On Complete Problems for NP\capCoNP

Juris Hartmanis\(^2\)
Neil Immerman\(^3\)

TR 85-670

Department of Computer Science
Cornell University
Ithaca, New York 14853

\(^1\) Presented at ICALP '85. July 1985, Natplion, Greece.
\(^2\) Supported in part by National Science Foundation Grant DCR8301766.
\(^3\) Research supported by an NSF Postdoctoral Fellowship.
On Complete Problems for \(NP \cap \text{CoNP} \)

Juris Hartmanis
Department of Computer Science
Cornell University
Ithaca, NY 14853

Neil Immerman
Department of Computer Science
Yale University
New Haven, CT 06520

Abstract

It is not known whether complete languages exist for \(NP \cap \text{CoNP} \) and Sipser has shown that there are relativizations so that \(NP \cap \text{CoNP} \) has no \(\leq^P_m \)-complete languages. In this paper we show that \(NP \cap \text{CoNP} \) has \(\leq^P_m \)-complete languages if and only if it has \(\leq^P_T \)-complete languages. Furthermore, we show that if a complete language \(L_o \) exists for \(NP \cap \text{CoNP} \) and \(NP \cap \text{CoNP} \neq NP \) then the reduction of \(L(N_i) \in NP \cap \text{CoNP} \) cannot be effectively computed from \(N_i \). We extend the relativization results by exhibiting an oracle \(E \) such that \(P^E \neq NP^E \cap \text{CoNP}^E \neq NP^E \) and for which there exist complete languages in the intersection. For this oracle the reduction to a complete language can be effectively computed from complementary pairs of machines \((N_i, N_j) \) such that \(L(N_i) = \overline{L(N_j)} \). On the other hand, there also exist oracles \(F \) such that \(P^F \neq NP^F \cap \text{CoNP}^F \neq NP^F \) for which the intersection has complete languages, but the reductions to the complete language cannot be effectively computable from the complementary pairs of machines. In this case, the reductions can be computed from

\[
(N_i, N_j, \text{Proof that } L(N_i) = \overline{L(N_j)})\]

Introduction

It is not known whether \(P \neq NP \) or \(P \neq NP \cap \text{CoNP} \neq NP \). Furthermore, it is not known whether complete languages exist in \(NP \cap \text{CoNP} \). In this paper we investigate the possible existence of complete languages in \(NP \cap \text{CoNP} \) and study their properties, should they exist.

*Supported in part by National Science Foundation Grant DCR8301766.
+ Research supported by an NSF Postdoctoral Fellowship.
Sipser [Si] has shown that there exists an oracle C such that $P^C \neq NP^C \cap CoNP^C \neq NP^C$ and that $NP^C \cap CoNP^C$ has no complete languages under many-one polynomial time reductions (\leq_{m}^{P}-complete). The existence of complete languages in the intersection was shown by collapsing P and NP by the well known BGS method [BGS].

In this paper we show that there exist \leq_{m}^{P}-complete languages for $NP \cap CoNP$ if and only if there exist polynomial-time Turing complete languages (\leq_{T}^{P}-complete). This extends Sipser's result to show that for his oracle C there are neither \leq_{m}^{P}-complete nor \leq_{T}^{P}-complete languages in the intersection. Furthermore, we show that there exists an oracle E such that $P^E \neq NP^E \cap CoNP^E \neq NP^E$ for which $NP^E \cap CoNP^E$ has complete languages. At the same time, we show that if $NP \cap CoNP \neq NP$ and $NP \cap CoNP$ has complete languages, then these languages have radically different behaviour than complete languages in NP.

More precisely, let N_1, N_2, \ldots be a standard enumeration for polynomial time clocked nondeterministic Turing machines, let P_1, P_2, \ldots be the corresponding enumeration of deterministic polynomial time clocked machines and let M_1, M_2, \ldots be a standard enumeration of Turing machines. We first show that if $NP \cap CoNP \neq NP$ then there does not exist a recursive function which can bound for all $L(N_i)$ in $NP \cap CoNP$, in the size of N_i, $|N_i|$, the size of a complementary machine N_j such that $L(N_i) = \overline{L(N_j)}$. From this result it follows that if $NP \cap CoNP \neq NP$ and there is a complete language L_0 in the intersection then the reductions of $L(N_i) \in NP \cap CoNP$ to L_0 cannot be effectively computed from N_i. As a matter of fact, the size of the reducing machines is not recursively bounded in $|N_i|$.

