Amn Overview of the Isis Project

Kenneth P. Birman
Amr El1 Abbadi
Wally Dietrich
Thomas Joseph
Thomas Raeuchle
TR 84-642
October 1984

Department of Computer Science
Cornell University
Ithaca, New York 14853

f This work is supported in part by a grant from the Sperry Corporation.

AN OVERVIEW OF THE ISIS PROJECT"

Kenneth P. Birman, Amr El Abbadi, Wally Dietrich
Thomas Joseph, Thomas Raeuchle

Department of Computer Science
Cornell University, Ithaca, N.Y. 14850

ABSTRACT

The goal of the ISIS project is to provide high-level support for fault-tolerant distributed
computing by automatically replicating data and code. The extent to which information is repli-
cated and the physical location of information are not specified directly by the programmer, but
are instead inferred from a specification, which looks much like a conventional program in an
object-oriented language. This novel approach to fault-tolerant software construction requires
much less sophistication from programmers than current alternatives. Moreover, optimization
techniques that would be too complex for implementation in general purpose applications can be
supported by the ISIS system. This overview discusses the goals of the project, its current status,
and some of the implications of our work.

1. Introduction

Computer applications are increasingly often implemented as distributed systems - systems
of multiple processors exchanging information across a communications network. One feature of
a distributed system is that processing capability is replicated, and this has added a new dimen-
sion to fault tolerance. Whereas the best that a non-replicated system can achieve in the presence
of failures is graceful recovery after a fault has been identified and rectified, a replicated system
has the potential to offer continuous operation despite failures of some of its components. This
type of fault tolerance is almost indispensable in critical applications like medical life-support
equipment, and is highly desirable in other areas. Replication of data requires complex protocols
to ensure that the various copies of data are kept consistent, and sharing of processing among
different units necessitates careful synchronization between them. The picture is further compli-
cated if processors or communications links can fail arbitrarily and independently. The result is
that achieving fault tolerance in distributed systems normally requires a great deal of skilled pro-

gramming effort.

*This work is supported in part by a grant from the Sperry Corporation.

The ISIS! project, currently being undertaken at Cornell, seeks to place the implementation
of fault-tolerant distributed systems within the reach of a relatively unsophisticated programmer.
ISIS will provide support for the development of k-resilient objects: abstract data types having
the additional property that their operations are guaranteed to execute to completion despite the
failure of up to k processing sites. To satisfy these requirements, a k-resilient object must be
implemented at k+ 1 or more sites, because after k sites fail, there must be at least one opera-
tional site at which a copy of the object-data is available, and that is able to continue operation.
In ISIS, a user specifies and accesses a resilient object as if it were not distributed. The system
transforms the specification into a collection of components: single-site objects residing at
in;iependent sites. The components of an object cooperate to manage replicated data and syn-
chronize their actions, presenting the behavior of a single entity that remains operational despite

failures.

To use the system, the programmer will construct front-end programs with the tools avail-
able in a conventional host operating system. A procedure-call interface permits these programs
to access one or more resilient objects for fault-tolerant back-end control and data storage. The
ISIS programmer will be able to specify new types of resilient objects using a high level language,
in much the same way as he or she would specify a non-resilient one. ISIS transforms such a
specification into a resilient implementation, inserting calls to a runtime system that takes care of
the necessary replication and provides the mechanisms required to maintain consistency of data,

to synchronize execution of operations, and to detect and recover from failures.

Certain examples have become standard in the literature of fault-tolerance and can be recast
in terms of resilient objects for purposes of comparison. Consider the mail registry shown in Fig-
ure 1. Here, the front-end software would consist of a conventional mail program. The resilient
object specified in the figure might be used for mail storage, ensuring that mail remains accessible
despite up to 3 site-failures. The mail system may be rendered inaccessible by additional site-

failures, but mail would never be lost or damaged. The specification is complete as shown; note

IISIS is named after a goddess of Egyptian antiquity, who restored Osiris, god of the underworld, to life after he
had been torn into pieces by Set and scattered across the Nile delta.

