THE SKY IS FALLING:

The Strong Exponential Hierarchy Collapses
Lane Hemachandra*

TR 86-777
August 1986

Department of Computer Science
Cornell University
Ithaca, NY 14853

*This work was supported by a Fannie and John Hertz
Fellowship and NSF Research Grant DCR-8520597.

THE SKY IS FALLING!
The Strong Exponential Hierarchy Collapses

Lane A. Hemachandra®
Department of Computer Science

Cornell University

1Chicken Little thought that the sky was falling [Kel85]. It was not.
2This work was supported by a Fannie and John Hertz Fellowship and NSF Research

Grant DCR-8520597.

Abstract

This paper investigates the complexity of the high levels of the exponential hierarchy
[HY84,HIS85): Are they hard, and if so why are they hard?

We show that
PNE — NPNE

From this, we conclude that the strong exponential hierarchy collapses:
NE
PNE — NPNE U N'PNPNE U NPNPNP U e

where NE is nondeterministic exponential time. This surprising result, a nontrivial
hierarchy collapse, is based on PNF overmastering the N PNE computation tree by
computing better and better partial census information. We carefully note why
the combinatorics involved prevents us from similarly proving that the polynomial

hierarchy collapses.
Next we look at the exponential hierarchy, which is NE given a rich database:

PNP

NE UNENP U NENP y---.

We show that if the exponential hierarchy’s A; and ¥; levels do separate, this is
due not to the power of the database but to the extravagant number of queries NE
makes to the database.

Thus the high levels of the strong exponential hierarchy are no harder than the
low levels. The high levels of the exponential hierarchy separate completely only if
NE floods its database with queries. Extending our techniques, we derive sufficient
conditions for collapsing complexity classes, and use them to generate strong new

quantitative relativization results.

1 Introduction

We wish to know if the high A and ¥ levels of complexity hierarchies are hard,
and if so, why they are hard. We see that the high levels of the strong exponential
hierarchy are not harder than the low levels; the hierarchy collapses. We show that
the high levels of the exponential hierarchy, say EE; and NE™ , separate only if NE
floods its oracle with queries.

Section 2 looks at the strong exponential hierarchy:

EUNEUNPNEYNPY ...

Shockingly, we show that the strong exponential hierarchy collapses to its A, level,
PNE. Qur proof is based on a careful inspection of the computation tree involved
in an NPNE computation. We show how PNE can construct increasingly accurate
partial census information about the number of “yes” responses NE makes to queries
from NP in the action of NPNE. Finally, we have the correct census and collapse
the classes.

Section 2.2 shows that this result is neither trivial nor apocalyptic. The result
is not trivial in the sense that PPSPACE — NPPSPACE — PSPACE is trivial; there are
worlds where PNE £ NE. On the other hand, the combinatorics involved keeps this
technique from collapsing the polynomial hierarchy [Sto77] to PNF.

Section 3 surveys and analyzes the candidates for the title “Exponential Hier-
archy” [HY84,HIS85].

Section 4 uses the census techniques of Section 2 to prove strong new results on
quantitative relativization. We first review the gems of recent work on quantitative
relativization, in particular the work of Book, Long, and Selman [BLS84,Lon85].
Then we show how our method of computing partial census functions, instead of the
names of strings used in previous work, yields exciting new quantified collapses of
complexity classes and also unifies previous results. We outline powerful sufficient

conditions for collapsing complexity classes.

1

Finally, Section 5 lists open problems and summarizes the implications of our

results.

2 The Sky Has Fallen

2.1 The Strong Exponential Hierarchy Collapses

This section proves that the strong exponential hierarchy collapses to its A,
level. It suffices to collapse the strong exponential hierarchy’s A, and ¥, levels.

Then downward separation gives us a quick proof of the hierarchy collapse.
Definition 2.1

NE = U, NTIME[2"] NEXP = U, NTIME[2""]

SEH = E U NE U NPNE Y NPMP'") ...
SEXPH = EXP J NEXP (J NPNEXP [NPNPY®¥F .

Lemma 2.2 PE = NP\E
Theorem 2.3 PNF = SEH.
Corollary 2.4 PN = SEH = SEXPH.

Proof of Theorem 2.3 Define £SFH = NE, IfEH = NP™" for k > 1, and
ASFH = PNE, By Lemma 2.2, ASFH = ©3FH Inductively assume (for some k > 2)

that ASFH = £5EH Now

SEH SEH
D25 Az

TEH — NP = NPA3™ = NPP"" = NPNE,

The last equality holds because there is an NP machine that takes over the job of
the P machine (in NPPNE) and does all the NE queries itself.
Inductively, X$FH = ASPFH for all k. So SEH = PNE.

