</td>
<td>d₁±0.6</td>
</tr>
<tr>
<td>1-3d</td>
<td>1</td>
<td>S.25</td>
<td>P-18.7-T-36.9-br br₁±8.5₄</td>
<td>4</td>
<td>b₂₁-T-1.3-pr close to b₂₁</td>
<td>bm₁±0.2</td>
</tr>
<tr>
<td>1-4a</td>
<td>1</td>
<td>S.25</td>
<td>P-24.2-T-30.9-br br₂₁±8.5₄</td>
<td>5</td>
<td>S.4</td>
<td>T-2.9-ra-gli</td>
</tr>
<tr>
<td>1-5a</td>
<td>1</td>
<td>S.25</td>
<td>P-23.0-T-25.5-br br₂₁±8.5₄</td>
<td>5</td>
<td>L.5</td>
<td>c-wx-12.1-T</td>
</tr>
<tr>
<td>1-5b</td>
<td>1</td>
<td>S.25</td>
<td>P-23.0-T-25.5-br br₂₁±8.5₄</td>
<td>5</td>
<td>L.5</td>
<td>c-wx-12.1-T</td>
</tr>
<tr>
<td>1-5c</td>
<td>1</td>
<td>S.25</td>
<td>P-23.0-T-25.5-br br₂₁±8.5₄</td>
<td>5</td>
<td>L.5</td>
<td>T-15.3-g-R</td>
</tr>
<tr>
<td>1-60</td>
<td>1</td>
<td>L.4</td>
<td>ts₂-P-9.5-T near br</td>
<td>6</td>
<td>L.2+</td>
<td>very near Y</td>
</tr>
<tr>
<td>1-7a</td>
<td>1</td>
<td>L.4</td>
<td>ts₂-P-9.5-T near br</td>
<td>6</td>
<td>L.1+</td>
<td>close to ra</td>
</tr>
<tr>
<td>1-7b</td>
<td>1</td>
<td>L.6</td>
<td>ts₂-P-9.5-T br₂₁±3.9</td>
<td>7</td>
<td>L.1+</td>
<td>T-15.3-g-R</td>
</tr>
<tr>
<td>1-7c</td>
<td>1</td>
<td>L.6</td>
<td>ts₂-P-9.5-T br₂₁±3.9</td>
<td>7</td>
<td>L.1+</td>
<td>T-15.3-g-R</td>
</tr>
<tr>
<td>1-7d</td>
<td>1</td>
<td>L.6</td>
<td>ts₂-P-9.5-T br₂₁±3.9</td>
<td>7</td>
<td>L.1+</td>
<td>T-15.3-g-R</td>
</tr>
<tr>
<td>1-8a</td>
<td>1</td>
<td>S.6</td>
<td>ts₂-P-9.5-T br₂₁±3.9</td>
<td>7</td>
<td>L.1+</td>
<td>T-15.3-g-R</td>
</tr>
<tr>
<td>1-8b</td>
<td>1</td>
<td>S.6</td>
<td>ts₂-P-9.5-T br₂₁±3.9</td>
<td>7</td>
<td>L.1+</td>
<td>T-15.3-g-R</td>
</tr>
<tr>
<td>1-8c</td>
<td>1</td>
<td>S.6</td>
<td>ts₂-P-9.5-T br₂₁±3.9</td>
<td>7</td>
<td>L.1+</td>
<td>T-15.3-g-R</td>
</tr>
<tr>
<td>1-10a</td>
<td>1</td>
<td>L.4</td>
<td>ts₂-P-9.5-T br₂₁±3.9</td>
<td>7</td>
<td>L.1+</td>
<td>T-15.3-g-R</td>
</tr>
<tr>
<td>2-3b</td>
<td>2</td>
<td>S.6</td>
<td>ts₂-P-9.5-T br₂₁±3.9</td>
<td>7</td>
<td>L.1+</td>
<td>T-15.3-g-R</td>
</tr>
<tr>
<td>2-3c</td>
<td>2</td>
<td>S.6</td>
<td>ts₂-P-9.5-T br₂₁±3.9</td>
<td>7</td>
<td>L.1+</td>
<td>T-15.3-g-R</td>
</tr>
</tbody>
</table>

(Continued)
<table>
<thead>
<tr>
<th>Translocation</th>
<th>Chromosome</th>
<th>Locus of break</th>
<th>Linkage</th>
<th>Chromosome</th>
<th>Locus of break</th>
<th>Linkage</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-5a</td>
<td>3</td>
<td>L</td>
<td>ts₂±2.1</td>
<td>5</td>
<td>L</td>
<td>bm₁-28.4-pr-6.4-T</td>
</tr>
<tr>
<td>3-5b</td>
<td>3</td>
<td>na-4.8-T-19.1-a</td>
<td>5</td>
<td>5</td>
<td>L</td>
<td>bm₁-pr-4.1-T</td>
</tr>
<tr>
<td>3-5c</td>
<td>3</td>
<td>na-11.7-T-12.8-a</td>
<td>5</td>
<td>6</td>
<td>L</td>
<td>T-1.7-pr-bm₁</td>
</tr>
<tr>
<td>3-6a</td>
<td>3</td>
<td>ts₂±1.8</td>
<td>6</td>
<td>6</td>
<td>L</td>
<td>Y-6.6-T-2.6-P1</td>
</tr>
<tr>
<td>3-6b</td>
<td>3</td>
<td>d±0.5</td>
<td>7</td>
<td>7</td>
<td>L</td>
<td>Sat-15.6-Y</td>
</tr>
<tr>
<td>3-7a</td>
<td>3</td>
<td>S.8</td>
<td>7</td>
<td>7</td>
<td>L.25</td>
<td>ra+1.1</td>
</tr>
<tr>
<td>3-7b</td>
<td>3</td>
<td>S.2</td>
<td>7</td>
<td>7</td>
<td>L.1</td>
<td>near ra</td>
</tr>
<tr>
<td>3-7c</td>
<td>3</td>
<td>L.6</td>
<td>7</td>
<td>7</td>
<td>L.5</td>
<td>near ra</td>
</tr>
<tr>
<td>3-8a</td>
<td>3</td>
<td>L.6</td>
<td>8</td>
<td>8</td>
<td>L.8</td>
<td>T-13.6-msg-j</td>
</tr>
<tr>
<td>3-8b</td>
<td>3</td>
<td>L.1</td>
<td>8</td>
<td>8</td>
<td>L.2</td>
<td>T-32.9-msg-j</td>
</tr>
<tr>
<td>3-9a</td>
<td>3</td>
<td>close to ts₄</td>
<td>9</td>
<td>9</td>
<td>L.4+</td>
<td>c-wx-3.6-T</td>
</tr>
<tr>
<td>3-9b</td>
<td>3</td>
<td>ts₂±2.9</td>
<td>9</td>
<td>9</td>
<td>L.2</td>
<td>c-wx-6.8-T</td>
</tr>
<tr>
<td>3-9c</td>
<td>2</td>
<td>L.1</td>
<td>9</td>
<td>9</td>
<td>L.1</td>
<td>c-wx-7.6-T</td>
</tr>
<tr>
<td>3-10a</td>
<td>3</td>
<td>L.1+</td>
<td>10</td>
<td>10</td>
<td>L.1</td>
<td>T-15.7-g-R</td>
</tr>
<tr>
<td>3-10b</td>
<td>3</td>
<td>ts₂±10.4</td>
<td>10</td>
<td>10</td>
<td>L.1</td>
<td>T-18.8-g-R</td>
</tr>
<tr>
<td>3-10c</td>
<td>3</td>
<td>ts₂±1.3</td>
<td>10</td>
<td>10</td>
<td>L.1</td>
<td>T-6.5-g-R</td>
</tr>
</tbody>
</table>

E. G. Anderson
March 1, 1947

The data presented here are not to be used in publications without the consent of the authors.

Department of Plant Breeding
Cornell University
Ithaca, N. Y.
To Maize Geneticists:

This is a call for material for the 1947 Maize Co-op News Letter. The dead line on contributions is February 15.

Since there have been many changes in personnel following the war your cooperation is requested in correcting any errors in mailing addresses and suggesting names of interested investigators who may not be on our present list.

Comments: The Maize Genetics Cooperation has received a generous grant from the Rockefeller Foundation to continue operation. Mr. James E. Wright, Jr. has been enrolled for part time student help. Requests for seed of our genetic stocks has shown an upward trend.

Sincerely yours,

H. H. Smith
CONTENTS

<table>
<thead>
<tr>
<th>I. Reports from Cooperators</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>California Institute of Technology</td>
<td>1</td>
</tr>
<tr>
<td>Columbia University</td>
<td>3</td>
</tr>
<tr>
<td>Connecticut Agricultural Experiment Station</td>
<td>5</td>
</tr>
<tr>
<td>Cornell University</td>
<td>7</td>
</tr>
<tr>
<td>Florida Agricultural Experiment Station</td>
<td>12</td>
</tr>
<tr>
<td>Harvard University</td>
<td>19</td>
</tr>
<tr>
<td>Kentucky Agricultural Experiment Station and United States Department of Agriculture</td>
<td>22</td>
</tr>
<tr>
<td>Missouri Botanical Garden and Pioneer Hi-Bred Corn Company</td>
<td>23</td>
</tr>
<tr>
<td>Pioneer Laboratory, Pioneer Hi-Bred Corn Company</td>
<td>25</td>
</tr>
<tr>
<td>Princeton University</td>
<td>26</td>
</tr>
<tr>
<td>Texas Agricultural Experiment Station</td>
<td>29</td>
</tr>
<tr>
<td>United States Department of Agriculture</td>
<td>33</td>
</tr>
<tr>
<td>United States Department of Agriculture and Cornell University</td>
<td>33</td>
</tr>
<tr>
<td>University of Minnesota</td>
<td>35</td>
</tr>
<tr>
<td>University of North Carolina</td>
<td>39</td>
</tr>
<tr>
<td>University of S. Paulo</td>
<td>42</td>
</tr>
<tr>
<td>University of Washington</td>
<td>48</td>
</tr>
<tr>
<td>University of Wisconsin</td>
<td>51</td>
</tr>
</tbody>
</table>

| II. Maize Publications | 52 |

Ed. note: A change in size of page from previous issues was necessitated by a shortage of mimeograph paper.
I. REPORTS FROM COOPERATORS

California Institute of Technology
Pasadena, California

Alignment of translocations on chromosome 2.

<table>
<thead>
<tr>
<th>Translocation</th>
<th>Cytological position</th>
<th>Linkage</th>
<th>Number of plants</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-3a</td>
<td>S.75</td>
<td>gL_1</td>
<td>Burnham</td>
</tr>
<tr>
<td>2-6b</td>
<td>S.65</td>
<td>$g_{12}-3.9-T-0.9-B$</td>
<td>2008, 3152</td>
</tr>
<tr>
<td>2-3c</td>
<td>S.65</td>
<td>$B-0.5-T-4.9-sk$</td>
<td>3317, 123</td>
</tr>
<tr>
<td>1-2b</td>
<td>S.6</td>
<td>$B-5.3-T-1.4-sk$</td>
<td>1176, 1176</td>
</tr>
<tr>
<td>2-9a</td>
<td>S.65</td>
<td>sk±0.5</td>
<td>784</td>
</tr>
<tr>
<td>2-3d</td>
<td>S</td>
<td>sk-8.5-T-12.5-v_4</td>
<td>447, 939</td>
</tr>
<tr>
<td>2-9b</td>
<td>S.1</td>
<td>ts$_1$-5.0-T-7.8-v_4</td>
<td>662, 1542</td>
</tr>
<tr>
<td>2-5a</td>
<td>L.1</td>
<td>T-7.3-v_4</td>
<td>Rhoades</td>
</tr>
<tr>
<td>2-4d</td>
<td>L</td>
<td>ts$_1$-9.6-T-8.8-v_4</td>
<td>125, 1059</td>
</tr>
<tr>
<td>2-5b</td>
<td>L</td>
<td>T-5.0-v_4</td>
<td>135</td>
</tr>
<tr>
<td>2-10a</td>
<td>L.2</td>
<td>ts$_1$-13.5-T-6.5-v_4</td>
<td>384, 1145</td>
</tr>
<tr>
<td>2-7b</td>
<td>L.25</td>
<td>ts$_1$-15.3-T-5.4-v_4</td>
<td>470, 1091</td>
</tr>
<tr>
<td>2-6d</td>
<td>L.3-</td>
<td>ts$_1$-26.6-T-4.2-v_4</td>
<td>403, 754</td>
</tr>
<tr>
<td>2-6c</td>
<td>L.3</td>
<td>ts$_1$-12.3-T-1.7-v_4</td>
<td>594, 1869</td>
</tr>
<tr>
<td>1-2(17)</td>
<td>L.3</td>
<td>ts$_1$-10.7-T-1.1-v_4</td>
<td>375, 481</td>
</tr>
<tr>
<td>2-4a</td>
<td>L.3</td>
<td>ts$_1$-12.9-T-1.0-v_4</td>
<td>395, 1522</td>
</tr>
<tr>
<td>1-2c</td>
<td>L.3</td>
<td>ts$_1$-3.5-T-0.3-v_4</td>
<td>649, 1164</td>
</tr>
<tr>
<td>2-6a</td>
<td>L.3</td>
<td>$v_4^{II.1.1}$</td>
<td>354</td>
</tr>
<tr>
<td>2-7c</td>
<td>L.3+</td>
<td>ts$_1$-v_4-1.0-T</td>
<td>592</td>
</tr>
<tr>
<td>2-3b</td>
<td>L.3</td>
<td>ts$_1$-v_4-4.0-T</td>
<td>1412</td>
</tr>
<tr>
<td>2-4b</td>
<td>L.6</td>
<td>ts$_1$-v_4-5.6-T</td>
<td>12907</td>
</tr>
<tr>
<td>2-4c</td>
<td>L.8</td>
<td>v_4-19.0-T-34.2-ch</td>
<td>1098, 1317</td>
</tr>
<tr>
<td>2-4(a-29)</td>
<td>L.7+</td>
<td>v_4-34.5-T-30.4-ch</td>
<td>447, 447</td>
</tr>
</tbody>
</table>

E. G. Anderson
Ira W. Clokey
California Institute of Technology, Pasadena, California

Linkage and cytological data on translocations, to add to the list reported in the 1946 News Letter, pages 34 and 35

<table>
<thead>
<tr>
<th>Translocation</th>
<th>Chromosome</th>
<th>Locus of break</th>
<th>Linkage</th>
<th>Chromosome</th>
<th>Locus of break</th>
<th>Linkage</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-3d</td>
<td>2</td>
<td>S.</td>
<td>sk-8.5-T-12.5-v₄</td>
<td>3</td>
<td>L.</td>
<td>na-13.0-T-7.1-a</td>
</tr>
<tr>
<td>2-4a</td>
<td>2</td>
<td>L.3</td>
<td>ts₁-12.9-T-10-v₄</td>
<td>4</td>
<td>L.2</td>
<td>su-3.3-T-14.0-Tu</td>
</tr>
<tr>
<td>2-4b</td>
<td>2</td>
<td>L.6</td>
<td>ts₁-v₄-5.6-T</td>
<td>4</td>
<td>L.4</td>
<td>Tu-gl₃-15.0-T</td>
</tr>
<tr>
<td>2-4c</td>
<td>2</td>
<td>L.8</td>
<td>v₄₁-19.0-T-34.2-ch</td>
<td>4</td>
<td>S.1</td>
<td>su-9.1-T-30.8-Tu</td>
</tr>
<tr>
<td>2-4d</td>
<td>2</td>
<td>L</td>
<td>ts₁-9.6-T-8.8-v₄</td>
<td>4</td>
<td>near Tu</td>
<td>su-5.6-T-18.8-Tu</td>
</tr>
<tr>
<td>2-4(a-29)</td>
<td>2</td>
<td>L</td>
<td>ts₁-v₄-22.3-T</td>
<td>4</td>
<td>S.1</td>
<td>T-1.5-bm₁-pr</td>
</tr>
<tr>
<td>2-5a</td>
<td>2</td>
<td>L.1</td>
<td>B-T-7.3-v₄</td>
<td>5</td>
<td>S.1</td>
<td>bm₁₁</td>
</tr>
<tr>
<td>2-5b</td>
<td>2</td>
<td>L</td>
<td>B-T-5.0-v₄</td>
<td>5</td>
<td>S.1</td>
<td>T-9.6-pl₁-sm</td>
</tr>
<tr>
<td>2-6a</td>
<td>2</td>
<td>L.3</td>
<td>v₄¹+1.1</td>
<td>6</td>
<td>L.3</td>
<td>P₁-sm-3.3-T</td>
</tr>
<tr>
<td>2-6b</td>
<td>2</td>
<td>S.75</td>
<td>g₁₂-3.9-T-0.9-B</td>
<td>6</td>
<td>near Y</td>
<td>T₁-1.3-ra-gl₁</td>
</tr>
<tr>
<td>2-6c</td>
<td>2</td>
<td>L.3</td>
<td>ts₁-12.3-T-1.7-v₄</td>
<td>6</td>
<td>L.3</td>
<td>T₁-5.7-ra-gl₁</td>
</tr>
<tr>
<td>2-6d</td>
<td>2</td>
<td>L.3</td>
<td>ts₁-26.6-T-1.1-v₄</td>
<td>6</td>
<td>near 1</td>
<td>C-wx-30.7-T</td>
</tr>
<tr>
<td>2-7b</td>
<td>2</td>
<td>L.25</td>
<td>ts₁-15.3-T-5.4-v₄</td>
<td>7</td>
<td>L.2</td>
<td>C-wx-7.5-T</td>
</tr>
<tr>
<td>2-7c</td>
<td>2</td>
<td>L.3</td>
<td>ts₁-v₄-1.0-T</td>
<td>7</td>
<td>L.7</td>
<td>T-1.9-g-R</td>
</tr>
<tr>
<td>2-9a</td>
<td>2</td>
<td>S.65</td>
<td>sk±0.5</td>
<td>9</td>
<td>L.65</td>
<td></td>
</tr>
<tr>
<td>2-9b</td>
<td>2</td>
<td>S.1</td>
<td>ts₁-5.0-T-7.8-v₄</td>
<td>9</td>
<td>L.2</td>
<td></td>
</tr>
<tr>
<td>2-10a</td>
<td>2</td>
<td>L.2</td>
<td>ts₁-13.5-T-6.5-v₄</td>
<td>10</td>
<td>L.7</td>
<td></td>
</tr>
</tbody>
</table>

E. G. Anderson
1. **A new mutable gene.**

Mutations have been found at the P, Bt, and Wx loci. These mutable alleles may be described as recessives with a high mutation rate to the dominant allele. In addition, there is the genically induced mutability of recessive a by the Dt gene. The effect of Bt on recessive c probably belongs in this category. A new type of mutable allele has recently been found. A dominant A allele mutates with high frequency in both somatic and germinal tissue to an intermediate allele producing light aleurone color and red-brownish plant color. The effect on pericarp color has not yet been determined. An example of the mutation rate of this mutable A allele (designated A^M) is as follows: The cross of a x A^M gave 74 kernels with self-colored aleurone, 61 kernels mosaic for deep and light-colored aleurone, and 24 with light-colored aleurone. At least two different intermediate alleles, differing in intensity of color in aleurone and plant, have been found.

2. **Directed segregation.**

A derived strain from a complex translocation involving chromosomes 5 and 3 has the following constitution: Nine normal bivalents, including chromosome 5, and a chain of three consisting of a normal chromosome 3, a short arm, and a long arm of chromosome 3. When this chain of three is present in plants with a certain genetic background, the orientation of the chain on the metaphase I spindle is approximately random, i.e., orientation of the chain leading to alternate segregation of the three members and giving euploid combinations occurs in 50 per cent of the P.M.C., while a linear orientation leading to aneuploid gametes occurs in 50 per cent of the P.M.C. In other strains, differing in genetic modifiers from the above, the orientation of the chain is such that in about 95 per cent of the cells the normal chromosome 3 passes to one pole while the other two members of the chain pass together to the other pole. Here we apparently have a case of genic control of orientation, and hence segregation. This finding is of interest in connection with the breeding behavior of Oenothera translocations.

3. **Maize strains with 11 bivalents.**

From the translocation mentioned above it has been possible to obtain plants with 11 pairs of chromosomes. They carry no duplication of genetically active chromatin. This increase in chromosome number was a consequence of the breaking of the centromere of chromosome 3 into two portions with both the short and long arms receiving part of the parental centromere.

M. M. Rhoades
New allele of Ga on chromosome 4.

In the course of studies on a new chlorophyll striping character, a super-allele of Ga on chromosome 4, was found. This allele, Ga⁸, is dominant over Ga. Small ga pollen does not function on Ga⁸ silk even in the absence of competition with Ga or Ga⁸ pollen. Out of 14 such crosses only one seed developed on one ear. The other 13 ears were completely devoid of seeds. This is interesting in view of the fact that ga pollen does function on Ga silk when there is no competition with Ga pollen. Selfing of plants heterozygous for Ga and Ga⁸ using sugary as a marker, Ga su/Ga⁸ Su, showed that Ga⁸ pollen functions in the production of approximately 66 per cent of the kernels when competing on Ga⁸ silk. This super-allele appears to be independent of the striping.

Drew Schwartz

Studies with mutable waxy.

An allele at the waxy locus (wx^m), which mutates with a high frequency to Wx in both endosperm and germinal tissue, is under investigation. This allele is intermediate between Wx and wx^s; wx^m plants segregate approximately 3 Wx:1 wx^m; and wx^mwx^s plants approximately 3 wx^m:1 wx^s. (Ratios deviate from 3:1 in some cases due to germinal mutations.)

Typically, a wx^mwx^s plant when selfed gives three classes of kernels: About 1/4 waxy, less than 3/4 mosaic (waxy with various sized spots of normal starch), and a variable number (often 5-20 per cent) of kernels with normal starch endosperm.

The most readily observable mutation both somatically and germinally is from wx^m to Wx. Mutation rate comparisons made between different stocks by counting the numbers of Wx kernels produced in crosses wx^mWX backcrossed or selfed, indicate differences of the following order of magnitude:

<table>
<thead>
<tr>
<th>Stock</th>
<th>wx<sup>m</sup></th>
<th>Wx</th>
<th>wx<sup>s</sup></th>
<th>% Wx</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-43-12 selfed</td>
<td>140</td>
<td>4</td>
<td>1</td>
<td>2.7%</td>
</tr>
<tr>
<td>S-47-2 x wx<sup>s</sup></td>
<td>199</td>
<td>41</td>
<td></td>
<td>17.0</td>
</tr>
<tr>
<td>9903-10 selfed</td>
<td>63</td>
<td>24</td>
<td></td>
<td>27.5</td>
</tr>
<tr>
<td>9903-4 selfed</td>
<td>53</td>
<td>34</td>
<td></td>
<td>39.0</td>
</tr>
</tbody>
</table>

The mutable allele probably also mutates to wx^s. Four ears from a cross wx^swx^s x wx^mwx^m threw 5.3 per cent wx^s seed. A mosaic kernel when grown and selfed gave the phenotypic ratio 29 Wx:212 wx^s; 19 wx^s - the 29 Wx and 19 wx^s kernels arising by mutation. These seeds are being grown now to establish their genotype.

In a few stocks, kernels have been found consisting entirely of normal starch except for many small scattered waxy spots. Since in
these cases the rest of the ear bore all normal starch kernels (Wx by mutation), these spotted kernels may represent reverse somatic mutations of a somewhat unstable Wx' allele back to Wx.

A study of the distribution of Wx and wx pollen grains in alcohol preserved tassels from Wxwxm plants (Wx grains stain blue and waxy stain red with weak IKI) indicates that mutations may occur so early in tassel development as to affect an entire branch, or even a few neighboring branches. On the other hand, some branches carry anthers segregating in varying ratios, indicating later mutations. Mapping of ears from crosses Wxwxm x wxswxs has not revealed any sectored pattern as yet.

Ruth Sager

Connecticut Agricultural Experiment Station
New Haven, Connecticut

Varieties of corn grown in the Northeast and in the Middle West at the same latitude are noticeably taller in the East. Several environmental conditions are involved in this growth difference, principally light intensity and temperature. Plants of many species, including maize, grown under tobacco shade cloth are significantly taller and broader in leaf than plants from the same lots of seed grown in full sunlight. Under the cloth shade the temperature is the same as outside but the humidity is higher and the light intensity is lower. The same effect is noticed in the field where short-stalked varieties of corn are grown in single rows between taller varieties. Where there is a wide alley between ranges the plants at the ends of the rows are shorter than those in the center of the rows, the plants graduating in height. Here humidity and temperature are the same but light intensity varies.

Some corn seedlings started in the greenhouse and set outdoors were shorter at maturity than plants from the same seed started outdoors. This indicated that temperature in the early stages of growth had an effect. To test this, seeds of a uniform, vigorous, first generation hybrid (MF9 x F8) were germinated in an incubator at about 30° C, until the shoots and roots were from one fourth to one half inch long. Three different lots of sprouted seedlings, were held at 40, 50 and 60° C, for one hour. They were then planted in pots and left in the greenhouse until it was certain the plants would grow. They were then set in the field alongside plants from the same lot of seed sown in the open ground at the same time the treated seedlings were started in the incubator. Some of the treated seedlings died but enough were started in each lot and later thinned to give an even stand of plants in the field.

All three lots of heat-treated seedlings were shorter in height, less vigorous in growth throughout the season and later in flowering than the treated plants. All lots grew to full maturity and were measured after growth had ceased. The results are: Control 101: 40° C, 87; 50° C, 89; 60° C, 93 inches in height. The differences between the three
temperature treatments are small. All three averaged 90 compared to 101 inches in height for the control.

