*

A Block QR Factorization Scheme for
Loosely Coupled Systems of Array
Processors*

Charles Van Loan
TR 86-797
December 1986

Department of Computer Science
Cornell University
Ithaca, NY 14853

This work has been supported by ONR contract N00014-83-K-0640, NSF contract CCR86-
02310, the Mathematical Sciences Institute at Cornell which is sponsored by the Army
Research Office, and by the IBM Corporation. Computations were performed at IBM

Kingston and on the Production Supercomputer Facility at Cornell which is supported in part
by the National Science Foundation and IBM.

A BLOCK QR FACTORIZATION SCHEME FOR LOOSELY
COUPLED SYSTEMS OF ARRAY PROCESSORS

Charles Van Loan
Department of Computer Science
Cornell University
[thaca, New York 14853

Abstract

A statically scheduled parallel block QR factorization procedure is
described. It is based on "block" Givens rotations and is modeled after the
Gentleman-Kung systolic QR procedure. Independent tasks are associated
with each block column. "Tallest possible” subproblems are always
solved. The method has been implemented on the IBM Kingston LCAP-1
system which consists of ten FPS-164/MAX array processors that can
communicate through a large shared bulk memory. The implementation
revealed much about the tradeoff between block size and load balancing.
Large blocks make load balancing more difficult but give better 164/MAX
performance and less shared memory traffic. The results obtained
indicate that our approach to parallelizing the QR factorization is
competitive for very large problems, e.g., of the order 5000-by-1000.

1. Introduction

Computing the QR factorization of a matrix A € R™" involves finding
an orthogonal matrix Q € R™™ and an upper triangular matrix R ¢ RN
such that A = QR. This factorization has a prominent role to play in
numerical linear algebra especially because of its bearing on the least
square problem. A detailed description of the QR factorization and the
various ways that it canbe computed may be found in Golub and VanLoan
(1983).

Parallel methods for computing the QR factorization have received
considerable attention recently. For systolic arrays attention has
focussed on methods that rely on Givens rotations. See Gentleman and
“ Kung (1981) or Heller and Ipsen (1983). Dongarra, Sameh, and Sorenson
(1986) have implemented both parallel Givens and parallel Householder
procedures on the Denelcor Hep.

In this paper we discuss a block version of the Gentleman-Kung method
that we have implemented on the IBM Kingston LCAP-1. This system
consists of ten FPS-164 array processors (APs) that can communicate
through several shared bulk memories. Anoverview of LCAP-1 is offered
in Clementi and Logan (1985). The features of LCAP-1 that figure in the
current work are depicted in the following diagram:

[64] [164] [164] 164 [e4d] [[€4) [[e4) [i64d] [f64] @

SCA BULK MEMORY

There are actually two levels of parallelism here because the APs are
each capable of performing twenty parallel dot products. Indeed, the
FPS-164/MAX's at Kingston each come equipped with two "MAX boards".
The MAX board enhancement enables each AP to perform matrix-matrix
multiplication at a peak rate of SS Mfiops if the matrices involved are
sufficiently large. Full exploitation of the FPS-164/MAX requires having
an algorithm that is rich in matrix multiplication. This is why we have

chosento develop a parallel block procedure. The blocking of the matrix
Ais largely a function of the 164/MAX architecture. For example, it turns
out to be efficient to have block columns that are a muitiple of twenty
simply because the LCAP-1 APs can gach perform twenty parallel dot
products . Further details concerning the FPS-164/MAX architecture may
be found in Charlesworth and Gustafson (1986).

The matrix A is stored in a 64 Mword bulk memory unit manufactured
by Scientific Computing Associates(SCA). Thus, a dense problem of size
16K-by-4K could potentially be solved. The APs have approximately 600
Kwords of usable memory. This is enough to house, for example, a
1000-by-500 submatrix.

Data between the APs and the bulk memory flows at a rate of 44
~ Mbytes/sec. However, high latency associated with each transferred
message demands that data be moved in fairly good-sizedchunks in order
to be efficient, e.g., 1000 words.

Additional nuances of the LCAP-1 system as they apply to our QR
implementation are detailed later.

This paper is the first of several reports in which we explore the
issues associated with parallel matrix computations on the LCAP-1. The
parallel block QR factorization scheme that we encoded is derived in §2
and §3. Implementation details are coveredin §4 and results in §5. Our
current QR code can be improved in several ways as we often opted for
the "easy way out” when confronted with an algorithmic dilemma.
Despite this we feel that our LCAP-1 experience offers general
perspectives on large scale distributed matrix computations.