é

Corollary 2.4 is proven in Section 3.2.

All the work of our result lies in the proof of Lemma 2.2. We make extraordinary
use of the power of NE to guess query strings, witnesses, and paths in trees.

First, we must place graphically in you mind our image of an NPNE computation.
An NP computation tree has branches for each nondeterministic guess made by the
NP machine. The machine is said to accept if any branch accepts [HU79]. For
example, Figure 1 shows an NP machine checking the satisfiability of the formula
7; A%. The NP machine has nondeterministically guessed all possible assignments
and has found one that satisfies the formula. Throughout this paper we assume,
without loss of generality, that our nondeterministic machines have at most two
successor states for any given state.

We view an NPNE computation similarly, except the NP machine can write
queries to an NE oracle. Each of the nondeterministic paths may, of course, write
different queries than its brothers (Figure 2). We label the depth of the nodes
computation trees in the standard way (Figure 2).

Now we describe our strategy. Figure 3 shows the computation tree of an NPN®
machine. Our goal is to accept the language the NP machine accepts, with a
PNE machine. The PNE machine computes the number of query strings recetving yes
answers from NE at each depth of the tree. For example, there are two yes strings
at depth two in Figure 3.

We can’t just jump in and compute the number of yes answers deep in the tree.
To know which strings are even queried deep in the tree, we must first know the
answers to queries more shallow in the tree. Thus we are patient and first find the
number of yes responses in the first level of the tree. Then using this knowledge,
we find the number of yes responses at the second level, and so on. At each level
we use knowledge of the previous levels to help us binary search for the number of
strings at the current level.

For concreteness, suppose our NPNF language is that accepted by NP machine

N,7 with NE machine NE,,; as its oracle. At a typical stage we know, for example,

3

that the computation tree for N,72"F#1(z) has exactly 1,1,0,4, and 11 yes answers
(queries of strings accepted by NE,,;) at levels 0,1,2,3,4, and between 8 and 16 at
level 5, respectively. Our question (asked by P to NE) is: given r and “assuming”
1,1,0,4,11 are the correct number of yes answers at levels 0,1,2,3,4, are there at least
12 yes strings queried at level 57

Crucially, this is the kind of question that NE can answer. NE guesses the first
six levels of NP’s computation tree, checks that the tree and queries written are
really the actions that N7 would take given the query answers guessed, checks that
there are 1,1,0,4,11 alleged yes strings at levels 0,1,2,3,4 and > 12 alleged yes strings
at level 5, and guesses the succinct proofs that these strings really are yes strings
(i.e., are accepted by NE).

If 1,1,0,4,11 is correct, then the first 5 levels correspond to the first 5 levels of
the actual computation tree of NyzNF?!(z), and if there are > 12 yes strings at level
5 level we will have guessed them.

Eventually we know the number of yes answers at each depth, and a final call
of P to its NE oracle lets NE guess and check the correct computation tree of
N NE21(g).

Let’s refer to the P and NE machines we use to simulate NPNF as P, and NE,.
Figure 4 shows how the trees NE, guesses increase in the (literal) depth of their
accuracy at reflecting the tree of NyzNF?!(z). Crucially, P, learns only the number
of yes answers at each depth of N;;NF?'(z)’s tree. This is fortunate; there is no way
that P, could remember all the yes names since deep in the N;;""?! tree there may
be as many as 2n* yes strings on a single level. Our use of increasingly accurate
censuses of the number of queries per level is central to the success of our result.
Proof of Lemma 2.2 (PNE = NPNE) Let L be an arbitrary language in
NPNE. Without loss of generality, L = L(Nl-,NE"), where N;7 is an NP machine
and NE,, is an NE machine. For concreteness, suppose N7 runs in NTIME[n!"].
We describe machines P, and NE,, respectively P and NE machines, so that L =

L(P.NE+). Thus PNE = NPME,

Let us first describe NE,.

L(NE,) = {final#1"* #c;# c;# - - - #ci# c141 | There exist sets
Cy, Gy ..., Gy Ciyy of strings so:

1. |G| = ¢, U C; € L(NEy), and
2. If we simulate N;;\(z), answering each oracle query g at depth

¢ with a yes if and only if ¢ € C;, then each y in C; is actually

queried at level ¢ in this simulation, and

3. If final is 1, there is an accepting path in the simulation mentioned

in 2 above.}

Given that we know the number of yes answers that appear in the first &k levels
of the computation tree of Ny;""?!(z), we use binary search on NE, to find the
number of yes answers that appear at level k + 1.

