AXIOMATIC PROOF TECHNIQUES
FOR PARALLEL PROGRAMS+

Susan Speer Owicki

TR 75-251

July 1975

Department of Computer Science
Cornell University
Ithaca, NY 14853

+This research was partially supported by National Science Foundation grant GJ-42512.
BIOGRAPHICAL SKETCH

Susan Speer Owicker was born on June 25, 1947, in Pittsburgh, Pennsylvania. In June, 1968, she received the Bachelor of Science degree in Mathematics from Michigan State University, and in January, 1970, the Master of Science degree in Computer Science from Cornell University. Her professional experience includes several years of work as a programmer. She is a member of the Association for Computing Machinery, Pi Mu Epsilon mathematics honorary, and Phi Beta Kappa.
ACKNOWLEDGMENTS

I am deeply indebted to Professor David Gries, my thesis advisor. He was a constant source of encouragement and advice, and taught me a great deal about the organization and presentation of information.

Thanks also go to Professors Juris Hartmannis and James Bramble for serving on my special committee. I had many valuable discussions of parallel processing with Professor Charles Moore, and of logic with Professor Robert Constable and Marvin Solomon.

The superb typing of this thesis is the work of Mrs. Caroline Marold, who did much to improve its layout and appearance.

Finally, I am very grateful to my husband Jack for his help and support throughout this research.
TABLE OF CONTENTS

Chapter 1. Introduction

1.1 Introduction
1

1.2 Outline of the Thesis
5

Chapter 2. Sequential Programs

2.1 The Sequential Programming Language (SL)
7

2.2 The Deductive Semantics
8

2.3 The Interpretive Model
16

2.4 Consistency of the Deductive System and the Interpreter
24

Chapter 3. Parallel Programs

3.1 The General Parallel Language (GPL)
26

3.2 The Interpretive Model
27

3.3 The Deductive System
30

3.4 Consistency of the Deductive System and the Interpreter
36

3.5 Auxiliary Variables
45

3.6 Mutual Exclusion
52

Chapter 4. The Restricted Parallel Language (RPL)

4.1 The Language
71

4.2 The Interpretive Model
72

4.3 Axioms and Inference Rules
76

4.4 Consistency
81
Chapter 5. Additional Properties of Parallel Programs

5.1 Mutual Exclusion

5.1.1 GPL

5.2.3 RPL

5.2 Blocking

5.2.1 Program Blocking in GPL

5.2.2 Deadlock in RPL

5.2.3 Program Blocking in RPL

5.2.4 Auxiliary Variables

5.3 Termination

Chapter 6. Consistency and Completeness of the Deductive System

6.1 Consistency

6.2 Completeness

6.2.1 The Program T

6.2.2 The Functions pre, post, and I for T

6.2.3 Assertion Functions

6.2.4 Implications of the Relative Completeness Theorem

6.2.5 Proof of Lemma 6.31

Chapter 7. Conclusions and Comments

Bibliography
CHAPTER 1

INTRODUCTION

1.1. Introduction.

The purpose of this thesis is to present an axiomatic method for proving certain properties of parallel programs. The most fundamental property is partial correctness: a program is partially correct if it either computes the required result or fails to terminate. Total correctness includes the requirement that the program terminates. Hoare [Ho69] has developed axioms and inference rules for proving the partial correctness of sequential programs written in an Algol-like syntax, and with certain adaptations this deductive system can be used to establish total correctness (Manna [Ma74]). Its extension to parallel programs (Hoare [Ho72]) is the basis of the work in this thesis.

The importance of correctness proofs for sequential programs has long been recognized. The advocates of structured programming have argued that a well structured program should be easy to prove correct, and that programs should be written with a correctness proof in mind. The need is even greater with parallel programs. If several processes are executed in parallel, their results can depend on the unpredictable order in which actions from different processes are executed. For example the two simple processes below can interact in six different ways to produce four different values for y.

1
process 1: x:=1 ;
 y:=x+1 ;
process 2: x:=2 ;
 y:=5*x ;

Such complexity greatly increases the probability that the programmer will make mistakes. Even worse, the mistakes may not be detected during program testing, since the particular interactions in which the errors are visible may not occur. It is important to structure parallel programs in a way which eliminates some of this complexity, and to verify their correctness with proofs as well as by program testing.

A number of methods have been used in proofs for parallel programs. The most common is reliance on informal arguments -- a risky business given the complexity of parallel program interactions. More formal approaches have included application of Scott's mathematical semantics (Cadiou and Levy [Ca73]), Lipton's reduction method [Li74b], and Rosen's Church-Rosser approach [Ro74]. The work which is most directly related to this thesis is based on Floyd's inductive assertion method [Fl67] for sequential programs. In this approach assertions are attached to the arcs of a flowchart, and a verification condition is developed which guarantees that whenever control follows an arc the corresponding assertion is true. This verification condition for sequential programs is fairly simple, but for parallel programs it can be quite complex.

Ashcroft and Manna [As71] express a parallel program as a nondeterministic sequential program. This gives a simple verification condition, but the number of assertions is an exponential function of the number of program statements. In [As73], Ashcroft uses a similar technique, but argues that in practice the number of distinct assertions will not be too large. Lauer [La73] and Newton [Ne74] attach assertions to
AXIOMATIC PROOF TECHNIQUES FOR PARALLEL PROGRAMS

Susan Speer Owicki, Ph.D.
Cornell University 1975

This thesis presents an axiomatic method for proving certain correctness properties of parallel programs. Axioms and inference rules for partial correctness are given for two parallel programming languages: the General Parallel Language and the Restricted Parallel Language. The General language is flexible enough to represent most standard synchronizers (e.g., semaphores, events), so that programs using these synchronizers may be verified using the GPL deductive system. However, proofs for GPL programs are in general quite complex. The Restricted language reduces this complexity by requiring shared variables to be protected by critical sections, so that only one process at a time has access to them. This discipline does not significantly reduce the power of the language, and it greatly simplifies the process of program verification.

Although the axioms and inference rules are primarily intended for proofs of partial correctness, there are a number of other important properties of parallel programs. We give some practical techniques which use information obtained from a partial correctness proof to derive other correctness properties, including program termination, mutual exclusion, and freedom from deadlock. A number of examples of such proofs are given.

Finally, the axioms and inference rules are shown to be consistent and complete (in a special sense) with respect to an interpretive
model of parallel execution. Thus the deductive system gives an accurate description of program execution and is powerful enough to yield a proof of any true partial correctness formula.
1.2. Outline of the Thesis.

Chapter 2 is a review of Hoare's axioms and inference rules for a sequential programming language (SL). There are no new results here, but many of the concepts needed for parallel programs are introduced at this time. In particular, an interpretive model for sequential execution is developed which is later extended to provide for parallel computations.

In Chapter 3 we move on to discuss parallel programs. The language presented here is called the general parallel language (GPL) because it is powerful enough to represent most of the primitive operations suggested for synchronizing parallel processes (e.g., events, Dijkstra's semaphores). The deductive system and the model from Chapter 2 are extended to include parallel operations.

In Chapter 4 we consider a parallel programming language and deductive system suggested by Hoare. This restricted parallel language (RPL) is more highly structured than the one given in Chapter 3, and this greatly simplifies program proofs. In fact, the size of the proofs again becomes linear in the size of the program, as it is for sequential programs. Once again the interpretive model defined in Chapter 2 can be extended to cover the new language.

Chapter 5 discusses methods for proving other properties besides partial correctness. Using both the deductive system and the interpretive model of program execution it is possible to derive easily-verified sufficient conditions for guaranteeing mutual exclusion, termination, and safety from blocking.
Chapter 6 considers the relationship between the deductive and interpretive semantics presented in earlier chapters. The two methods are shown to be consistent for all three languages, and the deductive system for RPL is shown to be complete with respect to the interpreter.

Finally, Chapter 7 summarizes our results and suggests extensions and areas for future work.
control points in the flowchart of each parallel process. This makes the number of assertions linear in the size of the program. Unfortunately, the verification condition becomes more complicated, because it is necessary to check that the statements in one process do not invalidate the assertions in another. This again introduces an exponential complexity into the proof process, but in practice all but a few of the checks are trivial.

All of the inductive assertion methods deal with flowcharts, but they can be used as the basis of an axiomatic description of parallel programming languages. Instead of having assertions attached to points in a flowchart, they are applied to program statements according to a set of axioms and inference rules. Working with language statements rather than flowcharts makes it easier to enforce restrictions which make programs intellectually manageable; it is even possible to completely eliminate the exponential factor mentioned above. The axioms and inference rules provide a sound formal technique for proving partial correctness, but they are also intuitive enough to be used as the basis of reliable informal proofs. One of their main advantages is that they give guidance in structuring programs in a way that makes them easy to understand as well as to prove correct.

Although the deductive system described above is designed for proving partial correctness, it can also be used to demonstrate other important properties of parallel programs. For example, mutual exclusion, the property that two or more processes cannot execute certain statements at the same time, can be proved using axiomatic techniques and certain theorems about program execution. Similarly, we can find
practical, sufficient conditions, in terms of the axioms, for showing that all processes cannot become blocked (deadlocked). These results, combined with Manna's work, make it possible to prove program termination in many cases.

There are two questions which naturally occur in considering an axiomatic semantics for a programming language. The first is: do the axioms and inference rules correctly describe the results of executing a program? The second: are they powerful enough to make it possible to prove all true statements about a program? A partial answer can be obtained by defining an interpretive model of program execution and then asking the questions with respect to that model. The first then becomes: do the axioms and inference rules correctly describe the results of executing a program under our model? If they do, the deductive system is said to be consistent with the model. It has been proved that Hoare's sequential deductive system is consistent with several models of program execution (Cook [Co75], Hoare and Lauer [Ha74b]). The second question becomes: is the deductive system powerful enough to prove everything which is true about program execution in this model? If so, it is said to be complete with respect to the model. Cook [Co75] has recently proved that the sequential axioms and inference rules are complete in a restricted sense which will be discussed later. In this thesis, we will show that the axioms given for parallel processing are consistent and complete in Cook's sense for one model of parallel execution.
calculus. For example the formula \(z := (x + y) / 2 \ (x \leq y) \) expresses the fact that if \(x \leq y \) when the statement \(z := (x + y) / 2 \) begins, \(x \leq y \leq z \) will be true when (and if) the statement finishes.

Table 2.1 gives two axiom schemas (A1 and A2) and four inference rules (A0, A3-A5) for sequential programs. The notation

\[
P_1, P_2, \ldots, P_n \quad \frac{}{P}
\]

for inference rules means that \(P \) can be proved by proving each of the \(P_i \) and then applying the inference rule.

A1-A5 correspond to the five kinds of program statements. Rule A0 requires some additional comment. The notation \(P \vdash Q \) means that it is possible to prove \(Q \) using \(P \) as an assumption. The deductive system to be used in proving \(Q \) from \(P \) is not given; it could be any system which is valid for the data types and operations used in the programming language. For example, if the programming language contains natural numbers and the operations + and -, the deductive system could be based on Peano’s axioms.

Figure 2.1 gives an example of a partial correctness proof. The program \texttt{power} computes \(z = x^y \) if \(y \geq 0 \) (\(x \) and \(y \) are integers). The partial correctness condition is

\[
(y \geq 0) \texttt{power} (z = x^y).
\]

Lines 1-2 describe the statement labelled init 1, lines 3-4 describe init 2, and lines 6-10 describe the loop. Finally, the effect of the three statements together is given in line 11.
A0 consequence \[
\frac{(P') S (Q'), P \vdash P', Q' \vdash Q}{(P) S (Q)}
\]
A1 assignment \[
(p^x_E) x := E \{P\}
\]
where \(p^x_E\) represents the result of substituting \(E\) for each free occurrence of \(x\) in \(P\). e.g., if \(P\) is \((a \geq 0 \lor b = 1)\), \(p^{a+b}_a\) is \((a-b \geq 0 \lor b = 1)\).

A2 null \[
\{P\}; \{P\}
\]
A3 composition \[
\frac{(P_1) S_1 (P_2), (P_2) S_2 (P_3), \ldots, (P_n) S_n (P_{n+1})}{(P_1) \text{ begin } S_1; \ldots; S_n \text{ end } (P_{n+1})}
\]
A4 alternation \[
\frac{(P \land \neg B) S_1 (Q), (P \land B) \cdot S_2 (Q)}{(P) \text{ if } B \text{ then } S_1 \text{ else } S_2 (Q)}
\]
A5 iteration \[
\frac{(P \land \neg B) S_1 (P)}{(P) \text{ while } B \text{ do } S_1 (P \land \neg B)}
\]

Table 2.1. Axioms and Inference Rules for Sequential Programs.
CHAPTER 2

SEQUENTIAL PROGRAMS

We begin our study of parallel programs by describing a simple sequential language which will be the basis of our two parallel languages. The sequential language is a fragment of Algol, for which Hoare has given a set of axioms and inference rules. We define a simple interpreter for this language and sketch a proof that it is consistent with Hoare's deductive system. Chapters 3 and 4 will extend the language to include constructs for parallel programming.

2.1. The Sequential Programming Language (SL).

The programming language SL contains five statements:

1. assignment -- x:=E where x is a variable and E is an expression
2. null -- ;
3. compound -- begin $S_1; \ldots; S_n$ end
4. alternation -- if B then S_1 else S_2
5. iteration -- while B do S_1

where B is a Boolean expression and the S_i are statements.

Note that there are no declaration statements; it is assumed that all variables are globally defined. This simplifies the axioms and the model of program execution, but declarations could be included without changing any of the results. See Lauer [La71] and Cook [Co75] for the treatment of variable declarations.
We also choose not to specify the syntax of expressions. Most of the time we will use the standard Algol syntax for integer and logical expressions, but the techniques apply equally well to other data types and operations.

At times it will be useful to speak of the relation between a statement and the statements it contains.

2.1. Definition: Let S be an SL statement. The primary components of S are

1) none if S is an assignment or null
2) S_1, S_2, \ldots, S_n if S is begin $S_1; \ldots; S_n$ end
3) S_1, S_2 if S is if B then S_1 else S_2
4) S_1 if S is while B do S_1

The proper components of S are the primary components of S and their proper components. The components of S are S itself and its proper components.

2.2. The Deductive Semantics.

Hoare [Ho69] has developed axioms and inference rules for proving the partial correctness of sequential programs. He uses the formula $(P) S (Q)$ to represent the partial correctness of the program S with respect to assertions P and Q. This means that if P is true of the program variables before executing S, and if S terminates, Q will be true of the program variables after execution of S is complete. P and Q must be formulas of the first-order predicate
\(y \geq 0 \)

power: begin
\[
z := 1; \text{temp} := y;
\]
\[
(\text{temp} > 0 \land z = x^y \cdot \text{temp})
\]

loop: while
\[
\text{temp} > 0 \text{ do}
\]
\[
(\text{temp} > 0 \land z = x^y \cdot \text{temp})
\]

mult: begin
\[
z := x \cdot z; \text{temp} := \text{temp} - 1 \text{ end}
\]
\[
(\text{temp} > 0 \land z = x^y \cdot \text{temp})
\]
\[
(\text{temp} > 0 \land z = x^y \cdot \text{temp} \land \neg (\text{temp} > 0))
\]

end

\(z = x^y \)

Figure 2.2. An Informal Partial Correctness Proof.
Given \(\text{pre}(S') \) and \(\text{post}(S') \) for each component \(S' \) of \(S \), it is possible to reconstruct a proof of \(\{P\} S \{Q\} \), if \(\text{pre}(S') \) and \(\text{post}(S') \) satisfy certain requirements.

2.2. Definition: Let \(\text{pre} \) and \(\text{post} \) be functions which map components of \(S \) to assertions. Then \(\text{pre} \) and \(\text{post} \) are assertion functions for \(\{P\} S \{Q\} \) iff they obey the following restrictions for each component \(S' \) of \(S \):

1) \(P \models \text{pre}(S) \) and \(\text{post}(S) \models Q \)

2) if \(S' \) is \(x := E \), \(\text{pre}(S') \models \text{post}(S')^X_E \)

3) if \(S' \) is null, \(\text{pre}(S') \models \text{post}(S') \)

4) if \(S' \) is \text{begin} \(S_1; \ldots; S_n \) \text{ end}
 a) \(\text{pre}(S') \models \text{pre}(S_1) \) and \(\text{post}(S_n) \models \text{post}(S') \)
 b) \(\text{post}(S_i) \models \text{pre}(S_{i+1}) \) \(i=1,\ldots,n-1 \)

5) if \(S' \) is \text{if} \(B \) \text{ then } \(S_1 \) \text{ else } \(S_2 \)
 a) \(\text{pre}(S') \land B \models \text{pre}(S_1) \) and \(\text{pre}(S') \land \neg B \models \text{pre}(S_2) \)
 b) \(\text{post}(S_1) \models \text{post}(S') \) and \(\text{post}(S_2) \models \text{post}(S') \)

6) if \(S' \) is \text{while} \(B \) \text{ do } \(S_1 \)
 a) \(\text{pre}(S') \land B \models \text{pre}(S_1) \)
 b) \(\text{post}(S_1) \models \text{pre}(S') \)
 c) \(\text{pre}(S') \land \neg B \models \text{post}(S') \)

A proof of \(\{P\} S \{Q\} \) and a pair of assertion functions for \(\{P\} S \{Q\} \) are very closely related. Given either one, the other can be derived as shown in the next two theorems. In general, we will first give a partial correctness proof, then derive assertion functions from it.
power: begin init1: z:=1; init2: temp:=y;
 loop: while temp>0 do
 mult: begin upz: z:=x*z;
 down: temp:=temp-1
 end
 end

1. \((y \geq 0 \land z=1) \rightarrow y \geq 0 \land z=1 \land A_1\)
2. \((y \geq 0) \rightarrow y \geq 0 \land A_0, \text{using } y \geq 0 \rightarrow (y \geq 0 \land z=1)\)
3. \((y \geq 0 \land z=1 \land y=y) \Leftarrow (y \geq 0 \land A \land A \land A) \land A_1\)
4. \((y \geq 0 \land A \land A \land A) \rightarrow y \land (temp \geq 0 \land A \land A) \land A_0\)
5. \((\text{temp} \geq 0 \land A \land A \land A \land A) \rightarrow (\text{temp} \geq 0 \land A \land A \land A) \land A_1\)
6. \((\text{temp} \geq 0 \land A \land A \land A \land A \land A) \rightarrow (\text{temp} \geq 0 \land A \land A \land A) \land A_0\)
7. \((\text{temp} \geq 0 \land A \land A \land A \land A \land A) \rightarrow (\text{temp} \geq 0 \land A \land A \land A) \land A_1\)
8. \((\text{temp} \geq 0 \land A \land A \land A \land A \land A \land A) \rightarrow (\text{temp} \geq 0 \land A \land A \land A) \land A_0\)
9. \((\text{temp} \geq 0 \land A \land A \land A \land A \land A \land A) \rightarrow (\text{temp} \geq 0 \land A \land A \land A) \land A_0\)
10. \((\text{temp} \geq 0 \land A \land A \land A \land A \land A \land A) \rightarrow (\text{temp} \geq 0 \land A \land A \land A) \land A_0\)
11. \((y \geq 0) \rightarrow (\text{temp} \geq 0 \land A \land A) \land A_0\)

Figure 2.1. A Formal Partial Correctness Proof.
Of course this is a very tedious proof of a simple result -- much like an algebraic proof that \((a-b)(a+b) = a^2 + 2ab + b^2\) when every use of the commutative and distributive laws is presented. Figure 2.2 contains a more informal version of the same proof -- assertions enclosed in braces {} are interspersed with the program, while some of the proof steps are combined or omitted. Most of our proofs will be presented in this style. When proving programs correct in a practical manner, we use the formal methods only in the difficult parts and use less formal techniques on the simple parts. The most difficult part of sequential programs is iterative loops, and it is usually worthwhile to carefully apply inference rule A5 to each while statement. On the other hand, assignment statements and begin ... end blocks are relatively simple and can often be treated informally.

In Figure 2.2 the assertion \(P = \{\text{temp} > 0 \land z = x^y - \text{temp}\}\) appears just before statement mult. This corresponds to the fact that \(P\) must hold whenever mult is ready to be executed in a computation which starts with \(y \geq 0\). \(P\) can be called a pre-condition of mult, and \(Q = \{\text{temp} > 0 \land z = x^y - \text{temp}\}\) is a post-condition. A proof of \((P) S (Q)\) gives at least one pre- and post-condition for each component of \(S\). For example, line 8 in the proof of \((y > 0)\) power \((z = x^y)\) gives the pre- and post-conditions for mult cited above. Lines 9 and 10 give two post-conditions for loop, namely \(\{\text{temp} > 0 \land z = x^y - \text{temp} \land \neg(\text{temp} > 0)\}\) and \((z = x^y)\).

At times it will be useful to single out a particular pre- (or post-) condition of a statement \(S\) and call it \(\text{pre}(S)\) (or \(\text{post}(S)\)).
section uses an operational approach, in which the effect of a program is described by giving an interpreter for the programming language. This interpretive model is consistent with the deductive system. It will be used extensively in Chapter 5 when discussing mutual exclusion and blocking, which cannot be expressed directly in terms of partial correctness.

The interpreter for an SL program consists of a set of states and a state-to-state transition function. A program state has two components — a control, which gives the next instruction to be executed, and a variable state which gives the current value of each variable.

2.5. Definition: A program state for a program S is an ordered pair, $s=(c,v)$ in which

1) the variable state v is a function from variable names of S to values.

2) the control state c is a tree in which every node is labelled with a statement from S in such a way that if S_1 is a component of S_2, and S_1 and S_2 both appear in c, S_1 is a descendant of S_2. (Here each node is considered a descendant of itself.)