The result that was not anticipated was the pollen sterility in all treated lots. Normal tassels were produced with well-developed florets but the anthers were small and shriveled and for the most part remained enclosed in the glumes. In view of the fact that high temperatures sterilize the male germ cells in animals, from amphibians to mammals, these results are highly significant. This influence on growth is an anti-vernalization effect and may have wide usefulness in the production of hybrid seed especially if shown by other plants as well as maize.

D. F. Jones

A second "Teopod" mutation.

Another mutation to Teopod or a similar character, has occurred. This mutant was discovered by Dr. Bailey Pepper of the New Jersey Experiment Station in a field of sweet corn growing in New Jersey. We obtained seed from Dr. O. M. Haensler of the New Jersey Station. It was grown under the name of "Corn Grass" because it was much more like a grass than normal corn. The blades of the leaves are narrow and there are many tillers giving a grassy appearance. In the field the plants do not exceed three feet in height and look much less like normal corn than the Teopod of Lindstrom. However until the two stocks have been tested by crossing it is not possible to state whether they are allelic. These tests will be made in 1947.

The "second Teopod" was first grown in Connecticut in 1945. Seed from the mutant produced two kinds of plants, normal and Teopod, in approximately equal numbers. The normal plants were recessive. Open-pollinated seed from the Teopod plants gave in 1946 a 1:1 ratio for normal and Teopod. In the field in 1945 and 1946 no tassels of any kind were produced. The stock has been maintained by backcrossing to normal corn.

In the 1946-1947 greenhouse, crop grown under a shorter day, tassels with apparently good pollen have been produced.

The "Teopod" reported here makes many brace roots beneath the leaf sheaths. Some of these grow to be several inches in length. It occurred to us we might propagate these asexually and an attempt was made. The cut stalks rooted and lived for several weeks. Had the attempt been made earlier in the summer, it is possible they might have been successful.

One is forced to speculate whether mutations to such bizarre types as Teopod may have any bearing on the origin of corn. If a single gene can change the habit of a corn plant so completely, might not a reverse mutation have originally occurred to give us normal corn? Possibly the ancestor of maize may have been something more like one of the Teopods.

W. R. Singleton
The relation of plant colors to total dry weight in maize.

A number of years ago Brink (Jour. Amer. Soc. Agron. 26: 697-703, 1934) reported the relative yielding capacity of four different anthocyanin plant-color types, namely, purple A B Pi, sun red A B pl, dilute purple A b Pi, and dilute sun red A b pl. The stocks were so bred that all four classes occurred with approximately equal numbers in each of the 11 families involved in the test and so that the residual genotypes of the four color classes were approximately the same. Some-what more than 3500 plants were observed and yields were reported as average dry weight of ears per plant in pounds as follows: Purple .433, sun red .569, dilute purple .561, dilute sun red .511. Thus dilute sun red, the prevailing color type of the country, yielded significantly more than purple and both sun red and dilute purple significantly more than dilute sun red.

The writer has made similar tests, using total dry weight of plant as the criterion of yield. The genes b and pl were derived from two dilute sun red (A b pl) inbred dent lines and their dominant alleles from several genetic stocks, including purple A B Pi, brown a B Pi, and reddish brown a b B Pi. Each of these genetic stocks was crossed with each dilute sun red inbred and purple plants of the resulting progenies were backcrossed from one to three times with the same or the alternate inbred. Some of the cultures, therefore, were little if any more vigorous than the inbred lines and some showed marked heterosis. The four color types of any one culture, however, were comparable and occurred in approximately equal numbers. In table 1 are shown the average dry weights per plant in grams for the several color types of each of 14 cultures.

Table 1

<table>
<thead>
<tr>
<th>Culture number</th>
<th>Number of plants</th>
<th>Mean dry weight per plant</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A B Pi</td>
<td>A B pl</td>
</tr>
<tr>
<td>1</td>
<td>90</td>
<td>142</td>
</tr>
<tr>
<td>2</td>
<td>76</td>
<td>129</td>
</tr>
<tr>
<td>3</td>
<td>91</td>
<td>165</td>
</tr>
<tr>
<td>4</td>
<td>92</td>
<td>133</td>
</tr>
<tr>
<td>5</td>
<td>93</td>
<td>206</td>
</tr>
<tr>
<td>6</td>
<td>73</td>
<td>78</td>
</tr>
<tr>
<td>7</td>
<td>96</td>
<td>204</td>
</tr>
<tr>
<td>8</td>
<td>89</td>
<td>161</td>
</tr>
<tr>
<td>9</td>
<td>89</td>
<td>118</td>
</tr>
<tr>
<td>10</td>
<td>89</td>
<td>187</td>
</tr>
<tr>
<td>11</td>
<td>74</td>
<td>117</td>
</tr>
<tr>
<td>12</td>
<td>76</td>
<td>68</td>
</tr>
<tr>
<td>13</td>
<td>96</td>
<td>202</td>
</tr>
<tr>
<td>14</td>
<td>94</td>
<td>186</td>
</tr>
<tr>
<td>Total</td>
<td>1218</td>
<td></td>
</tr>
<tr>
<td>Average of mean dry weights</td>
<td>150</td>
<td>151</td>
</tr>
</tbody>
</table>
In addition to backcrossing heterozygous purple plants of table 1, certain sun red and dilute purple plants were backcrossed with one or other of the same dilute sun red inbreds. Results are shown in table 2.

Table 2

<table>
<thead>
<tr>
<th>Culture number</th>
<th>Number of plants</th>
<th>Mean dry weight per plant</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>76</td>
<td>143 110</td>
</tr>
<tr>
<td>16</td>
<td>89</td>
<td>129 124</td>
</tr>
<tr>
<td>17</td>
<td>86</td>
<td>128 134</td>
</tr>
<tr>
<td>18</td>
<td>80</td>
<td>123 110</td>
</tr>
<tr>
<td>19</td>
<td>82</td>
<td>132 128</td>
</tr>
<tr>
<td>20</td>
<td>79</td>
<td>108 103</td>
</tr>
<tr>
<td>21</td>
<td>91</td>
<td>222 238</td>
</tr>
<tr>
<td>22</td>
<td>95</td>
<td>195 192</td>
</tr>
<tr>
<td>23</td>
<td>94</td>
<td>201 194</td>
</tr>
<tr>
<td>24</td>
<td>95</td>
<td>195 217</td>
</tr>
<tr>
<td>25</td>
<td>82</td>
<td>120 106</td>
</tr>
<tr>
<td>26</td>
<td>83</td>
<td>72 75</td>
</tr>
<tr>
<td>27</td>
<td>92</td>
<td>239 251</td>
</tr>
<tr>
<td>28</td>
<td>92</td>
<td>206 201</td>
</tr>
<tr>
<td>Total</td>
<td>1222</td>
<td></td>
</tr>
</tbody>
</table>

Average of mean dry weights: 160 156
From the results presented in table 1, it is obvious that purple plants were not appreciably less in dry weight than sun red and dilute purple plants. The dilute sun red plants were lowest in dry weight but not markedly less than the other three color types. The results given in table 2 were similar to those of table 1. In one lot of cultures, dilute sun red plants were slightly less in weight than sun red ones. In the second lot of cultures, dilute sun red again was less in weight than dilute purple; and the difference here is greater than in the other tests.

On the whole and in so far as the results here reported are concerned, it can be said that in segregating cultures, dilute sun red plants were slightly less in total dry weight than were plants of the other color types. Whether or not the fact has any significance, it should be remembered that, in all these tests, comparisons have been made between homozygous dilute sun red and heterozygous purple, sun red, and dilute purple.

Among genes other than B and P_l that are related to plant colors of maize, the A_a pair is of fundamental importance. In most instances, only in the presence of dominant A do anthocyanin pigments develop. Where A results in purple or red, its recessive alleles usually give brown or have no appreciable effect on color. Accordingly several tests have been made of the possible influence of A and of some of its alleles on dry weight of plant. Certain colorless (green) types were crossed with the two dilute sun red inbreds used in the tests noted above. The F_1 plants were backcrossed to the colorless parent. Three sets of cultures were grown from the following crosses: (a B pi x A b pi) x a B pi, (a b P_l x A b pl) x a b pi, and (a b pi x A b pi) x a b pi. In each set of cultures, two color types were represented. The results are given in table 3.

The records of table 3 reveal small but not consistent differences in total dry weight of plant between colored and colorless individuals of the several cultures. In averages of mean dry weights, sun red plants were about five per cent lighter than the corresponding colorless ones, while dilute purple and dilute sun red plants were heavier than their colorless sibs by six and three per cent, respectively. With the genotypic backgrounds here involved, there was relatively little effect of A and of its recessive allele a on total dry weight of plant.

There remains to be considered a possible difference between the influence of A and of some of its recessive alleles when the background genotype contains both dominant B and dominant P_l. In one lot of tests purple A B P_l was crossed with brown a B P_l and backcrossed once with the same brown. The results are recorded in the first section of table 4. Another allele of A, namely, aF, gives a reddish brown plant when in combination with B and P_l. Reddish brown was crossed with one of the two dilute sun red inbreds and the purple plants resulting were backcrossed once or twice with the same reddish brown. Recessive a_2 with B and P_l gives brown plant color. This brown was crossed with reddish brown and the resulting purple F_1 plants were backcrossed with reddish brown. The genotypes concerned here are as follows: (A a_2 B P_l x aF a_2 B P_l) x aF A_2 B P_l. All these progenies, segregating purple and reddish brown, are recorded in the second section of table 4.
Table 3

<table>
<thead>
<tr>
<th>Culture number</th>
<th>Number of plants</th>
<th>Mean dry weight per plant</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A B pl</td>
</tr>
<tr>
<td>42</td>
<td>83</td>
<td>150</td>
</tr>
<tr>
<td>43</td>
<td>73</td>
<td>158</td>
</tr>
<tr>
<td>44</td>
<td>88</td>
<td>162</td>
</tr>
<tr>
<td>45</td>
<td>70</td>
<td>176</td>
</tr>
<tr>
<td>46</td>
<td>81</td>
<td>159</td>
</tr>
<tr>
<td>47</td>
<td>83</td>
<td>182</td>
</tr>
<tr>
<td>48</td>
<td>78</td>
<td>210</td>
</tr>
<tr>
<td>49</td>
<td>52</td>
<td>189</td>
</tr>
<tr>
<td>50</td>
<td>65</td>
<td>184</td>
</tr>
<tr>
<td>51</td>
<td>57</td>
<td>182</td>
</tr>
<tr>
<td>Total</td>
<td>735</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>633</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>549</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4

<table>
<thead>
<tr>
<th>Culture number</th>
<th>Number of plants</th>
<th>Mean dry weight per plant</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>72</td>
<td>48</td>
<td>150</td>
</tr>
<tr>
<td>73</td>
<td>80</td>
<td>95</td>
</tr>
<tr>
<td>74</td>
<td>83</td>
<td>109</td>
</tr>
<tr>
<td>75</td>
<td>80</td>
<td>97</td>
</tr>
<tr>
<td>Total</td>
<td>291</td>
<td></td>
</tr>
</tbody>
</table>

Average of mean dry weights 113 98

<table>
<thead>
<tr>
<th>Culture number</th>
<th>Number of plants</th>
<th>Mean dry weight per plant</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>76</td>
<td>61</td>
<td>126</td>
</tr>
<tr>
<td>77</td>
<td>61</td>
<td>119</td>
</tr>
<tr>
<td>78</td>
<td>71</td>
<td>111</td>
</tr>
<tr>
<td>79</td>
<td>61</td>
<td>115</td>
</tr>
<tr>
<td>80</td>
<td>49</td>
<td>156</td>
</tr>
<tr>
<td>81</td>
<td>40</td>
<td>128</td>
</tr>
<tr>
<td>82</td>
<td>81</td>
<td>112</td>
</tr>
<tr>
<td>83</td>
<td>63</td>
<td>142</td>
</tr>
<tr>
<td>84</td>
<td>56</td>
<td>126</td>
</tr>
<tr>
<td>85</td>
<td>66</td>
<td>140</td>
</tr>
<tr>
<td>86</td>
<td>76</td>
<td>157</td>
</tr>
<tr>
<td>Total</td>
<td>685</td>
<td></td>
</tr>
</tbody>
</table>

Average of mean dry weights 130 103

<table>
<thead>
<tr>
<th>Culture number</th>
<th>Number of plants</th>
<th>Mean dry weight per plant</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>87</td>
<td>59</td>
<td>167</td>
</tr>
<tr>
<td>88</td>
<td>68</td>
<td>170</td>
</tr>
<tr>
<td>89</td>
<td>41</td>
<td>173</td>
</tr>
<tr>
<td>90</td>
<td>45</td>
<td>162</td>
</tr>
<tr>
<td>91</td>
<td>75</td>
<td>154</td>
</tr>
<tr>
<td>92</td>
<td>67</td>
<td>163</td>
</tr>
<tr>
<td>93</td>
<td>83</td>
<td>171</td>
</tr>
<tr>
<td>94</td>
<td>92</td>
<td>136</td>
</tr>
<tr>
<td>95</td>
<td>73</td>
<td>140</td>
</tr>
<tr>
<td>96</td>
<td>77</td>
<td>117</td>
</tr>
<tr>
<td>97</td>
<td>73</td>
<td>207</td>
</tr>
<tr>
<td>98</td>
<td>67</td>
<td>140</td>
</tr>
<tr>
<td>99</td>
<td>78</td>
<td>172</td>
</tr>
<tr>
<td>Total</td>
<td>898</td>
<td></td>
</tr>
</tbody>
</table>

Average of mean dry weights 159 126
Brown plants of the genotype $A\ a^2\ B\ P_1$ were crossed with one of the dilute sun red inbreds, with purple, and with reddish brown. In all instances the resulting F_1 purple plants were backcrossed with $A\ a^2\ B\ P_1$. Here then the brown plant color is conditioned not by an allele of A but by an allele of A^2. The cultures involving A^2 and a^2 are listed in the third section of table 4.

Cultures segregating for purple and brown plant color, as shown in table 4, whether the brown color is conditioned by a, or its allele a^p, or by a gene of a different chromosome a_2, all exhibit consistent results. The averages of the mean dry weights are greater in each of the three lots of cultures by from 15 to 26 per cent for the purple than for the brown plants. Moreover in each of the 28 cultures of table 4 without a single exception, the purple plants are heavier than the brown ones.

Since for one of the genes conditioning brown plant color, namely, a, no consistent effect on weight was found when A and a were combined with $B\ P_1$, $b\ P_1$, and $b\ P_1$ (table 3), it seems reasonable to assume that the lighter weight of brown plants conditioned by a, a^p, or a_2 in contrast with purple plants conditioned by the dominant alleles of these genes, results from some deleterious effect of the brown pigments in the physiology of the plant, rather than from a direct effect of the recessive genes or of growth factors closely linked with them.

R. A. Emerson

Florida Agricultural Experiment Station
Gainesville, Florida

Mendelian interpretation of offspring-parent regressions.

Dr. K. Mather on his recent visit to this country discussed some extensions of methods proposed by Fisher, Immer and Tedin, (Genetic 1932), for estimation of dominance bias in quantitative inheritance.

My own attack in the last News Letter is also an extension of the same. My approach seems to have some advantages from employing highly inbred or homozygous parents. Uncertainty on linkage effects is largely eliminated. Dominance does not reduce correlation between phenotypes of homozygous parents and the gametes they produce. I have found no particular advantage in requiring equal frequency of a and A alleles by confining study to populations which stem from a single selfed heterozygote in each case. Samples of homozygous lines, selected or otherwise, seem to be satisfactory. If all of this be true the method must have a wide utility and may be presented again from more of a Mendelian and less of a mathematical viewpoint.

If the heterozygote $aAbbCcDd$ is crossed to the multiple recessive tester $aabbccdd$, testcross progeny may be classified on kinds and frequencies of four distinct qualitative characters to obtain a reflected view of dominant alleles in gametes of the heterozygote. This is the
method of classical genetics. It has been seldom noted here that regression of number of plus characters in testcross progeny on number of dominant alleles in parent gamete is 1.0. Every plus allele in a gamete provides a plus character in the zygote, regardless of linkage.

The top dominant AABBCCDD is clearly worthless as a tester. Offspring-parent regression is zero. Intermediate testers are efficient in inverse proportion to the number or proportion of loci of AA type. Thus if testers in general are of aa type at one half of the loci which are heterozygous in the F1 to be analyzed, a dominant allele in F1 gametes will provide a dominant character in testcross progeny in one half of the cases. In the other half the dominant character is always provided by the tester and a dominant allele in the F1 gamete can add nothing more. Regression is one half. Reduction of regression by dominant genes in the tester is purely a dominance effect. This dominance effect is reduced one half by selfing the testcrosses.

It hardly seems necessary to labor with the transfer of these concepts to the general field of multigenic inheritance where effects of the several genes combine in a single quantitative measure, and where dominance is taken into account quantitatively. In the former case, concern is primarily with frequencies. Basic effects of genes and dominance effects are both tacitly defined as unity throughout. In the latter case the two effects must be defined separately and quantitatively. We cannot assume that either is unity since we are concerned with degree of expression, not with just whether the character is or is not expressed.

In my attack the array of F1 gametes is replaced with an array of gametes from an array of homozygous parents. The purpose is no longer to obtain a reflected picture of the gametic array. That array is already revealed in the array of homozygous parents. The purpose now is to estimate regressions of testcross progeny on gamete or homozygous parent with different testers. If both the bottom recessive and top dominant were available as testers, decline in regression from one case to the other would reveal directly the average degree of dominance. But neither of those two testers is likely to be available in multigenic cases. We are restricted to a study of regression relations with such testers as we may be able to develop.

For quantitative definitions of basic gene effects and dominance effects we may well employ the general scheme of Fisher, et al (1932) which is essentially that of Fisher in his 1918 paper on correlation between relatives, and of Mathur on his recent visit. If the basic, phenotypic effect of substituting A for a is "d", phenotypes of aa, aA, AA are 0, d, 2d. The heterozygote is strictly intermediate. But if there is in addition an interaction of a with A to provide also a dominance effect "kd", the phenotypes are 0, d+kd, 2d. These quantities are deviations from a working origin at aa. Deviation of the heterozygote from strict intermediacy is kd, (h in the notation of Fisher, et al).

For a multiple set of genes a1A1, a2A2 -- anAn, we may as well let d and kd be average values for the several loci. Then if gene action is additive each genotype is evaluated (estimated) by summing the
several \(d \)'s and \(kd \)'s. The simplest case is \(n = 2 \). The checkerboard frame is

\[
\begin{array}{cccc}
4d & A_1A_2 & 2d & 3d \\
2kd & kd & 3d & 4d \\
\hline
a_1A_2 & 2d & 2d & 3d \\
kd & 0 & kd & \hline
2d & 2d & 3d & \hline
kd & 0 & kd & \hline
0 & 0 & d & 2kd \\
a_1a_2 & 0 & 0 & 2d \\
a_1a_2 & 0 & kd & 2kd \\
a_1a_2 & A_1a_2 & a_1A_2 & A_1A_2 \\
0 & 2a & 4d & \hline
\end{array}
\]

Table 1

Phenotypes of the 3 parent classes are written on the margins along with the gametes of each class. Phenotypes alone are written in interior cells for offspring. It may be desirable in teaching to write genotypes also in the cells and to evaluate some of them by counting a \(d \) for each \(A \) allele and a \(kd \) for each \(aA \) locus or each interaction of unlike alleles. It may also be desirable to write genotypes of parents and evaluate them, noting absence of dominance effects.

Table 1 is a simple regression surface. Our avowed purpose is to study the effect of \(k \) on the shape of the surface that we may interpret shapes of data surfaces in terms of \(k \), average degree of dominance.

In practice the homozygotes \(a_1a_1A_2A_2 \) and \(A_1A_1a_2a_2 \) are ordinarily indistinguishable. This means that the two center columns and two center rows of table 1 may as well be pooled to conform with the situation of data on a quantitative character. Pooling provides,
Note that the entry in the central cell, e.g., of table 2 is the mean of the four central cells of table 1. It is the predicted (average) result of crosses of homozygotes of the types indicated on the margins. Deviations of the four crosses from the mean are deviations from regression due entirely to dominance, to variations in degree of heterozygosity, specific combining ability. These variations are not predictable from data on the parents. The teacher should write frequency distributions of individual crosses in each cell of table 2 along with the means given here.

Note further that, while tables 1 and 2 represent two-factor checkerboards of classical genetics with gametes of F₁ recorded on the margins and F₂ phenotypes in interior cells, the view here is arrays of homozygous lines on the margins with F₁ phenotypes of crosses of such lines in cells of the tables. Subsequently, interior values will be referred to as F₁'s in agreement with modern corn breeding practice. The two situations are strictly analogous only when a and A are equally frequent in the sample of homozygous parents.

If table 2 is expanded to include many loci, parent values are 0, 2d, 4d, - - - - 2nd. A statement of the mean F₁ of any cell in terms of parent values would be the general regression function of F₁ on P₁ and P₂. The solution of this problem was given in the previous News Letter. The mean of any cell in a table of the type of table 2, may be calculated by solving a smaller checkerboard. Detailed arrays of gametes of the two parent types are written on the margins. But this is merely taking the product of two gametic arrays, a fundamental principle of Mendelism. Hence, if u and w are the proportions of loci AA in P₁ and P₂ respectively, gametic arrays are represented in general by $(1-u)a + ua$ and $(1-w)a + wA$. In all of the crosses of $P₁$ type parents x $F₂$ type parents together, expectations are $(1-u)(1-w)aa$, $[u(1-w) + w(1-u)]ua$, uwAA. The sum of these three proportions, each multiplied by n and by the respective phenotypes 0, 2d+kd, 4d, is the expected increment of mean F₁ over the multiple recessive T. Making the substitutions $u = (P₁-T)/2nd$ and $w = (P₂-T)/2nd$ provides the desired function.

<table>
<thead>
<tr>
<th>P₂</th>
<th></th>
<th>3d</th>
<th>4d</th>
</tr>
</thead>
<tbody>
<tr>
<td>2d</td>
<td>2d</td>
<td>3d</td>
<td>4d</td>
</tr>
<tr>
<td>kd</td>
<td>kd</td>
<td>kd</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>kd</td>
<td>2kd</td>
</tr>
<tr>
<td>0</td>
<td>2d</td>
<td>4d</td>
<td></td>
</tr>
</tbody>
</table>

Table 2 -
The concept \(u = \frac{(P_1 - T)}{2nd} \) might be presented effectively to a class by laying off an arbitrary scale to represent the range of phenotype from

\[
\frac{P_1}{T} = \frac{(2nd + T)}{2nd}
\]

bottom recessive to top dominant. The scheme is to count \(2d \) for each locus \(AA \) as the increment above \(T \), hence, \(2nd \) where all \(n \) loci are \(AA \). The position of any homozygote \(P_1 \) on this scale reveals directly the proportion of loci \(AA \) in \(P_1 \), \(u = \frac{(P_1 - T)}{2nd} \).

The purpose of \(T \) is to adjust for the possibility that the phenotype of the bottom recessive is not zero on the data scale.

It is instructive to verify from table 2 results reported last year. The left column may represent a series of hybrids having a common parent \(P_1 \), the tester, which is \(aa \) at each locus. Lines being tested are represented on the parallel margin as different values of the variable \(P_2 \).

It is clear that if the tester is completely recessive, every substitution of \(AA \) for \(aa \) in \(P_2 \) will provide a substitution of \(aA \) for \(aa \) in \(F_1 \). Regression of \(F_1 \) on \(P_2 \) is \((aA - aa)/(AA - aa) \) or (one basic gene effect plus one dominance effect)/(two basic effects) or \((1+k)/2 \). Note that the increment from one cell to the next, left column of table 2, is \(d+kd \) and that the corresponding increment in the \(P_2 \) column is \(2d \). The ratio is \((1+k)/2\). When \(P_1 \) is \(aa \) throughout \(P_1 - T = 0 \). Substitute in last year's formula for \(bp \) to obtain \(bp = \frac{(1+k)}{2} \), if \(P_1 - T = 0 \).

Similarly from the right column of table 2, \(bp = \frac{(1-k)}{2} \), when \(P_1 \) is \(AA \) throughout, \((P_1 - T) = 2nd \). Expansion of table 2 to include many loci will not provide different results.

If, as in most actual cases, some proportion \(u \) of the loci of \(P_1 \) is \(AA \) and \(1-u \) is \(aa \), the weighted mean increment of \(F_1 \) is \(\frac{[k(1-u)(d+kd) + nu(d-kd)]}{n} \). Or the weighted mean of slopes is \(\frac{(1-u)(1+k)/2 + u(1-k)/2}{(1+k)/2 - k} \). Substituting \(u = \frac{(P_1 - T)}{2nd} \), \(bp = \frac{(1+k)}{2} - \frac{k}{2nd} \frac{(P_1 - T)}{2} \).

If \(bp \) is \((1+k)/2 \) in the left column of table 2 and \((1-k)/2 \) in the right column the increment of \(bp \) across the table is \(\frac{[(1-k) - (1+k)]}{2} = -k \). The concurrent increment of \(u \) is \(1 \), and of \(P_1 \) it is \(2nd \). Regression of \(bp \) on \(u \) is \(-k \) and on \(P_1 \) it is \(-k/2nd \), as the formula \(bp = \frac{(1+k)}{2} - \frac{k}{2nd} \frac{(P_1 - T)}{2} \) expressly states.

Thus, the values reported last year may be verified and their interpretations clarified by direct inspection of table 2.