Note that L(NE,) #s in NE. The value of each ¢; is at most 24" since this is
the maximum width of the computation tree N;;N¥2!(z). So by guessing (at most)
|z|7 - 2lel'” strings and then guessing proofs that each is in L(NE,,;) and guessing
the paths by which each occurs in the simulation, we can implement NE, easily in
NTIME[2"!"*]. Fortunately, we’ve padded so our input size is greater than |z|'®, so
NE, runs in NTIME[2¢12Putsiz¢] and thus is in NE. Thus L(NE,) € NE.

Now we describe the action of our machine P, (on input z). P, uses NE, to

find the correct number of yes strings at each level of Ny;"*?!(z).
Stage i: Inductively, we have numbers ¢, ¢, ..., ¢i_y, SO ¢, €1, ..., €;—y are the
correct number of yes strings at levels 0, 1, ..., — 1 of the actual computation tree

of N;;NF?(z) (Figure 2). During this stage we find ¢;, the actual number of yes
strings at level 1. This is easy— just binary search (varying z) using calls to NE, of

the form

(O z 1 feott - - #eia#2)

to find the value of ¢;.

Query NE.’s Answer
{O#11101415"° #0404141} accept
{O# 111014 1% ° #0#0# 142} accept
{O# 11101415 ° #0#0# 144} reject
{O#£ 11101415 ° #0#0# 143} accept

Table 1: Binary search over calls to NE, discovers that there are 3 yes strings at

level 3 of the computation tree of Ni7VE21(11101)

Recall that, when ¢, ¢y, ..., ¢c;—; are correct, NE, says yes if z is a lower bound
for the number of yes answers at level 1. Table 1 gives a sample binary search run.
At the end of it P, has learned that there are exactly 3 yes strings at level 3.

It is crucial to notice that when ¢, ..., ¢;—1 are correct, the ¢; we find is correct.
This is because a branch, henceforward yclept B, of NE, will really guess the true
yes strings Cp, ..., Ci—;. The queries asked at level 1 depend only on the fact that
we know the right oracle replies at levels O through ¢+ — 1; thus the queries asked
at level i on branch B will be the queries that are asked in the tree of N;;NF2'(z)
at level ¢. Thus if there are at least z yes strings queried at level ¢ of the tree of
N.12NE21(z), B will guess them.

On the other hand, any branch that does not guess the sets C, ..., C;_; cor-
rectly (it guesses, say, Cy', ..., Ci_;) certainly will not accept. At the first level it
errs from the true set of C;’s (say level m) it will not be able to find all the strings of
its incorrect C,,' in the simulation tree. Why? Since C,,' # Cp,, yet |Cy'| = |Cr| =
¢m, Some string w in C,,’ is not a yes string of N;;NF?!(z). Since the C;' are correct at
levels O, ..., m—1, the strings queried at level m in the simulation are exactly those
queried at level m in the tree of Nj;NF2(z). So if w is queried at level m, it is not in
L(NEy,) (if it were it would have to be in C,); thus condition 1 of the definition of
L(NE,) (page 5) is violated and this branch won’t accept. If w is not queried at level
m, condition 2 of the definition of L(NE,) is violated and this branch won’t accept.

6

End of Stage i

Since ¢; can be at most 2" in value (this is as wide as the tree of Ny;N®2!(z)
gets), the binary search process at stage i takes at most around |z|'7 steps, each
requiring writing a string of length at most about |z|'7 - |2|'" + |z|'® + |z|. There
are at most |z|'7 stages, so the total run time of PV is easily polynomial; it runs in
TIME[n*17+2]. Returning to the general case, if Ny7 is in NTIME[n*], then P, is in
deterministic TIME[n*+2].

After stage |z|'7, we know the correct values ¢, ..., ¢j17. At this point, a single
call to NE, suffices. P, accepts if and only if NE, accepts l#z#ll”'w#co# - e
(thus stating that N;;"F%(z) accepts).