2. Parallel Givens QR

We say that G ¢ R"™™ is an adjacent Givens rotation in planes i-1 and i
if G is the identity with the following 2-by-2 exception:

Q-1 Gi-,i] = [COS(O) sin(e):, 2<i<m
Qi1 Yii -sin(@) cos(e)

Notice that G is orthogonal and that premultiplication by G affects just
rowsi-1 andi.If x ¢ R™ then it is not hard to determine (cos(e),sin(6))
so that y; = 0 if y = Gx . These and other Givens rotations issues are

discussed in Golub and Van Loan (1983, pp.43-47).

Adjacent rotations are important because they only combine adjacent
rows or columns when applied to a matrix. Moreover, they can be used to
compute the QR factorization of a matrix. Assuming A e R™ (m 2 n)
we have:

Algorithm 2.1

Forj=1In
Fori=m:-1:j+
Determine an adjacent Givens rotation Gij such
that if y = G”.TA(:, jJj) then y; =0, ie, zeroa
A= GijTA
end i
end

j -

Uponcompletion A is overwritten by R and
Q = (Gml o Gz‘) - (Gm'n". Gm"n)
Notice that the algorithm computes R column-by-column and that the

zeroing within a column proceeds from the bottom up to the subdiagonal.
Here is a depiction of the 4-by-3 case:

XX X XX X X XX XXX XXX XXX XX X
XXX , XXX , XXX , OXX _, OXX _, OXX _, OXX
XX X XX X OXX OXX OXX ooX 00X
XXX oXX OX X OXX OOX 00X 000

To indicate the inherent parallelism in this procedure we resort to a
slightly larger example and number the 3y in the order that they are

zeroed:

X X
8 x p
7 15 X
6 14 2 X
S 13 20 26 m=9,n=4
4 12 19 25
3 u 18 24
2 10 17 23
1 9 16 22

Recognize that the computation and application of Gij can begin as soon
as (Si_,j_1 is applied to A. Toillustrate this we tabulate the earliest

"time step” that a;; (i>j) canbe zeroed:
1)

X X XX
8 X X X
7 9 X X
6 8 10 X
S 7 9 1 m=9,n=4
4 6 8 10
3 5 7 9
2 4 6 8
1 3 S 7

with this notation we see in the example that four Givens updates canbe
performed during the seventh time step: Ggy, Gsz, Ge3, and Ggg. If we had

S

4 processorsthen they could each be assigned one of these tasks.

The parallelism that we have exposed in the above example can be
formalized by rearranging the loop indexing in Algorithm 2.1 and noting
that m+n-2 timesteps are required.

Algorithm 2.2

Fork =1: m+n-2
For Allj =In
i = m-k+1+2(j-1)
if(i<sm&iz2j+)
Determine G” to zero a”

A:G$A

end
end j
end k

The "For All" statement reminds us that all of the updates A := GijTA

associated with a given time step k are independent and canbe performed
in parallel.

We point out that Gij can actually be computed "earlier” than we have

indicated. For example, in the (m,n) = (9,4) case above, we have assumed
that Gg, is computed as soonas Gg; has been applied all the way across
the matrix. In fact, Gg, canbe computed as soonas Gg, has been applied to
just the second column. For reasons that we give in S§4, we have not

implemented the "soonas possible” generation of G;; .

Algorithm 2.2 and its natural variants can be mapped nicely onto
systolic networks. See Heller and Ipsen (1983).

-6_

3. A Parallel Block QR Factorization Method

Some notation is required before a block version of Algorithm 2.2 can
be specified. Partition Ae¢ R™" as follows:

An = Ay 1 m

A= : : (3.1)

™

LA B L™
Ny

Here, Aij is mi—bg-ni and we assume that m; 2 nj foralliandj. IfQ is

an orthogonal matrix of dimension m,_, + m; then we refer to

q«D:cmglw,m,lﬁq.Q.l“q,Mlq)

as an adjacent "block Givens” rotation in block planes i-1 and i .
Algorithm 3.1 (Block Givens QR Factorization)

Fork =1: p*+q-2
For Allj = Iq
i = p-k+1+2(j-1)
if(isp&i2j+s)
Determine orthogonal Qij such that