If it is not immediately obvious that the regression estimates are unaffected by linkage and by relative frequencies of \(a \) and \(A \) alleles, except as noted, the student may need to work out some specific examples with numerical values assigned to \(d, \ kd, q, \) and per cent crossover and calculate regressions by machine formulas as well as by direct substitution in present formulas.
It is also clear that bp for the midcolumn or midrow of table 2 is one half, and that mean bp for all three columns or all three rows is one half. This latter case of mean bp for the whole table is the one usually calculated for regression of offspring on one parent. If a and A alleles are equally frequent, frequencies of the three columns are expected in the ratio 1:2:1 and dominance effects on regression are effectively cancelled. Note that bp is always one half if $k = 0$. But if a alleles are in the minority, the frequency of the right column will be greater than that of the left column and expectation is that dominance will depress mean partial regression below one half. This seems to be an adequate explanation of low regressions of yields of corn hybrids on yields of inbred parents. No alternative explanations of higher order interactions of genes or of inefficient plot technique appear to be necessary.

The function, $F_1 = b_{1a}P_1 + b_{1b}P_2 + b_{2}P_1P_2 + C$ may be fitted to data on samples of homozygous parents and the several F_1 crosses, or F_2 by selfing F_1. For F_1 data, estimates of b_1 are estimates of $(1+k+kT/na)/2$, on the assumption of additive gene action. Estimates of b_2 are estimates of $-k/2nd$. Regression of bp on P_1 or on P_2 is the same estimate of $-k/2nd$.

As indicated last year, the general regression function may be solved to obtain estimates of bottom recessive, top dominant, and average degree of dominance. From the regression of bp on P_1, the estimate of P_1 for $bp = 0$ may be obtained. This is the critical value of P_1. Such a tester combines equally well with poor, medium and good lines on the average. Better testers may be expected to combine better with low lines than with high lines, bp is negative.

The several estimates reported last year are in all respects surprisingly consistent with the hypothesis of overdominance in vigor of corn. Tests of significance of b_2 reported last year are apparently in error. The appropriate test is for significance of departure from linear regression (Snedecor 14*3). By this test no single estimate of b_2 is significantly different from zero which may mean merely that numbers are too small. The crucial point for overdominance is whether k is significantly greater than 1. An additional set of data from C. H. Woodworth, Cron Bolin and Earl R. Leng of the Illinois Experiment Station gives essentially the same picture. The critical value of P_1 is 4.4 bu./A. Yields of inbred parents range from 2 to 40. Mean yield of F_{1s} is 103.

We have then one more set of data consistent with the others in supporting the conclusion that the more vigorous inbred lines in hand are worthless or worse as testers for general combining ability, since bp is zero or negative with such lines as testers.

That the few sets of data are not crucial for overdominance is not surprising. They would not be crucial even if the test for k greater than 1 showed high significance in each case. So few cases of monogenic inheritance and linkage would not prove the chromosome theory of heredity. When many more sets of data on different types of characters in both cross- and self-fertilized species have been analyzed we may have a clearer picture of where and to what extent dominance bias occurs. But even then
the results can hardly be conclusive and we will probably still need to be content with theories which agree best with the whole body of evidence.

There is a suggestion in corn yield data that the relative order of rank within either a group of inbred lines or within a group of hybrids may be quite different in two different environments. Further, the shape of the fitted regression surface may also vary greatly in response to environmental effects. If alleles A' and A perform different functions in the sense of East, A'A' may be usually inferior but sometimes superior to AA. The heterozygote A'A if better buffered to environmental shifts may be on the average superior to either homozygote. In these events, A will probably be the more frequent and also the dominant favorable in the usual environment. But the possibility exists that in some environments A' will be the dominant favorable, with dominance still in the direction of greater vigor. The dominant favorable A' will be in low frequency. The ratio k of an average dominance effect to an average basic effect may be changed and with it the equilibrium gene frequency ratio. All of these shifts will be likely to appear in the regression analyses for a given sample of stable lines and F_1s in different environments.

Fred H. Hull

Addendum.

Since the above report was typed I have received from Dr. Paul H. Harvey yield records on 12 lines and the 66 F_1s and have now completed the first part of the analysis. Yields of lines (selfed four times) ranged from 12 to 24 bu./A. Mean F_1 is 46. The critical value of P is 25, one bushel above the top line. These data seem to agree with the other sets and the conclusions drawn from them in all respects.

These last results have given me sufficient confidence to propose a further attack for which a considerable body of data is now available, - data on F_1s but not on the parent lines. Mean F_1 for any column of table 2 may be considered a measure of the general combining ability G of the constant parent for that column. It is easily demonstrated that G is a linear function of P. Hence, we may as well estimate the G value of a tester which provides zero partial regression of F_1 on G. Where the several F_1s of a group of lines have been tested in as many as four replications, one half of the replications may be employed to estimate G values for the lines. The remaining replications may estimate F_1s. Correlation of experimental errors in the two estimates are thus eliminated. The analysis, as before, is to run the simple regression of each F_1 column on the parallel column of G; then to run the simple regression of the first order regressions on G values of the respective constant parents; and finally to estimate G for $b_1 = 0$. If this critical value of G is within the range of the data the only direct interpretation I have found is over-dominance.

This kind of analysis has been run with the data on Late Yellow Single crosses from the cooperative tests of the U.S. Department of
Agriculture with Ohio, Indiana, Illinois, Kansas, Nebraska and Oklahoma in 1943. Mean G for each line was based on the data of five states for analysis with \(F_1 \) data of the sixth state in each case. The critical value of G is below the G measure of the top line in three cases and slightly above in two cases. In the sixth case the trend of regression is upward and the data are apparently not consistent with any dominance bias toward high yield. Interstate correlations of G values of the ten lines are mostly positive but not very large. This kind of analysis is apparently of some worth where such data are available but it would seem that the attack outlined in the preceding paragraphs would be more efficient and also applicable to more data.

Fred H. Hull

Harvard University
Cambridge, Massachusetts

1. Mid-cob color described by Demerec some years ago is probably due to one of the alleles of the \(R \) series. At least the gene responsible for it shows close linkage with \(G \) on chromosome 10. Color in the cob is associated with colored internodes in the stalk.

2. In various strains of the Guarany corn of Paraguay mid-cob color is frequently associated with a faint purple color on the pistillate glumes or bracts. The gene responsible for this color is an allele of \(P_l \) and shows linkage with \(Y \) on chromosome 6. In the presence of \(B \) the purple glume color becomes very intense and is also extended to the leaves and stalks. This new allele, or another in the series, seems also in certain stocks to be responsible for the basal glume in the tassel.

3. Most of our time and space this season was devoted to determining on which chromosomes are located the multiple-factor segments which distinguish maize and teosinte. Relatively isogenic stocks, homozygous for one or more multiple-factor segments, were produced by crossing four varieties of teosinte with an inbred strain, backcrossing three times to the same inbred, and selfing. These were then crossed to a nine-gene linkage tester and backcrossed to a second nine-gene tester. The ears in these populations were then classified with respect to presence or absence of the multiple-factor segments from teosinte. Such classifications are far from completely accurate, because the effect of the segments vary with the influence of several genes in the tester stock, especially \(a \) and \(g \). Linkages can be detected, however, even when the classification is purely arbitrary, although exact crossing-over percentages cannot be determined from these particular studies. The results of these tests are shown in the accompanying table. Analysis of the data was greatly simplified by the use of McBee punched cards which can be sorted with a simple, inexpensive tumbler.
Table I. Summary of linkage relations of the multiple-factor segments derived from four varieties of teosinte

<table>
<thead>
<tr>
<th>Variety of teosinte</th>
<th>Number of segments</th>
<th>Linkage with chromosome number</th>
<th>Total number chromosomes tested</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Florida</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summary</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Durango</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summary</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summary</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nobogame</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summary</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grand Summary</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* = Linkage
I = Indication of linkage
- = Independent inheritance
The important fact gained from this study is that the multiple-factor segments which distinguish maize and teosinte are located on chromosomes 1, 3, 4, and 9 in Florida and Durango teosintes. In Novogame teosinte which had previously been shown to carry only three major segments, chromosomes 3, 4, and 9 are involved. In "New" teosinte chromosomes 3, 4, 9, and possibly 7 are involved. The remaining chromosomes appear to carry none of the major multiple-factor segments which distinguish maize and teosinte. They are probably not lacking in genes which affect the various characters which distinguish the two species but these are either modifiers or segments too small to be detected by the methods followed in this experiment which depend wholly upon dominant or partially dominant effects.

It should be noted that chromosome 6 was not represented in the nine-gene linkage tester. Previous studies on crosses of Florida teosinte with a stock including bm on this chromosome gave no indication that it is involved in the four major segments.

The exact location of these segments and their length is yet to be determined. The segment on chromosome 1 shows very weak linkage with bm and since previous experiments with Florida teosinte had shown one of the segments to be strongly linked with P at the opposite end it is probable that this segment involves part of the short arm of chromosome 1. There is some crossing over within the segment.

The segment on chromosome 3 shows 25-30 per cent of crossing over with A. This segment is usually transmitted intact. Crossing over, if it occurs at all, is not readily detectable.

The segment on chromosome 4 includes the Su locus. There is considerable crossing over (about 30 per cent) within the segment.

Nothing is known about the position of the segment on chromosome 9, or the amount of crossing over which occurs within it.

The effects of the different segments are alike but not identical. All reduce the size of the seeds, and the diameter of the ear. All of them increase the prominence of the glumes and the number of ears produced on a single plant. At least two of these segments contribute very noticeably toward the reduction of number of rows of grain. In another experiment single segments were first rendered heterozygous by crossing with the original inbred strain, and the hybrid was then crossed with a second inbred to produce a vigorous and uniform F1 in which approximately half of the plants were heterozygous for the segment. Ears from plants heterozygous for the segments average two rows of grain less than those which lacked the segments.

The segments have no discernible effect upon the pairing of spikelets or response to length of day. It is probable that they carry genes affecting these characteristics but that threshold limitations prevent single spikes from appearing at these levels.

The corresponding segments derived from different varieties of teosinte are similar in the nature and magnitude of their effects. In each case the segment on chromosome 4 is the most "potent." In each case this segment exhibits crossing over within the segment. Furthermore,
a stock derived from Florida teosinte and homozygous for the segment on chromosome 4 is almost identical with a corresponding stock derived from Nobogame teosinte. Differences in teosinte varieties are attributable to: (1) Differences in the number of major segments; (2) the genetic nature of the maize varieties into which they have become incorporated; and (3) the probable presence of additional smaller segments or modifying factors.

We have some evidence that a single segment in heterozygous condition can increase yields appreciably, the extent to which this happens depending in part at least upon the kind of germ plasm with which it is combined. Hybrids involving some inbred strains are noticeably improved when small amounts of teosinte germ plasm are included.

It has so far been impossible to detect these segments cytologically. Stocks heterozygous for the segment on chromosome 4 occasionally exhibit a region of weak pairing on chromosome 4, but since similar regions are found on other chromosomes little significance can be attached to this. Apparently the segments are at least partly homologous to the corresponding regions of maize chromosomes so that there is no regular and distinct failure of pairing.

The new data seem to establish beyond any reasonable doubt the hybrid nature of teosinte. At least the varieties so far studied are nothing more than maize which has been contaminated by another species. The contamination is not a random one but involves multiple-factor segments of four, or in the case of Nobogame teosinte, three chromosomes. These foreign genes must have come either from Tripsacum, or from a "pure" variety of teosinte now extinct or yet to be discovered.

F. C. Mangelsdorf

(Ed. note: In correspondence Dr. Mangelsdorf has written, "I have an abundance of seeds of several nine-gene multiple testers and shall be glad to share it with anyone who wants some.")

Kentucky Agricultural Experiment Station, Lexington, Kentucky and U. S. Department of Agriculture, Beltsville, Maryland, cooperating

"Scattergrain" white double crosses.

In the fall of 1945 a number of farmers' fields of hybrid corn were reported in Kentucky, Tennessee and Indiana which failed to set seed properly. In several fields examined near Henderson, Kentucky, the seed set ranged from as low as about 20 per cent to 85 per cent or better. The difficulty received considerable local publicity and the hybrids concerned were locally designated as "scattergrain" hybrids. The trouble was restricted to white hybrids but the reports indicated that hybrids from several different seed corn companies were involved. Evidence
pointed to male sterility on a field-wide scale as the cause of the poor seed set. The amount of sterility occurring in the same hybrid varied from field to field and seemed to be worse in bottom-land fields that were planted late.

On the basis of information obtained on the pedigrees of some of the offending hybrids, seed of a series of reciprocal single crosses was collected or produced in the greenhouse during the winter of 1945-'46. Observational plantings of these singles and several of the "scattergrain" double crosses were made at Lexington, Berea and Henderson, Kentucky, and at Beltsville, Maryland, in 1946. The data obtained do not permit a critical analysis of the cause of the sterility as, for some unexplained reason, the sterility occurred with a much lower frequency in the single crosses than in the double crosses. Sufficient data were obtained on the sterility, however, to suggest the following as important contributory factors:

1. The sterility seems to occur only in crosses which have a cytoplasmic contribution from 33-16, an old inbred line developed in Indiana.
2. Sterility in the hybrids also is influenced by contributions from the male parent. The substitution of only one line in the male parentage of one of the "scattergrain" double crosses, completely eliminated the sterility in the resulting double cross.
3. The expression of the sterility is very subject to environmental influence.

Merle T. Jenkins
L. M. Josephson

Missouri Botanical Garden, St. Louis, Missouri, and
Pioneer Hi-Bred Corn Company, Johnston, Iowa

Inflorescence structure and row number.

Two abnormalities have previously been described which affect row number in maize, each in its own particular way. (1) Multiplication, recently described by Cutler, produces two spikelets where normally there would be one. In its lowest expression it is responsible for the occasional kernel squeezed in between the regular rows of northern eight- and ten-rowed flints. In its most extreme development it produces the crowded and apparently rowless ears commonly seen in parts of Central and South America. (2) Condensation (Anderson, Ann. Mo. Bot. Gard.) is a telescoping of successive internodes and is most easily analyzed in the tassel. In its extreme form it produces an elliptical or flattened, more or less fasciated ear. In its less extreme expressions it is responsible for most row numbers of 16 or above.
While these phenomena are not unknown in other grasses, as has been demonstrated by Cutler, they are both of them of a more or less teratological nature and it seemed probable that a study of the inflorescence structure in varieties of maize which have neither condensation nor multiplication might be illuminating. A special effort has been made to study such strains and, as anticipated, the structure of their inflorescences (tassels and ears) is much simpler than in other kinds of corn. Particularly as it concerns the central spike of the tassel, it does not seem to have been previously described. It is not spiral but whorled. There are two extreme types, those with whorls of two and those with whorls of three.

Old-fashioned eight-rowed flint corns are an example of one extreme. Their central spikes are in whorls of two pairs of spikelets, each whorl bearing its spikelets at right angles to the whorls immediately above or immediately below. The uppermost tassel branches are also clearly in whorls of two. The other extreme type is found in certain persistently 12- and 14-rowed strains of corn from South America and the Southwest. They have a structure similar to the eight-rowed flints but the central spike has whorls of three pairs of spikelets and the upper portion of the tassel has whorls of three branches. In the Great Plains there are varieties with from 10 to 12 rows. When they are without condensation they show various mixtures of two-whorled and three-whorled.

The apparent spiraling of the central spike is due to the regular alternation of two patterns of spikelet position from node to node. In the eight-rowed flints, for instance, if the spikelets are on the north and south sides at one node they are on the east and west at the next, then the north and south again, and so on. In the 12-rowed corns there is a similar alternation from positions A, C, E, to positions B, D, F, and then back again to A, C, E, producing a six-ranked spike. Since each spikelet pair on the ear produces two kernels of corn the ear-equivalent of a four-ranked spike will be an eight-rowed ear; for a six-ranked spike it will be a 12-rowed ear. The structure of the tassel in these eight- and 12-rowed races is almost transparently simple. The addition of a little condensation or multiplication, however, produces an organ so difficult to analyze that until these less complicated types had been studied the basic whorling was pretty completely concealed.

These observations allow us to put forward a series of hypotheses as to the various processes affecting row number in North American corn. They have already been tested genetically in part; further experiments are under way. The hypotheses are as follows:

There are at least four quite different characters which affect row number in maize. Each operates a different lever so to speak. (1) Maize is fundamentally either in whorls of two branches or whorls of three, or in various mixtures between these two extremes. There are indications that the genetic differences between the two-whorled and the three-whorled are multiple factorial.

In North America this basically simple difference is complicated by the almost universal presence of (2) Condensation. Preliminary genetic results suggest that this may be a single recessive gene, with a number
of modifying factors which usually hold down the expression of this fundamentally teratological condition. In Central and South America (3) multiplication is also an important factor in differences in row number. Nothing is yet known about its inheritance but various states of the phenomenon are known from very slight to very extreme. Except in an occasional inbred it is of little consequence north of Mexico. In addition to the above processes, row number can also be affected by the development or lack of development of the second floret as in Country Gentleman sweet corn and in various strains from South America.

These hypotheses can all be tested by orthodox genetic methods as soon as there are available multiple marker stocks which exhibit extreme values for the above phenomena, viz., condensation vs. non-condensation, three-whorl vs. two-whorl, multiplication vs. no multiplication.

Edgar Anderson

Pioneer Laboratory, Pioneer Hi-Bred Corn Company
Johnston, Iowa

Among 80 dent corn inbreds of commercial importance, chromosome knob numbers range from 2 to 8 with a frequency distribution as follows:

```
  2  3  4  5  6  7  8
```

The modal knob number is 4 with 3 and 5 as the two next most frequent classes. Knob number is strongly associated with at least two
morphological characters - number of rows of kernels and development of husk leaf blades (flag leaves). As knob numbers decrease, row numbers decrease and flag leaves become more pronounced. It is assumed that low knob numbers, low row numbers and long flag leaves were introduced into Corn Belt dent corn from Northern Flint varieties. It is interesting and perhaps significant that these characters are so strongly linked that even after a century of breeding they still remain together in dent corn inbreds.

Although exceptions have been observed, there is also an overall correlation between high knob number and shape of ear. For example, those inbreds which approach Mexican Pyramidal in ear shape usually fall into the higher chromosome knob groups.

William L. Brown
Princeton University
Princeton, New Jersey

New alleles of \(A \): The alleles \(A^b \) and \(a^p \), originating from Ecuador and Peru, respectively, are associated with brown, \(P \)-determined, pericarp color (Emerson and Anderson, Genetics 17:503-509, 1932). Both alleles are dominant to \(A \) (North American origin), which is associated with red pericarp color. Several mutants having intermediate plant color effects and arising spontaneously from \(A^b \) have a brown pericarp effect which likewise is dominant to the red of \(A \) (Stadler, News Letter 17:20-21, 1943). The divergent action of the \(A \) alleles of North and South American origin is revealed further in a series of dosage and dominance studies conducted by the author (Microfilm Abstracts 7: No. 1) and is being investigated further using exotic material collected from isolated regions of Peru and kindly supplied by the Pioneer Hi-Bred Corn Company, Johnston, Iowa. Some results of the preliminary work are reported here.

1. Dominance effects of Peruvian alleles associated with full purple-aleurone color (\(A^F \)). Small progenies from individual, open-pollinated, Peruvian ears were planted at Columbia, Missouri, in 1945 and crosses were made on \(aa \) and on \(A^p \). The progenies of the \(A \) crosses with those Peruvian plants which were shown to be homozygous for alleles determining full-purple aleurone color were planted at Ames, Iowa, in 1946. Since the \(A^p \) plants in the 1945 crosses were either \(A^p \) or \(A^p \), two kinds of progenies were expected; designating the \(A^F \) alleles carried by any individual Peruvian plant as \(A^F_1 \) and \(A^F_2 \) these progenies were expected to contain plants of the following genetic constitutions:

<table>
<thead>
<tr>
<th>Cross (1945)</th>
<th>Types in progeny (1946)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A^a) x (A^F_1/A^F_2)</td>
<td>(A^A^F_1; A^A^F_2)</td>
</tr>
<tr>
<td>(A^a) x (A^F_1/A^F_2)</td>
<td>(A^A^F_1; A^A^F_2; A^A^F_1; A^A^F_2)</td>
</tr>
</tbody>
</table>

Both types of progeny afford a test of the dominance effects of the
Peruvian alleles, the first in compounds with the \(A \) allele and the second in heterozygotes with both the \(A \) and \(a \) alleles. Crosses were made on individual plants within progenies using \(aT\ aT \) plants as a pollen source. Progeny type was thus distinguished by the presence or absence of dots and this was also the basis for distinguishing \(A/A-P \) from \(a/a-P \) plants within progenies of the second type. Seven such progenies representing the test of \(A-P \) alleles of separate origins in Peru were classifying for pericarp color; the available data are summarized in the following tables.

<table>
<thead>
<tr>
<th>Family</th>
<th>Cross</th>
<th>(\frac{a}{A} - P)</th>
<th>(\frac{A}{a} - P)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>red</td>
<td>brown</td>
<td>red</td>
</tr>
<tr>
<td>117</td>
<td>4</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>119</td>
<td>9</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>120</td>
<td>20</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In spite of the small numbers involved in these progenies it is obvious that the \(A-P \) alleles of isolated origin are not similar in their effects on pericarp color. Moreover, in the cases of four of the seven progenies (all excepting families 120, 123, and 124) the two \(A-P \) alleles associated in individual Peruvian plants show contrasted behavior. The data suggest that \(A-P \) alleles, so far as these progenies represent them, are of two types: One determining red pericarp color and indistinguishable from \(A \); the other determining brown pericarp color and having an effect completely dominant to that of \(A \). There is no evidence for the existence of an \(A-P \) allele having a brown pericarp effect which is recessive to \(A \), unless it be found that the progenies of the red pericarp types in families 117, 119 and 120 segregate ears showing brown pericarp color.

2. Dominance effects and response to Dt among Peruvian mutants of the \(aP \) and \(a \) type. Some of the Peruvian plants which were crossed to \(A \) tester in 1945 were not homozygous \(aP \); six of the test cross ears gave 50:50 ratios for purple; colorless aleurone and two gave 50:50 ratios for purple; pale aleurone. In each of these eight cases some of the seeds having colorless or pale aleurone showed dots. Since the tester parent was \(aT\ aT\ R\ R\ C\ C\ D\ T\ D\ T \) in constitution, the presence of these dots establishes with certainty that the colorless and pale seeds are due to mutant alleles at the \(a \) locus; if a dominant dilution factor or a recessive factor other than \(a \) were responsible for the dilution effects the...
seeds would be expected to be without dots. This apparently is the first report of the occurrence of recessive \(a \) in South American material; since five of the six Peruvian plants which were found to be heterozygous for \(a \) were of separate origin this mutant probably is widely distributed in Peruvian material. It is likely that these types failed to be recognized earlier because of the frequent occurrence in Peruvian material of the recessive forms of the genes \(R \) and \(C \) which complement \(A \) in pigment production and because they may not have been studied in backgrounds providing the \(D_t \) gene which is specific for \(a \).

The action of the pale mutants (designated \(a^P-P \)) was studied further in progenies providing the combinations \(a^P-P/a \) and \(a^P-P/A \). In the cases of both pale mutants, the combinations with recessive \(a \) were invariably associated with brown pericarp color, as were those with \(A \). To test the response of the \(a^P-P \) alleles to the \(D_t \) gene, crosses were made between \(a^P-P/a \) and the tester \(a^d_1 a^d_1 D_t D_t \) (the \(a^d_1 \) gene does not mutate under influence of \(D_t \)). Without exception, the pale seeds (\(a^P-P/a^d_1, D_t \)) on ears from these crosses were without dots, whereas colorless seeds (\(a/a^d_1, D_t \)) on the same ear were dotted. Hence, both \(a^P-P \) alleles are similar to \(a^P \) in their pericarp color effects and response to \(D_t \), though they may differ from each other and from \(a^P \) in the matter of their determination of plant and aleurone pigmentation.

Similar studies are in progress with the six Peruvian \(a \) mutants (designated \(a^P-F \)). The limited data which are available at the time point to a divergence in type of action within the \(a^P \) group as well as between members of that group and recessive \(a \). All six members are associated with brown pericarp color as determined in heterozygotes with \(a \). Dominance effects in compounds with \(A \) have been determined for only two of the six mutants but in both cases there is complete dominance over the red effect of \(a \). This is the first knowledge of an \(a \) allele which is associated with colorless aleurone and brown plant color, in which respects it is recessive to \(A \), and yet shows complete dominance to \(A \) in its effect on pericarp color. Of the four \(a^P \) mutants tested for response to the \(D_t \) gene, one proved to be dottable, the other three being without response. The two mutants mentioned as showing dominance to \(A \) in pericarp color effect do not respond to \(D_t \). Except for the products of X-ray and ultraviolet treatment there are no past reports of \(a \) mutants which fail to respond to \(D_t \); Rhoades (News Letter 15: 6, 1941) describes an \(a \) mutant which is indistinguishable from \(a^P \) with the exception that it shows much reduced response to \(D_t \), but this allele, unlike the \(a^P \) alleles, is recessive to \(A \) in pericarp color effect. The lack of response to \(D_t \) reported here for three naturally occurring \(a^P \) mutants suggests that the failure to dot in the presence of \(D_t \) is not a valid criterion of deficiency at the \(A \) locus.

The evidence reviewed here adds to an already complex picture of gene action at this locus. Most significant, from this standpoint, is the evidence on the extreme antimorphism of at least two of the \(a^P \) alleles. The antimorphic effects of certain of the \(A \) alleles have been reviewed previously (Microfilm Abstracts 7: No. 1). The evidence is not in support of certain hypotheses, notably those of Wright and Stern, which have been advanced to explain antimorphic effects. It is suggested that the antimorphic behavior of the alleles of \(A \) may be explained on the basis of an hypothesis which holds a single gene capable of entering into
two different reactions. It is the purpose of further investigation of
the Peruvian alleles reported on above to provide additional tests of
this hypothesis.

