A New Language-Independent
Prettyprinting Algorithm*

William W. Pught
Steven J. Sinofsky

TR 87-808
January 1987

Department of Computer Science
Cornell University
Ithaca, NY 14853

* Publication of the report was partially supported by ONR and NSF under grant DCR8514862.
+ AT&T Bell Laboratories Scholar.

A New Language-Independent Prettyprinting Algorithm*

William W. Pugh'
Steven J. Sinofsky

Computer Science Department
Cornell University
Upson Hall
Ithaca, New York 14853

January, 1987

Abstract

An algorithm for prettyprinting using word wrapping is described that is independent of the
language being formatted and is substantially simpler than other published algorithms. The
algorithm makes use of a simple model with a small set of primitives to direct the
prettyprinting of text. For an input string of length n, and an output device m characters
wide the algorithm runs in O(n) time and requires O(m) space. The algorithm can be
restarted from an intermediate point and is therefore well suited for incremental
prettyprinting of text. This algorithm is now being used in the Cornell Synthesizer Generator

[2]. The algorithm is compared with and contrasted to the previously published algorithm by
Oppen [1].

*Publication of the report was partially supported by ONR and NSF under grant DCR 8514862.
*AT&T Bell Laboratories Scholar.

A New Language-Independent Prettyprinting Algorithm

I. Introduction

A prettyprinter takes as input a stream of characters and prints them in an
aesthetically pleasing and functional way by displaying the text with appropriate
line breaks and indentation. As an example consider a Pascal statement such as:

if error then return(errorFlag);

which we might prefer to have appear on one line if the output device is wide enough.
If the statement could not fit on a single line we might prefer:

if error then
return(errorFlag);

but we would certainly not like to see:

if error then return(
errorFlag);

We shall describe a language-independent algorithm that permits the
specification of preferred locations within a string where word wrapping and/or
indenting should occur. In order that the algorithm be language independent, the
algorithm is oblivious to the textual structure of the strings it prints; prettyprinting
commands embedded in the string indicate which segments of text form a logical
grouping and where line breaks may be inserted.

One of the more recent and novel uses of prettyprinters has been in structure
editors for block-structured languages such as Pascal and PL/1 [2, 3, 4, 5].
Traditionally, these environments have provided one or more schemes for the fixed
(that is, independent of the length of the string and width of the output device)
unparsing of text. If a statement is too long to fit on a single line, the user is required
to manually select an unparsing scheme that will break the text onto multiple lines
appropriately.

While the subject of prettyprinting block-structured languages is relatively well
developed, prettyprinting can also be useful in clarifying other textual objects. The
Cornell Synthesizer Generator [2] is now being used to develop less conventional
editors such as a formal logic proof editor and an editor for program verification.
Such editors generate logical goals and verification conditions that can be hundreds

characters long; to be understandable these logical formulae must be displayed on
several lines in a way that reflects their structure.

Comparison with Oppen’s algorithm. Our algorithm is similar to that of Derek
Oppen [1], but is somewhat simpler and is readily adapted to incremental
prettyprinting. Oppen’s analysis focuses on defining groups of text that should not
be broken and initially assumes text can be split at any blank. In our algorithm we
allow the user to restrict the locations at which the line may be split, giving the user
greater control over the prettyprinting process. For example, the user can specify
that in an expression a binary operator should always appear on the same line as the
second operand and that it is not permissible to split the line immediately after the
operator. Oppen defines extensions to achieve roughly the same functionality as our
algorithm; however, this complicates his algorithm and the changes required in his
implementation are not explained. We feel that our approach leads to a
substantially simpler algorithm that will make it easier for others to adapt our
algorithm for their own uses.

Additionally, in our algorithm we can restart the prettyprinting in mid-stream
by restoring only a constant amount of information, while it was not clear how to
restart Oppen’s algorithm. We need this property because the algorithm is used in
the Cornell Synthesizer Generator [2]. For efficiency reasons, editors created by the
Synthesizer Generator do not unparse the entire edited object to update the screen,
but rather restart the unparsing from the line above the top of the screen, stopping
once the bottom of the screen is reached. We handle indentation differently than
Oppen. Oppen lines up any breaks in a group with the column where the group
started and we provide commands to increase to decrease the indentation level.
While the merits of either scheme could be argued, we found that ours worked better
for incremental prettyprinting.