3-resilient mailer created by create exports add_user, send_msg, rcv_msg;

begin;

resilient

{
char: user_name[10]; /* Name of this user */
string: msg_list[20}; /* List of up to 20 messages */
integer: msg_first; /* First on list */
integer: msg_free; [* First free */

} mail_spool[100]; /* Up to 100 users */

resilient integer nusers; /* Number of users */

create(): capability;

nusers := 0; [* Initially empty */
return(SELF); /* Return capability (“‘pointer”’) to new object */
inc(n)

return(mod(n+ 1, 20));

add_user(who)

string: who;

{
if(nusers = 100)

return(ERROR); [* Failed: no more slots */

mail_spool|nusers].user_name := who;
mail_spool|nusers|.msg_first := 0;
mail_spool[nusers].msg_free := 0;
return(SUCCESS);

}

send_msg(who, msg)
string: who, msg;

integer: n, slot;
for(n = 0; n < nusers; n := n+ 1)
if(mail_spool[n|.user_name = who)

/* Found user, add mail to list unless full */
slot := inc(mail_spool[n].msg_free);
if(slot = mail_spool|n]|.msg_first)

return(ERROR); [* Failed: no room for message */
mail_spool[n]. msg_list[mail_spool[n].msg_free| := msg;
mail_spool|n|.msg_free := slot;
return(SUCCESS);

}
return(ERROR); /* User not found *|
}

.. . (cont)

. (cont)

rcv_msg(who): string;
string: who;

integer: n;
string: msg;

for(n = 0; n < nusers; n :=n + 1)
if(mail_spool|n].user_name = who)

/* Found user, return nezt message if any */

if(mail_spool[n].msg_free = mail_spool[n].msg_first)
return(‘’); /* No mail %/

msg := mail_spool[n].msg_list{mail_spool|n].msg_first];

mail_spool[n].msg_first := inc(mail_spool|n|.msg_first);

return(msg);

return(‘user unknown’);

}

end

Figure 1: Resilient Mall Spooler

that code for distributed access, replication, and failure-handling does not have to be included.

It is also possible to specify more sophisticated objects in ISIS. An example would be an
airline ticketing system. In such an object, it would be desirable for each site to do significant
local processing, selling tickets and satisfying customer requests without interacting with other
sites. This abstraction is different from that used in the mail object, where all sites share the
same view of any distributed data and updates to the data are immediately visible at all sites.
The ISIS specification language includes the constructs needed to describe such “limited auton-

omy’’ in the behavior of components.

2. System Structure

The logical structure of ISIS is layered, although the implementation combines layers for
reasons of efficiency. In this section, the contents of each layer are described. Section 4 considers

implementation issues and discusses Figure 2, which illustrates the architecture that has been

adopted.

In a fault-tolerant system, the sorts of failures that are anticipated has a significant impact
on the system structure and attainable performance. For ISIS, a failure model has been adopted
that is typical of local networks containing loosely coupled processors or workstations.
Specifically, it is assumed that machines fail by halting or crashing, without engaging in malicious
behavior, such as emitting incorrect messages or generating erroneous requests’>. However, the
communication system is assumed to lose messages and introduce delivery delays. Also, network

partitioning can sometimes occur.

At the lowest level of the ISIS system is the failure detector. It detects processor and com-
m}mications link failures and presents an abstraction called fail-stop processors to the rest of the
system. The only type of failure experienced by a fail-stop processor is a halting failure: the pro-
cessor stops executing and other processors become aware of this fact. Supporting a fail-stop
abstraction is non-trivial because of the many conditions under which a site might appear to have
failed when it is still functioning, or only experiencing a temporary pause. The failure detector
operates by polling processors periodically and presenting a view of the system to each processor.
A view describes which of the processing sites are operational and which are not, and any change
in the view represents the failure or recovery of one or more sites. The protocol executed by the
failure detector ensures that all sites are presented with mutually consistent views. Additionally,
the order in which sites are seen to fail is the same everywhere. A first version of the failure
detector has been implemented, but sometimes blocks (pauses) if network partitioning occurs. An

extended failure detector that will operate despite partitioning is being designed.