J. R. Laughnan

Texas Agricultural Experiment Station
College Station, Texas

For a few years observations have indicated that teosinte has
more tolerance to heat and drought and possibly more resistance to cer-
tain diseases and insect damage than corn. Efforts to improve inbred
lines of corn by modifying them with teosinte characters have progressed
far enough to give a suggestion of the results to be expected. Various
Texas lines were crossed with Florida teosinte, backcrossed to corn from
once to three times, and selfed each generation afterwards. In the de-
velopment of the modified lines, no effort was made to select by observa-
tion among the segregates available for use. Plants were selfed at ran-
don, and only those plants or ears that were seriously affected with such
abnormalities as disease, insect damage, and sterility were later dis-
carded.

Tests of the desirability of the modified lines as compared to
the original (unmodified) corn lines were of two kinds: (1) Tests of the
lines themselves to compare their tolerance to artificially applied heat;
(2) Yield tests of the various lines crossed to a common tester, conducted
under field conditions.

1. Heat-tolerance tests. The procedures followed in making
tests for tolerance to heat were based on those used for several years at
the Kansas Agricultural Experiment Station, although in some respects
there are considerable differences between the Kansas methods and mine.
Inbred plants of TxZR-3 and of eight modifications of it were grown and
given artificial heat treatments in an oven in six replications, each
replication being grown and treated at a different time. Glazed pots with
top inside measurement of four inches were used. The pots were selected
for uniformity. The soil used for the first five replications was a
thorough mixture of sandy loam and compost. That used for the sixth was
relatively homogeneous Houston Black Clay.

In each replication, five pots of each line were planted, and
an effort was made to have a final stand of two plants to the pot. This
procedure usually resulted in 10 plants of each line for each replication.

The plants were given the artificial heat treatment when 13 to
15 days old. The oven used was electric, automatically controlled, with
forced ventilation. It was designed for other purposes, and the fluctua-
tion in the temperatures obtained led to some difficulties. However,
after a few replications had been treated for practice, the method was
found to be usable.

Prior to each application of heat, the soil in the pots was
well-saturated with water. The pots were randomized in the oven and kept under heat treatment for eight hours at 55° C. After the treatment was complete, the plants were kept in the greenhouse for 5 to 30 days without water while the readings of the results were taken. It was found most practicable to take the first reading about 24 hours after treatment, because the extent of the damage to the plants was more readily determined after this lapse of time. The best method found of recording the results was to tabulate the number of days that each plant lived after treatment. In most of the replications no plants were living 10 days after treatment, and those which did live this long or longer were considered not to have been killed by the treatment.

For the purpose of analyzing and studying the results, it was found desirable to assemble all the data for each entry into a single score. In order to accomplish this objective, the combined number of days that all the plants of an entry lived after treatment was adopted as the score. Thus, in the fifth replication of modified line No. 1, the 10 plants lived the following numbers of days: 3, 6, 3, 20, 3, 17, 3, 3, 5, 15. But, since a plant is not considered to have been killed by the heat treatment when it lived 10 days or longer, all numbers above 10 were reduced to 10, and therefore the numbers actually added in order to get the score of this entry were 3, 6, 3, 10, 3, 10, 3, 3, 5, and 10. The score of this entry, therefore, is 56. The highest possible score is 100, and the lowest is zero. The score of each entry is shown in Table I, the various lines being listed in descending order of their observed tolerance to heat:

<table>
<thead>
<tr>
<th>Lines</th>
<th>Replications</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>45</td>
</tr>
<tr>
<td>9</td>
<td>32</td>
</tr>
<tr>
<td>5</td>
<td>47</td>
</tr>
<tr>
<td>6</td>
<td>28</td>
</tr>
<tr>
<td>4</td>
<td>26</td>
</tr>
<tr>
<td>Tx4R-3</td>
<td>36</td>
</tr>
<tr>
<td>1</td>
<td>22</td>
</tr>
<tr>
<td>2</td>
<td>18</td>
</tr>
<tr>
<td>7</td>
<td>36</td>
</tr>
</tbody>
</table>

For significance, .05 = 14.6

Since the difference necessary for significance on the .05 level is 14.6, the indication is that two of the lines modified with
teosinte characters are more tolerant to heat than the original line Tex4R-3. Whether tolerance to heat and to drought are related phenomena, as reported by some investigators, has not been determined in this study. However, the yield tests, to be discussed in the following paragraphs, were conducted with that possibility in mind.

2. Yield tests. One yield test was conducted each year from 1943 to 1946 on hybrids involving the group of Tex4R-3 lines tested for heat tolerance, and several tests were conducted on certain other groups. In all the yield tests, the uniform tester was a single cross, commonly one with which the original inbred is combined when put into agricultural use. One or more checks were always included. Except where the contrary is indicated, one check was the original inbred crossed with the uniform tester, and various hybrids whose usual performance was known were often used as supplements.

The most satisfactory results of yield tests were obtained with groups of lines other than Tex4R-3 and its modifications. Although results of the heat tests indicate that additional tolerance has been introduced into Tex4R-3 by crossing it with teosinte, no field test has shown convincingly that the yielding ability of any of the modified Tex4R-3 lines should be adjudged superior to that of the original. Tests conducted during 1945 and 1946 showed only that some of the modified lines were in the same class with the original Tex4R-3 and that others were inferior. As would be expected, one or more modified lines gave actual yields greater than the original Tex4R-3 in each test conducted, but in none of these instances was the difference significant. It should be pointed out, however, that tolerance to drought did not have a fair chance to manifest itself in terms of yield in any test conducted on the Tex4R-3 group. In 1943 and 1944 the yield tests were a failure, principally because of poor stands and accidental damage. In 1945 and 1946 there was no appreciable drought during the critical part of the season.

More interesting results of yield tests were obtained with a group of modified Txl27C lines. A small portion of the results of the two tests conducted in 1945 and 1946 is shown in Table II.

The 1945 test of the Txl27C lines contained 36 entries and the 1946 test contained 25 entries. Since the two tests did not contain the same entries, but had only certain ones in common, it is impracticable here to combine all the results briefly in one table. However, the following table does include the highest-yielding entry and one check in each test. The lowest-yielding entry tabulated here from the 1945 test stood 14th among the 36 in the test, and the lowest shown from the 1946 test stood 16th among the 25 in the test. A blank indicates the omission of the entry from the test.
Table II.

<table>
<thead>
<tr>
<th>Pedigree</th>
<th>1945</th>
<th>1946</th>
</tr>
</thead>
<tbody>
<tr>
<td>42116-21-2</td>
<td>44.8</td>
<td>59.5</td>
</tr>
<tr>
<td>42116-25-3</td>
<td>42.6</td>
<td>44.8</td>
</tr>
<tr>
<td>Tx. Hybrid No. 18 (Ck.)</td>
<td>40.8</td>
<td>44.8</td>
</tr>
<tr>
<td>42116-15-2</td>
<td>39.4</td>
<td>65.7</td>
</tr>
<tr>
<td>42116-27-1</td>
<td>38.2</td>
<td>49.3</td>
</tr>
<tr>
<td>42116-28-5</td>
<td>37.0</td>
<td>55.4</td>
</tr>
<tr>
<td>42116-28-4</td>
<td></td>
<td>45.6</td>
</tr>
<tr>
<td>Txl27C (Ck.)</td>
<td></td>
<td>44.0</td>
</tr>
</tbody>
</table>

Difference for significance, .05 7.26 9.75
Difference for significance, .01 9.63 12.06

*The tester in each instance was Txl73D x Tx203

It may be observed from these results that some of the Txl27C modified lines, such as 42116-21-2 and 42116-15-2, show considerable promise. It is interesting that some of them gave improved yields during a season when there was no serious drought or other hazard to which teosinte is known to be especially tolerant. Of course there are possible explanations. It seems fairly probable that the introduction of teosinte germ plasm into Txl27C resulted in modified lines with more remote relationship to the tester. Remoteness of relationship between the two parents of a cross is often believed to be an important factor affecting hybrid vigor. Another possible explanation is simply that additional "yield genes" have been acquired from teosinte.

A few teosinte-modified lines of Txl32A and Txl02A have been developed and tested, but the results to the present do not indicate appreciable improvement in them.

R. G. Reeves
A pair of genes influencing the intensity of yellow endosperm color was reported in the Maize News Letter for January 31, 1944. Segregations of 3 dark yellow to 1 lemon yellow were obtained in selfed progenies. The gene in question was closely linked with opaque-2 in chromosome 7. No symbol was suggested. The situation with regard to the genes for endosperm color is not entirely clear. Five genes have been numbered and one or two additional genes apparently are known. It is suggested that the pair of genes discussed here be designated as \(Y_3 Y_3 \).

During the past season data were obtained on a three-point backcross test involving the cross \(+ + \) \(\frac{Y_2}{Y_3} \frac{Y_3}{Y_5} \). These data are reported below:

<table>
<thead>
<tr>
<th>Parental combinations</th>
<th>Recombinations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Region 1</td>
</tr>
<tr>
<td>404</td>
<td>6</td>
</tr>
<tr>
<td>374</td>
<td>11</td>
</tr>
<tr>
<td>23</td>
<td></td>
</tr>
<tr>
<td>778</td>
<td>17</td>
</tr>
<tr>
<td>2.0%</td>
<td>5.2%</td>
</tr>
</tbody>
</table>

The gene order indicated is \(Y_2 - 2.0\% - Y_3 - 5.2\% - Y_5 \).

Merle T. Jenkins

United States Department of Agriculture and Cornell University, Ithaca, New York

Natural teosinte-corn hybrids in Guatemala.

Teosinte occurs as a weed in corn fields over extended areas in the Jutiapa - Progresso - Lake Retana area in south central Guatemala and in the San Antonio Huixta area in the northwestern part of the country. Botanists who have visited these areas, including Weatherwax, Kempton and Popenoe, noted the absence of hybrids in the fields where corn and teosinte were growing together and flowering at the same time. This was surprising in view of the fact that the two species were known to hybridize readily under controlled conditions and their hybrids are fully fertile.

The Jutiapa - Progresso - Lake Retana area was visited in
November, 1946, with Dr. I. E. Melhus, Director of the Iowa-Guatemala Tropical Research Center. A thorough search for natural hybrids was made in corn fields containing teosinte as a weed extending for 40 kilometers along the highways in this area. No hybrids were discovered. Extensive collections of corn and teosinte seed were made from these fields and it is planned to grow this seed to determine whether natural crossing occurred during the current season in fields observed to have corn and teosinte of the same stage of maturity growing in juxtaposition.

Subsequently, the San Antonio Huixta region was visited together with Dr. George Semenuik. As a result of an extended search in this area approximately 30 hybrid plants were discovered. With very few exceptions all of these plants apparently were first generation hybrids having typical four-rowed ears. One hybrid plant with eight-rowed ears and one with predominantly two-rowed ears similar to the teosinte parent were found. Open-pollinated seed from these plants was harvested for a study of the progeny.

An unsuccessful attempt to hybridize Guatemalan Tripsacum and corn.

Having been successful in obtaining hybrids between diploid and tetraploid forms of corn and Tripsacum dactyloides native in the United States, the possibility of obtaining similar hybrids involving corn and Tripsacum species which are native in Central America was investigated. Tripsacum dactyloides is not known to occur in Latin America. Of the various species which do occur there, all that have been studied have proved to be tetraploids with approximately 72 chromosomes.

Since very special conditions are required to obtain hybrids of diploid Tripsacum dactyloides and diploid corn, the possibility seemed very remote that the tetraploid Tripsacum of Central America would hybridize with the diploid corns of that region. However, in developing an hypothesis of the origin of modern varieties of cultivated corn based on the assumption that teosinte resulted from the hybridization of Tripsacum and corn and that the chromosome knobs and various other important characters of corn came from Tripsacum by way of teosinte, Mangelsdorf and Reeves assumed that natural hybridization of Tripsacum and corn did occur in Central America. Hypotheses are of little value unless they can be tested. Fortunately, a direct test of this hypothesis, formulated nearly 10 years ago, involved no special difficulties. Tripsacum and corn were found to be in flower at the same time in readily accessible areas in the neighborhood of Guatemala City and Antigua at altitudes of approximately 5,000 feet. More than 200 ear shoots of native corn plants from three different fields were carefully pollinated with Tripsacum pollen from plants collected in their natural habitat in the same region. In making pollinations by applying a mixture of Tripsacum and corn pollen directly to the bases of the corn silks and in culturing the embryos of resulting aborted seeds, the same technique was used that previously had been successful at Ithaca in obtaining a considerable number of Tripsacum-corn hybrids. From three to four weeks after pollination each ear was carefully scrutinized for possible hybrid seed, the embryos of seeds suspected of being hybrid were cultured in a sterile nutrient agar and flown directly to Ithaca where their chromosome number was determined from root-tip counts. There were no hybrid seedlings. All had 20 chromosomes.
This test failed to confirm the assumption of Mangelsdorf and Reeves that in the recent past Tripsacum and corn hybrids occurred in western Guatemala, subsequently designated by Mangelsdorf and Cameron as the secondary center of origin of cultivated maize. However, it would be desirable to make additional tests employing other species of Tripsacum which are found elsewhere in Central America. Also, a careful search should be made for diploid Tripsacums throughout Central America.

L. F. Randolph

University of Minnesota
University Farm, St. Paul, Minnesota

Linkage data on several unlinked characters were gathered and analyzed by graduate students.

1. The silky which appeared in the F$_2$ of a cross between two inbred lines segregated in an F$_2$ to give a ratio of 15 normal : 1 si and approximately 3:1 in a backcross.

Red collar (base of tassel glumes) vs. green segregated 9:7 in F$_2$ in one of those cultures. Based on small numbers, si was independent of red collar, sr, and ms (this ms was supposed to be as but did not show linkage with sr, also the ears were normal). Red collar was also independent of this same ms and sr. This silky shows no linkage with ms$_1$.

Backcross tests indicated no linkage between F$_1$ and red collar, a result differing from that reported previously (News Letter 18:16-17, 1944 - F$_1$ vs. red collar = 6.6 per cent recombination). This difference is explainable if red collar is due to complementary factors.

Antonio Marino
I. Z. Hasanean

2. Woodworth's vp gives no evidence of linkage with ms$_1$. To determine the order of Y, pb, and ms, all very closely linked, Y + ms/y pb+ plants were crossed with y pb ms/+ . One y + ms and one y pb ms were obtained, suggesting that this is the order of the three genes.

H. A. McLennan
F. H. White

3. One stock from X-ray treatment has 10 chromosome pairs and about 20 per cent of pollen abortion. The sterility shows linkage with factors in chromosome 2: 43.5% with gl$_2$, 34.6% with P, and 15.5% with y$_i$.
Preliminary cytological examination reveals bridges with fragments, indicating an inversion is the probable cause of the sterility, and that the centromere is outside the inversion. The ears show normal fertility.

W. A. Russell

4. A survey of the knob numbers (and where possible the positions) in 20 inbred lines used in the breeding program here is being made to determine possible relationships with plant characters and with combining ability. The knob number varies from two to at least eight.

M. V. Vachhani

The dominant white cap (Wc) endosperm factor is linked with brittle stalk (bk?) in chromosome 9, the backcross numbers being 135 Wc+, 67 Wc bk, 65 Wc+, 143 Wc bk, or 32.2 per cent recombination. With T 8-9a there was 30 per cent recombination (Wc - T 8-9a = 18.33:68:25). Since tests reported previously indicated no linkage with waxy (News Letter 13:16.1944) the order appears to be wx - bk2 - Wc; or wx - T 8-9a - Wc.

A brown midrib character which appeared in a sh wx gl410 culture seems to be genetically different from the other three brown midribs, and therefore is bm4.

Viviparous (vp5) is the same as Woodworth's vp as shown by intercrosses. Tests are in progress to determine the linkage group to which vp5 belongs. This will also locate one of the factors for yellow endosperm (unless vp5 itself causes the color effect).

The different rings of six chromosomes produced as the first step in the program were backcrossed to normals; the progeny were grown and examined for pollen sterility. In each case, plants approximately 75 per cent sterile were identified. These should be carrying the crossover which combines the two parental translocations in one gamete. Similarly, backcrosses of the F1 x 10 from 1-5-6-7 x 8 x 4 were grown. It is hoped that the selected ears represent the desired crossovers, but the sterility classes were more difficult to distinguish by the "pocket microscope" method used in the field.

In plants heterozygous for T 5-6c, the low percentage of crossing over with the chromosome 5 inversion in the translocated chromosome as compared with the amount observed with the inversion in the normal chromosome can now be explained without resorting to "position effect". When Dr. A. H. Sturtevant saw the data, he suggested that the cytological data on crossing over (percentage frequency of the crossover type or "half disjunction" quartet) did not measure crossing over within the inversion in both cases. When we drew the chromosomal diagrams (checked later) they
showed that this was true. When the inversion is in the translocated chromosome, crossovers within the inversion do not give rise to the cytologically recognizable "half-disjunction" quartets; whereas when the inversion is in the normal chromosome these crossovers are recognizable in that manner. In the one case these quartets result only from crossing over between the translocation break (center of the cross) and the new position of the centromere, consequently comparable to that in the stock heterozygous T 5-6c but homozygous for the inversion.

C. R. Burnham

Fisher (Amer. Nat. 80:568-578. 1946) has presented a simple method of scoring linkage data by using maximum likelihood formulae. To make it readily understood, we have illustrated its application to \(F_2 \) and \(F_3 \) data commonly encountered in plant material (now ready to be submitted for publication). The formulas, for the scores (reminders) of maximum likelihood formulae when \(p = \) one half is substituted (50 per cent recombination), are:

<table>
<thead>
<tr>
<th>Source of data</th>
<th>Formulas for scores (c) at (p =) one half</th>
<th>Information (i) per (F_2) plant or (F_3) line at (p =) one half</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backcross</td>
<td>(2 \left(a - b - c + d \right))</td>
<td>4</td>
</tr>
<tr>
<td>(F_2)</td>
<td>(4 \left(\frac{r}{3} - \frac{1}{3}a + e + d \right))</td>
<td>(16/9)</td>
</tr>
<tr>
<td>(F_3) from (Ab F_2) plants</td>
<td>(4/3 \left(k - 2 j \right))</td>
<td>(32/9)</td>
</tr>
<tr>
<td>(F_3) from (ab F_2) plants</td>
<td>(4/3 \left(m - 2 l \right))</td>
<td>(32/9)</td>
</tr>
<tr>
<td>(F_3) from (AB F_2) plants</td>
<td>(4/9 \left(8e - f - g - h - i \right))</td>
<td>(128/81)</td>
</tr>
<tr>
<td>(F_3) from doubly heterozygous (F_2) plants</td>
<td>(4 \left(h - i \right))</td>
<td>(16)</td>
</tr>
</tbody>
</table>

* Suitable for repulsion, change signs for coupling.

By substituting the observed values for \(a, b, c, d, e, \) etc., the score \(c \) for each source of data is obtained.

The total amount of information furnished by the data is \(ni \), where \(n \) is the number of plants or of \(F_2 \) lines and \(i \) is the information per plant or line. Fisher shows that \(c^2/I \) is distributed as \(\chi^2 \). Each such \(c^2/I \) value for each source of data, having one degree of freedom, tests the significance of the deviation from 50 per cent recombination. Then \(\chi^2 = \left(Sc \right)^2/SI \) tests the deviation from 50 per cent for the pooled data with one degree of freedom. The difference \(\chi^2 = \frac{\left(Sc \right)^2}{SI} \) tests
heterogeneity, the degrees of freedom being \((N-1)\) where \(N\) is the number of sources of data pooled. For this test a value of \(p\) sufficiently close to the best estimate of \(p\) should be used. The ratio \(S_0/S_1\) provides an estimate of the correction to be applied to \(p = 0.5\) to obtain the \(p\) value which best fits all the sources of data.

H. H. Kramer
C. R. Burnham

Study and use of trisomics.

1. The frequency of transmission of trisomics without root-tip chromosome counts can be determined by crossing each trisomic with a homozygous translocation involving that chromosome. The trisomic \(F_1\) plants will show low pollen sterility (25-30 per cent) as compared with the 50 per cent shown by their diploid sibs. With experience the difference can be recognized easily even in the field with the "pocket microscope". I have used it satisfactorily for chromosome 6, using T 5-6a.

2. It would also be desirable to make the trisomic analysis usable by those not able to get chromosome numbers counted. At present only plants trisomic for chromosomes 5 and 7 are phenotypically distinguishable in most crosses, but not in all.

Two tertiary trisomic stocks for each chromosome might be established so that between them the entire chromosome in question would be represented in trisomic condition. If the piece of the attached non-homologue which is also trisomic came from chromosome 5 or 7, it might serve to identify the desired tertiary trisomic plants. Since these teritorials would also differ from primary trisomics by having approximately 15 per cent of pollen abortion while the primaries would be normal, pollen examination could be used as a supplementary check if desired or if the phenotypes were not distinct.

In place of the 10 primary trisomics, 20 tertiary types would be used for a complete test of the 10 chromosome or linkage groups.

For example, the series might be established from \(2n + 1\) (No. 1 chromosome trisomic) \(\times T 1-5; 2n + 1\) (No. 2 chromosome trisomic) \(\times T 2-5,\) etc., selecting the translocation in each case in which the break in 5 was near the middle of the chromosome, assuming a plant trisomic for nearly half of 5 would be most likely to be phenotypically distinct. Two teritorials would be established for each cross. A series with chromosome 7 also might be usable.

C. R. Burnham

Chromosome disjunction.

In discussing with many others the problem of getting lower sterility from large rings, the possibilities of genic control were suggested. On this basis, a planned search for factors affecting chromosome
behavior at meiosis, such as changed chiasma frequency or position, may be needed. Those studying inbred lines for knob number might be on the lookout for such effects at diakinesis and metaphase. Such stocks would be of interest for other problems also.

Since such factors are likely to be recessives, it will be necessary to study selfed lines from X-ray treatment rather than the immediate plants obtained from the use of X-rayed pollen. I wish to acknowledge the assistance of H. A. McKennan, F. H. White, and K. Hanson.

C. R. Burnham

University of North Carolina
Raleigh, North Carolina

Effects of the major plant color genes upon kernel weight in maize.

Brink (1934) has demonstrated that maize plants belonging to the anthocyanin series of color types differ significantly in their average production of grain. Comparison of the four anthocyanin types led to the conclusion that purple was much inferior to dilute sun red, while dilute purple and sun red exceeded dilute sun red in average yield per plant. Subsequent unpublished results indicate that there is probably no significant yield difference between sun red and dilute sun red. Two trials in successive seasons in which dilute sun red (A b PL) and triple recessive green (a b PL) were compared, suggest that dilute sun red has a significantly greater yield.

In 1938 and 1939 the writer conducted three additional experiments at Madison, Wisconsin, in an effort to clarify the status of those color types which had given inconsistent results and in order to include the brown class (a B PL) which had not occurred in earlier trials. A number of ears resulting from the backcross AaBbP PPl x AaBbP PPl were obtained. Two experiments, the first including 12 backcross families in three randomized replications and the second, with 18 families in two replications, were grown in 1938. A third experiment (12 families, 3 replications) was grown in 1939. The heterozygous A B PL plants used in backcrossing were not closely related to the a b pl stock and the segregating progenies exhibited considerable hybrid vigor. Five-eighths of the residual heredity in each family was derived from commercial strains of yellow dent corn adapted to Southern Wisconsin conditions.

The plants were classified as to color type and distinctively tagged. No attempt was made to distinguish the A B PL and a b pl plants from a b PL in the green class. The frequencies of each type within each row were determined; the mature ears from each color group in a row were harvested together. The samples were dried to a uniform moisture content, shelled, and the shelled corn weighed to the nearest ounce.

The mean shelled grain weights per plant for each plant color class in experiments I and III appear in table I.
Mean grain weights per plant by color classes

<table>
<thead>
<tr>
<th>Phenotype</th>
<th>Experiment I (1938)</th>
<th>Experiment III (1939)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. plants</td>
<td>Mean in lbs.</td>
</tr>
<tr>
<td>A B pl (purple)**</td>
<td>674</td>
<td>.307(6)</td>
</tr>
<tr>
<td>A b pl (dilute purple)</td>
<td>681</td>
<td>.361(3)</td>
</tr>
<tr>
<td>A B pl (sun red)</td>
<td>694</td>
<td>.355(4)</td>
</tr>
<tr>
<td>A b pl (dilute sun red)</td>
<td>683</td>
<td>.372(1)</td>
</tr>
<tr>
<td>a B pl (brown)**</td>
<td>698</td>
<td>.344(5)</td>
</tr>
<tr>
<td>a B pl, a b pl,</td>
<td>2002</td>
<td>.368(2)</td>
</tr>
<tr>
<td>a b pl (green)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>5437</td>
<td></td>
</tr>
</tbody>
</table>

** Highly significant differences between this and other classes.

The analysis of variance for each of these experiments reveals that the low yield of purple is highly significant in both cases and that brown with a significantly greater yield than purple is significantly below the yields of the remaining four classes. The relative standings of the six color types with respect to mean grain weight are indicated by the numbers in parenthesis in table I. Dilute sun red has the largest mean in each experiment, the value being significantly (P = .01) greater than the pooled mean of the green, dilute purple and sun red classes in each case. In a combined analysis of experiments I and III the difference between dilute sun red and sun red is highly significant.

The results from experiment II are consistent with the other two experiments with respect to the purple and brown classes. The differences are again highly significant. The mean of sun red is second highest in the experiment instead of fourth as in I and III. This high value for sun red in experiment II is subject to question, however, for when the analysis is based upon kernels per ear instead of kernels per plant, sun red is fourth highest while the relative standings of the other are but slightly changed. In this experiment, also, sun red contributes disproportionately to the variance. The error term is larger than in the other experiments making it impossible to pool the results of experiment II with the others. A summary of experiment II and the total frequencies of each color type are presented in table II.
Table II.