We achieve the same time bound, O(length of input), and space bound, O(width of
output), as Oppen’s algorithm.

II. Using the Prettyprinter

The algorithm presented transfers an input string to an output device one line at
a time with no line wider than the width of the output device. Each character of the
input string is either a printable character or a format control character indicating a
prettyprinter action to be taken. In this paper, format control characters will be

'
N
'

printed in italics; in practice, we use normal ASCII characters preceded by a special
escape character such as %. The control characters follow in the table below, and are
explained in the remainder of this section:

{and} - grouping symbols
tand b -indentandoutdent following text

n -unconditional line break
0 - optional conditional line break (called inconsistentin[1])
c - connected conditional line break (called consistent in [1n

Briefly, grouping symbols are used to group segments of text that should be kept
on a single line if possible. The indent and outdent commands change the left margin
for all following lines. An unconditional line break indicates the the following text
should be placed on a new line. A conditional line break indicates a location where
the text can be broken onto two lines if it will not fit on a single line. A connected
conditional line break (referred to as a connected break) has the special property that
if a group containing connected breaks will not fit on a single line, the text will be
split at all of the connected breaks at that level. Connected breaks are used to
separate items of a list that should each be placed on a separate line if they cannot be
all placed on a single line. Conditional breaks that are not connected are referred to
as optional line breaks.

Grouping Symbols. The prettyprinter tries to divide the input stream into
separate lines such that a minimum number of groupings are broken between lines.
A grouping is a segment of text surrounded by { and /, the open grouping symbol and
close grouping symbol, respectively. We assume these grouping symbols to be
balanced. As an example, consider the prettyprinting of the Pascal if statement. We
might prefer to break the line after the then rather than breaking the line in the
middle of the conditional expression. Given such a statement, which we desire to
output on a device with lines that are 25 characters wide, we might have the
following output:

ifx <0Othenx:=-x

or with an output device 15 characters wide we might prefer:

ifx < 0 then
X:=-X

To obtain the desired output in either case using grouping symbols and an optional
line break, the input to the prettyprinter might look like:

t{if t{x 0< 0}b then ot {x 0: = -x}b}b

or more generally

t{if t{<condition > }b then ot{ <statement> }b}b

The entire statement is surrounded by grouping symbols, because presumably
the statement occurs within a list of other statements. The <condition> and
<statement> are also enclosed in grouping symbols, because we would prefer to
break the line at the optional break after the then token rather than at any optional
breaks that might occur inside the <condition> or <statement>.

Indent and Outdent. The indent and outdent commands, represented by ¢ and b
respectively, are used to change the left margin, which is the column where the first
character of the next line will appear. Typically an indent command is paired with
an open grouping command and an outdent command is paired with a close grouping
command; this allows a user to visually group lines according to their indentation.
The current left margin at the time a conditional break is seen determines the
indentation of the text after the break if the prettyprinter takes that break.

We considered defining grouping symbols to include the effects of indent and
outdent commands; however, this might not be desired in all situations. Since
prettyprinting strings are created and parsed without being seen by the user, we
decided that flexibility was more important than readability of internal
prettyprinting strings.

Unconditional Line Breaks. An unconditional line break, represented as n,
always causes the following text to begin on a new line. For example, we might wish
a begin and end to always appear on distinct lines, in which case the keywords will
be preceded by an unconditional line break. One also might desire that an else
clause always appear on a line distinct from the if and the then.

Optional Line Breaks. The above example makes use of one type of conditional
line break, the optional line break, represented as o. This indicates where the
prettyprinting algorithm can insert a line break if necessary. The prettyprinter
chooses the optional line break that breaks the fewest existing groups. Any optional
breaks inside of the <condition> in the above example will not be taken unless the
< condition> itself will not fit on one line, since there is an optional break at an
outer grouping level. If there are two optional breaks within the same group, the
rightmost one is taken.