The variable state v is a function defined on all program variables, although the value returned for an uninitialized variable is not specified. The notation $E[s]$ will be used for the value of expression E in state $s=(c,v)$. Thus, if v assigns 0 to x,
\[(x \cdot i)[s] = 1\). For an assertion \(P\) we say \(P\) is true in \(s\) iff \(P[s] = \text{true}\).

The control state for a sequential program is a degenerate tree in which each node has zero or one sons. The single leaf is the next statement to be executed. In order to simplify notation we will assign a unique label to each statement and use the statement and its label interchangeably. Figure 2.3 contains examples of states for the program power of Figure 2.1. Note that the definition of control state guarantees that no statement appears more than once in the tree.

For \(S\) is a component of itself, and if \(S\) appears at nodes \(m\) and \(n\), \(m\) must be a descendant of \(n\) and vice versa. So \(m = n\).

The execution of a statement can affect both components of the program state. The control is modified by replacing a leaf by a (possibly empty) tree.

2.6. Definition: If \(t\) and \(t'\) are trees, and \(n\) a leaf in \(t\), \(\text{replace}(t, n, t')\) is the tree obtained by replacing \(n\) by \(t'\) in \(t\).

Example: \[t = \begin{array}{c}
\text{a} \\
\text{d} \\
\text{b} \\
\text{c}
\end{array}\]

\[t' = \begin{array}{c}
\text{e} \\
\text{g} \\
\text{f}
\end{array}\]

\[\text{replace}(t, d, t') = \begin{array}{c}
\text{a} \\
\text{c} \\
\text{b} \\
\text{g} \\
\text{f}
\end{array}\]

\[\text{replace}(t, c, \varnothing) = \begin{array}{c}
\text{a} \\
\text{d} \\
\text{b}
\end{array}\]

where \(\varnothing\) is the empty tree.
The assertion functions are useful in proving the consistency of the deductive system and in discussing various properties of parallel programs in Chapter 5. The key point is that \(\text{pre}(S') \) must hold whenever \(S' \) is ready to execute and \(\text{post}(S') \) must hold whenever \(S' \) is finished.

2.3. Theorem: If \(\text{pre} \) and \(\text{post} \) are assertion functions for \((P) S (Q) \), it is possible to prove \(\{ \text{pre}(S') \} S' \{ \text{post}(S') \} \) for each component \(S' \) of \(S \).

Proof: By induction on the structure of \(S' \). Two cases will be given; the rest are similar.

Case 1: \(S' \) is \(x := E \)

1. \(\{ \text{post}(S') \}^E_x S' \{ \text{post}(S') \} \) \(A1 \)
2. \(\{ \text{pre}(S') \} S' \{ \text{post}(S') \} \) 1, A0, and requirement 2 for \(\text{pre} \) and \(\text{post} \)

Case 2: \(S' \) is \(\text{while} \ B \ \text{do} \ S_1 \)

1. \(\{ \text{pre}(S_1) \} S_1 \{ \text{post}(S_1) \} \) induction
2. \(\{ \text{pre}(S') \} A B S_1 \{ \text{pre}(S') \} \) 1, A0, requirements 6a, 6b
3. \(\{ \text{pre}(S') \} S' \{ \text{pre}(S') \} A B \) 2, A5
4. \(\{ \text{pre}(S') \} S' \{ \text{post}(S') \} \) 3, A0, and requirement 6c

2.4. Theorem: If there is a proof of \((P) S (Q) \), there are assertion functions \(\text{pre} \) and \(\text{post} \) for \((P) S (Q) \).

Proof: \(\text{pre} \) and \(\text{post} \) can be obtained from the proof; they will be defined in such a way that \(\{ \text{pre}(S') \} S' \{ \text{post}(S') \} \) is a line in the
proof, for each component S' of S. Since the proof may contain more than one line which refers to S', we must specify which line is chosen to give $\text{pre}(S')$ and $\text{post}(S')$. We eliminate all lines which do not contribute to the proof of $(P) S (Q)$ (for example, line 1 in the proof of $(x<y) z := (x+y)/2$ $(x\leq y)$ below).

1. $((x+y)/2 > 0) z := (x+y)/2$ $(z > 0)$ \hspace{1cm} A1
2. $(x \leq (x+y)/2 \leq y) z := (x+y)/2$ $(x \leq y)$ \hspace{1cm} A1
3. $(x < y) z := (x+y)/2$ $(x \leq y)$ \hspace{1cm} 2, A0

In this reduced proof there will be one line which refers to S' and uses one of rules A1 to A5. It is from this line that we choose $\text{pre}(S')$ and $\text{post}(S')$. Any other lines with the form $(P') S' (Q')$ must be derived from $(\text{pre}(S')) S' (\text{post}(S'))$ by one or more applications of A0. Thus, $P' \models \text{pre}(S')$ and $\text{post}(S') \models Q'$.

Now we must verify that pre and post satisfy Definition 2.2. Two representative cases will be considered. If S' is $x := E$, $\text{pre}(S')$ $x := E$ ($\text{post}(S')$) is an application of A1. Thus, $\text{pre}(S') = \text{post}(S')$ x and 1 is satisfied. If S' is $\text{while} B \text{ do } S_1$, $\text{pre}(S')$ S' ($\text{post}(S')$) is an application of A5. This implies that $\text{post}(S') = (\text{pre}(S') \land \neg B)$, satisfying 6c, and that $(\text{pre}(S') \land B) S_1$ ($\text{pre}(S')$) has been proved. Since $(\text{pre}(S') \land B) S_1$ ($\text{pre}(S')$) is a line in the proof, $\text{pre}(S') \land B \models \text{pre}(S_1)$ and $\text{post}(S_1) \models \text{pre}(S')$, satisfying 6a and 6b.

2.3. The Interpretive Model.

In the last section, the semantics of the Algol fragment SL was defined by axioms and inference rules at a very abstract level. This
c' = replace(c, S, Γ) if S is assignment or null (Γ is the empty tree)
 = replace(c, S, \begin{align*}
 & S_1 \ldots S_n \text{ end} \\
 & S_2 \\
 & \vdots \\
 & S_n
\end{align*}) if S is \begin{align*}
 & \text{if } B \text{ then } S_1 \text{ else } S_2 \text{ and } B(s) = \text{true}
\end{align*}
 = replace(c, S, \begin{align*}
 & S_1 \\
 & S_2
\end{align*}) if S is \begin{align*}
 & \text{if } B \text{ then } S_1 \text{ else } S_2 \text{ and } B(s) = \text{false}
\end{align*}
 = replace(c, S, \begin{align*}
 & S_1
\end{align*}) if S is \begin{align*}
 & \text{while } B \text{ do } S_1 \text{ and } B(s) = \text{true}
\end{align*}
 = replace(c, S, Γ) if S is \begin{align*}
 & \text{while } B \text{ do } S_1 \text{ and } B(s) = \text{false}
\end{align*}

Example: See Figure 2.3.

We have not described the effect of next if an arithmetic or
Boolean expression can't be evaluated for some reason (for example,
it involves division by zero or an uninitialized variable). There
are two ways in which the interpreter could respond in such a
situation. One is to stop execution; the other is to choose some
arbitrary value for the expression, for example, 0 for numeric
expressions and true for Boolean expressions. In the interpreter we
will follow the second alternative. For example, the effect of
executing the statement \(x := 4/0 \) is to assign 0 to \(x \). The axioms
and inference rules can be made to reflect this choice by assigning
the same value as the interpreter to expressions which are normally
considered undefined. For the statement \(x := 4/0 \), A1 can be applied
to give a proof of \((4/0 = 4/0) \land x = 4/0\) or \((\text{true}) \land x = 4/0 \). The deductive system used in the rule of consequence (A0) must be
chosen in a way which is consistent with the assignment of values to expressions like \(x/0 \), but this should cause no problems.

Note that \(\{ \text{true} \} \ x := 4/0 \ {\color{red} x = 0} \) is also consistent with an implementation in which execution stops on encountering the illegal division, since in that case the statement does not terminate, and \(\{ P \} \ S \{ Q \} \) is true for any \(P \) and \(Q \).

For sequential programs there is only one order in which statements can be executed, but for parallel programs this is no longer the case. In order to provide a basis for the parallel interpreter, we define a "computation", which records the order of statement execution, and then define some useful properties of computations.

2.9. Definition: A computation \(a \) for program \(S \) beginning with variable state \(v_0 \) is a sequence of statements \(S_1 \ S_2 \ldots \ S_n \) such that if \(s_0 = (S,v_0) \) the sequence of states \(s_i = \text{next}(s_{i-1},S_i) \) is defined, i.e., \(S_1 \) is a leaf in \(S_{i-1} \). If \(a = S_1 \ldots S_n \) is a computation, let \(\text{value}(s_0,a) = s_n \). If \(P \) is an assertion we say \(P \) is true after \(n \) iff \(P(\text{value}(s_0,a)) = \text{true} \).

Example: From Figure 2.3, \(a = (\text{power, init1, init2, loop, mult, up, downtemp, loop}) \) is a computation for power beginning with state \(v_0 \). Value \((s_0,a) = s_8 \), \(x(\text{value}(s_0,a)) = 2 \), and \(z = x^y \) is true after \(a \).

2.10. Definition: Statement \(S \) is ready to execute after computation \(a \) iff \(S \) is a leaf in the control of \(\text{value}(s_0,a) \).

Examples: From Figure 2.3, init1 is ready to execute after \(a = (\text{power}) \) and init2 is ready to execute after \(a = (\text{power, init1}) \).
Figure 2.3. A Sequence of Program States for the Program Power of Figure 2.1.
The variable state can be modified by an assignment statement. The new variable state will be the same as the old, except at the variable which received a value.

2.7. Definition: If \(v \) is a variable state function and \(E \) is an expression, \(v<\alpha|E> \) is a new variable state function defined by

\[
x[v<\alpha|E>] = x[v] \text{ if } x \neq \alpha \\
= E[v] \text{ if } x = \alpha
\]

The effect of each type of statement is defined by the state transition function "\(\text{next} \). An assignment statement changes both the control and the variable state; all others change only the control.

Note that if \(S \) is a compound statement (begin ... end, if or while), \(\text{next}(s,S) \) describes the effect of starting \(S \) in state \(s \) rather than the effect of a complete execution of \(S \).

2.8. Definition: The state transition function

\[
\text{next}: (\text{program states}) \times (\text{statements}) \rightarrow (\text{program states})
\]

is given by

\[
\text{next}((c,v),S) = (c',v') \quad \text{if } S \text{ is a leaf in } c \\
= \text{undefined} \quad \text{otherwise}
\]

where

\[
v' = v<\alpha|E> \quad \text{if } S \text{ is } x:=E \\
= v \quad \text{otherwise}
\]
Proof: The proof uses induction on the length of \(a \). If \(a \) is empty, 1) is satisfied because \(P \) is true for \(s_0 \) and \(P \vdash \text{pre}(S) \).

2) does not apply.

For \(a = a'T \), \(\text{pre}(T) \) is true after \(a' \) by induction. Proving that 1) and 2) are satisfied for \(a'T \) is a straightforward but tedious application of the definition of assertion functions. The details are given in Chapter 6.

2.16. Corollary: If \((P) S (Q) \) can be proved, it is true for the interpreter.

Proof: By Theorem 2.4, there are assertion functions \(\text{pre} \) and \(\text{post} \) for \((P) S (Q) \). Now suppose \(a \) executes \(S \) from state \(s_0 \) with \(P[s_0] = \text{true} \). Then by the last theorem, \(\text{post}(S)[\text{value}(s_0, a)] = \text{true} \), and \(Q[\text{value}(s_0, a)] = \text{true} \) since \(\text{post}(S) \vdash Q \). So \((P) S (Q) \) is true for the interpreter.

This finishes our review of sequential programs. In the next chapter the axioms and the model are extended to parallel programs.
CHAPTER 3

PARALLEL PROGRAMS

In this chapter we introduce parallel programs by extending the language of Chapter 2. Two new statements will be added, `coend` to initiate parallel execution, and a synchronization statement called `await` to coordinate processes executing in parallel. The `await` statement is very flexible -- in fact it is too general to be implemented in an efficient way. It is included here because it can be used to represent many standard synchronizing primitives, such as events and semaphores. Thus, the proof techniques for GPL can be applied to programs which use these synchronizers.

The language in this chapter is relatively primitive and provides only limited facilities for structuring the interactions of processes using shared variables. We will see that the axioms for the parallel and synchronization statements are easy to understand; they state quite easily when we can know that parallel processes don't "interfere" with each other. But proofs using them will be difficult because of the exponential number of checks that may be necessary to satisfy this noninterference criterion. In Chapter 4, we present another language in which the use of shared variables is closely regulated; this makes proofs of program correctness much simpler. However, no such language is yet in use (see Brinch Hansen [Br74]) so the results in this chapter are more readily applicable to programs written in the languages which are currently available.
2.11. **Definition:** If \(a \) is a computation for \(S \) and \(S' \) is a component of \(S \), \(a \) finishes \(S' \) iff

1) \(S' \) is an assignment or null statement, and \(S' \) is the last statement in \(a \), or

2) \(S' \) is while \(B \) do \(S_1 \), \(S' \) is the last statement in \(a \), and \(B \) is false after \(a \), or

3) \(S' \) is begin \(S_1; \ldots; S_n \) end and \(a \) finishes \(S_n \), or

4) \(S' \) is if \(B \) then \(S_1 \) else \(S_2 \) and \(a \) finishes \(S_1 \) or \(S_2 \).

Example: From Figure 2.3f, \(a = (\text{power}, \text{init1}, \text{init2}, \text{loop}, \text{body}, \text{upz}, \text{downtemp}) \) finishes downtemp and body.

2.12. **Definition:** \(a \) executes \(S \) iff \(a \) is a computation for \(S \) which finishes \(S \).

Example: From Figure 2.3i, \(a = (\text{power}, \text{init1}, \text{init2}, \text{loop}, \text{body}, \text{upz}, \text{downtemp}, \text{loop}) \) executes power.

Note that for a given initial state \(s_0 \), there is at most one computation which executes \(S \). This is not true for parallel programs.

If \(S \) contains an infinite loop, no computation executes \(S \).

2.13. **Definition:** \(\text{execute}(s,S) = \text{value}(s,a) \) if \(S \) is ready to execute in \(s \) and \(a \) is a computation which executes \(S \) from state \(s \).

If \(S \) is not ready to execute in \(s \), or no such \(a \) exists, \(\text{execute}(s,S) \) is undefined.

This completes the description of the interpreter for sequential programs. In Chapter 3 it will be extended to include parallel programs.
2.4. Consistency of the Deductive System and the Interpreter.

Sections 2.2 and 2.3 specify the semantics of the language SL in two different ways. In this section, we state a theorem to the effect that the two methods are consistent. To keep the reader from getting bogged down in details, we only sketch the proof here, delaying a complete presentation until Chapter 6. Hopefully, both methods correspond well enough with the reader's intuitive idea of program execution that he is willing to believe they are not contradictory.

In order to show that the deductive system and the interpretive model are consistent, we must show that \((P) S (Q)\) can only be proved when it is true for the interpreter.

2.14. Definition: \((P) S (Q)\) is true for the interpreter iff any computation \(a\) which executes \(S\) from state \(s_0\) with \(P[s_0] = true\) has \(Q[v\text{alue}(s_0, a)] = true\).

In order to show that a proof of \((P) S (Q)\) implies that \((P) S (Q)\) is true in the model, we first derive a stronger result using assertion functions.

2.15. Theorem: If pre and post are assertion functions for \((P) S (Q)\), \(S'\) is a component of \(S\), and \(a\) is a computation for \(S\) from a state \(s_0\) with \(P[s_0] = true\), then

1) if \(S'\) is ready to execute after \(a\), \(pre(S')\) is true after \(a\);
2) if \(a\) finishes \(S'\), \(post(S')\) is true after \(a\).
\[P(\text{sem}): \begin{array}{l}
\text{wait \text{sem}>0 then sem:=sem-1 ;}
\end{array} \]

\[V(\text{sem}): \begin{array}{l}
\text{wait \text{true then sem:=sem+1 ;}
\end{array} \]

Lipton \cite{Li74} describes a number of generalizations of semaphores; all can be implemented using \textit{wait} statements.

In \cite{Di68b}, Dijkstra gives a slightly different definition of the semaphore operations.

\[P'(\text{sem}): \begin{array}{l}
\text{sem:=sem-1 ; if sem<0 then the process is suspended}
\text{on a queue associated with sem.}
\end{array} \]

\[V'(\text{sem}): \begin{array}{l}
\text{sem:=sem+1 ; if sem<0 , awaken one of the processes on}
\text{the semaphore's queue.}
\end{array} \]

A possible implementation of these operations uses a Boolean array \textit{waiting}, with one element for each process. Initially \textit{waiting[i]}=false and \textit{waiting[i]}=true \iff process \textit{i} is on the queue.

\[P'(\text{sem}): \begin{array}{l}
\text{wait \text{true then}
\begin{array}{l}
\text{begin sem:=sem-1 ;}
\text{if sem<0 then waiting[this process]:=true}
\end{array}
\text{end}
\text{wait \text{waiting[this process] then;}
\end{array} \]

\[V'(\text{sem}): \begin{array}{l}
\text{wait \text{true then}
\begin{array}{l}
\text{begin sem:=sem+1 ;}
\text{if sem>0 then}
\end{array}
\end{array} \]
\begin{verbatim}
begin choose i such that waiting[i]=true;
 waiting[i]:=false;
end
end
\end{verbatim}

The operations \textit{P} and \textit{V} are an abstraction of \textit{P'} and \textit{V'}. There are some cases in which the effects of the two are not identical, but for the properties discussed in this thesis -- partial correctness, mutual exclusion, and deadlock -- the differences are irrelevant. See Lipton (\cite{Li74a}, Chapter 3) for a comparison of the two kinds of semaphore operations.

In order to prove the correctness of a program which uses semaphores, the semaphore operations can be replaced by the corresponding \texttt{await} statements. The result is an equivalent GPL program, which can be proved correct using the methods presented in this chapter. There are a number of other synchronization primitives which can be modelled using \texttt{await}, and the same technique can be applied to programs which contain such primitives. It is this flexibility which prompted the name "general parallel language".

3.2. The Interpretive Model.

The model of sequential program execution defined in Section 2.3 will now be extended to include parallelism. Recall that the interpreter had two components: a program state consisting of a control and a variable state, and a state transition function "next". The program state is defined exactly as before, although execution of a
3.1. The General Parallel Language (GPL).

The language of this chapter is the sequential language of Chapter 2 plus two statements for parallel processing:

\[
\text{parallel execution} \quad \text{cobegin} \quad S_1//...//S_n \text{ coend}
\]

\[
\text{synchronization} \quad \text{await} \quad B \text{ then } S_1
\]

where \(S_1 \) is a statement and \(B \) a Boolean expression. The first statement initiates parallel execution of \(S_1 \ldots S_n \). When all of the \(S_i \) have finished, the parallel statement terminates and execution can proceed to the next statement. There are no restrictions on the way in which parallel execution is implemented; in particular nothing is assumed about the relative speeds of different \(S_i \). The primary components of a \text{cobegin} \ldots \text{coend} statement are called parallel processes.

3.1. Definition: Components \(T_1 \) and \(T_2 \) of \(S \) are in different processes iff \(S \) contains a statement \text{cobegin} \(S_1//...//S_n \text{ coend} \) with \(T_1 \) and \(T_2 \) components of different \(S_i \). Otherwise, \(T_1 \) and \(T_2 \) are in the same process.

Note that according to this definition, the \text{cobegin} statement itself is in the same process as each of its components. A program can be visualized as one large process which may contain a number of different subprocesses. Since parallel statements can be nested, any process may contain subprocesses.

The second new statement, \text{await} \(B \text{ then } S \), is designed to provide synchronization between parallel processes, and it can only
appear inside a `cobegin` statement. \(B \) is a Boolean expression, and \(S \) is a sequential statement which does not contain a `cobegin` or another `await`. When a process attempts to execute a synchronization statement, it is delayed until the condition \(B \) is true. Then the statement \(S \) is executed as an indivisible operation. If two or more processes are waiting for the same condition \(B \), any one of them may be allowed to proceed when \(B \) becomes true. In some applications it is necessary to specify the order in which waiting processes are scheduled, for example on a first-come, first-served basis. For the problems discussed in this thesis, however, any scheduling rule at all is acceptable.

The `await` statement can be used to turn any sequential statement into an indivisible operation. This would be quite difficult to implement, and it is not suggested that the `await` statement is a desirable language feature. Instead it is presented because it can be used to represent a number of standard synchronizing primitives, such as Dijkstra's semaphore operations [Di68a].