Mean grain weights per plant by color classes

<table>
<thead>
<tr>
<th>Phenotype</th>
<th>Experiment II (1938)</th>
<th>Total plants</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. plants</td>
<td>Mean in lbs.</td>
</tr>
<tr>
<td>A B PI (purple)**</td>
<td>806</td>
<td>.320(6)</td>
</tr>
<tr>
<td>A b PI (dilute purple)</td>
<td>803</td>
<td>.370(3)</td>
</tr>
<tr>
<td>A B PI (sun red)</td>
<td>884</td>
<td>.376(2)</td>
</tr>
<tr>
<td>A b PI (dilute sun red)</td>
<td>920</td>
<td>.379(1)</td>
</tr>
<tr>
<td>a B PI (brown)**</td>
<td>848</td>
<td>.345(5)</td>
</tr>
<tr>
<td>a B PI, a b PI, a b PI (green)</td>
<td>2555</td>
<td>.367(4)</td>
</tr>
<tr>
<td>Total</td>
<td>6816</td>
<td></td>
</tr>
</tbody>
</table>

** Highly significant differences between this and other classes.

A chi-square test for the correspondence of the observed frequencies of plants in each color class to the expected 1:1:1:1:3 backcross ratio reveals that the frequencies shown in table II have a probability of .01. The largest deviations occur in the purple class which is smaller than expected and the dilute sun red class which is larger than expected. Since these are the classes which have the lowest and highest mean grain weights, respectively, it appears that the same genotypes which influence kernel weights also influence viability. Relatively large negative deviations also occur in dilute purple and brown, while the sun red frequency exceeds the expected. It seems probable that the dominant gene, PI, has an adverse effect upon viability.

Plants with the purple phenotype carry the three dominant genes A B PI and are much less productive than those plants in which one or more of these dominant factors is not present. The brown plants which have the genes B and PI are at a similar but less marked disadvantage. The dominant genes were always present in heterozygous condition. Since the presence of a single gene A is the only known condition which differentiates the purple from the brown type within a given family, it appears likely that this gene acting in conjunction with B and PI results in a decreased storage of starch in the kernels. In contrast it is found that dilute purple, dilute sun red, sun red, and green all have higher mean grain weights than brown. In the three anthocyanin color classes A is present, but b, pl, or b pl are homozygous. The heterogeneous green class includes combinations of a with b, pl or both in homozygous condition. Therefore, it may be concluded that the B PI gene interaction is effective in reducing the mean weight of grain per plant, presumably by affecting starch storage.
during development. The gene, A for anthocyanin pigment, in combination with B pl increases the effect.

The relatively higher yield of dilute sun red in all three experiments is noteworthy because this is the genotype which is virtually universal among North American varieties of dent corn. While the evidence is hardly adequate to demonstrate that this genotype is always superior in grain yielding potentiality, the fact that A b pi yields are probably significantly greater than those of A B pi is suggestive. In sun red as in purple and brown the development of deeply pigmented tissues must immobilize considerable quantities of carbohydrate which might otherwise be stored in the seeds.

The possibility that the results reported are actually caused by other genes, rather closely linked to the three segregating color genes cannot be entirely rejected on the experimental evidence now available. The foregoing conclusions are based upon a rather homogeneous sample of residual heredity tested in a single locality. Until further evidence is available on the point, however, it would be inadvisable to introduce B and Pl as markers in dilute sun red commercial breeding stocks.

Ben W. Smith

University of S. Paulo
"Luiz de Queiroz" School of Agriculture
Piracicaba, S. Paulo, Brazil

1. Breeding program.

Brazil may not yet be ready for large-scale introduction of hybrid corn and premature widespread use might lead to a loss of valuable genetic and breeding material in the numerous local populations. In view of these considerations, I have tried since 1937 the following program of establishing homogeneous self-propagating populations.

(a) Selection of the initial material which may either consist of plants of local populations or hybrids containing desired characters.

(b) Selfing during three to four generations and elimination of all pedigree lines which contain undesirable characters.

(c) Sib and between-line crosses during about three generations; selecting the most vigorous combinations, eliminating any hybrid showing undesirable characters; and maintaining all families separately (pedigree).

(d) Thus, the final stage is reached after about seven to eight generations and all the selected families are united into one population which is maintained by open pollination and simple mass selection for stock seeds.
Final results have been obtained by this method in establishing new sweet corn varieties: Piracicaba white P678, P18, orange P9, etc. Satisfactory, though only preliminary results have been obtained also with hard orange flint (cateto) and with yellow dent. After having essentially solved the question of producing sweet corn for our climate, we are now concentrating on the hard orange flints.

The theoretical basis of the process "controlled pollination-pedigree-breeding" is easily explained. It consists in producing a population essentially homozygous for all desired characters, such as grain color and texture, ear size and form, plant height and relative position of ear (slightly above the middle of the plant); and heterozygous for the main factors giving vigor. That such a combination of homozygosis and heterozygosis is possible, was proved in indigenous corn which is on the one side very homogeneous for many seed and plant characters, but at the same time extremely susceptible to close inbreeding.

In Piracicaba sweet corn which is a new synthetic variety we have started the routine work of selfing in order to produce ultimately hybrid seeds.

2. Chemical composition of grain.

The following results were obtained in an analyses of a few of our varieties. The analyses were carried out by the chemists of the "Refinacoes de Milho Brazil, S.A." in São Paulo.

<table>
<thead>
<tr>
<th></th>
<th>Hard Flint</th>
<th>Dent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cateto P-104</td>
<td>Cateto P-114</td>
</tr>
<tr>
<td>Water (% Umidade)</td>
<td>12.81</td>
<td>12.93</td>
</tr>
<tr>
<td>Protein (Proteina) (%)</td>
<td>10.33</td>
<td>8.58</td>
</tr>
<tr>
<td>Oil (%)</td>
<td>4.20</td>
<td>4.21</td>
</tr>
<tr>
<td>Sugar (Açúcar) (%)</td>
<td>0.60</td>
<td>0.68</td>
</tr>
<tr>
<td>Dextrin (Dextrina) (%)</td>
<td>1.58</td>
<td>1.45</td>
</tr>
<tr>
<td>Starch (Amido) (%)</td>
<td>66.98</td>
<td>68.60</td>
</tr>
<tr>
<td>Fiber (Fibra) (%)</td>
<td>2.15</td>
<td>2.25</td>
</tr>
<tr>
<td>Ash (Ginza) (%)</td>
<td>1.35</td>
<td>1.30</td>
</tr>
<tr>
<td>Total (%)</td>
<td>100.00</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Sweet Corn Piracicaba

<table>
<thead>
<tr>
<th></th>
<th>White</th>
<th>Orange</th>
<th>Horticultura</th>
</tr>
</thead>
<tbody>
<tr>
<td>Umidade (%)</td>
<td>11.48</td>
<td>11.63</td>
<td>11.95</td>
</tr>
<tr>
<td>Protein (%)</td>
<td>11.21</td>
<td>12.61</td>
<td>11.56</td>
</tr>
<tr>
<td>Oleo (%)</td>
<td>7.61</td>
<td>6.74</td>
<td>7.99</td>
</tr>
<tr>
<td>Açúcar (%)</td>
<td>3.86</td>
<td>3.53</td>
<td>3.21</td>
</tr>
<tr>
<td>Dextrina (%)</td>
<td>22.36</td>
<td>22.78</td>
<td>23.63</td>
</tr>
<tr>
<td>Amido (%)</td>
<td>38.38</td>
<td>38.01</td>
<td>36.15</td>
</tr>
<tr>
<td>Fibra (%)</td>
<td>3.10</td>
<td>2.80</td>
<td>3.25</td>
</tr>
<tr>
<td>Cinza (%)</td>
<td>2.00</td>
<td>1.90</td>
<td>2.25</td>
</tr>
<tr>
<td>Total (%)</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
</tr>
</tbody>
</table>
Note: The three samples of sweet corn contain about five to six per cent of soluble starch, included in the total starch content.

The analyses were carried according to "Food Inspection and Analysis" by Albert E. Leach, S.B. Fourth, 4th edition, p. 304.

There is evidently a very pronounced variation in oil and protein content. Piracicaba sweet corn contains twice as much oil (seven per cent) as the flints and dents. The protein content is also rather high: 12 per cent of total weight or 13.5 per cent of dry weight in sweet corn and 10 per cent in total weight or 11.5 per cent of dry weight in one of the hard flints.

We hope to be able to carry out the analyses on a larger scale this year.

3. Resistance against the grain weevil and moth.

A series of observations have shown beyond a doubt that one type of yellow dent (Monte Olimpo Plll) is relatively less attacked by these insects. The studies are being continued.

4. Linkage tests.

The collection of linkage tests is now in the hands of Mr. Nelson Kobal, in continuation of the work by Dr. Graner who has left our Department. Some new lines have been incorporated and others are being constructed. We hope to furnish next year a complete list of our stocks. We expect also to be able from now on to furnish limited numbers of segregating ears for class work.

5. Tunicate.

The work on South American Tunicate is practically concluded. There seems to be no essential difference, either genetically or in phenotypic variability, between pod corn from São Paulo, Minas Gerais or Bolivia. There cannot be any doubt, as far as the seed formation in the tassel is concerned, that there is no difference between homozygous and heterozygous pod corn. Thus, there should not exist any difficulty in maintaining homozygous pod corn through the seeds in the tassel, without the necessity of using in addition a tassel seed factor.

The studies on authentic indigenous corn are being continued and I hope to publish soon the first results, together with Dr. Cutler. There seems now to be little doubt that one may classify to some extent native corn in accordance with the grouping of the Indian tribes. The main bulk of our collection has been furnished by tribes of the Tupi-Guaraní group. There is comparatively little difference between the types cultivated by the Emeramhon (north of the mouth of the Amazon), the Cayabi and other tribes (North Mato-Grosso, almost in the middle of Brazil), the Paraguayans and the Chiriguanos (Northern Argentina). The predominant types are: Soft large-grained yellow (aleurone color); semi-hard white;...
orange, variegated or red pericarp with some tendency towards dent. There are two rather primitive types; the large ears with flexible rachis and half-submerged grains from northern Mato-Grosso (Caiabi and Bororo Indians) and the small grained pointed pop corns of the Tupi Indians, which contain many "Tripsacoid" characters.

Both the corn cultivated by the Chavantes of Central Brazil and numerous types cultivated by the Gaiangu of Parana in the South are completely different, without the predominance of yellow and orange types.

No explanation has as yet been found with regards to the hard orange flints called in the Argentine and Uruguay "Colorado" and "Quarantino", and in Sào Paulo "Cateto". It may be extracted from crosses of soft yellow and pointed pop.

The genetical analysis of the material is being continued. In the color of red or purple (Pr/pr) aleurone as contrasted to colorless, at least three factors are involved, one the dominant inhibitor Ci. There is at least one dominant inhibitor of yellow endosperm in pointed pop. floury has more often a polyfactorial basis, rather than the simple fl gene. Waxy seems rather common. Nothing as yet can be stated with certainty about the large number of plant, cob and glume colors. Rose or wood-colored husks are due to new alleles of the P-series.

The Mendelian ratios in Paraguay corn are all perfectly normal. In Bororo corn a gametophyte factor in the IX chromosome causes a deficiency or excess of recessives.

7. Cytology and studies on sterility.

The material from the margins of the Amazon River is characterized by a considerable sterility and we hope to decide this year whether it is simply phenotypic or is a cytological complication.

In several lines of indigenous corn the pollen is heteromorphic or dimorphic.

In Cateto the frequency of different types of defective seed is remarkable. Nothing is known as yet about the frequency of B-chromosomes in this material, though we hope to get fuller information next year.

8. Origin of corn.

Since full accounts have been published no details need be given. Accepting the eastern foothills of the Andes from Peru-Acre down to the Chaco as the center of origin, there are evidently two main centers of domestication: The Quechua group in the Andes and the Tupi-Guaranis in the plains. This year new material from outside these regions will be studied; material from Southern Brazil and, in the north, material from Colombia.

9. Relations between corn and teosinte.

Both comparative morphological and genetic studies convinced me that teosinte is an independent genus, different from both Zea and Tripsacum. A full account is under publication.
The genetical analysis of Zea-Euchlaena hybrids continues. The phenotype of the F₁ and the segregation in the F₂ depend to a large extent upon the varieties used in the cross. Corn characters are less dominant in the order: Piracicaba Sweet, Paulista Pod, Paulista Pointed Pop; and teosinte characters are less dominant in the order: Mexican teosinte and Guatemala teosinte.

In the F₂ and subsequent generations many new combinations have appeared and I am trying to stabilize them; especially intermediate types and what may be called new teosinte "varieties". Among the attempted combinations one may be especially interesting: The combination of corn ear characters and the resistance of teosinte against inbreeding.

The photo-thermo-periodicity of Euchlaena is rather interesting. Using earliness in flowering as a measure, we may establish generally the following order from the earliest to the latest: Mexican teosinte, F₁, Corn F₁, and Guatemala teosinte. However, in the very rainy summer of 1945 and 1946 the order was maintained with one exception. Mexican teosinte and all teosinte-like segregates in F₂ or later generations became as late as Guatemala teosinte or later still, some not flowering at all; while the F₁ hybrids retained their relative position as indicated in the sequence above. The corn-like segregates and the intermediate forms behaved more or less like the F₁ hybrids.

The analysis of individual gene segregations is under way with the intention of determining the intensity of gametophyte and of zygote elimination both of which are considerable.

Since all of our papers have been published in Journals with a limited distribution, I am including a list as follows:

Published papers.

1. The \(a_1 \) gene \((y_3)\) is seven units from \(I_{g_1} \) in chromosome 2. Its locus in relation to \(I_{g_1} \) and \(g_{12} \) is:

![Diagram]

2. The \(y_7 \) gene of Dr. A. M. Brunson, white seeds and albino seedlings (News Letters 18:2-3, 1944 and 20:23-25, 1946) is now called \(Y_7 \) and is a new complementary to \(Y_1 \) and \(Y_3 \). Crosses with \(Y_1 \) and \(Y_3 \) gave the following results:

(c) \(Y_1 Y_1 Y_3 Y_3 Y_7 Y_7 Bnbn \)

<table>
<thead>
<tr>
<th>Pedigree (1946)</th>
<th>Classes</th>
<th>Seeds</th>
<th>Seedlings obtained</th>
<th>Total of seedlings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Green</td>
<td>Albion ((Y_7))</td>
</tr>
<tr>
<td>Yellow-orange</td>
<td>240</td>
<td>231</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Lemon-yellow ((Bn))</td>
<td>101</td>
<td>5</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>100</td>
<td>59</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>441</td>
<td>295</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

(b) \(Y_1 Y_1 Y_3 Y_3 Y_7 Y_7 Y_7 Bnbn \)

<table>
<thead>
<tr>
<th>Pedigree (1946)</th>
<th>Classes</th>
<th>Seeds</th>
<th>Seedlings obtained</th>
<th>Total of seedlings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Green</td>
<td>Albescent ((Y_3))</td>
</tr>
<tr>
<td>Yellow-orange</td>
<td>210</td>
<td>192</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Yellow ((Y_6))</td>
<td>59</td>
<td>0</td>
<td>51</td>
<td>0</td>
</tr>
<tr>
<td>Lemon-yellow ((Bn))</td>
<td>75</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>White</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>352</td>
<td>193</td>
<td>53</td>
<td>79</td>
</tr>
</tbody>
</table>
Neither cross shows independent segregation for lemon-yellow seeds and albino seedlings. In some strains only the triplex and duplex seeds for lemon-yellow can be separated from the white ones and if this should be the case, the lemon-yellow seeds would give about 50 per cent of green and 50 per cent of albino seedlings (3 green : 4 albino). The \(Y_7 \) gene shows linkage with the lemon-yellow class. In cross (b) the yellow seeds (\(Y_5 \)) also show linkage with \(Y_7 \).

E. A. Greener

University of Washington
Seattle, Washington

Ten interchanges between A-type and B-type chromosomes have been obtained from pollen treated with X-rays. In the list that follows, the A-chromosome involved in each interchange is indicated by the numeral in the symbol designating the interchange. The A-chromosome in one of the interchanges (TB-A?) is unknown and in another (TB-8?) the identification of chromosome 8 is based on a few rather poor pachytene figures and may be incorrect. The letters S and L refer to the short and long arm, respectively, of the A-chromosome. The distance from the centromere to the point of breakage in the A-chromosome is given as the decimal fraction of the length of the arm in which it occurred.

<table>
<thead>
<tr>
<th>Interchange</th>
<th>Breakage Point in A-chromosome</th>
</tr>
</thead>
<tbody>
<tr>
<td>TB-1a*</td>
<td>L .2-.3</td>
</tr>
<tr>
<td>TB-1b</td>
<td>S .1</td>
</tr>
<tr>
<td>TB-4a</td>
<td>S .2</td>
</tr>
<tr>
<td>TB-6a</td>
<td>within nucleolar-organizing body</td>
</tr>
<tr>
<td>TB-7a</td>
<td>L .9+</td>
</tr>
<tr>
<td>TB-7b</td>
<td>L .3</td>
</tr>
<tr>
<td>TB-8?</td>
<td>L .3-.4</td>
</tr>
<tr>
<td>TB-9a</td>
<td>L .5</td>
</tr>
<tr>
<td>TB-9b</td>
<td>S .4±</td>
</tr>
<tr>
<td>TB-A?</td>
<td>unknown</td>
</tr>
</tbody>
</table>

*The interchange was originally thought to involve chromosome 2 and was listed as T2-B in Maize News Letter 16: 1942.

The points of breakage in the B-type are as follows: In TB-1a, TB-4a, TB-7a, TB-7b, and TB-8?, they are at or near the junction of the euchromatic and the distal heterochromatic regions. In the others, excluding TB-A? for lack of evidence, the breaks are well within the heterochromatic segment.

2. Behavior of A-B interchanges.

The genetic behavior of TB-1a, TB-1b, TB-4a, TB-7b, and TB-9b
has been investigated in some detail. The results were essentially the same for all five interchanges and can be summarized as follows: The interchange chromosome B^4, which carries the centromere and proximal portion of the B-type and a distal segment of A-chromatin, undergoes non-disjunction in the division of the generative nucleus. The result is that the gametes of a single pollen grain are not alike. One is deficient for the B^4 chromosome; the other carries it as a duplication. Both gametes are functional.

When plants that are normal are pollinated with pollen of this kind, two types of seeds are obtained: (1) One has a hyperploid (for B^4) embryo and a deficient endosperm; (2) the other has a deficient embryo and presumably a hyperploid endosperm. If the normal plant used in this cross carries a recessive endosperm gene, the dominant of which is present on the B^4 chromosome, the deficient endosperm can be identified by the appearance of the recessive character. Thus, sugary kernels are obtained from the cross, Normal (su su) x TB-4a (Su Su). The hyperploid and deficient embryos have been identified by both cytological and genetical methods.

The interchange chromosome (AB) carrying the A-centromere shows regular behavior in the division of the generative nucleus. Both interchange chromosomes are transmitted in normal fashion through the eggs.

The rate of non-disjunction, as estimated from the results of crosses involving TB-4a and TB-9b, is very high, approaching 100 per cent. In other words, the B^4 chromosome undergoes non-disjunction in the division of nearly every generative nucleus. It seems to be quite regular in behavior in the meiotic divisions and in other mitoses.

3. Genetic location of breakage points.

The location of the point of breakage in the A-chromosome of an A-B interchange may be determined genetically if appropriate recessive testers are used. This has already been illustrated in the case of TB-4a, using the sugary gene. If the corresponding dominant allele is distal to the point of breakage (i.e., in the B^4 chromosome), the deficient F_1 progeny will show the recessive character. If it is proximal to this point, the dominant character will appear. The following table gives the results which have been obtained for interchanges tested in this way.

<table>
<thead>
<tr>
<th>Interchange</th>
<th>Point of Breakage</th>
</tr>
</thead>
<tbody>
<tr>
<td>TB-1a</td>
<td>Proximal to f</td>
</tr>
<tr>
<td>TB-4a</td>
<td>Proximal to su</td>
</tr>
<tr>
<td>TB-7b</td>
<td>Between v_5 and ra</td>
</tr>
<tr>
<td>TB-9b</td>
<td>Between sh and wx</td>
</tr>
</tbody>
</table>

4. Evidence of selective fertilization.

A pollen grain in which mitotic non-disjunction has occurred has one gamete lacking a B^4 chromosome and another gamete carrying it in two doses. In the double-fertilization process, either gamete may fertilize the egg; the other fuses with the polar nuclei. If fertilization can
occur in either direction at random, we would expect the two types of seeds described in Section 2 to be formed in equal numbers. The frequency of either type would not be expected to exceed 50 per cent of the total progeny, a value corresponding to a rate of non-disjunction of 100 per cent.

In some of the crosses between normal female parents and male parents homozygous for either TB-4a or TB-9b, the percentage of seeds with a deficient endosperm was far in excess of 50 per cent. In the crosses involving TB-9b, a c-tester stock, homozygous for sh and wx as well, was used as the seed parent. The interchange chromosomes comprising TB-9b carried the corresponding dominant alleles. Wx was present in the B^B chromosome, C and Sh in the B^b chromosome. The F_1 seeds with an endosperm deficient for B^b were colorless, shrunken, and starchy.

It was thought, at first, that the excessive number of seeds with a deficient endosperm indicated an outright loss of the B^A chromosome in some of the second microspore mitoses. Suppose that the B^A chromosome lags in this division and is lost to both gametes. Each occurrence of this kind would produce not only a deficient endosperm but also a deficient embryo in the same seed. This result could be distinguished readily from the result of non-disjunction by an examination of the plants obtained from these seeds.

A cytological examination has not yet been accomplished. A genetic test was possible in the crosses involving TB-9b, through the use of scutellum color as an indicator of the presence of C (and therefore B^b) in the embryo. The scutellum is colored when C is present in addition to certain other factors, and is colorless in its absence. Some of the c-tester plants used in these crosses were homozygous for the complementary factors. The F_1 seeds with colorless endosperm were examined for scutellum color and the following results were obtained.

<table>
<thead>
<tr>
<th>Cross</th>
<th>Colorless endosperm</th>
<th>Colored endosperm</th>
<th>Colorless scutellum</th>
<th>Colored scutellum</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>119-11 x 96-8(TB-9b)</td>
<td>227</td>
<td>121</td>
<td>5</td>
<td>1</td>
<td>66</td>
</tr>
<tr>
<td>119-4 x 96-8</td>
<td>95</td>
<td>52</td>
<td>1</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>119-3 x 96-23</td>
<td>129</td>
<td>99</td>
<td>0</td>
<td>57</td>
<td></td>
</tr>
</tbody>
</table>

It is evident from these data that the hypothesis of "outright loss" is untenable as an explanation of the excessive frequency of colorless kernels. The colored scutellum in seeds with a colorless endosperm shows that B^b is present in the embryo but absent in the endosperm. This would be expected from mitotic non-disjunction. The six exceptional colorless seeds may represent errors in classification since scutellum color varied in intensity and was faint in some embryos. It is also possible that they are due to heterofertilization. The F_1 seeds will be grown this summer for a further check of their constitution with respect to B^b.

The results so far point to the conclusion that, in some crosses at least, the reciprocal types of double-fertilization do not occur with equal frequency. There is a marked tendency for the hyperploid gamete to fertilize the egg and the deficient gamete of the same pollen grain to fuse with the polar nuclei.

Herschel Roman
Effect of the \textit{de\textsubscript{17}} allele on seed development.

The \textit{de\textsubscript{17}} allele in corn reduces kernel weight to 25 per cent of normal, or less. It shows regular Mendelian transmission. A fair proportion of seeds on the best ears are viable. Once past the seedling stage \textit{de\textsubscript{17}} individuals develop into vigorous and fertile plants which, however, are about one foot shorter than their normal sibs. The stock has been propagated in homozygous condition for several generations.

Defective and normal kernels are obtainable at will by pollinating \textit{de\textsubscript{17}} plants with \textit{de\textsubscript{17}} and \textit{De\textsubscript{17}} pollen, respectively. \textit{De\textsubscript{17}} kernels develop as well on \textit{de\textsubscript{17}} plants as on normals. Defective and normal caryopses increase in weight at the same rate up to nine days after pollination. At 12 days the defective kernels have fallen slightly behind the normals in dry weight. The difference is much larger at 16 days, and continues to increase rapidly up to 24 days beyond which time the defectives make little growth.

Histological studies reveal a relationship between the initial divergence in weight of the two classes of kernels and the differentiation of an absorbing region in the endosperm. Between six and 12 days the cells on the basal surface of the endosperm facing the placental region in normal kernels become elongated, the nuclei move to the inner end of the cells, and the cytoplasm assumes a dense, fibrillar appearance. The basal cells of the endosperm in defective seeds do not become similarly transformed into absorbing elements. Rather, they enlarge about equally in all dimensions and become highly vacuolate. A few days later the cells in this region in defectives begin to break down. Eventually many cells in the basal area and in the adjoining central region of the endosperm collapse and thus become entirely non-functional in the transfer of nutrients to the seed.

The parenchymatous cells of the placenta are quickly and extensively depleted of their total contents by the regularly differentiating normal endosperm. The corresponding cells in kernels possessing defective endosperms are more slowly and less completely depleted. The difference appears to be a direct function of the absorptive capacities of the normal and defective endosperms.