Q' Aﬁ-l,j] = [R} (R upper triangular)

end
end j
end k

This procedure is identical to Algorithm 2.2 except that blocks are zeroed
instead of scalars. Uponcompietion A is overwritten with a block upper
triangular matrix R. Unless all the Ay are square, then R will not be upper

triangular as a scalar matrix. For example, if the partitioning in (3.1) is
defined by (mymp) = (33) and (nyny) = (22) then Algorithm 3.1
overwrites A with

X X|X X
0 x[{X X
R 00[xx
0 O|x x
0 0|0 x
0000

Of course, it is possible to upper triangularize this matrix with further
Givens operations, but that is an annoying but necessary follow-up
computation

However, there is a more serious problem associated with rectangular
blocks. Consider the example (m,mpmsmg) =(2,33,8) , (Mny) =(2,2). At
the beginning of the second time step A looks like

X X! X
IR
X XXX
X X|X X
X XX X
X X|% X
0O %x|%x X
0 O|lx x

OO0 0000 O0O0o
OO0 OO0 0 0O
X X X I} X X X X
X X X X X X X X

-8-

At this stage, Algorithm 3.1 specifies that we only upper triangularize
the submatrix A(3:8,1:2), ie., the subproblem defined by blocks Ay and
A3. However, we see from the figure that a significant amount of zeroing
in the second block column can take place concurrently. In particular, we
could upper triangularize both A(3:8,1:2) and A(9:16,3:4) .

In general, because the "bottom” submatrix Aﬁj in each subproblem is

upper triangular, “taller” submatrices can be upper triangularized
throughout Algorithm 3.1. In order to rearrange this algorithm so that
"maximally tall" subproblems are solved at each stage, we need to drop
the fixed row blocking in (3.1). We continue to assume that A has q block
columns with widths ny ..., Ny - However, instead of imposing a fixed

blocking of A's rows we have chosen to determine the "height” of the
- subproblems through an integer parameter my that satisfies mg 2 ny. In
our scheme, the subproblems in the first block column involve at most mg
rows. Maximally tall subproblems are then solved in subsequent block
columns at eachstep. Toillustrate, consider the case m = 100, mg = 20,
and (ny,np,n3.ng) = (2,35,5):

Subproblem Row Ranges
Time Step Column Ranges

1:2 35 6:10 11:1S
| 81:100 - - -
2 63:82 83:100 - -
3 45:64 65:85 86:100 -
4 27:46 a47:67 68:90 g1:100
S 9:28 29:49 S50:72 73:95
6 110 11:31 32:54 55:77
7 - 313 14:36 37:59
8 - - 6:18 19:41
9 - - - 11:23

In general four integers rowsrt(t,j), rowend(t,j), colsrt(j), and colend(j)
are necessary to describe subproblem (t,j), eg. 29, 49, 3, and S for
subproblem (5,2). These index arrays and the total number of time steps

t required canbe computed as follows:

Algorithm 3.2

Let m, n, Mg, q and the column partitioning (ny,...n Cl) be given with m2n
and mg>n;. This algorithm determines t; and the index arrays colsrt(l:q),
colend(1:q), rowsrt(lt ¢ ,1:q), and rowend(l:t ¢ ,1:q).

tg = ceiling(max(0,m-mg) / (mg-ny))+q

Fort=1:t
ift=1
Forj =1q
it j=1
colsrt(l) =1
colend(1) =y
rowsrt(t,j) = max(1, m-mg*1)
else
colsrt(j) = colend(j-1) +1
colend(j) = colend(j-1) + nj
rowsrt(t,j) =m
end
rowend(t,j) =m
end j
else
Forj=1q

ifj=1
rowend(t,]) =rowsrt(t-1,1) +m -1
rowsrt(t,)) =max(l, rowend(t,1)-mg+!)
else
rowend(t,j) = min(rowsrt(t-1j) + nj - 1.,m)

rowsrt(t,j) = max(colsrt(j), min{ rowend(t,j-1) +I, m))
end
end j
end
end t

- lo-

A couple of comments are in order. In block column |, the subproblems
“climb*® at the "rate” mg - ny and so 1 + ceiling(max(0,m-mq)/(mg-ry))
steps are required to complete the processing of block column I
Thereafter one block column per time step is completed. This explains the
formula for tg and why we must have mg > ny .