We observe that for the above oracle E, the reductions to the complete language L_0 can be effectively computed from complementary pairs of machines (N_i, N_j) such that $L(N_i^E) = \overline{L(N_j^E)}$.

On the other hand, this is not always the case, and we exhibit another oracle F such that $P^F \neq NP^F \cap CoNP^F \neq NP$ and L_0 is a complete language for the intersection, but the reductions cannot be effectively computed from the complementary pairs (N_i, N_j) such that $L(N_i^F) = \overline{L(N_j^F)}$. The reductions can be computed from the pair of machines N_i, N_j and the proof that $L(N_i^F) = \overline{L(N_j^F)}$.
These results show that there is great logical latitude which permits different relativizations for $NP \cap CoNP$ and if $P \neq NP \cap CoNP \neq NP$ then $NP \cap CoNP$ behaves, in a strict technical sense, differently from NP with respect to complete languages: either they do not exist or the reductions are not effectively computable.

Complete Languages for $NP \cap CoNP$

We will now show that $NP \cap CoNP$ has a $\leq \frac{P}{T}$-complete language if and only if it has a $\leq \frac{P}{m}$-complete language.

It has been observed by Kowalczyk [Ko] that $NP \cap CoNP$ has a $\leq \frac{P}{m}$-complete language if and only if there exists a recursively enumerable set of pairs of complementary machines $\{(N_k, \bar{N_k}) \mid k \geq 1\}$ such that $L(N_k) = L(\bar{N_k})$ and $\{L(N_k) \mid k \geq 1\} = NP \cap CoNP$.

Theorem 1: There exists a $\leq \frac{P}{T}$-complete language in $NP \cap CoNP$ if and only if there exists a $\leq \frac{P}{m}$-complete language.

Proof: If there exists a $\leq \frac{P}{m}$-complete language L_0 in $NP \cap CoNP$, then $NP \cap CoNP \leq P^{L_0}$ and we see that L_0 is also $\leq \frac{P}{T}$-complete.

Conversely, if for some L_1 in $NP \cap CoNP$, $L(N_i) = L_1 = \overline{L(N_i)}$, we have $NP \cap CoNP \leq P^{L_1}$, then $NP \cap CoNP = P^{L_1}$. To see this, note that for each $L(P_i^{L_1})$ in P^{L_1} we can effectively construct an equivalent machine $N_{\sigma(i)}$. The machine $N_{\sigma(i)}$ simulates $P_i^{L_1}$ and for each oracle query $N_{\sigma(i)}$ starts N_i and N_i on the queried string. Since $L(N_i) = \overline{L(N_i)} = L_1$, for each query there is a computation path such that N_i or N_i accepts the queried string. Thus $L(N_{\sigma(i)}) = L(P_i^{L_1})$. As a matter of fact, for each $P_i^{L_1}$ we can effectively construct a pair of complementary machines $N_{\sigma(i)}$ and $N_{\delta(i)}$ such that $L(P_i^{L_1}) = L(N_{\sigma(i)}) = \overline{L(N_{\delta(i)})}$ and clearly, $\{L(N_{\sigma(i)}) \mid i \geq 1\} = NP \cap CoNP$. But then, by Kowalczyk's Theorem, or an explicit construction of a universal language of the type

$$\{N_{\sigma(i)} \# N_{\delta(i)} \# z \# \text{padding} \mid z \text{ is in } L(N_{\sigma(i)})\},$$
we obtain a \(\leq P \)-complete language for \(NP \cap CoNP \). \(\square \)

Next we show that if \(NP \cap CoNP \neq NP \) then there is no recursive succinctness bound in the size of \(N_i \), for \(L(N_i) \) in \(NP \cap CoNP \), which bounds the size of a complementary machine \(N_j \) such that \(L(N_i) = \overline{L(N_j)} \).