A semaphore is an integer variable which can only be accessed by two operations, \(P \) and \(V \).

\[
P(\text{sem}): \quad \text{if } \text{sem}>0, \text{sem}:=\text{sem}-1; \text{ otherwise the process is suspended until } \text{sem}>0.\]

\[
V(\text{sem}): \quad \text{sem}:=\text{sem}+1;\]

The \(P \) and \(V \) operations are indivisible. They can be represented by synchronization statements as follows.
Figure 3.1. A Computation for the Parallel Program S1.

```plaintext
S1: cobegin
   S2: begin  S3: x:=a*a;
       S4: go := true;
   end
    //
S5: begin  S6: y:=(a+1)*(a+1);
   S7: await go then S8: sum:=x*y;
   end
coend

\[
\begin{array}{|c|c|c|c|c|}
\hline
\text{c}_0 = \cdot S1 & \text{v}_0(x)=? & \text{c}_1 = \cdot S2 \cdot S5 & \text{c}_2 = \cdot S2 & \text{c}_3 = \cdot S2 \cdot S7 \\
\text{v}_0(y)=? & \text{v}_1 = \text{v}_0 & \text{v}_2 = \text{v}_0 & \text{v}_3 = \text{v}_0 \langle y \rangle (a+1),(a+1) \rangle \\
\text{v}_0(a)=0 & \text{v}_4 = \text{v}_3 & \text{v}_5 = \text{v}_3 \langle x \rangle a,a \rangle & \text{v}_6 = \text{v}_5 < \text{go} \rangle \langle \text{true} \rangle & \text{v}_7 = \ \langle \text{true} \rangle \\
\text{v}_0(\text{go})=\text{false} & \text{v}_7(\text{x})=0 & \text{v}_7(y)=1 & \text{v}_7(a)=0 & \text{v}_7(\text{go})=\text{true} & \text{v}_7(\text{sum})=1 \\
\text{v}_0(\text{sum})=? & & & & \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|c|c|c|}
\hline
\text{a. } s_0 = (c_0,v_0) & \text{b. } s_1 = \text{next}(s_0,S1) & \text{c. } s_2 = \text{next}(s_1,S5) & \text{d. } s_3 = \text{next}(s_2,S6) \\
\text{e. } s_4 = \text{next}(s_3,S2) & \text{f. } s_5 = \text{next}(s_4,S3) & \text{g. } s_6 = \text{next}(s_5,S4) & \text{h. } s_7 = \text{next}(s_6,S7) \\
\hline
\end{array}
\]
```
it is not. The solution is to restrict programs so that the assumption of indivisibility is a reasonable one. For example, if executing two actions simultaneously is the same as executing one and then the other, it is reasonable to treat them as indivisible. This certainly is the case if the actions do not have any variables in common. If they do, some care is required.

3.5. Definition: The variable x is shared in \texttt{coherin} $S_1//...//S_n$ coend if it is referenced in two or more of the S_i and changed (i.e., appears on the left side of an assignment) in at least one of them.

It is references to shared variables which cause problems when actions are treated as indivisible. But for actions which make at most one reference to a shared variable the assumption of indivisibility is reasonable. If two such actions are executed simultaneously, one of them must make the first access to the shared variable. The effect in parallel will be the same as if this action was executed first and followed by the other action.

In the interpreter, three kinds of actions are assumed to be indivisible:

1) an assignment statement
2) evaluating the Boolean expression in an \texttt{if} or \texttt{while}
3) synchronization statement.

3 is no problem, since a synchronization statement is intended to be indivisible in parallel execution. 1 and 2 are justified if each assignment and each \texttt{if} or \texttt{while} condition contains at most one reference
parallel program, unlike a sequential program, can lead to a control

tree with more than one leaf. The function "next" must be extended
to handle parallel and synchronization statements. next(s,S) is
defined for all statements S which are ready to execute in s.

3.2. Definition: A statement S is current in the program state
s=(c,v) iff S is a leaf in c.

3.3 Definition: S is ready to execute in state s=(c,v) iff S is
current in s, and if S is await B then S1, B[s]=true.

Note that for sequential programs this reduces to the previous
definition of "ready to execute".

3.4. Definition: The state transition function

next: \{(program states)\} \times \{(statements)\} \rightarrow \{(program states)\}

is given by

next((c,v),S) = undefined if S is not ready to execute in (c,v)

= execute((c',v),S1) if S is await B then S1, where

c' = replace(c,S,S1) (see Definition 2.13)

= (c',v) if S is cobegin S1//...//Sn coend, where

c' is the tree obtained by deleting S in c

and adding S1,...,Sn as sons of S's father, if

any, and otherwise as roots of unconnected trees.

= (c',v') of Definition 2.8 if S is assignment,

null, sequence, if, or while.
The definition next((c,v), await B then S₁) = execute((c',v),S₁) reflects the assumption that executing an await statement is an indivisible operation.

Figure 3.1 contains examples of the application of next. Note that in 3.1b the control state is actually a forest rather than a tree.

In this model parallel execution is simulated by nondeterminism. Instead of executing the processes in cobegin S₁/.../Sₙ coend simultaneously, it performs one action at a time, choosing nondeterministically which process to work on next. This means that in the program

```plaintext
newx: begin x:=0;
    cobegin A: x:=x+1 // B: x:=x-1 coend
end
```

either A or B is executed first — they cannot overlap. This use of nondeterminism is standard in models of parallel execution, but it requires some justification. For example, the program above, executed by the interpreter, must finish with x=0. A true parallel implementation might finish with x=1 if the actions took place as follows:

1. A evaluates x+1
2. B evaluates x-1
3. B stores -1 in x
4. A stores +1 in x

The discrepancy arises from the fact that the assignment x:=x+1 is treated as an indivisible operation by the interpreter, when in fact
A0 consequence
\[
\frac{(P') \in \{Q\}, \ P \vdash P', \ Q' \vdash Q}{(P) \in \{Q\}}
\]

A1 assignment
\[
\{(P^X_E) \ x := E \mid P\}
\]

A2 null
\[
(P) ; (P)
\]

A3 composition
\[
\frac{(P_1) \ S_1 \ (P_2) \ S_2 \ (P_3) \ S_3 \ \ldots \ (P_n) \ S_n \ (P_{n+1})}{(P_1) \ \text{begin} \ S_1; \ldots; \ S_n \ \text{end} \ (P_{n+1})}
\]

A4 alternation
\[
\frac{(P \land B) \ S_1 \ (Q) \lor (P \land \neg B) \ S_2 \ (Q)}{(P) \ \text{if} \ B \ \text{then} \ S_1 \ \text{else} \ S_2 \ (Q)}
\]

A5 iteration
\[
\frac{(P \land B) \ S \ (P)}{(P) \ \text{while} \ B \ \text{do} \ S \ (P \land \neg B)}
\]

A6 synchronization
\[
\frac{(P \land B) \ S \ (Q)}{(P) \ \text{await} \ B \ \text{then} \ S \ (Q)}
\]

A7 parallel
\[
\frac{(P_1) \ S_1 \ (Q_1), \ldots, (P_n) \ S_n \ (Q_n)}{(P_1 \land \ldots \land P_n) \ \text{co begin} \ S_1; \ldots; S_n \ \text{co end} \ (Q_1 \land \ldots \land Q_n)}
\]

provided \((P_1) \ S_1 \ (Q_1) \ldots (P_n) \ S_n \ (Q_n)\) are interference-free

Table 3.1. Axioms and Inference Rules for GDL.
does not modify any shared variables. This makes the processes completely independent, but is too strong a requirement. A more useful restriction is that the assertions used in proving \(\{P_i\} S_i \{Q_i\} \) are invariant as statements from other processes are executed. For example, the assertion \((x=y)\) in \(S_i \) remains true throughout the execution of \(x:=x+1 \) in \(S_j \). The invariance of an assertion \(P \) over a statement \(S \) is expressed by the formula.

\[
(P \land \text{pre}(S)) \implies S \implies (P), \text{ where pre}(S) \text{ is a pre-condition of } S.
\]

This invariance relation is the basis of the interference-free criterion. We will first define interference-free in terms of assertion functions and then relate it to program proofs.

3.1. Definition: Suppose \(S \) is a GPL program, and pre and post are functions which map components of \(S \) to assertions. They are assertion functions for \(\{P\} S \{Q\} \) iff they obey the following restrictions for each component \(S' \) of \(S \).

1)–6) Same as Definition 2.2

7) if \(S' \) is \(\text{await } B \) then \(S_1 \)
 a) \(\text{pre}(S') \land \epsilon \implies \text{pre}(S_1) \)
 b) \(\text{post}(S_1) \implies \text{post}(S') \)

8) if \(S' \) is \(\text{cobegin } S_1//\ldots//S_n \text{ coend} \)
 a) \(\bigwedge_{i=1}^{n} \text{pre}(S_i) \)
 b) \(\bigwedge_{i=1}^{n} \text{post}(S_i) \implies \text{post}(S') \)
to a shared variable. We will only discuss programs which satisfy
these requirements -- for such programs parallel and nondeterministic
execution give the same results.

Because of the nondeterminism in the interpreter, a parallel
program can be executed in a number of different ways. A computation
gives one possible order in which statements can be executed. Computa-
tions and their properties are defined in much the same way as in
Chapter 2.

3.6. Definition: A computation for program S beginning with
variable state v_0 is a sequence of states $S_1 \ldots S_n$ such that
if $s_0 = (S, v_0)$, the sequence of states $s_i = \text{next}(s_{i-1}, S_i)$,
i=1 ... n is defined, i.e., S_i is ready to execute after $S_1 \ldots S_n$.
In this case value(s_0, a)=s_n, and an assertion P is \text{true after} a iff $P(\text{value}(s_0, a))=\text{true}$.

3.7. Definition: If α is a computation for S, and S' is a
component of S, α finishes S' iff

1) S' is an assign, null, or \text{await} statement, and S' is the last
statement of α from the same process as S', or

2) S' is \text{while} B \text{do} S_1, and S' is the last statement in α
from the same process as S', and $B(\text{value}(s_0, a))=\text{false}$, or

3) S' is \text{begin} $S_1 \ldots ; S_n$ \text{end} and α finishes S_n, or

4) S' is \text{if} B \text{then} S_1 \text{else} S_2, and α finishes S_1 or S_2, or

5) S' is \text{cobegin} $S_1 // \ldots // S_n$ \text{coend}, and α finishes all the S_i
$1 \leq i \leq n$.

3.8. Definition: a executes S iff a is a computation for S which finishes S.

At times it will be useful to speak of a statement being "in execution" in a computation.

3.9. Definition: S is in execution in a computation a iff a component of S is current after a. Thus, a statement is in execution from the time it is current until it has finished.

Finally, we review the definition of "true in the interpreter", which is the same for SL and GPL.

3.10. Definition: (P) S (Q) is true for the interpreter iff any computation a which executes S from state s₀ with P[s₀]=true has Q[value(s₀,a)]=true.

3.3. The Deductive System.

Table 3.1 gives the axioms and inference rules for GPL programs. They assume that the program obeys the restrictions on shared variables discussed in the last section. A0-A5 are identical to the rules for sequential programs. A6, the inference rule for synchronization statements, is quite straightforward. But rule A7 for parallel statements requires some discussion. It basically states that the effect of executing S₁ ... Sₙ in parallel is the combined effect of executing each of the Sᵢ by itself, provided that the processes do not interfere with each other. Of course the key to this statement is a definition of "interfere". One possibility is to require that Sᵢ
S) c) pre and post are interference-free for \(S_1, \ldots, S_n \) i.e.,
if \(T \) is a component of \(S_i \), and \(T' \) is an assignment
or \(\text{await} \) in \(S_j \) (i\(\neq \)j), and neither \(T \) nor \(T' \) is a
proper component of an \(\text{await} \) statement, then

\[
\{ \text{pre}(T) \text{pre}(T') \} \ T' \{ \text{pre}(T) \}
\]

\[
\{ \text{post}(T) \text{pre}(T') \} \ T' \{ \text{post}(T) \}
\]

can be proved.

The interference-free test in 8c guarantees that the assertions on \(S_i \)
remain true as statements in \(S_j \) are executed. It is only necessary
to check for invariance over assignment and synchronization statements,
since all changes in data values take place in such statements. Proper
components of \(\text{await} \) statements are not included in the tests because
\(\text{await} \) statements are indivisible operations, and the state of
variables at intermediate stages is not important.

The interference-free criterion for proofs, as required in A7,
is defined in terms of assertion functions.

3.12. Definition: The formulas \((P_1)_{S_1}(Q_1), \ldots, (P_n)_{S_n}(Q_n) \) are
interference-free iff there are assertion functions \(\text{pre}_k \) and \(\text{post}_k \)
for \((P_k)_{S_k}(Q_k) \) such that if \(T \) is a component of \(S_i \) and \(T' \) is
an assignment or \(\text{await} \) statement in \(S_j \) (i\(\neq \)j) and neither \(T \) nor \(T' \)
is a proper component of an \(\text{await} \) statement, then

\[
\{ \text{pre}_i(T) \text{pre}_j(T') \} \ T' \{ \text{pre}_i(T) \}
\]
\{\text{post}_i(T)\wedge \text{pre}_j(T')\} \Rightarrow (\text{post}_i(T))

can be proved.

Just as in Chapter 2, a program proof and a pair of assertion functions are closely related.

3.13. Theorem: If \text{pre} and \text{post} are assertion functions for \{P\} S \{Q\},
it is possible to prove \{(\text{pre}(S')); S' \{\text{post}(S')\}\} for each component S' of S.

Proof: Same as Theorem 2.3.

3.14. Theorem: If there is a proof of \{P\} S \{Q\}, there are assertion functions \text{pre} and \text{post} for \{P\} S \{Q\}.

Proof: Same as Theorem 2.4.

Examples: Figure 3.2 contains a partial correctness proof for a very simple program. The fact that \{(x=0\wedge x=2) S_1 \{x=1 \wedge x=3\}\} and
\{(x=0 \wedge x=1) S_2 \{x=2 \wedge x=3\}\} are interference-free can be verified by four tests.

1. \{(\text{pre}(S_1) \wedge \text{pre}(S_2)) S_2 \{\text{pre}(S_1)\}\}
 i.e., \{((x=0\wedge x=2) A(x=0\wedge x=1)) S_2 \{x=0 \wedge x=2\}\}
 which can be derived from \{(x=0) x:=x+2 \{x=2\}\} using A6 and A0.

2. \{(\text{post}(S_1) \wedge \text{pre}(S_2)) S_2 \{\text{pre}(S_1)\}\}

3. \{(\text{pre}(S_2) \wedge \text{pre}(S_1)) S_1 \{\text{pre}(S_2)\}\}

4. \{(\text{post}(S_2) \wedge \text{pre}(S_1)) S_1 \{\text{post}(S_2)\}\}

Note that \text{pre}(S) \vdash (\text{pre}(S_1) \wedge \text{pre}(S_2)) and (\text{post}(S_1) \wedge \text{post}(S_2)) \vdash \text{post}(S).
\{x=0\}

\textbf{S}: \textbf{cobegin}

\quad \{x=0 \; V \; x=2\}

\quad \textbf{S1: \textbf{wait true then} \; x:=x+1}

\quad \{x=1 \; V \; x=3\}

\quad //

\quad \{x=0 \; V \; x=1\}

\quad \textbf{S2: \textbf{wait true then} \; x:=x+2}

\quad \{x=2 \; V \; x=3\}

\textbf{coend}

\{x=3\}

\textbf{Figure 3.2. A Partial Correctness Proof of a Parallel Program.}
As an example of a somewhat more realistic problem, consider the
program Findpos in Figure 3.3. It is essentially the same as a program
whose correctness was proved by Rosen [Do74]. Given an array \(x \) of
integers, it finds the first positive component \(x[k] \), if there is
one, using two parallel processes to check the odd and even subscripted
array elements. Figure 3.4 gives the assertions used in an axiomatic
proof. It is not hard to see that they constitute a proof provided
that the assertions for Oddsearch and Evensearch are interference-free.
To verify this we must show that for each statement \(T \) in Evensearch,
and each assignment \(T' \) in Oddsearch

\[
\{\text{pre}(T) \wedge \text{pre}(T')\} \quad T' \quad \{\text{pre}(T)\}
\]

\[
\{\text{post}(T) \wedge \text{pre}(T')\} \quad T' \quad \{\text{post}(T)\}
\]

(The argument that Evensearch does not interfere with Oddsearch is
symmetric.) The only part of the assertions in Evensearch which could
be changed by an assignment in Oddsearch is

\[i \geq \min(\text{oddtop}, \text{eventop}) \]

which might be changed when oddyes sets oddtop:=j. So we must
check

\[
\{i \geq \min(\text{oddtop}, \text{eventop}) \wedge \text{pre}(\text{oddyes})\} \quad \text{oddtop}:=j
\]

\[
\{i \geq \min(\text{oddtop}, \text{eventop})\}
\]
Findpos: begin integer M, x[1:M]

initialize: i:=2; j:=1; eventop:=oddtop:=M+1;

search: cobegin

 evensearch: while i<min(oddtop, eventop) do
 eventest: if x[i]>0
 then evenyes: eventop:=i
 else evenno: i:=i+2

 oddsearch: while j<min(oddtop, eventop) do
 oddtest: if x[j]>0
 then oddyes: oddtop:=j
 else oddno: j:=j+2

cend;

k:=min(eventop, oddtop)

end

Figure 3.5. The Program Findpos.
Findpos: begin
initialize: i:=2; j:=1; eventop:=oddtop:=m+1;

{i=2 ∧ j=1 ∧ eventop=oddtop=m+1}

search: cobegin

{ES}
Ensearch: while i<min(oddtop,eventop) do

{ES ∧ i<eventop ∧ i<m+1}
eventest: if x[i]>0
then {ES ∧ i<m+1 ∧ x[i]>0} en '<?\smaller\textbf{evenes}: eventop:=i (ES)
close}
else {ES ∧ i<eventop ∧ x[i]<0} en '<?\smaller\textbf{evenno}: i:=i+2 (ES)

{ES}

{ES ∧ i>=min(oddtop,eventop)}//

{OS}
Oddsearch: while j<min(oddtop,eventop) do

{OS ∧ j<oddtop ∧ j<m+1}
oaddtest: if x[j]<0
then {OS ∧ j<m+1 ∧ x[j]<0} oddyes: oddtop:=j (OS)
close}
else {OS ∧ j<oddtop ∧ x[j]<0} oddno: j:=j+2 (OS)

{OS}

{OS ∧ j>=min(oddtop,eventop)}
cnext

{OS ∧ ES ∧ i>=min(oddtop,eventop) ∧ j>=min(oddtop,eventop)}
k:=min(oddtop,eventop)

{k<=m+1 ∧ ∀i(0≤i<k ⇒ x[i]≤0) ∧ (k<=m ⇒ x[k]>0)}

cend

where ES = {eventop<=m+1 ∧ ∀k((k even ∧ 0≤k<i) ⇒ x[k]≤0) ∧ i even ∧ (eventop<=m ⇒ x[eventop]>0)}

OS = {oddtop<=m+1 ∧ ∀k((k odd ∧ 0≤k<j) ⇒ x[k]≤0) ∧ j odd ∧ (oddtop<=m ⇒ x[oddtop]>0)}

Figure 3.4. Partial Correctness Proof of Findpos.
Since

\[\text{pre(j < odi.top) = \{05 A j < odi.top A x[j] > 0\}} \]

\[\Rightarrow \{j < odi.top\} \]

the test is satisfied.

In Section 2.4 we discussed consistency for the two definitions of the semantics of SL. Here we derive similar results for GPL. Once again a formal proof of the main theorem is delayed until Chapter 6.

3.15. Theorem: If \text{pre} and \text{post} are assertion functions for \((P) S (Q) \), \(S' \) is a component of \(S \), and \(a \) is a computation for \(S \) from \(S_0 \) with \(P[S_0]=\text{true} \), then

1) if \(S' \) is current after \(a \), \(\text{pre}(S') \) is true after \(a \);
2) if \(a \) finishes \(S' \), \(\text{post}(S') \) is true after \(a \).

Proof: By induction on the length of \(a \). The details are given in Chapter 6. If \(a \) is empty, \(S \) is the only leaf and \(\text{pre}(S) \) is true after \(a \) since \(P \models \text{pre}(S) \). For \(a = a'T \), if \(S' \) is current after \(a \), it either became current when \(T \) was executed or was already current after \(a' \). In the first case, \(\text{pre}(T) \) is true after \(a' \) by the induction hypothesis, and starting \(T \) makes \(\text{pre}(S') \) true just as in a sequential program. In the second case, \(T \) and \(S' \) are statements from different parallel processes. By induction, \(\text{pre}(S') \) is true after \(a' \), and \(\text{pre}(S') \) remains true as \(T \) is executed because of the interference-free property.
3.16. Corollary: (Consistency for GPL) If \{P\} S \{Q\} can be proved it is true for the interpreter.

Proof: Since \{P\} S \{Q\} can be proved there are assertion functions pre and post for \{P\} S \{Q\} (Theorem 3.14). Now suppose \(P(s_0) = \text{true} \). Then by the last theorem,
\[
\text{post}(S)(\text{value}(s_0,a)) = \text{true}, \quad \text{and} \quad \neg(\text{value}(s_0,a)) = \text{true} \quad \text{since post}(S) \models Q.
\]
So \{P\} S \{Q\} is true for the interpreter.

As a third example of a GPL proof, we consider a standard problem from the literature of parallel programming. A producer process generates a stream of values for a consumer process. Since the production and consumption of values proceeds at a variable but roughly equal pace, it is profitable to interpose a buffer between the two processes, but since storage is limited the buffer can only contain \(N \) values. Figure 3.5 shows one solution to this problem. Here the variable "in" counts the number of values which have been added to the buffer, and buffer[in mod N] is the next empty buffer position (if there is one). The variable "out" counts the number of values which have been removed, and buffer[out mod N] is the next full position. There are (in-out) values in the buffer. The \textit{await} statement in the producer prevents a value from being added when there is no available space, while the \textit{await} in the consumer delays removal until there is a value in the buffer to be removed.

Figure 3.6 contains a program \(f_{3.1} \) which computes \(E[k] = f(g(A[k])) \), \(k = 1 \ldots N \) using this producer-consumer scheme.