In block column j , "serious” computation does not begin so long as
rowsrt(t,j) =rowend(t,j) = m. After block column j is fully triangularized,
rowsrt(t) = colsrt(j) and rowend(t,j) = colend(j), conditions that
normally signal that there is "nothing to do” in block column j . (An
exception occurs when rowsrt(t,j) = colsrt(j) and rowend(t,j) = colend(j)
=m.)

with subproblems specified by Algorithm 3.2 we can now describe the
. overall factorization procedure.

Algorithm 3.3 (Maximally Tall Block Givens QR Factorization)

Given m, n, mg, q, the column partitioning (m,...n q) with m 2 n and mq

>y, the following algorithm overwrites A€ R™" with upper triangular R
= QTA where Q is orthogonal.)

Compute tg, rowsrt(i:t ¢ ,1:q) , rowend(I:t ¢ ,1:q),

colsrt(l:q), and colend(1:q) using Algorithm 3.2
Fort=1: tf

Forj=1q
iy = rowsrt(t,j)
i = rowend(t,)
ji = colsrt(j)
j = colend(j)
if (iy=iz=m or (h=ji&iz=j2& p=m))
"Nothing to do.”
else
Compute: - Aliizjijz) =QR.
Apply: Aigizjpn) = QAliii jin)
end
end j
end t

-11 -

4. implementation

in this section we discuss three issues associated with the
implementation of Algorithm 3.3 on the LCAP-I system: how A is
arranged in shared memory, how the subproblems are solved, and how
block column tasks are mapped onto processors.

The Storage of A

At time step t, the relevant row and column delimiters for the j-th
subproblem are i; = rowsrt(t,j), i, = rowend(t.j), j; = colsrt(j), and j, =
colend(j). Here is what the array processor in charge of this subproblem
~must accomplish:

. Read A(igiyjij2) from shared memory.

2. Compute an orthogonal Q such that QTA(igip.jrj2) =R is
upper triangular.

3. Write the updated A(igip,j.j;) back into shared memory.

4. Read A(igip,ji*1:n) from shared memory.

S. Apply QT to Aiip.ji+I:n)

6. Write the updated Aisip,jo+1:n) back into shared memory.

We assume that A(igizjij2) canfit into local memory but that because of
its size, the processing of A(iiz,jp+1:n) may have to proceedin "chunks”.
That is, steps 4-5-6 may have to be repeated with a manageable segment
of columns from A(igiz,j2*1:n) each time. Note that Q stays in the AP
during this process. Because one AP is responsible for applying a given Q,
there is no need to pass Q on to another AP.

There is an overhead associated with traffic to and from shared
memory. Reads and writes to shared memory are accomplished with a
"move” command and can only involve contiguous portions of memory.
Using move to transfer n floating point words takes

T(n) = (100 + 8n/44) pusec

Note that the 100 psec startup degrades the 44mb/sec peak transfer rate.
Thus, a vector of length 1000 takes 281 psec to move for an effective

-lz-

data transfer rate of 28 mb/sec.

From the standpoint of processing the subproblem at hand, it would be
ideal if A(igip,jzn) was contiguous in shared memory for then a minimum
number of moves would be required to carry out steps 1,3,4, and 6 above.
For example, to read a contiguous 1000-by-500 submatrix from shared
memory would require T(500,000)= .09 sec (s 44mb/sec). Unfortunately,
storing by blocks in Algorithm 3.3 would impose significant buffer
requirements and some tedious data manipulation within each AP. The
buffer issue is fairly important because the AP’s we used have limited
local memory (* 600 Kwords).

Because we didn’t want additional buffer requirements to limit further
the size of "working” memory we chose to store A in column major order.
~ This implies that r moves are required to move a submatrix with r
columns. Thus, to read a 1000-by-500 submatrix requires 500-T(1000) =
14 sec (=28 mb/sec). This is actually a typical size for a submatrix move
in our algorithm. When the overall implementation is considered, we can
easily live with a 28 mb/sec data transfer rate.

Subproblem Solution

The basic computation in Algorithm 3.3 consists of computing a QR
factorization and then applying the resulting orthogonal matrix to the
rest of A”. Thenormal "Linpack” way to compute a QR factorization of
a matrix C ¢ RM0*Mo is to use Householder matrices. A Householder
matrix is an orthogonal transformation of the form

P=1-2w' veRMo Jv],=1.

In the Linpack QR procedure Householders Py, ... , Pn0 are generated so that
Png - P,C =R is upper triangular. Note that Q = Py~ Pno.