Connected Line Breaks. The addition of a second type of conditional line break,
the connected break, represented as c, further enhances the prettyprinter. A
connected line break is connected with all of the other breaks at the same grouping
level in the sense that either they are all taken or none of them are taken. Such a
break would typically be used to separate items of a list where the entire list should
be put on a single line, if possible; otherwise each item should be on a separate line.
An example would be the parameter list and accompanying declarations of a Pascal
procedure:

procedure f(a:integer; b: boolean;c: real);
which we might prefer to print on a narrow output device as

procedure f(a: integer;
b: boolean;
c:real;)

rather than

procedure f(a:integer;
b:boolean; c: real);

Interactions. An unconditional break inside a group will cause all connected
breaks at that level to be taken. If connected and optional breaks exist at the same
grouping level, the system will attempt to take just the connected breaks. We make
this choice because taking the connected breaks may mean that we do not have to
break the text at the optional break. If we break the text at the optional break the
group containing the connected breaks will not be on a single line and the connected
breaks will need to be taken anyway.

Problems. As with all prettyprinters we are aware of, we have been unable to
devise an elegant technique to use when there are no conditional line breaks within
a string that is too long to display on one line. This can occur if the display is very
narrow, the left margin has been indented so that it is close to the right margin, long
identifiers or strings occur in the object to be prettyprinted, or if not enough
conditional line breaks have been specified. We are seeking user advice on which of
several inelegant schemes would be preferred.

III. The Prettyprinting Algorithm

Code for the algorithm is presented in the appendix in pseudo-Pascal. Briefly, the
algorithm scans the prettyprinting string and places each character in a buffer. If a
required line break is seen the contents of the buffer are sent to the display. If the

text now in the buffer will not fit on a single line, the algorithm chooses a conditional
line break that occurs within the text currently in the buffer and sends to the display
the characters that occurred before the line break chosen. The algorithm is
described in detail below to assist those who might wish to adapt it.

Data Structures. The algorithm makes use of a single abstract data type, the
double ended queue or DEQUEUE [6, 71, to handle all of the information required for
prettyprinting. This structure is an unbounded list that allows insertion at either
the right end or the left end, through the operations of right_enqueue and
left_enqueue respectively. Elements can be removed from either the right or left
end with the operations right_dequeue and left_dequeue. Several other operations
are also defined on the structure: dq_right and dq-left return, without removing, the
rightmost and the leftmost elements of the DEQUEUE; dg-size returns the number of
elements in the DEQUEUE (or 0 if there are none); dg—empty returns true if there are
no elements in the DEQUEUE; and the operation make_null initializes a DEQUEUE.

We will make use of two distinct DEQUEUEs: the prettyprinting buffer and the
conditional break DEQUEUE. We assume polymorphic operations on DEQUEUES.
Each element of the prettyprinting buffer contains a character and an associated
grouping level. The character is either a printable character, a space, or one of the
special symbols MARKER, NEWLINE, INDENT, or OUTDENT. The grouping level is only
relevant for the MARKER character, which indicates a placeholder for a connected line
break; otherwise the level is =.

Each record contains:
e level of break

line breaks removed as they ® characters enqueued
are superceeded @ connected?

<«

R

—>
line breaks inserted as they line breaks removed as they
become available (left end) are taken (right end)

Figure 1. The flow of information in and out of the conditional line break DEQUEUE

A record stored in the conditional break DEQUEUE contains three fields:
chars_enqueued, which is the number of actual characters to the left of the break in
the entire string (including special characters the prettyprinter may insert into the
string); the grouping level of the break, which is the number of open grouping

symbols minus the number of close grouping symbols preceding the break; and
connected, which is true if the break is a connected break. Figure 1 shows the flow
of information in and out of the conditional break DEQUEUE.

Four global variables are used to hold information relevant to the state of the
prettyprinting buffer. The algorithm maintains the total number of all characters
and the total number of printable characters that have been flushed from the
prettyprinting buffer in the variables total_chars_flushed and total_pchars_flushed
respectively, as well as the number of characters that have been enqueued in
total_chars_enqueued and total_pchars_enqueued. From these values we can
compute the number of printable characters in the prettyprinting buffer as
total_pchars_enqueued minus total_pchars_flushed.