Succinctness Lemma: If \(NP \cap CoNP \neq NP \) then there is no recursive function \(G \) such that for all \(N_i \) with \(L(N_i) \) in \(NP \cap CoNP \) there exists an \(N_j \) satisfying

\[
L(N_i) = \overline{L(N_j)} \text{ and } G(|N_i|) \geq |N_j|.
\]

Proof: First we show that

\[
\Delta = \{ N_i \mid L(N_i) \in NP - NP \cap CoNP \}
\]

is a \(\Pi_2 \)-complete set in the Kleene Hierarchy [Ro]. To see this, note that \(\Delta \) can be expressed in a \(\forall \exists \) form:

\[
\Delta = \{ N_i \mid (\forall N_j, N_i)(\exists x)[N_i(x) \neq N_j(x) \text{ or } N_i(x) = N_j(x)] \}.
\]

Thus \(\Delta \) is in \(\Pi_2 \). Its completeness in \(\Pi_2 \) is seen by reducing the \(\Pi_2 \)-complete set \(\{ M_i \mid L(M_i) = 1^i \} \) to \(\Delta \) as follows. Map \(M_i \) onto \(N_{\sigma(i)} \), where \(N_{\sigma(i)} \) has an \(n^3 \)-clock and computes in stages. If the clock shuts \(N_{\sigma(i)} \) off then the input is rejected. Let \(\{(N_{k}, N_{h}) \mid k \geq 1\} \) be a recursive enumeration of all possible pairs of nondeterministic polynomial time machines.

For input \(x \) \(N_{\sigma(i)} \) recomputes its previous computations to determine what stage it is in (if this computation is not completed in \(n^3 \) steps the input is rejected). In stage \(k, k \geq 1, N_{\sigma(i)} \), simulates \(M_i \) on input \(1^k \), if it is found that \(M_i \) accepts \(1^k \), then \(N_{\sigma(i)} \) checks deterministically on shorter inputs whether

\[
L(N_{\sigma(i)}) \neq L(N_k) \text{ or } L(N_k) \neq \overline{L(N_h)} \text{ (if for all } k \text{ one of these conditions is satisfied then } L(N_{\sigma(i)}) \text{ is in } NP - NP \cap CoNP \).
\]

If neither condition is satisfied in \(n^2 \) steps of computation the input \(x \) is accepted if and only if \(x \) is a satisfiable Boolean formula in CNF, i.e. \(x \) is in SAT. Since we have assumed that \(NP \cap CoNP \neq NP \), SAT is not in \(NP \cap CoNP \) and eventually, for sufficiently long \(x \), one of the above conditions will be found to be satisfied, when this is detected \(N_{\sigma(i)} \) enters stage \(k + 1 \).

From the above construction we see that if \(L(M_i) = 1^i \) then for all \(k \)

\[
L(N_{\sigma(i)}) \neq L(N_k) \text{ or } L(N_k) \neq \overline{L(N_h)} \text{ (if for all } k \text{ one of these conditions is satisfied then } L(N_{\sigma(i)}) \text{ is in } NP - NP \cap CoNP \).
\]

If neither condition is satisfied in \(n^2 \) steps of computation the input \(x \) is accepted if and only if \(x \) is a satisfiable Boolean formula in CNF, i.e. \(x \) is in SAT. Since we have assumed that \(NP \cap CoNP \neq NP \), SAT is not in \(NP \cap CoNP \) and eventually, for sufficiently long \(x \), one of the above conditions will be found to be satisfied, when this is detected \(N_{\sigma(i)} \) enters stage \(k + 1 \).
\(L(N_i) \neq \overline{L(N_j)} \) and \(L(N_{\sigma(i)}) \in \text{NP} - \text{NP} \cap \text{CoNP} \), otherwise \(L(N_{\sigma(i)}) \) is finite and therefore in \(\text{NP} \cap \text{CoNP} \). Thus \(\Delta \) is \(\Pi_2 \)-complete.

If a recursive succinctness bound \(G \) would exist, bounding the size of a completementary machine \(N_j \) to the size of \(N_i \) for each \(L(N_i) \) in \(\text{NP} \cap \text{CoNP} \), then

\[
\Delta = \{ N_i \mid L(N_i) \neq \overline{L(N_j)} \text{ for all } N_j \text{ with } |N_j| \leq G(|N_i|) \}.
\]

But then \(\Delta \) would be recursively enumerable which is a contradiction to \(\Pi_2 \)-completeness. Thus no recursive succinctness bound exists. \(\Box \)

Theorem 2: If \(\text{NP} \cap \text{CoNP} \neq \text{NP} \) and \(L_0 \) is a \(\leq P \)complete language for \(\text{NP} \cap \text{CoNP} \), then there is no recursive function \(G \) which bounds in the size of \(N_i \), for \(L(N_i) \) in \(\text{NP} \cap \text{CoNP} \), the size of the minimal size \(P_j \) reducing \(L(N_i) \) to \(L_0 \). Therefore the reduction of \(L(N_i) \) in \(\text{NP} \cap \text{CoNP} \) to \(L_0 \) cannot be effectively computable from \(N_i \).