Figure 3.7a-c gives assertion functions for \((\forall k < N) \ f_{3.1} \{ E[k] = f(g(A[k])) \} \),
\{ i = 0 \}:

\texttt{fg1: begin}

\begin{verbatim}
 in:=out:=0; i:=j:=1;
 \{ I A i=in+1\land A j=out+1\land \}
 cobegin

 \{ I A i=in+1\land \} \textbf{producer \{I\}}

 //

 \{ I A j=out+1\land \} \textbf{consumer \{I A B[k]=f(g(A[k])), 1\leq k\leq N\}}

 coend

 \{ B[k]=f(g(A[k])), 1\leq k\leq N \}

end

I = \{(buffer[(k-1) \mod N]*g(A[k]),out<k<in) A 0<in-out\leq N A

 1\leq i<N+1 A 1\leq j\leq N+1\)

\end{verbatim}

Figure 5.7a: Proof of computefg1 (main program).
\{ i \land i = i_{in} + 1; \}

\textbf{producer: while } i < M \textbf{ do}

\{ i \land i = i_{in} + 1 \land i < M \}

\textbf{begin}

\begin{align*}
\text{\(x := g(A[i]) \);} \\
\text{\((i \land i = i_{in} + 1 \land i < M \land x = g(A[i]) \))} \\
\text{\textbf{await} in-out<X \textbf{ then;}} \\
\text{\((i \land i = i_{in} + 1 \land i < M \land x = g(A[i]) \land \text{in-out<X} \))} \\
\text{\textbf{add: buffer[in mod N] := x;}} \\
\text{\((i \land i = i_{in} + 1 \land i < M \land \text{buffer[in mod N] := f(g(A[i]) \land \text{in-out<X}} \))} \\
\text{\textbf{markin: in := in + 1;}} \\
\text{\((i \land i = i_{in} \land i < M) \)} \\
\text{i := i + 1;} \\
\text{\((i \land i = i_{in} + 1) \)}
\end{align*}

\textbf{end}

\{ i \}

\text{\(I = \{ (\text{buffer[(k-1) mod N]} = g(A[k]), \text{out<k<in}) \land 0<\text{in-out<X} \)} \\
\text{\(\land 1 \leq i < M + 1 \land 1 \leq j < i + 1 \}) \)}

\textit{Figure 3.7b. Proof of computefg1 (producer).}
\textbf{begin comment} buffer[0:N-1] is the shared buffer
\textbf{in} = number of values added to buffer
\textbf{out} = number of values removed from buffer
\textbf{in-out} = number of elements in buffer;
\textbf{in:=out:=0;}
\textbf{cobegin}

\textbf{producer:} ...

\textbf{await} \textbf{in-out}<N \textbf{then;}
\textbf{add: buffer[in mod N]=next value;}
\textbf{markin: in:=in+1;}

//

\textbf{consumer:} ...

\textbf{await} \textbf{in-out}>0 \textbf{then;}
\textbf{remove: this value := buffer[out mod N];}
\textbf{markout: out:=out+1;}

\textbf{coend}
\textbf{end}

\textbf{Figure 3.5. Producer and Consumer Sharing a Bounded Buffer.}
fp1: begin comment buffer[0:N-1] is the shared buffer
 in = number of elements added to buffer
 out = number of elements removed from buffer
 in-out = number of elements in buffer;
 in:=out:=0;
i:=j:=1;
cobegin

producer: while i<=M do
begin x:=g(A[i]);
 await in-out<N then;
 add: buffer[mod N]:=x;
 markin: in:=in+1;
i:=i+1
end

//

consumer: while j<=M do
begin
 await in-out>0 then;
 remove: y:=buffer[mod N];
 markout: out:=out+1;
 B[j]:=f(y);
j:=j+1
end

coend
end

Figure 3.6. Computation of B[k]=f(g(A[k])), 1<=k<=M.
(I A IC A j=out+1 A)

consumer: while j≤M do

(I A IC A j=out+1 A j≤M)

begin await in-out>0 then:

(I A IC A j=out+1 A j≤M A in-out>0)

remove: y:=buffer[out mod N];

(I A IC A j=out+1 A j≤M A y=g(A[j]) A in-out>0)

markout: out:=out+1;

(I A IC A j=out A j≤M A y=g(A[j]))

B[j]:=f(y);

(I A IC A j=out A j≤M A B[j]=f(g(A[j])))

j:=j+1;

(I A IC A j=out+1 A j≤M+1)

end

(I A IC A j=M+1)

(I A B[k]=f(g(A[k])), 1≤k≤M)

I = {(buffer[(k-1) mod N]=g(A[k]), out<k<in) A 0<in-out≤N

A 1≤i≤M+1 A 1≤j≤M+1}

IC = (B[k]=f(g(A[k])), 1≤k<j)

Figure 3.7c. Proof of computefg1 (consumer).
The reader can verify that the assertions satisfy Definition 3.11. To satisfy the interference-free criteria, assertions in the consumer must be invariant over statements in the producer and vice versa. Consider the form of the assertions in the consumer. Each consists of the invariant I plus some relations between variables which are not changed in the producer. In addition, two assertions contain the clause \((\text{in-out} > 0)\). The assignments in the producer leave these three components unchanged: I is also an invariant in the producer; the variables in the second component are not affected; and the only assignment that changes \((\text{in-out})\) is \(\text{markin: in:=in+1}\) which leaves \((\text{in-out} > 0)\) true. Similar reasoning shows that assertions in the producer are invariant over statements in the consumer, so the interference-free criterion is satisfied.

3.5. Auxiliary Variables.

In many cases the axioms and inference rules A0-A7 are not strong enough to prove a partial correctness formula which is true. Figure 3.8 is an example of a program where the deductive system fails.

The formula \((x=0) \text{addl} (x=2)\) is true, but it can't be proved using A0-A7. To see this, consider \text{post(adda)}. If the program starts with \(x=0\), it can finish adda with \(x=1\) or \(x=2\), depending on whether or not \text{addb} has been executed. So the strongest possible assertion for \text{post(adda)} is \((x=1 \text{ V } x=2)\). The same is true for \text{post(addb)}.

Since \((\text{post(adda) A post(addb)}) \models \text{post(addl)}\), the strongest possible assertion for \text{post(addl)} is \((x=1 \text{ V } x=2)\), in spite of the fact that after executing addl, \(x\) must have the value 2.
{x=0}

add2: begin
{n=0}

y:=0; z:=0;
{x=y=z=0}

cobegin

{x=z A y=0}

await true then begin x:=x+1; y:=1 end
{x=z+1 A y=1}

/ /

{x=y A z=0}

await true then begin x:=x+1; z:=1 end
{x=y+1 A z=1}

coend

{(x=z+1 A y=1) A (x=y+1 A z=1)}

end

{x=2}

Figure 3.9. The Program add2.
1. Deleting $x := E$, where $x \in AV$

2. Replacing $\text{await true then } x := E$ by $x := E$, provided $x := E$ makes at most one reference to a shared variable. (In this case, x does not have to be an element of AV.)

3. Replacing $\text{begin } S \text{ end}$ by S.

We will write $S = \text{reduce}(S', S_0)$, where S_0 is the statement eliminated in going from S' to S, i.e., in 1) S_0 is the assignment, in 2) the await statement, and in 3) the begin-end.

In our example, add_1 can be obtained from add_2 by repeated applications of the operations above. Note that in order to reduce $\text{await true then } \text{begin } x := x+1; y := 1 \text{ end to } \text{await true then } x := x+1$ we must first delete $y := 1$ (operation 1), then the begin-end brackets (operation 3). The synchronization statement cannot be removed because $x := x+1$ contains two references to x. It is safe to remove a synchronization statement when rule 2 applies, because then the assignment statement can be treated as indivisible anyway.

Now we give the inference rule which allows us to conclude $(x := 0) \text{ add}_1 (x := 2)$ from a proof of $(x := 0) \text{ add}_2 (x := 2)$.

A8 Auxiliary Variables.

If AV is an auxiliary variable set for S', S a reduction of S' with respect to AV, and P and Q assertions which do not contain free any variables from AV, then

$$
\frac{(P) \quad S' \quad (Q)}{(P) \quad S \quad (Q)}.
$$
\{(x=0)\}

```plaintext
add1: cobegin

\{x=0 V x=1\}
adda: \texttt{await true then} x:=x+1
\{x=1 V x=2\}
```

```
//
\{x=0 V x=1\}
addb: \texttt{await true then} x:=x+1
\{x=1 V x=2\}
```

```plaintext
coend
\{x=1 V x=2\}
```

Figure 5.8. The Program `add1`.
Now consider Figure 3.9, an expanded version of add1. The reader can verify that the assertions in Figure 3.9 are interference-free and yield a proof of \((x=0)\) add2 \((x=2)\). The proof depends on the variables \(y\) and \(z\). Since add2 has the same effect on \(x\) as add1, we would like to be able to conclude from this that \((x=0)\) add1 \((x=2)\). In order to do this we will define the concept of auxiliary variables and then give a new inference rule to allow their use.

The program add2 has essentially the same behavior as add1, in spite of the fact that it contains statements and variables which do not appear in add1. This is because the additional variables, and the statements using them, do not affect the flow of control or the values assigned to \(x\). Variables which are used in this way in a program will be called auxiliary variables. The need for auxiliary variables in proofs of parallel programs has also been recognized by Brinch Hansen [Br73] and Lauer [La73].

3.17. Definition: Let AV be a set of variables which appear in \(S\) only in assignment statements

\[x:=E \quad \text{where} \quad x \in AV, \text{and any variables may be used in} \ E. \]

Then AV is an auxiliary variable set for \(S\).

3.18. Definition: Let AV be an auxiliary variable set for \(S\). \(S\) is a reduction of \(S'\) with respect to AV iff \(S\) can be obtained from \(S'\) by one of the following operations.
\(\texttt{fg2: begin context buffer}\{0:N-1\} \text{ is the shared buffer} \)

\[
\text{full} = \text{number of full places in buffer (semaphore)}
\]

\[
\text{empty} = \text{number of empty places in buffer (semaphore)};
\]

\[
\text{full}:=0; \text{empty}:=N; \text{i}:=\text{j}:=1;
\]

\texttt{cobegin}

\texttt{producer: while i}<\texttt{M} \texttt{ do}

\texttt{begin}

\[
x:=p(A[i]);
\]

\[
P(\text{empty});
\]

\[
\text{buffer}[i \mod N]:=x;
\]

\[
V(\text{full});
\]

\[
i:=i+1;
\]

\texttt{end}

\]

\texttt{consumer: while j}<\texttt{M} \texttt{ do}

\texttt{begin}

\[
P(\text{full});
\]

\[
y:=\text{buffer}[j \mod N];
\]

\[
V(\text{empty});
\]

\[
B[j]:=f(y);
\]

\[
j:=j+1;
\]

\texttt{end}

\texttt{ceend}

\texttt{end}

\textbf{Figure 3.10. A Second Version of the Producer-Consumer Program.}
\[
\text{fg2': begin comment Pempty, Vempty, Pfull, Vfull are auxiliary variables}
\]
\[
\text{full:=0; empty:=N; i:=j:=1; Pfull:=Vfull:=Pempty:=Vempty:=0; cobegin}
\]
\[
\text{producer: while } i\leq N \text{ do}
\]
\[
\text{begin } x:=g(A[i]); \text{ await empty}>0 \text{ then}
\]
\[
\text{begin empty:=empty-1; Pempty:=Pempty+1 end buffer[i mod N]:=x; await true then}
\]
\[
\text{begin full:=full+1; Vfull:=Vfull+1 end i:=i+1; end}
\]
\[
//
\]
\[
\text{consumer: while } j\leq N \text{ do}
\]
\[
\text{begin await full}>0 \text{ then}
\]
\[
\text{begin full:=full-1; Pfull:=Pfull+1 end y:=buffer[j mod N];}
\]
\[
\text{await true then}
\]
\[
\text{begin empty:=empty+1; Vempty:=Vempty+1 end B[j]:=f(y); j:=j+1; end}
\]
\[
coeend end
\]

Figure 3.11. Program fg2': A Translation of fg2 into GPL.
In order to establish that this inference rule is consistent with the interpreter, we must show that if \((P) \ S' \ (Q) \) is true for the interpreter, \((P) \ S \ (Q) \) is too. To do this we will show that there is a relationship between the computations of \(S \) and \(S' \).

3.19. Lemma: Suppose \(S = \text{reduce}(S', S_0) \) is a reduction of \(S' \) with respect to \(AV \), and \(a \) is a computation for \(S \). Then \(\exists a' \), a computation for \(S' \), such that

1) \(x[\text{value}(s_0, a')] = x[\text{value}(s_0, a)] \) for \(x \not\in AV \)

2) if \(\text{reduce}(T, S_0) \) is current after \(a \), \(T \) is current after \(a' \), where \(T \) is any component of \(S' \).

Proof: Let \(a' \) be like \(a \) except that \(S_0 \) is executed in \(a' \) as soon as it is ready to be executed. The only difference between \(a \) and \(a' \) is that \(a' \) may contain occurrences of \(S_0 \). \(S_0 \) may change the value of a variable in \(AV \), but it has no effect on other values. The variables in \(AV \) do not affect the flow of control, since they do not appear in the conditions of \(\text{if}, \ \text{while} \) or \(\text{await} \) statements. Thus, the flow of control is the same in \(S \) and \(S' \), and \(a' \) is a computation for \(S' \) for which 1) and 2) above are true.

3.20 Theorem: If \((P) \ S' \ (Q) \) is true for the interpreter and the requirements of AS are satisfied, \((P) \ S \ (Q) \) is true for the interpreter.

Proof: Let \(a \) be a computation for \(S \) with \(P[s_0]=\text{true} \). Let \(a' \) be the computation for \(S' \) from Lemma 3.19. Since \((P) \ S' \ (Q) \) is true in the model, \(Q[\text{value}(s_0, a')]=\text{true} \). Then \(Q[\text{value}(s_0, a)]=\text{true} \), since \(Q \) has no variables from \(AV \). Thus, \((P) \ S \ (Q) \) is true in the model.
Auxiliary variables can be a very powerful aid in program proofs. Starting with a program such as add1, new variables and statements can be added to yield a program like add2 for which a proof is possible. Then A8 can be applied repeatedly to give a proof for the original program. If the new statements obey the following restrictions, it will always be possible to remove them again using A8.

1. assignments must be to the new variables.
2. synchronization statements must contain at most one statement (and that must be an assignment) from the original program.
3. begin - end may be used freely as long as the result is syntactically correct.
4. no other kind of statement is added.

As another example of the use of auxiliary variables, consider a second version of the producer and consumer program of Figure 3.6. The program fg2 in Figure 3.10 uses semaphores "full" and "empty" to synchronize access to the buffer. Figure 3.11 shows the translation of the semaphore operations into GPL (as defined in Section 3.1), and includes auxiliary variables Pempty, Vempty, Pfull, Vfull. Figure 3.12a and 3.12b gives assertion functions for \(\{M \geq 0\} \text{fg2} \{B[k] = f(g(A[k])), 1 \leq k \leq M\} \) (the producer is omitted, but it is similar to the consumer). The reader can verify that these assertions satisfy Definition 3.11; the proof is essentially the same as for the earlier version of the producer and consumer. Using A8, the auxiliary variables can be removed to yield a proof of \(\{M \geq 0\} \text{fg2} \{B[k] = f(g(A[k])), 1 \leq k \leq M\} \). Habermann [Ha72] presents this solution to the producer-
consumer problem and provides an informal proof of its correctness.

For the proof he uses special functions which count the number of \(P \) and \(V \) operations on each semaphore; these play the same role as our auxiliary variables.

It is often necessary to ensure that certain critical sections in separate processes cannot be executed at the same time. Most often this is because the critical sections manipulate shared variables, and it is essential to prevent them from interfering with each other. One of the standard ways of ensuring mutual exclusion is the use of a semaphore \(\text{mutex} \), whose initial value is 1. Each process executes \(P(\text{mutex}) \) on entering its critical section and \(V(\text{mutex}) \) on leaving. Our techniques can be used to show that this discipline does indeed ensure mutual exclusion as long as there are no other operations on the semaphore \(\text{mutex} \).

Figure 3.13 shows a group of cyclic processes containing critical sections. The statements in the critical and noncritical sections are not specified, but they do not operate on \(\text{mutex} \). In Section 3.1 we suggested a representation of the \(P \) and \(V \) operations as

\[
P(\text{sem}) = \text{await } \text{sem}>0 \quad \text{then} \quad \text{sem}:=\text{sem}-1
\]

\[
V(\text{sem}) = \text{await } \text{true} \quad \text{then} \quad \text{sem}:=\text{sem}+1
\]

Thus, the code for implementing mutual exclusion in GPL is
begin

mutex:=1;

cobegin S1 //

... // S1: while true do
begin noncritical part;
P(mutex);
critical section i;
V(mutex);
noncritical part;
end

... // Sn

coend

end

mutex is not changed in the critical and noncritical sections

Figure 3.13. Critical Sections with Mutual Exclusion.
\{\forall 0\}

fg2': begin

full:=0; empty:=N; i:=j:=1;
Pfull:=Vfull:=Pempty:=Vempty:=0;
\{I A Vfull=Pempty A i=Vfull+1=1 A Vempty=Pfull A j=Vempty+1=1\}
cobegin

\{I A Vfull=Pempty A i=Vfull+1=1\}

producer
(i)

/

\{I A Vempty=Pfull A j=Vempty+1=1\}

consumer
\{I A B[k]=f(g(A[k])), 1\leq k \leq N\}

csend
end

\{B[k]=f(g(A[k])), 1\leq k \leq N\}

I = ((buffer[k mod N]=g(A[k]), Vempty\leq k \leq Vfull) A full=Vfull-Pfull

A empty=N+Vempty-Pempty A 1\leq i \leq N+1 A 1\leq j \leq N+1)
\{I \ A \ IC \ A \ V_{empty}=P_{full} \ A \ j=V_{empty}+1=1\} \\
consumer: while j≤N do \\
\{I \ A \ IC \ A \ j≤N \ A \ V_{empty}=P_{full} \ A \ j=V_{empty}+1\} \\
begin await full>0 then \\
begin full:=full-1; P_{full}:=P_{full}+1 end; \\
\{I \ A \ IC \ A \ j≤N \ A \ V_{empty}=P_{full}-1 \ A \ j=V_{empty}+1 \ A \ V_{full}-V_{empty}≥0\} \\
y:=buffer[j \ mod \ N]; \\
\{I \ A \ IC \ A \ j≤N \ A \ V_{empty}=P_{full}-1 \ A \ j=V_{empty}+1 \ A \ y=g(A[j])\} \\
await true then \\
begin empty:=empty+1; V_{empty}:=V_{empty}+1 end; \\
\{I \ A \ IC \ A \ j≤N \ A \ V_{empty}=P_{full} \ A \ j=V_{empty} \ A \ y=g(A[j])\} \\
B[j]:=f(y); \\
\{I \ A \ IC \ A \ j≤N \ A \ V_{empty}=P_{full} \ A \ j=V_{empty} \ A \ B[j]=f(g(A[j]))\} \\
j:=j+1; \\
\{I \ A \ IC \ A \ j≤N+1 \ A \ V_{empty}=P_{full} \ A \ j=V_{empty}+1\} \\
end \\
\{I \ A \ IC \ A \ j=N+1\} ⇒ \{B[k]=f(g(A[k])), 1≤k≤N\} \\
\\nI = ((buffer[k \mod \ N]=g(A[k]), \ V_{empty}<k≤V_{full}) \ A \ full=V_{full}-P_{full} \\
A \ empty=N-V_{empty}-P_{empty} \ A \ 1≤j≤N+1 \ A \ 1≤j≤N+1\} \\
IC = \{B[k]=f(g(A[k])), 1≤k<j\} \\
\\nFigure 3.12b. Proof of $fg2'$ (consumer).
Since \(\text{inCS}[k] = 1 \text{AI} \) is true throughout the critical section in process \(k \), \(\text{inCS}[i] = 1 \text{ A inCS}[j] = 1 \text{ A I} \) is true after \(a \). But \(\text{inCS}[i] = 1 \text{ A inCS}[j] = 1 \text{ A I} \not\rightarrow \text{mutex} < 0 \text{ A mutex} > 0 \not\rightarrow \text{false} \). So no such \(a \) exists.

Proofs of mutual exclusion will be discussed more extensively in Chapter 5. For now we close by giving an example of the use of mutual exclusion in a proof of partial correctness. Figure 3.15 is a rewriting of the program add1 of Figure 3.8. Here, instead of representing \(x := x + 1 \) as an indivisible statement, it is written as \(a := x ; x := a + 1 \), where \(a \) is a local variable. Semaphores are used to guarantee mutual exclusion for the critical sections which operate on \(x \). Figure 3.16 is an extension of this program, using auxiliary variables. The proof of the interference-free property for the two parallel statements makes use of mutual exclusion. For example, to show that \(\text{pre}(\text{add1}) = \{ x = a + z \text{ A y} = 0 \text{ A inCS}[1] = 1 \text{ A I} \} \) is invariant over \(\text{add2} \) we must prove

\[
\{ \text{pre}(\text{add1}) \text{ A pre}(\text{add2}) \} \text{ add2 (pre}(\text{add1})) \,.
\]

But \(\text{pre}(\text{add1}) \text{ A pre}(\text{add2}) \not\rightarrow \text{false} \), so this is the same as proving

\[
(\text{false}) \text{ add2 (pre}(\text{add1})) \,.
\]

Now \((\text{false}) \text{ S (false)} \) can be proved for any statement \(S \), as can be shown by induction on the structure of \(S \). Since \(\text{false} \not\rightarrow P \) for any assertion \(P \), \((\text{false}) \text{ S (P)} \) can also be proved. So in particular we can prove \((\text{false}) \text{ add2 (pre}(\text{add1})) \). In general, an assertion \(P \)
add3: begin

mutex:=1;

cobegin

S1: begin P(mutex);
 a:=x;
 x:=a+1;
 V(mutex);
end

//

S2: begin P(mutex);
 b:=x;
 x:=b+1;
 V(mutex);
end

coend

end

Figure 3.15. The Program add3.
\begin{verbatim}
await mutex>0 then mutex:=mutex-1;
critical section i;
await true then mutex:=mutex+1;
\end{verbatim}

In order to prove that this accomplishes mutual exclusion we will use an array of auxiliary variables inCS[1:n]. Initially, inCS[i]=0, 1≤i≤n, and it will be manipulated on entering and leaving critical sections.

\begin{verbatim}
await mutex>0 then begin mutex:=mutex-1;
inCS[i]:=1
end
critical section i;
await true then begin mutex:=mutex+1;
inCS[i]:=0
end
\end{verbatim}

Figure 3.14 shows the program of Figure 3.13 with the auxiliary variables. The assertion that inCS[i]=0 on reaching the critical section code and 1 throughout the critical section is justified because there are no other operations on inCS[i]. Similarly the assertion that I holds at all times assumes that there are no other operations on mutex. The interference-free requirement for assertions in process i is easily verified, because each assertion is a statement about inCS[i], which is not changed in S_j if i ≠ j, and I, which is invariant over the statements in process j.