We now consider the computation Q'B where B is some matrix. If Q
is represented as a product of Householders, then the resulting algorithm
is "rich” in matrix-vector multiplications. This is fine for many
architectures. However, to exploit fully the FPS-164/MAX architecture,
we need an update algorithm that is rich in matrix-matrix muitiplication.
We could accomplish this by esplicitly forming the product Q = Py Pno

-13-

before applying it to B. But this would be very costly since mg >> Ny
usually. Anunacceptably large mg-by-mq buffer would also be required by
this approach.

Instead, we have chosen to use the "WY" representation for products
of Householder matrices that is developed in Bischof and Van Loan (1985).
In this scheme mg-by-ng matrices Wand Y are generated such that

Q=P |=',,0=1+wvT

The ensuing update B:= Q"B = (1 + WYT)™B = B + Y(W'B) is then obtained
by a pair of matrix-matrix multiplications:

(i) Z=wB
(i) B=B+YZ

For (i) we used the "MAX" routine pdot that can compute twenty
parallel dot products. To initiate the parallel dot product the relevant
twenty vectors must be placed in the MAX registers using another MAX
routine called ploadd. We examine this in some detail so that an
appreciation of MAX board computing canbe obtained. Assume that W and
Y are mg-by-ng and that ng (for simplicity) is a multiple of twenty. If B is
mg-by- k then here is how the matrix Z = W'B is formed:

For j = 1:20:ng
Load W(I:mg , j:j*19) in to the max registers using
pload.
Fori=1k
Compute 2(j:j+19,i:i)) = W(kmg , jj+19) TB(1:m, i)
using pdot.
end i
end j

The times required for each pload and pdot are approximately
ploadd: L(mg) = 23 + 58.2*mg (psec)

pdot: D(mg) = 29.7 +.738*mq (psec)

- 14 -

Thus, Z = W'B is obtained in (ng/20)(L(mg) *+ k:D(mg)) psec. Since Z =
requires 2mgngk flops, a calculation shows that the effective
performance in megaflops is approximately given by

55
1 + 40/mg + 79/k + 31/mgk

Mflop(WB) =

This expression reveals the penalty for short vectors (small mg) and for
low re-use (small k). Here is a table of some representative Mf1op(W'B)

values :

k=100 k=500 k=1000 k=5000
mg = 100 25 35 37 39
mg = 500 29 44 47 50
mg = 1000 30 46 49 52
mg=2000 | 30 47 50 53
Table 4.1

we mention that because the MAX registers can handle vectors up to
length 2047, the subproblem height parameter mg should be chosen so

that rowend(t,j) - rowsrt(t,j) <2047 foralltand]j.

we now turn our attention to the rank-ng update B « B + YZ that makes
up the second half of the B « (I + WYN™B computation. For this
calculation the FPS-164/MAX has a parallel saxpy capability that appears
well suited. With two MAX boards it is possible to perform nine saxpys
of the form ¢; « ¢; +s;y in parallel. Note that this is a rank-one update:

CeC+ gsT. Here is how the update of B would proceedusing the parallel
saxpy routine pvsma and the attending load/unload routines ploadv and
punldv . For simplicity, assume that k is a muitiple of 9:

-19 -

Forj = 1:9k
Use ploadv to 1oad B(I:mg,j:j+8) into the max registers.
Fori=1lng

Use pvsma to perform the update
B(I:mg,j:j+8) « B(I:mg,j:j+8) + Y(1:mg,i:i)Z(ici,j:j+8)
end i
Use punidv to write the updated B(1:mg,j:j+8) back to memory.

end j

Reasoning as we did to determine Mflop(W'B), it canbe shown that

24
1 + 34/mg +70/ng + 62/mgng

Mflop(B + YZ) =

Note that the re-use factor is now ng rather than k . This is unfortunate
since in our application we typically have k > mg >> ng . If we look at
some typical values of Mflop(B + YZ), then this is what we find:

=20 ng =40 ng= 60 ng=80
mqg = 100 49 7.7 9.5 10.8
mg = 500 9.2 8.5 10.7 12.3
mg = 1000 9.3 8.6 10.9 12.6
mg = 2000 9.3 8.6 1.0 12.7
Table 4.2

Thus, pvsma is ill-suited for the B « B + YZ update when compared to
the 23-53 Mflop rates sustained by the pdot computation of Z = w'B. For
this reason we chose to use a new FPS parallel matrix multiply routine
called pmmul that can perform the update B « B + YZ at rates more
consistent with the values in Table 4.1.