The routine print_buffer(k) sends the k leftmost characters of the prettyprinting
buffer DEQUEUE to the output device (using a generic routine output(c) where c is
the character to output). The print_buffer routine interprets the special characters
that have been inserted into the buffer. When the special characters INDENT and
OUTDENT are seen, the variable device_left_margin is modified. When the special
character NEWLINE is seen a linefeed character is sent to the output device which
directs the device to move to the column specified by the current device_left_margin
of the next line. The special character MARKER is used as the placeholder in the
prettyprinting buffer for connected line breaks. When the special character MARKER
is seen, the print_buffer routine checks the grouping level associated with a MARKER
and outputs a newline if break_level is greater than or equal to the the level of the
break; otherwise no action is taken.

Conditional Breaks. As conditional breaks are encountered, we enqueue onto the
left end of the break DEQUEUE a record containing the current value of
total_chars_enqueued, the grouping level, and a flag which is true if the break is a
connected break. Before putting a new element on the break DEQUEUE we first
remove from the left end of the DEQUEUE all breaks that are at a greater grouping
level (more deeply nested), since we now have a conditional line break that is
preferred to the ones we are removing from the DEQUEUE. If the break on the left of
the DEQUEUE is at the same grouping level as the new break, it is removed. If the
break on the DEQUEUE is a connected break and the new break is an optional break,
however, we do not remove that break because we may need both breaks in the
future. We then enqueue the new break onto the left end of the DEQUEUE. If the

breakis a connected break, we also insert the special MARKER character into the
prettyprinting buffer along with the grouping level of the break.

Unconditional Breaks. When an unconditional line break is encountered, the
conditional line break DEQUEUE is flushed, removing all pending conditional breaks.
Clearly, once a new line has been started, there is no longer the possibility of taking
a conditional line break that appears on a previous line.

Choosing a Break. If we need to take a conditional break, the rightmost element
of the break DEQUEUE contains the outermost break available; choosing it will break
the fewest number of groupings. We flush all characters from the prettyprinting
buffer to the left of the break chosen. If the break is an optional break, we send a
newline to the output device; if the break is a connected break, there is already a
MARKER character in the buffer that will force an appropriate line break.

Connected Breaks. When printing from the prettyprinting buffer, the variable
break_level is equal to the level of the deepest grouping in the prettyprinting buffer
that is being broken across multiple lines. The value of break_level indicates that
connected breaks at that level or less deeply nested should be taken as line breaks,
otherwise they are discarded. If while scanning the input string we encounter a
connected break at a level at least as deeply nested as break_level, we immediately
take it as a line break.

While printing the prettyprinting buffer, break_level is equal to the level of the
break that caused the printing to occur (the current level if an unconditional line
break is taken, otherwise the level of the conditional break). While scanning input
characters, we maintain an invariant that break_level is the level which is currently
being broken and so is less than or equal to current_level; when we see a close
grouping symbol while break_level is equal to current_level, we know that the level
being closed will not be broken anymore, but the level outside of it will, so we
decrement break_level .

Space and Time Bounds. The space required for the prettyprinting buffer is
equal to the number of printable characters in the buffer plus the number of special
characters in the buffer. The number of printable characters in the buffer is limited
to the line width of the output device. Assuming no redundant commands are in the
prettyprinting string, there can not be more MARKER characters in the prettyprinting
buffer than printable characters. Therefore, the space required by the
prettyprinting buffer is equal to m, the width of the output, plus i, the maximum

number of indent and outdent commands that occur on a single line. In practice, i is
no greater than m. We can eliminate the term i by adding indent and outdent
primitives that can change the left margin by an arbitrary amount, in which case
there would never need to be more indent and outdent commands than printable
characters in the buffer. The space required by the break DEQUEUE is proportional to
the number of conditional breaks currently available, and if there are no redundant
breaks, this is not more than the number of characters in the prettyprinting buffer.
Therefore, the space bound of the algorithm is O(m), where m is the line width of the
output device.