Now suppose that there is some computation a in which S_i and S_j, i ≠ j, are executing their critical sections at the same time.
\[
\{\text{true}\}
\]

\begin{verbatim}
begin \text{mutex}:=1; \text{inCS}:=0;

\{I \land \text{inCS}[i]=0, i=1,\ldots,n\}

cobegin S_1 //\ldots// S_n coend

\{false\}
\end{verbatim}

\end{verbatim}

\begin{verbatim}
\{I \land \text{inCS}[i]=0\}
S_i: \text{while true do}

begin \{I \land \text{inCS}[i]=0\}

\text{noncritical section;}

\{I \land \text{inCS}[i]=0\}
\text{await mutex}>0 \text{ then begin mutex:=mutex-1; inCS[i]:=1 end;}

\{I \land \text{inCS}[i]=1\}
\text{critical section i;}

\{I \land \text{inCS}[i]=1\}
\text{await true then begin mutex:=mutex+1; inCS[i]:=0 end;}

\{I \land \text{inCS}[i]=0\}
\text{noncritical section;}

\{I \land \text{inCS}[i]=0\}
\end{verbatim}

\end{verbatim}

\begin{verbatim}
\{false\}
\end{verbatim}

\begin{verbatim}
I = \{\text{mutex}=(1 - \sum_{k=1}^{n} \text{inCS}[k]) \land \text{mutex}\geq0 \land \forall j(\text{inCS}[j]=0 \text{ or } 1)\}
\end{verbatim}

mutex and inCS are not changed in the critical and noncritical sections

Figure 3.14. Mutual Exclusion Program with Auxiliary Variables.
CHAPTER 4

THE RESTRICTED PARALLEL LANGUAGE (RPL)

The programming language presented in this chapter is essentially a restricted version of the general parallel language of Chapter 3. The powerful `await` statement is replaced by another, more limited, synchronizing statement called `withwhen`. The use of shared variables is governed by strict syntactic requirements which guarantee that only one process at a time has access to a given variable. Since much of the complexity of parallel program behavior is due to interference between processes accessing a common variable, the result of these restrictions is that RPL programs are more intellectually manageable than programs written in GPL. They are also much easier to prove correct. The proof of a program in GPL requires that parallel processes satisfy the interference-free property; verifying this is in general an exponential problem. The corresponding property for RPL programs, called "Einhischungsfrei", can be verified in linear time. This saving is accomplished by restricting both the syntax of the language and the assertions in the proof. It is similar to the simplification of proofs when the undisciplined use of `go` to statements is eliminated.

RPL is based on a parallel language defined by Hoare [Ho72] and is similar to one proposed by Brinch Hansen [Br72a]. Hoare gave a set of axioms and inference rules for his language, however they were not strong enough to provide proofs in a number of cases. The proof rules A0-A7 in Table 4.1 are derived from Hoare's, but are stronger.
Together with AR, they form a "complete" deductive system for the partial correctness of parallel programs in RPL, as will be shown in Chapter 6.

Section 4.1 defines the syntax of RPL, and 4.2 and 4.3 give its semantics in terms of an interpretive model and axioms. Section 4.4 shows that the interpreter and the axioms are consistent. Much of this work makes use of results derived in Chapter 3.

4.1. The Language.

RPL is defined by adding two statements to the sequential language of Chapter 2. Parallel execution is initiated by the statement

\[
\text{resource } r_1(\text{variable list}), \ldots, r_m(\text{variable list}) : \quad \text{cobegin } S_1/\ldots//S_n \text{ coend}
\]

Here the resources \(r_1 \ldots r_m \) are groups of shared variables, and the \(S_i \) are statements to be executed in parallel. Again, no assumption is made about the way parallelism is implemented, or about the relative speeds of the \(S_i \). It is legitimate to nest one parallel statement inside another. The only restriction is that the resources in the two statements be distinct.

4.1. Definition: Components \(T_1 \) and \(T_2 \) of \(S \) are in different processes of \(S \) iff \(S \) contains a statement

\[
\text{resource } r_1, \ldots, r_m : \text{cobegin } S_1/\ldots//S_n \text{ coend}
\]
\{x=0\}

add4: begin
y:=z:=0; mutex:=1; inCS[1]:=inCS[2]:=0;
(x=y=z=0 A inCS[1]=inCS[2]=0 A I)

cobegin S1 // S2 coend
(x=2)
end

\{x=2\}

S1: \{x=z A y=0 A inCS[1]=0 A I\}

begin
(x=z A y=0 A inCS[1]=0 A I)

\text{ax}-\text{ait} \text{mutex}=0 \text{ then begin } \text{mutex}:=\text{mutex}-1; \text{inCS}[1]:=1 \text{ end}
(x=z A y=0 A inCS[1]=1 A I)

a:=x;

(x=a=z A y=0 A inCS[1]=1 A I)

add1: x:=a+1;

(x:=a+1 A y=0 A inCS[1]=1 A I)

y:=1;

(x:=a+1 A y=1 A inCS[1]=1 A I)

\text{await} \text{true} \text{ then begin } \text{mutex}:=\text{mutex}+1; \text{inCS}[1]=0 \text{ end}
(x:=a+1 A y=1 A inCS[1]=0 A I)
end

\{x:=a+1 A y=1 A inCS[1]=0 A I\}

S2 is symmetric: \{x=y A z=0 A inCS[2]=0 A I\} S2 \{x=y+1 A z=1 A inCS[2]=0 A I\}

I = \{mutex=1 - \frac{2}{\sum_{k=1}^{\infty} \text{inCS}[k]} \text{ A mutex} \geq 0 \text{ A inCS}[k]=0 \text{ or } 1\}

Figure 3.16. The Program add4.
in a critical section is invariant over assignments in other critical sections because the invariance test reduces to \(\{\text{false}\} S \{P\} \).

Program add4 has auxiliary variables \(y \) and \(incS \). The statements which manipulate these variables can be removed using \(A8 \), giving a proof of \(\{x=0\} \text{add3} \{x=2\} \).

We have only sketched the proof for program add4; a complete presentation would require verifying that every assignment and \texttt{wait} in \(S1 \) preserved every assertion in \(S2 \), and vice versa. Even for such a small program this would be a large task, and it is a task which grows exponentially in the size of the program. Thus, proofs for GPL programs quickly become unmanageable. In the next chapter we will introduce a parallel programming language in which mutual exclusion is provided syntactically. This removes much of the complexity in the interactions between processes and greatly simplifies the process of proving that a program is correct.
4.3. Definition: A parallel statement in RPL must obey the following restrictions:

1) \(\text{Var}(S) = \text{R}(S) \cup \bigcup_{i=1}^{n} V_i(S) \);

2) No variable belongs to more than one resource;

3) If \(x \in \text{R}(S) \), \(x \) appears in \(S_k \) only in a \textbf{when} statement for the resource containing \(x \).

4) If \(x \) appears in \(S_k \), \(x \) is either a local variable for \(S_k \) or a resource variable.

These requirements can easily be checked at compile time. Their purpose is to guarantee that two processes cannot interfere with each other by simultaneously operating on any variable. Rule 1 requires that every variable is a resource variable or is local to some process \(S_k \), or both. If it is a resource variable, it belongs to exactly one resource \(r \) (rule 2), and is accessible only in a \textbf{when} statement for \(r \) (rule 3), which prevents two processes from using it simultaneously. If it is a local variable for \(S_k \), it is not changed in any \(S_i \) if \(i \neq k \), so the reference in \(S_k \) is unambiguous. If a variable is local to more than one process, it is not changed by any of them, so there is no conflict even if two processes access it simultaneously.

In GPL it was necessary to limit the form of statements which referred to shared variables. For example, \(x := x + 1 \) was not a legitimate statement if \(x \) appeared in more than one process. These restrictions were required to ensure that the interpreter accurately modelled parallel execution. In RPL these problems do not arise, since
references to shared variables are allowed only in critical sections, and only one process at a time can execute a critical section for a given resource. Statements like \(x := x + 1 \) are acceptable, even if \(x \) is a shared variable.

Example 1: Add5 (Figure 4.1) is another version of the program of Figure 3.8. Here \texttt{when} statements are used to control access to the shared variable \(x \).

Example 2: Producer and Consumer sharing a bounded buffer.

Figure 4.2 shows a third solution (due to Hoare [Hoa72]) for the producer and consumer problem introduced in Chapter 3. Note the similarity to the solution in Figure 3.5. The critical section in the producer can only be started when there is free space in the buffer \(\text{count} < \text{N} \), and the critical section in the consumer can only be started when the buffer is not empty \(\text{count} > 0 \).

4.2. The Interpretive Model.

The interpreter for RPL programs is very much like the one defined in Chapter 3 for GPL programs. The program state remains the same, and the state transition function "next" is extended to cover \texttt{when} statements. This requires a definition of the states in which a \texttt{when} statement is ready to be executed.

4.4. Definition: A statement \(S \) is current in the program state \(s = (c,v) \) iff \(S \) is a leaf in \(c \).
with T_1 and T_2 components of different S_1. Otherwise, T_1 and T_2 are in the same process.

The second new statement provides for synchronization and protection of shared variables.

$$\text{with } r \text{ when } B \text{ do } S$$

has the following interpretation: r is a resource, B is a Boolean expression, and S is a statement which uses the variables of r. S is called the critical section of the withwhen statement. Execution of a critical section can only begin when B is true, and while it is being executed no other process can execute a critical section for the same resource. If several processes are competing for a resource r, we make no assumptions about the order in which they receive it. The statement with r when true do S can be abbreviated as with r do S.

It is possible to implement the statement with r when B do S using the GPL await statement. One method is

```plaintext
begin
  await B A=busy \rightarrow busy:=true ;
  S;
  await true then busy:=false
end
```

where busy is a new variable which is initialized with the value false. For a discussion of the implementation of withwhen using
standard synchronizing operations see Hoare [Ho72] and Sintzoff and van Lamsweerde [Si73].

Withwhen statements can only be used inside cohenin statements, and withwhen statements for the same resource cannot be nested.

In order to guarantee that operations on shared variables are well-defined, the syntax of the language restricts the way variables are used in parallel processes.

4.2. Definition: Let S be the parallel statement

$$\text{resource } r_1, \ldots, r_n \text{ cohenin } S_1 // \ldots // S_n \text{ coend}$$

Then $\text{Var}(S)$ = the set of variables used in S

$$R(S) = \{x : x \in r \text{ V } x \text{ is in a resource } r \text{ declared in a parallel statement containing } S \text{, with } S \text{ not a component of a critical section for } r\}$$

$R(S)$ is called the resource variables of S.

$$V_k(S) = \{x : x \in \text{Var}(S) \text{ and no statement of } S_j, j \neq k \text{ assigns a value to } x\}$$

$V_k(S)$ is called the local variables of S_k.

Note that the resource variables of S are those variables which must be protected by critical sections when they are used inside S. In addition to the variables from $r_1 \ldots r_n$, they include variables from resources declared in parallel statements which contain S. The syntactic restrictions on variables are expressed in terms of these classes.
4.5. Definition: A resource r is busy in program state s iff a proper component of a \texttt{when} statement which uses r is current in s (i.e., iff a critical section for r is in execution in s).

4.6. Definition: A statement S is ready to execute in the program state s iff

1) S is current in s, and

2) if S is \texttt{with} r \texttt{when} B \texttt{do} S_1, $B(s) = \text{true}$ and r is not busy in s.

4.7. Definition: The state transition function $\text{next}: \{\text{program states}\} \times \{\text{statements}\} \rightarrow \{\text{program states}\}$ is given by

$$\text{next}((c,v),S) = \text{undefined if } S \text{ is not ready to execute in } (c,v)$$

$$= (c',v) \text{ where } c' = \text{replace}(c,S,S_1),$$

if $S = \text{with} r \text{ when} B \text{ do} S_1$

$$= (c',v') \text{ of Definition 3.4 otherwise.}$$

Note that \texttt{with} r \texttt{when} B \texttt{do} S is not ready to execute if a critical section for r is already in execution, so only one process at a time can execute a critical section for r.

The concepts of a computation, and of finishing or executing a statement, are defined in much the same way as in Chapter 3.

4.8. Definition: A computation α for program S beginning with variable state v_0 is a sequence of statements $S_1 \ldots S_n$ such that
if \(s_0 = (S,v_0) \), the sequence of states \(s_i = \text{next}(s_{i-1}, S_i) \), \(i=1 \ldots \) is defined, i.e., \(S_i \) is ready to execute after \(S_{i-1} \ldots S_1 \). In this case \(\text{value}(s_0,a) = s_n \).

4.9. Definition: If \(a \) is a computation for \(S \), and \(S' \) is a component of \(S \), \(a \) finishes \(S' \) iff

\[
S' \text{ is assign, null, while, begin ... end, if or coherin ... coend -- same as Definition 3.7.}
\]

\(S' \) is with \(r \) when \(B \) do \(S_1 \) and \(a \) finishes \(S_1 \).

4.10. Definition: \(\{P\} S \{Q\} \) is true in the interpretive model iff any computation \(a \) which executes \(S \) from an initial state \(s_0 \) in which \(P \) is true has \(Q[\text{value}(s_0,a)] = \text{true} \).

In Chapters 5 and 6 we will need to know some properties of computations and resources. The following lemma is the basis for this work. It states that if a resource \(r \) is busy for a computation \(a \), it must be busy because some process has started a withwhen statement \(S_1 \) for \(r \) and has not yet finished it. From the time that \(S_1 \) was started in \(a \), no other process can have access to \(r \).

4.11. Lemma: \(r \) is busy for \(a \) iff \(a \) can be written

\[a = a_0 \cdot S_1 \cdot a_1 \ldots S_k \cdot a_k \], where

1) \(S_1 \) is with \(r \) when \(B \) do \(S' \), and \(S' \) is in execution for \(a \);
2) \(S_1, \ldots, S_k \) are from the same process;
3) none of the statements in \(a_1, \ldots, a_k \) are from the same process as \(S_1 \);
add5: resource rx(x): cobegin
 adda: with rx do x:=x+1;
//
 addb: with rx do x:=x+1;
coend

Figure 4.1. Program add5.
begin

comment inpointer = position of next empty space in buffer

outpointer = position of next full space in buffer

count = number of elements in buffer;

count:=inpointer:=outpointer:=0;

parallel: resource Bufman(inpointer,outpointer,count,buffer[0:N-1]):

cobegin

producer: ...

add: with Bufman when count<N do

begin
inpointer:=(inpointer+1) mod N;
buffer[inpointer]:=next value;
count:=count+1
end

...

/

consumer: ...

remove: with Bufman when count>0 do

begin
outpointer:=(outpointer+1) mod N;
this value:=buffer[outpointer];
count:=count-1
end

...

coenend

end

Figure 4.2. Producer and Consumer Using a Bounded Buffer.
\{P_i \} S'_i \{Q_i \} \text{ of the proof of } \{P_i \} S_i \{Q_i \} \text{ be only those variables which process } S_i \text{ has a right to access at } S'. \text{ These are, roughly, the local variables of } S_i, \text{ plus the variables for resource } r \text{ if } S \text{ is a component of a critical section for } r. \text{ For a precise definition of Einmischungsfrei, we need the concept of the proof-variables of a statement or resource.}

4.12. Definition: Let } S' \text{ be a statement and } r \text{ a resource in program } S, \text{ with } r \text{ declared in the parallel statement } T, \text{ and let } T' \text{ be the statement which immediately contains } S'. \text{ Then}

\[
\text{Proof-var}(r) = \{x: x \text{ is not assigned a value in } T \text{ except in a critical section for } r\}
\]

\[
\text{Proof-var}(S') = \begin{cases} \text{variables of } S, & \text{if } S' = S \\ V_k(T') \cap \text{Proof-var}(T') & \text{is } S' \text{ is the } k^{th} \text{ process in parallel statement } T' \\ \text{Proof-var}(T') \cup \text{Proof-var}(x), & \text{if } T' \text{ is with } r \text{ when } B \text{ do } S' \\ \text{Proof-var}(T') & \text{otherwise.} \end{cases}
\]

Note that \text{Proof-var}(r) \text{ includes all the variables which belong to resource } r, \text{ and may also contain other variables. The variables in } \text{Proof-var}(S') \text{ are either local to the process containing } S' \text{ or belong to } \text{Proof-var}(r), \text{ where } S' \text{ is a component of a critical section for } r.

4.13. Definition: Suppose } S \text{ is the parallel statement}

\[
\text{resource } r_1, \ldots, r_m; \text{cobegin } S_1//\ldots//S_n \text{ coend}
\]
Then, \((P) \ S \ (Q) \) is \textit{Eimischungsfrei} iff it has a proof in which

1) all free variables in \(I(r_j) \) are elements of \(\text{Proof-var}(r_j) \), \(1 \leq j \leq m \)

2) if \(S' \) is a component of \(S \), and \((P') S' (Q') \) is a line in the proof, then all free variables in \(P' \) and \(Q' \) are in \(\text{Proof-var}(S') \).

The variables in \(\text{Proof-var}(S') \) are exactly those which cannot be changed by another process when \(\text{pre}(S') \) and \(\text{post}(S') \) are expected to hold, i.e., when \(S' \) is ready to execute or has finished.

4.14. Lemma: Let \(S \) and \(T \) be statements in different processes of a program \(S' \), and \(a \) be a computation for \(S' \). Suppose \(S \) is current after \(a \), or \(a \) finishes \(S \). Then, if \(T \) is ready to execute after \(a \), \(T \) does not change a variable in \(\text{Proof-var}(S) \).

Proof: Since \(S \) and \(T \) are in different processes of \(S' \), there is a statement \(T'\text{-resource } r_1, \ldots, r_m; \text{cobegin } T_1//\ldots//T_n \text{ coend} \) with \(S \) a component of \(T_i \) and \(T \) a component of \(T_j \), \(i \neq j \).

Suppose \(T \) changes variable \(x \). Then \(x \notin V_1(T') \), so if \(x \in \text{Proof-var}(S) \) it must belong to a resource \(r \), with \(S \) a proper component of a \textit{withwhen} statement \(S_1 \) for \(r \). \(T \) must also be a proper component of a \textit{withwhen} \(S_2 \) for \(r \), because of the syntactic restrictions of \(\text{RPL} \). \(S_1 \neq S_2 \), since they are in different processes, and both are in execution for \(a \). This is not possible, so \(x \notin \text{Proof-v} \).

Rules A6 and A7 are presented in a way which makes it easy to produce proofs which are Einmischungsfrei. The pre- and post-
4) If T is in $a_1 (i=1)$ the variables in r are not referenced in T.

Proof: r is busy for a iff a critical section which uses r is in execution, and this can only happen if a *withwhen* statement appears in a and is not finished by a. Then a can be written in the form above, satisfying 1-3. To see that 4 is also satisfied, recall the syntactic restrictions of Definition 4.3. If T uses a variable from r, T must be a component of a *withwhen* statement for r. But then if T appears in a_1, two critical sections for r are in execution at the same time, and this is not possible.