Proof: Let \(L(N_{i_0}) = \overline{L(N_{j_0})} = L_0 \). Then any \(P_i \) reducing \(L(N_i) \) in \(\text{NP} \cap \text{CoNP} \) to \(L_0 \) defines to machines \(P_i \cdot N_{i_0} \) and \(P_i \cdot N_{j_0} \) which accept \(L(N_i) \) and \(\overline{L(N_i)} \), respectively. Since the size of the smallest machine, \(N_j \), accepting \(\overline{L(N_i)} \) cannot be recursively bounded in the size of \(N_i \) and \(N_{j_0} \) is fixed, we see that the size of \(P_i \cdot N_{j_0} \) cannot be recursively bounded in the size of \(N_i \) and therefore the size of the reducing machine, \(P_i \), cannot be recursively bounded in \(|N_i| \). But then \(P_i \) cannot be effectively computed from \(N_i \). \(\Box \)

By similar reasoning we get the next result.

Theorem 3: Let \(L_1 \) be in \(\text{NP} \cap \text{CoNP} \) and \(P^{L_1} = \text{NP} \cap \text{CoNP} \neq \text{NP} \). Then there is no recursive function which bounds in the size of \(N_i \), for \(L(N_i) \) in \(\text{NP} \cap \text{CoNP} \), the size of the smallest \(P_j \) such that \(L(P_j^{L_1}) = L(N_i) \).

Proof: A careful inspection of the proof of Theorem 1 shows that a recursive succinctness bound in this result would imply a recursive succinctness bound for the previous result, contradicting Theorem 2. \(\Box \)

Relativized Computations
Let \(h(n) = \log_* n \). We will use \(h \) in several places in our constructions; but, any sufficiently slowly growing unbounded function would do. We will assume for convenience in the next two theorems that deterministic polynomial time turing machine \(P \), and nondeterministic polynomial time turing machine \(N \), both have clocks constraining them to run in at most \(n^{h(n)} \) steps on inputs of size \(n \).

Theorem 4: There is an oracle \(E \) such that

\[
P^E \not\subseteq N^E \cap \text{CoNP}^E \not\subseteq N^E
\]

and such that there exists a many-one complete set for \(N^E \cap \text{CoNP}^E \).

Proof: We will construct \(E \) as the disjoint union of two sets:

\[
E = 00S \cup 1T
\]

The prefix for \(S \) is 00 in order to leave room for one more set in the next theorem. The set \(T \) will code a universal complete set for \(N^E \cap \text{CoNP}^E \); and the set \(S \) will hide strings in order to insure that \(N^E \not\subseteq \text{CoNP}^E \). For each string \(u \), \(T \) will contain exactly one string \(uv \) where \(|u| = |v| \). Thus the function \(f \) which takes each \(u \) to its corresponding \(v \) will be computable in \(N^E \cap \text{CoNP}^E \);

\[
f(u) = v \quad \text{such that } |u| = |v| \quad \text{and } \quad uv \in T.
\]

We will say that the two turing machines \(N^E_1, N^E_2 \) form a **complementary pair** if they accept complementary languages. We will construct \(T \) so that the following two conditions hold concerning \(f \):

(A) The function \(f \) is not computable in \(P^E \).

(B) Suppose that \(N^E_1, N^E_2 \) is a complementary pair; and let \(u = (a, b, w, \#^m) \) where \(m = |w|^{h(\max(a, b))} \) bounds the number of steps taken by \(N_a \) or \(N_b \) on input \(w \). Then for all but finitely many \(w \in \Sigma^* \), \(\text{first}(f(u)) \) - the first bit of \(f(u) \) - will be 1 if and only if \(N^E_a \) accepts \(w \).

Condition (B) will insure that the set

\[
C(E) = \{(u, x) | (\exists v) 1uv \in E; \quad \text{first}(v) = x \}
\]

is many-one complete for \(N^E \cap \text{CoNP}^E \). Condition (A) will insure that \(N^E \cap \text{CoNP}^E \not\subseteq P^E \) because \(f \) is computable in \(N^E \cap \text{CoNP}^E \) but not in \(P^E \). We break this condition into infinitely many pieces:
(A,) The function \(f \) is not computed by \(P_i \).