A definite conclusion cannot be reached from the available data whether the \textit{de\textsubscript{17}} allele exerts a direct parallel action on endosperm and embryo, or acts directly on the endosperm only. The severely restricted development of the defective endosperm in itself is sufficient to account for the failure of many of the associated embryos to reach a viable condition and for the others to yield weak seedlings. The somewhat shorter stature of adult \textit{de\textsubscript{17}} plants, as compared with their normal sibs, may be due either to the handicap incurred at the seedling stage because of poor seed development or to this factor plus a continuing but only mildly \textit{deleterious effect of the \textit{de\textsubscript{17}} allele on later growth.}

R. A. Brink
D. C. Cooper
II. MAIZE PUBLICATIONS -- 1946

(Including certain 1945 publications not previously listed and some early 1947 publications.)

Cunningham, J. C. Your corn has come a long way. Successful Farmer 44(12):28-29. 1946.

_____________. Gene action and the course of anthocyanin synthesis in certain R alleles (in maize). Genetics 31(2):216. 1946.

Hanson, L. E. Waxy corn versus non-waxy corn for growing fattening pigs in dry lot. Jour. Animal Sci. 5(2):36-41. 1946.

Phinney, B. O. Cell length in the parenchyma of the midrib of normal and
(Suppl.) 33:222-223. 1946.

Firovano, Alberto. Progress and directives regarding electro-genetics.

Porter, John W., F. M. Strong, R. A. Brink and N. P. Neal. Carotene

1946.

Rhoades, M. M. Crossover chromosomes in unreduced gametes of asynaptic

Agron. 38(9):833-841. 1946.

Richey, Frederick D. Multiple convergence as a means of augmenting the

Sanchez, Colin S. El maiz y la experimentación agrícola. Campesino

Sass, J. E. Development of endosperm and antipodal tissue in "Argentine

Schaible, F. J. Composition of certain hybrid and open-pollinated corns

Schopmeyer, H. H. Amioca. The starch from waxy corn. Food Indust. 17(12):
1476-1478. 1945.

Semeniuk, B., C. M. Nagel and J. C. Gilman. Observations on mold develop-
ment and deterioration of stored yellow-dent shelled corn. Iowa
Agr. Exp. Sta. Res. Bul. 1946. (Submitted for publication.)

23. 1945.

Shull, George Harrison. Pure line method of corn breeding. Seed World 59

ANOTATED BIBLIOGRAPHY

Cook R.C. 1932. The Genetics Congress. Journal of Heredity, Vol. 23 (No. 9, 1 Sept.), pp. 355-360 [includes three figures, 10, 11 & 12, the latter is the numbered group photo and IDs] (Cook’s summary of the 1932 meeting; not free access).

Crow, J.F. 1992. Sixty Years Ago: The 1932 International Congress of Genetics. Genetics Vol. 131 (August): 761-768. http://www.genetics.org/content/genetics/131/4/761.full.pdf [Note that Fig. 2, The Executive Council, is not from Cook 1932, J of Heredity.] [Attendees in the group photo are identified in Figure 3; See Maize Genetics Cooperation Newsletter, eCommons, for image scanned from a photo salvaged from NCSU by Ed Buckler].

Maize Genetics Cooperation News Letter [1-21]. eCommons: https://ecommons.cornell.edu/handle/1813/58745 Three images are also included at this webpage: Sixth International Congress of Genetics (ICG), 1932 group photo; T.H. Morgan and R.A. Emerson, at ICG 1932, Willard Straight Hall; and 1932 ICG Executive Council. All images were scanned from photos rescued from a storage closet at NCSU, by Edward Buckler. The photos are believed to have been originally owned by C.H. Bostian (see Introduction).

Maize Newsletter Archives, MaizeGDB, https://www.maizegdb.org/mnl; Many MNLs available here were retyped from originals; many items, especially of early volumes, are not verbatim, e.g., page numbers and contributors’ affiliations are not listed. [Also, some volumes and dates on the website are not consistent with hard copy cover dates.]

Morgan, T.H. 1932. The Rise of Genetics, Excerpts from the Address of the President of the Sixth International Congress of Genetics at Ithaca. Journal of Heredity Vol. 23 (No. 9, 1 Sept.), pp. 337-343 [Not free access; pdf of this article includes the Volume’s frontispiece, titled “At Ithaca”; a photo of Morgan and Emerson at the 1932 International Congress of Genetics, is included in this MNL Anniversary book—see frontispiece].

APPENDIX I

The following reprinted article provides a perspective on the origins and beginnings of the founding of the Maize Genetics Cooperation and its subsequent *Cooperation News Letter*. It describes how in the early 1920s, the Maize Genetics Cooperation (MGC) began in an informal way among R.A. Emerson and his students at Cornell University. Emerson’s ethical and cooperative spirit paved the way for an expanded network of maize researchers who freely shared their materials and unpublished research, thus resulting in rapid progress in fundamental genetic research.

The *Maize Genetics Cooperation News Letter* early volumes reprinted in this book provide documentation for the story told in this historical perspective.
In the early 1920s, the Maize Genetics Cooperation (MGC) began in an informal way among R. A. Emerson and his students. His ethical and cooperative spirit paved the way for an expanded network of maize researchers who freely shared their materials and unpublished research, thus resulting in rapid progress in fundamental genetic research (Coe 2001; Kass and Bonneuil 2004).

The first letter summarizing both published and unpublished maize linkage data was compiled by Emerson and his student George Beadle and sent to students of maize genetics on April 12, 1929. This communication was an outcome of a “cornfab” held in Emerson’s hotel room in December 1928, during the annual American Association for the Advancement of Science (AAAS) meetings. The “Historical Notes on Maize Cooperation” identifies Emerson’s 1929 communication as the first Maize Genetics Cooperation News Letter (MNL; Emerson 1940). Beadle was the first secretary of the MGC and he solicited material for additional summaries of linkage data, which were distributed in two parts in 1930. Rhoades succeeded Beadle as secretary and continued to summarize and publish the reports of cooperators in the MNL, which continues to be published annually.

The cooperators met at the Sixth International Congress of Genetics (ICG) at Ithaca in 1932 and organized a committee to establish the maize stock center at Cornell University and to seek funding for their enterprise. Emerson’s grant application to the National Research Council (NRC) was denied and he was encouraged to apply immediately to the Rockefeller Foundation (RF), who granted him funds to support his information and supply network in 1934. The work of Barbara McClintock in cooperation with Beadle, Rhoades, Creighton, Burnham, and others at Cornell between 1928 and 1934 resulted in a definitive correlation of chromosomes and linkage groups in maize—ultimately published in 1935 by Emerson et al. The cytogenetics of maize was also reviewed in that year (Rhoades and McClintock 1935).

The exhibits that Emerson submitted to support his Rockefeller Foundation grant included a historical summary of the MGC and MNL. These documents allowed us to reconstruct the events that established these important resources for the maize genetics community. Emerson’s legacy lives on in the cooperative spirit of maize researchers and in the News Letter he founded 75 years ago.

At the 1932 ICG held in Ithaca, New York, Rollins Adams Emerson (Nelson 1993), Head of the Department of Plant Breeding at Cornell University, gave an opening address titled, “The Present Status of Maize Genetics.” In his introduction he declared, “I cannot refrain from noting here a very real advantage experienced by students of maize genetics... I am aware of no other group of investigators who have so freely shared with each other not only their materials but even their unpublished data. The present status of maize genetics, whatever of noteworthy significance it presents, is largely to be credited to this somewhat unique, unselfishly cooperative spirit of the considerable group of students of maize genetics” (Emerson 1932, p. 141; Kass 2001).

During this Congress, Emerson called a meeting of ~45 students of maize genetics and formalized what would soon be called the Maize Genetics Cooperation. Following their meeting Emerson and his graduate student Marcus Rhoades issued on October 5, 1932, what has long been considered the first Maize Genetics Co-
operation News Letter (Rhoades 1932a). Our research (Bonneuil and Kass 2001; Coe 2001; Kass and Bonneuil 2004; E. H. Coe and L. B. Kass, unpublished results), which we offer in keeping with the long tradition of maize cooperation, provides a historical perspective on the actual origin of the MGC and the beginnings of the MNL, which was first issued in 1929. We present here the history of Emerson’s successful negotiations with the Rockefeller Foundation to fund his cooperative enterprise at Cornell University following his unsuccessful attempt to obtain funding from the NRC. Future Nobel laureates George Beadle, Emerson’s student, and Barbara McClintock, Lester W. Sharp’s student and Beadle’s collaborator, freely submitted their results to the MNL; this laid the groundwork for a similar publication, the Drosophila Information Service, for the Drosophila geneticists in March 1934 (Bridges and Demerec 1934) and for the Worm Breeders Gazette, the community newsletter of the roundworm biologists (Edgar 1975; Cohen 1995), among others. We rejoice in the founding of Emerson’s ideal and celebrate the 75th anniversary of the MNL.

EARLY COOPERATION

Cornfests—a cooperative enterprise to map maize: As early as November 1918, Emerson wrote to Donald F. Jones at the Connecticut Agricultural Experiment Station that he was “hoping that all the men in this country who are working on related problems with corn may cooperate to such an extent that we can cover the field more quickly” [Emerson to Jones, November 8, 1918, Division of Rare and Manuscript Collections, Carl A. Kroch Library, Cornell University (CU) Library, Ithaca, NY]. Soon afterward, Emerson arranged informal “cornfests” in conjunction with the AAAS meetings. It seems that Emerson organized these ~10 years before the famous “cornfab” held in his hotel room in New York City in December of 1928, as recalled by Rhoades (1932a). Emerson much earlier had invited Paul Weatherwax of Indiana University to attend a “second cornfest” along with the “general genetics section” he had planned for the AAAS meetings in Toronto in 1921. Weatherwax apologized for not being able to attend (Weatherwax to Emerson, November 22, 1921, CU) but Emerson’s former and current students and colleagues joined him there and, following the meeting, held a reunion on January 1, 1922, at Cornell (Figure 1).

The following winter, Emerson emphasized the importance of agreeing on uniformity for factor notation (gene symbols) and he set the tone for cooperating on this problem in a letter on March 7, 1923 (Emerson 1923, p. 147), “To Students of Corn Genetics: It seems wise to follow the notation used by the Drosophila workers, tho, in some respects, their usage is perhaps no more nearly consistent than our own.” Emerson also asked his colleagues for assistance with numbering the maize linkage groups and requested advice on using bilateral gene symbols:

Shall priority of publication of any linkage determine the numerical order? Or shall the order be determined arbitrarily? I suggest . . . that we number the groups in the order given by [William H.] Eyster and by [Claude B.] Hutchison as follows: 1-{Gwx}; 2-{g-R}; 3-{su-Tu}; 4-{B-Lg}; 5-{f-Pf}; 6-{Pf} It may be wise, however, to assign no numbers to groups other than the six listed above until the newer groups have been tested further. Another prob-

![Figure 1.—R. A. Emerson with former and current students and colleagues at Fernow Hall, Cornell University, January 1, 1922, following the AAAS meeting in Toronto, where the second “cornfest” was held. Back row, from left to right: Milislav Demerec, Sterling Emerson, Ernest G. Anderson, and Charles Metz; front row, from left to right: Maxwell J. Dorsey, Sewall Wright, Rollins A. Emerson, William Bateson, Claude Burton Hutchison, Calvin Bridges, Frank P. Bussell, and Lewis A. Eyster (with permission of Roysie P. Murphy, Department of Plant Breeding, Cornell University; see also Provine 1986, p. 103).](image-url)

Problem is bothering us. Shall we continue to use bi-literal symbols for genes as we have usually done in the past [i.e., bl, blotched leaf], or adopt the recommendations of the Naturalist’s committee to use single letter symbols [i.e., b]? If the corn men desire to stick to the use of bi-literal symbols, we shall probably have to refrain from publishing in Genetics . . . but if the corn men think best to adopt the plan followed by Genetics [using single letter symbols], I shall use it (p. 149).

Emerson ended his five-page review with words for continued cooperation, “I am sending this to a considerable number of corn genetics workers. When I have received replies from the majority, I may want to refer some of our problems to the Chairman of the Naturalist’s committee with the suggestion that he consider the advisability of referring it to the committee for consideration” (p. 149).

Two of Emerson’s former students at Nebraska, Ernest G. Anderson (Figure 1) and Ernest W. Lindstrom, had followed him to Cornell in 1914 and continued to work on corn problems after graduating. Students and established researchers from around the country and throughout the world soon joined Emerson’s group and studied corn breeding and genetics at Cornell. C. B. Hutchison (Figure 1), a former Cornell graduate, was appointed Professor of Plant Breeding in 1916. By 1921, he continued Emerson’s unpublished study of C-Sh linkage and established that Sh was part of the C-Sh-Wx linkage group (Hutchison 1921, 1922). When Allan C. Fraser (Figures 2 and 3) succeeded Hutchison, he turned (from wheat) to maize (Fraser 1924). In addition to Anderson and Lindstrom, several other students pursued graduate work with Emerson on corn genetics (including women and students from abroad, Figures 2 and 3): William H. Eyster, Milislav Demerec (Figure 1), Helen A. Trajkovich, Pavao Kvakcan, Thomas Bregger, Ivan F. Phipps, George W. Beadle, Hsien W. Li, George F. Sprague, Johannes D. J. Hofmeyr, Marcus Rhoades, Swarn Singh, Sylvia Allen, and others (R. P. Murphy, unpublished results; CU).

During the period 1918–1920, Emerson realized that he could not avoid investigating the linkage of maize, which was crucial both to closing the gap with Drosophila workers and to providing a deeper basis for the breeding work on corn. Whereas from 1913 to 1928 Drosophila linkage mapping remained the concern of a few laboratories (Wagner and Crow 2001), Emerson promoted the idea that maize genetic mapping should be a larger cooperative enterprise (Kass and Bonneuil 2004), which would allow individuals to devote the best of their research time to more fundamental research projects. Furthering this end, Emerson also developed a regular collaboration and acted as advisor to the U.S. Department of Agriculture (USDA) program in corn research from 1920 onward [U.S. National Archives and Records Administration (NARA), College Park, MD]. Several graduate students, including Barbara McClintock, George Beadle, and Marcus Rhoades, were supported at Cornell by USDA funds, and some graduates obtained jobs with the USDA, including Arthur M. Brun-
son, Thomas Bregger, Lowell F. Randolph, Marcus Rhoades, and George Sprague, all of whom contributed to the cooperative endeavors.

Following Emerson’s early work on multiple factor inheritance (Emerson and East 1913), his maize genetics school contributed concurrently to the progress of corn breeding and to general knowledge in genetics. In this respect, Emerson’s program may be considered a parallel to Thomas Hunt Morgan’s group [at Columbia University and later at The California Institute of Technology (Caltech)]. Emerson’s students had close scientific associations with the Drosophila geneticists and with geneticists and cytologists at other institutions. Concepts, methods, standard nomenclatures, along with students (including E. G. Anderson, M. Demerec, G. Beadle, and M. Rhoades) who were trained in corn genetics and later also worked on Drosophila, circulated between the two communities. Maize geneticists maintained strong relations with Drosophila geneticists during the 1920s (e.g., C. Metz, C. Bridges; Figure 1). This connection was due primarily to Emerson and his students, who kept Emerson informed about the exciting work that was progressing in these laboratories. Consequently, Cornell maize geneticists were aware that the use of cytogenetics by Drosopholists had opened a fertile second front to tackle problems.

Linkage groups: By 1928, however, significant general contributions to genetics from corn were quite limited (McClelland 1930). Furthermore, maize linkage studies and genetic mapping stood nearly a decade behind Drosophila. The 10 linkage groups in corn were not all clearly identified and the mapping work in each group was still very rough, as illustrated by the “rainbow maps” drawn by Beadle and Emerson in April 1929 (Figure 4) (Emerson 1929).

Within the year, however, Barbara McClintock’s identification of the morphology of the corn chromosomes (McClintock 1929) and her unpublished research on trisomic ratios correlating genes with specific chromosomes were major contributions to Beadle’s “Summary of Data on the Independence of the Linkage Groups in Maize,” which Emerson distributed “To Students of Maize Genetics” on April 17, 1930 (Emerson 1930a). McClintock, then an instructor at Cornell, collaborating with students George Beadle, Henry Hill, Harriet Creighton, and Marcus Rhoades, and with Charles Burnham, a visiting scientist, and others, began a golden age for maize genetics and cytogenetics at Cornell (Rhoades 1984).

At the Ithaca Congress in August 1932, Emerson could confidently present a genetic map with linkage groups correlated with numbered chromosomes, thus setting the stage for further cooperative and significant contributions to maize cytogenetics (Rhoades and McClintock 1935). Rhoades also organized a “living chromosome map” in which mutant plants were arranged according to their chromosomal positions (Crow 1992).

FOUNDING THE MAIZE GENETICS COOPERATION NEWS LETTER

By February 1934, Emerson had applied to the RF for a grant-in-aid for support of work in collecting and disseminating maize stocks and information (CU). Emerson submitted a separate portfolio of exhibits (RF exhibits A–J, Rockefeller Foundation Archives, Sleepy Hollow, NY) to document his application dated February 6, 1934. Emerson’s “Historical summary of cooperation among maize geneticists” (RF exhibit A) described how the maize cooperation began ~15 years previously in a small way among his former students. Soon other investigators were asked to be included. He documented interactions among these researchers with a “mimo- graphed summary of linkage in maize, 1929 [sic]” (RF exhibit D); this exhibit was actually Emerson’s “second folder of mimeographed information issued sometime..."
after the first one” (mentioned in Emerson 1940). His “mimeographed summary” (RF exhibit D) included all of the linkage data compiled and sent to maize geneticists on April 17, 1930, and July 26, 1930 (Emerson 1930a,b).

Emerson’s first (our emphasis) mimeographed letter, Emerson’s list of cooperators, we have no documentation that she attended the meeting and it would not have been appropriate in that era for a single woman to attend a gathering in a man’s hotel room. The cooperators who did attend, however, were most familiar with McClintock’s work (see Kass 2003) and would have attended AAAS Christmas meetings in New York City in 1928. It included a long folder of linkage information and the names of researchers assigned each linkage group (see Table 1 based on the original). Emerson (April 12, 1929) carefully explained, “To those not at the New York Meeting...this assignment of linkage groups was...made in accordance with the expressed interests of those assuming the responsibilities entailed. It was far in the spring and summer of 1930. Beadle left Cornell in late 1930 for Caltech as a National Research Council Fellow (Plant Breeding Records, CU) (Berg and Singer 2003), but continued to receive unpublished linkage data from cooperators (Emerson 1931), until Marcus Rhoades subsequently succeeded him as secretary (Rhoades 1932a).

In his review of “The Early Years of Maize Genetics,”
TABLE 1
To whom linkage groups were parceled out at New York, at the “Cornfab” held in R. A. Emerson’s hotel room in December 1928

<table>
<thead>
<tr>
<th>Linkage group</th>
<th>Recipient</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-Wx</td>
<td>Eyster (Bucknell University); Beadle (Cornell University)</td>
</tr>
<tr>
<td>R-G</td>
<td>Lindstrom, Jenkins, Wentz (Iowa State University)</td>
</tr>
<tr>
<td>Su-Tu</td>
<td>Emerson (Cornell University)</td>
</tr>
<tr>
<td>B-Lg</td>
<td>Stadler (University of Missouri); McClintock (Cornell University)</td>
</tr>
<tr>
<td>Y-Pt</td>
<td>Hill (Cornell University)</td>
</tr>
<tr>
<td>P-Br</td>
<td>Emerson (Cornell University)</td>
</tr>
<tr>
<td>Ra-Gl1</td>
<td>Brewbaker (University of Minnesota); Jorgenson (Ohio University); Li (Cornell University)</td>
</tr>
<tr>
<td>D1-Pg2</td>
<td>Not assigned</td>
</tr>
<tr>
<td>A-Ts4</td>
<td>Brink (University of Wisconsin); Li (Cornell University)</td>
</tr>
</tbody>
</table>

Based on Emerson (1929).

Rhoades (1984) recalled the New York City “cornfab,” which was his first with the maize cooperators. Rhoades had arrived at Cornell in the fall of 1928 from the University of Michigan, where he had studied with Emerson’s former student E. G. Anderson. Anderson was soon recruited by Morgan for his newly established Biology Division at Caltech. Rhoades then spent the 1929–1930 academic year there with Anderson (CU) (Anderson and Rhoades 1931; Birchler et al. 2003). It seems clear, however, that the 1928 AAAS “cornfab” was not Emerson’s first.

ESTABLISHING AND FUNDING THE MAIZE GENETICS COOPERATION AT CORNELL

Establishment of the Maize Genetics Cooperation: Emerson also submitted to the Rockefeller Foundation a copy of Rhoades’ first letter to corn geneticists dated October 5, 1932 (RF exhibit C; Rhoades 1932a), which was retroactively numbered “Vol. 2,” in the Cornell Plant Breeding Department’s bound volumes of the MNL [MNL, Vols. 2–14, 1932–1940, and MNL, Vols. 15–21, 1941–1947; Plant Breeding Department Archives (PB), Cornell University, Ithaca, NY]. Therein, Rhoades summarized the resolutions discussed and favorably acted upon by a committee of maize-genetics workers at the Ithaca meeting held on August 26, 1932, in connection with the International Genetics Congress. In addition to discussing the numbering and naming of gene symbols, linkage groups, and chromosomes, the group agreed that Cornell should be the “clearing house” where the records would be kept and that a repository should be formed for storing and disseminating the new information. Emerson, chair of the committee to oversee their resolutions, along with R. Alexander Brink, Donald F. Jones, Paul C. Mangesdorff, and Lewis J. Stadler, had chosen Rhoades (1) to act as custodian of the seed stocks, (2) to furnish a list of stocks received, and (3) to distribute stocks to workers. They also reallocated the 10 maize linkage groups to individuals who would assume primary responsibility for the group assigned (Table 2) (see also Coe 2001).

By this time McClintock had left Cornell but her pioneering contributions to maize cytogenetics had been both recognized and rewarded. She was awarded a National Research Council Fellowship (1931–1933) and, after spending time with L. J. Stadler at the University of Missouri, had joined Anderson’s group at Caltech, where she resumed cooperating with Beadle and Burnham. They returned to Cornell to attend the ICG in the summer of 1932, where Emerson (1932) recognized their contributions to maize cytogenetics.

Following the Congress, Rhoades’ first letter to maize cooperators made clear that “anyone may begin or continue to work with any group whether or not it has been assigned to him.” It was expected that when “two or more are interested in the same group, they will work in close cooperation!” Rhoades then distributed a call for stocks, wants, and news items, on December 12, 1932 (Rhoades 1932b), and the third Corn News Letter followed on January 23, 1933 (Rhoades 1933; RF exhibit C in part). These two letters are bound together at Cornell (MNL, Vols. 2–14, 1932–1940, PB) and the latter is numbered “Vol. 3.”

Funding the Maize Genetics Cooperation: Emerson’s “historical summary” (RF exhibit A) additionally revealed that his committee was also responsible for devising a way to “carry out the work which the Cornell maize geneticists were asked to continue and to enlarge.” His committee did not find a way to provide funds, but it led to an alternative opportunity. The committee on agronomy appointed by the Division of Biology and Agriculture of the NRC, a unit of the National Academy of Sciences, unanimously recommended a grant-in-aid of $1000/year for 5 years for an information and supply service for maize work to be headed by R. A. Emerson of the Plant Breeding Department of Cornell University, for the purpose of maintaining the service for “one of the most important crops and . . . for extending our knowledge in the field of genetics and cytogenetics”
(RF exhibit B). The NRC committee supported their recommendation with six exhibits (cited as exhibits I–VI), which Emerson had submitted to document his accomplishments to date. These exhibits were not in the files at RF but we did locate two exhibits identified by Roman numerals: exhibit IV, Rhoades’ letter dated December 26, 1932 (Rhoades 1932b), and exhibit V, dated January 23, 1933 (Rhoades 1933); we found these numbered exhibits in archived files of the Maize Coop (see also Emerson 1940, where maize communications are identified by roman numerals). The committee, composed of M. Francis Morgan, Ralph J. Garber, and Richard Bradfield (chairperson), emphasized that “maize occupies about the same relative position among plants that the fruit fly D. melanogaster does among insects” (RF exhibit B). Surprisingly, their recommendation was not accepted by the Council.

On December 26, 1933, the secretary of the NRC committee on grants-in-aid notified Emerson that after careful study of the application they had decided against making the grant of funds. Emerson received their letter upon returning from the Boston AAAS meetings, where both maize and Drosophila geneticists had suggested “standardizing nomenclature and symbolization for maize” (RF exhibit H). While there, Emerson had discussed with Frank Blair Hanson (Assistant Director, Natural Sciences, Rockefeller Foundation) an alternative plan for applying for funds to the Rockefeller Foundation should the NRC grant not be approved (Hanson’s diary, RF). Four months previously (September 1933) RF officers Warren Weaver (Director, Natural Sciences) and Hanson, while visiting Cornell on other matters, had been apprised of Emerson’s “information and supply service to corn geneticists” and his need for funds; but at that time Emerson was confident that the NRC would support the work (Weaver’s diary, RF; Emerson to Stadler, November 8, 1933, CU).

Within a month of learning that the NRC grant application had been denied, Emerson applied to the Rockefeller Foundation for funding and submitted Rhoades’ most recent “mimeographed letter to maize geneticists,” dated January 25, 1934 (RF exhibit J; MNL Vol. 4, PB). By this time, among the 53 maize geneticists engaged in cooperative work on genetic mapping, it appears that not fewer than 30 were Emerson’s collaborators at Cornell, had been graduate students there, or had done some postdoctoral work in his department. Emerson identified 24 cooperators as “most actively engaged in genetic studies”; 16 had been graduate students and 2 had been postdoctoral fellows at Cornell (RF exhibit E). He submitted the exhibits (RF exhibits A–J), which we have described here, and also explained that in the spring of 1933, parts of a manuscript of “A Summary of Linkage in Maize” then in the course of preparation by Fraser, Beadle, and himself (RF exhibit F) “together with work sheets had been sent to those to whom particular linkage groups had been assigned.” The draft manuscript was, of course, the notable “A Summary of Linkage Studies in Maize” that would be published by Emerson, Beadle, and Fraser in 1935.