4.3. Axioms and Inference Rules.

Table 4.1 gives the axioms and inference rules for the restricted parallel language. They are similar to the axioms for parallel programs given by Hoare [Ho72]. However, Hoare does not provide for auxiliary variables, and his version of A7 is more restricted in the variables which can be used in assertions. A0-A5 and A8 are the same as the corresponding rules in Chapter 3, while A6 and A7 give the semantics of the two new statements. Both rules use the resource invariant $I(r)$, an assertion which describes the acceptable states of the variables in resource r. A7 includes the provision that the proof of $\{P_i\} S_i \{Q_i\}$ be Einmischungsfrei. This condition is related to the interference-free requirement for GPL programs, but it is more easily verified. It requires that the variables used in each line
A0 consequence
\[\{ p' \} S \{ \eta' \}, \; P \vdash P', \; Q' \vdash Q \]
\[\{ p \} S \{ q \} \]

A1 assignment
\[\{ p \} x := e \{ q \} \]

A2 null
\[\{ p \} ; \{ q \} \]

A3 composition
\[\{ p \}; \begin{array}{c} S_1 \{ p_1 \}, \, (p_2) \; S_2 \{ p_2 \}, \ldots, (p_n) \; S_n \{ p_n \} \end{array} \]
\[\{ p \}_i \ \text{begin} \ S_1; \ldots; S_n \ \text{end} \ (p_{n+1}) \]

A4 alternation
\[\{ p \}_i \ {\text{if} \ B \ \text{then} \ S_1 \ \text{else} \ S_2 \} \{ q \}_i \]

A5 iteration
\[\{ p \}_i \ \text{while} \ B \ \text{do} \ S \{ p \}_i \]

A6 critical section
\[\{ p \}_i \ \text{with} \ r \ \text{when} \ B \ \text{do} \ S \{ q \}_i \]

A7 parallel
\[\{ p \}_i \ S_1 \{ q \}_i \ \text{is Einmezschungsfrei, } 1 \leq i \leq n \]
\[\{ p \}_i \ A \ldots A p_n A I(r_1) A \ldots A I(r_m) \]
\[\text{resource } r_1(\), \ldots, r_m(\); \ \text{cobegin} \ S_1/\ldots/\ S_n \ \text{coend} \]
\[\{ q \}_i \ A \ldots A q_n A I(r_1) A \ldots A I(r_m) \]

A8 auxiliary variables

If AV is an auxiliary variable set for S', S a reduction of S'
with respect to AV, and P and Q assertions which do not contain
free any variables from AV
\[\{ p \} S' \{ q \} \]
\[\{ p \} S \{ q \} \]

Table 4.1. Axioms and Inference Rules for the Restricted Parallel Language.
Example 2: Figure 4.4 contains a program which computes

\[B[k] = f(g(A[k])), \quad k=1, \ldots, N \]

using the producer-consumer scheme of Figure 4.2. Figure 4.5a-c gives the outline of a proof for this program. Note the use of auxiliary variables sent and received. The variables in the program fall into the categories below:

- \(\text{Var}(par f g) = \{A, B, inpointer, outpointer, count, x, y, i, j, sent, received\} \)
- \(\text{R}(par f g) = \{inpointer, outpointer, count, buffer\} \)
- \(V_1(par f g) = \{A, inpointer, x, i, sent\} \)
- \(V_2(par f g) = \{A, B, outpointer, y, j, received\} \)
- \(\text{Proof-var}(Bufman) = \{A, inpointer, outpointer, count, sent, received, y\} \)

The reader can verify that the assertions in Figure 4.5 are Einmischungsfrei, and that they lead to a proof. The only nontrivial part is showing that

\[\text{buffer}[k \mod N] = g(A[k]), \quad \text{received} < k \leq \text{sent} \]

is true after the producer's critical section; the fact that sent-received = count < N is needed to show that the store operation does not erase a value which is still needed.

It is often useful to express a program proof using assertion functions like the ones defined in the last two chapters.

4.15. Definition: Suppose pre and post are functions which map components of a program \(S \) to assertions, and \(I \) maps resources to assertions. They are assertion functions for \((P) S (Q) \) iff they obey the following restrictions for each component \(S' \) of \(S \).
\[fg3: \text{begin}\]
\[\text{inpointer}:=\text{outpointer}:=\text{count}:=0;\]
\[i:=j:=1;\]
\[\text{par f g: resource Bufman(inpointer, outpointer, count, buffer): cobegin}\]
\[\text{producer: while } i<M \text{ do}\]
\[\begin{align*}
\text{begin} & \quad x:=g(A[i]); \\
& \quad \text{add: with Bufman when count}<N \text{ do} \\
& \quad \begin{align*}
& \quad \text{begin} \quad \text{inpointer}:=(\text{inpointer}+1) \mod N; \\
& \quad \quad \text{buffer}[\text{inpointer}]:=x; \\
& \quad \quad \text{count}:=[\text{count}+1 \\
& \quad \end{align*}
\end{align*}
\]
\[i:=i+1;\]
\[\text{end}\]

\[//\]

\[\text{consumer: while } j<N \text{ do}\]
\[\begin{align*}
\text{begin} & \quad \text{remove: with Bufman when count}>0 \text{ do} \\
& \quad \begin{align*}
& \quad \text{begin} \quad \text{outpointer}:=(\text{outpointer}+1) \mod N; \\
& \quad \quad y:=\text{buffer}[\text{outpointer}]; \\
& \quad \quad \text{count}:=\text{count}-1 \\
& \quad \end{align*}
\end{align*}
\]
\[B[j]:=f(y); \\
\]
\[j:=j+1\]
\[\text{end}\]
\[\text{coend}\]
\[\text{end}\]

Figure 4.4. Computation of \(B[k] = f(g(A[k])), k = 1, \ldots, M.\)
of the parallel statement will usually contain an assertion about the local variables of each process \(V_k \) and an assertion about each resource. The resource invariant holds when parallel execution begins, and is preserved by each critical section. Since its variables are only modified inside critical sections, this means that the invariant holds whenever no critical section is in execution; in particular it holds when parallel execution ends.

Inference rule A6 reflects the fact that a process may assume that the invariant holds when it gains access to the resource, but that nothing else is known about the shared variables. When the process leaves the critical section it cannot make any assumptions about the state of the resource, since that may be changed unpredicatably by another process.

Example 1: Figure 4.3 gives an informal proof of the program `add6`, which is obtained from `add5` by inserting an auxiliary variable `y[1:2]`. The program variables are `x` and `y`, and the variable classes of Definitions 4.2 and 4.12 are:

\[
\begin{align*}
\text{Var(par)} &= \{x, y\} \\
\text{R(par)} &= \{x\} \\
\text{Proof-var}(rx) &= \{x, y[1], y[2]\} \\
\text{V}_1(\text{par}) &= \{y[1]\} \\
\text{Proof-var}(adda) &= \{y[1]\} \\
\text{V}_2(\text{par}) &= \{y[2]\} \\
\text{Proof-var}(addb) &= \{y[2]\}
\end{align*}
\]

The reader can verify that the proof is Einmischungsfrei. Repeated application of A8 gives a proof of \(x=0 \) `add5 (x=2)`.
\{(x=0)\}

\begin{verbatim}
begin comment y[1], y[2] are auxiliary variables;
 y[1]:=y[2]:=0;
 \{y[1]=0 \land y[2]=0 \land I(rx)\}
par: resource rx(x):cobegin
 \{y[1]=0\}
 adda: with rx do
 \{y[1]=0 \land I(rx)\}
 \begin{verbatim}
 begin x:=x+1; y[1]:=1 end
 \end{verbatim}
 \{y[1]=1 \land I(rx)\}
 \{y[1]=1\}
end

//

\{y[2]=0\}
addb: with rx do
 \{y[2]=0 \land I(rx)\}
 \begin{verbatim}
 begin x:=x+1; y[2]:=1 end
 \end{verbatim}
 \{y[2]=1 \land I(rx)\}
\{y[2]=1\}
coend
\{y[1]=1 \land y[2]=1 \land I(rx)\}\end{verbatim}

end
\{(x=2)\}

I(rx) = \{(x = y[1] + y[2])\}
\end{verbatim}

Figure 4.3. An Informal Proof of \{(x=0) add6 \{(x=2)\}.}
\(\{ \text{j=received+1 A j=M-1} \} \)

consumer: \textbf{while} \(j<M \) \textbf{do}

\(\{ \text{j=received+1 A j=M A B[k]=f(g(A[k])), 1<k<j} \} \)

begin

\(\{ \text{j=received+1 A j=M A B[k]=f(g(A[k])), 1<k<j} \} \)

remove: \textbf{with} Bufman \textbf{when} count=0 \textbf{do}

\(\{ \text{j=received+1 A j=M A B[k]=f(g(A[k])), 1<k<j} \)

A I(Bufman) A count=0)

begin

outpointer:=\textbf{(outpointer+1) mod N};

y:=buffer[outpointer];

count:=count-1;

received:=received+1;

end

\(\{ \text{j=received A j=M A B[k]=f(g(A[k])), 1<k<j A y=g(A[j])} \)

A I(Bufman));

\(\{ \text{j=received A j=M A B[k]=f(g(A[k])), 1<k<j A y=g(A[j])} \)

B[j]:=f(y);

\(\{ \text{j=received A j=M A B[k]=f(g(A[k])), 1<k<j} \)

j:=j+1;

\(\{ \text{j=received+1 A j=M+1 A B[k]=f(g(A[k])), 1<k<j} \} \)

end

\(\{ \text{j=received+1 A j=M+1 A (B[k]=f(g(A[k])), 1<k<j) A ~(j<M)} \}

\{ \text{received=M A B[k]=f(g(A[k])), 1<k<M} \} \)

Figure 4.5c. Proof of fg3 (consumer).
1) - 6) Same as Definition 2.2 for sequential programs

7) if \(S' \) is with \(r \) when \(B \) do \(S_1 \) then
 a) \(\text{pre}(S') \land B \land I(r) \vdash \text{pre}(S_1) \)
 b) \(\text{post}(S_1) \vdash \text{post}(S') \land I(r) \)

8) if \(S' \) is resource \(r_1, \ldots, r_m \); coherent \(S_1 // \ldots // S_n \) coord then
 a) \(\text{pre}(S') \vdash (\text{pre}(S_1) \land \ldots \land \text{pre}(S_n) \land I(r_1) \land \ldots \land I(r_m)) \)
 b) \((\text{post}(S_1) \land \ldots \land \text{post}(S_n) \land I(r_1) \land \ldots \land I(r_m)) \vdash \text{post}(S') \)
 c) if \(T \) is a proper component of \(S' \), the free variables in \(\text{pre}(T) \) and \(\text{post}(T) \) are elements of \(\text{Proof-var}(T) \)
 d) the free variables of \(I(r) \) are elements of \(\text{Proof-var}(r) \).

4.16. Theorem: If \(\text{pre} \), \(\text{post} \) and \(I \) are assertion functions for \((P) S (Q) \), it is possible to prove \((P) S (Q) \).

Proof: Similar to proof of Theorem 2.3.

4.17. Theorem: If \((P) S (Q) \) can be proved without using \(A8 \), there are assertion functions for \((P; S (Q)) \).

Proof: Similar to proof of Theorem 2.4.

If the proof of \((P) S (Q) \) uses \(A8 \) it is not always possible to find assertion functions for \((P) S (Q) \). For example, the proof of \(\{x=0 \} \text{add6} \{x=2 \} \) gives assertion functions for add6, with

\[
\begin{align*}
\text{pre}(\text{add6}) &= \{y[1]=0\} \\
\text{post}(\text{add6}) &= \{y[1]=1\}.
\end{align*}
\]
\{M > 0\}

fg3: begin comment sent and received are auxiliary variables;
 inpointer := outpointer := count := 0;
 i := j := 1;
 sent := received := 0;
\{I(Bufman) A i=sent+1=1 A j=received+1=1 A M>0\}
par f g: resource Bufman(inpointer, outpointer, count, buffer):
 cobegin producer // consumer coend
\{I(Bufman) A received=M A B[k]=f(g(A[k])), k=1,...,M\}
end
\{B[k]=f(g(A[k])), k=1,...,M\}

where I(Bufman) = \{0<count=N A count=sent-received A inpointer=sent mod N
 A outpointer=received mod N A buffer[k mod N] =
 g(A[k]), received<k<sent\}

Figure 4.5a. An Informal Proof of fg3 (main program).
\{(i=sent+1=1 \land i\leq M+1)\}

\textbf{producer: while } i\leq M \textbf{ do}
\{(i=sent+1 \land i\leq M) \}

\textbf{begin } x:=g(A[i]);
\{(i=sent+1 \land i\leq M \land x=p(A[i])) \}

\textbf{add: with Bufman when count\leq N do}
\{(i=sent+1 \land i\leq M \land x=g(A[i]) \land I(Bufman) \land count\leq N) \}

\textbf{begin } inpointer:=(inpointer+1) \bmod N;
buffer[inpointer]:=x;
\textbf{count}:=\textbf{count}+1;
\textbf{sent}:=\textbf{sent}+1;
\textbf{end}
\{(i=sent \land i\leq M \land I(Bufman)) \}

\{(i=sent \land i\leq M) \}
i:=i+1;
\{(i=sent+1 \land i\leq M+1) \}
\textbf{end}
\{(i=sent+1 \land i\leq M+1 \land \neg(i\leq M)) \}

\textbf{Figure 4.5b. Proof of } \varepsilon g3 \textbf{ (producer).}
CHAPTER 5

ADDITIONAL PROPERTIES OF PARALLEL PROGRAMS

So far our work has been directed toward proving partial correctness as expressed by the formula \((P) S (Q) \). A number of other properties are relevant to parallel programs. Four of these -- mutual exclusion, blocking, deadlock, and termination -- will be discussed in this chapter. The techniques for verifying each of these properties rely on the assertion functions defined in Chapters 3 and 4, so the first step in each case is a partial-correctness proof.

Mutual exclusion is discussed in 5.1, blocking and deadlock in 5.2, and termination in 5.3. In most cases GPL and RPL programs are covered separately.

5.1. Mutual Exclusion.

Two statements in a program are mutually exclusive if they can not be executed at the same time.

5.1. Definition: Components \(S_1 \) and \(S_2 \) of \(S \) are mutually exclusive iff there is no computation for \(S \) which has both \(S_1 \) and \(S_2 \) in execution.

The next two sections present methods for proving mutual exclusion in GPL and RPL programs.
5.1.1. GPL.

Mutual exclusion for GPL programs was discussed informally in Section 3.5. At that time the primary interest was in using mutual exclusion in verifying that parallel processes are interference-free. Now we provide a general technique for proving that mutual exclusion is accomplished.

5.2. Theorem: Let pre and post be assertion functions for \{true\} S Q. Consider statements S_1 and S_2. Let P_1 and P_2 be assertions such that

\[
\text{pre} (S_1') \Rightarrow P_1 \quad \text{for all components } S_1' \text{ of } S_1
\]

\[
\text{pre} (S_2') \Rightarrow P_2 \quad \text{for all components } S_2' \text{ of } S_2
\]

Then if $P_1 A P_2 \Rightarrow false$, S_1 and S_2 are mutually exclusive.

Proof: Assume that there is a computation a which has both S_1 and S_2 in execution. Then some component S_1' of S_1 is current in a, and so is some component S_2' of S_2. By Theorem 3.15,

$\text{pre} (S_1') [\text{value} (s_0, a)] = true$, and $\text{pre} (S_2') [\text{value} (s_0, a)] = true$. Then $\text{pre} (S_2') [\text{value} (s_0, a)] = true$, but this is impossible since $P_1 A P_2 \Rightarrow false$. So no such a exists, and S_1 and S_2 are mutually exclusive.

As an example of the application of Theorem 5.2, consider the proof for mutual exclusion using semaphores presented in Figure 3.14. Here S_1 and S_2 are the critical sections in processes i and j, with $i \neq j$; $P_1 = (I\text{InCS} \langle i \rangle = 1)$ and $P_2 = (I\text{InCS} \langle j \rangle = 1)$. Since $P_1 A P_2 \Rightarrow false$, S_1 and S_2 are mutually exclusive. This proof
But these are not assertion functions for \(\text{add} S \), which does not operate on \(y \), and in fact there are no assertion functions for \((x=0) \text{add} S (x=2) \). This will be reflected in the proof of Theorem 4.20.

4.4 Consistency.

Rules A0-A8 are consistent with the interpretive model, i.e., if \((P) S (Q) \) can be proved, it is true in the model.

4.18 Theorem: Suppose \(S \) is an RPL program, and pre, post, and I are assertion functions for \((P) S (Q) \). Let \(S' \) be a component of \(S \) and \(\alpha \) be a computation for \(S \) from state \(s_0 \) with \(P(s_0) = \text{true} \). Then,

1) if \(S' \) is current after \(\alpha \), pre(\(S' \)) is true after \(\alpha \);
2) if \(\alpha \) finishes \(S' \), post(\(S' \)) is true after \(\alpha \);
3) if resource \(r \) is declared in a statement which is in execution for \(\alpha \), and \(r \) is not busy for \(\alpha \), then \(I(r) \) is true after \(\alpha \).

Proof: By induction on the length of \(\alpha \). The details are given in Chapter 6. The argument is much the same as for Theorem 3.15.

4.19 Theorem: (Consistency of A8) If \((P) S' (Q) \) is true for the interpretive model and the requirements of A8 are satisfied, then \((P) S (Q) \) is true for the interpretive model.

Proof: The same as Theorem 3.20, which expressed the consistency of A8 for GPL programs.
4.20. Theorem: (Consistency for RPL) If \((P) S (Q) \) can be proved, it is true in the interpretive model.

Proof: Use induction on the number of uses of \(\text{A8} \) in the proof of \((P) S (Q) \). If there are none, let \(\text{pre} \) and \(\text{post} \) be assertion functions for \((P) S (Q) \). Now suppose \(\text{a} \) executes \(S \) from state \(s_0 \) with \(P[s_0]=\text{true} \). Then by Theorem 4.19, and the fact that \(\text{post}(S) \models Q \), \(Q[\text{value}(s_0, \text{a})]=\text{true} \), so \((P) S (Q) \) is true in the model.

If the proof of \((P) S (Q) \) uses \(\text{A8} \), it can be rewritten so that all the steps using \(\text{A8} \) appear at the end of the proof. Let \((P) S' (Q) \) be the last step which does not use \(\text{A8} \). \((P) S' (Q) \) is true in the model. By Theorem 4.19, each application of \(\text{A8} \) preserves this property. So \((P) S (Q) \) is true in the model.
Figure 5.1. The Dining Philosophers.
dining philosophers: begin comment integer array af[0:4],
af[i] is the number of forks available to philosopher i;
af:=2;
resource possforks(af): cobegin
phil 0 //...// phil 4
cocend
end

phil i: while true do
begin
getfork i: with possforks when af[i]=2 do
begin af[i@1]:=af[i@1] - 1;
af[i@1]:=af[i@1] - 1;
end;
eat i: "eat";
releaseforks i: with possforks do
begin af[i@1]:=af[i@1] + 1;
af[i@1]:=af[i@1] + 1;
end;
think i: "think"
end

0 and 0 indicate arithmetic modulo 5

Figure 5.2. Program for the Dining Philosophers.
depends on the auxiliary variable inCS, but the next theorem can be used to show that the critical sections in the original program (Figure 3.13) are also mutually exclusive.

5.3. Theorem: Suppose S_1' and S_2' are mutually exclusive components of a GPL program S', and S is obtained by reduction of S' as in inference rule AS, without eliminating either S_1' or S_2'. Then S_1 and S_2, the corresponding reductions of S_1' and S_2', are mutually exclusive.

Proof: If not, let a be a computation for S which has S_1 and S_2 in execution. By Lemma 3.19 there is a corresponding computation a' for S' which has S_1' and S_2' in execution. But this is impossible, since S_1' and S_2' are mutually exclusive. So S_1 and S_2 are mutually exclusive.

In the semaphore example of Figure 3.14 the references to the auxiliary variable inCS can be removed one by one, to yield Figure 3.13. Applying Theorem 5.3 at each step shows that mutual exclusion is preserved.

5.1.2. RPL.

The RPL with when statement is designed to provide mutual exclusion for statements which operate on shared variables. However, there are times when the programmer must control the scheduling of resources directly and must provide his own code for mutual exclusion. In such cases mutual exclusion can be verified using techniques much like those
used for GPL, but the problem is complicated by the restrictions on
variables used in the assertion functions.

As an example, consider a standard synchronization problem, the
five dining philosophers. Five philosophers sit around a circular
table (see Figure 5.1), alternately thinking and eating spaghetti.
The spaghetti is so long and tangled that a philosopher needs two forks
to eat it, but unfortunately there are only five forks on the table. The
only forks which a philosopher can use are the ones to his immediate
right and left. Obviously two neighbors cannot eat at the same time.
The problem is to write a program for each philosopher to provide this
synchronization. Hoare's solution [Ho72] is given in Figure 5.2. The
array \texttt{af[0:4]} indicates the number of forks available to each
philosopher. In order to eat, a philosopher must wait until two forks
are available; he then takes the forks and reduces the number available
to each of his neighbors. Figure 5.3 gives pre- and post- assertions
for some of the statements in the dining philosophers program. Note
the use of an auxiliary array variable, \texttt{eating[0:4]}. The statements
labelled "eat i" and "think i" do not change either \texttt{eating} or \texttt{af}.

We would like to use the assertions in Figure 5.3 to prove that
mutual exclusion is accomplished, i.e., that two neighbors do not get
to eat at the same time. The technique used will be essentially the
same as for a GPL program: assume that the statements are not mutually
exclusive and derive a contradiction. So suppose there is a
computation \texttt{a} for which both \texttt{eat i} and \texttt{eat i\oplus 1} are in execution.
For this computation, \texttt{eating[i]\oplus 1 = eating[i\oplus 1\oplus 1]}. If \texttt{I(possforks)}
is also true, we have the desired contradiction, for
Proof: First show that S_1 does not change any variables used in S_2.
To see this, suppose S_1 changes the value of x. If x is not a
resource element, the syntactical restrictions prevent x from
appearing in S_2. If x is an element of resource r, S_1 must
be a component of a critical section for r. Since a_1S_1 does not
finish this critical section, r is busy in a_1S_1. By Lemma 4.11,
S_2 does not refer to x.

By similar arguments, S_2 does not change any variables used in
S_1, and S_1 and S_2 are not both within statements for the same
resource.

Now 1-2 can be proved using induction on the length of a_2. If
a_2 is empty, $a = a_1S_1S_2$ and $b = a_1S_1S_1$. Since S_1 and S_2
do not modify each other's variables, they can be executed in either
order with the same result, and 1 and 2 are true.

If $a_2 = a'S'$, let $s = \text{value}(s_0,a_1S_1S_2,a')$. By induction,
$\text{value}(s_0,a_1S_1S_2,a') = s$. Then, S' is ready to execute in s, and b
is a computation. Also, $\text{value}(s_0,b) = \text{next}(s,S') = \text{value}(s_0,a)$, and
1 and 2 are satisfied.