Fail-stop processors communicate across a fault-free network, which is provided by filtering
all messages through a layer of software running on top of the failure detector. This layer also
provides a set of communication primitives for use by higher levels. Specifically, the system sup-
ports a set of basic operations that underly most protocols for synchronization and concurrency
control. These include commit protocols [Skeen|, broadcast protocols that ensure that all opera-

tional members of a set of sites process a message or that none does so, and an atomic broadcast

2Without such an assumption, costly Byzantine protocols are required at every level of the system [Lamport].

protocol, which additionally ensures that if messages m and m' are both broadcast, then all sites

process them in the same order [Gray] [Chang].

Higher levels of ISIS implement k-resiliency by replicating data and executing operations
while preserving the correctness of each object. In essence, this requires that each object behave
as if data had not been replicated [Bern-a]. In addition, operations are required to execute atomi-
cally: to completion or not at all. Finally, resilient objects are accessed concurrently; this calls for
a concurrency control algorithm. Many such algorithms are known [Bern-b]; the next section

describes a new one that has been developed for ISIS.

For an operation to be able to execute to completion despite processor failures, information
about its execution must be distributed among different processors as the execution proceeds so
that another site can take over and continue if the site that is executing it fails. This approach is
analogous to the use of checkpoints in a non-distributed system. In ISIS, a distributed check-
pointing mechanism is employed automatically. The method, described in [ISIS-a], determines
during execution what information must be distributed to achieve k-resiliency, and when. The
number of message exchanges is kept low by transmitting information only when necessary. An
important attribute of the approach is that it never requires operations to be aborted and re-
executed after a failure. This feature will permit the use of ISIS in applications like real-time
process control, where programs take irreversible actions from which it is impossible to “‘back
out”. In contrast, most other system use concurrency control methods that either do not support
replicated data, or require that transactions be rolled back if a a site where they have executed

fails [Bern-b].

An interesting consequence of the use of distributed checkpoints is that recovery is less of an
issue in ISIS than in other systems. An ISIS application remains operational despite some
number of failures, and recovery after severe failures involving most sites in the system may not
be necessary. For example, in control applications, the system would typically be restarted after
such an event. ISIS distinguishes between the restart of a component of an object that remained

operational despite the failure, and the restart of an entire object in which all components have

failed. Support for the first form of recovery is simple, and can be done by copying the state of

some operational component®. In contrast, support for the second form of recovery involves stor-
ing checkpoints on stable storage and maintaining logs for transactions that are in progress
[Gray] [Kohler], and is therefore costly. Since ISIS provides the first sort of recovery, the second
can be avoided in many objects, improving performance. In other systems, replication is an

application-specific issue, hence only the second form of recovery is supported.

The highest level of ISIS is concerned with the interface to objects as presented to other
objects and to external users of the system, e.g. programs executing under UNIX. Issues include
m?naging a name space for distributed objects and designing a communications system that
directs messages to an operational component of an object and enforces access restrictions. Simi-
lar problems arise in any distributed system, but they are especially interesting in /SIS because a
resilient object is directly accessible at multiple sites, placing fault-tolerance requirements on the
communication system. At the same time, ISIS has an interesting new degree of freedom: it is
possible to direct requests to the least loaded processing site, or to migrate data items within
objects to adapt data distribution in response to requests. For example, ISIS will support a type
of object in which data is not replicated everywhere, using a controlling object to channel requests
to one of a collection of data storage objects residing at a smaller number of sites, within which
data items are completely replicated. Work on more sophisticated objects of this sort is planned

for the future.

3. Managing Replicated Data in ISIS

Replication introduces two potential bottlenecks in distributed systems. First, a con-
currency control method is needed for arbitrating access to data items. More serious than the
basic cost of this algorithm is the latency it can introduce into computations. Specifically, since
data is replicated, an update must be delayed until all operational sites at which copies of the
data items reside have reached agreement on the order of access to these items, on the assumption

that conflicts with reads and other updates may arise. Similarly, a read must be delayed if an

3This assumes that the object data is fairly small; other methods could be devised for very large objects.

update might still be “‘in progress”’. Below, we describe a new concurrency control method that
permits much greater concurrency lower latency than other methods by taking advantage of
semantic information obtained by analysis of object specifications. A second potential bottleneck
is related to updates of replicated data items. Updates of this sort are potentially slow because,
in most systems, it is necessary to wait for confirmation that the physical updates have completed
before the logical update is viewed as ‘‘finished””. A major finding of the project is that such ack-
nowledgements are generally not needed [ISIS-c|]. The combination of a good concurrency-control
scheme with our replicated-update method leads to a suprising and important result: resilient

objects may be able to execute as fast as if they resided at a single site.