The time required is linear in the length of the string to be prettyprinted. The
time required by the procedure prettyprint to process each character is constant
except when print_buffer is called and in the case where it may have to discard
several items from a break DEQUEUE. The time spent in print_buffer can be charged
to the cost of putting a character into the prettyprinting buffer since a character put
in the prettyprinting buffer can only be printed once. Similarly, an item can only be
popped from a break DEQUEUE once, so we can charge the cost of popping elements
from a break DEQUEUE to the operation of pushing them onto the DEQUEUE.
Therefore, the time required by the algorithm is O(n), where n is the length of the
string to be prettyprinted (including prettyprinting commands).

Notes. At initialization both of the DEQUEUEs are empty, current_level,
total_chars_enqueued, total_pchars_enqueued, total_chars_flushed and
total_pchars_flushed are set to zero, and break_level is initialized to -1 to reflect that
no grouping levels have yet been broken.

The observant reader may have noticed that a simplifying assumption has been
made in the algorithm. We assume that there will be some kind of line break
between two adjacent groupings (e.g. the string “fu,cv,cwh{x,cy,cz}” would not occur
because we would expect some kind of line break to be associated with the
semicolon). Otherwise, we have trouble distinguishing which connected breaks of
the same level belong to the group we are breaking. If this assumption is violated,
the algorithm described will behave inconsistently concerning the question of
whether connected breaks in those two groups are in fact connected; otherwise it will
work as expected. In practice, this situation is unlikely to arise. The problem could
be avoided by maintaining the location in the prettyprinting stream of the start of
each grouping level; this would not change our time or space bounds, but would
complicate the description of the algorithm.

IV. Usein a Structure Editor

In a structure editor, a program (or other structured object) is displayed by
traversing the abstract syntax tree of the structure and displaying the unparsing
strings associated with each operator. Figure 2 shows how the prettyprinting string
for the if statement example above could be derived from the abstract syntax tree of
the statement. The labels in solid boxes represent syntactic operators, and the

IfStmt

Uminus

Figure 2. The derivation of an unparsing string from an abstract syntax tree

strings in dashed boxes show each segment of the prettyprinting string and its
relation to the tree. The strings are part of the grammar specification supplied to the
editor generator. During execution the prettyprinting string need never be
assembled in its entirety; instead, each substring may be sent to the prettyprinting
routine as the tree is traversed. This approach allows incremental unparsing when
traversal is begun at any tree node and the prettyprinter is appropriately initialized.
To restart the prettyprinter we have to restore the values of current_level,
device_left_margin, break_level, and the row and column of the output device.

V. Conclusion

In addition to enhancing our editors for block-structured languages, this
algorithm has allowed us to use the Synthesizer Generator for applications for which
it was previously impractical. The use of prettyprinting within editors produces no
noticeable increase in the time required to update the display. We hope that the
simplicity of the algorithm presented here will encourage others to adapt and expand
it.

VI. Acknowledgements

We would like thank Roger Hoover, Carla Marceau and Tim Teitelbaum for their
comments and suggestions on this paper.

VII. References

[1] Oppen, Derek C. Prettyprinting. TOPLAS (ACM) 2, 4 (October 1980), 465-483.

[2] Reps, T, and Teitelbaum, T. The Synthesizer Generator. In Proceedings of the ACM
SIGSOFT/SIGPLAN Software Engineering Symposium on Practical Software Development
Environments, Pittsburgh, PA, April 23-25, 1984. Appeared as joint issue: SIGPLAN Notices
(ACM) 19, 5 (May 1984), and Soft. Eng. Notes (ACM) 9, 3 (May 1984), 42-48.

(3] Reps, T, and Teitelbaum, T. The Cornell program synthesizer: a syntax directed
programming environment. Commun. ACM 24, 9 (September 1981), 563-573.

(4] Ellison, Robert J., and Staudt, Barbara J. The Evolution of the GANDALF System. Journal
of Systems and Software 5,2 (May 1985), 107-119.