5.5. Lemma: If $a = a_1S_1a_2$ is a computation for S, where S_1
is not the last statement in a critical section, and the statements in
a_2 are not from the same process as S_1, then
1) $b = a_1a_2$ is a computation for S, and
2) if T is current after a, and T is not from the same process
as S_1, T is current after b.

Proof: Lemma 5.4 can be applied several times to obtain the computation \(S' = a_1a_2S_1 \) with \(\text{value}(s_0,a) = \text{value}(s_0,S') \). Letting \(S = a_1a_2 \) satisfies 1 and 2.

This is equivalent to "backing up" one statement in the process containing \(S_1 \).

5.6. Lemma: If a statement \(S \), which does not properly contain a \text{whh} statement, is in execution for \(a \), there is a computation \(\beta \) such that

1) \(S \) is current after \(\beta \);
2) if \(T \) is current after \(a \) and \(T \) is not in the same process as \(S \), \(T \) is current after \(\beta \);

Proof: Lemma 5.4 can be applied several times to "back up" until \(S \) is current. (Since \(S \) does not properly contain a \text{whh}, none of the statements to be deleted finishes a critical section.) At each step the deleted statement is a component of \(S \), so 2 is preserved.

Proving Mutual Exclusion.

With this background we can state and prove a general theorem which can be applied to prove mutual exclusion for the dining philosophers.

5.7. Definition: \(r \) is a \text{simple resource} in \(S \) iff no \text{whh} statement for \(r \) in \(S \) properly contains another \text{whh} statement.

5.8. Theorem: Suppose \(S \) is an RPL program with assertion functions \(\text{pre}, \text{post}, \text{and I for (true) S (Q)}, S_1 \) and \(S_2 \) are components of \(S \), and \(P_1 \) and \(P_2 \) are assertions such that
dining philosophers: begin comment eating[0:4] is an auxiliary array,
 eating[i]=1 iff philosopher i is eating, 0 otherwise;
 af:=2; eating:=0;
 resource possforks(af): cobegin phil 0 // ... // phil 4 coend
end
{false}

{eating[i]=0}
phil i: while true do
begin {eating[i]=0}
 getfork i: with possforks when af[i]=2 do
 {eating[i]=0 A af[i]=2 A I(possforks)}
 begin af[i01]:=af[i01]-1; af[i101]:=af[i101]-1;
 eating[i]:=1;
 end
{eating[i]=1 A I(possforks)};
{eating[i]=1}
 eat i: "eat";
{eating[i]=1}
 releasefork i: with possforks do
 {eating[i]=1 A I(possforks)}
 begin af[i01]:=af[i01]+1; af[i101]:=af[i101]+1;
 eating[i]:=0;
 end
{eating[i]=0 A I(possforks)};
{eating[i]=0}
 think i: "think"
{eating[i]=0}
end
{false}

.I(possforks) = \{ \[0<eating[j]\leq1 A (eating[j]=1 \rightarrow af[j]=2)
 A af[j]=2-eating[j01]-eating[j101], 0\leq j \leq 4 \} \}

Figure 5.3. Assertions for the Dining Philosophers.
eating[i]=1 ∧ eating[i+1]=1 ∧ l(possforks)

⇒ af[i]=2 ∧ af[i]<2 ⇒ false

Unfortunately l(possforks) is not necessarily true, since some other philosopher may be in the midst of executing a critical section for possforks. Nevertheless, we will show that

eating[i]=1 ∧ eating[i+1]=1 ∧ l(possforks) ⇒ false

guarantees that eat i and eat i+1 are mutually exclusive. This will be done by deriving from α another computation β for which

(eating[i]=1 ∧ eating[i+1]=1 ∧ l(possforks))[value(s₀,2)] = true.

Since this is a contradiction, the original computation α did not exist, and eat i and eat i+1 are mutually exclusive.

"Hacking up" a Computation.

The technique used in obtaining β from α is the deletion of some elements of α in a way which is equivalent to "hacking up" some of the processes. This technique, which was suggested by Lipston's reduction method [Li74h], will be used again in Chapter 6. It is justified by the following lemmas.

5.4. Lemma: If α = α₁S₁α₂ is a computation for S, where S₁ is not the last statement in a critical section, and S₁ and S₂ are from different processes, then

1) β = α₁S₂α₂ is a computation for S, and
2) value(s₀,α) = value(s₀,β).
writer must have exclusive access. Figure 5.4 gives a solution to
the readers and writers problem due to Brinch Hansen [Br72a]; it gives
a higher priority to the writers. Figure 5.5a-c shows some pre and
post assertions for the program using auxiliary variables reading,
waiting, and writing. Applying Theorem 5.8 we can see that reader i
excludes writer j, since

\[
\text{reading}[i]=1 \land \text{writing}[j]=1 \land I(\text{control})
\]

\[\Rightarrow ar>0 \land aw>0 \land (ar=0 \lor aw=0) \Rightarrow false .\]

Also, writers exclude each other, since

\[
\text{writing}[i]=1 \land \text{writing}[j]=1 \land I(\text{control})
\]

\[\Rightarrow aw\geq2 \land aw<1 \Rightarrow false \]

if i ≠ j. So, the code provided does synchronize access to the file
as required.

Suppose now that the null statements labelled "read i" and
"write j" are replaced by statements which actually operate on the
file. In order to obey the syntax requirements of RPL, they must use
\texttt{withwhen} statements, even though this prevents reader processes from
using the file simultaneously. Actually the \texttt{withwhen} statements are
redundant; the statements which use "control" are like a programmer-
defined \texttt{withwhen} statement for the file. This suggests an extension of
RPL to include programmer-defined critical sections. The programmer
could specify the code to be executed when acquiring and releasing a
RW: begin
ww:=ar:=0;
resource control(ww,ar): cobegin
reader_1 ///.../// reader_n //
writer_1 ///.../// writer_m
coen
end

reader i: while true do
begin
startread i: with control when ww=0 do ar:=ar+1;
read i: ;
finishread i: with control do ar:=ar-1;
end

writer j: while true do
begin
ask write j: with control do ww:=ww+1;
start write j: with control when ar=0 ∧ aw=0 do aw:=aw+1;
write j: ;
finish write j: with control do begin aw:=aw-1; ww:=ww-1 end
end

ww = number of waiting or active writers
ar = number of active readers
aw = number of active writers

Figure 5.4. Readers and Writers.
pre(S_1') \Rightarrow P_1 for all components S_1' of S_1.

pre(S_2') \Rightarrow P_2 for all components S_2' of S_2.

Let $R = \{ r : r$ is a simple resource declared in a statement containing S_1 and S_2, and neither S_1 nor S_2 is a proper component of a when statement for $r \}$.

Then if $P_1 \land P_2 \land (\land I(r)) \iff false$, S_1 and S_2 are mutually exclusive.

Proof: Suppose S_1 and S_2 are not mutually exclusive. Then there is a computation α such that S_1 and S_2 are in execution for α. We will derive a computation β which has S_1 and S_2 in execution, and if $r \in R$, r is not busy in β. Then by Theorem 4.18,

$(\land I(r))[\text{value}(s_0,\beta)] = true$.

By Lemma 4.11, if r is busy in some when statement for α, say S_0, is in execution for α. Since r is a simple resource, Lemma 5.6 can be applied to back up until S_0 is ready to execute. If α' is the new computation, r is not busy in α'. Since S_1 and S_2 are not components of S_0, they are still in execution for α'. Also, if r' is a resource which is not busy in α, it is not busy in α', since no statements which end critical sections were deleted. So this operation can be repeated for each $r \in R$ to derive the desired computation β.

Since S_1 is in execution for β, some component S_1' of S_1 is current for β. Then by Theorem 4.18, $\text{pre}(S_1')[\text{value}(s_0,\beta)] = true$.

Similarly, \(\text{pre}(S_2)\{\text{value}(s_0, \xi)\} = \text{true} \). But then

\[
\left(P_1 \land \ P_2 \land \left(\land \ I(r) \right) \right)\{\text{value}(s_0, \xi)\} = \text{true}.
\]

Since this is impossible, \(S_1 \) and \(S_2 \) are mutually exclusive.

Example: Returning to the dining philosophers problem, let

\[
P_1 = \{\text{eating}[i] = 1\}
\]

\[
P_2 = \{\text{eating}[i\oplus 1] = 1\}
\]

\[
R = \{\text{possforks}\}
\]

Then \(P_1 \land P_2 \land \left(\land \ I(r) \right) \Rightarrow \text{false} \), and "eat \(i \)" and "eat \(i\oplus 1 \)" are mutually exclusive in the program with auxiliary variables. To show that they are mutually exclusive in the original program, we need the following theorem.

5.9. Theorem: Suppose \(S_1' \) and \(S_2' \) are mutually exclusive components of an HPL program \(S' \), and \(S \) is obtained by reduction of \(S' \) as in inference rule A8, without eliminating either \(S_1' \) or \(S_2' \). Then \(S_1 \) and \(S_2 \), the corresponding reductions of \(S_1' \) and \(S_2' \), are mutually exclusive.

Proof: Same as Theorem 5.3.

User-Defined Critical Sections.

Another standard synchronization problem, called the readers and writers problem, involves a number of processes sharing a file. Any number of readers may have access to the file at the same time, but a
\{\text{waiting}[j]=\text{writing}[j]=0\}

\textbf{writer } j: \textbf{while } true \textbf{ do }

\begin{verbatim}
 begin
 \{\text{waiting}[j]=\text{writing}[j]=0\}
 \text{ask write } j: \textbf{with control do }
 \begin{verbatim}
 begin \text{ww:=ww-1}; \text{waiting}[j]:=1 \end{verbatim}
 \{\text{waiting}[j]=1 \text{ and } \text{writing}[j]=0\}
 \text{start write } j: \textbf{with control when } \text{ar}=0 \text{ and } \text{aw}=0 \textbf{ do }
 \begin{verbatim}
 begin \text{aw:=aw+1}; \text{writing}[j]:=1 \end{verbatim}
 \{\text{waiting}[j]=\text{writing}[j]=1\}
 \text{write } j: ;
 \{\text{waiting}[j]=\text{writing}[j]=1\}
 \text{finish write } j: \textbf{with control do }
 \begin{verbatim}
 begin \text{ww:=ww-1}; \text{aw:=aw-1}; \text{waiting}[j]:=\text{writing}[j]:=0 \end{verbatim}
 \{\text{waiting}[j]=\text{writing}[j]=0\}
 \end{verbatim}
\end{verbatim}
\textbf{end}

\{false\}

\[\text{I(control)} = \text{ar} \sum \text{reading}[i] \text{ and } \text{ww} = \sum \text{waiting}[j] \text{ and } \text{aw} = \sum \text{writing}[j] \]

\[A \text{ if } \text{aw} < 1 \text{ and } (\text{ar}=0 \text{ or } \text{aw}=0) \text{ and } (\text{writing}[j]=1 \implies \text{waiting}[j]=0) \]

\[A \text{ if } \text{waiting}[j], \text{writing}[j], \text{reading}[i] \leq 1 \]

\textbf{Figure S.5c. Assertions for Readers and Writers (writer } j\text{).}
resource. As long as this code guaranteed mutual exclusion, the programmer-defined critical sections could be used in programs and proofs in the same way as the standard when.

There are a number of ways in which such an extension could be incorporated in RPL. One possibility is the declaration of a monitor somewhat like Hoare's [Ho74a] for each resource. The programmer could either provide his own code for the monitor or accept a standard system implementation. We are currently working on syntactic constructs to provide for this feature.

5.2. Blocking.

Another problem which is peculiar to parallel processes is that a program can be forced to stop before it has accomplished its purpose. This can happen in GPL or RPL programs because of the await and when statements.

5.10. Definition: If S' is a component of a GPL or RPL program S, and α is a computation for S, S' is blocked for α iff S' is in execution for α but no component of S' is ready to execute after α.

In other words, at least one component of S' is current for α, but none of the current components of S' are ready to execute. For a GPL program this means that all the current components of S' are await statements; for an RPL program they must be when statements.
true

begin \(\omega, \omega', a_r = 0; \)

 comment reading[i] = 1 if reader i is active, 0 otherwise
 writing[i] = 1 if writer i is active, 0 otherwise
 waiting[i] = 1 if writer i is waiting or active,
 0 otherwise;

 reading := writing := waiting := 0;

 \(I(\text{control}) A \forall i(\text{reading}[i] = 0) A \forall j(\text{writing}[j] = \text{writing}[j] = 0) \)

 resource control(\(\omega, \omega' \)) : cobegin
 reader 1 /// ... /// reader n ///
 writer 1 /// ... /// writer m
 coend

end

false

\(I(\text{control}) = \{ a_r = \sum_i \text{reading}[i] A \omega = \sum_j \text{waiting}[j] A a_w = \sum_j \text{writing}[j] \}

A 0 < a_w < 1 A (a_r = 0 V a_w = 0) A (\text{writing}[i] = 1 \implies \text{waiting}[i] = 1)

A 0 < \text{waiting}[j], \text{writing}[j], \text{reading}[i] \leq 1 \}

Figure 5.5a. Assertions for Readers and Writers (main program).
\{(reading[i]=0)

reader i: while true do

begin

{reading[i]=0}

start read i: with control when \(ww=0\) do

begin ar:=ar+1; reading[i]:=1 end;

{reading[i]=1}

read i: ;

{reading[i]=1}

finish read i: with control do

begin ar:=ar-1; reading[i]:=0 end;

{reading[i]=0}

end

{false}

\[I(\text{control}) = \{ \text{ar} = \sum_i \text{reading}[i] \land \text{ww} = \sum_j \text{waiting}[j] \land \text{aw} = \sum_j \text{writing}[j] \land \]

\[0<\text{aw}<1 \land (\text{ar}=0 \lor \text{aw}=0) \land (\text{writing}[j]=1 \implies \text{waiting}[j]=1) \land \]

\[0<\text{waiting}[j],\text{writing}[j],\text{reading}[i]<1 \}\]

Figure S.5b. Assertions for Readers and Writers (reader i).
In the mutual exclusion program (Figure 3.14) each S_i has two
\texttt{wait} statements:

\[T_1^i = \texttt{wait \ mutex} > 0 \ \texttt{then \ ...} \]

\[T_2^i = \texttt{wait \ true \ then \ ...} \]

Then,

\[
D_1 = N \sum_{i=1}^{N} \text{post}(S_i) V (\text{pre}(T_1^i) \ A \ \text{mutex} \leq 0) V \ (\text{pre}(T_2^i) \ A \ \text{false})
\]

\[
\sum_{i=1}^{N} \text{false} V (\text{pre}(T_1^i) \ A \ \text{mutex} \leq 0) V \ \text{false}
\]

\[
\sum_{i=1}^{N} \text{false} V (I \ A \ \text{inCS[i]}=0) V \text{false}
\]

\[\Rightarrow \text{mutex} \leq 0 \ A \ \text{mutex}=1 \]

\[\Rightarrow \text{false} \]

Thus, this method of using semaphores to implement mutual exclusion is
safe from blocking.

We next consider blocking in programs with nested parallel state-
ments. This is essentially the same as the case with no nesting, but
the details are more cumbersome.

5.13. Theorem: Suppose S is a GPL program with assertion functions
pre and post for $(P) S (Q)$. For each parallel statement $T = \ldots$
\begin{verbatim}
cobegin \(T_1 \ldots \ldots / T_n \) coend in \(S \), let \(T_1^i = \text{await} \; B_j^i \) then ... be the \text{await} statements in \(T_i \) which are not components of another parallel statement inside \(T_i \). Let
\[
D_1(T) = A \bigwedge_{i} (\text{post}(T_i) \lor (V \; (\text{pre}(T_j^i) \lor \neg B_j^i)))
\]
\[
D_2(T) = V \bigvee_{i} V \; (\text{pre}(T_j^i) \lor \neg B_j^i).
\]
Then, if \(D_1(T) \land D_2(T) \Rightarrow \text{false} \) for all parallel \(T \) in \(S \), \(S \) cannot be blocked with initial condition \(P \).

Proof: Suppose \(S \) is blocked for some computation \(a \) which starts with \(P \) true. Then at least one parallel statement is blocked for \(a \). Let \(T \) be a parallel statement which is blocked for \(a \) with no parallel statement inside \(T \) blocked for \(a \). Then \(T \) must be blocked at one or more of the \(T_j^i \), and \(D_1(T) \land D_2(T) [\text{value}(s_0, a)] = \text{true} \) as in Theorem 5.12. Since this is a contradiction, \(S \) cannot be blocked.

Example: Figure 5.6 is a program which uses 2 semaphores for mutual exclusion. In an earlier example we showed that single parallel statements which use semaphores in this way cannot be blocked. Similar reasoning can be applied to each of the parallel statements in the program nested1; since neither of them can be blocked, the program cannot be blocked.

Unfortunately Theorem 5.13 is not strong enough in many cases. Figure 5.7 shows a program "nested2" which cannot be blocked. However,
5.11. Definition: If S' is a component of the GPL or RPL program S, S' can not be blocked with starting condition P iff there is no computation which starts with P true and has S' blocked. S' can not be blocked if it can not be blocked with starting condition \{true\}.

In many cases blocking is harmless: an \textit{await} or \textit{withwhen} statement may be blocked and then unblocked many times during program execution. However, if an entire program is blocked, or if a set of parallel processes is deadlocked in acquiring resources, the program cannot recover. In Sections 5.2.1 and 5.2.3 we describe techniques for proving that programs cannot become blocked, while in 5.2.2 a well-known method for avoiding deadlock is related to RPL programs.

5.2.1. Program Blocking in GPL.

A GPL program can become blocked if every parallel process is stopped at an \textit{await} statement whose condition is false. In order to prove that blocking is impossible in a particular program we assume that it occurs and derive a contradiction. We first consider the relatively easy case of a program with only one parallel statement.

\textbf{Single Parallel Statement:}

5.12. Theorem: Suppose GPL program S contains one parallel statement $T = \text{cobegin } T_1 / \ldots / T_n \text{ coend}$, and let pre and post be assertion functions for $\{P\} S \{Q\}$. Let $T_j^i = \text{await } B_j^i \text{ then } \ldots$ be the \textit{await} statements in T_j. Then if
\[D_1 = \bigwedge_{i=1}^{n} \left(\text{post}(T_i) \lor \left(\forall j \left(\text{pre}(T_j^i) \land \neg B_j^i \right) \right) \right) \]

\[D_2 = \bigvee_{i,j} \left(\text{pre}(T_j^i) \land \neg B_j^i \right) \]

and \(D_1 \land D_2 \Rightarrow \text{false} \), \(S \) cannot be blocked with starting condition \(P \).

Proof: Suppose \(S \) is blocked for the computation \(a \) which starts with \(P \) true. Since \(S \) can only be blocked at \textit{wait} statements in \(T \), \(a \) has begun parallel execution of the \(T_i \). For each process \(T_i \), either \(a \) has finished \(T_i \) and \(\text{post}(T_i)(\text{value}(s_0,a))=\text{true} \) (Theorem 3.15), or \(T_i \) is blocked at one of \(T_j^i \) and \(\left(\text{pre}(T_j^i) \land \neg B_j^i \right)(\text{value}(s_0,a))=\text{true} \). So \(D_1(\text{value}(s_0,a))=\text{true} \). Since at least one \(T_i \) is blocked for \(a \), \(D_2(\text{value}(s_0,a))=\text{true} \). But this is a contradiction, since \(D_1 \land D_2 \Rightarrow \text{false} \), so no such \(a \) exists.

Note that if \(S \) contains no \textit{wait} statements, \(D_2 \) is the empty union, which conventionally has the value \text{false}; in this case \(S \) cannot become blocked.

Examples: Chapter 3 contained several examples of programs in GPL. Findpos (Figure 3.3) cannot be blocked since it contains no \textit{wait} statements. In add1 (Figure 3.8) both of the \textit{wait} statements have \(B_j^i \equiv \text{true} \). The expression \(D_2 \) becomes

\[D_2 = \left(\text{pre}(\text{adda}) \land \neg \text{true} \right) \lor \left(\text{pre}(\text{addb}) \land \neg \text{true} \right) \]

\[= \text{false} . \]

Then \(D_1 \land D_2 \Rightarrow \text{false} \), and add1 cannot become blocked.
the parallel statement "inner" can be blocked when S_i is executing its critical section, so Theorem 5.13 does not apply. The following more general theorem can be used in such cases.

5.14. Theorem: Suppose S is a GPL program with assertion functions pre and post for $(P) S (Q)$. For each parallel statement $T =$
cobegin $T_1 / \ldots / T_n$
coend let $T_j^i =$ await B_j^i then \ldots be as in Theorem 5.13, and let S_k^i be the parallel statements in T_i which are not components of another parallel statement inside T_i. Let

$$D(T_i) = (V (\text{pre}(T_j^i) \land \neg B_j^i) V (V D_1(S_k^i)))$$

$$D_1(T) = \Lambda (\text{post}(T_i) V D(T_i))$$

$$D_2(T) = V D(T_i) .$$

Then, if $D_1(T) A D_2(T) \Rightarrow \text{false}$, for every parallel T which is not contained in another parallel statement, S cannot be blocked with initial condition P.

Proof: Suppose S is blocked for some computation a which starts with P true. First we will show that if T is a parallel component of S which is blocked for a, $D_1(T) A D_2(T)[\text{value}(s_0,a)]=\text{true}$.

First, suppose that T contains no nested parallel statements. In this case, $D_1(T)$ and $D_2(T)$ reduce to D_1 and D_2 of Theorem 5.13, and $D_1 A D_2[\text{value}(s_0,a)]=\text{true}$. If T contains nested parallel statements, consider the state of each T_i after a. There are three possibilities:
1) \(a\) finishes \(T_i\), and \(\text{post}(T_i)[\text{value}(s_0, a)] = \text{true}\).