The ISIS concurrency control algorithm is special in several respects. First, it is desirable
to attain as high a level of concurrency as possible to compensate for the delays inherent in
updating replicated data. Second, the algorithm should be tolerant to faults. Third, to keep the
level of communication low, it should be possible to integrate the concurrency control algorithm
with the mechanisms used in ISIS to achieve fault tolerance. With these aims in mind, we have
developed a novel distributed concurrency control algorithm, described in [ISIS-b], that uses
data-flow techniques to predict the data accesses that an operation will make, performing a static
analysis of the object specification for this purpose. This information is then exploited to make
concurrency control decisions as early as possible and to allow concurrent execution of operations
under conditions in which a naive method might force all but one to block. The algorithm takes
advantage of commutativity of operations to increase concurrency, and incorporates elements of
“optimistic’’ concurrency control algorithms [Kung], but without permitting cascaded aborts to
occur. A special problem that arises in ISIS concerns concurrency control decisions for read
locks. This is because the checkpointing method permits operations to run forward after a failure,
and hence requires that the serialization order be preserved across failures. The ISIS concurrency
control algorithm accomplishes this by piggybacking read-lock information on messages pertaining
to updates that may have depended on a read. The effect is that, after a failure, the read locks
are known if there is any site at which an update depending on the read has left visible effects.

Since read-lock information is transferred by piggybacking on other messages, the cost of the

method is minimal.

We now turn to the question of updating replicated data items and checkpoints, which are
also a form of replicated data. Our major finding, discussed in [ISIS-c], concerns a method for
maintaining the correctness of replicated data items at low perceived cost. In that paper, we
argue that perceived cost really stems from the forms of latency noted early in this section, and
hence that reductions in latency will result in good system performance. The essense of our
method is to update replicated data items using broadcasts that execute concurrently with other
processing. The task initiating such a broadcast does not wait until it completes. Information
about operations that are in progress is piggybacked on concurrency control messages, and is used
to ensure that any access to a replicated data item serialized after one of these ‘‘concurrent
updates’’ will block if the update has not yet been completed. On the other hand, such an opera-
tion will not block if the update has been completed, which will generally be the case. Thus,
although operations may still be delayed, delays will now tend to be infrequent and of short dura-
tion. In effect, the latency normally associated with maintaining replicated data is overlapped
with other computing. An implication is that, in ISIS, fault-tolerant objects may attain perfor-
mance comparable to that of a non-distributed, fault-intolerant object! This line of research is now
leading us to explore the relationship between concurrency in a loosely coupled system such as

ISIS and parallelism in super-computers, where similar problems arise.

4. Implementation Status

Implementation of an ISIS prototype has been underway for more than a year. Our
approach has been to construct the system within a network of VAX computers and workstations
running 4.2BSD UNIX™. Users view resilient objects much as they view UNIX files, although the
operations supported by an object depend on the object type, and a special interface must be used
to access them. Object specification are in a high-level language based on C, but extended with
features borrowed from the ARGUS language [ARGUS]. Currently, the ISIS failure detector and

communication system are operational, as are a concurrency control mechanism and a transac-

Non-Resilient UNIX Processes

Name Space

Per<Instance
Data and Tag
Information

Primitives, RPC

Object A

Other Services

A Type Manager
"

Failure Detector

\. Version Log Checkpoint

Storage Facility Facility Locking
Inter-Site Communication
To other sites
via UNIX 4.2 IPC
Figure 2: ISIS System Architecture facilities

tional storage system capable of storing multiple versions of each data item. Figure 2 shows how
ISIS is structured at a typical site, illustrating the system process, in which communication-
related support is implemented, and a type manager process. Support for object creation, capa-
bility management, and the name space reside in the system process. Each type manager is
responsible for one type of resilient object, and implements storage, concurrency control, and the

progress mechanism.