Condition (A,) will be easy to meet because each \(P_i \) can only look at a few of the exponentially many candidates for each function \(f(u) \).

Finally in the set \(S \) we will hide strings to guarantee that \(NP^E \not\subseteq CoNP^E \). Let

\[
L(E) = \{ 0^m \mid m \in N, (\exists z)(|z| = m, 00z \in E) \}.
\]

The following conditions will insure that \(L(E) \not\subseteq CoNP^E \) and thus that \(NP^E \not\subseteq CoNP^E \).

(C,) The language accepted by \(N_i \) is not \(\overline{L(E)} \).

The Construction

We construct an oracle meeting the above conditions (A), (B), and (C). Assume inductively that \(E_s \), an initial segment of \(E \) has been constructed, and that \(E_s \) only includes strings of length less than \(s \).

Part (A): Let \(i \leq s \) be minimal so that the condition (A,) has not yet been satisfied. Simulate \(P_i \) on input \(0^s \). Let \(w_1, \ldots, w_k \) be the strings of length at least \(s \) queried by \(P_i \). Freeze these strings permanently out of \(E \).

Part (B): Let \(k \leq s \) be minimal so that the condition (C,) has not yet been satisfied. For \(j \) going from \(s \) to \(s^{k+1} - 1 \) do the following: For each \(u \) with \(|u| = j/2 \) pick a unique \(v \) such that \(|v| = |u| \) and add \(1uv \) to \(E \). The string \(v \) must meet the following two criteria:

- The string \(1uv \) has not been previously frozen.
- If \(u = (a, b, w, \#^m) \) where \(m = |w|^k(\max(s, t)) \) and \(N_s \) accepts \(w \), (necessarily within \(m \) steps), then \(\text{first}(v) \) should be 1. Otherwise \(\text{first}(v) \) should be 0.

Note that the number of \(v \)'s excluded by freezing in part (A) is less than \(s^{k+1} - 1 \) and therefore less than the number of possible \(v \)'s, i.e. \(2^{j/2} \). Thus the above two steps can always be carried out.

Part (C): Recall that \(k \) was chosen to be minimal so that the condition (C,) has not yet been satisfied. Let \(r = s^{k+1} \) and assume that \(E_r \) has been constructed correctly so far. Run \(N_{s_r}^E \) on input \(0^r \). If it rejects then freeze \(E_r \). There are no strings of the form \(00z \in E_r \) with \(|z| = s \). Thus \(N_{s_r}^E \) does not
accept the complementary language to $L(E)$. If N^E_t accepts 0^t then pick one of its accepting computations and freeze the strings y_1, \ldots, y_t queried in this computation. Note that

$$\sum_{j=1}^{t} |y_j| < s^{h(t)} = r$$

because N_s runs in at most $s^{h(t)}$ steps on inputs of size s. Note that some of the y_j's in E may be of the form $1u, v_j$ where $u_j = (a, b, w, \#^m)$ with N^E_s, N^E_t a valid $NP^E_t \cap CoNP^E_t$ pair on inputs of length less that s; and such that $m = |w|^{h(\max(s, t))}$. In this case if N^E_s accepts w then pick one of its accepting computations and freeze it. Otherwise, if N^E_t accepts w then pick one of its accepting computations and freeze it. In either case we may be forced to freeze some additional strings, y_1', \ldots, y_t', in E. Note that N_s runs in at most m steps, and $m < |y_j|/2$. If follows that

$$\sum_{i=1}^{t} |w_j| < |y_j|/2.$$

It easily follows that within $\log r$ interactions all strings to be frozen will have been identified; and that there are fewer than r of them. (In particular their total length is less than $2r$.) Finally, we now pick a string z of length s such that $00z$ has not been frozen, and add $00z$ to E. Such a z exists because fewer than $2r$ of the 2^r possible z's have been excluded. It follows that we have met the condition that $L(N^E_t)$ is not the complementary language to $L(E)$.

Note that by adding $00z$ to E we may change many of the computations which have been recorded in T. Thus we must repeat the loop of part (B) to recompute E_t; but, of course we do not change those strings which have been frozen.

