
COMPUTATIONAL MODELING OF MICRORNA TARGETING AND

CONTEXT SPECIFICITY

A Dissertation

Presented to the Faculty of the Weill Cornell Graduate School

of Medical Sciences

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Yuheng Lu

May 2018



c© 2018 Yuheng Lu

ALL RIGHTS RESERVED



COMPUTATIONAL MODELING OF MICRORNA TARGETING AND

CONTEXT SPECIFICITY

Yuheng Lu, Ph.D.

Cornell University 2018

In this dissertation, I present two studies on miRNA regulation enabled

by high-throughput sequencing technologies and computational approaches.

In the first study, we attempted to learn a general model for miRNA

targeting principles based on AGO CLIP and CLASH data. We used

discriminative learning on AGO CLIP and CLASH interactions to train a

miRNA target prediction model. Our method combined two SVM classifiers,

one to predict miRNA-mRNA duplexes and a second to learn AGO’s

local sequence preferences and positional bias in 3’UTR isoforms. The

duplex SVM model enabled the prediction of non-canonical target sites and

more accurately resolved miRNA interactions from AGO CLIP data than

previous methods. The binding model was trained using a multi-task

strategy to learn context-specific and common AGO sequence preferences.

The duplex and common AGO binding models together outperformed

existing miRNA target prediction algorithms on held-out binding data. In

the second study, we attempted to characterize the context specificity of

miRNA-mediated regulation of target mRNAs that are co-expressed across

multiple cell types. We explored transcriptome-wide targeting and gene

regulation by miR-155, whose activation-induced expression plays important

roles in innate and adaptive immunity. Through mapping of miR-155

targets using differential AGO iCLIP, mRNA quantification using RNA-Seq,



and 3’UTR usage analysis using polyadenylation (polyA)-Seq in activated

miR-155-sufficient and -deficient macrophages, dendritic cells, T and B

lymphocytes, we have identified numerous miR-155 targets with cellular

context specificity. While alternative cleavage and polyadenylation (ApA)

contributed to differential miR-155 binding in some transcripts, a majority

of identical 3’UTR isoforms were also differentially regulated, suggesting

ApA-independent and cellular context-dependent miR-155-mediated gene

regulation reminiscent of sequence-specific transcription factors. Our study

provides a comprehensive map of miR-155’s regulatory networks in key

immune cell types.
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CHAPTER 1

INTRODUCTION

1.1 Background

1.1.1 Molecular basis of miRNA regulation

MicroRNAs (miRNAs) are 20-24 nt long non-coding RNAs that mediate

post-transcriptional regulation of target mRNAs. Since the discovery of lin-4

miRNA in C. elegans in 1993 [1], more than 20,000 miRNAs have been identified

across eukaryotic organisms [2]. A large proportion of miRNAs are conserved

across species, and they also prefer interactions with conserved mRNA target

sites [3]. Functional studies have revealed that miRNAs play crucial regulatory

roles in numerous developmental processes and diseases [4].

The biogenesis of miRNAs is a tightly regulated multi-step process.

miRNA-encoding genes are first transcribed into primary miRNA (pri-miRNA)

transcripts by RNA polymerase II (Pol II). The microprocessor complex formed

by Drosha, an RNase III family enzyme, and the DGCR8 protein, cleave

the pri-miRNAs into shorter precursor miRNA (pre-miRNA) hairpins in the

nucleus. The pre-miRNAs are then transported into cytoplasm under the

mediation by the exportin XPO5 and the GTP-binding protein Ran. The

pre-miRNAs are then further processed by a complex composed of proteins

Dicer, Argonaute and TRBP. Dicer (another RNase III family enzyme) cleaves

the loop off the hairpin, and the resulting miRNA duplex is then loaded into

Argonaute. In the next step the duplex is unwound and one strand, commonly

1



known as “mature miRNA”, remains bound to Argonaute while the other

strand known as “miRNA*” is ejected and subsequently degraded, although in

some cases both strands can be functional. Notably, a small number of miRNAs

are not generated by the canonical pathway described above. For instance,

certain pre-miRNAs are produced from splicing of short introns without being

processed by Drosha [5].

Argonaute (AGO) family proteins and AGO-bound mature miRNAs

together form RNA-induced silencing complexes (RISCs). Protein crystallography

has shown that AGO proteins structures have strikingly high conservation

across species, even between archaea and human [6–8]. AGO proteins are

characterized by four domains: amino-terminal (N), PAZ, MID (middle) and

PIWI [9]. The N domain is involved in loading and unwinding of the miRNA

duplex. The PAZ domain forms a “binding pocket” that specifically anchors

the 3’ end of miRNA, while the MID domain recognizes the 5’ end. The

PIWI domain is structurally similar to RNase H and can function as RNA

endonucleases, although not all AGO proteins possess RNA cleavage activity.

For instance, mammalian genomes encode four AGO proteins AGO1-4, of

which only AGO2 is catalytically active [10]. The retained RNA cleavage

activity of AGO2 has been found to assist the Dicer-independent maturation

process of certain miRNAs, in which pre-miRNA hairpins are directly loaded

into RISC and subsequently cleaved. Examples include the maturation of

miR-451 and miR-486 during mammalian erythroid development [11]. The

Argonaute proteins were subject to regulation by post-translational protein

modification. It has been reported that ubiquitylation of AGO proteins by

TRIM-NHL family proteins modulates miRNA regulation in both C. elegans [12]

and mouse [13]. Recently, it has also been discovered that rapid cycles of AGO2
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phosphorylation and dephosporylation maintain the pool of available AGO2

proteins and are essential for the global efficiency of miRNA regulation [14].

RISC mediates repression of target mRNAs via two mechanisms. A miRNA

can direct slicing of target mRNA when there is extensive base pairing between

miRNA and target site and the miRNA is bound to an AGO protein with RNA

endonuclease activity [15, 16]. This mechanism of miRNA-mediated repression

is common in plants [17] but rarely happens in animals [4]. An alternative

mechanism is dominant in mammalian cells, in which RISC is guided by

partial pairing between miRNA and target, and does not slice target mRNAs.

Instead, RISC recruits the cofactor protein TNRC6 after associating with target

mRNA, which interacts with the polyA-binding protein (PABPC) associated

with mRNA’s polyA tail and also recruits deadenylase complexes PAN2-PAN3

or CCR4-NOT [18]. Both deadenylase complexes shorten the polyA tail, which

results in mRNA destabilization. Moreover, CCR4-NOT complex also reduces

translational efficiency by binding with the decapping complex at the 5’ end of

mRNA. Multiple studies have examined the relative extents of mRNA decay

and translational repression by comparing mRNA and protein levels after

perturbing the expression of miRNAs [19–21]. In most post-embryonic cells,

mRNA destabilization explains the majority (∼66-90%) of the changes in mRNA

expression mediated by miRNAs [22]. Therefore, the expression changes of

target mRNAs after miRNA perturbation are commonly used to estimate the

extent of miRNA-mediated regulation. However, a recent study observed that

translational repression is the predominant consequence of miRNA-mediated

regulation in the early zebrafish embryo [23], which may suggest a switch in

the post-transcriptional regulation program during embryonic development.

In the rest of this thesis, we will focus on the miRNA-mediated regulation
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in mammalian cells involving partial miRNA-target complementarity and

repression of target mRNA expression.

1.1.2 Established principles of miRNA targeting

Before it is possible to directly map miRNA-mRNA interactions in vivo (we

will discuss more details in the next section), most of the knowledge about

miRNA targeting came from miRNA perturbation experiments combined with

sequence analysis. The majority of miRNA target sites that mediate mRNA

repression are within 3’ UTR of transcript, although functional target sites

within coding sequences and 5’UTR have also been observed [24]. miRNA

target recognition is primarily through the Watson-Crick pairing between

miRNA nucleotides 2-7 (known as the “seed” sequence at the 5’ end of the

miRNA) and mRNA target sites. Many of miRNA target sites also have

additional matches to miRNA nucleotide 8, or an A in the target mRNA across

from miRNA nucleotide 1, or both [25]. Moreover, the position-1 A in mRNA

is always preferred regardless of the first nucleotide of miRNA, suggesting that

it does not form base pair with miRNA. This is supported by the structural

biology findings showing that a “pocket” in AGO specifically binds to an A at

this position in mRNA [8]. In addition to matches in the seed region, pairing

with 3’ nucleotides of miRNA, usually at positions 13-16, can also enhance

the stability of miRNA-mRNA interactions [26]. Non-canonical target sites,

which lack a contiguous 6-mer match to the seed region, can also mediate

repression, although in most cases the extent of regulation is significantly

weaker than canonical targets [27–31]. Single-molecule assays have suggested

that AGO initially scans transcript for target sites with complementarity to only
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nucleotides 2–4 of the miRNA, and the initial transient interaction propagates

into a stable association only when there are more complementary bases [32],

which may help explain the origin of non-canonical targets.

1.1.3 CLIP-Seq and related assays

Crosslinking followed by immunoprecipitation (CLIP) [33] combined with

sequencing enables transcriptome-wide characterization of interactions between

RNA-binding proteins (RBPs) and their RNA targets. In the original protocol,

high-throughput sequencing of RNA isolated by CLIP (HITS-CLIP) [34], cells

are first irradiated with 254 nm UV light, inducing the formation of covalent

bonds between the amino acid residue and RNA nucleotide in direct contact.

Next, the protein-RNA complex is immunoprecipitated with a specific antibody

for the protein of interest. The complex is then subject to stringent washing,

which will disrupt non-specific protein-RNA interactions but preserve the

direct interactions due to the crosslink. Immunoprecipitated RNAs are then

treated with optimized concentration of RNase to generate RBP-protected RNA

fragments. The protein is then removed via proteinase K digestion. Adapters

are ligated to the 5’ and 3’ end of RNA fragments, and the RNA is then reverse

transcribed. The cDNA products are PCR amplified with primers that are

complementary to the 5’ and 3’ adapter sequences and then sequenced.

An alternative CLIP protocol is photoactivatable ribonucleoside-enhanced

CLIP (PAR-CLIP) [28]. In PAR-CLIP, cells are treated with a modified nucleoside

such as 4-thiouridine or 6-thioguanosine, which can be integrated into the

newly transcribed RNAs. The modified RNA bases crosslink more efficiently
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with RBPs at 365nm UV light. Moreover, the modified uridine bases will be

misread by the reverse transcriptase, causing T to C mutations that can be used

to pinpoint the crosslinked sites. PAR-CLIP is restricted to cells in culture that

can efficiently take up the modified nucleosides.

In both PAR-CLIP and HITS-CLIP protocols, there is a possibility that

reverse transcription may stop at nucleotides crosslinked to the remaining

peptide after proteinase K digestion [35]. As a result, truncated cDNAs without

5’ adapter sequences will be produced, which will not be PCR-amplified in

the later steps of CLIP library preparation. This issue can be resolved by

only ligating the 3’ adapter to the crosslinked RNA fragment before reverse

transcription and adding the second adapter afterwards, a strategy that has

been utilized by improved CLIP protocols to capture the truncated cDNAs.

The individual-nucleotide resolution CLIP (iCLIP) protocol [36] uses a reverse

transcription primer containing two inversely oriented adapter sequences

separated by a restriction site. The cDNA product is then circularized and

cleaved at the restriction site, creating a linear sequence with adapters at both

ends. Alternatively, the enhanced CLIP (eCLIP) protocol [37] adds a second

single-stranded DNA adapter after reverse transcription and RNA removal to

allow PCR amplification, in order to avoid the potential loss of material during

the circularization and linearization steps. Besides adding more reads to CLIP

libraries, the truncated cDNAs captured by improved CLIP protocol are also

able to pinpoint the crosslink sites with their 3’ coordinates.

It must be noted, though, that multiple types of biases are present in

CLIP libraries and may distort the data analysis. In vitro biochemical studies

have revealed variations in the crosslinking efficiency for different nucleotides
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and amino acid residues [38]. A comprehensive comparison of experimental

protocols has shown that the choice of RNase and the condition to digest the

RBP-bound RNA has significant impact on the nucleotide conposition of CLIP

reads, due to the distinct preferences of different RNases to cleave after certain

bases [39]. During the PCR amplification step present in all CLIP protocols,

cDNAs in the CLIP library are unevenly amplified [40]. In order to control for

PCR amplification artifacts, it has become a common practice in different CLIP

protocols to include a randomized barcode sequence in the adapter or reverse

transcription primer [27, 36, 37]. Reads aligned to the same genomic coordinate

with identical barcode will be treated as PCR duplicates, while the ones with

different barcodes will be identified as unique cDNAs. Another source of bias

in CLIP libraries is non-specific immunoprecipitations. A study has shown that

a large fraction of RBP binding sites from PAR-CLIP libraries overlap with sites

captured by non-specific FLAG-GFP immunoprecipitations, and that the same

non-specific binding sites are often present in CLIP libraries for different RBPs

[41]. Similar non-specific binding sites are also found in libraries generated by

the newer eCLIP protocol [37]. Therefore, proper control libraries are essential

for correcting systematic biases in CLIP data sets and enabling more accurate

identification of RBP binding sites. Control libraries can be generated using

IgG or other non-specific antibodies [42]. “Size-matched input controls”, which

are pre-immunoprecipitation samples prepared identically to the CLIP libraries,

have also been used as alternative control libraries for non-specific background

binding [37].

An important application of CLIP is mapping the miRNA targets in vivo.

Since AGO proteins are essential components of RISCs, AGO binding sites

captured by CLIP correspond to the binding sites of miRNAs expressed in

7



given cell types. The regular CLIP protocol is unable to preserve the pairing

between miRNAs and their target RNAs. To address this issue, multiple

AGO CLIP variants have been developed, namely CLASH [30], iPAR-CLIP

[31], CLEAR-CLIP [43] and ChimP [44]. These protocols all feature the usage

of RNA ligase to ligate the interacting miRNA and target RNA fragment

while both are cross-linked to AGO protein. Successful ligation will generate

chimeric reads containing both the miRNA and mRNA sequences, which can

be then computationally decoupled to reveal the miRNA-mRNA interactions.

Although the ligation efficiency in current protocols are still relatively low

(usually <2% [45]), the ligation-based CLIP variants offer great potential

for miRNA research due to the capability of directly capturing the in vivo

interactions between miRNAs and mRNAs.

1.2 Outline of thesis

This dissertation has two independent chapters that cover the major

contributions of my graduate research. In the first chapter, I present our

novel machine learning algorithm [46] for predicting miRNA targeting based

on AGO CLIP and CLASH datasets. In the second chapter, I present a detailed

computational analysis of the cellular context-specificity of miR-155 across

four key immune cell types, using differential iCLIP between wild-type and

miR-155-deficient primary immune cells isolated from mouse.
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1.2.1 Learning the general principles of miRNA targeting

Recent technologies like AGO CLIP sequencing and CLASH enable direct

transcriptome-wide identification of AGO binding and miRNA target sites,

but the most widely used miRNA target prediction algorithms do not exploit

these data. We present a novel model for miRNA target prediction through

discriminative learning on transcriptome-wide AGO CLIP and CLASH profiles.

Our goal was to learn to accurately predict biochemical miRNA-target site

interactions, rather than the extent of regulation, in order to increase the

sensitivity of miRNA target prediction and learn physiological targeting

rules. As the CLASH protocol captures direct interactions between miRNAs

and mRNAs by ligation, it provides a partially labeled training set of

miRNA-mRNA interactions including many non-canonical pairings, which we

combined with canonical AGO binding sites identified by CLIP. We trained one

support vector machine (SVM) classifier to model the miRNA-mRNA duplexes

and a second SVM to learn AGO’s local sequence preferences in the 3’UTR

and positional bias in 3’UTR isoforms. The duplex SVM model enables the

prediction of both canonical and non-canonical pairings between miRNA and

target sequences and outperforms existing methods for assignment of miRNAs

to AGO binding sites. The AGO binding model is trained using a multi-task

strategy to distinguish between cell type and protocol specific sequence signals

and common AGO sequence preferences. The duplex SVM and common AGO

binding SVM together outperform existing target prediction approaches when

evaluated on held out interaction data.
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1.2.2 Context specificity of miRNA regulation in key immune

cell types

Numerous microRNAs and their target mRNAs are co-expressed across diverse

cell types. However, it is unclear whether they are regulated in a cellular

context-independent or -dependent manner. We sought to address this

question through computational and comparative genome-wide molecular

analyses of RISC bound mRNAs, using individual-nucleotide resolution CLIP

(iCLIP) [36], their 3’UTR usage using PolyA-Seq [47] and miR-155-dependent

repression (RNA-Seq) in four key immune cell types – activated macrophages,

dendritic cells, B cells, and CD4 T cells – isolated from miR-155-sufficient and

deficient mice. The analyses of the resulting datasets revealed notable cellular

context-dependent miR-155 targeting and regulation of gene expression.

While ApA contributed to differential miR-155 binding for some transcripts,

in a larger number of cases, identical 3’UTR isoforms were differentially

regulated across cell types. These results suggest ApA-independent and

cellular context-dependent miR-155-mediated post-transcriptional regulation of

gene expression reminiscent of transcriptional regulation by sequence-specific

transcription factors. Furthermore, our study provides comprehensive

comparative maps of miR-155 regulatory RNA networks as well as global

miRNA-mediated Ago binding and genome-wide 3’UTR usage in key activated

immune cell types.
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CHAPTER 2

LEARNING TO PREDICT MIRNA-MRNA INTERACTIONS FROM AGO

CLIP SEQUENCING AND CLASH DATA

Portions of this chapter first appeared in Lu & Leslie [46] and were written in

collaboration with Christina Leslie1.

2.1 Introduction

Recent high-throughput technologies like AGO CLIP sequencing [27] and

CLASH (crosslinking, ligation, and sequencing of miRNA-RNA hybrids [30])

enable direct biochemical identification of AGO binding and miRNA target sites

transcriptome-wide. The miRNA field has a strong tradition of computationally

leveraging transcriptome-wide data to improve target site prediction, but the

leading miRNA target prediction methods today do not exploit these new

biochemical data. Here we present a systematic approach to learn both

the rules of miRNA-target site pairing and a binding model of AGO’s local

sequence preferences and positional bias in alternative 3’UTR isoforms in order

to accurately predict miRNA-target interactions.

Before it became possible to map AGO-mRNA and miRNA-mRNA

interactions directly, the major advance in miRNA target prediction came from

restricting to predefined classes of miRNA seed matches in 3’UTRs and training

a model to predict mRNA expression changes in miRNA overexpression

experiments. TargetScan [26] was the first algorithm to introduce the strategy of
1As per the Cornell dissertation guidelines, the dissertation can include material that has

been previously published or is soon to be published.
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correlating context features of miRNA seed sites-including flanking AU content,

position in the 3’UTR, and complementarity to the 3’ end of the miRNA-with

extent of target down-regulation in miRNA transfection experiments. Similar

observations were encapsulated in the TargetRank method [48], and these

studies established that rules of miRNA targeting could be statistically decoded

from transcriptome-wide data.

However, new data from AGO CLIP sequencing and CLASH challenge some

of the assumptions of existing prediction strategies. These data confirm the

prevalence of non-canonical target sites lacking complementarity to the miRNA

2-7 (6-mer) seed region and conversely show that even exact miRNA 2-8 (7-mer)

seed matches are often not AGO bound [29]. Meanwhile, most target prediction

methods require strong seeds to avoid false positives. For example, predictions

from TargetScan 7.0 [49] still require either perfect 2–8 seed complementarity

(7-mer-m8 site) or a 2–7 seed with A across from miRNA position 1 (7-mer-1A

site), although AGO CLIP data suggests that 7-mer and 8-mer seeds are found

in only about half of AGO binding sites [29]. The mirSVR method [50], which

also trains on miRNA overexpression experiments, allows up to one mismatch

or G:U wobble in the 6-mer seed region, but in practice few non-canonical

sites are assigned even moderate scores. Therefore, current target prediction

methods may focus on detecting the most effective miRNA sites at the cost

of missing a large proportion of miRNA-mRNA interactions. Furthermore,

training on non-physiological miRNA overexpression experiments may obscure

more subtle targeting rules.

A few studies have developed algorithms to resolve which highly expressed

miRNAs are associated with individual AGO CLIP peaks. For example,
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microMUMMIE is an algorithm for analysis of AGO PAR-CLIP that uses the

location of T-to-C mutations—indicative of the site of cross-linking of the

RNA-binding protein to the RNA in the PAR-CLIP assay—to assign the most

likely canonical seed [51]. Other methods use energy-based duplex prediction to

associate miRNAs with CLIP-mapped target sequences. In particular, MIRZA

uses an unsupervised probabilistic approach to learn parameters of a duplex

alignment model from AGO CLIP peaks, and the duplex model can be used to

make de novo miRNA target site predictions from 3’UTR sequence [52]. Note

that the MIRZA study used the term “non-canonical” to refer to sites lacking

7 or 8 nucleotides of perfect complementarity to the 5’ end of the miRNA;

therefore, their reported non-canonical sites included both perfect 6-mer and

many 7-mer-1A sites. (We will use “non-canonical” exclusively for sites lacking

full complementarity in the 2–7 6-mer seed region.) More recently, MIRZA-G

combined MIRZA duplex quality scores with known context features like

flanking AU content and predicted secondary structure accessibility as well

as conservation, once again to predict extent of down-regulation in miRNA

overexpression experiments [53].

Here we present a novel model for miRNA target prediction through

discriminative learning on transcriptome-wide AGO CLIP and CLASH profiles.

Our goal was to learn to accurately predict biochemical miRNA-target site

interactions, rather than the extent of regulation, in order to increase the

sensitivity of miRNA target prediction and learn physiological targeting

rules. As the CLASH protocol captures direct interactions between miRNAs

and mRNAs by ligation, it provides a partially labeled training set of

miRNA-mRNA interactions including many non-canonical pairings, which we

combined with canonical AGO binding sites identified by CLIP. We trained one
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support vector machine (SVM) classifier to model the miRNA-mRNA duplexes

and a second SVM to learn AGO’s local sequence preferences in the UTR

and positional bias in 3’UTR isoforms. The duplex SVM model enables the

prediction of both canonical and non-canonical pairings between miRNA and

target sequences and outperforms existing methods for assignment of miRNAs

to AGO binding sites. The AGO binding model is trained using a multi-task

strategy to distinguish between cell type and protocol specific sequence signals

and common AGO sequence preferences. The duplex SVM and common AGO

binding SVM together outperform existing target prediction approaches when

evaluated on held out interaction data.

2.2 Methods

2.2.1 Feature representation for duplex and context models

We adapted the feature representation from MIRZA [52] to describe the duplex

structures formed between interacting (miRNA, site) pairs. Three types of

features were included in the representation: (1) the type of base pair (GU,

UG, AU, UA, GC, CG) at each position in the alignment; (2) the bases where

a loop is opened, symmetrically extended or asymmetrically extended in the

duplex structure; (3) binary variables for each position in the miRNA sequence

representing whether it is paired to an mRNA base or not. One major change we

made to the original representation was that the only permissible base pairing of

the first base in the miRNA was with an A in mRNA sequence, so that only an A

across from position 1 would contribute positively to the score. This restriction
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is derived from the observations in previous studies [26].

We described the mRNA sites with two types of UTR features: local

sequence context and global positional context. The sequence context was

represented by positional k-mer features (k = 1, ..., 6) from 30 nt sequences

upstream and downstream of the miRNA seed match and implemented using

two weighted degree string kernels [54]. Three positional context features for

each site were computed as (i) the distance to the nearest stop codon, (ii) the

distance to the next end of a 3’UTR isoform, and (iii) the distance to the previous

end of a 3’UTR isoform and were renormalized with a radial basis kernel. These

local sequence kernel and positional kernel were then combined by summing

kernel matrices.

2.2.2 Training and testing of duplex and context models

We trained the duplex model both on (miRNA, site) examples directly derived

from CLASH interactions and on examples with interactions inferred from

CLIP based on 6-mer seed complementarity. One major advantage of the

miRNA-mRNA duplex representation described above is that the model

weights w can also be used as the parameters for local pairwise alignment

[52]: given the feature description ϕ(miRNA, site) for a duplex alignment, the

alignment score can be described by the additive scoring function w ·ϕ(miRNA,

site). Therefore, by iteratively optimizing the model weights given the currents

alignments and then computing the optimal alignments given current model

weights, we can simultaneously optimize the duplexes and the scoring model.

The initial duplex structure for each (miRNA, site) pair was predicted by
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duplexfold in the ViennaRNA package [55], and the corresponding duplex

feature vectors were then used to train a linear support vector machine (SVM)

classifier. The model weights w were then used as local alignment parameters

to update the duplex structure between the miRNA and mRNA site sequences.

The same process was repeated for 12 iterations, by which point the model

vector had converged, and the final duplex structures and model weights were

used as the duplex model’s output. To compensate for the class imbalance, in

each iteration we only used a fraction of negative examples randomly sampled

from the whole set while using all positive examples. Specifically, we sampled

15 times as many CLASH negatives as CLASH positives, and the same number

of CLIP negatives as CLIP positives.

We applied a regular SVM classifier to the UTR kernel matrix when we

trained the AGO binding model using CLIP training data from a single cell type.

When we combined data sets from multiple cell types, we applied the multi-task

learning approach [56] and treated the different cell types as different but related

learning tasks to address the possibility of cell type specific miRNA targeting

and AGO binding rules as well as protocol specific biases. We implemented the

multi-task SVM as a modification to the kernel matrix:

Kst(x, z) = (µ + δst)K(x, z)

If two examples x and z belong to the same task (in other words, two

sites were from the same cell type), then an extra weight is added to their

product in the kernel matrix to reflect the relationship. The free parameter

µ controls the closeness of task-specific models to the average model, and its

optimal value was determined by five-fold cross-validation. All the machine

learning procedures described above were implemented with Numpy (http:
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//www.numpy.org) and the Shogun machine learning tool box (http://

www.shogun-toolbox.org).

2.3 Results

2.3.1 ChimiRic learns both miRNA-mRNA duplex structures

and AGO binding preferences from CLIP and CLASH

data

ChimiRic’s duplex model is trained on chimeric reads from CLASH data, which

associates a miRNA with a target sequence via chimeric reads and can identify

non-canonical binding sites, and AGO CLIP binding sites containing a 6-mer

seed match (or longer seed) for a single highly expressed miRNA. In the latter

case, differential AGO CLIP-seq analysis suggests that an AGO bound site that

can be associated with a unique miRNA by a canonical 6-mer seed is likely a

binding site for that miRNA.

We used CLASH [30] and AGO PAR-CLIP data [39] in HEK293 cells to train

the duplex model, restricting to the top 59 expressed miRNAs in 21 miRNA

seed families. To compile the training set, sites identified by CLASH chimeric

reads were required to fall within 3’UTRs, contain a sequence within an edit

distance of 1 (substitutions or indels) from a canonical 6-mer seed match for the

interacting miRNA, and also be supported by non-chimeric reads. This filtering

yielded the positive training examples consisting of 1,727 (miRNA, site) pairs

supported by chimeric reads, of which 1,228 were non-canonical interactions,
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together with 11,211 canonical (miRNA, site) examples from AGO CLIP sites

(Figure 2.1a). Canonical miRNA seed matches that are not AGO bound based

on CLIP data, together with (miRNA, site) pairs where an AGO-bound site

is paired with an incorrect miRNA, provided 25,411 negative examples. To

compensate for the class imbalance, we only used a randomly sampled subset

of negative examples in training.

We trained a structural SVM [57] on positive and negative (miRNA,

site) training examples to learn a model for predicting miRNA-site duplex

alignments. Here, the model vector w of the SVM represents the scoring

parameters for local pairwise alignment. SVM training proceeds iteratively,

alternating between obtaining optimal alignments of all training examples

given the current SVM parameters w and updating the model vector w given the

current duplex alignments. The model update step involves solving the SVM

large-margin optimization problem so that the discriminant scores assigned to

positive and negative (miRNA, site) examples have the correct sign and obey

margin constraints, with a hinge loss function to control margin violations.

To define the local alignment scoring system and convert the alignment score

into an SVM discriminant function, we used a parameterization similar to

the energy-based scoring system in MIRZA, namely a match/mismatch score

that depends on the position in the miRNA sequence together with the

nucleotides being aligned and penalties for loop opening and for symmetric and

asymmetric loop extensions. One important difference with MIRZA is that the

chimiRic alignment can only start at position 1 of the miRNA if is it matched

against nucleotide A, which more accurately reflects known determinants of

miRNA targeting.
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Figure 2.1: Overview of the chimiRic prediction model. (A) The first
component of the chimiRic model is the duplex SVM, which learns to predict
and score miRNA-mRNA duplex alignments from CLASH and CLIP-seq data.
Positive (miRNA, site) training examples comprise canonical and non-canonical
pairings identified by chimeric reads in CLASH data (top left) as well as sites
with canonical miRNA seeds supported by AGO CLIP data (bottom left).
Negative (miRNA, site) training examples include sites that are paired with a
different miRNA based on CLASH chimeric read data (top right) or miRNA
seed matches with no AGO CLIP evidence (bottom right). The duplex SVM
learns the parameters for local duplex sequence alignment and predicts optimal
alignments for (miRNA, site) pairs through an iterative training procedure.
(B) The second component of chimiRic is the AGO binding SVM, which uses
features encoding the positional bias of AGO binding sites relative to (possibly
multiple) 3’ ends of transcripts as well as the local positional k-mer sequence
features. Mouse and human ApA atlases based on 3’ end sequencing data
(bottom) provide the coordinates of 3’ ends used in the analysis.

The second component of chimiRic’s scoring system is an SVM classifier that

learns to discriminate the local sequence features and positional bias in 3’UTR

isoforms of true AGO binding sites versus sites that contain 6-mer seed matches
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of highly expressed miRNAs but are not AGO-bound, as determined by CLIP

data (Figure 2.1b). Here we considered two AGO CLIP sequencing data sets, the

human HEK293 PAR-CLIP data set as well as a HITS-CLIP data set in activated

mouse CD4 T cells [29]. The local sequence context of the upstream and

downstream 30 nt regions flanking the 6-mer seed match are represented using

weighted degree kernels [54], which encode position specific k-mers for k = 1 ...

6. The positions of 3’ ends of alternative 3’UTR isoforms were identified from

a human 3’-seq tissue atlas [58] and a mouse PolyA-seq atlas [47]. For each site

in human or mouse, positional information was encoded by a vector of distance

values (measured in nucleotides) to the annotated stop codon and to the nearest

mapped 3’ ends and transformed using a radial basis kernel, and the sum of the

weighted degree kernels and positional radial basis kernel was used to train the

SVM. In order to model differences in AGO binding preferences between the

two data sets—both due to protocol differences and potentially due to cell-type

specific factors influencing AGO occupancy—we used multi-task learning to

train cell-type specific AGO preference models together with a common AGO

binding model (Figure 2.1b). The cell-type specific models are intended to

absorb sequence signals that predict AGO binding in a context-dependent

manner, while the common model can be used for target prediction in any new

context.
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2.3.2 ChimiRic’s duplex model outperforms existing methods

for predicting miRNA-mRNA interactions supported by

chimeric reads

To evaluate chimiRic’s duplex model, we held out from training all HEK293

CLASH interactions for a single miRNA seed family (positive test examples)

together with a collection of targets sites that interact with other miRNAs

based on chimeric read evidence (negative test examples), and we assessed

whether the model could rank the held-out miRNA family’s true target sites

above these other sites. We found that the duplex model could more accurately

discriminate true from false interactions compared to MIRZA [52], an existing

method for learning miRNA-mRNA interactions from CLIP data, based on

area under the ROC curve (auROC) analysis (Figure 2.2a, blue points, p <

3.02e-5, signed rank test). Note that the original MIRZA model was trained

on the same HEK293 PAR-CLIP data set as we used to train the duplex

model. To further evaluate the performance on independent data sets, we then

used the duplex model trained on HEK293 CLIP and CLASH data to predict

miRNA-mRNA interactions supported by chimeric reads from iPAR-CLIP in C.

elegans [31] and CLEAR-CLIP in mouse brain [43]. Again, chimiRic’s duplex

model outperformed MIRZA for the task of ranking observed interactions for

each miRNA seed family above interactions with targets sites of other miRNAs

in both C. elegans (Figure 2.2a, green points, p < 1.45e-2, signed rank test)

and mouse brain (Figure 2.2a, purple points, p < 4.87e-2, signed rank test)

data sets. These results suggest that chimiRic’s miRNA-mRNA duplex model

can generalize across organisms and protocols for mapping miRNA-mRNA

interactions.

21



Chi et al., 2012

                      5' UAAGGC-ACGCGGUGAAUGCC    hsa-miR-124                   
                          ||||| |||      |||                      
                   EPB41 CUUCCGGUGCCUA---UACAA    5'                   

                      5' UAAGGC-ACGCGGUGAAUGCC    hsa-miR-124                
                          ||||| ||       |                     
                   MINK1 GUUCCGGUGAUGUAACUCCUC    5'

Loeb et al., 2012

                      5' UUAAUGCUAAUUGUGAUAGGGGU  mmu-miR-155
                         |||| ||    |||||       
                  Cep135 AAUUUCGUAUUACACUCGUACA   5'

                      5' UUAAUGCUAAUUGUGAUAGGGGU  mmu-miR-155
                         |||||:||       |||     
                  Gas2l3 AAUUAUGAACUCUUUUAUAUUCA  5'

                      5' UUAAUGCUAAUUGUGAUAGGGGU  mmu-miR-155               
                         |||| |||      ||:||||                  
                   Rasa2 AAUU-CGAGUUG--CUGUCCCCU  5'                

Helwak et al., 2013

                      5' UAUUG--CACUUGUCCCGGCCUGU hsa-miR-92a
                          ||    |||    |||||||       
                   PCGF5 GUACUCGGUGACACGGGCCGGAUC 5'   

                      5' UAUUGCACUUGUCCCGGCCUGU   hsa-miR-92a
                          |::||||     ||||||   
                    RFFL GUGGCGUG-----GGCCGGGAA   5'
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Figure 2.2: Performance of chimiRic’s duplex model for predicting
miRNA-mRNA interactions supported by chimeric reads. (A) Duplex model’s
performance for predicting the correct interacting miRNA seed family among
miRNA-mRNA interactions supported by CLASH chimeric reads. For each
miRNA seed family tested, all CLASH-supported interactions for miRNAs in
the family are held out from training and form the positive test set; negative
test examples consist of interactions for a collection of miRNAs that are held
out from training in all experiments. Each point represents the held-out auROC
for one of the top 23 miRNA seed families in HEK293 (blue), top 19 miRNA
seed families in C. elegans (green) and top 20 miRNA seed families in mouse
brain (purple). (B) Examples of duplexes predicted by the model for previously
validated non-canonical miRNA-mRNA interactions. Various non-canonical
miRNA-mRNA interaction modes were represented, including GU wobbles,
bulges and mismatches within seed sequences and interactions relying on 3’
base pairing instead of seed pairing.

Previous differential CLIP and CLASH studies have revealed a broad

spectrum of non-canonical miRNA-mRNA interaction modes, including GU

wobbles, bulges and mismatches within seed sequences, and interactions

relying on 3’ base pairing instead of seed pairing [29, 30, 59]. In order to

test whether our duplex model captures some of these known patterns of

non-canonical binding, we predicted duplexes for a variety of non-canonical
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miRNA target sites that have been validated by luciferase assays in previous

studies (Figure 2.2b). Our model have not only correctly identified the

correct interacting miRNA above the other highly expressed miRNAs, despite

the lack of exact 6-mer seed matches, but also produced duplex structures

representative of the previously described interaction modes, including GU

wobbles, mismatches and bulges in the seed region, and complementary base

pairings in the 3’ region (Figure 2.2b).

2.3.3 The full chimiRic model outperforms traditional target

prediction for discriminating CLIP-supported miRNA

binding sites

Next we combined the duplex model with the AGO binding model, which

is trained to discriminate between true AGO bound sites containing 6-mer

seeds for highly expressed miRNAs and sites with 6-mer seeds that are not

supported by AGO CLIP read evidence, based both on local sequence context

and positional bias within 3’UTR isoforms. We used a multi-task strategy to

train on AGO-bound versus unbound canonical seed sites for highly expressed

miRNAs in two AGO CLIP data sets, HEK293 PAR-CLIP [39] and HITS-CLIP in

mouse CD4 T cells [29]. This procedure learned both task-specific SVM models

of AGO binding and a common SVM model. The task-specific SVMs may

capture protocol-specific CLIP biases and/or cell-type specific AGO binding

preferences. For target prediction in a new context where no CLIP data is

available, the common SVM provides a “cell-type agnostic” model of AGO

sequence and position preferences.
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Figure 2.3: Performance comparison between chimiRic and other methods
for discriminating AGO bound sites from unbound sites. (A) Examples of
precision-recall curves for discriminating AGO-bound canonical target sites
from seeds with no AGO support for a single miRNA family (miR-30) in
HEK293 and CD4 T cell. Curves correspond to task-specific (T cell: blue;
HEK293: green) and common (purple) AGO binding models, TargetScan
(grey) and mirSVR (black). (B, C) Performance of TargetScan, mirSVR and
task-specific/common AGO binding models on held-out miRNA families in
HEK293 and CD4 T cells measured by auPR. Crossbars represent the median
auPR of each model. (D) Performance of TargetScan, mirSVR and the common
AGO binding model on the top miRNA families in an independent HeLa
CLIP-seq data set measured by auPR. Crossbars represent the median auPR
of each model. (E) Performance of MIRZA-G (grey), MirTarget (black),
DIANA-microT-CDS (blue) and the common AGO binding model (purple) on
the top miRNA families in an independent HeLa CLIP-seq data set measured
by auPR. Crossbars represent the median auPR for each model.
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To evaluate the combined chimiRic model, for each miRNA seed family,

we held out all HEK293 positive target site sequences—both canonical and

non-canonical sites supported by chimeric reads from CLASH as well as

canonical sites with AGO CLIP read evidence that can be unambiguously

assigned to the seed family—and negative site sequences, for training both the

duplex and AGO binding models. We then asked how well the combined model

performs at discriminating AGO-bound from unbound canonical sites relative

to TargetScan [49] and mirSVR [50], two widely used miRNA target prediction

algorithms. Figure 2.3a shows precision-recall curves for the combined chimiRic

duplex and HEK293-specific AGO binding model as well as for TargetScan and

mirSVR for prediction of canonical sites for several miRNA families. Since

TargetScan requires greater seed complementarity than the canonical 6-mer

seed (either 7-mer 1A or complementary at miRNA positions 2–8), its overall

recall of biochemically-defined sites is limited (note that while the TargetScan

7.0 release discusses 6-mer seeds and non-canonical seeds [49], only a very

small fraction of sites were non-canonical in the prediction download files).

Evaluating performance by area under the precision-recall curve (auPR) across

held-out miRNA seed families showed that this performance advantage was

significant over TargetScan (Figure 2.3b, p < 1.91e-6, signed rank test) and

mirSVR (Figure 2.3b, p < 9.54e-6, signed rank test). Moreover, even measuring

performance up to 50% recall (auPR50), where there are still AGO-bound 7-mer

sites to detect, chimiRic still outperformed TargetScan on held-out miRNAs

in the HEK293 and CD4 T cell data sets. We then tested the combination of

chimiRic’s duplex model and the common AGO binding model. Again we

found that chimiRic significantly out-performed TargetScan (Figure 2.3b, p <

1.91e-6, signed rank test) and mirSVR (Figure 2.3b, p < 4.77e-5, signed rank
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test) on held-out miRNA seed families in HEK293, with minor difference in

chimiRic’s performance compared to the HEK293-specific model. Similarly,

when predicting the biochemically defined target sites of held-out miRNA

families in CD4 T cells, chimiRic’s duplex model combined with either the

T cell specific or the common AGO binding model outperformed TargetScan

on held-out miRNAs in the HEK293 and T cell data sets. We then tested the

combination of chimiRic’s duplex model and the common AGO binding model.

Again we found that chimiRic significantly outperformed TargetScan (Figure

2.3b, p < 1.91e-6, signed rank test) and mirSVR (Figure 2.3b, p < 4.77e-5, signed

rank test) on held-out miRNA seed families in HEK293, with minordifference

in chimiRic’s performance compared to the HEK293-specific model. Similarly,

when predicting the biochemically defined target sites of held-out miRNA

families in CD4 T cells, chimiRic’s duplex model combined with either the T cell

specific or the common AGO binding model outperformed TargetScan (Figure

2.3c, p < 2.38e-7 and p < 2.38e-7, signed rank tests) and mirSVR (Figure 2.3c, p <

2.38e-7 and p < 2.38e-7, signed rank tests).

As an independent validation, we also evaluated chimiRic’s performance

in a third cellular context using two HITS-CLIP data sets in HeLa cells [27,

59]. Again, we found that the common AGO binding model combined with

duplex model had a significant advantage over TargetScan (Figure 2.3d, p <

1.91e-5, signed rank test) and mirSVR (Figure 2.3d, p < 3.29e-3, signed rank test).

Evaluation using auPR50, which favors TargetScan by allowing reduced recall,

still showed a significant performance advantage of the common chimiRic

model over TargetScan and mirSVR in HEK293 and T cells, with a statistical

tie on the HeLa cells. We also evaluated the performance of three additional

methods, MIRZA-G [53], MirTarget [60] and DIANA-microT-CDS [61], all of
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which are trained on AGO CLIP data and provide one a single prediction score

for each miRNA-gene interaction. When we compared the performance on

the same HeLa data set, the common chimiRic model outperformed all three

methods measured by auPR (Figure 2.3e, p < 7.90e-4, p < 1.91e-5 and p < 1.68e-3,

signed rank test), partly due to chimiRic’s better recall. When measured by

auPR50, chimiRic still achieved a statistical tie against these methods, showing

that chimiRic’s top-ranked predictions are at least as accurate as other methods

trained on AGO CLIP data sets.

2.3.4 AGO-binding model learns 3’UTR positional preferences

and RNA-binding motifs associated with miRNA targeting

Previous studies have suggested that 3’UTR miRNA target sites tend to reside

near the stop codons or near the 3’ end of the transcript rather than the

middle of 3’UTRs [26]. We confirmed a positional enrichment of AGO-bound

sites near the stop codons (Figure 2.4a, top) and near the end of the 3’UTR

compared to miRNA seeds with no AGO binding in CD4 T cells across mouse

transcripts. Additionally, for multi-UTR transcripts, we observed an enrichment

of AGO-bound sites in the region upstream of internal 3’ cleavage sites (as

mapped by PolyA-seq) that was absent for the negative site examples (Figure

2.4a, top, p < 2.2e-16, KS test). We also observed an enrichment of positive

site examples ∼200nt downstream of internal cleavage sites, suggesting that

the resolution of the mapped 3’ ends in the mouse atlas is limited and/or that

clusters of nearby 3’ cleavage sites confound the analysis.

To further interpret the sequence features in the AGO binding model,
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we used the positional oligomer importance matrix (POIM) [62] approach to

identify the significant positional k-mers. From the 1-mer POIMs, we observed

not only high AU content flanking the miRNA seed matches in general but

also specific positional signals like m1A and m8/9U, which are consistent

with findings from previous studies [48]. Moreover, the representation

allowed us to go beyond single nucleotide composition, which is the extent

of sequence contextual information used in most previous miRNA target

prediction methods, to explore more complex sequence features.

Previous studies have suggested that various RNA binding proteins (RBPs)

can bind to regions proximal to miRNA target sites in order to enhance

or repress miRNA-mediated regulation [63–65]. Therefore, one potential

explanation for the long positional k-mers that discriminate between AGO

binding sequences and unbound sequences is that they correspond to the motifs

of co-binding RBPs that mediate AGO occupancy. To explore this hypothesis,

we matched the 6-mers from positions with top differential POIM scores to

RNAcompete in vitro affinity data for a compendium of RBPs [66, 67]. By

measuring the enrichment of these k-mers in RNAcompete data across all

RBPs and assessing significance relative to an empirical null model based on

training SVMs on random permutations of the class labels, we found that the

position-specific k-mers in upstream and downstream sequences were indeed

consistent with several known RBP motifs (Figure 2.4b). In the common

AGO-binding model, we identified an AC-rich motif upstream of the seed

match that matched an AGO RNAcompete experiment and has been proposed

to be the miRNA-independent binding signal for Argonaute [67]. Meanwhile,

in the downstream component of the common model, Pumilio was identified as

the most significant RBP motif. It has been previously suggested that Pumilio

28



has a role in regulating miRNA site accessibility of specific target genes [64, 65,

68]. Our analysis suggests that Pumilio may play a transcriptome-wide role

in mediating AGO binding. We compared the HEK293 AGO CLIP to PUM2

PAR-CLIP in the same cell type and found that 16.4% of AGO sites in HEK293

overlapped with PUM2 binding sites. Figure 2.4c shows one example of a

miR-17/20/106 target site in the 3’UTR of UBNX2A together with sequence

signals identified by the model. After decomposing the SVM sequence scores

into positional prediction scores, we found that the positions with positive

contribution overlapped exactly with the Pumilio binding motif and Pumilio

CLIP coverage. In contrast, another miR-17/20/106 seed match site in the same

3’UTR was not bound by AGO and lacked significant positional k-mers from

the sequence model.
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Figure 2.4: Interpretation of the AGO-binding model learned from CLIP-seq
data. (A) Positional distribution of AGO binding sites (blue/green) and
unbound sites (grey) within 3’UTRs in CD4 T cell (top) and HEK293 (bottom),
showing enrichment of bound sites near the start of the 3’UTR (left) and
in the region upstream of internal 3’ cleavage sites of multi-UTR transcripts
(right). There is also enrichment of AGO-bound sites ∼200nt downstream of
internal 3’ cleavage sites, suggesting that the resolution of the PolyA-seq peaks
can be limited and/or that clusters of nearby 3’ cleavage sites confound the
analysis. All distances were between the position aligned against nucleotide 2
of the miRNA and the start/end of the corresponding 3’UTR. (B) RBPs with
motifs that match the most discriminative k-mers in the common sequence
model. Positions with the highest differential POIM for 6-mers upstream and
downstream of the miRNA seeds were chosen, and then a signed rank test
was used to assess the enrichment of POIM k-mers in RNAcompete array
probes. False discovery rates (FDRs) were estimated using the empirical p-value
distribution from 1,000 SVMs trained on random permutations of the +/- labels.
Motif logos summarized from the original RNAcompete assays are shown for
the top 5 RBPs as ranked by FDR. (The same RBP symbol may appear multiple
times since in some cases several constructs of the same protein were assayed
by RNAcompete.) (C) An example of co-binding of Pumilio and Argonaute
at miRNA target sites. Two miR-17/20/106 seed matches within the 3’UTR
of UBNX2A are shown, one with AGO2 binding and one without, along with
the coverage profiles of AGO2 and PUM2 CLIP in HEK293. For each site, the
prediction scores from the SVM sequence model are decomposed into positional
scores and displayed. Sequence features near the target site including the
Argonaute motif, Pumilio motif, m1A and m9U are also highlighted.
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2.4 Discussion

We have presented an integrative model for predicting miRNA binding sites

by training on sequencing assays that map biochemical interactions via AGO

cross-linking and miRNA-mRNA ligation. We demonstrated that chimiRic

can detect non-canonical miRNA-mRNA binding modes and significantly

outperforms MIRZA for predicting the interacting miRNA for both canonical

and non-canonical mRNA target sites. Moreover, chimiRic outperforms

TargetScan, a leading target prediction method, for discriminating canonical

seed sites that are bound by AGO from unbound sites. The feature

representation of our AGO binding model exploits recent 3’-end sequencing

data that identifies alternative 3’UTR isoforms and enables analysis of mRNA

sequence signals in the vicinity of the miRNA binding sites, suggesting that

other RBPs may collaborate with AGO to mediate miRNA-mRNA interactions.

ChimiRic directly predicts miRNA targeting by learning from miRNA

binding data, whereas most existing algorithms infer miRNA targets and model

their efficiency using mRNA expression changes in miRNA overexpression

experiments in cell culture [49, 50]. One major issue with methods trained

solely on gene expression changes is that the direct effects of miRNA

regulation are confounded with secondary effects, leading to label noise

in the learning problem. Since the true binding sites that mediate direct

regulation are unknown in this setting, inference of miRNA targets involves

“bootstrapping” from an initial set of assumptions of what constitutes a

viable target. Furthermore, miRNA transfections in cell culture represent a

non-physiological context for miRNA activity and may not accurately reflect

endogenous targeting rules. Finally, miRNA binding can inhibit translational
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efficiency of target mRNAs in addition to or instead of reducing mRNA

abundance [69]. While previous global studies suggest that miRNA-mediated

changes at the mRNA and protein levels are correlated [19, 70], these data

also depend on miRNA overexpression in cell lines. For all these reasons,

it is possible that what we have already exhausted what can be learned

indirectly from mRNA expression changes due to miRNA perturbations—and

from miRNA overexpression experiments in particular—and that new AGO

CLIP and CLASH technologies for mapping direct interactions are required to

advance our understanding of miRNA targeting in cells.

However, recent assays for mapping AGO sites and miRNA-mRNA

interactions are technically difficult and present significant challenges for

computational analysis and training of predictive models. CLASH and

similar protocols that use RNA ligation to capture miRNA-mRNA interactions

currently have very low ligation efficiency (only ∼2% of reads are chimeric)

[30, 31], suggesting that a large number of miRNA-mRNA interactions remain

uncaptured. Some non-canonical interactions recovered by CLASH may be due

to artifacts or biases in the ligation experiments, and one previous study found

that incorporating chimeric reads into MIRZA did not significantly improve

prediction performance [53]. Even in the more mature CLIP assays, data

reproducibility is still limited and strongly affected by technical differences

between various protocols (e.g. PAR-CLIP, HITS-CLIP, iCLIP) that produce

protocol-specific biases [39] and by the potential false positives resulted from

background binding [41]. In our experiments, we only trained on data sets

with multiple biological replicates in order to ensure saturating coverage and

to correctly label the mRNA sites as positive or negative. We further used

a multi-task strategy to absorb dataset-specific differences into task-specific
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models and learn a common model that captures general sequence signals

and positional preferences of AGO binding. Although the extent of miRNA

target context-specificity remains unclear [71, 72], it is still possible that there

are true biological differences in AGO occupancy between cell types. Indeed,

even directed perturbation of a single miRNA-mRNA interaction can lead to

distinct changes in functional responses in different immune cell types [73].

Ultimately, as CLIP-based technologies mature and larger data sets accrue,

the algorithmic approaches we present here may reveal the RNA sequence

elements and trans-acting factors that mediate cell-type specific miRNA-mRNA

interactions.
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CHAPTER 3

THE EFFECT OF CELLULAR CONTEXT ON MIR-155 MEDIATED GENE

REGULATION IN FOUR MAJOR IMMUNE CELL TYPES

Portions of this chapter are soon to be published and were written in

collaboration with Jing-Ping Hsin, Gabriel Loeb, Christina Leslie and Alexander

Rudensky1.

3.1 Introduction

Cell type-specific regulation of gene expression, which is frequently

mediated by commonly expressed sequence-specific transcription factors,

is one of the foundational principles in developmental biology. Like

transcriptional regulators, miRNAs with a proven, non-redundant role in

cellular differentiation or function and their mRNA targets can be found in

multiple cell types. In the immune system, a prime example of such miRNA

is miR-155, whose expression is observed in functionally distinct T cell subsets,

B cells, NK cells, macrophages, and dendritic cells, where it is induced in

an activation or a differentiation stage-specific manner [74, 75]. miR-155 is

also highly expressed in myeloid and lymphoid malignancies, where it plays

an oncogenic role [76, 77]. Our recent study showed that miR-155 mediated

regulation of an inducible target gene, Socs1, has widely differing cell type-

and biological context-dependent functional significance in distinct types of

lymphocytes [73]. Previously, we employed CLIP technology to identify

1As per the Cornell dissertation guidelines, the dissertation can include material that has

been previously published or is soon to be published.
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miR-155 targets through analyses of miR-155-suffienct and -deficient activated

CD4 T cells [29]. Upon closer examination of the resulting datasets, we came

across of a subset of conserved canonical miR-155 sites in expressed mRNAs

that were not bound or regulated by miR-155 [29]. This finding raised the

possibility that these sites may enable differential regulation of these targets in

developmentally related immune cell types with a shared developmental origin.

However, recent analyses of immortalized human cell lines of different

tissue origin including hepatocellular carcinoma, cervical cancer, and

embryonic kidney cell transfected with hematopoietic and neuronal miRNAs

(miR-155 or miR-124, respectively) showed that the majority of computationally

predicted target mRNAs are repressed in a cellular context independent

manner; a minor subset of differential regulation of a minor subset of

miRNA targets observed in these cells was largely due to an alternative

3’UTR isoform usage with only two target mRNAs potentially regulated

in an ApA-independent manner in miR-155 transfected cells [71]. While

these experiments relied on overexpression of ectopic miRNAs, gene array

and 3’UTR-seq analyses of mRNA expression in six different organs from

miR-22–deficient and –sufficient mice were consistent with these results [71].

It can be argued, however, that differential regulation of mRNA targets

by an endogenously expressed miRNA is more likely to be encountered in

differentiated cell types of common developmental origin in response to a

challenge or a developmental cue. Indeed, both endogenous cellular miRNAs

and miRNAs encoded by Kaposi’s sarcoma-associated herpes virus were found

to regulate the expression of a sizable fraction of targets in distinct B cell

lymphoma cell lines in a context-dependent manner [72]. However, the

contribution of alternative 3’UTR isoform usage to miRNA-mediated regulation
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of gene expression was not considered in this study [72]. Thus, it remains

unknown whether endogenously expressed miRNA are capable of regulation

of commonly expressed target genes solely in a cell context-independent or also

in a cell context-dependent manner.

We sought to address this question through computational and comparative

genome-wide molecular analyses of RISC bound mRNAs, using individual

nucleotide resolution CLIP (iCLIP) [36], their 3’UTR usage (PolyA-Seq) and

miR-155-dependent repression (RNA-Seq) in four key immune cell types –

activated macrophages, dendritic cells, B cells, and CD4 T cells – isolated

from miR-155-sufficient and -deficient mice. The analyses of the resulting

datasets revealed notable cellular context-dependent miR-155 targeting and

regulation of gene expression. While ApA contributed to differential miR-155

binding to some transcripts, in a larger number of cases, identical 3’UTR

isoforms were differentially regulated across cell types. These results

suggest ApA-independent and cellular context-dependent miR-155-mediated

post-transcriptional regulation of gene expression reminiscent of transcriptional

regulation by sequence-specific transcription factors. Furthermore, our

study provides comprehensive comparative maps of miR-155 regulatory RNA

networks as well as global miRNA-mediated AGO binding and genome-wide

3’UTR usage in key activated immune cell types.
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3.2 Methods

3.2.1 Computational processing of iCLIP data

When we processed the iCLIP sequencing data, we first de-multiplexed the

libraries based on the barcodes at 5’ end of the reads, and then preprocessed the

reads using the cutadapt [78] software to remove the adaptor and low-quality

bases. The remaining reads were aligned to the mouse genome (mm9) using

the BWA aligner [79]. Multiple reads aligned to identical coordinates with the

same random 7-mer in the barcode were considered as PCR duplicates and were

merged into a single read to adjust for potential duplication biases. We then

ran our peak-calling algorithm CLIPanalyze (manuscript in preparation) on the

combined read coverage from all samples. The algorithm identified peaks by

convolving the read coverage signal with the second derivative of a Gaussian

filter. The locations where the convolved signal crosses zero correspond to the

rising and falling edges in the original signal and these are used as boundaries

for the peaks. Each peak was annotated with the corresponding gene name

and its location within the gene (i.e. intron, CDS, 5’UTR, 3’UTR). Peaks within

intergenic regions further than 5 kb downstream and 1 kb upstream from

annotated genes were excluded from subsequent analysis. The peaks were then

quantified by counting the number of uniquely aligned reads mapped within

peak boundaries in each library. To filter the low-abundance peaks, we first

restricted to peaks with supporting reads in at least 4 out of 8 samples in at least

one cell type. For each individual cell type, we did a second round of filtering

and only kept the peaks with total read counts within the top 10 percentile for

the differential analysis. We then fit the read counts from those peaks using
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negative binomial generalized linear models [80] with TMM normalization [81],

and tested the significance of the difference in read counts between wild type

and miR-155 KO samples with likelihood ratio test.

3.2.2 Computational processing of gene expression data

We preprocessed the paired-end reads using cutadapt to remove the adaptors

and low-quality bases. The processed reads were then aligned to the mouse

genome (mm9) using the STAR aligner [82]. To account for the variation in

3’UTR usage, we only counted the reads aligned to CDS for coding genes. The

read counts per gene were further normalized as fragments per kilobase per

million (FPKM) to represent the mRNA abundance.

Differential gene expression analysis was performed for microarray datasets

of miR-142a-sufficient and -deficient B cells (GSE61919) [83] and bone marrow

derived miR-142a-sufficient and -deficient dendritic cells (GSE42325) [84] using

limma [85]. To estimate gene regulation mediated by miR-27a, differential gene

expression analysis was performed on a RNA-Seq dataset of wild type and

miR-27a-overexpressed CD4 T cells (GSE75909) [86].

3.2.3 Computational processing of PolyA-Seq data

The preprocessing, alignment, peak calling and quantification steps for the

PolyA-Seq libraries were performed in the same way as the iCLIP libraries.

Internally primed peaks were removed in the same approach as previously

described [58]. The read counts were then fitted using the DEXSeq model [87] in
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order to identify the differential usage of 3’UTR isoforms between conditions.

3.3 Results

3.3.1 Differential AGO2 iCLIP reveals context specificity of

miR-155 targeting in activated immune cells

To comprehensively characterize the miR-155 regulatory network, we used

iCLIP [36] to precisely map the miR-155 target sites, RNA-Seq to measure the

repression levels of target genes, and PolyA-Seq [47] to map and quantify 3’

UTR isoforms in B cells, dendritic cells, macrophages and CD4 T cells extracted

from both wild type and miR-155 KO mice (Figure 3.1a). As previously

reported [88–91], miR-155 expression was significantly increased upon immune

activation in all four cell types, with peak induction levels observed at 24 h

and extending to 48 h. We used Argonaute 2 antibody to immunoprecipitate

RISC-bound RNA from cells activated for 48 h and generated iCLIP libraries

from the isolated RNA captured both the microRNAs and their mRNA target

sequences. Cellular abundances of mature microRNAs were estimated from

reads aligned to the corresponding loci in primary microRNA sequences, which

confirmed that miR-155 was the only major microRNA with significant change

in expression between WT and miR-155 KO cells. By applying our CLIP

processing pipeline CLIPanalyze (manuscript in preparation) to the genomic

alignments after removal of potential PCR duplicates, we first identified

peak regions in the combined read coverage track (WT and KO replicates)

from all cell types. We then modeled the read counts within peaks using
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negative binomial generalized linear models [80] with TMM normalization [81]

and determined the miR-155 dependent sites as peaks with (1) overlapping

transcript annotation from RefSeq; (2) complementary match to miR-155 2-7

6-mer seed sequence; and (3) significantly higher read counts in wild type

samples than miR-155 knockout samples (Benjamini-Hochberg adjusted p <

0.025). In total, 1,200 such sites were found in 999 genes across four cell types,

including 796 (66.3 %) in 3’ UTRs, 386 (32.2 %) in CDS (coding sequence), and

18 (1.5 %) in 5’ UTRs. In particular, among these initial 1,200 sites, only 111 (9.25

%) were found to be miR-155 dependent in all four cell types, while the rest of

the targets exhibited varying degrees of context specificity.

3.3.2 Differences in target mRNA and miR-155 abundance do

not account for all miR-155 targeting specificity

One obvious explanation for the observed context specificity could have been

that some of the cell-type specific miR-155 target genes were not expressed or

were expressed at very low levels in the other cell types. Indeed, when a gene

contains a miR-155 target specific to one cell type, its mRNA expression in

that cell type also tended to be higher than in those where the target did not

show differential iCLIP signal. When we restricted the comparison between cell

types to the co-expressed genes (RNA-Seq FPKM > 1 in all cells and < 16-fold

difference between any two cell types), 931 target sites in 778 co-expressed

genes remained and most of the context specificity was preserved (Figure 3.1b

and 3.1c). Therefore, the base mRNA expression differences alone cannot fully

account for the observed cell context-specific targeting.
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The difference in miR-155 abundance after immune stimulation across cell

types can also partially explain the cell context specificity of miR-155 targeting

– the largest number of cell-type specific target sites were found in dendritic

cells, where miR-155 expression was also the highest (Figure 3.1b). The number

of miR-155 dependent sites identified in each cell type is consistent with relative

miR-155 expression (Figure 3.1c), suggesting that some context-specific sites

may have weaker affinity to miR-155 and, therefore, can only be regulated

in the presence of higher miR-155 levels or other cellular factors. Indeed,

when we categorized the miR-155 targets by the number of cell types that they

are present in, the proportion of sites with only 6-mer complementarity was

significantly lower for target sites present in more cell types than those present

in fewer cell types (Fisher’s exact test p < 2.57e-10), and the proportion of sites

with 8mer complementarity significantly higher (Fisher’s exact test p < 1.79e-9;

Figure 3.1d). Similar to previous observations [72], the sequences surrounding

shared sites also showed significantly higher evolutionary conservation than

the sequences around cell-type specific sites (Figure 3.1e). Nevertheless,

large numbers of context-specific targets are still present in cell types with

lower miR-155 expression, suggesting that other cellular factors or potentially

alternative cleavage and polyadenylation (ApA) play a role in cell-type specific

targeting.
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Figure 3.1: miR-155 mediated Argonaute binding occurs at distinct sites in
four immune cell types. (A) Examples of universally bound and differentially
bound miR-155 sites across all 4 cell types. Normalized read coverage tracks
of iCLIP, RNA-Seq and PolyA-Seq libraries are shown for each cell type, in
which dark and light colors correspond to the wild type (WT) and miR-155
knockout (KO) samples. iCLIP peaks are defined by the grey shade in the
background, while asterisks designate the cell types with significant (FDR <
2.5%) difference between WT and KO coverage. (B) Summary of miR-155
dependent sites in co-expressed genes, including 3’UTR, CDS, and 5’UTR sites,
identified by differential iCLIP. Each row in the heatmap represents 250 bp
around a miR-155 6-mer seed match, whereas the colors represent the log
ratios between normalized WT and KO iCLIP coverage per base. Heatmap for
RNA expression (WT RNA-Seq log10 FPKM, normalized by row) of the same
genes containing the miR-155 sites is shown side-by-side. Sites are categorized
according to their binding specificity across 4 cell types, while the order within
each category are determined by hierarchical clustering of RNA-Seq FPKM
values for corresponding genes. (C) Venn diagram of miR-155 dependent iCLIP
sites in co-expressed genes. (D) Seed type composition of miR-155 dependent
sites in co-expressed genes. (E) Average base-wise phastCons scores (for
multiple genome alignments between mouse and other 39 placental mammals)
of miR-155 dependent sites in co-expressed genes.
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3.3.3 miR-155 targeting is unlikely to be influenced by

endogenous RNA competition

The “competitive endogenous RNA (ceRNA)” hypothesis [92] proposes that

transcripts with common microRNA target sites compete with each other for

regulation, which may explain the biological function of some long non-coding

RNAs. There has been growing experimental evidence that certain long

non-coding RNAs [93] and circular RNAs [94, 95] contain large numbers of

microRNA target sites and may function as microRNA “sponges”, particularly

in neurons. However, when we examined miR-155 target sites in mRNA along

with ones within intronic regions and non-coding RNAs, we found the vast

majority of coding and non-coding RNAs only contained one or two miR-155

target sites in all four cell types, with the maximum of six sites found only in

single gene, Picalm. As circular RNAs are generally formed by back-splicing of

consecutive exons [96], we therefore find little evidence of circular RNAs that

“sponge” miR-155 in these four immune cell types.

We also attempted to estimate the fraction of miR-155/AGO complex bound

by a given transcript in each cell. Assuming that iCLIP counts are a reasonable

proxy for miR-155/AGO binding, we estimate that the most bound transcript

in a given cell binds ∼3-10% of the transcript bound complex. This suggests that

these rare already highly expressed transcripts would need to be dramatically

up-regulated to significantly affect overall miR-155 binding within the cell.