é

2.2 Is This Collapse Trivial or is it Apocalyptic

We have just shown that PNE = NPNE| and thus SEH collapses to PNE. Is this
collapse of the strong exponential hierarchy trivial or earthshattering? Could the
collapse be trivial in the sense that PPSPACE — NPPSPACE — PSPACE is trivial?
PSPACE is so powerful that both PPSPACE 3pd NPPSPACE 3re equal to PSPACE. Is
NE so powerful that PNE =? NE? Relativization techniques [CH86a, HH86b, HH86a)]
help us here. There is a relativized world where PNE* 2 NE. That this is not a
fluke side effect PNE’s ability to reach on* long things (compared with NE’s reach of

2°") is shown by Theorem 2.5. Section 3.2 discusses this “reach” anomaly in detail.
Theorem 2.5 There is a recursive oracle A for which

PNE* 2 NEXP4 2 NEA.
Proof Sketch This is a straightforward diagonalization using the techniques

of Baker, Gill and Solovay [BGS75]. We separate PNE* from NEXP# by forcing a
CONE* language out of NEXPA. In particular, we diagonalize so

Lo = {0"| (Vy)[lyl £ 2"V y & A]} ¢ NEXPA.

7

Interlaced with this we separate NEXP4 from NE* simply using the fact that the
former class is sensitive to length 2** oracle strings.
é®

On the other hand, the result is not apocalyptic in that these techniques do not
collapse the polynomial hierarchy (NP U NPNF U ---) to PNF. Suppose we tried to
show that PNP = NPNP using the above methods. NPNF may have exponentially
many yes replies given to its lower NP machine by the upper one. The P machine can
record an exponential count, but the NP machine sitting over it (in PNF) certainly
can not guess an exponentially large object: the names of the on* yes strings in the
tree of NPNP,

Of course, if we change the game so, in NPNF| few queries are made to the oracle,
then the same argument works. This “quantitative relativization” is exactly what
is done by Book, Long, and Selman in [BLS84], where they show that a hierarchy
of quantified relativizations collapses. The rest of this paper studies quantified rela-
tivizations of the exponential hierarchy, where we’ll see the partial census technique

of this section put to further use.

38 Waill the Real Exponential Hierarchy Please Stand
Up

3.1 Definitions

This section prepares for our quantified relativization results by defining and

comparing the strong and vanilla exponential hierarchies.
Definition 3.1

1. E= U, TIME[2*"] EXP = U, TIME[2""|

2. NE = U, NTIME[2**] NEXP = U, NTIME[2""]

8

3. EH = exponential hierarchy = NE U NENF NENP*" U ... [HIS85]
EXPH = NEXP U NEXP"? y NEXPV'" | ...

4. SEH = strong exponential hierarchy = NE U NPNE U NPNP'° U -

Both E and EXP are commonly referred to as exponential time (compare [CT86]
with [BH77]), though E is more common in the literature of structural complexity
[Sel86,HY84]. In this paper we always make clear which exponential time we are
speaking of. We’ll see later in this section that sometimes using EXP instead of E

will avoid anomalies.

8.2 Why SEH is Strong: Sensitivity to Padding

SEH is called strong because it is easy to see that in a relativized world A, SEH*
is not contained in EHA. This is simply because from its A2 level (PNE*) on up,
SEH” can query strings in A of length 2"k, while EH* can only query strings of
length 2°*. To understand this, just reflect on the fact that

PE 3 EP,
since EP = E but PP = EXP, and EXP ? E by the time hierarchy theorem of
Hartmanis and Sterns [HS65].

Theorem 3.2 There is a relativized world A so that SEH* — EH* # 0. Indeed, in
this world PNE* — EHA # 0.

Proof We make L, € PNE* — EH#, where
La=1{0"| (Qy)lye Anly|=2"]}.

Ly is clearly in PNE* | but since no EH# machine can reach strings of length 2" on

input of length n, we can easily diagonalize against each EH machine.

é

Similarly we get the following trick separation that is due wholly to this padding

anomaly. This is what we mean when we say that E causes anomalies that EXP

avoids.

Trick Result 3.3 XSEH £ ASPH,

The extreme sensitivity of E and NE oracles to polynomial padding of their in-
put strings has another consequence. The hierarchy SEXPH (Definition 2.1) equals
SEH! Why? Clearly PNF = PNEXP NPNEXP — NPNE and so forth, since if P (in
PNE) just sticks polynomial padding onto each query string, its NE oracle can in
effect simulate the NEXP calls of PNPXP_ Thus we have extended the collapsing

result of Section 2.
Corollary 2.4 PNE = SEH = SEXPH =4 NEXP U NPN¥¥P y NPVP'57 ...