A problem may occur in that some frozen $y = uv$, with $u = (a, b, w, \#^m)$, may now be incorrect. To be incorrect means that N^E_s and N^E_t form a valid complementary pair so far; but that first(v) does not reflect the pair's answer on w. How could this have happened? Recall that if either N_s or N_t had accepted w then one of these accepting computations would have been frozen as well. It follows that for an error to have occurred, originally N^E_s and N^E_t must both have rejected w. To meet condition (B) we only have to insure that for each valid complementary pair, N_s, N_t, this sort of error happens only
finitely often. We insure this by modifying part (C) of the construction as follows:

(Proviso to Part C): IF \(E \) contains a string \(y = 1uv \) with \(u = (a, b, w, \#^m) \), such that
\[s \leq |y| < r; \quad a + b < h(s); \quad N^E_{s^*}, N^E_b \] is a complementary pair up to \(s \); and \(N^E_a \) and \(N^E_b \) both reject \(w \)
THEN skip (C) this time.

The effect of the above proviso is that if a very small pair has the potential to mess up the construction then both parts of the pair must now reject some \(w \). If we defer the (C) step and freeze the present initial piece of the oracle then the pair is no longer a complementary pair. It follows that the pair \(N_a, N_b \) will never be involved in an error after stage \(h^{-1}(a + b) \).

Lemma 5: If the above construction is carried out using Proviso 1, then conditions (A), (B), and (C) are met.

Proof: We must only show that any complementary pair \(N_a, N_b \) can be put in error only finitely often; and that the conditions \((C_i)\) are all eventually satisfied.

The first is clear because the pair \(N_a, N_b \) cannot be put in error on any input of length \(s \), where \(a + b < h(s) \).

It is clear that the second is true as long as the function \(h(s) \) grows slowly enough; and a straightforward calculation shows that \(h(s) = \log_s s \) does grow sufficiently slowly. This proves the lemma and thus the theorem.

Corollary 6: There is an oracle \(E \) such that \(P^E \not\subseteq NP^E \cap CoNP^E \not\subseteq NP^E \), and such that there is an \(NP^E \cap CoNP^E \) complete set, \(L \). Furthermore, the map taking a complementary pair \(N_a, N_b \) to its reduction to \(L \) is computable.

Proof: By the above construction we know that for \(N_a, N_b \) a complementary pair no errors are made after stage \(s = h^{-1}(a + b) \). Let \(u \in C(E), v \not\in C(E) \). Suppose that \(N^E_a, N^E_b \) is a complementary pair. Let \(e = \max(a, b) \). Put

\[
r(w) = \begin{cases}
(a, b, w, |w|^*, 1) & \text{if } h(w) > a + b \\
u & \text{if } h(w) \leq a + b \text{ and } N_a(w) \downarrow \\
v & \text{otherwise}
\end{cases}
\]
Then \(r \) is a valid reduction of \(L(N_a)^F \) to \(C(E) \).

\[\square \]

The next theorem shows that there is also an oracle for which there is still a complete set for \(NP \cap CoNP \); but, such that the reductions cannot be computed from pairs of complementary machines.

Theorem 7: There is an oracle \(F \) such that

\[P^F \neq NP^F \cap CoNP^F \neq NP^F ; \]

such that there exists a many-one complete set, \(C \), for \(NP^F \cap CoNP^F \); but, such that reductions are not computable. That is there is no \(F \)-computable map, \(\varphi^F \), such that for each complementary pair, \(N_a^F, N_b^F \), \(\varphi^F(a, b) \) converges to an index of a polynomial time reduction of \(L(N_a) \) to \(C \).

Proof: We modify the above construction to include parts A, B, and C, as well as a new part D in order to satisfy the following new conditions:

\((D_i) \): The \(i \)th partial recursive function, \(\varphi_i^F \), does not compute reductions to \(C(F) \).

In order to foil \(\varphi_i \)'s chances of computing reductions, and thus satisfy \((D_i) \) we use an idea from [Si].

For each \(i \), and some \(c \in N \) we will consider the following language:

\[L(i, c) = \{(i, c, w) | (\exists v. |v| = |w|)((01, i, c, v) \in F \text{ and first } (v) = 1)\} . \]

We will modify the construction so that for sufficiently many \(c \) we will put exactly one string \(z \) of the correct form into \(F \). In these cases the language \(L(i, c) \) is in \(NP^F \cap CoNP^F \) and will be computed by an appropriate linear time complementary pair \(N_{a(i, c)}, N_{b(i, c)} \). We will satisfy \((P_i) \) by making sure that if \(\varphi_i^F(a(i, c), b(i, c)) \) converges to some polynomial time reduction \(P_j \) then \(P_j \) does not reduce \(L(i, c) \) to \(C(F) \).