[5] Mikelsons, Martin. Prettyprinting in an Interactive Environment. In Proceedings of the
ACM SIGPLAN /SIGOA Symposium on text manipulation, Portland, OR, June 8-10, 1981.
Appeared as SIGOA Newsletter (ACM) 2, 1 and 2 (Spring/Summer 1981), 108-116.

(6] Conway, Richard and Gries, David. An Introduction to Programming: A Structured Approach
Using PL/I and PL/C. Little, Brown, and Company, 1979.

{71 Aho, Alfred V., Hopcroft, John E., and Ullman, Jeffrey D. The Design and Analysis of
Computer Algorithms. Addison-Wesley Publishing Company, 1974.

11 -

Appendix. The Prettyprinter Algorithm

procedure prettyprint(string: array [1..n] of char)
fori:= 1tondo
if string[i] = ESCAPE and i < n cand string[i + Nin['{.'}Y,t'.b'/'n" 0"
itz i+1;
case string[i] of
{" . (* startgroup *)
current_level : = current_level + 1;
'} : (*end group *)
current_level : = current_level - 1;
if break_level > current_level then
break_level : = current_level;
t': (*indent *)
right_enqueue(buffer, [INDENT, =]);
total_chars_enqueued : = total_chars_enqueued + 1;
‘b’ : (*outdent?*)
right_enqueue(buffer, [OUTDENT, «]);
total_chars_enqueued : = total_chars_enqueued + 1;
'n’: (*unconditional line break *)
make_null(break_dq);
break_level : = current_level;
right_enqueue(buffer, NEWLINE, «]);
total_chars_enqueued : = total_chars_enqueued + 1;
print_buffer(dq_size(buffer));
‘o’ : (* optional line break *)
while not dg_empty(break_dq) cand
(dq_left(break_dq).level > current_level
or (dq_left(break_dq).level = current__level
and not dqg_left(break_dq).connected)) do
(* discard breaks we are no longer interested in *)
left_dequeue(break_dq);
left_enqueue(break_dq,
[total_chars_enqueued, current_level, false]);
‘¢’ . (* connected line break *)
if break_level < current_level then
while not dg_empty(break_dq) cand
dq_left(break_dq).level > = current_level do
(* discard breaks we are no longer interested in *)
left_dequeue(break_dq);
right_enqueue(buffer, [MARKER, current_level]);
total_chars_enqueued : = total_chars_enqueued + 1;

left_enqueue(break_dq,
[total_chars_enqueued, current_level, truel);
else (* take an immediate line break, break_level = current_level *)
make_null(break_dq);
right_enqueue(buffer, [NEWLINE, =]);
total_chars_enqueued : = total_chars_enqueued + 1;
print___buffer(dq_size(buffer));
else (*itisa printable character *)
if (total_pchars_enqueued - total_pchars_flushed) + device_left_margin
> = device_output_width then (* mustsplitline *)
if not dg_empty(break_dq) then (* splitline ata break *)
temp : = right_dequeue(break_dq);
break_level : = temp.level;
print_buffer(temp.chars_enqueued - total_chars_flushed);
if not temp.connected then
output(\n’);
break_level : = MIN(break_level, current_level);
else
there are no breaks to take
(* put the current character into the buffer *)
right_enqueue(buffer, [string[il, «l);
total_chars_enqueued : = total_chars_enqueued + 1;
total_pchars_enqueued : = total_pchars_enqueued + 1;
end; (* prettyprint*)

procedure print_buffer(k: integer);
fori:= 1tokdo
temp : = left_dequeue(buffer);
total_chars_flushed : = total_chars_flushed + 1;
case temp.character of
MARKER:
if temp.level < = break_level then
output(’\n’);
NEWLINE:
output(\n’);
INDENT:
device_left_margin : = device_left_margin + INDENT_WIDTH;
OUTDENT:
device_left_margin : = device_left_margin - INDENT_WIDTH;
default:
total_pchars_flushed : = total_pchars_flushed + 1;
output(temp.character);
end; (* print_buffer *)

-13-

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif

