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Despite recent advances in cancer therapy, most hematological 

malignancies remain incurable. Mantle cell lymphoma (MCL), a B-cell non-

Hodkin’s lymphoma, and the myelodysplastic syndromes (MDS), a cancer of 

the bone marrow resulting in peripheral blood cytopenias and increased 

leukemia risk, have a median survival rate of 5 years. Standard of care for 

both elicits variable responses in patients, and even patients who initially 

respond often acquire resistance. The development of improved therapeutic 

strategies is hindered by the limited understanding of molecular mechanisms 

underlying innate and acquired resistance. Here, we investigate these 

mechanisms using next generation sequencing approaches in MCL and MDS 

in the context of specific treatment regimens.  

We show that in MCL, resistance to combination of palbociclib, a 

CDK4/6 inhibitor, and bortezomib, a proteasome inhibitor, in a phase I clinical 

trial was correlated with copy number variations, and altered gene expression, 

which were identified through a longitudinal approach integrating exome and 

transcriptome sequencing of purified MCL cells from lymph node biopsies. 



Notably, we identified a loss of type I interferon genes in non-responders that 

may cause innate resistance in these patients, and a relapse-specific 

hemizygous loss in chromosome 13q in an initially responding patient that may 

reflect an alternate mechanism of resistance.  

In MDS, we used single cell RNA-sequencing to evaluate transcriptional 

heterogeneity in hematopoietic stem cells pre-/post-therapy with decitabine, a 

hypomethylating agent. To investigate dysregulated splicing at the single cell 

resolution, we developed DISCO, a single cell splicing analysis platform, and 

identified heterogeneous altered splicing of immune genes and ribosomal 

proteins in spliceosome-mutated cells. Subsets of ribosomal proteins were 

differentially spliced and down-regulated in MDS cells, with even greater 

dysregulation detected in non-responders. Up-regulated pathways include p53 

signaling and myeloid differentiation. Heterogeneous transcriptional patterns 

defined distinct stem cell states, and state dynamics pre- to post-therapy 

highlighted differentiating features (ex. CTBP1 expression) of populations 

likely driving resistance.  

Overall, these results leverage the latest sequencing technologies and 

new computational methods to study purified MCL and MDS patient cells 

during treatment, identify important mechanisms regulating pathogenesis and 

therapy response, and offer opportunities for developing a precision medicine 

framework in treating these diseases.  
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CHAPTER 1 

 

INTRODUCTION 

 

Some of the first insights into the etiology of cancer came from the 

discovery of oncoviruses, such as rous sarcoma virus (Rous, 1911), and 

carcinogens, such as coal tar (Itchikawa & Baum, 1925). With the structure of 

DNA resolved in 1953 and increased understanding of how genes function in 

cells, focus shifted towards the oncogenic transformation of genes, and the 

identification of such genes, sarc for example (Stehelin, Varmus, Bishop, & 

Vogt, 1976), provided an understanding of cancer as a genetic process. The 

existence of these specific genes, termed oncogenes and tumor suppressor 

genes, implicated targeting these mechanisms as a promising therapeutic 

strategy. Among the earliest targeted therapies was imatinib for chronic 

myeloid leukemia (CML). A key oncogenic mechanism in CML was identified 

in 1960 to be a shortened chromosome 22, the result of a t(9;22) reciprocal 

translocation producing a constitutively active tyrosine kinase, BCR-ABL 

(Deininger, Goldman, & Melo, 2000; Hungerford & Nowell, 1960). Imatinib was 

developed to target this kinase, gained FDA approval in 2001, and was 

estimated to improve overall survival to 95% in a 5 year study (Druker et al., 

2006).  
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The identification of genomic alterations central to the oncogenic 

process motivated in part the vast concerted effort of sequencing a complete 

human genome (Dulbecco, 1986). The idea gained traction in the 1980s, was 

formally launched as the human genome project in 1990, and was completed 

in 2003. This milestone coupled with the invention of faster and cheaper 

sequencing technologies (next generation sequencing, NGS) heralded in an 

explosion of cancer sequencing efforts (Figure 1.1) (Wheeler & Wang, 2013).  

Through the immense amount of data offered by NGS technologies, we 

now understand that cancers arise from the accumulation of inherited and 

somatic genetic alterations that encompass several “hallmarks” necessary for 

neoplastic transformation (Hanahan & Weinberg, 2011; Vogelstein et al., 

2013). Many of these studies assayed DNA, RNA, and methylation, revealing 

far greater complexity of the cancer genome than previously anticipated 

(McLendon et al., 2008). Further complexity is added by the fact that most 

tumors comprise of heterogeneous subpopulations, which has been 

experimentally observed through cytogenetic, Sanger sequencing, and NGS 

experiments (Landau, Carter, Getz, & Wu, 2014). As originally proposed by 

Nowell in 1976, these subpopulations then compete with each other for space 

and resources in Darwinian fashion, and the clones better equipped to survive 

and proliferate in the tumor’s microenvironment progress (Nowell, 1976). 

Thus, heterogeneity lends tumors an inherent plasticity, allowing them to adapt 

to changing conditions and combat host defenses and external therapy  
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Figure 1.1. Major events in a decade of cancer genomics. Taken from 
Figure 1 of Wheeler and Wang’s review on cancer genomics titled “From 
human genome to cancer genome: the first decade.” (Dark blue) Major 
advances in massively parallel sequencing platforms and targeted enrichment 
technologies; (black) major large-scale projects designed to catalog genomic 
variations of normal human individuals; (red) cancer genomics. (dbSNP) 
Database of single nucleotide polymorphism; (HapMap) haplotype map of the 
human genome; (ENCODE) Encyclopedia of DNA Elements; (COSMIC) 
Catalog of Somatic Mutations in Cancer; (TCGA) The Cancer Genome Atlas; 
(GA) genome analyzer; (CRC) colorectal carcinoma; (WES) whole-exome 
sequencing; (ICGC) International Cancer Genome Consortium; (TSP) tumor 
sequencing project; (AML) acute myeloid leukemia; (WGS) whole-genome 
sequencing; (OSCC) ovarian small cell carcinoma (Wheeler & Wang, 2013).  
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(Landau et al., 2014). This principle is evident in the example of imatinib. 

Despite being an incredibly effective drug, imatinib is unable to eradicate all 

cancer cells and discontinuation of the drug often results in recurrence of the 

leukemia that has been attributed to residual cells that are not dependent on 

BCR-ABL for survival and can proliferate in the absence of the inhibitor 

(Corbin et al., 2011). Overall, understanding the complexity of cancer 

genomes at the level of molecular mechanisms underlying a disease and the 

heterogeneous presentations of these mechanisms within a tumor is 

paramount to defining diagnostic subtypes, predicting prognosis, developing 

new targeted therapies and combinations of therapies, and implementing 

therapeutic regimens leveraging knowledge of these mechanisms within a 

patient, i.e. precision medicine.  

 Investigating this complexity is a problem aptly addressed by NGS 

approaches. NGS has revolutionized biomedical research, enabling study of 

entire genomes, exomes, transcriptomes, epigenomes, epitranscriptomes, 

proteomes, metabolomes, microbiomes, and other “-omes” across large 

cohorts orders more quickly and cheaply than what was previously possible.  

The opportunities presented by the various types of NGS technologies for 

impacting human health as well as the challenges posed in implementing them 

are detailed in Chapter 2.  

With respect to cancer, whole genome and exome sequencing are 

powerful for characterizing somatic single nucleotide variants, insertions and 
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deletions, and copy number variants. Although exome sequencing restricts 

data to coding exons of the genome, its lower cost and often increased 

interpretability is appealing. Mutations outside of protein coding parts of the 

genome are difficult to interpret since not enough is known about the function 

of these regions, but they likely have important consequences for regulation of 

gene and protein expression (Dunham et al., 2012). As such, the combination 

of exome and transcriptome sequencing is particularly powerful since it 

enables identification of protein coding variants and direct measurement of 

global gene expression changes that are downstream of more difficult to assay 

features such as non-coding variants and tumor microenvironment. Our work 

leveraging this strategy in mantle cell lymphoma (MCL) to study response and 

resistance to the combination targeted therapy of palbociclib and bortezomib 

(PALBOR) is discussed in Chapter 3.  

The mutation profiles produced by genome and exome sequencing can 

be coupled with computational methods to infer cellular prevalence of variants, 

i.e. percentage of cells that contain a variant in a tumor sample (Roth et al., 

2014). However single cell resolution is required to accurately infer 

intratumoral heterogeneity and subclonal compositions (Hughes et al., 2014; 

Navin et al., 2011). Further, heterogeneity at the transcriptional level is 

impossible to resolve with traditional transcriptome sequencing (RNA-seq), 

prompting the development of single cell RNA-seq technologies (scRNA-seq). 

These technologies have revealed new levels of heterogeneity previously 
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undetectable by bulk sequencing in a variety of healthy and disease tissues, 

suggesting that single cell resolution is necessary to accurately characterize 

complex tissue samples (Buganim et al., 2012; Dalerba et al., 2011; A. P. 

Patel et al., 2014; Shalek et al., 2013; Tirosh et al., 2016; Treutlein et al., 

2014; Wagner, Regev, & Yosef, 2016). Comparative analyses of the different 

scRNA-seq technologies were recently published (Svensson et al., 2017; Wu 

et al., 2014). Parallel to the technological advances, several computational 

methods have been developed to characterize transcriptional heterogeneity 

and identify cell types (Brennecke et al., 2013; Grün, Kester, & van 

Oudenaarden, 2014; Haghverdi, Buettner, & Theis, 2014; Ji & Ji, 2016; J. K. 

Kim et al., 2015; Qiu et al., 2017; Trapnell et al., 2014; Welch, Hartemink, & 

Prins, 2016). Motivated by the successes and demonstrated utility of scRNA-

seq, we used it to study purified MDS stem cells before and after 

hypomethylating treatment. Since mutations in the cell’s splicing machinery 

are detected in half of all MDS cases (Bejar & Steensma, 2014), we were also 

interested in exploring single cell heterogeneity in alternative splicing and 

isoform expression. To date, few studies have been done on the topic, partly 

due to the fact that many of the single cell sequencing platforms assay only 3’ 

ends of mRNAs as opposed to full-length transcripts and thus, do not allow 

isoform characterization. Early work confirmed the presence of splicing 

heterogeneity by identifying bimodal distributions of isoform ratios (Shalek et 

al., 2013), and more recent efforts either ignore these bimodalities in statistical 
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testing (Welch, Hu, & Prins, 2016) or are confounded by variable gene 

expression (Qiu et al., 2017). Chapter 4 describes our work in developing 

DISCO (Distributions of Isoforms in Single Cell Omics), a platform for 

analyzing alternative splicing in scRNA-seq data, and leveraging DISCO and 

other methods in analyzing the MDS transcriptome at the single cell level.  

By leveraging integrative exome and transcriptome sequencing in MCL 

and scRNA-seq in MDS, we identified important mechanisms regulating 

pathogenesis and therapy response which can be tested in larger cohorts and 

implemented in the clinic in guiding treatment of these diseases. This effort 

was aided in both cases by longitudinal sampling of purified cancer cells. 
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CHAPTER 2 

 

CLINICAL GENOMICS: CHALLENGES AND OPPORTUNITIES 

 

PREAMBLE 

 This chapter was modified from a published review1. PV, AM, and SL 

planned content and wrote the manuscript. PV and SL made figure 2.1, PV 

made figures 2.2 and 2.3. All authors reviewed and edited the content.  

 

INTRODUCTION 

 Next generation sequencing and other high-throughput approaches 

have become ubiquitous over the past few years, producing a deluge of new 

data at an unprecedented rate. However, incorporating novel insights from 

these data into clinical practice is not always obvious. Here, we review the 

current challenges of the field, specifically with respect to different genomic, 

transcriptomic, and epigenomic sequencing approaches and platforms, and 

important concepts for sequencing study designs that maximize statistical 

power and clinical utility. We also describe the current applications of these 

technologies across a range of topics including integrative study designs, 

                                                
1 Vijay P, McIntyre A, Mason CE, Greenfield J, Li S. (2016). Clinical Genomics: 
Challenges and Opportunities. Critical Reviews in Eukaryotic Gene 
Expression, 26(2):97-113. doi: 
10.1615/CritRevEukaryotGeneExpr.2016015724 
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cancer genomics, precision medicine, and computational and machine 

learning analyses. Collectively, this provides a resource on experimental and 

computational methods to further enable researchers to leverage next 

generation sequencing (NGS) in their studies. These technologies have 

already improved medical interventions and will continue to transform 

medicine in the clinic and at a personal level by offering individuals increased 

agency in managing their health throughout a lifetime. 

 

CHALLENGES 

Sequencing is promising for clinical utility. The development of next-

generation sequencing has lowered the cost of sequencing from 100 million 

dollars in 2001, to the 1000-dollar genome in 2014. The lowered cost has 

made sequencing more accessible to the medical community for diagnosis 

support (Figure 2.1). Sequencing can generate a wide variety of data types, 

which favors its use over other existing techniques, including PCR and 

microarrays. Emerging sequencing techniques from the past few years provide 

alternative approaches to traditional NGS platforms that produce shorter 

reads, such as the Illumina HiSeq sequencer, which are widely used for DNA-

seq, RNA-seq, and bisulfite sequencing. Overall, genome, transcriptome, and 

DNA methylome sequencing can provide extensive clinical information for 

diagnosis and prognostic classifications. 
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Figure 2.1. Omics workflows. Overview of genomic, transcriptomic, and 
methylomic sequence analysis workflows for disease characterization and 
precision medicine.   
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The advent of single molecule sequencing further decreases cost but 

significant challenges in data production and analysis remain. Both the 

PacBio RS and the MinIONTM nanopore sequencer offer longer read lengths 

than other sequencing technologies, on the order of kilobases or tens of 

kilobases (Mason, Porter, & Smith, 2014). Pacific Biosciences released the 

PacBio RS sequencer in 2010, and although accuracy was initially poor at 

86%, repeated sequencing of each read can increase accuracy to 99%. While 

specific bioinformatics tools have been developed over the past few years to 

cope with the error rate (Chaisson & Tesler, 2012), the high cost of the 

instrument has limited its adoption.  

 Oxford Nanopore Technologies first introduced the MinIONTM sequencer 

in 2012, but only began distributing the sequencers to researchers through an 

early-access program in 2014. Unlike the PacBio RS, the MinIONTM is highly 

portable at the size of a large USB stick, and requires a relatively small 

investment of around $1000. These features could help avoid the time and 

cost of sending samples to reference laboratories by bringing sequencing to 

clinics themselves, particularly in remote locations. However, nanopore 

technology is still in the nascent stages of development. Estimates have 

placed per-base error rates at 10-15% (Jain et al., 2015), which would need to 

improve drastically before nanopore sequencers could be considered a viable 

tool for many diagnostic applications. Efforts to demonstrate the clinical 

potential of the MinIONTM have focused on pathogen identification and 
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characterization, including sequencing of the influenza virus (J. Wang, Moore, 

Deng, Eccles, & Hall, 2015), antibiotic resistance genes in Salmonella enterica 

serovar Typhi (Ashton et al., 2014), and the Ebola virus to identify 

transmission patterns during the recent outbreak (Gardy, Loman, & Rambaut, 

2015). Researchers have also taken advantage of long read lengths to 

analyze isoform expression of alternatively spliced RNA (Bolisetty, 

Rajadinakaran, & Graveley, 2015). Current coverage depths allow for targeted 

studies of RNA isoforms but not whole transcriptome analysis. Yet, as the 

chemistry and analysis continue to evolve, nanopore sequencing shows 

increasing promise as an accessible and powerful means for evaluating 

patients and the pathogens that affect them. 

 

DNA sequencing for clinical applications. There are many consortiums 

devoted to standardizing sequencing performance. Accuracy and 

reproducibility are the two key factors for sequencing technology to be widely 

used in clinical practice. DNA sequencing enables detection of germline and 

somatic mutations, which calls for comprehensive standardization. A cross-

platform performance comparison of whole-genome sequencing revealed that 

88.1% of SNVs detected were shared by Illumina and Complete Genomics. 

The concordance of insertion and deletion (indel) calling is much lower, with 

just 26% shared (Lam et al., 2012). Another current study comparing Illumina 

MiSeq, 454 GS Junior and Ion Torrent PGM from Life Technology for bacteria 
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genome shows that Illumina has the lowest error rate and has no 

homopolymer-associated indel errors (Loman et al., 2012). Whole exome 

sequencing (WES), which captures only genic regions, provides a more cost-

efficient alternative to whole genome sequencing. WES has shown high 

accuracy for detecting Single Nucleotide Variants (SNVs) and short indels, 

although, when compared to high coverage WGS, WES shows limited power 

for CNV detection (Tan et al., 2014). A recent assessment of WES and 

exome array comparative genomic hybridization (CGH) using clinical samples 

showed that WES has the potential for clinical CNV detection, but currently, 

the combination of an array based approach with WES improves the 

accuracy of CNV calling, especially for intergenic regions and single-exon 

changes (Retterer et al., 2015). If using WES, the choice of exome-seq 

protocols affects the results. A comprehensive comparison between Agilent, 

Roche, and Illumina platforms showed varying strengths in the detection of 

variants across genic and untranslated regions (M. J. Clark et al., 2011a). 

Specifically, Nimblegen, the only platform that uses high-density overlapping 

baits, has higher sensitivity in variant detection. A concurrent study also 

confirmed that the Nimblegen platform has higher coverage of exonic regions, 

with at least 20x coverage (Sulonen et al., 2011). The Agilent and Illumina 

platforms, however, target a wider range of genomic regions, and with deeper 

sequencing, these two platforms detect more variants (M. J. Clark et al., 

2011b). Another advantage of Illumina’s capture method is that it provides 
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coverage for untranslated areas, which might be of interest to researchers 

who would like to include noncoding variants in their analyses. For an even 

more targeted and affordable method than WES, specific cancer panels are 

commonly used. These require prior domain knowledge, which include 

recurrent genetic or epigenetic lesions. Recurrent somatic mutations have 

been identified in many cancer types and used to predict risk levels of the 

disease (Ding et al., 2012). In acute myeloid leukemia (AML), 15 biomarkers 

have been used to further stratify patients who were previously all placed in 

the intermediate risk group by cytogenetic classification. This helps to 

develop treatment plans for AML patients tailored to the risk for each group 

(J. P. Patel et al., 2012). Indeed, targeted sequencing provides a much 

deeper view of the known genes and hotspots for mutations. However, with 

ever decreasing sequencing cost and as more possible drug targets are 

identified for clinical treatments, exome-seq covering larger areas of the 

genome has the potential to be more widely applied in clinical diagnosis and 

prognostic decisions.  

 

RNA sequencing is a promising candidate for clinical applications (Van 

Keuren-Jensen, Keats, & Craig, 2014). This technique enables whole 

transcriptome examination, including detection of gene expression, alternative 

isoforms, fusion genes, and expressed variants (S. Li, Tighe, et al., 2014). 

However, RNA sequencing is also very sensitive to systematic bias (S. Li, 
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Łabaj, et al., 2014; Risso, Ngai, Speed, & Dudoit, 2014). Previously, we and 

others have defined multiple quality metrics that flag samples with potential 

gene expression quantification issues, including gene body coverage 

evenness, GC content, insert size, and base error rate (Risso, Schwartz, 

Sherlock, & Dudoit, 2011). In the FDA-led Sequencing Quality Control (SEQC) 

study for RNA-seq performance evaluation, gene body coverage evenness, 

GC content, and insert size have been shown to be related to library 

preparation, and base error rate dependent on the sequencer used (S. Li, 

Łabaj, et al., 2014). Multiple software packages for gene expression 

normalization were compared. EDAseq, which corrects for both the intra-group 

variations and quantification bias caused by GC-content and gene length, was 

found to perform the best for accurate differential gene expression analysis 

(Risso et al., 2011). PEER and sva have shown higher potency in detection of 

latent variables for the quantification of gene expression among different sites 

of sequencing data (Stegle, Parts, Piipari, Winn, & Durbin, 2012). For a 

statistically powerful RNA-seq study design, it is always recommended to use 

consistent experimental strategies, including sequencer, read length, 

sequencing depth, and protocol (Z. Su et al., 2014). Studies have shown that 

sequencing depth is critical for discovery of new genes and accurate gene 

expression profiling (Toung, Morley, Li, & Cheung, 2011). Later follow-up 

studies focused on differential gene expression analysis have shown that 

increasing the biological replicates more efficiently improves the accuracy of 
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gene quantifications (Rapaport et al., 2013). Therefore, experimental design 

for RNA-seq analysis is critical for accurate differential gene expression 

analysis. 

 

DNA methylation provides a complementary approach to clinical 

measures for patient classification. DNA methylation is the addition of a 

methyl group to the 5th position of cytosine, which has the specific effect of 

suppressing gene expression. DNA methylation has been defined as one of 

the hallmarks of cancers and aging (Rodríguez-Paredes & Esteller, 2011; 

Teschendorff et al., 2010). Many different types of cancers have consistently 

shown the dysregulation of DNA methylation (Figueroa et al., 2010; Mack et 

al., 2014; Noushmehr et al., 2010; Sandoval et al., 2013). The Cancer 

Genome Atlas (TCGA) consortium and many other research studies have 

shown that cancers can be classified based on their degree of DNA 

methylation (Noushmehr et al., 2010; Weisenberger, 2014). Subgroups of 

many cancers exhibit CpG island methylator phenotype (CIMP), including 

breast cancer (Fang et al., 2011), brain cancer (Mack et al., 2014; Noushmehr 

et al., 2010; Pajtler et al., 2015), blood cancer (Figueroa et al., 2010), gastric 

cancer (Bass et al., 2014), liver cancer (Shen, 2002), and lung cancer 

(Sandoval et al., 2013). Groups of patients classified based on DNA 

methylation patterns show distinct clinical outcomes, including overall survival 

and disease free progression (Figueroa et al., 2010; Noushmehr et al., 2010). 
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The CIMP positive group has been shown to differentiate and stratify patients 

into groups with distinct clinical outcomes. For example, in glioblastoma 

patients, a CIMP positive phenotype is usually associated with distinct copy 

number changes, appears exclusively in the proneural subtypes, and is 

associated with IDH1 mutations and improved clinical outcomes (Noushmehr 

et al., 2010). In a recent study of ependymoma, which is the third most 

common pediatric brain tumor, researchers showed that CIMP positive 

patients with posterior fossa ependymoma have worse clinical outcome than 

CIMP negative patients (Mack et al., 2014; Pajtler et al., 2015). The genetic 

background of CIMP positive patients presents a blended picture and indicates 

the importance of DNA methylation as an alternative approach for patients risk 

stratifications (Mack et al., 2014).  

  There are many advantages to using DNA methylation analysis for 

clinical profiling. First, it does not rely heavily on the genetic alterations of the 

diseases, and so, it can be applied to diseases where there are sparse 

somatic mutations. Second, the material under analysis is DNA, which is 

advantageous because DNA is less sensitive to heat or enzymatic degradation 

than RNA, resulting in more accurate profiling. 

  Several methods have emerged to quantitatively measure DNA 

methylation, grouped here into three categories: (1) PCR-based methods, (2) 

microarray-based methods, and (3) sequencing-based methods. The PCR-

based methods are usually used as a validation approach for high-throughput 
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quantification. The second are microarray-based methods. The HpaII tiny 

fragment Enrichment by Ligation-mediated PCR Assay (HELP Assay) was a 

commonly used regional DNA methylation quantification approach for 

research and clinical sample profiling (Pan et al., 2012). It is based on the 

restriction enzyme Hpall’s ability to exclusively recognize and cleave 

methylated CpG DNA sites.  Another commonly used single base resolution 

microarray-based DNA methylation quantification approach is Illumina Infinium 

BeadChip Kit. The BeadChip array platform utilizes two different bead types to 

measure DNA methylation levels at single cytosine. Infinium 

HumanMethylation450 BeadChip Kit (450K array) is one of the Infinium Kits 

that cover the most number of methylation sites for human samples (485,000 

sites). It covers 99% of the RefSeq genes, which, on average, have 17 CpG 

sites per gene. The 450K array has been widely used in DNA methylation 

quantification over the past few years, with more than 10,000 entries in the 

GEO database, providing a valuable international resource for comparison 

between different cohorts of patient samples (Lowe & Rakyan, 2013).  

  The third class of methods are sequencing-based, and can either 

provide single base resolution or regional quantifications of DNA methylation 

levels (Down et al., 2008; Frommer et al., 1992; A. Meissner, 2005). The 

single base resolution methods mainly use bisulfite conversion sequencing, 

where the cytosine of a CpG site without methylation will be converted into 

uracil while the cytosine with methylation will remain as a cytosine. So, in the 
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final sequencing readout, a CpG site without methylation will be thymidine 

instead of cytosine (Frommer et al., 1992; A. Meissner, 2005). Eventually, the 

single site CpG methylation level will be calculated based on the percentage of 

reads with cytosine among the total number of reads mapped. These methods 

include whole genome bisulfite sequencing (WGBS) (Frommer et al., 1992), 

reduced representation bisulfite sequencing (RRBS) (A. Meissner, 2005), and 

targeted methylation sequencing (TMS) (Deng et al., 2009). WGBS requires a 

large amount of sequencing depth, as each base in the whole genome needs 

to be covered by at least 4 reads in order to achieve accurate quantification. 

This enables the inclusion of regions with both high and low CG density. 

However, RRBS and TMS only cover a subset of regions in the genome, 

providing a cheaper alternative, and enable accurate quantification of about 

15% of CpG sites from higher CG density regions, including CpG islands, and 

promoter regions (Deng et al., 2009; A. Meissner, 2005). This makes it 

possible to profile more patients with regions that are of particular interest in 

transcriptome regulation. The regional level quantification approaches mainly 

use affinity-based DNA methylation sequencing, such as methylation DNA 

immunoprecipitation sequencing (MeDIP-seq) (Down et al., 2008). This 

approach is similar to CHIP-seq, using antibodies that recognize genomic 

locations with methylated CpGs. Comparison of the 450K array and whole 

genome sequencing approaches showed decent correlation (C. Clark et al., 

2012). The 450K array was also shown to generate highly reproducible data 
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between seven technical replicates of clinical samples (Pan et al., 2012). But 

for clinical utility, a large effort comparing different platforms remains to be 

done.  

 

Computational Analysis of Multi-Omics Data. Perhaps one of the biggest 

challenges in going from bench to bedside in sequencing studies is the 

accurate and reproducible analysis of the resulting terabytes of data. 

Sequence data analysis is a multistep process that often needs to be adapted 

for a specific experiment or scientific question. For any sequencing data, 

computational analysis generally begins with aligning reads to a reference 

genome (Figure 2.2). Commonly used programs include BWA for DNA reads, 

STAR for RNA-seq data, and Bismark, BSMAP, or BSmapper for methylation 

data. The choice between these programs depends on such factors as 

sequencing platform, read length, and desired SNP tolerance, with various 

programs optimized for different read characteristics (Mielczarek & Szyda, 

2015). After mapping to the genome, analysis depends on the scientific 

question, with specific programs designed broadly to call variants, identify 

differential expression, or quantify the extent of methylation. When multiple 

data types are available, their integration can identify a network of interacting 

and interdependent processes contributing to disease states. Indeed, 

clustering patient samples using models that computationally combine 

different data types has revealed novel subtypes unseen when evaluating a  
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Figure 2.2. Integrative omics analysis pipeline. Computational methods for 
genomic, transcriptomic, and methylomic data analysis for identifying 
variations at all levels and integrating different data types for increased 
confidence. 
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single data type (Mo et al., 2013; M. Su, Dou, Cheng, & Han, 2015). Despite 

challenges in cost, cross-platform comparisons, technical standards, analysis 

methods, etc., advances in massively parallel sequencing techniques present 

new opportunities to improve clinical research, which we explore in the next 

section.  

 

OPPORTUNITIES 

Leveraging Electronic Health Records Data. Genomics and informatics are 

being incorporated into many aspects of patient care, especially with the 

transition to electronic health records (EHR). Despite the relatively new shift to 

EHR, the data is already being leveraged for large-scale studies using 

machine learning and data mining methods, as it offers unprecedented access 

to large sample sizes and diverse patient cohorts. These studies include 

mining for adverse drug effects (G. Wang, Jung, Winnenburg, & Shah, 2015), 

and developing a classifier for disease phenotype severity (Boland, Tatonetti, 

& Hripcsak, 2015). The implications of this transition to EHR for clinical 

genomics, including genetic testing, have been previously reviewed (Marsolo 

& Spooner, 2013).  

 

Genomics and Chronic Illnesses. Genomic approaches are becoming 

important for both preventing and managing chronic illnesses, such as 

diabetes and inflammatory bowel disease. The human microbiome project and 
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other metagenomic studies have revealed the importance of healthy gut 

microbiota, which has now been translated to clinical practice through fecal 

microbiota transplants for treating Clostridium Difficile infections, ulcerative 

colitis, Crohn’s disease, and other digestive illnesses (Drekonja et al., 2015; 

Mandal, Saha, & Das, 2015).  

 

Personalized Healthcare and Direct-to-Consumer Genomics. Statistical 

models can incorporate genomic features and family history, coupled with 

factors such as age, weight, and ethnicity, for disease risk prediction in healthy 

individuals. This has been especially useful for early intervention in individuals 

at high risk for diabetes and cardiovascular disease. Clinical genomics 

platforms such as Foundation Medicine, Ingenuity, and Personalis facilitate 

implementation of genetic testing in clinical platforms (C. J. Patel et al., 2013). 

As of August 2015, the NIH’s genetic testing registry catalogued 28,542 tests 

spanning 4,726 genes for the purpose of diagnosing any of 9,927 conditions. 

These not only include classical Mendelian diseases, such as Huntington’s 

chorea, but also predict predisposition to complex diseases, such as 

Alzheimer’s, and drug response, for example sensitivity to the anticoagulant 

Warfarin. With the prevalence of direct-to-consumer tools like 23andme and 

ancestry.com that make this type of information accessible to interested 

individuals, people are more empowered than ever to advocate for their own 

health. Computational methods utilizing patients’ genetic information, coupled 
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with EHR in some cases, for disease risk prediction are actively being 

researched (L. Li et al., 2014). Federal policies have been changing to reflect 

the shift to clinical genomics, as evidenced by the 2013 shutdown of 

23andme’s genetic testing arm and the 2015 repeal of the ban, and by the 

2013 landmark supreme court case that barred the previously common 

practice of patenting genes (Rosenfeld & Mason, 2013). Other challenges to 

consider are the legal and ethical issues surrounding genetic testing in 

children and adolescents, previously reviewed by Botkin et al. (Botkin et al., 

2015).  

 

Genomics and Cancer. Despite challenges, genomics has introduced a 

paradigm shift in medicine, especially in the treatment of cancer. Where 

historically cancer has been categorized by the tissue type it affects, it is now 

increasingly being defined by genetic alterations. The vast breadth of 

knowledge gained from large national and international cancer sequencing 

efforts, mainly The Cancer Genome Atlas and the International Cancer 

Genome Consortium, has immeasurably increased our understanding of the 

genetic mechanisms, molecular subtypes, and heterogeneity of cancers 

(Ciriello et al., 2013; Hudson et al., 2010). These data have been made easily 

accessible to the scientific community. Tools like the cBio Portal, for example, 

allow anyone to query the mutation load of any given gene in all assayed 

cancer types. Thus, cancer genomics is continuously being translated to 
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clinical settings (Cerami et al., 2012). One such case is in recurrent Mantle 

Cell Lymphoma, where the authors utilized an integrative genomics and 

transcriptomics approach coupled with extensive functional studies to attribute 

the cause of relapse after Ibrutinib treatment to a relapse-specific single 

nucleotide variation in the drug target, BTK (Chiron et al., 2014). This can now 

be incorporated into the therapeutic decision-making pipeline by testing for this 

BTK mutation. Similar efforts in a wide variety of cancers have categorized 

subtypes of cancers based on genetic information, and these classifications 

are actively used in diagnosis, prognosis, and therapeutics. 

  A classical success story of the use of genomics in cancer therapy is of 

the BRAF inhibitor vemurafenib in metastatic melanoma. Genomic screening 

of metastatic melanoma patients identified BRAF V600 mutations in half of all 

patients that increased the sensitivity of cancer cells to BRAF inhibitors 

(Chapman et al., 2011). One of the common challenges of targeted therapies, 

however, has been the development of resistance, which was seen in cases of 

melanoma treated with BRAF inhibitors. Combinations of drugs as opposed to 

monotherapies lower the risk of resistance and relapse. For example, 

dabrafenib in combination with trametinib was found to prolong progression-

free survival and increase response rates in BRAF V600 melanoma compared 

to monotherapy (Robert et al., 2014). 

  Combination therapies are often found to perform more successfully, as 

developing resistance is less likely. Computational methods for predicting 
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effective drug combinations alleviate the enormous cost of exhaustive 

experimental testing in every cancer model. Instead, these machine learning 

methods can use data from cell line assays as training sets and predict 

successful combinations for genetically defined subtypes that can then be 

tested in patient-derived xenograft models (Costello et al., 2014). Some of the 

experimental data sets currently available for use in computational models are 

the NCI 60 cancer cell line and drug screening data (Shoemaker, 2006), NIH’s 

Library of Integrated Cellular Signatures (LINCS), and the Broad Institute’s 

connectivity map (Lamb et al., 2006). By modeling drug-gene interactions 

coupled with the genomic alterations of a patient's tumor, doctors are now able 

to predict the efficacy of different chemotherapies or targeted therapies in a 

personalized manner. These not only include rule based decision tree 

methods, but also more complex computational models. In addition to 

predicting the efficacy of combination therapies, computational methods for 

drug repositioning are also continuously gaining popularity and producing 

effective therapies (Shameer, Readhead, & T. Dudley, 2015). 

  Since many of these drug development and prediction approaches rely 

on accurate and detailed patient stratification based on genomic data, whole 

genome, exome, and transcriptome sequencing are more and more routinely 

performed for clinical samples, either at time of collection for rapid turnaround 

or banked for future analysis. This vast amount of sequencing data has also 

enabled better prognosis assessment in many cases, although this is not new 
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to the sequencing era. By 2000, microarrays were being used for molecular 

stratification of cancer samples that identified gene signatures defining 

differential survival (Perez-Diez, Morgun, & Shulzhenko, 2000). Unsurprisingly, 

the advent of next generation sequencing methods increased studies in this 

vein.  

  Even with applications to all aspects of human health and disease, 

cancer remains the one disease (really an innumerable collection of diseases) 

where genomics has had the biggest impact. This is owed to the genetic 

nature of cancer, since cancers arise from the accumulation of inherited and 

somatic genetic alterations (Vogelstein et al., 2013). Heterogeneous 

subpopulations comprising tumors have been experimentally observed 

through cytogenetic, Sanger sequencing, and next generation sequencing 

experiments (Landau et al., 2014). As originally proposed by Nowell in 1976, 

these subpopulations compete with each other for space and resources, and 

the clones better equipped to survive and proliferate in the tumor’s 

microenvironment will progress (Nowell, 1976). Genomics enabled 

researchers to assess the compositions of tumors and infer the molecular 

characteristics of distinct subpopulations.  

 The main challenge in accurately inferring heterogeneity and clonal 

evolution is that most tumor profiling methods involve a bulk sample of cells, 

effectively masking intratumoral variability. With novel technological 

developments in single cell sequencing, we can now measure these 
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subpopulations directly and at a previously unprecedented resolution. Single 

cell sequencing will add a new level to clinical applications of tumor 

sequencing by increasing the resolution with which we can model complex 

tumor dynamics and incorporate that into prognosis assessment and drug 

efficacy prediction (Figure 2.3). The development of single cell sequencing 

methods, especially single cell RNAseq, which has been previously used in 

immune cells (Shalek et al., 2013), breast cancer (Navin et al., 2011), 

melanoma circulating tumor cells (Hou et al., 2013), and glioblastoma (A. P. 

Patel et al., 2014), has addressed this issue. Each of these cases revealed 

new levels of heterogeneity that are undetectable in bulk samples, suggesting 

that single cell resolution is necessary to accurately characterize complex 

tissue samples.  

An added benefit is that all of these sequencing data are submitted to 

curated repositories with publication, such as the database of Genotypes and 

Phenotypes, the Sequencing Reads Archive, and the Gene Expression 

Omnibus. This helps alleviate the problem of small sample sizes common in 

clinical settings and/or rare diseases. Researchers interested in any of this 

publicly available data can download it and apply their own analyses. For 

those unfamiliar with computational and bioinformatics methods, there are also 

pipelines with guided user interfaces that facilitate these steps, such as 

STORMseq (Karczewski et al., 2014), Genesifter, Ingenuity variant analysis 

software, and more. There is also current research in software design for use  
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Figure 2.3. Conceptual overview of single cell sequencing for clinical 
applications.  
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by non-computational clinical scientists (Shyr, Kushniruk, van Karnebeek, & 

Wasserman, 2015). Although the data repositories in place are serving a 

much-needed purpose, there are opportunities here for better infrastructure, 

support for IRB approvals, ease of submission, and ease of access.  

 

Advances in Genomics Approaches for Neurobiology 

 Molecular stratification with genomic sequencing advising patient 

therapy is not limited to cancer drugs. Although less understood, genomic 

approaches are also used in neurobiology, especially in the study of 

Alzheimer’s and autism spectrum disorders (Han et al., 2014). With large-

scale efforts in mapping the human brain using cutting edge brain imaging 

techniques, big data approaches are becoming increasingly useful in 

understanding neurodegenerative diseases. Understanding mutations and 

predispositions to these diseases would allow for early intervention, which is 

often the only hope for therapy.  

 

National and International Personalized Medicine Initiatives. Overall, 

clinical genomics has pervasively affected human health and disease, 

especially in the field of oncology. The paradigm shift in the understanding and 

treatment of cancer is mirrored by federal policy changes, most notably though 

President Obama’s Precision Medicine Initiative, announced in his 2015 State 
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of the Union Address. This initiative includes increased funding to the National 

Cancer Institute for researching genomic drivers in cancer and for streamlining 

the design and testing of targeted therapies based in genetics. Relatedly, the 

prototype of clinical trials is transforming to better reflect the shift to 

personalized medicine as seen by the success of the IMPACT and following 

IMPACT2 studies. It is important to note that these changes in clinical 

genomics are happening on a global scale, inspiring international cooperation 

to advance medicine (Manolio et al., 2015). 
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CHAPTER 3 

 

LONGITUDINAL GENOMIC AND TRANSCRIPTOMIC ANALYSIS OF 

MANTLE CELL LYMPHOMA IN A TARGETED COMBINATION TRIAL OF A 

SELECTIVE CDK4/6 INHIBITOR 

 

PREAMBLE 

This chapter is modified from a manuscript in preparation2. PV 

performed computational analysis, generated figures, and wrote text with input 

from SCK, MDL, XH, and CEM. SE generated immunohistochemistry images. 

All authors reviewed data and content. SCK and CEM conceived the project.  

 

INTRODUCTION 

Mantle cell lymphoma (MCL) is a rare subtype of B-cell non-Hodgkin’s 

lymphoma with a median survival time of 5 years (Pérez-Galán, Dreyling, & 

Wiestner, 2011). A defining characteristic of MCL is a t(11;14)(q13;q32) 

translocation resulting in aberrant expression of cyclin D1, a cell cycle protein 

normally undetected in B-cells (Pérez-Galán et al., 2011). Cyclin D1 

complexes with cyclin dependent kinases CDK4 and CDK6 to drive G1/S 

                                                
2Vijay P, Di Liberto M, Huang X, Ely S, Blecua P, Chiron D, Elemento O, 
Martin P, Leonard JP, Mason CE, Chen-Kiang S. Longitudinal genomic and 
transcriptomic analysis of mantle cell lymphoma in a targeted combination trial 
of a selective CDK4/6 inhibitor. (In preparation). 
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transition. Although CDK6 is silenced in MCL, CDK4 is expressed, and 

previous work has implicated functional inhibition of CDK4 as a therapeutic 

strategy for MCL (Di Liberto et al., n.d.; Leonard et al., 2012; Marzec et al., 

2006).  

Palbociclib is a selective CDK4/6 inhibitor that received accelerated 

FDA approval for doubling progression-free survival in metastatic breast 

cancer in combination with letrozole in a phase II trial (Baughn et al., 2006; 

Finn et al., 2014). It has also been applied as a single agent in MCL achieving 

remarkable efficacy in cell lines and patients (Leonard et al., 2012). However, 

as resistance is common for single agent cancer therapies, a combination 

approach of palbociclib in conjunction with the proteasome inhibitor 

bortezomib was tested and found effective in myeloma xenografts. Palbociclib 

was shown to induce reversible, prolonged G1 arrest (pG1), which 

consequently sensitized cells to cytotoxic killing by bortezomib (Huang et al., 

2012). This combination approach (PALBOR) was clinically tested in a phase I 

trial in recurrent MCL with favorable results (Di Liberto et al., n.d.). Here, we 

leveraged integrative DNA and RNA sequencing of 6 patients from the trial, 3 

responders (R) and 3 non-responders (NR) in order to identify mutation 

profiles of different patients, genes involved in determining sensitivity and 

resistance, and longitudinal shifts of subclonal composition of mutations during 

one cycle of treatment.  
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Previous work in MCL genomics has identified several recurrent 

mutations (Beà et al., 2013; Colomer & Campo, 2014; B. Meissner et al., 

2013; Rahal et al., 2014). But, it is unclear how these mutations affect 

response to palbociclib or how palbociclib affects cellular processes at the 

transcriptional level. A longitudinal examination of both DNA and RNA in 

patients undergoing identical treatment protocols, as shown here, is rare in 

MCL and other cancer sequencing efforts. For normal controls, we sequenced 

resting and activated peripheral B cells from healthy donors. With this unique 

data set, we have discovered multiple mechanisms potentially explaining 

resistance in non-responders and acquired resistance in a relapse patient, 

pointing to future avenues of investigation for improving precision medicine 

approaches in combination therapy of palbociclib and bortezomib.  

 

RESULTS 

Integrative genomic and transcriptomic examination of responders and 

non-responders. Normal cell cycle progression through G1/S transition 

necessitates the dimerization of D type cyclins with CDK4/6, which then 

inactivate retinoblastoma protein (Rb) by phosphorylation (Figure 3.1A). 

Palbociclib selectively and potently inhibits CDK4 at precisely early G1 phase, 

and in the presence of functional Rb, causes cells to arrest and synchronize in 

G1 (prolonged G1 arrest, pG1). Cell cycle is resumed with the discontinuation 

of the inhibitor as cells progress through G1/S (Figure 3.1A) (Baughn et al., 
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2006; Huang et al., 2012; Leonard et al., 2012). The deregulation of gene 

expression profiles as a consequence of pG1 is known in cell lines to improve 

the efficacy of the proteasome inhibitor bortezomib (Huang et al., 2012). A 

phase I clinical trial testing this combination (PALBOR) in patients with 

previously treated recurrent MCL was undertaken. One cycle of therapy lasts 

21 days with palbociclib being administered for the first 12 days, inducing pG1 

by day 8 when bortezomib treatment is started and repeated on days 11, 15, 

and 18 (Figure 3.1B). Results of the clinical trial are detailed in Di Liberto and 

Martin et al. (Di Liberto et al., n.d.). 

Using lymph node biopsies from patients, we performed a longitudinal 

examination of DNA and RNA changes during the first treatment cycle. For 

DNA, we used whole exome sequencing (WES) to assay copy number 

variations and single nucleotide variations before treatment (D1) and the end 

of the first cycle (D21). For RNA, we used whole transcriptome sequencing 

(WTS) prior to treatment (D1), after palbociclib when the cells are in pG1 

phase (D8), and the end of the first cycle (D21) (Figure 3.1C). We did not 

perform WES at D8 because cellular populations are expected to be similar 

between D1 and D8 as cells are not yet killed. The D21 time point not only 

reveals the effects of one cycle of the combination therapy, but also 

represents the population of cells entering the next cycle and may be used to 

predict response in the next cycle. This high quality sequencing data following 

6 patients with different responses to identical treatment regimens enabled  
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Figure 3.1. PALBOR combination therapy protocol and patient 
information. A. Molecular mechanism of palbociclib’s reversible effect on cell 
cycle progression. B. Clinical protocol for one cycle of palbociclib and 
bortezomib combination therapy. C. Patient lymph node samples with whole 
exome and whole transcriptome sequencing comprising 3 responders and 3 
non-responders. D. Chromosome 12 amplifications affecting the target of 
palbociclib, CDK4, found in complete responder PT14 and non-responder 
PT1. pG1, prolonged G1 arrest; pG1-S, synchronous progression through S 
phase; WES, whole exome sequencing; WTS, whole transcriptome 
sequencing; R, responder, i.e., had greater than 50% reduction of tumor 
volume; NR, non-responder.  
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identification of pathways likely involved in conferring innate resistance in non-

responders, and acquired resistance in relapse by using an integrative 

analysis pipeline to study clonal architecture and evolution during therapy of 

copy number and single nucleotide variants. Matched normal tissue samples 

were available for a subset of patients (responders PT7, PT13, and PT14), 

allowing us to confidently isolate MCL-specific mutations in these patients. For 

the remaining patients (PT1, PT2, and PT6), matched normal tissue was 

unavailable, and therefore we were unable to establish somatic status of 

mutations in these patients, an issue we approached differently for CNVs and 

SNVs, as described in the respective sections below.  

 

CDK4 amplifications do not affect response to PALBOR. Chromosome 12 

amplifications spanning CDK4, the target of palbociclib, were present at 

baseline in complete responder PT14 and non-responder PT1, with similarly 

high expression of CDK4 mRNA across all MCL patients (Figure 3.1D). This 

suggests that palbociclib remains a therapeutically effective CDK4 inhibitor 

even in the presence of genomic amplifications of the target.  

 

Multiple large-scale copy number variations differentiate responders 

from non- responders. CNVs were detected using 3 parallel methods: xhmm, 

VarScan 2 copycaller with circular binary segmentation using DNAcopy, and 

genome-wide SNP allele frequencies (Fromer & Purcell, 2014; Koboldt et al., 
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2012; Venkatraman & Olshen, 2007). Both xhmm and SNP allele frequencies 

allow for CNV characterization in the absence of normal controls. For 

DNAcopy, which uses the log ratio of normalized read depth between tumor 

and normal, we used the average of the read depth in normal tissues as the 

control for the patients lacking matched normal samples. Consensus CNVs 

across the different methods were deemed ‘high confidence’ and calculated 

for all samples. Genome-wide visualization of these CNVs at D1 revealed 2 

main points: (1) all genomes in the cohort have several large scale (>1 Mb) 

copy number aberrations, and (2) a subset of these CNVs are specific to either 

the responder group, defined as patients with partial (PT7, PT13) or complete 

response (PT14), or the non-responder group, defined as patients with stable 

(PT1) or progression disease (PT2, PT6), and may indicate mechanisms of 

sensitivity or resistance (Figure 3.2).  

Non-responder (NR) specific deletions, i.e. hemizygous deletions found 

in at least 2/3 non-responders and 0/3 responders, span 99 megabases and a 

total of 760 genes. These genes are significantly enriched for gene ontology 

processes involving type I interferon signaling, which includes Gene Ontology 

(GO) terms for STAT phosphorylation, B cell proliferation, and a host of other 

immune related functions (Table 3.1) (Eden, Navon, Steinfeld, Lipson, & 

Yakhini, 2009). The enrichment of these pathways can largely be attributed to 

a chromosome 9 deletion spanning 16 interferon genes. Other cancer genes 

in NR-specific deletions, selected for their overlap with the COSMIC Cancer  
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Figure 3.2. Copy number variations. Genome-wide visualization of CNVs 
before treatment (D1) where blue is deletion and red is amplification. The 3 
outside tracks show non-responders (NR) and the 3 inner tracks show 
responders (R). Green highlights refer to regions of CNVs specific to R or NR 
(i.e. shared by at least 2/3 of one group and 0/3 of the other) with genes 
contributing to enriched Gene Ontology (GO) terms or known to be causally 
mutated in cancer from the COSMIC database shown in tables.  
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Table 3.1. Gene ontology terms enriched in large-scale CNVs that differentiate 
responders and non-responders.   
 
 
 
  Table 1. Gene ontology terms enriched in large-scale CNVs that differentiate responders and non-responders.  

Gene group GO term Description P-value FDR q-value  Enrichment (N, B, n, b)
GO:0042742 defense response to bacterium 1.65E-10 2.19E-06 7.38 (18207,195,215,17)
GO:0009617 response to bacterium 1.23E-09 8.21E-06 6.48 (18207,222,215,17)
GO:0098542 defense response to other organism 3.10E-08 1.38E-04 4.65 (18207,346,215,19)
GO:0051707 response to other organism 7.41E-07 2.47E-03 3.63 (18207,467,215,20)
GO:0033141 positive regulation of peptidyl-serine phosphorylation of STAT protein 3.82E-23 5.08E-19 30.14 (18207,18,537,16)
GO:0033139 regulation of peptidyl-serine phosphorylation of STAT protein 3.82E-23 2.54E-19 30.14 (18207,18,537,16)
GO:0002323 natural killer cell activation involved in immune response 1.67E-20 7.40E-17 24.66 (18207,22,537,16)
GO:0045343 regulation of MHC class I biosynthetic process 1.67E-20 5.55E-17 24.66 (18207,22,537,16)
GO:0002286 T cell activation involved in immune response 1.07E-15 2.84E-12 12.45 (18207,49,537,18)
GO:0042100 B cell proliferation 1.91E-15 4.24E-12 14.66 (18207,37,537,16)
GO:0043330 response to exogenous dsRNA 1.37E-14 2.61E-11 13.23 (18207,41,537,16)
GO:0043331 response to dsRNA 3.34E-14 5.56E-11 12.62 (18207,43,537,16)
GO:0030101 natural killer cell activation 7.27E-13 1.07E-09 10.64 (18207,51,537,16)
GO:0070661 leukocyte proliferation 1.63E-12 2.17E-09 7.45 (18207,91,537,20)
GO:0046651 lymphocyte proliferation 2.72E-12 3.29E-09 7.76 (18207,83,537,19)
GO:0060338 regulation of type I interferon-mediated signaling pathway 3.66E-12 4.06E-09 11.87 (18207,40,537,14)
GO:0032943 mononuclear cell proliferation 4.29E-12 4.39E-09 7.58 (18207,85,537,19)
GO:0002285 lymphocyte activation involved in immune response 1.76E-11 1.67E-08 7.53 (18207,81,537,18)
GO:0033138 positive regulation of peptidyl-serine phosphorylation 7.68E-11 6.81E-08 6.94 (18207,88,537,18)
GO:0002366 leukocyte activation involved in immune response 9.17E-11 7.63E-08 6.05 (18207,112,537,20)
GO:0002263 cell activation involved in immune response 1.08E-10 8.49E-08 6.00 (18207,113,537,20)
GO:0002250 adaptive immune response 1.14E-10 8.42E-08 6.78 (18207,90,537,18)
GO:0033135 regulation of peptidyl-serine phosphorylation 5.76E-10 4.04E-07 5.80 (18207,111,537,19)
GO:0060337 type I interferon signaling pathway 1.20E-09 7.96E-07 7.37 (18207,69,537,15)
GO:0030183 B cell differentiation 1.24E-09 7.85E-07 6.78 (18207,80,537,16)
GO:0051122 hepoxilin biosynthetic process 2.19E-08 1.33E-05 33.91 (18207,5,537,5)
GO:0051121 hepoxilin metabolic process 2.19E-08 1.27E-05 33.91 (18207,5,537,5)
GO:0006959 humoral immune response 3.06E-08 1.70E-05 4.60 (18207,140,537,19)
GO:0001959 regulation of cytokine-mediated signaling pathway 4.15E-08 2.21E-05 5.37 (18207,101,537,16)
GO:0060759 regulation of response to cytokine stimulus 9.56E-08 4.89E-05 5.07 (18207,107,537,16)
GO:0018916 nitrobenzene metabolic process 7.49E-07 3.69E-04 33.91 (18207,4,537,4)
GO:0030098 lymphocyte differentiation 9.76E-07 4.64E-04 3.70 (18207,174,537,19)
GO:0042113 B cell activation 1.05E-06 4.80E-04 4.27 (18207,127,537,16)
GO:0051607 defense response to virus 1.97E-06 8.74E-04 3.87 (18207,149,537,17)
GO:0070489 T cell aggregation 2.04E-06 8.77E-04 3.39 (18207,200,537,20)
GO:0042110 T cell activation 2.04E-06 8.50E-04 3.39 (18207,200,537,20)
GO:0071593 lymphocyte aggregation 2.38E-06 9.61E-04 3.36 (18207,202,537,20)
GO:0050817 coagulation 3.34E-06 1.31E-03 2.37 (18207,487,537,34)
GO:0007596 blood coagulation 3.34E-06 1.27E-03 2.37 (18207,487,537,34)
GO:0070486 leukocyte aggregation 3.74E-06 1.38E-03 3.26 (18207,208,537,20)
GO:0007599 hemostasis 4.17E-06 1.50E-03 2.34 (18207,492,537,34)
GO:0002252 immune effector process 4.35E-06 1.52E-03 2.50 (18207,407,537,30)
GO:0042759 long-chain fatty acid biosynthetic process 4.88E-06 1.67E-03 16.95 (18207,10,537,5)
GO:0050878 regulation of body fluid levels 7.22E-06 2.40E-03 2.14 (18207,618,537,39)
GO:0019372 lipoxygenase pathway 2.32E-05 7.52E-03 13.04 (18207,13,537,5)
GO:0070458 cellular detoxification of nitrogen compound 2.55E-05 8.09E-03 33.91 (18207,3,537,3)
GO:0051410 detoxification of nitrogen compound 2.55E-05 7.90E-03 33.91 (18207,3,537,3)
GO:0034109 homotypic cell-cell adhesion 2.82E-05 8.53E-03 2.76 (18207,258,537,21)
GO:0007159 leukocyte cell-cell adhesion 3.30E-05 9.77E-03 2.81 (18207,241,537,20)
GO:0035589 G-protein coupled purinergic nucleotide receptor signaling pathway 7.15E-08 9.52E-04 42.78 (18207,14,152,5)
GO:0035588 G-protein coupled purinergic receptor signaling pathway 5.32E-07 3.54E-03 29.95 (18207,20,152,5)
GO:0035590 purinergic nucleotide receptor signaling pathway 6.94E-07 3.08E-03 28.52 (18207,21,152,5)
GO:0035587 purinergic receptor signaling pathway 2.64E-06 8.79E-03 22.18 (18207,27,152,5)

Deleted in 2/3 or 3/3 
responders and 0/3 non-

responders

Deleted in 2/3 or 3/3 non-
responders and 0/3 

responders

Amplified in 2/3 or 3/3 non-
responders and 0/3 

responders

Enrichment calculated by GOrilla as (b/n) / (B/N), where N is the total number of genes, B is the total number of genes associated with a specific GO term, n is the number of 
genes in the input group, and b in the number of genes in the intersection. 
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Gene Census database, include include TP53, CDKN2A, and JAK2 

(Futreal et al., 2004). Deletions of CDKN2A and TP53 have previously been 

identified as predictive of poorer prognosis in MCL (Delfau-Larue et al., 2015). 

CDKN2A, also known as p16INK4A, inhibits CDK4 and CDK6 and is required for 

palbociclib’s function. Loss of function of JAK2 underlies leukemic 

transformation in subtypes of Acute Myeloid Leukemia, and JAK2 is known to 

play an important role in interferon signaling (Beer et al., 2010; Darnell, Kerr, & 

Stark, 1994). These NR-specific deletions affect mRNA expression, further 

implicating their functional potential (Figure 3.3). 

Non-responder specific amplifications (found in at least 2/3 non-

responders and copy-neutral in all responders) span 255 genes, and are 

enriched for GO terms involving G-protein coupled receptor signaling 

pathways (Table 3.1). Genes responsible for this GO enrichment are found in 

a shared chr3 amplification unique to PT2 and PT6 (Figure 3.2). Responder 

specific amplifications span 12 genes and are not statistically significantly 

enriched for any GO terms. Similar to large-scale deletions, NR-specific and 

R-specific amplifications correspondingly affect mRNA expression (Figure 3.4, 

3.5). 
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Figure 3.3. NR-specific deletions. Heatmap of mRNA expression of genes 
hemizygously deleted in at least 2/3 non-responders and 0/3 responders. 
Expression value plotted is the z-score of log2-transformed FPKM of each 
gene.   
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Figure 3.4. NR-specific amplifications. Heatmap of mRNA expression of 
genes in regions of chromosomal amplifications found in at least 2/3 non-
responders and 0/3 responders. Expression value plotted is the z-score of 
log2-transformed FPKM of each gene. 
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Figure 3.5. R-specific amplifications. Heatmap of mRNA expression of 
genes in regions of chromosomal amplifications found in at least 2/3 
responders and 0/3 non-responders. Expression value plotted is the z-score of 
log2-transformed FPKM of each gene. 
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In parallel with NR-specific hemizygous deletions being enriched for 

interferon genes, responder (R) specific hemizygous deletions are enriched for 

GO terms involving defensive response to bacteria owing to the deletion of 

DEF genes on chr8 (Table 3.1, Figure 3.2). Both of these implicate an 

important role for immune response in the success of PALBOR treatment. 

Cancer genes in this list include PCM1, a gene recurrently translocated in a 

number hematological malignancies along with translocation partners RET 

and JAK2 (Futreal et al., 2004). RET is amplified in partial responder PT7 and 

JAK2 deleted in non-responders PT2 and PT6. R-specific deletions also span 

hundreds of other genes and lower the expression levels of these genes 

(Figure 3.6). Interestingly, lower expression of a cluster of R-specific deleted 

genes brings their expression levels closer to normal PBC controls than those 

of the other MCL patients, causing responders and PBCs to cluster 

interchangeably with each other and distinctly from non-responders (Figure 

3.7). This suggests that deletions of these genes results in a less severe 

disease in the context of PALBOR.  

Comparing all identified copy-number altered genes in our patient 

cohort to the COSMIC Cancer Gene Census list highlighted the presence of 

several recurrently amplified and deleted genes. Commonly deleted in cancer 

genes found in our data include ATM, BIRC3, BRCA2, CDKN2A, CDKN2C, 

PTEN, RB1, and, TP53. TP53 and ATM are not only deleted but also non-

synonymously mutated in our sample cohort, discussed further below.  
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Figure 3.6. R-specific deletions. Heatmap of mRNA expression of of genes 
in regions of hemizygous deletions found in all 3 responders and 0/3 non-
responders. Expression value plotted is the z-score of log2-transformed FPKM 
of each gene.  
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Figure 3.7. Subset of R-specific deletions. Subset of genes shown in 
Supplementary Figure 5 where deletion in responders results in expression 
levels similar to normal controls. Samples from patients lacking any deletion 
(i.e. non-responders) have elevated levels compared to resting normal B cells 
and comparable to a subset of activated normal B cells.   
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Commonly amplified in cancer genes also found in our list include JUN, 

MDM2, MYC, and SOX2. MYC overexpression is known to provide a growth 

advantage resulting in a more aggressive disease in the double-hit subtype of 

MCL (Setoodeh et al., 2013).  We detected a 33 Mb chromosome 8 

amplification in non-responder PT1, present at D1 and D21, spanning the 

MYC gene (Figure 3.8A). PT1, along with non-responder PT2, also had 

higher MYC RNA levels compared to the other patients and normal peripheral 

blood controls (PBCs) (Figure 3.8B). Responders exhibited lower MYC RNA 

levels than PBCs. Higher MYC RNA in PT1 and PT2 also correlated with 

higher protein levels as seen by immunohistochemistry (Figure 3.8C). WES 

revealed amplification of chr8 in partial responder PT7, but this was not 

reflected in the RNA levels as PT7 had similarly low MYC expression as the 

other responders and lower expression than the PBCs.  
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Figure 3.8. MYC amplifications and over-expression. A. Amplification of 
chr8 spanning MYC in 2/6 patients. B. Increased RNA expression of MYC in 
PT1 (has DNA amplification) and PT2 (no CNV). C. Immunohistochemistry 
showing increased protein expression of MYC in PT1 and PT2 correlating with 
RNA expression.  
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Two-hit loss of ATM and TP53 in non-responders. Integrative WES and 

WTS analysis revealed that all 3 NRs have deletions, mutations, or both of 

ATM and TP53. PT2 has a mutation and hemizygous deletion of ATM 

resulting in 100% expression of the mutated allele and reduced overall 

expression, PT6 has a similar combined deletion and mutation in TP53 again 

resulting in 100% expression of the mutated allele although mRNA expression 

is increased instead of decreased, and PT1 has hemizygous deletions of both 

ATM and TP53 resulting in lower expression of ATM but higher expression of 

TP53, similar to PT6 (Figure 3.9A, B). ATM alterations were also found in 

responders of the cohort: complete responder PT14 has an ATM SNV and 

partial responders PT13 and PT7 have hemizygous losses of ATM. However, 

50% expression of the wild type allele remains in both of these cases and 

similar overall gene expression as normal controls and the other responders, 

suggesting that heterozygous mutations of ATM, the most commonly mutated 

gene in MCL, is tolerated by the treatment, but loss of either both copies in 

one of the genes or hemizygous loss of both genes, ATM and TP53, may 

affect response to PALBOR.  
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Figure 3.9. Non-responder specific SNVs and hemizygous deletions of 
ATM and TP53. A, B. Integrative copy number, mutation, and RNA 
expression data show that 3/3 NRs have ATM and/or TP53 alterations. 
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BCL6 amplifications do not affect response to PALBOR. Chromosome 3 

amplifications spanning BCL6 were found in non-responders PT2 and PT6 

and the complete responder PT14 (Figure 3.10A) suggesting that gain of 

BCL6, a transcription factor important in germinal centers and B-cell 

lymphomagenesis and expressed in 12% of MCL cases, does not generate 

resistance to PALBOR (Basso & Dalla-Favera, 2010; Gualco, Weiss, 

Harrington, & Bacchi, 2010).  The effect of BCL6 amplifications in PT14, PT2, 

and PT6 was confirmed at the RNA (Figure 3.10B) and protein levels (Figure 

3.10C); PT14 had higher RNA expression than all other patients and both 

PT14 and PT2 had higher protein expression than PT1, a patient who lacked 

BCL6 CNV. BCL6 protein was compared to hematoxylin instead of PAX5, 

which identifies MCL tumor cells, since PAX5 IHC was found to inhibit BCL6 

expression resulting in unreliable images. PAX5 staining for comparison can 

be found in figure 3.8. 
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Figure 3.10. BCL6 amplifications in non-responders and responders.  A. 
CNV of chr3 spanning BCL6 in R PT14 and NRs PT2 and PT6. B. RNA 
expression of BCL6 in all patients showing higher than PBC control levels in 
5/6 patients and especially high levels in PT14. C. Immunohistochemistry of 
BCL6 at D1 shows high protein levels in PT14 and PT2, both of whom have a 
DNA amplification, and lower levels in PT1, who does not have a CNV.  
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Relapse-specific chromosome 13 deletion. As one of the responding 

patients, PT13, later relapsed, we sequenced the tumor exome at 3 time 

points: prior to treatment D1, end of first cycle D21, and a relapse sample 

biopsied prior to any additional treatment. We found the relapse time point to 

lack the hemizygous deletions of interferon genes thought to contribute to 

innate resistance in non-responders PT2 and PT6. Non-responder PT1 also 

lacked this chromosome 9 deletion, pointing to alternate potential mechanisms 

of resistance in the relapse sample and in PT1. We discovered the relapse 

sample to contain the same CNVs at D1 and D21 with the exception of a 

relapse-specific chromosome 13 hemizygous deletion spanning 62.7 Mb 

(Figure 3.11A). A chromosome 13 deletion largely overlapping this region was 

also found in PT1 (Figure 3.11A). This hemizygous deletion spans RB1, a 

gene essential to palbociclib’s mechanism of action. The effects of the deletion 

are compensated by regulatory mechanisms however, and RB1 RNA levels 

remain similar across patient samples with and without the deletion and 

normal controls (Figure 3.11B). Other genes affected by the chr13 deletion 

are lowered in expression and may contribute to; these genes include 

COSMIC cancer related genes BRCA2, FOXO1, LCP1, and LHFP (Figure 

3.12). 
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Figure 3.11. Chromosome 13 deletion unique to NR PT1 and relapse in 
PT13 and relapse-specific shifts in somatic SNV. A. Plots of read depth 
showing large-scale hemizygous loss in chromosome 13 in PT1 (all 
timepoints) and PT13 (relapse only). B. RB1 mRNA expression in samples 
with chr13 deletion (blue) and those without (pink) showing similar expression 
in patients with and without CNV.  
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Figure 3.12. Chromosome 13 hemizygous deletion. Heatmap of z-score of 
log2 FPKM values of all expressed genes in the region of deletion shared by 
both PT1 and PT13 relapse.  
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Clonal architecture and evolution of single nucleotide variants. Although 

the chr13 deletion was the only large CNV undetectable before relapse, 

comparison of the cellular frequencies of SNVs between the two primary time 

points and the relapse time point revealed complex subclonal architecture 

including clusters of Single Nucleotide Variants (SNVs) that expanded in 

relapse. SNVs were identified using GATK UnifiedGenotyper for all tumor and 

germline samples simultaneously. SNVs with low read depth (<10) and low 

quality scores (<20) as well as those present in 1000 genomes phase I data 

derived from Oncotator annotations were filtered out (Ramos et al., 2015). For 

patients with matched normal samples (PT7, PT13, PT14), SNVs were 

considered somatic if greater than 10% of reads mapped to the variant allele 

in the tumor while 0 reads mapped the variant allele in the normal.  

To infer subclonal composition of SNVs, we used pyclone, a 

probabilistic graphical model that infers cellular prevalence of mutations using 

allele frequency and copy number (Roth et al., 2014). In order to identify the 

presence of subclones that shift during therapy with high confidence, we 

limited this analysis to variants identified in WES at bases covered by at least 

30 reads at all time points within a patient, have an alternate allele frequency 

of at least 10% in one or more time points, and have a minimum change in 

allele frequency of 25%. This includes coding and noncoding mutations since 

either provide evidence for the presence of a subclone. These filters were 

applied to patients with and without matched normal controls alike, and for 
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patients with matched normal, we further filtered any germline SNPs (single 

nucleotide polymorphisms). 

The inferred clonal dynamics during the first cycle of treatment for all 

patients (R and NR) revealed clusters that decrease in prevalence, increase, 

and stay constant, demonstrating therapy-related clonal evolution (Figure 

3.13). Although this identified interesting SNVs, especially in CR PT14 where 

SNVs in CCT5, CPT1C, and MUC4 were found to decrease after D1, the lack 

of overlap in clonal and subclonal SNVs across patients likely due to the 

overall low number of SNVs used in this analysis motivated us to expand our 

analysis to all somatic SNVs with minimum coverage of 10 reads at both time 

points and minimum variant allele frequency of 10% in at least one time point. 

This analysis (limited to patient samples with germline data) revealed a larger 

list of SNVs that expand or decrease during the treatment timeline (Figure 

3.14A-F). However, overlap between the genes with SNVs in decreasing 

clusters and increasing clusters remained low, with only one shared gene, 

ADAMTS18, identified (Figure 3.14G, H). These genes also lack shared GO 

enrichments confirming they are not different genes functioning in the same 

molecular pathways. Given these results, we conclude that SNVs are not 

useful in this case for identifying signatures of resistance or sensitivity that 

could be translated to other patients, and the shared CNVs discussed above 

offer more insight.  
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Figure 3.13. SNV cluster dynamics of highly covered SNVs. Cellular 
prevalence of inferred clusters (left) and the corresponding SNVs in each 
cluster (right) prior to treatment (D1) and after first cycle (D21) in each patient. 
Input SNVs have a minimum coverage of 30 reads, minimum variant allele 
frequency of 10%, and a minimum frequency shift between time points of 25%. 
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Figure 3.14. SNV cluster dynamics. A-F. Cellular prevalence of SNVs 
passing minimum coverage of 10 and minimum variant allele frequency of 
10% filters and inferred clusters prior to treatment (D1) and after first cycle 
(D21) in responders PT14 (A, B), PT13 (C, D), and PT7 (E, F). G. Overlap 
between genes in clusters decreasing in frequency in each responder. H. 
Overlap between genes in clusters increasing in frequency in each responder.  
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Longitudinal analysis of SNVs in PT13 with these more lenient filters 

and larger list of SNVs and comparison of the cellular frequencies of SNVs 

between the two primary time points and the relapse time point revealed 

complex subclonal architecture and dynamics. Several SNVs remain constant 

in frequency between the primary and relapse time points implying a clonal 

origin for the relapse sample, and there was a cluster of SNVs that decrease 

in frequency during the first cycle of treatment, reflecting the effect of PALBOR 

on overall clonal composition (Figure 15).  In addition, we detected 3 clusters 

of SNVs that were present at less than 10% cellular prevalence at D1 and D21 

and expand to greater than 25% in relapse (Figure 15). These clusters 

encompass 223 total SNVs and were inferred to be present in an average of 

4% of cells at the D1 time point suggesting that the dominant relapse clone 

was present pre-treatment. 
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Figure 3.15. Clonal evolution across three time points. Cellular frequencies 
of highly covered SNVs (minimum coverage 10 at each time point, minimum 
variant allele frequency 10% at one or more time points) at D1, D21, and 
relapse in PT13 showing both clusters of shared SNVs and clusters of SNVs 
expanding in relapse. 

0.00

0.25

0.50

0.75

1.00

Day 1 Day 21 Relapse

M
ea

n 
Fr

eq
ue

nc
y

Cluster
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1 (n=20)
2 (n=10)
3 (n=114)
4 (n=89)

5 (n=3)
6 (n=2)
7 (n=1)
8 (n=2)

9 (n=49)
10 (n=11)
11 (n=1)
12 (n=53)

13 (n=9)
14 (n=2)
15 (n=1)
16 (n=1)

17 (n=1)
18 (n=1)
19 (n=1)

SNV Clusters Cellular Frequencies
PT13



 63 

DISCUSSION 

This study describes novel information gained from longitudinal 

sequencing of exomes and transcriptomes of patients in a phase I clinical trial 

in recurrent Mantle Cell Lymphoma. The trial consisted of the combination of 

the CDK4/CDK6 inhibitor palbociclib and the proteasome inhibitor bortezomib 

(PALBOR). Our unique data profiling 3 responders and 3 non-responders at 

multiple time points of before treatment, mid cycle while cells are in prolonged 

G1 arrest (pG1), and after one cycle of treatment where the sampled cells 

have escaped both CDK4 and proteasome inhibition, have enabled us to 

identify candidate genomic and transcriptomic predictors of response to 

PALBOR. For the 3 responders, we were also able to sequence matched 

normal tissue acquired from buccal swabs, which were unavailable for the 3 

non-responders.   

We investigated subclonal architecture and clonal evolution in the 

specific context of PALBOR treatment, identifying clusters of SNVs in 

responders and non-responders that decrease in prevalence, indicative of 

sensitive cells, or increase in prevalence, indicative of cells escaping 

treatment. However, overlap between patients on genes and pathways 

comprising these clusters was absent, suggesting features other than SNVs 

should be used to identify signatures of sensitivity and resistance. Instead, we 

found large-scale copy number aberrations and corresponding gene 

expression changes to likely affect response to PALBOR.  
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Palbocilib was first applied as a therapeutic agent in MCL because of 

the aberrant expression of CDK4 and cyclin D1 that is a hallmark of the 

disease. CDK6, the other target of palbociclib, is silenced in MCL (Di Liberto et 

al., n.d.). Interestingly, 2/6 patients in the sequenced cohort had a CDK4 

amplification, one of whom was the complete responder PT14, suggesting that 

palbociclib remains effective even with an amplification of its substrate, and 

the lack of somatic SNVs and indels in coding regions of CDK4 suggests that 

CDK4 is a favorable drug target. Similarly, BCL6 amplifications were found in 

the complete responder and 2/3 non-responders, implicating that response to 

treatment is not governed by this aberration, as is the case in many other 

lymphomas such as DLBCL (Gualco et al., 2010; Karube et al., 2008). BCL6 is 

known to be regulated at the RNA and protein levels, mainly plays a role in 

germinal center lymphoma cells, and amplifications are uncommon in MCL, a 

pre-germinal center cancer (Camacho et al., 2004; Gualco et al., 2010). BCL6 

is also known to lower TP53 expression, which, along with ATM, is 

hemizygously deleted and mutated in multiple patients in our cohort (Phan & 

Dalla-Favera, 2004).  

Unlike CNVs spanning CDK4 and BCL6, there are several large CNVs 

that do correlate with patient response group; most notably, chromosome 9 

deletions affect 3/3 non-responders and 0/3 responders. In 2 of the non-

responders, PT2 and PT6, chr9 hemizygous deletions span a large set of 

genes coding for type I interferons (IFNs), a class of cytokines produced and 
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released by immune cells in response to viruses. IFN loss has been implicated 

in other cancers for causing resistance to chemotherapy and may explain 

resistance to PALBOR in PT2 and PT6 (Sistigu et al., 2014). Chromosome 9p 

loss was also recurrently detected in microarray copy number profiling of 77 

MCL primary tumors (Hartmann et al., 2010). A synergistic link between 

interferon and bortezomib was previously reported in other cancers; interferon-

α, when used as a therapeutic agent, synergizes with bortezomib in melanoma 

(Lesinski et al., 2008; Markowitz et al., 2014) and bladder cancer 

(Papageorgiou, Kamat, Benedict, Dinney, & McConkey, 2006), and interferon-

γ overcomes bortezomib resistance in hematological cells (Niewerth et al., 

2014). Not only are these immune pathways related to the function of 

bortezomib, but may also play an integral role in CDK4/6 inhibition therapy. 

Recent work in breast cancer mouse models uncovered that CDK4/6 inhibition 

activates expression of endogeneous retroviral elements by the tumor cell, in 

turn triggering an anti-tumor immune response facilitated by type III interferons 

and T-cell-mediated cytotoxicity (goel et al., 2017). Our data suggests that 

hemizygous loss of interferon expression through a recurrent CNV may 

antagonize PALBOR activity. A potential mechanism for this action is through 

the Interferon Regulatory Factor (IRF) family of transcription factors and 

TRAIL-mediated cell death as these pathways share multiple points of 

functional interactions (Figure 3.16). Cell-cycle coupled loss of IRF4 as a 

result of palbociclib-induced pG1 is known to sensitize cells to bortezomib 
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killing (Huang et al., 2012). Functional studies have shown that TRAIL gene 

expression is regulated by IRF genes (Yoshida et al., 2005), and microarray 

studies have revealed TRAIL-mediated induction of interferon genes as well 

as interferon-induced up regulation of of TRAIL (Kumar-Sinha, Varambally, 

Sreekumar, & Chinnaiyan, 2002). Thus, loss of interferon genes may reduce 

sensitivity to PALBOR by lowering TRAIL-mediated apoptosis (Di Liberto et 

al., n.d.).  

The lack of any deletion of interferon genes in PT1 or the relapse 

sample in PT13 indicates alternate mechanisms of resistance. Resistance in 

PT1, the patient with stable disease, may stem from other CNVs as this 

patient has the highest number of deletions and duplications of any in the 

sequenced cohort. These include amplification of MYC and hemizygous 

deletions of both ATM and TP53. Genomic amplification and corresponding 

elevated transcript and protein levels of the MYC oncogene may contribute to 

resistance since MYC plays an important role in B cell proliferation and is 

commonly mutated or overexpressed in lymphomas (Hao et al., 2002; Oberley 

et al., 2013; Setoodeh et al., 2013).  

For PT13, who relapsed after initial response, we not only sequenced 

the D1 and D21 time points as we did for the other patients but also the 

relapse sample, providing insight into both initial response and acquired 

resistance. The relapse sample lacked the chromosome 9 deletion and 

subsequent IFN loss seen in non-responders PT2 and PT6. Exploring clonal 
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evolution in this patient revealed a large list of mutations and CNVs that 

remain constant in frequency at D1, D21, and relapse implying a clonal origin 

for the relapse tumor. SNV clusters that expand in the relapse time point were 

detected at low levels (4% of cells) in the earlier time points, suggesting that 

the dominant relapse clone was present from the start of treatment and 

therapy selected for the resistant clone. This is consistent with the fact that this 

patient was a partial responder. The only CNV that changed between D21 and 

the relapse sample was a chromosome 13 deletion which largely overlaps with 

the chromosome 13 deletion observed in non-responder PT1. This deletion 

spans RB1 although RNA levels of RB1 are compensated in both patients, 

emphasizing the importance of integrative DNA and RNA approaches. 

However, the hundreds of other genes in this region where loss of one copy 

affected RNA expression may play a role in driving resistance in the relapse 

tumor as well as in PT1. Further indication of the functional importance of this 

deletion is that we previously identified a similar relapse-specific chr13 

deletion in the context of ibrutinib treatment in MCL (Chiron et al., 2014). 

Overall, we leveraged a unique longitudinal and integrative genomic and 

transcriptomic study design to understand molecular changes underlying 

response to the combination therapy of palbociclib and bortezomib. Exploring 

genomic alterations, validating their effect on RNA expression, and further 

testing effects on protein level through immunohistochemistry enabled us to 

generate hypotheses about mechanisms important for response to PALBOR 
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therapy. We demonstrated a potential role for loss of interferon genes in innate 

resistance coupled with combined mutations and hemizygous deletions of 

ATM and TP53 and amplification and concordantly increased mRNA 

expression of MYC. After more extensive functional validation and analysis of 

data from larger cohorts, these can then be applied towards precision 

medicine efforts for targeting patients likely to respond while furthering 

understanding of MCL biology. 

 These data have implications for not just treating MCL but cancer 

therapy in general. Research in recent years has lent promise to a class of 

drugs called immunotherapies where the body’s immune system is leveraged 

for targeting tumor cells. As this study and other recent work on the 

mechanism of CDK4/6 inhibition therapy have highlighted an important role for 

immune signaling in the efficacy of this therapy, combining PALBOR with 

immunotherapy such as interferon therapy, may further improve response to 

PALBOR. Moving forward, testing these combinations preclinically and 

implementing in clinic may offer a new set of therapeutic possibilities in MCL 

and other cancers.  
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Figure 3.16. Protein-protein interaction network from the STRING database 
(Szklarczyk et al., 2015) showing shared functions between interferon 
signaling, TNFSF10 (TRAIL) cell death, and other genes involved in CNVs or 
response to bortezomib.   
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CHAPTER 4 

 

SINGLE CELL ISOFORM DYNAMICS AND TRANSCRIPTOMICS  

IN MYELODYSPLASTIC SYNDROMES STEM CELLS DURING THERAPY 

 

PREAMBLE 

This chapter is an expanded version of a manuscript in preparation3. 

SC performed FACS sorting. PV performed all single cell experiments and 

sequencing library preparations, computational analysis, generated figures, 

and wrote text with input from all authors. MM contributed to analysis in figure 

4.x and text describing it. All authors reviewed data and content. VK, CEM, 

and CYP conceived the project.  

 

INTRODUCTION 

 MDS are a class of neoplastic bone marrow failure disorders that 

frequently progress to acute myeloid leukemia (AML) and affect an estimated 

30,000 to 50,000 patients annually in the U.S. (Bejar & Steensma, 2014). 

Current FDA-approved therapies include the DNA methyltransferase inhibitors 

decitabine and azacitidine, and the immunomodulatory agent lenalidomide, 

                                                
3 Vijay P, Chung SS, MacKay M, Tomoiaga D, Gonzalez MDR, Stern D, 
O’Sullivan D, Klimek V, Mason CE, Park CY. Single Cell Isoform Dynamics 
and Transcriptomics in Myelodysplastic Syndromes Stem Cells During 
Therapy. (in preparation) 
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which produce short-term remissions in a subset of patients. However, 

disease always remerges, and the only potentially curative treatment remains 

allogeneic stem cell transplantation (SCT), which results in long-term disease 

free survival in 30-40% of the patients who qualify for and receive SCT (Bejar 

& Steensma, 2014). Further understanding of the complex mechanisms 

underlying MDS pathogenesis and how MDS disease-initiating cells evade 

current treatments through innate or acquired mechanisms would improve 

treatment of MDS.  Transcriptional profiling using next generation sequencing 

approaches is particularly promising given the epigenetic dysregulation and 

aberrant splicing frequently observed in MDS through recurrent mutations in 

both epigenetic regulators and splicing factors (Bejar et al., 2012; Haferlach et 

al., 2014; Papaemmanuil et al., 2013). Hematopoietic stem cells (HSCs, Lin-

CD34+CD38-CD90+CD45RA-) were previously identified as the MDS-initiating 

population (Pang et al., 2013; Woll et al., 2014). Here, we report the first 

transcriptome-wide study of MDS HSCs, the first application of single cell 

RNA-sequencing (scRNA-seq) in MDS, and (to our knowledge) the first single-

cell delineation of isoform changes of a cancer during therapy.  

 Recent advances in single cell sequencing have demonstrated its utility 

in identifying heterogeneous cell types in a number of normal and disease 

contexts (Gawad, Koh, & Quake, 2016; Macosko et al., 2015; Pollen et al., 

2014; Shalek et al., 2013; Svensson et al., 2017; Trapnell et al., 2014). 

However, studies exploring splicing heterogeneity at the single cell level are 
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limited (Shalek et al., 2013). Here, we sequenced full-length mRNA transcripts 

as opposed to the 3’-end counting used by the majority of high-throughput 

scRNA-seq platforms currently available, which provided a unique insight into 

the heterogeneous expression of splice variants in MDS HSCs. Moreover, we 

developed an open-source tool, DISCO (distributions of isoforms in single cell 

omics; https://pbtech-vc.med.cornell.edu/git/mason-lab/disco/tree/master), a 

novel method described here for the analysis of alternative splicing in scRNA-

seq or other large sets of RNA-seq data. DISCO provides an easy to use 

method to compare relative isoform abundances between groups of samples, 

perform non-parametric statistical testing, corrects for multiple testing, and 

visualizes significant shifts in splice variant distributions. Using DISCO, we 

verified previously reported findings of SRSF2 mutations altering preference of 

exonic splice elements and demonstrate novel, therapy-specific responses. 

Integrative analysis of gene and isoform expression heterogeneity of 

MDS HSCs pre- and post-decitabine therapy in responders, non-responders, 

untreated patients with stable disease, and age-matched normal donors 

recapitulated previously known pathogenic mechanisms, such as dysregulated 

ribosome biogenesis (Narla & Ebert, 2010), and identified novel pathways 

differentiating disease states and response. Single cell resolution provided a 

unique view into the heterogeneous cell states occupied by MDS HSCs and 

their dynamics during treatment, highlighting differences between populations 

likely sensitive or resistant to therapy.  
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RESULTS 

 

Single cell RNA-seq of MDS patient bone marrow biopsies. We FACS-

purified hematopoietic stem cells (HSCs) from MDS patients and normal age-

matched controls, and used the Fluidigm C1 platform to isolate 684 single 

cells from bone marrow biopsies of 3 groups of MDS patients (n=8): decitabine 

responders, decitabine non-responders, and MDS patients untreated (Figure 

4.1). HSCs were defined using FACS markers Lin-CD34+CD38-

CD90+CD45RA- (Figure 4.2) (Pang et al., 2013). Longitudinal pre- and post-

decitabine treatment samples (and serial samples from the untreated patient) 

were sequenced from 4 patients, providing a cell-to-cell view of the effects of 

decitabine on MDS stem cells and MDS progression. Similarly processed 

single HSCs were sequenced from age-matched normal donors as controls. 

All cells were sequenced at an average depth of 4.6 million mapped reads per 

cell using paired-end 100bp sequencing, which we and others have shown 

improves accurate mapping across splice junctions and detection of novel 

junctions compared to shorter and single reads (Chhangawala, Rudy, Mason, 

& Rosenfeld, 2015) (Figure 4.3).  

 

MDS and Normal HSCs exhibit unique transcriptional landscapes. A 

heatmap of highly expressed genes (mean log2(FPKM) of 2 or higher across 

all samples) reveals clustering of patient and response groups but also  
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Figure 4.1. Experimental Design and Samples. A. single cell RNA-seq was 
used to assay transcriptome signatures of FACS purified hematopoietic stem 
cells (HSCs) from MDS patients before and after decitabine treatment. B. The 
number of single cells captured from each patient sample at different time 
points (pre- and post-decitabine for treated patients, and serial time points for 
untreated) as well as response status and SRSF2 mutations independently 
assessed with a targeted sequencing panel.   



 75 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2. FACS purification of MDS stem cells. An example sort (Lin-
CD34+CD38-CD90+CD45RA-)  
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Figure 4.3. Mapping rates of scRNA-seq data. A. Number of mapped reads 
in each cell in each sample (mean: 4.6 million). B. Fraction of reads mapped in 
each cell (mean: 0.84)  
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extensive heterogeneity (Figure 4.4A). To tease out these signals, explore the 

transcriptional landscape of MDS and normal HSCs, and visualize 

relationships between different groups of cells, we used the dimensionality 

reduction method t-distributed stochastic neighbor embedding (t-SNE), and 

found that the majority of MDS and normal stem cells are well differentiated by 

transcriptional signals even in reduced 2-dimensional space (Figure 4.4B). 

Moreover, HSCs from patients who did not respond to decitabine therapy 

cluster more distantly from normal HSCs than those from responders even 

prior to therapy, suggestive of response biomarkers. To test whether the 

primary source of variation observed on the t-SNE projection is derived from 

differences in cell cycle phase, we calculated phase scores based on 

expression of known cell cycle markers, and found that signals other than cell 

cycle phase must explain the observed separation (Figure 4.5). These signals 

are explored further below using differential expression analysis, 

pseuodotemporal lineage ordering, and cell state identification.  As several 

spliceosome genes are recurrently mutated in MDS (Alderton, 2015) and in 

our patient cohort (Figure 4.1B), aberrant alternative splicing, a likely key 

driver of MDS pathogenesis, may contribute to differentiating these groups in 

addition to gene expression. 
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Figure 4.4. Visualizing MDS transcriptomes. A. Heatmap of the Z-score of 
expression (log2(FPKM+1)) of highly expressed genes (mean log2(FPKM) of 
2 or higher) across all samples. B. T-distributed stochastic neighbor 
embedding (t-SNE) projection of single cell transcriptomes showing clusters 
separating by response group, with non-responders furthest from the cluster of 
normal HSCs. 
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Figure 4.5. Cell cycle phases of single cells. A. Heatmap of normalized 
scores calculated in each cell for each cell cycle phase. B. Assigned phases of 
cells on t-SNE projection C. Number of cells and D. Fraction of cells of each 
response group assigned to each phase. 



 80 

DISCO: a novel method for analyzing alternative splicing in single cell 

and other large scale RNA-seq data. scRNA-seq yields a unique view into 

the distributions of isoforms in single cells otherwise unobservable with bulk 

RNA-sequencing. For example, for a gene with two isoforms, a 50% measured 

expression of each isoform from bulk data may refer to all cells expressing 

both isoforms in equal proportions or half the cells in the population expressing 

only isoform 1 and the other half expressing only isoform 2 (Figure 4.6A). 

Similar to reports on bulk vs. single-cell gene expression (Shalek et al., 2013), 

isoform abundance quantifications (relative to other isoforms of the same 

gene) averaged across single cells recapitulates the signal observed in bulk 

sequencing measurements (r2=0.778), while any single cell reveals 

heterogeneous isoform expression otherwise missed by bulk sequencing 

(Figure 4.6B). This heterogeneous expression of isoforms may be integral to 

defining functional cell types, cancer progression, and response to therapies. 

With the advent of single cell technologies enabling sequencing of full-length 

mRNA transcripts, heterogeneous isoform expression can now be studied in a 

transcriptome-wide manner.  

Current computational methods for analyzing alternative splicing from 

bulk RNAseq data do not translate well to the single cell setting since they 

either do not model comparisons between multiple sets of samples (Katz, 

Wang, Airoldi, & Burge, 2010), are too slow to scale to hundreds of samples 

(Trapnell et al., 2012), or do not address the complex multi-modal distributions  
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Figure 4.6. Single Cell Isoform Analysis with DISCO. A. Theoretical 
example of new information gained by isoform analysis at single cell resolution 
compared to bulk sequencing. B. Comparison of isoform abundance relative to 
other isoforms of the same gene (PSI; percent spliced isoform) between bulk 
(~1000 pooled cells) RNA-seq and the average across at least 50 cells shows 
high correlation, similar to gene expression (left); comparing bulk with a single 
HSC shows low correlation, suggesting a high degree of cell-cell heterogeneity 
(right). C. Schematic of the analysis pipeline for DISCO (Distributions of 
Isoforms in Single Cell Omics), a novel method for comparing relative isoform 
abundances in sample groups of single cell transcriptomes.  
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of isoform expression observed at the single cell level (Shalek et al., 2013). To 

address this issue, we developed DISCO (Distributions of Isoforms in Single 

Cell Omics), a software package to facilitate the identification and visualization 

of differential isoform usage from the hundreds or more samples of scRNA-

seq experiments. Our analysis pipeline consists of splice-aware alignment with 

STAR, inferring relative abundances of each isoform in each cell with software 

such as MISO, and using Kolmogorov-Smirnov tests with correction for 

multiple testing to identify significant shifts in the distributions of isoform 

expression between two sample groups of interest (Figure 4.6C).  

 

DISCO recapitulates known effects of SRSF2 mutations. SRSF2 is 

mutated in 20-30% of MDS cases (E. Kim, Ilagan, Bradley, & Abdel-Wahab, 

2015). Previous studies in mouse models have shown that SRSF2 P95H 

mutations alter the protein’s preference for exonic splice enhancers (ESEs), 

and identified an increased occurrence of CCNG motifs over GGNG in the 

mutated samples (E. Kim et al., 2015). To investigate whether these changes 

are preserved in MDS HSCs, we used DISCO to identify differentially spliced 

cassette exons between patients with and without SRSF2 P95 mutations and 

tested for the enrichment of 4-, 5-, and 6-mers in these exons above a 

background distribution measured from 1000 randomly selected, expressed 

exons. We observed an increase in the CCNG motif in exons included more in 

SRSF2 mutated samples as well, suggesting not only that the functional 
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effects of SRSF2 P95 mutations seen in mouse cells and human cell lines are 

conserved in MDS patient HSCs but also offering a proof of principle of the 

DISCO method (Figure 4.7).  

 

SRSF2 mutant MDS HSCs exhibit unique splicing changes. In addition to 

shifts in cassette exon inclusion, we detected heterogeneous expression of 

isoforms within single cells and significant shifts in isoform expression 

between SRSF2 mutated (mut) and not mutated (wt) in 10 genes at FDR< 

0.05 after filtering for coverage and mean shifts (Figure 4.8). These 

differentially spliced genes (DSGs) are enriched for gene ontology (GO) terms 

involving ribosomal functions (GO:0006614, GO:0000184, GO:0006364, 

GO:0006412, GO:0006413, GO:0019083) and interferon signaling 

(GO:0035455, GO:0034341, GO:0046597, GO:0060337, GO:0045071, 

GO:0035456, GO:0009615) at FDR< 0.05 since they include a set of RPGs 

(RPS28, RPL15, RPL29, and RPL17) and interferon-induced transmembrane 

proteins (IFITM2, IFITM3). IFITM3 and SPNS3 are shown in more detail 

(Figure 4.9) with violin plots revealing bimodal distributions of cellular 

prevalence of each isoform (Figure 4.9A, D), coverage plots across exons of 

DSGs confirming mean shifts in isoform expression (Figure 4.9B, E), and 

FPKM quantifications showing complementary information on absolute shifts 

(Figure 4.9C, F).  
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Figure 4.7. DISCO recapitulates known effects of SRSF2 mutations. A. 6-
mers significantly enriched (Fisher’s exact test, FDR 0.01) above background 
(k-mer distribution across 1000 random non-differentially spliced exons) in 
exons differentially spliced between cells from patients with SRSF2 mutations 
and patients without SRSF2 mutations. B. Enrichment of GGNG and CCNG 4-
mers in differentially spliced exons showing that exons spliced in more in 
SRSF2 mutated are more enriched for CCNG than GGNG. 
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Figure 4.8. Differentially expressed isoforms in SRSF2 mutated HSCs. A. 
Distribution of fraction isoform expressed values aggregated across isoforms 
significantly higher in MDS (left) and lower in MDS (right). B. Heatmap of 
fraction isoform expressed of each DEI in SRSF2 mutated (pink) compared to 
WT (yellow).  
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Figure 4.9. DISCO results for 2 DSGs in SRSF2 mutated. A. Distribution of 
fraction isoform expressed for the 2 isoforms of IFITM3. B. Read coverage 
across gene body of IFITM3. C. Mean expression (FPKM) of each IFITM3 
isoform in normal HSCs, SRSF2 mutated, and WT. D-F. Like A-C for SPNS3. 
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Aberrant expression of immune signaling and hematopoiesis genes in 

SRSF2 mutated cells. Since SPNS3 gene expression drastically increases in 

SRSF2 mutated (Figure 4.9F) cells, we explicitly tested differential gene 

expression to identify other similarly affected genes and found 53 differentially 

expressed genes (DEGs) with increased expression in SRSF2 mutated and 

100 DEGs with decreased expression at FDR< 0.05 (Figure 4.10A). Of the 

DSG list, these include SPNS3 and GATA2. Genes more highly expressed in 

SRSF2 mutated are enriched for GO terms involving interleukin signaling 

(IL2RA, IL2RG) and myeloid differentiation (HOXA7, CCL3, HIST1H4H) 

(Figure 4.10B). Dysregulated innate immune and inflammatory signaling has 

been implicated in MDS pathogenesis (Ga??n-G?mez et al., 2015; 

Keerthivasan et al., 2014); our findings of aberrant splicing and expression of 

genes in these pathways suggest these as possible disease-causing 

mechanisms of mutated SRSF2.  

 

MDS HSCs exhibit differential isoform usage. To identify genes and 

molecular pathways that distinguish MDS stem cells from normal HSCs 

irrespective of SRSF2 mutations, we analyzed differentially expressed 

isoforms and genes between pre-treatment MDS cells and age-matched 

normal controls. Of the 8,517 isoforms passing minimum coverage and 

average PSI filters in at least 50 cells in each group, DISCO identified 45 

isoforms to be significantly differentially expressed spanning 38 DSGs at an  
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Figure 4.10. Differential gene expression in SRSF2 mutated HSCs. A. 
Heatmap of mRNA expression (z-score of log2(FPKM +1)) SRSF2 mutated 
DEGs. B. GO terms enriched in SRSF2 mutated DEGs.  
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FDR <0.05 and a >10% shift in mean isoform level (Figure 4.11). Two of the 

DSGs are TAGAP and ADGRE5, which demonstrate the observed cellular 

heterogeneity in isoform expression patterns (Figure 4.12A,C). Visualizing 

alignment of reads aggregated across cells of each group (Figure 4.12B,D) 

and mean FPKM quantifications of each isoform (Figure 4.12E,F) confirm the 

shift in expression identified by DISCO. The 38 DSGs are enriched for GO 

terms involving ribosomal protein functions, transcription regulation / 

elongation through RNA polymerase II promoter (GO:0045944, GO:0006357, 

GO:0006368), golgi organization (GO:0007030), and DNA methylation 

(GO:0006306). The genes in the DNA methylation GO term are transcription 

factors ATF7IP and FOS, of which FOS is a proto-oncogene that functions in 

cell proliferation and differentiation through interactions with the JUN family. 

FOS also belongs in the RNA polymerase II GO terms along with PPP3CA, 

CCNH, TBL1XR1, NCOA7, SUB1, RAD21, SOD2, and MLLT3.  

 

Dysregulated ribosomal protein expression and p53 signaling in MDS 

stem cells. As suggested by the t-SNE projection of transcriptional features, 

MDS stem cells occupy distinct transcriptional landscapes and at baseline 

(pre-treatment) express 491 genes at significantly differentially expressed 

levels from normal controls (FDR< 0.01) (Figure 4.13A). The KEGG pathways 

significantly enriched (FDR 0.1) in genes overexpressed in MDS HSCs are 

p53 signaling, cancer, viral carcinogenesis, hematopoietic cell lineage, and  
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Figure 4.11. Altered splicing in MDS HSCs. Heatmap of isoform ratios of 
isoforms differentially expressed between normal HSCs and pre-treatment 
MDS HSCs. 
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Figure 4.12. Differential splicing of ADGRE5 and TAGAP in MDS HSCs. A. 
Distribution of fraction isoform expressed for TAGAP. B. Coverage across 
TAGAP gene body aggregated across cells of each group (MDS, top; Normal, 
bottom). C. Distribution of fraction isoform expressed for ADGRE5. D. 
Coverage across ADGRE5 gene body aggregated across cells of each group 
(MDS, top; Normal, bottom). E. Average expression (FPKM) of each isoform 
for TAGAP in normal and MDS HSCs. F. Average expression (FPKM) of each 
isoform for ADGRE5 in normal and MDS HSCs.   
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Figure 4.13. Differential gene expression in MDS HSCs. A. Heatmap of 
mRNA expression (z-score of log2(FPKM+1)). B., C. KEGG pathways 
significantly enriched (FDR 0.1) in DEGs.  
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transcriptional misregulation in cancer (Figure 4.13B). Genes under 

expressed in MDS HSCs are also enriched for the KEGG pathways 

transcriptional misregulation in cancer as well as ribosome function (Figure 

4.13C). Decreased expression of RPGs in MDS HSCs compared to age-

matched normal controls is noteworthy, as defects in ribosome function have 

been previously implicated in MDS pathogenesis (McGowan et al., 2008; Raza 

& Galili, 2012; Rinker et al., 2016) and recent work has shown that ribosome 

heterogeneity affects the transcriptional efficiencies of specific mRNAs [23,24].  

 

Ribosomal proteins down-regulated and differentially spliced in 

decitabine non-responders. Differences in ribosomal protein gene and 

isoform expression were also observed between MDS patients, with non-

responders expressing even lower levels of RPGs than responders (Figure 

4.14). Of the 41 isoforms identified by DISCO as differentially expressed, 25 

are RPGs (Figure 4.15A). Isoform shifts are again observed to follow 

heterogeneous patterns with clusters of cells shifting from low to high isoform 

proportions (Figure 4.15B), and these shifts likely have functional effects 

since the vast majority of these isoforms have been studied and are known to 

be either protein coding or undergo nonsense mediated decay (NMD). Overall, 

40 out of the 80 RPGs are differentially expressed or spliced between MDS 

stem cells and normal controls, and 17 RPGs are differentially expressed or 

spliced within MDS stem cells between pre-treatment responders and non- 
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Figure 4.14. Differential gene expression between responders and non-
responders. A. Ribosomal protein genes differentially expressed between 
normal and MDS HSCs are even lower in non-responders than responders. B. 
Heatmap of gene expression (z-score of log2[FPKM + 1]) of DEGs between 
pre-treatment responders and non-responder HSCs.  
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Figure 4.15. Altered splicing patters between responders and non-
responders. A. Heatmap of fraction isoform expressed of DEIs between pre-
treatment R (blue) and NR (green). B. Distribution of fraction isoform 
expressed aggregated across all DEIs higher in R (left) and higher in NR 
(right).    
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responders (Figure 4.16). These results suggest that ribosomal dysregulation 

not only plays a role in MDS disease mechanisms but also in response to 

decitabine. This is consistent with the fact that the clinical subtype of MDS 

patients with a 5q deletion (del5q), where the deletion of RPS14 is thought to 

be a key driver of pathogenesis, do not respond well to cytidine analogs (ex. 

decitabine) and are usually treated with lenalidomide (Raza & Galili, 2012). It 

stands to reason based on our data, since none of the patients studied here 

have del5q, that this effect is not limited to del5q-related loss of RPS14 and 

can potentially be generalized to decreased expression of a wide variety 

RPGs through mechanisms besides chromosomal abnormalities.  

 

Analysis of single cell heterogeneity identifies distinct cell state 

distributions differing by response group and time point. Investigating 

gene and isoform expression in MDS stem cells identified dysregulated 

immune signaling, p53 activation, and ribosome biogenesis. Single cell 

resolution of our data enables us to extend these results a step further by 

treating each cell as a unique time point to understand dynamics of these 

changes and how they fluctuate within heterogeneous cell populations across 

patient samples. We ordered cells based on transcriptional profiles on a 

singular axis, termed “pseudotime”, and constructed a lineage hierarchy of all 

cells using a graph-based tree building algorithm (Qiu et al., 2017; Trapnell et 

al., 2014) (Figure 4.17). This recapitulated the t-SNE result of non-responders  
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Figure 4.16. Ribosomal protein gene and isoform dysregulation. A. RPGs 
(rows) that are differentially expressed between MDS and normal, differentially 
expressed between R and NR pre-treatment, differentially spliced between 
MDS and normal, and differentially spliced between R and NR (columns from 
left to right). B. Heatmap of the subset of RPGs that are either differentially 
expressed or differentially spliced between R and NR showing the z-score of 
gene expression (log[FPKM+1]).  
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Figure 4.17. Lineage ordering and cell state identification. A. 
Pseudotemporal lineage projection showing cell states (colors) and branch 
points (black numbered circles). B. As in A, but with cells separated by 
response group.  
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having transcription profiles most distant from normal HSCs, and assigned 

cells to 21 distinct cell states. To tease out the most biologically relevant 

signals from the resulting complex branching of cells, we seeded the algorithm 

with the disease relevant hematopoietic lineage markers (stem cell regulators 

and myeloid differentiation genes) due to their differential expression between 

MDS and normal stem cells, and reassessed pseudotemporal ordering.  

 

MDS HSCs exhibit decreased expression of stem cell regulators and 

enrichment of myeloid genes. We compared DEGs to a list of hematopoietic 

lineage markers manually curated from literature, and identified 5 HSC genes 

(CXCR4, HLF, MECOM, MEIS1, and NR4A2), and 2 myeloid lineage 

associated genes (CEBPA and MPO) to be significantly differentially 

expressed between MDS and normal HSCs (Figure 4.18A). Expression of 

lymphoid marker genes were detected in both MDS and normal stem cells but 

were not differentially expressed between MDS and normal.  Notably, MDS 

samples contained a higher proportion of HSCs exhibiting a significant 

increase in myeloid gene expression, consistent with a more myeloid-biased 

HSC pool (Figure 4.18A). To further explore this signature and its implications 

for the MDS transcriptional landscape, we used the collective expression of 

the HSC and myeloid genes to assign cells a stem cell score and a myeloid 

score, and defined criteria for separating cells into stem cell and myeloid 

categories (Figure 4.18B,C). This classification was then used to identify a  
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Figure 4.18. Expression of stem cell and myeloid lineage regulators 
differentiating MDS HSCs. A. t-SNE projections of cells colored by 
expression level of stem cell and myeloid regulators. B. Expression 
(log2(FPKM+1) of DEGs known to be stem cell (D) or myeloid (E) signature 
genes on t-SNE projection. C. Stem cell and myeloid scores calculated as a 
function of the expression of genes shown in E; cells with stem cell scores of 
more than 10 and myeloid score less than 1 were marked as stem cell, and 
cells with myeloid score more than 1 and stem cell score less than 10 were 
marked as likely belonging to a more myeloid state. G. Distribution of cells 
marked as belonging to a stem cell or myeloid state on the t-SNE projection 
showing that MDS HSCs are enriched for myeloid state cells and normal 
HSCs for stem cell state cells. 
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larger set of genes co-expressed with these marker genes, i.e. differentially 

expressed between the two categories, to use as the basis for lineage 

ordering of cells (80 genes at FDR <0.01).   

 

Distinct stem cell states identified using semi-supervised 

pseudotemporal ordering of MDS and Normal HSCs. The semi-supervised 

pseudotemporal ordering of all MDS and normal HSCs based on the 80 genes 

identified through the above method resulted in a lineage tree with 3 main 

branches (Figure 4.19A). Normal HSCs exclusively occupied the low 

pseudotime branch (branch 1), HSCs from non-responders occupied the 

higher pseudotime branches (branches 2 and 3), and HSCs from responders 

and patients with stable disease occupied all branches (Figure 4.19B, C). 

Assignment of cells to states based on branch positions reveals shifts in cell 

states between the different groups. Proportion of state 1 cells was highest in 

normal and lowest in non-responders, and proportion of state 7 cells increased 

from responders to stable disease to non-responders (Figure 4.19D). These 

cell state assignments are robust across patient samples (Figure 4.20). 166 

genes were found to be significantly differentially expressed along the 

pseudotime axis (FDR 0.01) and were enriched for pathways in systemic lupus 

erythematosus, cytokine−cytokine receptor interaction, p53 signaling, and 

more (Figure 4.21).  
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Figure 4.19. Semi-supervised lineage ordering. A. Graph-based inference 
of a pseudotemporal ordering of single cells based on the expression of the 
stem cell and myeloid signature genes shows in figure 4.18. B. Pseudotime 
distribution between MDS and normal HSCs showing a significant increase in 
pseudotime in MDS HSCs (t-test, p < 0.001). C. Pseudotemporal ordering of 
cells separated by response group. D. Distribution of cell state assignments 
based on position on lineage ordering tree.  
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Figure 4.20. Lineage ordering of each patient sample. Pseudotemporal 
lineage hierarchy of each patient sample with patients listed as rows and time 
points in columns. Each tree represents an individual C1 run and so an 
individual experimental batch.   
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Figure 4.21. Pseudotime DEGs and pathway enrichment. E. Heatmap of 
normalized expression (using variance-stabilizing transformation and fitting to 
spline curves) of genes significantly differentially expressed at FDR 0.01 
across the pseudotime axis. F. Enriched KEGG pathways in genes in panel E, 
separated by genes highly expressed in low pseudotime or high pseudotime 
cells. 
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Decitabine induces shifts in stem cell transcriptional states. Stem cell 

states not only differ in distributions between decitabine responders and non-

responders but are also dynamic on a treatment timescale.  Following therapy, 

the non-responder populations increased in proportion of state 7 cells, a state 

unique to MDS cells, and lost all cells from state 1, the state occupied by the 

vast majority of normal HSCs (Figure 4.22A). Conversely, in responders, 

there is a slight increase in the number of cells in state 1, although the 

proportion of cells in MDS-specific states (states 5-9) remains high, suggesting 

that decitabine treatment may not be affecting all disease-causing populations 

of cells. Differential expression testing comparing cells in the two high 

pseudotime branches revealed a significant decrease of genes in B cell 

receptor signaling, PI3K-Akt signaling, inflammatory bowel disease, primary 

immunodeficiency, non-homologous end-joining, and hematopoietic cell 

lineage pathways in state 7 and the other states on its branch. 

 

Transcriptional cell states identify signatures of decitabine resistance. 

To determine active resistance mechanisms and potential response 

biomarkers we compared non-responder branch 3 cells (NR-Br3) to responder 

branch 3 cells (R-Br3). As mentioned previously, branch 3 cells have the most 

dramatic shifts from treatment with NR-Br3 and R-Br3 holding opposite 

trends–responders decreased from 38 to 1 cell and non-responders increased 

from 18 cells to 60 cells (Figure 4.22B, C), suggestive of a molecular 
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difference between NR-Br3 and R-Br3 cells capable of conferring decitabine 

resistance and disease progression. 553 genes were found to be more highly 

expressed within a subset of pre-treatment NR-Br3s, and a larger subset of 

post-treatment NR-Br3s, compared to all pre-treatment R-Br3s, as outlined in 

figure 6D.  

 Principal component analysis (PCA) of these 553 genes shows 

responder and normal cells clustering together and away from non-responder 

cells. Further, post-treatment NR-Br3s are almost completely separated from 

pre-treatment R-Br3s, with pre-treatment NR-Br3s existing between both 

states, but with more similarity to post-treatment NR-Br3s (Figure 4.22D, E).  

GO analysis of these 553 non-responder genes show statistical enrichment of 

regulation of type I interferon production, nucleocytoplasmic transport, RNA 

splicing, mRNA processing, ribonucleoprotein complex biogenesis, negative 

regulation of transcription, and others.  The log2 fold change of these genes 

relative to the maximum expression within the opposing group across all NR-

Br3s and RN3s are shown in figure 4.22G. 

 We repeated the analysis outlined in figure 6D using isoform expression 

across all branch 3 cells. We identified 2,284 NR-specific isoforms, 218 

expressed in multiple NR-Br3 pre-treatment cells above the maximum 

expression within R-Br3 pre-treatment cells. 42 GO terms were statistically 

enriched (FDR <0.01) using ConsensusPathDB outlined in figure 4.22H. 10 

genes had more than 2 isoforms enriched within NR-Br3 cells out of the 
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identified 218 isoforms (Figure 4.22I). Each of the previously described 

analysis resulted in recurrent genes identified as response-specific, including 

C-terminus binding protein 1(CTBP1). CTBP1 was the highest ranked gene by 

differential gene expression (Figure 4.22G), occurs within 11 GO categories 

identified by the differentially expressed isoform analysis (Figure 4.22H), and 

has 5 isoforms which are higher within NR-Br3 cells than the R-Br3 cohort 

(Figure 4.22J).  

 

Candidate resistance genes include transcriptional repressor CTBP1. 

CTBP1 has been implicated as an oncogene in many other cancer types and 

is necessary for increased growth and abnormal differentiation of murine 

hematopoietic cells. Further, CTBP1 has been shown to be a master 

transcriptional repressor of tumor suppressors through direct binding of target 

genes, histone deacetylation, and direct inhibition of RNA polymerase II. 

Beyond its nuclear roles in transcription, CTBP1 has cytoplasmic roles dealing 

with membrane fission, pinocytosis, transportation, stabilization of pH levels 

through amomonia production and increasing glutamine supply. CTBP1 is 

enriched within non-responders compared to responders, with its expression 

increasing post-treatment non-responders, peaking within NR-Br3s. Further, 

CTBP1 is elevated within both non-responder patients compared to all other 

patients.  Taken together, CTBP1 is a prime resistance candidate based off of 

our analysis and current literature.  
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Figure 4.22. Identifying candidate resistance genes. A. Cell state 
distribution, separated by pre-treatment and post-treatment or early and late 
untreated. B., C. Branch 3 cell numbers. D. Methodology for identifying genes 
likely driving resistance. E., F. PCA based on identified genes separates 
response groups. G. Heatmap of identified genes. H. GO enrichment. I. Top 
candidates from isoform-centric analysis. J. Isoforms of CTBP1. 
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DISCUSSION 

Our work provides a comprehensive view of the transcriptional 

landscape of human MDS stem cells at single cell resolution by identifying 

dysregulated expression and splicing patterns implicating specific pathways in 

MDS pathogenesis, disease causing mechanisms of mutations in splice factor 

genes, biomarkers of response to hypomethylating therapy, and therapy 

resistance mechanisms.  Single cell resolution placed these findings in the 

context of distinct cellular transcriptional states and their dynamics during 

treatment. In order to investigate patterns of dysregulated splicing at the single 

cell level, we developed DISCO (Distributions of Isoforms in Single Cell 

Omics), a novel method enabling statistical comparisons of proportions of 

isoforms expressed that scales well to groups of hundreds of samples (i.e. 

cells). This approach enables characterizing shifts in splicing patterns, 

regardless of the overall expression of a gene (given a minimum number of 

reads for accurate quantification), and so is not confounded by up- or down-

regulation of the gene (and all its isoforms), thus providing unique results from 

a differential gene expression analysis.  

Integrated analysis of gene and isoform expression in stem cells from 

patients with known SRSF2 mutations, all of which were at the commonly 

mutated P95 site, compared to patients lacking any SRSF2 mutations, 

identified over-expression and altered splicing of genes involved in immune 

signaling and inflammation (IL2RA, IL2RG, CCL3, IFITM2, IFITM3, IFRD1). 
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Both the differential splicing and differential gene expression analyses reveal 

extensive cell-to-cell heterogeneity, suggesting that SRSF2 mutations do not 

uniformly affect all cells. A recent body of work has provided evidence for 

activated innate immunity playing a key role in MDS pathogenesis (Ga??n-

G?mez et al., 2015; Keerthivasan et al., 2014; Starczynowski, 2014). Our data 

supports this and suggests that these pathways may be related to the 

molecular reasons underlying the high frequency of splice factor mutations 

observed in MDS and other hematological malignancies.  