On March 16, 1934, the Rockefeller Foundation appropriated $5000 for the New York State College of Agriculture at Cornell University for the “support of collecting and disseminating maize stocks and information relating thereto” directed by Professor R. A. Emerson. Within the week, Emerson (1934) asked cooperators if they were willing to allow him to use their unpublished linkage data in “the much heralded and too long delayed” general linkage summary to be published from Cornell (NARA). Students of maize genetics responded without reservations, fostered by Emerson’s cooperative and enthusiastic, yet trustworthy, nature. Emerson soon after announced the Rockefeller award in a letter to cooperators on September 13, 1934 (MNL Vol. 7, 1934, PB). At that time, 60 genetics researchers were receiving the News Letter.

By April 1934, McClintock returned to Cornell where she completed her year-long Guggenheim Fellowship but worried about finding a job (Kass 2003). Emerson recognized her abilities toward his MGC enterprise and requested a separate grant-in-aid to hire her as his research assistant (RF; CU; Kass 2003) for continued research on maize cytogenetics. With Emerson’s encouragement, his students took advantage of her presence to learn new techniques and to receive her cooperative guidance. Within the year, Emerson et al. (1935) recognized McClintock’s, and other maize cooperator’s, contributions toward their maize linkage studies. Their linkage summary reported that, using trisomic ratios, McClintock identified 8 linkage groups with chromosomes 2, 3, 5, 6, 7, 8, 9, and 10. In 1935, Rhoades and McClintock reported that, by using trisomic methods, 6 of the 10 linkage groups had been associated with chromosomes: 2 [B-lg], initially incorrectly assigned to 4, 3[a1-lg], 5[pr-v2], 6 [Y-P1], 7[g1-ra], and 10 [r-g]; and

<table>
<thead>
<tr>
<th>Linkage group</th>
<th>Recipient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1, P-br</td>
<td>Emerson</td>
</tr>
<tr>
<td>Group 2, B-lg</td>
<td>Beadle</td>
</tr>
<tr>
<td>Group 3, a1-Rg</td>
<td>Brink</td>
</tr>
<tr>
<td>Group 4, su-Tu</td>
<td>Jones</td>
</tr>
<tr>
<td>Group 5, pr-v2</td>
<td>Burnham</td>
</tr>
<tr>
<td>Group 6, Y-P1</td>
<td>Stadler</td>
</tr>
<tr>
<td>Group 7, g1-ra</td>
<td>Jenkins</td>
</tr>
<tr>
<td>Group 8, j</td>
<td>Sprague</td>
</tr>
<tr>
<td>Group 9, c-wx</td>
<td>Eyster</td>
</tr>
<tr>
<td>Group 10, R-g1</td>
<td>Lindstrom</td>
</tr>
</tbody>
</table>

Maize linkage groups 1–10 were reassigned to individuals by the committee of maize researchers convened at the ICG on August 26, 1932 (after Rhoades 1932a). Researchers listed are from Rhoades’ letter of October 5, 1932.
that other methods (i.e., reciprocal translocations) gave a definite check on previous trisomic determinations for linkage groups 1, 4 (su-Tu), and 9 (c-wx). The early MNLs (1929–1932, reprinted in MNL, Vols. 52–57, 71, and 72) demonstrate McClintock’s and other cooperators’ contributions to their maize linkage studies.

Continued cooperation throughout the country and the world: The work of maize cooperators stimulated interests in cytogenetics. By 1935 translocations were used to construct many tester lines that contained both phenotypic characters and a translocation. About one-third of the three-point and four-point tests reported in the linkage monograph (Emerson et al. 1935) involved a translocation as a marker. Such translocation-associated three-point tests were extremely valuable, since they allowed confirmation of gene associations with specific chromosomes and gave the order of genes and of cytological locations with translocation breakage points (McClintock 1931; Rhoades 1931). In addition, Creighton (1934) used pachytene stage chromosomes to continue deletion mapping studies.

Early on, Emerson fostered cooperation among researchers throughout the world. He encouraged both domestic and foreign students to join his research team at Cornell (Figures 3 and 4) and published their findings in the Cooperation’s News Letter. Soon, this news circular, which united the maize genetics group, was not limited to offers and demands for strains but also disseminated unpublished results among the researchers. The rule was that any data appearing there could not be cited in publications without the direct consent of the contributor. Maize researchers from around the world—Austria, USSR, Yugoslavia, China, South Africa, Brazil, and Mexico—were honored to share their unpublished results, as we found in MNL reports through 1934.

The first numbered Maize Genetics Cooperation News Letters: The first set of bound News Letters, which we located in the Department of Plant Breeding at Cornell (MNL, Vols. 2–14, 1932–1940), was numbered by hand in pencil, beginning with Rhoades’ letter of October 5, 1932, labeled “Vol. 2.” This led us to believe that Rhoades’ letter was not Maize News Letter 1. These News Letters appear to have been bound and numbered retroactively under the guidance of Emerson, who was the secretary for MNL, Vol. 14, 1940. The “Historical Notes on Maize Cooperation,” listed on p. 56, of MNL, Vol. 14, although unsigned, were probably prepared by Emerson, who was secretary for that News Letter. Those notes clearly state that the mimeographed letter of April 12, 1929, is “considered News Letter 1.” Coe (1976, 1978) used the “Historical Notes” as a guide to compile an archival list of materials of the MNL and related cooperation. While conducting research on the history of maize linkage studies, Kass and Bonneuil (2004) recently found some of the missing (starred) items on Coe’s list. This new information permitted us to recon-
TABLE 3

Transitions of the Maize Genetics Cooperation responsibilities

<table>
<thead>
<tr>
<th>Years</th>
<th>News Letter</th>
<th>Stocks</th>
<th>Database</th>
</tr>
</thead>
<tbody>
<tr>
<td>1929–1953</td>
<td>Cornell</td>
<td>Cornell</td>
<td>NA</td>
</tr>
<tr>
<td>1953–1955</td>
<td>Cornell</td>
<td>Illinois</td>
<td>NA</td>
</tr>
<tr>
<td>1956–1957</td>
<td>Illinois</td>
<td>Illinois</td>
<td>NA</td>
</tr>
<tr>
<td>1958–1974</td>
<td>Indiana</td>
<td>Illinois</td>
<td>NA</td>
</tr>
<tr>
<td>1975–1991</td>
<td>Missouri</td>
<td>Illinois</td>
<td>NA</td>
</tr>
<tr>
<td>1991–2002</td>
<td>Missouri</td>
<td>Illinois</td>
<td>Missouri</td>
</tr>
<tr>
<td>2003–</td>
<td>Missouri</td>
<td>Illinois</td>
<td>Iowa State and Missouri</td>
</tr>
</tbody>
</table>

from 1953 to 1955, with subsidies from seed companies like DeKalb Agricultural Association; Green Giant; Northrup, King; and Pioneer Hi-Bred Corn (MNL 28: 1, 1954). In 1955, oversight of the MNL moved from Cornell to Illinois under Marcus Rhoades as secretary (MNL, Vol. 30, pp. 1–3, 1956) and it accompanied him to Indiana in 1958 (Table 3). At Illinois funding for the MNL was obtained from seed companies and a grant from NSF. The MNL continued to be edited by Rhoades, aided by Ellen Dempsey (his research associate and former student), as previously, and prepared and distributed at Indiana through 1974. That year the MNL transferred to the University of Missouri, under Edward Coe as secretary, until 2000, when Mary Polacco and Jim Birchler became cosecretaries. The News Letter (now “Newsletter”) continues to be compiled, edited, printed, and distributed at Missouri and is available online at http://www.maizegdb.org/mnl.php for previously printed issues or at http://www.agron.missouri.edu/mnl/ for issues that are in process. Support for its distribution is from an endowment fund established from individual and corporate contributions.

Annual Maize Genetics Conferences were initiated in 1959, following a proposal from John R. Laughnan at the University of Illinois. The conferences are organized and run by a Steering Committee. The 2004 meeting was held in Mexico City. Information about past and future conferences is provided at http://www.maizegdb.org/cooperators.php.

The Maize Genome Database (MaizeGDB) was begun in 1991 as an extended medium for communication and for access to data, established by the U.S. Department of Agriculture-Agricultural Research Service at Missouri (USDA-ARS) under the direction of Ed Coe, joined by Mary Polacco. Content of the database, including gene lists, maps, bibliography, and cooperator’s addresses, initially was drawn directly from the files and compilations of the MNL, supplemented by entries of new data. In 2003, the MaizeGDB became a joint endeavor, supported by USDA-ARS, between Missouri (Mary Polacco) and Iowa State University (Volker Brendel, Trent Seigfried, Darwin Campbell, and Carolyn Lawrence). Curation of data content is conducted at the two locations.
and the database is served from Iowa State at http://www.maizegdb.org/.

In 2000, a Maize Genetics Executive Committee was elected whose mission is “to identify both the needs and the opportunities for maize genetics, and to communicate this information to the broadest possible life science community. This community includes scientists, funding sources for scientists, and the end users for the accomplishments of maize genetics, from farmers to consumers.” Information about the Committee is given at http://www.maizegdb.org/mgec.php.

This perspective was developed from a presentation given at the workshop, “The Mapping Cultures of 20th Century Genetics,” at The Max Planck Institute for the History of Science, Berlin, Germany, in March 2001. We thank R. MacIntyre for sharing bound and numbered copies of Drosophila Information Service, Vols. 1–8, 1934–1937; M. E. Smith for sharing bound and hand-numbered copies of MNL, Vols. 2–14, 1932–1940, and Vols. 15–21, 1941–1947; William Provine for sharing Lester Sharp’s unbound and unnumbered copies of MNL, 1933–1938, and for extensive use of his reprint collections; R. P. Murphy for significant insights and encouragement for this project and for sharing his unpublished manuscript on the history of Cornell’s Plant Breeding Department; archivists at the Rockefeller Archives Center, Sleepy Hollow, New York, with special thanks going to T. Rosenberg; U.S. National Archives and Records Administration, College Park, Maryland, with special thanks going to J. Schwarz; Division of Rare and Manuscript Collections, Carl A. Kroch Library, Cornell University, with special thanks going to E. Engst; librarians at the Mann Library, especially Tom Clausen; and The L. H. Bailey Hortorium Library, especially P. Fraissinet for bringing many valuable references to our attention. We are grateful to R. P. Murphy, W. B. Provine, and R. H. Whalen for reading early drafts of this article. L.B.K. acknowledges the following for support of archival research: National Science Foundation (grants SBR9511866 and SBR9710488); American Philosophical Society Library, Mellon Resident Research Fellowship; and the Departments of Plant Biology and Plant Breeding and Genetics, Cornell University, Ithaca, New York, for logistical support.

LITERATURE CITED

Emerson, R. A., 1934 To cooperators who have contributed unpublished data for a summary of linkage in maize, March 22, 1934. U.S. National Archives and Records Administration, College Park, MD.

Fraser, A. C., 1924 Heritable characters of maize. XVII. Intensified red and purple aleurone color. J. Hered. 15:119–125.

Hutchison, C. B., 1922 The linkage of certain aleurone and endosperm factors in maize and their relation to other linkage groups. Cornell Univ. Agric. Exp. Station Mem. 60:1421–1473.

McClelland, C. K., 1930 The genetics, breeding and improvement of corn. A bibliography covering more than forty years work (1889–1929) in the breeding improvement (and study of inheritance in corn. Published by the author, Fayetteville, AR.

APPENDIX II

Reproduced in this Appendix is the *MNL* report for the expanded chronological list of archival materials related to the *Maize Genetics Cooperation News Letters* and related cooperation. Based on Emerson’s Historical Notes on Maize Genetics Cooperation (*MNL* 14:56), an original list was compiled by Ed Coe, former editor of the *Maize Genetics Cooperation News Letter*, and published in 1976 and 1978. Coe’s original list had some items missing from the historical record and, as recorded in this report, Kass and colleagues found some of the missing items. Using many of the archived materials listed in this updated report, Kass et al. (2005, see Appendix I) were able to present an historical perspective of the origin and founding of the *Maize Genetics Cooperation News Letter*. The *Maize Genetics Cooperation News Letter* early volumes reprinted in this two-volume 90th Anniversary book provide documentation for the story told in their historical perspective and in the list provided in the following document.
Maize Genetics Cooperation News Letter Files: Expanded chronological list of materials and related cooperation

— Coe, EH; Kass, LB

We present here an expanded, current list of archival materials and cooperation and welcome your contributions towards completing the collections.

Table 1.

<table>
<thead>
<tr>
<th>File No.</th>
<th>PB Vols. No.</th>
<th>MNL 14-56 No.</th>
<th>MMR No.</th>
<th>LS Dated</th>
<th>Pp.</th>
<th>Subject</th>
<th>Reprinted in</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>I.</td>
<td>4/12/29</td>
<td>30</td>
<td>Emerson</td>
<td>6</td>
<td>Two-page letter, “You who attended the ‘cornlab’ in my hotel room at the time of the winter science meetings in New York… linkage group commitments, and a folder of shared linkage information with references…” (ref. MNL 14:56, and in papers of E. G. Anderson).</td>
<td>52:147-149</td>
</tr>
<tr>
<td>1c</td>
<td>I.</td>
<td>2/5/30</td>
<td>1</td>
<td>Beadle</td>
<td>2/5/30</td>
<td>Summarization of Linkage — Request for Data.</td>
<td>54:136</td>
</tr>
<tr>
<td>2a.1</td>
<td>II.</td>
<td>4/17/30</td>
<td>17</td>
<td>Emerson</td>
<td>7/26/30</td>
<td>Revised maps (“second folder of mine” Exhibit D found at RAC, and in papers of E. G. Anderson).</td>
<td>54:136-139</td>
</tr>
<tr>
<td>2a.2</td>
<td>II.</td>
<td>11/18/31</td>
<td>1</td>
<td>Emerson</td>
<td>11/18/31</td>
<td>Linkage Data (“second folder of mine” Exhibit D found at RAC, and in papers of E. G. Anderson).</td>
<td>54:140-145</td>
</tr>
</tbody>
</table>

PB=Plant Breeding bound volumes, Cornell. MMR=Marcus M Rhoades. LS = Lester Sharp File. RAC = Rockefeller Archives Center. NARA = National Archives and Records Administration.

Note: This table is a partial list of materials and cooperation related to the Maize Genetics Cooperation Newsletter. For a complete list, please refer to the original source.
<table>
<thead>
<tr>
<th>Vol.</th>
<th>Date</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>3/4/36</td>
<td>22 Emerson</td>
</tr>
<tr>
<td>11c</td>
<td>11/21/36</td>
<td>1 Langham</td>
</tr>
<tr>
<td></td>
<td>1/5/37</td>
<td>Call, deadline January 15.</td>
</tr>
<tr>
<td>1d</td>
<td>[11]</td>
<td>1 Langham</td>
</tr>
<tr>
<td></td>
<td>1/5/37</td>
<td>Call, deadline January 15.</td>
</tr>
<tr>
<td>11</td>
<td>3/23/37</td>
<td>26 Langham</td>
</tr>
<tr>
<td>12c</td>
<td>[12]</td>
<td>2 Langham</td>
</tr>
<tr>
<td></td>
<td>1/22/38</td>
<td>Call, deadline January 15; encouragement of collective short proposals on linkage.</td>
</tr>
<tr>
<td>12d</td>
<td>[12]</td>
<td>Langham</td>
</tr>
<tr>
<td></td>
<td>1/22/38</td>
<td>Call, deadline advanced to February 15, 1939.</td>
</tr>
<tr>
<td>12</td>
<td>3/6/38</td>
<td>40 Langham</td>
</tr>
<tr>
<td></td>
<td>3/6/38</td>
<td>News, Stocks, Symbol Index for 1/23/33-3/6/38; Maps by Langham, hand-drawn (A = “showing the loci of those genes whose position can be determined with reasonable certainty”; B = “showing the approximate loci of many genes.”) Working map. More 3-point tests needed . . . (at end of PB volume and in Anderson copy); Sharp’s copy, p. 38 is last page --- chromosome linkage maps are missing; Sharp’s last un-numbered copy is dated March 6, 1938.</td>
</tr>
<tr>
<td>13c</td>
<td>[13]</td>
<td>Langham</td>
</tr>
<tr>
<td></td>
<td>1/21/39</td>
<td>Call, deadline January 15.</td>
</tr>
<tr>
<td>13</td>
<td>4/15/39</td>
<td>22 Langham</td>
</tr>
<tr>
<td></td>
<td>4/15/39</td>
<td>Call for 1940 MNL; deadline January 15.</td>
</tr>
<tr>
<td>14c</td>
<td>[14]</td>
<td>i Lebedeff</td>
</tr>
<tr>
<td></td>
<td>10/31/39</td>
<td>Call for 1940 MNL; deadline January 15.</td>
</tr>
<tr>
<td>14d</td>
<td>Vol. 14</td>
<td>IV. 1 Emerson</td>
</tr>
<tr>
<td></td>
<td>1/8/40</td>
<td>Call reminder, half sheet [Not in PB bound volumes].</td>
</tr>
<tr>
<td>15</td>
<td>[14]</td>
<td>56(3) Emerson</td>
</tr>
<tr>
<td></td>
<td>3/5/40</td>
<td>News, BibL, Stocks (by Lebedeff), Historical Notes on Maize Genetics Cooperation I–XIV on page 56 likely by Emerson [last 3 pages in PB volume 14 are letter of 2/5/41 and “An Appreciation” of Emerson, see below] [Mann Library Copy, L.J. Stadler copy, and E.G. Anderson copy have only the 56 pgs].</td>
</tr>
<tr>
<td>15c</td>
<td>[15]</td>
<td>1 Emerson</td>
</tr>
<tr>
<td></td>
<td>1/21/41</td>
<td>Call for 1941 MNL; deadline March 1.</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>Letter; Emerson’s retirement and reunion of maize genetics workers: “As you may know Dr. Emerson reaches retirement age this coming June . . . this coming summer is an appropriate time to hold a reunion of his former students and coworkers in corn genetics. Preliminary arrangements are now being made for such a reunion to be held at Ithaca in late August or early September, either just before or just after the summer meeting of the Genetics Society at Cold Spring Harbor.” List of 30 names to whom this invitation is sent appended below and those (11) who have already indicated they would attend are starred.</td>
</tr>
<tr>
<td>16</td>
<td>Vol. 15</td>
<td>4/1/41 (2)×56 Fraser</td>
</tr>
<tr>
<td></td>
<td>12/10/41</td>
<td>Call, deadline January 15.</td>
</tr>
<tr>
<td>16c</td>
<td>[16]</td>
<td>[Plus Table of Contents] note in memory of Fraser by Emerson; Reports, Stocks (by Einset, Welch), Bibliography (by Emerson).</td>
</tr>
<tr>
<td>16</td>
<td>Vol. 16</td>
<td>2/10/42 i=59 Emerson</td>
</tr>
<tr>
<td></td>
<td>12/10/42</td>
<td>Call, deadline January 31.</td>
</tr>
<tr>
<td>17</td>
<td>Vol. 17</td>
<td>4/15/43 51×(3) Emerson</td>
</tr>
<tr>
<td></td>
<td>2/10/42</td>
<td>Reports, Stocks, Bibliography [plus 1 pg. 11/22/43 Emerson to 11 cooperators-see below] [Only the year is listed on PB copy, Vol. number not hand written in this or subsequent bound PB volumes].</td>
</tr>
<tr>
<td></td>
<td>12/10/42</td>
<td>Emerson</td>
</tr>
<tr>
<td>17</td>
<td>Vol. 18</td>
<td>11/22/43 1 Emerson</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LBK found in PB copy at end of vol. 17, 1943. “This is being sent to [13 cooperators]. Emerson upset that News Letter was quoted without permission, “Should we send the newsletter only to workers in maize genetics”.</td>
</tr>
<tr>
<td>[1943]</td>
<td></td>
<td>[disclaimer is further emphasized by a double box border].</td>
</tr>
<tr>
<td>18</td>
<td>Vol. 18</td>
<td>1/31/44 i=32 Emerson</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[Plus Table of Contents] Reports, Stocks, Bibliography (by A.M. Brown).</td>
</tr>
<tr>
<td>[1944]</td>
<td></td>
<td>[disclaimer is emphasized by addition of a box border].</td>
</tr>
<tr>
<td>19</td>
<td>Vol. 19</td>
<td>2/15/45 i=50 Cushing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reports, Stocks (Cushing, Morris), Bibliography [disclaimer added to cover: “The data presented here are not to be used in publications without the consent of the authors”].</td>
</tr>
<tr>
<td>[1945]</td>
<td></td>
<td>[disclaimer is emphasized by addition of a box border].</td>
</tr>
<tr>
<td>20</td>
<td>Vol. 20</td>
<td>4/15/46 i=35 Cushing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reports, Stocks (Cushing, Morris), Bibliography (by Smith) [pg 2 has an announcement by Emerson, “Arrangements have been made to continue the Maize Genetics Cooperation at Cornell University for a period of not less than three years. Professor R. L. Cushing, who has been responsible for the work done during the past few years, will help initiate Prof. H. H. Smith who will have charge of the work in the immediate future . . . R. A. Emerson.”].</td>
</tr>
<tr>
<td>21c</td>
<td>[21]</td>
<td>12/26/46 1 Smith</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Call for 1947 MNL; deadline February 15.</td>
</tr>
<tr>
<td>21</td>
<td>Vol. 21</td>
<td>3/1/47 i=59 Smith</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Call for 1947 MNL; deadline February 15.</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>12/24/47 Death of Emerson, Dec. 8, 1947; end of PB bound Maize Newsletters is 1947.</td>
</tr>
<tr>
<td>22c</td>
<td></td>
<td>Call for 1948 MNL; deadline February 15.</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>3/8/48 i=72 Smith</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note in memory of Emerson by L. F. Randolph, B.S. Monroe, & F. P. Bussell, Reports, Stocks (by Wright), Bibliography (by Wright).</td>
</tr>
<tr>
<td>23c</td>
<td></td>
<td>12/28/48 1 Smith</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Call for MNL, 23, 1949; deadline February 15.</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>3/10/49 i=78 Smith</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note in memory of Lindstrom by J. W. Gowen; Reports, Stocks (by Wright); Bibliography (by Wright).</td>
</tr>
<tr>
<td>[1949]</td>
<td></td>
<td>[disclaimer is emphasized by addition of a box border].</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>3/17/50 i=81 Smith</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Assumed Call for 1951, no copy found.</td>
</tr>
<tr>
<td>24c</td>
<td></td>
<td>3/17/51 i=68 Smith</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reports, Historical Author index vol. 9–24, Stocks (by Craigiles), Bibliography (by Craigiles).</td>
</tr>
<tr>
<td>26</td>
<td></td>
<td>1/2/52 1 Smith</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Call for MNL, 26, 1952; deadline February 15.</td>
</tr>
<tr>
<td>26c</td>
<td></td>
<td>3/17/52 i=76 Smith</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Report on meeting to discuss Support for the Coop at AIBS Meetings in Minnesota September 12, 1951 (Smith); Reports, Stocks (by Craigiles), Bibliography (by Woodward, Craigiles).</td>
</tr>
<tr>
<td>27b</td>
<td></td>
<td>9/26/52 4 Rhodes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stock Center, Project Outline.</td>
</tr>
<tr>
<td>27c</td>
<td></td>
<td>12/30/52 1 Smith</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Call for MNL, 27, 1953; deadline February 15.</td>
</tr>
<tr>
<td>27</td>
<td></td>
<td>3/17/53 i=90 Everett</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Report on meeting to discuss support for the Coop at AIBS Meetings at Cornell September 9, 1952 (Laughman); Reports, Bibliography (by Sherwood).</td>
</tr>
<tr>
<td>28c</td>
<td></td>
<td>1/5/54 1 Smith</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Call for MNL, 28; deadline February 15.</td>
</tr>
<tr>
<td>28</td>
<td></td>
<td>3/17/54 i=94 Smith</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Funds received from hybrid corn companies to support MNL; Reports, Stocks (Patterson), Bibliography (Wright).</td>
</tr>
</tbody>
</table>
29c 12/15/54 2 Smith Call for MNL 29, 1955 with example; deadline February 15.
29 3/17/55 ii+100 Smith Reports, Stocks (Patterson), Bibliography (Wright).
30c 12/7/55 1 Rhoades Call for 1956 MNL (from Illinois), deadline February 15; Transfer of MNL Responsibility.
 Minutes of 1955 meeting of maize geneticists at AIBS meetings at Michigan State University regarding transfer of Stocks and the Maize Genetics Cooperation Newsletter, chromosome responsibilities (Patterson); Reports, Stocks (Patterson), Bibliography (Bibl.) [News Letter published in Department of Botany, University of Illinois].
30 3/15/56 ii+164 Rhoades

31c 12/7/55 1 Rhoades Call for 1956 MNL (from Illinois), deadline February 15; Transfer of MNL Responsibility.
31 3/17/55 ii+100 Smith Reports, Stocks (Patterson), Bibliography (Wright).
32c 12/7/55 1 Rhoades Call for 1956 MNL (from Illinois), deadline February 15; Transfer of MNL Responsibility.
32 3/15/56 ii+164 Rhoades