3.3 Downward Separations

If we collapse the polynomial hierarchy at any level the entire hierarchy crumbles
to that level; £¥ = I’ = ¥? = PH [Sto77]. This is known as downward separation
(and remembered as upward collapsing). One troubling feature of the exponential
hierarchy is that it does not have downward separation. Hartmanis, Immerman,
and Sewelson [HIS85] display a relativized world A where E* = NE* # NEV"

On the other hand, the strong exponential hierarchy does have downward sepa-
ration of a sort. A subtlety is that we must account for the sensitivity to padding

discussed in the previous section.
Theorem 3.4 (Downward Separation)

1. E=NE = EXP = SEH.
2. NE = CONE = NEXP = SEH.

Proof

10

1. Using Theorem 2.3 and our assumption that E = NE,

EXP C SEH = PNF = PP = EXP.

2. When NE = CONE, PNE can be simulated by NEXP, which just guesses the

correct oracle answers along with their certificates of correctness.

'
There is no point in stating more general downward separation results. Since we
already know that PNE = SEH with no assumptions needed, the results above are

the only nontrivial downward separations possible in SEH.

3.4 Which is the Real Exponential Hierarchy?

Unfortunately, the answer to this questions is a matter of taste. Each version
has some desirable qualities and some weaknesses. Using E over EXP has paid off
well in structural complexity [HY84], but admits the padding anomalies discussed

in Section 3.2.

EH has a natural interpretation in terms of alternating Turing machines, but
lacks downward separation. On the other hand, SEH nicely displays downward
separation, but lacks an obvious alternating Turing machine model.

Each hierarchy will have to be used and studied intensively before it is under-
stood. However, this paper seeks to make a strong start. Section 2.1 showed that
SEH collapses; its high levels are no harder than its low levels. Section 4 shows that
EH and EXPH can completely separate their levels only if they flood their oracles

with queries.

11

4 Quantitative Relativization Results

4.1 Definitions

Quantitative relativization means relativization in which the power of some base
machine to query its oracle is restricted. Before introducing this field, we must define
our notation. Since many varied notations have been used, we take this opportunity

to define a new notation that is simple and clear.
Definition 4.1 Let A and B be complexity classes. The class

AB U(")]path [9(n)]tree ["(")]ezplicitly—named-—rclh’icbbn

is the class of languages accepted by an oracle Turing machine from A with a set

from B as its oracle, under the restrictions that:

1. on input of size n each path of A’s computation tree (A may be nondetermin-

istic) queries B about at most f(n) different strings, and

2. the total number of strings B is queried about throughout A’s entire compu-

tation tree is g(n), and
3. there is an h(n) bound on whatever is named by “explicitly-named-restric-
tion.”
Examples and Notes

1. NENP = U, NENP[zzc"]"“. Since the NE computation tree is 2" deep it only

has 2 - 22°" nodes, so it cannot make more than 2 - 22" queries (Figure 5a).

2. NENP[ltree g putting some restriction on the querying action of NE (Fig-
ure 5b). Note that NENP [Upatn (Figure 5c) may query 22" many strings— one
on each of NE’s 22°" computation paths (Figure 5d).

12

3. In classes such as NEXPNF NEXP may be querying NP about strings of
length exponential in the input size. Thus it is not obvious and probably not
true that NEXP equals NEXPNP| even though NP C NEXP.

4. Our quantitative classes count strings- not oracle calls. (This makes our
theorems harder to prove but stronger.) That is, [n?|y. means that for all
z, |{y| v is queried in the tree on input z}| < |z|*. For example, an NE
computation tree that queries string y on each of its 22°" branches would be
charged just “1” in the []y. measure for this whole set of queries— not 22
(Figure 5d).

Finally, we make it harder still to prove our theorems.

Notation 4.2 Addinga “Y” (e.g., NENP [26"1"'?“”') means we are counting just the
number of strings queried that get a yes answer from the oracle (and “no” answers
don’t count). This makes our theorems harder to prove and stronger; any theorem

proven with a “Y” also holds without the “Y.” Table 2 summarizes our notation.

4.2 Introduction and Background

The techniques of Section 2.1 will be used to prove strong new theorems about

quantitative relativizations. We’ll see, for example, that:

ENP — NENPeree.

Thus the only way NENF can avoid collapsing to ENP is by using its oracle fantas-

tically often. Similarly, we’ll see that:

PNE 2 NENP[WIV]tne .

Note that the P machine cannot write down even one of the long queries (length

2°") the NE machine makes to NP, yet PNE can simulate the action of NENF [o#lerecy

13