Late in 1984, we expect to have an initial version of the system operational. Using this
ISIS prototype, simple applications will be constructed, such as a resilient mail and memo
management system, and a resilient control program for overseeing computations that are under-
way at multiple sites, restarting any activities interrupted by a failure at a site that is still opera-

tional. However, this system will lack many of the features we believe that ISIS should

UNIX is a trademark of AT&T Bell Laboratories.

eventually support. An expanded version is planned for the future.

5. Review of Other Distributed Computing Projects

A number of other projects are investigating issues in fault-tolerance that relate to the
research described above. The ISIS object specification technique is modeled after ARGUS
[ARGUS], a programming language (and runtime system) that allows users to specify new object
types and has special support for nested transactions, and recovery. ARGUS supports only
single-site objects, while ISIS objects are distributed. Nevertheless, SIS employs version storage
and locking mechanisms similar to the ones developed for ARGUS. ARGUS was not intended for
building applications that remain available despite failures, and, not suprisingly, it would be

much harder to implement such an application in ARGUS than in ISIS.

The ISIS system design has also been influenced by work of the EDEN project [EDEN],
which examines kernel support for single-site objects. Fault-tolerance, however, is a secondary
issue in EDEN. Other systems that use single-site objects or processes and support nested tran-
sactions include CLOUDS [CLOUDS]|, TABS [Spec], and LOCUS [LOCUS]. LOCUS provides sup-
port for replication in directories and files, but not more general objects, and does not always
ensure consistency. In ISIS, the consistency of a resilient object is never sacrificed for higher
availability. Database systems supporting fault-tolerance include System D [SYSD], ADAPLEX
[ADA], System R* [R#|, and SDD-1 [SDD1]. Many of the basic ideas relating to version storage
and concurrency in abstract type systems were explored by the SWALLOW project [Reed] and in
Moss’ work on nested transactions [Moss|. At Berkeley, the CIRCUS project is exploring the

semantics of replicated procedure calls, a problem with considerable bearing on ISIS [CIRCUS].

A different approach to fault-tolerance is exemplified by the TANDEM NonStop operating
system, which shadows each process with a single backup process and thereby ensures that com-
putations will make progress despite failures [TAND]. The DEMOS-MP project uses a similar
technique for reliability [DEMOS]. A third effort in this vein is the AUROS system, which pro-
poses a message-spooling mechanism for fault-tolerance [AUROS]. The latter approach is essen-

tially a restricted form of the checkpointing method that we use to ensure that progress will be

made.

6. Conclusions

ISIS is an unusual distributed computing project because it has adopted an approach that
makes both replication and fault-tolerance transparent. This implies that ISIS must address
problems that do not arise in other systems. Its advantage is that users are freed from the burden
of manually implementing the facilities necessary for fault-tolerant program execution. Moreover,
because the system has control over replication and synchronization, it can provide a far higher
degree of support for these abstractions than is available in other systems. In particular, optimi-
zations can be supported in the ISIS system that would be ‘“application specific’’ in other set-
tings.

The advantages of high-level programming facilities are well known. In fault-tolerant distri-
buted computing, the case for such an approach is compelling, because the techniques required for
fault-tolerant programming are so complex. Only a high-level programming methodology can
make distributed computing feasible for typical programmers. On the other hand, any such
methodology is open to criticism to the extent that efficiency is sacrificed for generality. The
ISIS project is attempting to strike a balance, relieving the programmer of much of the complex-
ity of distributed computing, and compensating for the resulting inefficiencies by introducing

mechanisms to improve performance.

Completion of the ISIS system will make possible the development of a wide range of
fault-tolerant distributed software systems — software of a sort that is currently extremely
difficult to implement. Consequently, ISIS, or at least the ISIS approach, may lead to a funda-
mental change in the perception of distributed programming, and in the sort of services that are
routinely expected from operating systems for distributed computing environments. We believe
that this approach to fault-tolerant programming will be crutial as distributed computing becomes

increasingly prevalent.