Interestingly, the most bound targets are different for each cell type, even

between these closely related immune cells. Among the predominant target

miR-155 genes in dendritic cells was Cd274, encoding the inhibitory receptor

ligand PD-L1, and in macrophages Msr1, encoding macrophage scavenger
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Figure 3.2: miR-155 represses distinct sets of genes in four immune cell types.
In dendritic cells (A), B cells (B), CD4 T cells (C) and macrophages (D), the
distribution of gene-level RNA-Seq expression changes between miR-155 KO
and WT cells is shown in the form of cumulative distribution functions (CDFs)
in different sets of genes. Gene sets include all expressed genes, genes with 3’
UTR miR-155 6-mer / 7mer-A1 / 7mer-m8 / 8-mer seed matches and genes
containing 3’ UTR miR-155 dependent iCLIP sites with 6-mer seed matches
(FDR < 2.5%). Predicted miR-155 target genes with top context++ scores
from Targetscan 7.0 (same number as the miR-155 target genes identified by
differential iCLIP) are also shown.

3.3.4 miR-155 mediated gene regulation is consistent with the

context specificity of iCLIP-defined targets

Next, we analyzed the extent of regulation induced by miR-155 dependent

targets identified by differential iCLIP. We used mRNA expression changes

between wild type and miR-155 knockout cells to estimate the extent of miR-155
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regulation per gene. Consistent with previous studies [97], the significance

of miR-155 dependent iCLIP sites in 3’ UTRs correlated with the extent of

regulation of corresponding genes, which was not the case for CDS sites.

Therefore, for further analyses of the effect of miR-155 on gene regulation we

only considered miR-155 targets in 3’ UTRs.

In all four immune cell types, we first examined the distribution of

mRNA expression changes of potential target genes defined by miR-155 seed

matches in the 3’ UTRs. Consistent with well-known microRNA targeting

principles, the extent of miR-155 regulation increased with higher 3’UTR seed

complementarity, from 6-mer to 7-mer-A1/m8 to 8-mer [26]. Still, genes with

miR-155 dependent iCLIP sites in the 3’UTRs displayed significantly stronger

regulation even when compared to the most potent predicted target genes

with 8-mer seed matches in 3’ UTRs (Figure 3.2). We also compared the

iCLIP-defined target genes to same number of genes containing sites with

top context++ scores from Targetscan 7.0 [49]. While the extent of regulation

in the top ∼10% of the distribution was similar for both sets of genes,

the iCLIP-defined target genes overall show significantly stronger regulation

compared to Targetscan predictions (Figure 3.2). These results again suggest

that miR-155 mediated gene regulation across different cellular contexts is

more accurately captured by differential iCLIP assays than cell-type agnostic

sequence-based predictions.

We have previously reported that up to 40% of miR-155 targets identified by

differential AGO2 HITS-CLIP in CD4 T cells are non-canonical [29], i.e. without

complementary match to miR-155 6-mer seed. More recent studies by other

groups using CLIP-based assays with RNA ligation [30, 31, 43, 44] to recover
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miRNA-target interactions have also suggested widespread non-canonical

targeting with 3’ end complementarity. In line with previous reports, we found

non-canonical sites consisted of about 25%-45% of identified AGO2-bound

miR-155 sites in the four immune cell types. The majority of non-canonical sites

were bound in only one cell type, which was consistent with the observation

of canonical seed type composition. Similarly, when we compared the average

iCLIP read coverage around the canonical and non-canonical miR-155 sites, we

found that the difference between wild-type and miR-155-deficient libraries was

much smaller in non-canonical sites, suggesting that the non-canonical sites

have weaker affinity to RISC binding. We found multiple genes significantly

repressed by miR-155 with only non-canonical target sites in 3’ UTR, albeit

the regulation of non-canonical targets was significantly weaker overall than

canonical targets even with the most stringent FDR cutoff.

To further dissect the cell-context specificity of miR-155 regulation, we

performed pairwise comparisons across the four immune cell types to assess the

extent of regulation of common and cell-type specific miR-155 targets (Figure

3.3). In each immune cell type, miR-155 target genes identified by differential

iCLIP always displayed significantly stronger regulation than those specific to

other cell types, with a few exceptions involving B and CD4 T cells, where

fewer cell-type specific targets and generally weaker regulation were observed.

Notably, cell-type specific target genes displayed significantly less pronounced

regulation compared to common target genes, consistent with the weaker seed

complementarity and lower sequence conservation associated with cell-type

specific target sites (Figure 3.1d and 3.1e).
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Figure 3.3: Context-specific miR-155 targeting leads to differences in gene
regulation between cell types. For all six pairwise comparisons across four
immune cells, de-repression of genes containing common (solid lines) and
cell-type specific (dotted lines) 3’ UTR miR-155 dependent iCLIP sites is shown
in the form of CDFs. Genes with 3’ UTR miR-155 seed matches are also shown as
reference. Only co-expressed genes (WT RNA-Seq FPKM > 1 and difference < 16
fold) are included in each pairwise comparison. In each plot, two p-values from
one-sided KS tests are shown. First one corresponds to the comparison between
all miR-155 target genes identified in this cell type and genes only targeted in
the other cell, while the second one corresponds to the comparison between the
common target genes and target genes specific to this cell type.

3.3.5 Alternative polyadenylation has limited contribution to

cell-type specific miR-155 targeting

Another potential explanation for the observed cell type-dependent regulation

of gene expression by miR-155 is alternative polyadenylation. Previous studies

[98, 99] have shown that multi-UTR genes increase the usage of shorter isoforms
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Figure 3.4: PolyA-Seq captures change in 3’ UTR isoform usage during CD4
T cell activation. (A) Two examples of 3’ UTRs with significant (FDR <
5%) isoform usage changes during CD4 T cells activation. Tracks represent
normalized PolyA-Seq read coverage at 0h, 24h and 48h after activation. (B)
The changes in 3’ UTR isoform usage for 3’ UTRs with two major isoforms
at 48 h after CD4 T cell activation. The ones undergoing significant usage
changes were highlighted. (C) Same as (B), but highlighting the two-isoform
3’UTRs containing target sites of miR-155. The 3’UTRs containing proximal
(solid shapes) and distal (hollow shapes) miR-155 target sites were marked
separately, as well as the corresponding numbers.

in activated immune cells, specifically T lymphocytes, simultaneously with

the increase in miR-155 expression, which has been suggested by some as a

potential mechanism to evade miRNA-mediated regulation. We performed

PolyA-Seq in naı̈ve CD4 T cells as well as their activated counterparts after

in vitro stimulation with CD3 and CD28 antibodies for 24h and 48h (Figure
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3.4a). Although differential analysis [87] indeed revealed widespread changes

in 3’UTR isoform usage with a significant shift towards shorter isoforms in

activated cells both at 48h (Figure 3.4b), markedly increased usage of longer

isoforms upon activation was also observed for a sizable group of transcripts

(∼40%). A focused analysis of the two-isoform 3’UTRs targeted by miR-155

did not suggest preferential shortening of transcripts that contained a miR-155

binding site in the long isoform (Figure 3.4c). Changes in 3’UTR length thus

did not appear to significantly relieve miR-155 mediated targeting upon T cell

activation.

To investigate whether alternative polyadenylation contributed to cell-type

specific targeting we performed PolyA-Seq in all four immune cell types. The

PolyA-Seq FPM was well correlated with RNA-Seq FPKM for single-UTR genes,

suggesting that PolyA-Seq is capable of quantifying 3’UTR isoform expression

levels. Differential analysis [87] in all four cell types showed that 2,703 out

of 3,460 co-expressed multi-UTR genes displayed some extent of alternative

polyadenylation (Figure 3.5a). miR-155 targets were significantly enriched in

differentially used multi-UTR genes compared to the other genes (Fisher’s

exact test p < 2.2e-16, Figure 3.5b). Since PolyA-Seq libraries were generated

for both wild type and miR-155 KO cells, the data also allowed us to assess

miR-155 regulation at the level of 3’UTR isoforms. In agreement with previous

observations [26], regulation of a 3’UTR isoform by a given miR-155 target

site negatively correlated with its distance from the 3’UTR end, suggesting

the potential of ApA as a mechanism for context-specific miR-155 regulation.

Indeed, in multi-isoform 3’UTRs, we observed that the extent of gene-level

miR-155 regulation generally increases with higher usage of ApA isoforms

containing miR-155 target sites in individual cell types as previously reported
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Figure 3.5: The role of alternative polyadenylation in cellular context
dependent regulation of gene expression by miR-155. (A) A heatmap showing
the usage changes in multi-isoform 3’UTRs across all four cell-types. The
usage index (UI) represents the usage of the shorter isoform for two-isoform
3’UTRs, while for 3’UTRs with more isoforms it corresponds to the usage
of the one shorter isoform with the most significant usage change. (B)
Composition of 3’UTRs with single isoform, multiple isoforms with and
without context-specific usage, divided into two categories depending on
miR-155 targeting. (C) iCLIP, RNA-Seq and PolyA-Seq read coverage tracks
in Rbm33 3’UTR, an example of the co-occurrence of differential ApA and
context-specific miR-155 targeting between dendritic cell and CD4 T cell. (D)
Venn diagram shows the shared and context-specific 3’UTR miR-155 target
genes between dendritic cell and B cell, before and after removing genes with
differential ApA usage in multi-isoform 3’UTRs.
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[71]. We also observed examples of co-occurrence of ApA and context-specific

miR-155 binding through pairwise comparison between cell types (Figure 3.5c).

However, in most cases, the change in isoform usage between cell types was

less than 10%, while overall expression changes of miR-155 and target mRNAs

had a much larger dynamic range. Therefore, the majority of the observed

context-specific targeting cannot be attributed to alternative polyadenylation

(Figure 3.5d).

3.3.6 Ago iCLIP characterizes functional target sites of other

miRNAs

Our Ago iCLIP data also allowed characterization of target sites for other

miRNAs expressed in the four immune cells. The latter relied on computational

seed sequence analysis within iCLIP peaks in the absence of a genetic control,

i.e. iCLIP and RNA-seq analysis of corresponding miRNA-deficient cells.

When we ranked iCLIP peaks containing miR-155 6-mer seed matches by the

normalized read counts in wild-type libraries, ∼75%-95% in the top 10% of

peaks overlapped with miR-155 dependent sites defined by differential iCLIP.

We therefore reasoned that stringent read count cutoffs could yield reliable sets

of targets for miRNAs other than miR-155. Using the wild-type libraries, we

defined the top target sites for miR-142a-3p and miR-27a-3p, which both play

key regulatory roles in immunity [83, 84, 86] and were highly expressed in the

four immune cells. When we used publicly available gene expression data with

perturbed miR-142a [83, 84] and miR-27a [86] expression in mouse immune

cells, we found that similar to miR-155, the target genes defined by 3’UTR
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iCLIP sites with top read counts in wild-type libraries showed significantly

stronger repression than cell-type agnostic sequence-based predictions (Figure

3.6, one-sided KS test), which suggests that they indeed defined an accurate set

of top miRNA targets in the respective cellular context.

0.00

0.25

0.50

0.75

1.00

−0.5 0.0 0.5 1.0
Microarray log2(miR-142 ko/wt)

C
D

F

All genes (10639)
6mer (1904)
7mer−A1/m8 (1180)
8mer (312)
Targetscan (106)
iCLIP 6mer (106)

B cella c
p < 2.75e-3
(vs. Targetscan)
p < 1.63e-3
(vs. 8mer)

0.00

0.25

0.50

0.75

1.00

−0.5 0.0 0.5 1.0
RNA−Seq log2(wt/miR-27 Tg)

C
D

F

All genes (6029)
6mer (2644)
7mer−A1/m8 (1541)
8mer (319)
Targetscan (120)
iCLIP 6mer (120)

CD4 T cell
p < 2.53e-2
(vs. Targetscan)
N.S.
(vs. 8mer)

N.S.
(vs. Targetscan)
p < 4.24e-2
(vs. 8mer)

0.00

0.25

0.50

0.75

1.00

−0.5 0.0 0.5 1.0
Microarray log2(miR-142 ko/wt)

C
D

F

All genes (10319)
6mer (1893)
7mer−A1/m8 (1172)
8mer (321)
Targetscan (129)
iCLIP 6mer (129)

b Dendritic cell

Figure 3.6: Top iCLIP target sites of other miRNAs induce significant gene
repression. mRNA expression changes in B cells (A) and dendritic cells (B)
with miR-142a KO and in CD4 T cells with miR-27a overexpression (C) are
shown as CDFs for different gene sets. Gene sets consist of all expressed genes,
genes with 3’UTR seed matches (6mer, 7mer-A1, 7mer-m8, and 8mer), and
genes containing 3’UTR iCLIP sites with 6mer seed matches and most reads in
wild-type libraries. Predicted miRNA target genes with top context++ scores
from Targetscan 7.0 (same number as the target genes defined by wild-type
iCLIP) are also shown.
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CHAPTER 4

DISCUSSIONS

4.1 Computational miRNA target prediction

Computational miRNA target prediction methods share the same issue that it

is relatively easy to predict miRNA target sites with the highest affinity, but

the accuracy of prediction rapidly drops when it comes to weaker targets. A

recent study has also suggested that a large proportion of predictions made by

miRNA target prediction methods are likely false positives [100]. As shown by

our study on miRNA context specificity, the variations in miRNA abundance

have a significant impact on the regulation of target sites with weaker affinity

to miRNAs. Therefore, one potential solution to this issue is taking the miRNA

expression levels into account when predicting the target sites in a specific cell

type.