33c 12/7/56 1 Rhoades Call for 1957 MNL; deadline February 15.
33 3/15/57 ii+173 Rhoades Nomenclature, Reports, Stocks, Bibl.
34c 12/12/57 1 Rhoades Call for 1958 MNL (from Illinois); deadline February 15.
34 3/15/58 ii+173 Rhoades Reports, Stocks, Bibl. [published in Department of Botany, Indiana University][Seed companies fund publication of MNL; Obituary of Frederick David Richey (1884–1955) by H. K. Hayes].
35c 12/8/58 1 Rhoades Call for 1959 MNL, deadline February 15 (from Indiana).
35 3/15/59 ii+168 Rhoades Reports, Stocks, Bibl. [published in Department of Botany, University of Illinois]. Rhoades incorporates a Foreword to the Newsletter and acknowledges Ellen Dempsey “who has been largely responsible for assembling the News Letter.” [Indiana University and NSF grant in part) fund publication of MNL].
36c 12/8/59 1 Rhoades Call for 1960 MNL, deadline February 15.
36 5/1/60 ii+154 Rhoades Reports, Stocks, Bibl. [Rhoades incorporates a Foreword to the News Letter and acknowledges Ellen Dempsey “who has been largely responsible for assembling the News Letter.”] [Indiana University and NSF grant in part) fund publication of MNL].
37c 12/8/60 1 Rhoades Call for 1961 MNL, deadline February 15.
37 4/15/61 ii+183 Rhoades Reports, Stocks, Bibl. [NSF grants publication of MNL].
38c 12/8/61 1 Rhoades Call for 1962 MNL, deadline February 15.
38 4/15/62 ii+154 Rhoades Reports, Stocks, Bibl. [published in Department of Botany, Indiana University][Seed companies fund publication of MNL].
39c 12/8/62 1 Rhoades Call for 1963 MNL, deadline February 15.
39 4/15/63 ii+196 Rhoades Reports, Chromosome 1 Data, Stocks, Bibl. [published in Department of Botany, Indiana University][Seed companies fund publication of MNL].
40c 12/8/63 1 Rhoades Call for 1964 MNL, deadline February 15.
40 4/15/64 ii+178 Rhoades Reports, Stocks, Bibl. [published in Department of Botany, Indiana University][Seed companies fund publication of MNL].
41c 12/8/64 1 Rhoades Call for 1965 MNL, deadline February 15.
41 4/15/65 ii+210 Rhoades Reports, Stocks, Bibl. [published in Department of Botany, Indiana University][Seed companies fund publication of MNL].
42c 12/8/65 1 Rhoades Call for 1966 MNL, deadline February 15.
42 4/15/66 ii+205 Rhoades Reports, Map, Stocks, Bibl. [published in Department of Botany, Indiana University][Seed companies fund publication of MNL].
43c 12/8/66 1 Rhoades Call for 1967 MNL, deadline February 15.
43 4/15/67 ii+233 Rhoades Reports, Stocks (Lambert), Bibl. [published in Department of Botany, Indiana University][Seed companies fund publication of MNL].
44c 12/8/67 1 Rhoades Call for 1968 MNL, deadline February 15.
44 4/15/68 ii+208 Rhoades Reports, Stocks, Bibl. [published in Department of Botany, Indiana University][Seed companies fund publication of MNL].
45c 12/8/68 1 Rhoades Call for 1969 MNL, deadline February 15.
45 4/15/69 ii+242 Rhoades Reports, Stocks, Bibl. [published in Department of Botany, Indiana University][Seed companies fund publication of MNL].
46c 12/8/69 1 Rhoades Call for 1970 MNL, deadline February 15.
46 4/15/70 ii+210 Rhoades Reports, Stocks, Bibl. [published in Department of Botany, Indiana University][Seed companies fund publication of MNL].
47c 12/8/70 1 Rhoades Call for 1971 MNL, deadline February 15.
47 4/15/71 ii+287 Rhoades Reports, Stocks, Bibl. [published in Department of Botany, Indiana University][Seed companies fund publication of MNL].
48c 12/8/71 1 Rhoades Call for 1972 MNL, deadline February 15.
48 4/15/72 ii+245 Rhoades Reports, Stocks, Bibl. [published in Department of Botany, Indiana University][Seed companies fund publication of MNL].
49c 12/8/72 1 Rhoades Call for 1973 MNL, deadline February 15.
49 4/15/73 ii+277 Rhoades Reports, Nomenclature, Stocks, Mailing list, Bibl. [published in Department of Botany, Indiana University][Seed companies fund publication of MNL].
50c 12/8/73 1 Rhoades Call for 1974 MNL, deadline February 15.
50 4/15/74 ii+244 Rhoades Reports, Stocks, Bibl. [published in Department of Botany, Indiana University][Seed companies fund publication of MNL].
51c 12/8/74 1 Rhoades Call for 1975 MNL, deadline February 15.
51 4/15/75 ii+183 Rhoades Reports, Stocks, Bibl. [Published at University of Missouri].
52c 1/13/75 1 Coe Call for MNL 49, deadline February 15 (from Missouri); transfer of responsibility.
52 4/15/75 ii+183 Coe Reports, Stocks, Bibl. [published at University of Missouri].
53c 11/1/75 1 Coe Call for MNL 50, 1976, deadline January 1.
53 3/17/76 ii+180 Coe Reports, Stocks, Bibl., Mailing list, Author Index [Chronological list of News Letter Files].
54c 11/1/76 1 Coe Call for MNL 51, 1977, deadline January 1.
54 3/17/77 ii+126 Coe Reports, Stocks, Bibl., Author Index (AI), Maps.
55b 9/19/77 2 Coe Reminder for Cytogenetic Working Map data.
55a 11/5/77 1 Coe Call for MNL 52, 1978, deadline January 1.
56c 3/17/78 ii+178 Coe Reports, Cytogenetic Maps, Stocks, Bibl., Symbol index (SI), AI, News Letter Files list additions, 55 Years reprinted (3/7/23).
56b 4/25/78 1 Coe Request for Cytogenetic Working Map data by October 1.
56a 11/17/78 1 Coe Call for 1979 MNL, deadline January 1.
57c 3/17/79 ii+166 Coe Reports, Stocks, Bibl., Mailing list, SI for MNL 36–53, Al, 50 Years reprinted (4/12/29).
57b 4/12/79 1 Coe Request for mapping work and new data.
57a 11/9/79 1 Coe Call for 1980 MNL, deadline January 1.
58c 3/1/80 ii+163 Coe Reports, Zealands, Stocks, Bibl., Mailing list, SI, Al, 50 Years reprinted (12/19/29, 2/5/30, 4/17/30, 7/26/30).
58b 11/5/80 4 Coe Zealands support from USDA; Questionnaire on MNL features and on Stock Center functions.
58a 11/15/80 1 Coe Call for 1981 MNL, deadline January 1.
59c 3/15/81 ii+161 Coe Reports, Zealands, Stocks, Bibl., SI, Al.
A.17

11/20/81 1 Coe Call for 1982 MNL, deadline January 1.
3/2/82 1 Coe Plan for meeting on mapping.

56
3/15/82 iv-208 Coe Reports, Zealand, Stocks, Mailing list, Bibl., SI, Al, 50 Years reprinted (10/5/32).
4/22/82 30 Coe Planning with Mapping Coordinators; data compilations.
12/1/82 1 Coe Call for 1983 MNL, deadline January 1.
3/3/83 4 Coe Planning with Mapping Group; data compilations for 1983.

57
3/31/83 iv-236 Coe Reports, Zealand, Genelist & Maps, Stocks, Bibl., Mailing list, SI, Al, 50 Years reprinted (12/12/32, 1/23/33).
8/5/83 3 Coe Coordination of mapping, chromosome responsibilities.
10/31/83 1 Coe Request to Mapping Coordinators for summarized reports by January 1.
11/23/83 1 Coe Call for 1984 MNL, deadline January 1.

58
4/30/84 vi-258 Coe Reports, Mapping, Zealand, Stocks, Bibl., Mailing list, SI, Al, Maps.
11/8/84 1 Coe Call for 1985 MNL, deadline January 1.
1/10/85 1 Coe Request to Mapping Coordinators for summarized reports.

59
11/15/85 2 Coe Call for MNL 1986, deadline January 1; request to send stocks to Stock Center; information on integrated mapping.
11/29/85 15 Coe Minutes of National Plant Genetic Resources Board re mapping integration for maize.
1/21/86 1 Coe Request to Mapping Coordinators for summarized reports.
3/12/86 1 Coe Planning with Mapping Group for meeting on mapping.

60
3/31/86 viii-212 Coe Reports, Zealand, Stocks, Mapping, Mailing list, Bibl., SI, Al.
11/15/86 2 Coe Call for 1987 MNL, deadline January 1.
1/13/87 1 Coe Request to Mapping Coordinators for summarized reports.

61
3/31/87 iv-177 Coe Reports, Zealand, Stocks, Mapping, Mailing list, Bibl., SI, Al.
11/15/87 2 Coe Call for 1988 MNL, deadline January 1.
1/20/88 1 Coe Change to require Subscriptions and Endowment.

62
3/31/88 iv-179 Coe Reports, Zealand, Stocks, Mapping, Genelist, Maps, Mailing list, Bibl., SI, Al.
11/21/88 1 Coe Call for 1989 MNL, deadline January 1; Maize Conference news.

63
3/31/89 vi-195 Coe Reports, Zealand, Stocks, Mapping, Mailing list, Bibl., SI, Al, Donors.
11/15/89 1 Coe Call for 1990 MNL, deadline January 1; Maize Conference news.

64
3/31/90 ix-208 Coe Reports, Zealand, Stocks, Genelist, Maps, Mailing list, Bibl., SI, Al, Donors.
11/15/90 1 Coe Call for 1991 MNL, deadline January 1; Maize Conference news.

65
3/191 viii-212 Coe Reports, Zealand, Stocks, Genelist, Maps, Mailing list, Bibl., SI, Al, Donors.
3/15/92 x-220 Coe Reports, Zealand, Stocks, Genelist, Maps, MaizeDB, Mailing list, Bibl., SI, Al, Donors; Rhoades memory by Dempsey.
11/10/92 1 Coe Call for 1993 MNL, deadline January 1; Maize Conference news; Marty Sachs to head Maize Genetics Cooperation — Stock Center.

67
3/15/93 viii-231 Coe Reports, Zealand, Stocks, Genelist, Maps, MaizeDB, Mailing list, Bibl., SI, Al, Donors; MaizeDB report and access through Gopher, issue dedicated to McClintock, references to essays and memories.

68
11/19/93 1 Coe Call for 1994 MNL, access available through Gopher, AceDB, WWW, and MaizeDB; Maize Conference news; Patterson retires from responsibilities with the Stock Center, Sinnard Curator.
3/15/94 vii-253 Coe Reports, K-12, Mailing list, Stocks, Zealand, Nomenclature, Genelist, Maps, MaizeDB, Bibl., SI, Al, Donors.
12/14/94 2 Coe Call for 1995 MNL by email; access available through Gopher, AceDB, WWW, and MaizeDB; Maize Conference news.
12/14/94 1 Coe Call for 1995 MNL; access available through Gopher, AceDB, WWW, and MaizeDB; Maize Conference news.

69
8/15/95 viii-321 Coe Reports, K-12, Mailing list, Stocks, Nomenclature, MaizeDB, Probe Bank, Genelist, Maps, Zealand, Bibl., SI, Al, Donors.
11/15/95 1 Coe Call for 1996 MNL; Maize Conference news.
3/15/96 vi-185 Coe Reports, Mailing list, Stocks, MaizeDB, Probe Bank, Genelist, Maps, Zealand, Bibl., SI, Al, Donors.
10/22/96 2 Coe Call for 1997 MNL by email; initiation of Virtual MNL, Verbatim incorporation, and Linkletter.
11/13/96 1 Coe Call for MNL 71 by postcard.

71
4/15/97 iv-126 Coe Reports, K-12, Mailing list, Stocks, MaizeDB, Probe Bank, SI, Al, Donors; 66 Years reprinted (11/10/31).
8/20/97 1 Coe Call for MNL 72, 1998 on web in MaizeDB; Virtual MNL, Verbatim incorporation, and Linkletter.
3/12/97 1 Coe Call for MNL 72, 1998 by postcard.
12/3/97 1 Coe Call for MNL 72, 1998 by email; Maize Conference news.

72
4/15/98 iv-134 Coe Reports, Mailing list, Stocks, MaizeDB, Probe Bank, Maps, SI, Al, Donors, 69 Years reprinted (11/23/29).
11/30/98 1 Coe Call for MNL 73, 1999 by email; Maize Conference news.
4/15/99 iv-155 Coe Reports, Mailing list, Stocks, MaizeDB, SI, Al, Donors.
11/29/99 2 Coe Call for 2000 MNL by email; Maize Conference news.

74
4/15/00 x-116 Coe Reports, Mailing list, Stocks, MaizeDB, SI, Al, Donors; Li Jing Xing (C.H. Li) memory by Chase; Patterson memory from Illinois.
11/17/00 1 Birchler, Polacco Call for MNL 75, 2001 by email.
11/17/00 1 Polacco, Birchler Call for MNL 75, 2001 on web in MaizeDB.
11/21/00 1 Coe MNL self-supporting, change in subscription policy; MNL 59 and above in MaizeDB.

75
8/15/01 vii-131 Polacco, Birchler Reports, Mailing list, Stocks, MaizeDB, SI, Al, web sites, Maize Genetics Executive Committee, sequencing report; transfer of responsibility for MNL to Polacco and Birchler.

[2001] Polacco, Birchler Call assumed.

5/15/02 vi-148 Polacco, Birchler Reports, Mailing list, Stocks, MaizeDB, SI, Al; Nelson memory by Hannah, Burr, Dooner.
<table>
<thead>
<tr>
<th>Date</th>
<th>Volume</th>
<th>Authors</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>11/30/02</td>
<td>1</td>
<td>Polacco, Birchler</td>
<td>Call for 2003 MNL by email.</td>
</tr>
<tr>
<td>7/29/03</td>
<td>iii+183</td>
<td>Polacco, Birchler</td>
<td>Reports, Mailing list, Stocks, MaizeDB, SI, Al, recent Donors.</td>
</tr>
<tr>
<td>12/8/03</td>
<td>1</td>
<td>Birchler, Polacco</td>
<td>Call for 2004 MNL by email.</td>
</tr>
<tr>
<td>7/26/04</td>
<td>iii+163</td>
<td>Polacco, Birchler</td>
<td>Reports, Address List, Stock Center, Community IBM (cIBM) Maps, Recent Maize Publications, SI, Al</td>
</tr>
</tbody>
</table>

* numbers in brackets represent the volume with which that communication was bound in the PB set — i.e., Rhoades call of 12/12/32 was bound with Volume 3, 1/23/33.

LBK acknowledges the National Science Foundation (grants SBR9511866 and SBR9710488), for support of archival research; the Departments of Plant Biology and Plant Breeding at Cornell University for logistical support; with grateful thanks to Chris Bonneuil, Rosy Murphy, William B. Provine, and Margaret Smith, for sharing notes and documents in the spirit of maize cooperation; to archivists Thomas Rosenbaum, RAC and Joseph Schwarz, NARA, for permission to use the collections and for supplying information and copies of letters, and to Mary L. Polacco for encouragement and aid in systematizing the information.

Please Note: As is the policy with the printed version, notes submitted to the Maize Genetics Cooperation Newsletter may be cited only with consent of the authors.
APPENDIX III

Contributor’s Biographical Sketches

Editors:

Dr. Lee B. Kass received her Ph.D. in botany and genetics from Cornell University (1975), and earned a B.S. in biology at The City College of New York (CUNY, 1969). She did postdoctoral research at The University of Cambridge (UK) and Vanderbilt University. She has served on the faculties of The University of Cambridge (UK), University of Tennessee (Nashville), Elmira College (New York), The College of the Bahamas (Nassau), Cornell University, and West Virginia University (Morgantown). Kass has authored, edited or co-edited ten books, and authored or co-authored more than 90 book chapters, proceedings papers, and articles in scientific journals. She is a member of the Botanical Society of America, The Bahamas National Trust, and a former member of many botanical organizations. Kass was chair of the Historical Section of the Botanical Society of America for many years. She established the Elmira College Herbarium in 1985, and currently serves on the Science Advisory Committee of the Bahamas National Trust. Among her awards is the Josef Stein Award, for excellence in teaching and scholarly achievement (1985) and a Fulbright Scholar Award (1996), during which time she and her spouse, Dr. Robert E. Hunt, established the National Herbarium of the Bahamas. She is Visiting Professor at Cornell University, and West Virginia University (Morgantown). Her research focuses on history of botany, and biodiversity and reproductive biology of Bahamian plants.

Dr. Edward H. Coe Jr. earned a Ph.D. (1954) in botany at the University of Illinois (with John Laughnan) and received his M.S. degree (1951) in plant genetics (with Charlie Burnham), and a B.S. degree (1949) in agronomy and plant genetics from the University of Minnesota. Following a postdoc with Ernest G. Anderson at Caltech (1954-1955), Coe joined the Plant Genetics Unit of the U.S. Department of Agriculture-Agricultural Research Service at the University of Missouri, where he is currently Professor Emeritus of Plant Sciences. His research has contributed to an understanding of anthocyanin biosynthesis, gametophyte functions, non-Mendelian inheritance, and extrachromosomal inheritance. He is author of or co-author of over 100 refereed journal articles, and author or co-editor of two books; most well-known is the co-edited Mutants of Maize. Coe is highly appreciated for his 26 years of continuous service as editor of the Maize Genetics Cooperation Newsletter (1974-2000). He played a central role in establishing the Maize Genome Database and in the early planning meetings leading to sequencing of the first plant genome, the maize genome. He is a member of various professional organizations, including the Genetics Society of America, the American Genetic Association, and the Crop Science Society of America. In recognition of his “lifetime contributions to the field of genetics,” Coe was awarded the prestigious Thomas Hunt Morgan Award by the Genetics Society of America in 1992. The award was presented to him in recognition of the importance of his basic research, his mentorship of students and postdocs, and his extensive and outstanding service to the maize genetics community. Dr. Coe was described as “the glue that holds the maize community together.” At the 2018, 60th Annual Maize Genetics Conference, held at Palais du Grand Large, Saint-Malo, France, Coe was honored with the newly established R.A. Emerson Award, which recognizes individuals for their extraordinary lifetime achievements in maize genetics. Recipients of this award are leaders in the maize community, who have made seminal contributions to our understanding of maize genetics. Coe’s Emerson Award was presented at the March 2019 Maize Genetics Conference in Saint Louis, along with a short overview of his life and work. In April 2019, the Academy of Science – St. Louis honored Coe with The Peter H. Raven Lifetime Achievement Award, which recognizes a distinguished career of service in science, engineering, or technology.

Michael N. Cook is a Librarian whose MLIS degree (1997) and MA degree in philosophy (1994) are from the University of South Carolina, with a B.A. degree in English (1990) from Western Carolina University. He is the Head of Collections at Cornell University’s Albert R. Mann Library. His areas of expertise include collection development, digital preservation, copyright, open access, digital repositories, special collections and rare books, and scholarly communication. Michael was the 2007 recipient of the State University of New York (SUNY) Chancellor’s Award for Excellence in Librarianship and also received the 2017 Melanie Gardner Agriculture Network Information Collaborative (AgNIC) Distinguished Service Award.
Dr. Margaret E. Smith received her Ph.D. (1982) in Plant Breeding and Genetics from Cornell University. She subsequently worked as a plant breeder at the Tropical Agricultural Center for Research and Teaching (CATIE) in Costa Rica, and then ran a successful corn breeding program at the International Maize and Wheat Improvement Center (CIMMYT). Smith returned to Cornell in 1987 as an Assistant Professor of Plant Breeding & Genetics to head the corn breeding research project. She is now Professor and also the Associate Director of the Cornell University Agricultural Experiment Station. Her research goal is to enhance an understanding of corn adaptation to marginal environments and develop genetic materials that will improve corn productivity and sustainability in such environments. She assumed responsibility in 2004 as Extension Leader for Plant Breeding and Genetics, focusing on public education about plant breeding, variety testing, and seed issues. Smith is the Project Leader for the New York Seed Improvement Program of Plant Breeding and Genetics. She oversees the Corn Variety Testing program, which aims to evaluate hybrids over a range of environments in New York. She also teaches about genetically engineered crop plants (basic public issues education) and agriculture in the developing world. She has trained more than 20 Ph.D. students, and six Masters students. She was the recipient of the Outstanding Faculty Award (2015) from the College of Agriculture and Life Sciences Alumni Association and the College of Agriculture and Life Sciences (CALS) 2012 Outstanding Service to CALS award.

Judy L. Singer received her BA (1977) in Sociology/Anthropology, from Ithaca College. She began working at Cornell Plant Breeding for Professor and Department Extension Leader William D. Pardee in 1976, as a Secretary, then as an Extension Support Aide, and finally as an Extension Support Specialist. For 25 years she traveled the state of New York for the New York Hybrid Corn Performance Trials testing program participating in all aspects of field testing operations, collecting, compiling, analyzing data, and producing final reports. She later worked with Margaret Smith, and other Plant Breeding faculty members affiliated with the applied Plant Breeding programs. Judy helped Dr. Pardee to organize the 75th Synapsis Club Reunion (1982). She had organized, and saved, most of the files from that event, which later proved invaluable to the publication of the Department's Centennial History. She co-served as a production coordinator for the print version of the 2007 Centennial History book, and proof read the hard copy and later the e-book. She was also a member of the committee to organize former Plant Breeding Department Chair (1956-1979) R.P. Murphy's 90th birthday celebration (May 2, 2004). For that event she organized family photographs, helped to coordinate events, and compiled the Memory Book of the event. She proofread for the McClintock Perspectives Companion Volume, edited by Kass. Judy retired from her permanent Cornell appointment in 2009 and was asked to return in a part time Temporary Service Professional position. On 29 November 2017, Judy received the first Chair's Award for Excellence, for her 33 years of full time service to Plant Breeding & Genetics. She continues to work closely with the Plant Breeding & Genetics designated historian, Dr. Lee B. Kass, to save files of historical significance to the history of one of Cornell’s most notable Departments.

Foreword Contributor:

Dr. Edward S. Buckler received his Ph.D. (1997) in biological sciences from the University of Missouri-Columbia. He served as research geneticist, U.S. Department of Agriculture - Agricultural Research Service (USDA-ARS), and Adjunct Assistant Professor of Genetics at North Carolina State University, Raleigh, from 1998 to 2003, before starting at the USDA/ARS Robert W. Holley Center for Agriculture and Health, at Cornell’s Institute for Genomic Diversity in 2003. Buckler is a Research Geneticist with the Senior Scientific Research Service, USDA–ARS, and an Adjunct Professor of Plant Breeding & Genetics at Cornell. He is recognized as a leader in the integration of quantitative and statistical genetics with genomic approaches, whose work has deepened our understanding of the control of crop complex traits, and applying those superior genetic variations to crop improvement. Subsidized by the United States Department of Agriculture and National Science Foundation, he has led the largest maize research team in the US, achieving more than 200 periodical publications, including Science, Nature, Nature Genetics, PNAS, Plant Cell, Nature Review Genetics and Nature Communications. He has had the pleasure of mentoring over 50 postdocs and graduate students. In 2014, Buckler was elected to the U.S. National Academy of Sciences (NAS), Section of Plant, Soil, and Microbial Sciences. He was the recipient of the 2017, NAS Prize in Food and Agricultural Sciences, the first time this prize was awarded. This prize recognizes research by a mid-career scien-
tist at a U.S. institution who has made an extraordinary contribution to agriculture or to the understanding of the biology of a species fundamentally important to agriculture or food production.

Manuscript Reviewer:

Dr. Mark E. Sorrells received his Ph.D. (1977) in Plant Breeding and Plant Genetics from the University of Wisconsin – Madison. After a short post-doc he joined the faculty at Cornell University in the Department of Plant Breeding & Biometry. Since 1991 Dr. Sorrells has been Professor and served as Chair of the Department of Plant Breeding & Genetics at Cornell University (2006-2014). The primary focus of Dr. Sorrells’ research program is breeding methodology with application to oat, barley and wheat breeding for the Northeastern region of the United States. He has also been involved in several international projects in Africa, South America, and Europe. During his career Dr. Sorrells has actively developed and evaluated new breeding methods and currently he is integrating genomic selection into his breeding program to reduce pre-harvest sprouting, increase disease resistance and improve yield. Dr. Sorrells has published more than 288 papers in peer-reviewed journals. He has been active in teaching and advising students, serving as major advisor to 45 Ph.D. students, 12 M.S. graduate students and minor advisor to 25 students. He is advisor to Cornell’s Synapsis Club, the student-faculty organization founded by H.J. Webber when the Department began in 1907. Sorrells is a Fellow of the Atkinson Center for a Sustainable Future, a Fellow of the Cornell Institute for Food Systems, a Fellow of the Crop Science Society of America, and of the American Association for the Advancement of Science. He is the recipient of the faculty Award for Outstanding Career Accomplishments in Applied Research (2012), College of Agriculture and Life Sciences, Cornell University; the SUNY Chancellor’s Award for Excellence in Faculty Service (2015); and of the Outstanding Research Award (2016), of the Crop Science Society of America.
This 1945 Synapsis Club group photo is the last one we have that includes Professor R.A. Emerson (middle row, 3rd from left). Of the seven women in the photo, four on front row [from left, Florence N. Thomas (4), Fung Ting Fung (6), M. Rosalind Morris (7) Leona O. Schnell (8)] received their Ph.D.s with Plant Breeding faculty between 1946 and 1948. (Reprinted from Murphy & Kass 2011, p. 157; courtesy of Plant Breeding & Genetics and the publisher).
Maize Genetics Cooperation News Letter volumes 2-14 (1932-1940), and 15-21 (1941-1947), compiled by R.A. Emerson (background), and bound for the former College of Agriculture Library, Cornell University. (Courtesy of Margaret E. Smith, Plant Breeding & Genetics, Cornell University; photo image by Judy Singer)