We will say that \(D_i \) is ready at stage \(s \) if there exists an integer \(c \leq s \) as well as integers \(a, b, j, m, x \) such that the following two conditions are met:

1. \(\varphi_i^F(a(i, c), b(i, c)) \) converges in at most \(s \) steps to some polynomial time transducer \(P_j \).

2. \(P_j^F((01, i, c, 0^s)) \) converges in at most \(s^{4(s)} \) steps to some string \((a, b, w, \#^m, x) \).

We now describe part (D) of the construction. As above we assume that \(F_i \), an initial segment of \(F \),
has been computed correctly. \(F_i \) includes only strings of length less than \(s \). Let \(i \) be minimal so that \(D_i \) is ready at stage \(s \); and let \(a, b, c, j, m, z \) be the associated values in the definition of being ready. Freeze those strings queried by \(P_{i,j}^t(01, i, c, 0^i) \) permanently out of \(F \). Now extend \(F_i \) to \(F_r \) where \(r = s^{k(t)} \); but do this without putting any strings of the form \((01, i, c, v)\) into \(F \) where \(|u| = s\). We will have foiled \(P_j \) as a reduction if the following equivalence does not hold:

\[
(a, b, w, \#^m, z) \in C(F) \iff (01, i, c, 0^i) \in L(i, c) \quad (1)
\]

What we do is to freeze the string of the form \((1, a, b, w, \#^m, v)\) in \(F \), where \(|v| = |(1, a, b, w, \#^m)|\). Then we try to insure that this frozen answer is wrong. There are three cases of interest:

\textbf{Case 1:} At least one of \(N_{a,i}^r, N_{b,i}^r \) accepts \(w \). In this case we freeze one of the accepting computations as in part (C).\(^1\) Next we put a string of the form \((01, i, c, v)\) into \(F \) where \(|v| = s\) and first\((v)\) is chosen to make equation (1) false. Finally we recompute \(F_r \).

\textbf{Case 2:} Neither of \(N_{a,i}^r, N_{b,i}^r \) accepts \(w \); and \(a + b \geq i \) or \(N_1, N_2 \) is not a correct pair up to \(s \). In this case as above we put a string of the form \((01, i, c, v)\) into \(F \) where \(|v| = s\) and first\((v)\) is chosen to make equation (1) false. Again we recompute \(F_r \). Note that in this case we may be putting the pair \(N_{a, i}, N_{b, i} \) in error, but we do this at most finitely many times for each pair.

\textbf{Case 3:} Otherwise: neither element of the pair accepts \(w \); and the pair is a complementary pair up to \(s \) with \(a + b \) less than \(i \). In this case we freeze \(F_r \) as it is. Thus \(N_{a, i}, N_{b, i} \) will not be a valid pair. Note that we are also causing \(N_{a(i, c)}, N_{b(i, c)} \) to be an invalid pair. This is the cost of eliminating \(N_{a, i}, N_{b, i} \) but it can happen to \(\varphi_i \) at most \(i^2 \) times.

Claim: The construction described above successfully meets condition (D) as well as still satisfying conditions (A), (B) and (C).

Proof: To the reader who has made it through to this point it should be clear that part (D) can only put any given pair in error finitely often. Furthermore for any potentially correct \(\varphi \), there will be some

\(^1\) We are assuming that none of the strings in this frozen computation which are in \(F_r \) and of the form \((1, a', b', \ldots)\) are potentially in error, where furthermore \(a' + b' < i \). Otherwise we freeze the error as in case 3.
stage

s at which D_s is the minimal ready condition, and all potentially complementary pairs N_a, N_b with $\alpha + \beta < \nu$ which will ever be eliminated will already be gone. At this stage case 1 or case 2 will apply, and in either case we will have that P_j, the machine computed by φ_i, is not a valid reduction.

This proves the claim and thus the theorem. \square
Acknowledgement

We would like to thank Jim Kadin for valuable discussions and in particular for the formulation of Theorem 1.
References