Our original chimiRic model was partially restricted by the limited number

of high-quality AGO CLIP and CLASH data sets available. Since the

publication, more ligation-based data sets have been generated [43, 44], and

we have now recognized the importance of control libraries in correcting the

intrinsic biases of CLIP data [37, 41]. Besides better data quality, miRNA target

prediction algorithms may also benefit from novel machine learning methods.

Algorithms based on deep neural network have proved to be powerful tools

for modeling genomic data [101, 102], and recently they have also been applied

to predicting miRNA target sites based on AGO CLIP data [103]. In addition,

more powerful machine learning algorithms can potentially help us revisit the

rich miRNA perturbation expression data sets accumulated over the years [104]
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and recover features of miRNA target sites that were previously neglected in

individual studies.

4.2 Context specificity of miRNA regulation

In our study on miR-155 regulation in immune cells, we observed significant

context specificity of miRNA regulation, contradicting the results of previous

perturbation assays in cell lines and in whole tissues [71]. A possible

explanation is that the cell lines used in previous study are not developmentally

related, and that bulk gene expression in whole tissues may limit the discovery

of more subtle differences in gene regulation. We only observed a small number

of context-specific miR-155 targets potentially affected by ApA, although in

theory ApA can play a more significant role in tissues where ApA events are

more prevalent, like in brain [58].

Limited by the relatively small number of context-specific miR-155 targets

in our data, we did not fully explore other ApA-independent mechanisms

of miRNA context specificity. We hypothesize that regulation by RBPs

differentially expressed between cell types can play a significant role. More

than 1,500 RBPs have been identified in human [105], and individual studies

have identified multiple RBPs as either enhancers [64, 106] or inhibitors [63] of

miRNA regulation. There has been attempts at systematic characterization of

RBPs’ impact on miRNA regulation [107], but they were largely limited by the

lack of direct measurement of RBP binding. A large number of high-throughput

data sets of RBP binding sites have been generated in recent years, which

may help resolve this issue. In particular, the ENCODE eCLIP experiments
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have characterized the binding regions of 126 RBPs in human cells [108].

Comprehensive analysis of RBP co-binding profiles would greatly enhance our

understanding of how RBPs modulate miRNA regulation and how they can

contribute to cell-type specific miRNA targeting.

mRNA modifications, such as adenosine methylation (N6-methyladenosine,

m6A), can be another potential factor contributing to context-specific miRNA

regulation. It has been previously observed that >70% of m6A residues are

present in the last exons of transcripts [109], which significantly overlap with

miRNA target sites. A different modification (N6,2’-O-dimethyladenosine,

m6Am) at the first encoded nucleotide adjacent to the 5’ cap has also been

suggested to stabilize mRNAs by preventing miRNA-mediated degradation

[110]. Comprehensive mapping of transcriptome-wide RNA modifications

can help us better understand the various mechanisms involved in miRNA

regulation.

4.3 Technical advances in the detection of RBP binding sites

Continuous efforts have been made in order to improve the efficiency of

CLIP protocols. The “on beads” PAR-CLIP protocol performs all RNA

adapter ligation steps while RNA fragment is still cross-linked to the

RBP, reducing the library preparation time by three days compared to the

original PAR-CLIP workflow [111]. The infrared-CLIP (irCLIP) protocol [112]

uses an infrared-dye-conjugated and biotinylated RNA ligation adapter to

eliminate the need for radioisotopes to visualize protein-RNA complexes.

In combination with improved RNA digestion, purification and reverse
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transcription procedures, this protocol greatly increases the efficiency of CLIP

library preparation and enables direction of protein-RNA interactions using far

fewer cells.

One intrinsic limitation of CLIP protocols is that the stringency of washing

to remove non-specific protein interactions is restricted by the strength of

protein-antibody interactions. Therefore, an additional protein gel purification

step is necessary, which further reduces the efficiency of CLIP protocol [45].

Moreover, specific antibodies may not be available for certain RBPs. Instead

of relying on immunoprecipitation, an alternative strategy is to use CRISPR

to insert protein purification tags (such as HIS, Bio/BirA, or TAP-TAG) next

to the genomic loci of RBPs, forming fusion proteins that can be captured

by stronger covalent interactions and allow harsher washing to remove

non-specific interactions. Notably, the recently developed Halo Tag has highly

specific affinity to the HaloLink resin for protein capture [113], therefore offering

great potential for further improvement of protein capture specificity. For these

assays, preliminary experiments would be necessary to ensure that the added

tags do not disrupt the in vivo binding affinity and biological functions of the

original RBPs.

Furthermore, researchers are also exploring methods that does not involve

protein pulldown and crosslinking. One such method, TRIBE, fuses the

deaminase domain of a RNA-editing enzyme, ADAR, to the RBP of interest

[114, 115]. The fusion protein introduces A-to-I RNA editing near RBP binding

sites, which can be detected by RNA sequencing. Since RNA-Seq requires much

fewer cells than CLIP, TRIBE enables characterization of differences in RBP

regulation between small populations of cell subtypes. On the other hand, the
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potential bias in the selection and efficiency of editing sites needs to be carefully

evaluated, since current results suggest that the ADAR deaminase domain may

retain some of binding preference of the original enzyme [114, 115].

4.4 Unsolved questions

Multiple important questions regarding the physiological consequences of

miRNA regulation remain unsolved. It is still unclear how miRNAs can have

massive phenotypes when the majority of miRNA targets are only mildly

repressed [19, 70]. Theoretical and experimental analyses have suggested

that miRNA regulation can reduce the variations in mRNA and protein

abundances [116], which may play more important regulatory roles than

simple repression of target gene expression. The competitive endogenous

RNA (ceRNA) hypothesis [92] proposes that transcripts with common miRNA

target sites compete with each other for regulation, which provides another

attractive theory for the mechanism of miRNA regulation. It has been found

that certain long non-coding RNAs [93] and circular RNAs [94, 95] contain

large numbers of miRNA target sites and may be the miRNA “sponges” that

the ceRNA hypothesis proposes. On the other hand, quantitative modeling

and measurements showed that the majority of active miRNAs are probably

not susceptible to ceRNA competition [42, 117]. To date, the ceRNA hypothesis

remains controversial because of these conflicting observations [118]. Overall,

25 years after its discovery, miRNA regulation continues to provide challenges

and opportunities to both experimental and computational biologists.
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APPENDIX A

THE CLIPANALYZE DATA PROCESSING PIPELINE

Portions of this chapter first appeared in Park et al. [119] and were written in

collaboration with Sun-Mi Park, Christina Leslie and Michael Kharas 1.

A.1 Introduction

Investigations in RBP biology are increasingly dependent on CLIP and related

high-throughput sequencing protocols. On the other hand, due to various

biases and noises present in CLIP libraries, careful computational analysis is

necessary for correct interpretation of CLIP data. Several CLIP data analysis

pipelines have been developed before, but to date none of them have been

widely adapted by the research community, since most of them were limited

to certain CLIP protocol variants. We have implemented a software pipeline

that performs standard CLIP data processing procedures including peak

identification, annotation and quantification in a highly efficient manner. In

addition, our pipeline accounts for biases in CLIP libraries that come from two

major sources, PCR duplication and non-specific protein-RNA interactions. We

release our pipeline as a R package CLIPanalyze, and the source code is publicly

available at https://bitbucket.org/leslielab/clipanalyze.

1As per the Cornell dissertation guidelines, the dissertation can include material that has

been previously published or is soon to be published.
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A.2 Methods

A.2.1 Pre-processing and alignment

To adjust the potential biases generated by uneven PCR amplification, it has

become a common practice of various CLIP protocols to include a randomized

barcode sequence in the adapter or reverse transcription primer [27, 36, 37]. Our

pipeline stripped the random barcodes from read sequences and attached them

to read names in FASTQ files. After read alignment, multiple reads mapped

to identical coordinates with the same random barcode were considered as PCR

duplicates and were merged into a single read to adjust for potential duplication

biases. In case that the CLIP libraries were constructed without random

barcodes [42, 120], our pipeline also supported only using the alignment

coordinates to remove PCR duplicates.

A.2.2 Peak calling

Our peak calling approach was inspired by the edge detection algorithm in

computer vision, where sharp changes in brightness in an image are detected

as edges of an object by computing the rate of change of the intensity gradient.

To identify peaks, we first combined the reads from all of the CLIP libraries

together. We then constructed a 1D signal profile of read coverage, K[x], which

contains cumulative read counts for each position x from all CLIP libraries.

To simultaneously smooth and identify edges in the signal, this profile was

convolved with a kernel derived from the second derivative of a Gaussian (g′′D),
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with a mean of 0, standard deviation of 1, and customized bandwidth:

g′′D[x] =
( x2

σ4 −
1
σ2

)
exp

(
−

x2

2σ2

)
The customized bandwidth parameter allows adaptive peak calling across

different CLIP data sets, since the typical peak sizes in CLIP libraries can be

highly variable depending on the RBPs and experimental conditions [37]. The

edges in the original signal are located at the zero-crossings of the convolved

signal:

(K × g′′D) [x] =
m/2∑

n=−m/2

K[x + n] × g′′D[n]

The zero-crossings of the second derivative that switch from positive to negative

indicate the edges that start a peak, and the points that switch from negative to

positive identify the ends of each peak.

A.2.3 Peak annotation and quantification

Each CLIP peak was annotated according to the RefSeq gene annotation. Genes

with multiple transcripts were reduced to a unified gene model, which is the

union of all annotated exons. To account for possible gene structure variations

that were not annotated, for each gene we extended the first exon 1 kb upstream

and the last exon 5 kb downstream. Using these models, each CLIP peaks was

then annotated to a specific genomic region within the gene (CDS, intron, 5’

UTR, and 3’ UTR) that the peak overlapped with. If a genomic region can be

assigned to multiple categories, we assigned it to one of them with a customized

priority order. The default order is: 3’ UTR, CDS, 5’ UTR, and intron. Peaks

that mapped to multiple genomic regions were assigned to the region with

maximum overlap. Once the peaks were identified and annotated, we then
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quantified peaks in each experiment by counting the number of reads from each

experiment that overlapped with each peak. Reads that overlapped more than

one peak were assigned to the peak with which it had maximum overlap.

A.2.4 Normalization against control libraries

Since non-specific binding events are prevalent in CLIP [37, 41], it is highly

recommended to normalize the CLIP-identified peaks against control libraries.

For each peak, we used negative binomial generalized linear model [80, 121]

to fit the difference in read counts between CLIP and control libraries. This

approach can be easily adapted to more sophisticated experimental designs

with additional factors. Considering the fact that the CLIP libraries intrinsically

have more reads in peaks than the control libraries, we estimated the library

sizes using the number of reads outside of CLIP peaks per gene instead of using

the number of reads within peaks. The p-values from differential tests can then

be used to represent the confidence of each peak.

A.3 Example: Computational analysis of MSI2 CLIP-seq in

K562 cells

Earlier versions of CLIPanalyze pipeline has been applied to CLIP-seq data sets

generated by multiple studies [29, 119, 122]. Here we describe details of the

computational analysis performed for MSI2 HITS-CLIP [119]:

The Musashi (MSI) family of RNA-binding proteins, including MSI1 and
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MSI2, contribute to the control of symmetric and asymmetric stem cell division,

regulate stem cell function, and play a role in cell fate determination [123]. MSI

proteins are thought to function by binding to the 3’UTRs of target mRNAs

at a consensus sequence and then blocking translation by hindering access

of the poly-A–binding protein to the elongation initiation complex [124]. In

particular, MSI2 is an important modulator of proliferation and differentiation

in both normal HSCs and in myeloid malignancies. Although MSI2 is most

highly expressed in the primitive hematopoietic compartment, and MSI2

overexpression drives quiescent HSCs out of G0 and into cycle [125], it remains

unclear whether and how MSI2 affects HSC self-renewal and commitment

under homeostatic conditions. Furthermore, the critical RNA-binding targets of

MSI2 in hematopoietic cells that regulate self-renewal and lineage commitment

remain to be uncovered.

In order to globally capture the direct RNA targets of MSI2 in hematopoietic

cells, we performed HITS-CLIP in K562, a human chronic myeloid leukemia

cell line. We overexpressed FLAG-tagged MSI2 protein in parallel to a control

vector lacking the MSI2 cDNA in K562 cells, and HITS-CLIP libraries were

generated using anti-FLAG M2 antibody. Since FLAG-tagged MSI2 protein

was not expressed in control cells, HITS-CLIP reads from the control sample

were generated by non-specific binding of the antibody and other sources of

background noise. A fraction of reads in samples with overexpressed MSI2 also

came from these noise sources [27]. Therefore, we were interested in identifying

HITS-CLIP peaks with significantly higher read counts in MSI2-overexpressing

cells relative to control, as they are likely to be the real MSI2-binding sites.