Transcriptional signals differentiating MDS stem cells from healthy 

controls, irrespective of SRSF2 status, were largely dominated by decreased 

expression of ribosomal protein genes (RPGs). Defective ribosome biogenesis 

through inactivating mutations and deletions of RPGs are known to cause 

MDS (specifically the 5q deletion subtype), among a variety of other 

hematological disorders known as ribosomopathies (Galili, Qasim, & Raza, 

2009). One of the theories for the malignant mechanism of ribosomal 

haploinsufficiency is the activation of p53 signaling through binding of MDM2, 

the main p53 suppressor, by the excess uncomplexed ribosomal proteins that 

build up in the cell when ribosome biogenesis is inhibited (McGowan et al., 

2008; Zhang et al., 2003). Other effects of RPG down-regulation are also likely 

since disrupted stoichiometries of the 80 core RPGs affect the heterogeneous 

compositions of ribosomes, which in turn modifies their preferences for 

translating specific mRNA transcripts, likely resulting in widespread 
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transcriptional dysregulation (Shi et al., 2017). Our data show that a large 

subset of RPGs are down-regulated and differentially spliced in MDS stem 

cells from patients with normal 5q karyotype. Two of these RPG isoforms are 

known to undergo nonsense-mediated decay suggesting that alternative 

splicing may lower RPG protein abundance even more than what can be 

measured with RNA-seq.  

Comparison of decitabine non-responders to responders revealed even 

greater down-regulation of RPGs as well as a larger proportion of differentially 

spliced RPGs, suggesting that ribosome biogenesis plays a role in not only 

MDS pathogenesis but also response to decitabine, a mainstay in MDS and 

AML therapeutics. Concordant to this finding, p53 signaling genes are 

significantly over-expressed in MDS cells and even more in non-responders. 

Patients with 5q deletion syndrome, where the disease gene has been traced 

to RPS14, are generally treated with lenalidomide, as opposed to 

hypomethylating agents decitabine and azacitidine (List et al., 2005). Also, 

stoichiometric imbalances of ribosomal proteins have been linked to activating 

p53 signaling, potentially through binding of MDM2 by uncomplexed ribosomal 

proteins (McGowan et al., 2008; Zhang et al., 2003). Thus, defective ribosome 

biogenesis is not only implicated in MDS pathogenesis but also a larger set of 

hematological disorders broadly termed ribosomopathies (Narla & Ebert, 

2010). Our findings suggest that a subset of patients with normal 5q karyotype 
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but significantly decreased RPG expression may also benefit from therapeutic 

alternatives to hypomethylating agents.  

Single cell granularity further resolved these findings through the 

identification of distinct transcriptional stem cell states, and using matched pre- 

and post-treatment samples, we investigated the dynamics of these cell states 

during treatment. This revealed a striking expansion of a specific stem cell 

state post-treatment in non-responders. We examined the distinct features of 

this state using a custom pipeline (methods) designed to detect gene and 

isoform expression changes contributed by either the majority of cells or a 

small subset of cells that may drive resistance. RPGs were again identified in 

this analysis, providing confirmation of their involvement in the cells most likely 

to be responsible for driving resistance. A large set of other genes spanning a 

number of pathways involving metabolic processing, RNA processing, and 

transcriptional regulation were also identified by this analysis, illustrating the 

complex resistance mechanisms implored by cancer cells to escape 

decitabine mediated cell death.  

Decitabine is a cytidine analog with a nitrogen in the 5-carbon position 

functions primarily as a hypomethylating agent by being incorporated into DNA 

during replication and inhibiting DNA methyltransferases. Though it also has a 

secondary genotoxic affects, cellular death from this primary mechanism may 

be evaded by either 1) not integrating decitabine into the DNA through either 

catabolizing it, packaging and removing it from the cell, or increasing de novo 
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pathway of nucleotide synthesis; or 2) if integrated into the DNA, affects may 

be evaded by any mechanism which does not allow the expression of the 

functional form of the gene – albeit at transcription, post-transcriptional 

modification, translational, or post-translational steps. The previously shown 

depression of RPGs may allow for decreased translation whereas differential 

splicing may lead to altered functions. CTBP1, identified as the top resistance 

candidate gene within non-responders, may confer resistance to 

azanucleotide treatments in many ways, including epigenomic regulation of 

histones. A recent study identified the small molecule NSC95397 as a CTBP1 

inhibitor, with evidence of inducing cellular apoptosis (Blevins et al., 2015). 

Interestingly, this small molecule was also shown to inhibit spliceosomal 

activity – though it has not been shown if this is a result of CTBP1 inhibition or 

a different mechanism. Given the overwhelming evidence of differential 

isoform usage and splicing within non-responder vs responder cells, these 

pathways may be more connected than previously thought – with a potential 

role of CTBP1 as an important regulator.  

In addition to insights on transcriptional heterogeneity in MDS, this work 

highlights important future avenues of research. These include: 1) the effects 

of RPG down-regulation in cell lines and mouse models on response to 

decitabine, and 2) preclinical studies to test the efficacy of combined therapy 

between azanucleotides and CTBP1 inhibitors. More evidence on the impact 

of RPG down-regulation on desensitizing patients to azanucleotide therapy 
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could readily be implemented in clinic by choosing alternate therapeutic 

strategies for patients with RPG deletions. After more testing on its 

mechanism of efficacy, combination therapy with CTBP1 inhibitors may be an 

important addition to the therapeutic options available in MDS.  
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APPENDIX 

 

MATERIALS AND METHODS – MCL EXOME AND TRANSCRIPTOME 

SEQUENCING (CHAPTER 3) 

 

Sample collection. Lymph node biopsies were collected from patients in a 

phase I trial of palbociclib and bortezomib for recurrent MCL (Di Liberto et al., 

n.d.). Primary MCL cells were purified using MACS CD19 MicroBeads 

(Miltenyi Biotec) with > 90% yield of tumor cells (CD19+, CD5+) as assessed 

by flow cytometry. Matched normal controls for exome seq was available for 

some patients with buccal swabs. Peripheral blood B cells (PBCs) from 3 

healthy volunteers isolated using the same protocol served as the normal 

controls for RNA seq.  

 

Sequencing. DNA was isolated from purified MCL cells, and a sequencing 

library was created with the Illumina TruSeq (v3) DNA Preparation kits (FC-

121-1031). Following isothermal cluster generation (PE-401-3001) and 75x75 

paired-end (PE) sequencing on the HiSeq2500 (FC-401-3001), the samples 

underwent primary analysis with the Illumina base calling and primary analysis 

software (HCS 1.4, CASAVA 1.8.2, and RTA 1.2). 
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Immunohistochemistry. Immunoperoxidase staining was performed on a 

Leica Bond III automated immunostainer, using antibodies for PAX5 and BCL6 

supplied by the manufacturer and according to the manufacturers instructions 

(Leica Microsystems, Bannockburn, IL) as previously described.[1] Staining 

was performed with PAX5 and a red chromogen (no counterstain), with BCL6 

and a brown chromogen (hematoxylin counterstain), as well as multiplex 

staining for PAX5 (red chromogen)/BCL6 (blue chromogen), where dual 

staining resulted in a purple signal. Image analysis with signal quantitation of 

the above detailed IHC slides was performed on the Ariol 50 (Leica 

Microsystems, Bannockburn, IL) image analysis system, according to the 

manufacturers specifications, as previously described (Chiron et al., 2014). 

 

DNA and RNA Analysis. WES reads were aligned to hg19 reference and the 

quality assessed using our in-house pipeline g-make, which uses BWA for 

alignment (H. Li & Durbin, 2009), picard for duplicate removal 

(http://picard.sourceforge.net), and GATK for single nucleotide and indel 

variant calling (McKenna et al., 2010). Copy number variants were identified 

using XHMM, VarScan somatic copycaller with circular binary segmentation 

with R DNAcopy, and SNP allele frequencies from GATK results. As VarScan 

somatic copycaller relies on a matched normal control to identify regions of 

significant gain or loss of read dept, for the patient samples lacking these, we 

used average read depth across the normal controls of the other patients, in 
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effect assuming that the normal cells lack large-scale (>1 Mb) CNVs. PyClone 

v1.0 was used to infer subclonal clusters based on variant allele frequencies of 

SNVs and copy number (Roth et al., 2014). WTS reads were processed 

through Genesifter software (http://www.geospiza.com/Products/WTA.shtml) 

with limma-voom in R for differential gene expression analysis (Law, Chen, 

Shi, & Smyth, 2014). Integrative DNA and RNA analysis was performed using 

custom R and python scripts.  

 

MATERIALS AND METHODS – MDS SINGLE CELL RNA SEQUENCING 

(CHAPTER 4) 

 

Sample Collection. HSCs were purified from viably frozen patient bone 

marrow biopsies for scRNA-seq using FACS markers Lin-CD34+CD38-

CD90+CD45RA-, following the protocol detailed by Pang et al. (Pang et al., 

2013).  

 

Single Cell RNA-seq. Single cells were captured and mRNA isolated using 

Clontech's SMARTer chemistry for ultra low input on the Fluidigm 

C1 Single Cell Auto Prep system as per manufacturer’s protocol. Illumina's 

Nextera XT kit was used for library preparation prior to 100bp paired-end 

sequencing on the HiSeq2500 platform. Q-values for all bases were >30 and 

image analysis was performed with Illumina’s CASAVA pipeline. 
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Alignment, quality control, and gene quantification. Raw sequence reads 

were analyzed through the r-make pipeline for quality control and alignment 

with STAR to the hg19 human reference genome (Dobin et al., 2013; S. Li, 

Tighe, et al., 2014). Quality metrics assessed include mapping rates, 

distribution of reads of across different regions (exons, introns, mitochondrial, 

intergenic, and ribosomal), coverage across gene body to detect extent of 3’ 

bias in poly-A RNA preps, number of genes detected as a function of read 

depth, GC content, and strand distribution. Gene counts were calculated using 

HTseq and the RefSeq gene annotation, and FPKM (fragments per kilobase 

per million) measurements were used for normalized transcript abundance 

quantification (Anders, Pyl, & Huber, 2014). Prior to analyzing and comparing 

transcriptomes, the following preprocessing steps were taken within each 

sample: (1) filter out samples from wells known to have captured more than 1 

cell based on microscopic examination at the time of cell capture, (2) filter out 

samples with more than 20% reads mapping to mitochondrial regions, which 

can indicate dying cells, (3) filter out samples with less than 50,000 reads 

mapped to genes, (4) filter out genes expressed in less than 3 cells at FPKM 

greater than 1, and (5) filter out samples with extremely low expression of 

GAPDH and ACTB (less than 2 standard deviations below the mean). These 

steps enabled downstream analysis to be performed on high quality data. 
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Alternative splicing analysis. We have developed a method enabling single 

cell isoform analysis called DISCO (Distributions of Isoforms in Single Cell 

Omics). The DISCO pipeline consists of splice-aware alignment with STAR 

(Dobin et al., 2013), isoform quantification relative to all isoforms of a gene 

using MISO (Katz et al., 2010), and non-parametric statistical testing, multiple 

testing correction, and visualization of significant results with DISCO. 

Depending on the reference database used with MISO, DISCO can also be 

applied to analyzing skipped exons, mutually exclusive exons, retained 

introns, and any other set of alternative RNA processing events that can be 

defined in an annotation file. DISCO is not limited to being run with MISO 

output; it can be used downstream of any method that provides relative 

quantifications, i.e. PSI (percent spliced in) for exons and PI (percent isoform) 

for isoforms. DISCO is publicly available along with installation and usage 

instructions and example runs here: https://pbtech-

vc.med.cornell.edu/git/mason-lab/disco/tree/master.  

We used DISCO with MISO quantifications for full-length isoforms 

defined by the ENSEMBL annotation for comparing MDS and normal, 

responders and non-responders, and patients with and without SRSF2 

mutations. For the last case, we also analyzed skipped exons and tested for 

enrichment of exonic splice enhancers by calculating 4-, 5-, and 6-mer 

distributions in exons identified by DISCO and significantly alternatively spliced 

and using fisher’s exact tests to compare the proportion of each k-mer in 
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exons more highly included in SRSF2 mutated against a background 

proportion calculated across a thousand random non-significantly alternatively 

spliced exons of the genome. The same was also calculated for exons more 

highly excluded in SRSF2 mutated cells, thus enabling a measure of which k-

mers are enriched and may function as enhancer units. This is similar to the 

approach used by Kim et al. (E. Kim et al., 2015). 

 

Gene expression heterogeneity and lineage ordering. We characterized 

gene expression heterogeneity by integrating several complementary 

approaches: (1) t-SNE (t-distributed stochastic neighbor embedding) for 

visualizing relationships between cells in a reduced dimension space, (2) 

graph-based ordering and clustering of cells (3) differential expression 

analysis to identify genes driving cell state differences (Trapnell et al., 2014; 

Van Der Maaten & Hinton, 2008).  

The t-SNE dimensionality reduction algorithm was applied to log2 FPKM 

values across all single cells after filtering outlier cells and lowly expressed 

genes (as described above). We used the Rtsne pacakage’s Barnes-Hut 

implementation with a perplexity of 10, maximum number of iterations of 

10,000, theta of 0.1, and random seed of 42 (https://github.com/jkrijthe/Rtsne).  

Differential expression analysis between MDS stem cells and normal HSC 

controls was performed using the monocle R package (Trapnell et al., 2014). 

Input cells were restricted to the pre-treatment and first serial untreated time 
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points for the MDS group and all cells for the normal group. Genes expressed 

at a minimum FPKM of 1 in less than 10 cells were excluded, the FPKM matrix 

was transformed to absolute RNA counts using the “relative2abs” monocle 

function, and the resulting counts were modeled using a negative binomial 

distribution for differential expression testing. Benjamini-hochberg multiple 

testing correction was used with a significance threshold of 0.01.  

 As we observed hematopoietic stem cell regulators and myeloid lineage 

markers among the genes differentially expressed between MDS and normal, 

we further explored this by using genes co-expressed with these stem cell and 

myeloid markers to seed a semi-supervised pseudotemporal lineage ordering 

analysis. These genes were identified by assigning cells to a stem cell or 

myeloid state and performing a differential expression test between the two 

groups. Cells were categorized as “stem cell” if the sum expression across 

stem cell marker genes was more than an FPKM of 10, “myeloid” if the sum 

expression across myeloid marker genes was more than an FPKM of 0.1, 

“both” if both are true, and “neither” if neither are true. Genes differentially 

expressed between the “stem cell” and “myeloid” categories were then 

identified similar to the MDS vs. normal test described above. Cells are then 

ordered based on expression of these genes using monocle’s orderCells 

function, which uses the DDRtree package’s reversed graph embedding 

framework (Qiu et al., 2017). The resulting tree structure separates cells into 
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three main branches and 13 distinct clusters, and genes responsible for the 

clustering were identified through differential expression tests.  

 

Identifying candidate resistance markers. To discover resistance markers, 

we examined the genes distinct to each psuedotime branch. Branch 3 genes 

are largely depleted in responders post-treatment but show increases within 

non-responders post-treatment. We used the following criteria for identifying 

resistant candidate cells and genes: A non-responder pre-treatment branch 3 

cell must have a higher expression of a given gene than the maximum 

expression of that gene within responder pre-treatment branch 3 cells. Further, 

the percentage of non-responder post-treatment branch 3 cells which have 

this gene enriched must be higher than the percentage of non-responder pre-

treatment branch 3 cells.  

 

Pathway Enrichment Analysis. Pathway and gene ontology enrichment 

analyses of differentially expressed and differentially spliced genes were 

performed using a combination of EnrichR (Kuleshov et al., 2016), 

ConsensusPathDB, GOrilla, and GSEA. Correction for multiple testing and q-

values are listed with each analysis in the main text and supplemental tables. 
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