However, as mRNA expression levels may change between different conditions,

differential read counts at a site can be caused either by a change in transcript
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abundance or by differential MSI2 binding. To identify real differential binding

events, it is necessary to integrate gene expression data into the analysis.

We jointly modeled read count data from HITS-CLIP and RNA-Seq with a

generalized linear model. We represented the read count from a window

containing peak i in sample j as Ki j. Here, the read count represents either

HITS-CLIP reads or RNA-Seq reads in the window, depending on sample j.

It is assumed that Ki j follows a negative binomial distribution, which has been

widely used in modeling read count data [80].

For each peak i, the expected value of Ki j (denoted by µi j), is fit via a

logarithmic link by the following model:

logµi j = β
0
i + β

CLIP
i XCLIP

j + βOE
i XOE

j + β
CLIP:OE
i XCLIP:OE

j + logÑ j

Here Ñ j represented scaled library size of sample j, which was the total

read count in sample j scaled by the weighted trimmed mean of log expression

ratios. It was included as a normalization factor. After normalization, the

logarithm of this variable is decomposed into four factors, where the regression

coefficients have the following interpretation: β0
i represents the baseline log

expression level measured by the window at peak i; βCLIP
i represents the baseline

log read count ratio of CLIP reads to RNA-Seq reads at peak i; βOE
i represents

the effect of MSI2 overexpression on read counts caused by mRNA expression

changes. Finally, the interaction term βCLIP:OE
i represents differential MSI2

binding caused by overexpression; this coefficient will be non-zero if there is

differential binding even after controlling for differential mRNA expression.

Factors XCLIP
j , XOE

j and XCLIP:OE
j equal 1 or 0, depending on the condition and

library type of sample j. To test whether the interaction term is 0, we fit data

to both the full model and a reduced model without the interaction term. Then
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the deviances of two models were used to conduct a likelihood ratio test. If

there is no true differential binding effect, the difference in deviances between

the nested models should be small compared with a χ2 distribution with one

degree of freedom. In this way, we were able to characterize the significance

of differential binding with a p-value. Finally, we defined MSI2-binding sites

as sites with Benjamini-Hochberg– adjusted p-value < 0.1 and βCLIP:OE
i > 0. The

above analysis was conducted using the edgeR package [80].

We found 1,097 unique targets that have at least one significant

MSI2-binding site (adjusted p-value < 0.1 with a corrected CLIP log fold change

of two or more). We observed the binding was distributed between the coding

sequence (CDS) and the UTRs (56% and 44%, respectively). We then queried the

MSigDB signatures with GSEA [126] using the full list of CLIP targets ranked

by fold change to understand the functional classification of MSI2’s targets.

MSI2 binding was positively enriched for 668 gene sets (FDR < 0.01). We

then examined the genes sets and categorized them into two modules, “RNA

regulation and electron transport” and “Signaling and development” based

on the overlaps between gene sets. For instance, within the “RNA regulation

and electron transport module”, genes sets containing genes that are normally

down-regulated after mTOR inhibition (i.e., rapamycin, leucine, or glutamine

deprivation) were enriched for MSI2 binding. These genes significantly overlap

with three other distinct gene sets including energy metabolism, mRNA

processing, and translation. In the “signaling and development module”, we

detected various pathways including gene sets related to “HSC versus CMP”

and “Self-renewal”, as well as other signaling pathways including TGFB1,

RAS and MYC. Altogether, these results indicate sophisticated roles of MSI2

in regulating multiple critical cellular processes and pathways.

66



BIBLIOGRAPHY

1. Lee, R. C., Feinbaum, R. L. & Ambros, V. The C. elegans heterochronic

gene lin-4 encodes small RNAs with antisense complementarity to lin-14.

Cell 75, 843–854 (1993).

2. Kozomara, A. & Griffiths-Jones, S. miRBase: annotating high confidence

microRNAs using deep sequencing data. Nucleic Acids Res 42, D68–73

(2014).

3. Friedman, R. C., Farh, K. K., Burge, C. B. & Bartel, D. P. Most mammalian

mRNAs are conserved targets of microRNAs. Genome Res 19, 92–105

(2009).

4. Bartel, D. P. Metazoan MicroRNAs. Cell 173, 20–51 (2018).

5. Yang, J. S. & Lai, E. C. Alternative miRNA biogenesis pathways and the

interpretation of core miRNA pathway mutants. Mol Cell 43, 892–903

(2011).

6. Song, J. J., Smith, S. K., Hannon, G. J. & Joshua-Tor, L. Crystal structure of

Argonaute and its implications for RISC slicer activity. Science 305, 1434–7

(2004).

7. Schirle, N. T. & MacRae, I. J. The crystal structure of human Argonaute2.

Science 336, 1037–40 (2012).

8. Schirle, N. T., Sheu-Gruttadauria, J. & MacRae, I. J. Structural basis for

microRNA targeting. Science 346, 608–13 (2014).

9. Jinek, M. & Doudna, J. A. A three-dimensional view of the molecular

machinery of RNA interference. Nature 457, 405–12 (2009).

10. Meister, G. Argonaute proteins: functional insights and emerging roles.

Nat Rev Genet 14, 447–59 (2013).

67



11. Jee, D. et al. Dual Strategies for Argonaute2-Mediated Biogenesis of

Erythroid miRNAs Underlie Conserved Requirements for Slicing in

Mammals. Mol Cell 69, 265–278 e6 (2018).

12. Hammell, C. M., Lubin, I., Boag, P. R., Blackwell, T. K. & Ambros, V. nhl-2

Modulates microRNA activity in Caenorhabditis elegans. Cell 136, 926–38

(2009).

13. Schwamborn, J. C., Berezikov, E. & Knoblich, J. A. The TRIM-NHL protein

TRIM32 activates microRNAs and prevents self-renewal in mouse neural

progenitors. Cell 136, 913–25 (2009).

14. Golden, R. J. et al. An Argonaute phosphorylation cycle promotes

microRNA-mediated silencing. Nature 542, 197–202 (2017).

15. Liu, J. et al. Argonaute2 is the catalytic engine of mammalian RNAi.

Science 305, 1437–41 (2004).

16. Meister, G. et al. Human Argonaute2 mediates RNA cleavage targeted by

miRNAs and siRNAs. Mol Cell 15, 185–97 (2004).

17. Jones-Rhoades, M. W., Bartel, D. P. & Bartel, B. MicroRNAs and their

regulatory roles in plants. Annu Rev Plant Biol 57, 19–53 (2006).

18. Jonas, S. & Izaurralde, E. Towards a molecular understanding of

microRNA-mediated gene silencing. Nat Rev Genet 16, 421–33 (2015).

19. Baek, D. et al. The impact of microRNAs on protein output. Nature 455,

64–71 (2008).

20. Hendrickson, D. G. et al. Concordant regulation of translation and mRNA

abundance for hundreds of targets of a human microRNA. PLoS Biol 7,

e1000238 (2009).

68



21. Guo, H., Ingolia, N. T., Weissman, J. S. & Bartel, D. P. Mammalian

microRNAs predominantly act to decrease target mRNA levels. Nature

466, 835–40 (2010).

22. Eichhorn, S. W. et al. mRNA destabilization is the dominant effect of

mammalian microRNAs by the time substantial repression ensues. Mol

Cell 56, 104–15 (2014).

23. Subtelny, A. O., Eichhorn, S. W., Chen, G. R., Sive, H. & Bartel, D. P.

Poly(A)-tail profiling reveals an embryonic switch in translational control.

Nature 508, 66–71 (2014).

24. Schnall-Levin, M., Zhao, Y., Perrimon, N. & Berger, B. Conserved

microRNA targeting in Drosophila is as widespread in coding regions as

in 3’UTRs. Proc Natl Acad Sci U S A 107, 15751–6 (2010).

25. Lewis, B. P., Burge, C. B. & Bartel, D. P. Conserved seed pairing, often

flanked by adenosines, indicates that thousands of human genes are

microRNA targets. Cell 120, 15–20 (2005).

26. Grimson, A. et al. MicroRNA targeting specificity in mammals:

determinants beyond seed pairing. Mol Cell 27, 91–105 (2007).

27. Chi, S. W., Zang, J. B., Mele, A. & Darnell, R. B. Argonaute HITS-CLIP

decodes microRNA-mRNA interaction maps. Nature 460, 479–86 (2009).

28. Hafner, M. et al. Transcriptome-wide identification of RNA-binding

protein and microRNA target sites by PAR-CLIP. Cell 141, 129–41 (2010).

29. Loeb, G. B. et al. Transcriptome-wide miR-155 binding map reveals

widespread noncanonical microRNA targeting. Mol Cell 48, 760–70 (2012).

69



30. Helwak, A., Kudla, G., Dudnakova, T. & Tollervey, D. Mapping the

human miRNA interactome by CLASH reveals frequent noncanonical

binding. Cell 153, 654–65 (2013).

31. Grosswendt, S. et al. Unambiguous identification of miRNA:target site

interactions by different types of ligation reactions. Mol Cell 54, 1042–1054

(2014).

32. Chandradoss, S. D., Schirle, N. T., Szczepaniak, M., MacRae, I. J. & Joo,

C. A Dynamic Search Process Underlies MicroRNA Targeting. Cell 162,

96–107 (2015).

33. Ule, J. et al. CLIP identifies Nova-regulated RNA networks in the brain.

Science 302, 1212–5 (2003).

34. Licatalosi, D. D. et al. HITS-CLIP yields genome-wide insights into brain

alternative RNA processing. Nature 456, 464–9 (2008).

35. Urlaub, H., Hartmuth, K. & Lührmann, R. A two-tracked approach

to analyze RNA-protein crosslinking sites in native, nonlabeled small

nuclear ribonucleoprotein particles. Methods 26, 170–81 (2002).

36. Konig, J. et al. iCLIP reveals the function of hnRNP particles in splicing at

individual nucleotide resolution. Nat Struct Mol Biol 17, 909–15 (2010).

37. Van Nostrand, E. L. et al. Robust transcriptome-wide discovery of

RNA-binding protein binding sites with enhanced CLIP (eCLIP). Nat

Methods 13, 508–14 (2016).

38. Meisenheimer, K. M. & Koch, T. H. Photocross-linking of nucleic acids to

associated proteins. Crit Rev Biochem Mol Biol 32, 101–40 (1997).

39. Kishore, S. et al. A quantitative analysis of CLIP methods for identifying

binding sites of RNA-binding proteins. Nat Methods 8, 559–64 (2011).

70



40. Konig, J., Zarnack, K., Luscombe, N. M. & Ule, J. Protein-RNA

interactions: new genomic technologies and perspectives. Nat Rev Genet

13, 77–83 (2012).

41. Friedersdorf, M. B. & Keene, J. D. Advancing the functional utility of

PAR-CLIP by quantifying background binding to mRNAs and lncRNAs.

Genome Biol 15, R2 (2014).

42. Bosson, A. D., Zamudio, J. R. & Sharp, P. A. Endogenous miRNA

and target concentrations determine susceptibility to potential ceRNA

competition. Mol Cell 56, 347–59 (2014).

43. Moore, M. J. et al. miRNA-target chimeras reveal miRNA 3’-end pairing

as a major determinant of Argonaute target specificity. Nat Commun 6,

8864 (2015).

44. Broughton, J. P., Lovci, M. T., Huang, J. L., Yeo, G. W. & Pasquinelli, A. E.

Pairing beyond the Seed Supports MicroRNA Targeting Specificity. Mol

Cell 64, 320–333 (2016).

45. Wheeler, E. C., Van Nostrand, E. L. & Yeo, G. W. Advances and challenges

in the detection of transcriptome-wide protein-RNA interactions. Wiley

Interdiscip Rev RNA 9 (2018).

46. Lu, Y. & Leslie, C. S. Learning to Predict miRNA-mRNA Interactions from

AGO CLIP Sequencing and CLASH Data. PLoS Comput Biol 12, e1005026

(2016).

47. Derti, A. et al. A quantitative atlas of polyadenylation in five mammals.

Genome Res 22, 1173–83 (2012).

48. Nielsen, C. B. et al. Determinants of targeting by endogenous and

exogenous microRNAs and siRNAs. RNA 13, 1894–910 (2007).

71



49. Agarwal, V., Bell, G. W., Nam, J. W. & Bartel, D. P. Predicting effective

microRNA target sites in mammalian mRNAs. Elife 4 (2015).

50. Betel, D., Koppal, A., Agius, P., Sander, C. & Leslie, C. Comprehensive

modeling of microRNA targets predicts functional non-conserved and

non-canonical sites. Genome Biol 11, R90 (2010).

51. Majoros, W. H. et al. MicroRNA target site identification by integrating

sequence and binding information. Nat Methods 10, 630–3 (2013).

52. Khorshid, M., Hausser, J., Zavolan, M. & van Nimwegen, E. A biophysical

miRNA-mRNA interaction model infers canonical and noncanonical

targets. Nat Methods 10, 253–5 (2013).

53. Breda, J., Rzepiela, A. J., Gumienny, R., van Nimwegen, E. & Zavolan, M.

Quantifying the strength of miRNA-target interactions. Methods 85, 90–9

(2015).
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