2) \(T_i\) is blocked at one of the \(T_j\), and \((\text{pre}(T_i) \land \neg B_j)[\text{value}(s_0, a)] = \text{true}\).

3) \(T_i\) is stopped inside some \(S_k\), and by induction

\((D_1(S_k) \land D_2(S_k))[\text{value}(s_0, a)] = \text{true}\).

This gives \(D_1(T)[\text{value}(s_0, a)] = \text{true}\), and since at least one \(T_i\) must be blocked for \(a\), \(D_2(T)[\text{value}(s_0, a)] = \text{true}\). Then if \(T\) is blocked for \(a\), \(D_1(T) \land D_2(T)[\text{value}(s_0, a)] = \text{true}\).

Now if \(S\) is blocked for \(a\), at least one of the outermost parallel statements \(T'\) is blocked for \(a\), and \(D_1(T') \land D_2(T')[\text{value}(s_0, a)] = \text{true}\). But this is a contradiction, so no such \(a\) exists.

Note that Theorem 5.13 describes the special case of Theorem 5.14 in which \(D_1(T) \land D_2(T) \Rightarrow \text{false}\) for all parallel \(T\).

This theorem can be used to prove that the program nested2 in Figure 5.7 cannot be blocked. Figure 5.8 shows some pre and post assertions which can be derived by expressing \(P\) and \(V\) with \text{await} statements as done in Figure 3.14. Then

\[D_1(\text{inner}) = \{\text{post}(S2) \lor (\text{pre}(\text{wait}2) \land \text{mutex} < 0)\}\]

\[A \{\text{post}(S3) \lor (\text{pre}(\text{wait}3) \land \text{mutex} < 0)\}\]

\[\Rightarrow (\text{incS}[2] = \text{incS}[3] = 0) \land I\]

\[D_1(\text{outer}) = \{\text{post}(S1) \lor (\text{pre}(\text{wait}1) \land \text{mutex} < 0)\}\]

\[A \{\text{post(\text{inner})} \land D_1(\text{inner})\}\]

\[\Rightarrow (\text{incS}[1] = \text{incS}[2] = \text{incS}[3] = 0) \land I\]

\[\Rightarrow \text{mutex} = 1\]
nested1: begin ml:=m2:=1;
 outer: cobegin
 S1: begin P(ml);
 critical section 1;
 V(ml)
 end
 //
 S2: begin P(ml);
 critical section 2;
 inner: cobegin
 S21: begin P(m2); critical section 3; V(m2) end
 //
 S22: begin P(m2); critical section 4; V(m2) end
 coend;
 V(ml)
 end
 coend
end

Figure 5.6. Nested Parallel Statements 1.
nested2: begin m1:=1;

outer: cobegin
 S1: begin wait1: P(m1);
 critical section 1;
 V(m1)
 end

 //

 inner: cobegin
 S2: begin wait2: P(m1);
 critical section 2;
 V(m1)
 end

 //

 S3: begin wait3: P(m1);
 critical section 3;
 V(m1)
 end

 coend
coend
end

Figure 5.7. Nested Parallel Statements 2.
resource r1, r2: cobegin
 S1: with r1 do with r2 do
 // S2: with r2 do with r1 do
coend

If S1 acquires r1 and S2 acquires r2 neither statement can proceed and the program is deadlocked.

5.16. Definition: An RPL program S is deadlock-free iff there is no computation for which S is deadlocked.

There is a well-known technique for avoiding deadlock; each process must request and release resources in some standard order. In an RPL program this can be accomplished by restrictions on the nesting of withwhen statements.

5.17. Theorem: An RPL program S is deadlock-free if its resources can be put in an order r_{i_1}, \ldots, r_{i_m} such that no withwhen statement using r_{i_j} properly contains a withwhen statement using r_{i_k} with $k < j$.

Proof: Suppose S is deadlocked for the computation a. Let S_{i_1, \ldots, i_n} be the components of S which are deadlocked, and let j be the largest index of a resource such that one of the S_{i_k} is blocked at a withwhen statement for r_{i_j}. Then some S_{i_k} is blocked inside a critical section for r_{i_j} say at a withwhen statement for r_{i_k}.

Then $k > j$, but this contradicts the choice of j. So S cannot be deadlocked.
Of course, there are other ways of avoiding deadlock, but the technique above is especially convenient since it can be checked syntactically. Note that a program with no nested critical sections is deadlock-free.

Example: Figure 5.9a and b gives two additional solutions to the dining philosophers problem; they are also due to Hoare [Ho72]. The first is in danger of deadlock, since if the five philosophers simultaneously pick up the fork on the right no one will be able to pick up his second fork. The next solution avoids this problem by following the discipline of Theorem 5.17, so it is deadlock-free (the order is fork0, fork1, ..., fork4). However, it has the undesirable feature that when philosopher 4 is eating, the other four may be forced to wait until he has finished. The solution in Figure 5.2 is preferable, because it does not stop a philosopher from eating unless one of his neighbors is eating.

5.2.3. Program Blocking in RPL.

Deadlock is one way in which a program can be blocked; blocking can also occur if all processes are waiting at when statements for conditions which are not satisfied. This situation is related to blocking in GPL programs as presented in 5.2.1, but it is complicated by the fact that the statement with r when B do S can be blocked either because r is busy or because B is false. When a deadlock-free program is blocked we can assume that at least one statement is blocked because B is false.
\(\{ I \land \text{inCS}[i] = 0 \} \)

\(\textbf{Si: begin} \)

\(\{ I \land \text{inCS}[i] = 0 \} \)

\(\text{wait } i: P(m1); \)

\(\{ I \land \text{inCS}[i] = 1 \} \)

\(\text{critical section } i; \)

\(\{ I \land \text{inCS}[i] = 1 \} \)

\(V(m1); \)

\(\{ I \land \text{inCS}[i] = 0 \} \)

\(\textbf{end} \)

\(\{ I \land \text{inCS}[i] = 0 \} \)

\[
I = \{ m1 = 1 - \sum_{i} \text{inCS}[i] \land m1 \geq 0 \land (0 \leq \text{inCS}[i] \leq 1), i=1,2,3 \}
\]

\textbf{Figure 5.8. Some Assertions for } S_i \text{ of Figure 5.7.}
\(\delta_2(\text{outer}) = \left[\text{pre(wait1)} \land \text{mutex} < 0 \right] \lor \left[\text{pre(wait2)} \land \text{mutex} < 0 \right] \lor \left[\text{pre(wait3)} \land \text{mutex} < 0 \right] \Rightarrow \text{mutex} < 0 \)

\(\delta_1(\text{outer}) \land \delta_2(\text{outer}) \Rightarrow \text{false} \).

So the program cannot be blocked.

This completes the discussion of blocking in GPL programs. In the next two sections we consider two kinds of blocking for RPL programs.

5.2.2. Deadlock in RPL.

Deadlock is a particular kind of blocking which can occur when parallel processes are competing for resources. It occurs when a set of processes reach a state in which each is trying to acquire a resource which is already controlled by another. In an RPL program resources are acquired by \text{withwhen} statements, and deadlock can be related to \text{withwhen}.

5.15. Definition: An RPL program \(S \) is \text{deadlocked} for a computation \(a \) if there are components \(S_i \), \(1 \leq i \leq n \) of \(S \) such that each \(S_i \) is blocked at a \text{withwhen} statement for a resource \(r_i \), and some \(S_j \) is blocked inside a \text{withwhen} statement for \(r_i \), i.e., \(S_j \) has already acquired \(r_i \).

As a simple example consider the program
\[D_1 = \bigwedge_i (\text{post}(T_i) \lor D(T_i)) \]

\[D_2 = \bigvee_i \bigvee_j (\text{pre}(T^i_j) \land \exists_{i,j} \land I(r^i_j)) \]

\[D_3 = A \ I(r) \quad \text{for each } r \in R \]

Then, if \(D_1 \land D_2 \land D_3 \Rightarrow \text{false} \), \(S \) cannot be blocked with initial condition \(P \).

Proof: The argument is essentially the same as for Theorem 5.12.

Suppose \(S \) is blocked for \(a \) which starts with \(P \) true. First, note that if \(r \) is a simple resource, control cannot be blocked inside a critical section for \(r \), so \(r \) is not busy for \(a \). Thus, \(D_3[\text{value}(s_0,a)] = \text{true} \).

Each of the \(T_i \) is either finished or blocked after \(a \). If \(T_i \) is blocked, it is trying to enter some \(T^i_j \), so \(\text{pre}(T^i_j)[\text{value}(s_0,a)] = \text{true} \). If \(r \) is a simple resource, it is not busy for \(a \), so \(T \) is blocked because \(B_j^i[\text{value}(s_0,a)] = \text{false} \). Thus, if \(T_i \) is blocked, \(D(T_i) \) is true. Since each \(T_i \) is either finished or blocked, \(D_1 \) is true, and by Lemma 5.18, \(D_2 \) is true. So, \(D_1 \land D_2 \land D_3[\text{value}(s_0,a)] = \text{true} \). But this is impossible, so \(S \) cannot be blocked.

There are several examples in Chapters 4 and 5 of programs which cannot be blocked.

Dining Philosophers (Figure 5.3): The program has no nested `with when` statements and so is deadlock-free.
\[R = (\text{possforks}) \]

\[D(\text{phil } i) = (\text{pre(getfork } i) \land \text{af}[i] \neq 2) \]

\[V (\text{pre(releasefork } i) \land \text{false}) \]

\[\begin{align*}
\text{eating}[i] &= 0 \land \text{af}[i] \neq 2 \\
D_1 &= A \ (\text{post}(T_i) \lor V \ D(\text{phil } i)) \\
\end{align*} \]

\[A \ (\text{false } V \ \text{eating}[i] &= 0 \land \text{af}[i] \neq 2) \\
\]

\[A \ (\text{eating}[i] = 0 \land \text{af}[i] \neq 2) \\
\]

\[D_3 = I(\text{possforks}) \Rightarrow (O_{\text{eating}[i] \leq 1} \land \text{af}[i] = 2 - \text{eating}[i] \geq 1) \]

\[D_1 \land D_3 \Rightarrow A \ (\text{af}[i] \neq 2 \land \text{af}[i] = 2) \Rightarrow \text{false}. \]

so the dining philosophers program cannot be blocked.

Readers and Writers (Figure 5.4): A very similar proof shows that this program cannot be blocked.

Producer and Consumer (Figure 4.5): Again, there are no nested when statements, and the program is deadlock-free.
resource fork 0, fork 1, fork 2, fork 3, fork 4:

cobegin phil 0 //...// phil 4 coend

phil i: while true do
 with fork i do with fork i@1 do "eat"

Figure 5.9a. Dining Philosophers -- Solution 2.

if 0≤i<3

phil i: while true do
 with fork i do with fork i@1 do "eat"

phil 4: while true do
 with fork 0 do with fork 4 do "eat"

Figure 5.9b. Dining Philosophers -- Solution 3.
5.18. Lemma: If S is a deadlock-free RPL program which is blocked for a, there is at least one statement $S' = \text{with } r \text{ when } B \text{ do } ...$ which is blocked for a with $(\text{pre}(S') \land \neg B \land I(r))[\text{value}(s_0,a)] = \text{true}$.

Proof: Let $T_1 = \text{with } r_1 \text{ when } B_1 \text{ do } ...$ be a list of the when statements at which S is blocked. If all the r_1 are busy for a, S is deadlocked, so there is at least one r_1 which is not busy for a. This implies that $I(r_1)[\text{value}(s_0,a)] = \text{true}$. Also, since S is blocked at T_1, $(\text{pre}(T_1) \land \neg B_1)[\text{value}(s_0,a)] = \text{true}$.

Now we derive some results which can be used to prove that RPL programs do not become blocked. The first case considered is programs with only one parallel statement.

Simple Parallel Statement.

5.19. Theorem: Suppose S is a deadlock-free RPL program containing one parallel statement $T = \text{resource } r_1, ..., r_m; \text{begin } T_1/.../T_n \text{ end}$, and pre, post, and I are assertion functions for $\{P\} S \{Q\}$. Let the when statements in T_i be $T_i = \text{with } r_i \text{ when } B_i \text{ do } ...$ Define

$$R = \{r: \text{ } r \text{ a simple resource of } S \text{ (Definition 5.7)}\}$$

$$p^i_j = \neg b^i_j, \text{ if } r^i_j \in R$$

$$= \text{true, otherwise}$$

$$D(T_i) = V_{j} (\text{pre}(T^i_j) \land p^i_j)$$
\[D(T_1) = (V \left(\text{pre}(T_j^i) A P_j^i \right)) V (V D_1(S_k^i)) \]

\[D_1(T) = A (\text{post}(T_i) V D(T_i)) \]

\[D_2(T) = \begin{cases} V & (\text{pre}(T' A \neg B A I(r)) \\ \text{with } r \text{ when } B \text{ do } ... & \text{a component of } T \end{cases} \]

\[D_3(T) = A I(r) \]

\[\text{rcR}(T) \]

Then if \(D_1(T) A D_2(T) A D_3(T) \Rightarrow \text{false} \) for each parallel \(T \) which is not a proper component of another parallel statement, \(S \) cannot be blocked with initial condition \(P \).

Proof: Suppose \(S \) is blocked for some computation \(a \) which starts with \(P \) true. First, we will show that if \(T \) is a parallel component of \(S \) which is blocked for \(a \), \(D_1(T) A D_2(T) A D_3(T)[\text{value}(s_0,a)]=\text{true} \).

First, note that no process can be blocked inside a critical section for a simple resource, so no simple resource is busy for \(a \), which implies \(D_3(T)[\text{value}(s_0,a)]=\text{true} \).

Next, by Lemma 5.18, \(D_2[\text{value}(s_0,a)]=\text{true} \).

Finally, \(D_1(T) \) holds after \(a \). If \(T \) does not contain any nested parallel statement, \(D_1(T) \) reduces to \(D_1 \) of Theorem 5.19, and by similar reasoning \(D_1[\text{value}(s_0,a)]=\text{true} \). If \(T \) does contain parallel statements, there are three possible states for each \(T_i \):

1. \(a \) finishes \(T_i \), and \(\text{post}(T_i)[\text{value}(s_0,a)]=\text{true} \).
2) \(T_i \) is blocked at some \(T_j^i \), and \(\text{pre}(T_j^i) \land P_j^i[\text{value}(s_0,a)] = \text{true} \).

3) \(T_i \) is blocked inside some \(S_k^i \), and by induction

\[D_1(S_k^i)[\text{value}(s_0,a)] = \text{true} . \]

Combining 1)-3) yields \(D_1(T)[\text{value}(s_0,a)] = \text{true} \).

Now, if \(S \) is blocked for \(a \), at least one of the outermost parallel statements in \(S \), say \(T' \), must be blocked for \(a \), and

\[D_1(T') \land D_2(T') \land D_3(T')[\text{value}(s_0,a)] = \text{true} . \]

But this is a contradiction, so no such \(a \) exists and \(S \) cannot be blocked.

5.2.4. Auxiliary Variables.

All of the programs which were shown to be safe from blocking in Sections 5.2.1 and 5.2.3 have included auxiliary variables. The next theorem shows that the programs are also safe from blocking if the auxiliary variables are removed.

5.21. Theorem: Suppose \(S' \) is a GPL or RPL program which cannot be blocked, and \(S \) is obtained by reduction of \(S' \) according to inference rule A8. Then \(S \) cannot be blocked.

Proof: Suppose \(S \) is blocked for some computation \(a \). By Lemma 3.19 there is a corresponding computation \(a' \) for \(S' \) which is also blocked. Since this is impossible, \(S \) cannot be blocked.

By repeatedly applying Theorem 5.21, all references to auxiliary variables can be deleted, and the resulting program cannot be blocked.
R = {Pufman}

D(producer) = pre(add) A count>\(N\)
\[\Rightarrow sent<N A count>\(N\)\]

D(consumer) = pre(remove) A count<\(0\)
\[\Rightarrow received<N A count<\(0\)\]

\(D_1 = (post(consumer) V D(consumer)) A (post(producer) V D(producer))\)
\[\Rightarrow (sent=N V (sent<N A count>\(N\))) A (received=N V (received<N A count<\(0\)))\]

\(D_2 = D(consumer) V D(producer)\)
\[\Rightarrow sent<N V received<N\]

\(D_3 = I(Pufman) \Rightarrow count=sent-received\)

Consider the value of \(D_1 A D_2 A D_3\) for the two cases of \(D_2\).

Case 1: sent\(<N\)

\(D_1 A sent<N A D_3 \Rightarrow (sent<N A count>\(N\)) A (received=N V (received<N A count<\(0\)))\)
\[A count=sent-received\]
\[\Rightarrow sent<N A count>\(N\) A received=N A count=sent-received,\]
\[\text{if } N>0\]
\[\Rightarrow count>\(N\) A count<\(0\) \Rightarrow false, \text{if } N>0\]

Case 2: received\(<N\)
\[D_1 \land D_2 \land D_3 \Rightarrow \text{false} \] if \(N > 0 \). This leads to the reasonable requirement that the buffer used for communication must have at least one element so that the program cannot be blocked.

Nested Parallel Statements.

Theorem 5.19 applies only to programs in which there are no nested parallel statements. The theorem below is more general, and is analogous to Theorem 5.14.

5.20. Theorem: Let \(S \) be a deadlock-free RPL program with assertion functions \(\text{pre}, \text{post}, \) and \(\text{I} \) for \(\{P\} S \{Q\} \). For each parallel component \(T = \text{resource } r_1, \ldots, r_m; \text{coercin} T_1 // \ldots // T_n \text{ coend}, \) let \(S_k^i \) be the parallel statements in \(T_i \) which are not proper components of another parallel statement inside \(T_i \), and let \(T_j^i \) be the \text{when} statements of \(T_i \) which are not contained in any \(S_k^i \). Define

\[
R(T) = \{ r: r \text{ a simple resource declared in a statement which contains } T \}
\]

\[
p_j^i = \text{true}, \text{if } r_j^i \in R(T)
\]

\[
= \text{true}, \text{otherwise}
\]
way, while others require a model in which there are definite rules for scheduling competing processes. Hopefully, future work will broaden the range of properties which can be proved with axiomatic methods.
CHAPTER 6

CONSISTENCY AND COMPLETENESS OF THE DEDUCTIVE SYSTEM

Throughout this thesis two different methods have been used to describe the semantics of a programming language. The deductive system, consisting of axioms and inference rules, is convenient for proving that a program performs correctly. The interpreter is a model of the way statements are executed on a real machine, and provides considerably more detail than the deductive system. In this chapter we discuss the relationship between these two methods. Either one could be taken as the primary definition of the semantics of the languages. Here we have chosen the interpreter as the basic definition, since it is closer to our intuitive understanding of what parallel programs "mean". From this point of view the consistency theorems in Chapters 2, 3, and 4 state that the deductive system is correct, in the sense that it accurately describes the results of program execution. Section 6.1 is devoted to rather lengthy proofs of these three theorems. Their meaning could be summarized as "anything which can be proved is true".

The converse of consistency is completeness, or "anything which is true can be proved". The axioms and inference rules give significantly less detail about program execution than the interpreter. If the deductive system is complete with respect to the interpreter, we are justified in saying that no essential information is lost by using the axioms. Section 6.2 considers the completeness of the deductive
5.3. Termination.

Program termination is an important property for both parallel and sequential programs, although there are correct parallel programs which do not terminate. Various techniques have been suggested for proving termination of sequential programs (Hoare [Ho69], Manna [Ma74]), and the same methods can often be applied to parallel programs. A sequential program can fail to terminate for two reasons: an infinite loop or the execution of an illegal operation such as dividing by zero. With parallel programs there is an additional possibility: the program can be blocked. (It is even possible that a program can be blocked for one computation and loop infinitely for another.) But if a program cannot be blocked, termination can be proved just as it would be for a sequential program.

One approach to proving termination is to show that each statement terminates provided that its primary components terminate. We will not attempt to present general rules for doing this, but will give sufficient conditions for proving that a parallel statement terminates. For similar conditions for sequential statements see Manna [Ma74].

5.22. Definition: \(T \) terminates conditionally if it can be proved to terminate under the assumption that it does not become blocked.

5.23 Theorem: If \(T \) is a \texttt{cobegin} statement in a GPL or RPL program \(S \) which cannot be blocked, and \(T \) is not a component of another parallel statement, \(T \) terminates if each of its primary components terminates conditionally.
Proof: Suppose T does not terminate. None of its processes can loop indefinitely, so after a finite time each one either finishes or is blocked. At that point T is blocked, and since it is not a proper component of a parallel statement, S is also blocked. Since this is impossible, T must terminate.

Example: Consider the producer and consumer program in Figure 4.5. We have already proved that it cannot be blocked, so we need only show that the producer and consumer processes terminate conditionally. Assuming that the operations required to compute $g(A[i])$ do not stop execution, the producer must either become blocked or perform M iterations of the loop and terminate. So the producer process terminates conditionally, and the consumer process is similar. By Theorem 5.23 the statement par f g, and thus program fg3, must terminate.

Note that in this example the producer can be blocked at "add" when count=N. However, it cannot be blocked there forever, since the consumer is not blocked and will eventually remove a unit from the buffer. In general conditional termination implies termination if a process can only be blocked temporarily, as is the case here.

This concludes the discussion of correctness proofs which include properties besides partial correctness. There are many other properties which could be considered: priority assignments, progress for each process, blocking of some subset of the processes in a program, etc. Many of these properties are difficult to define in a uniform
in Chapter 2, in connection with the rule of consequence). This consistency implies that if \(P \models Q \) and \(P \) is true, then \(Q \) is also true.

Proof of 1): Induction on the structure of \(S' \). If \(S' \) is an assign, null or while statement, \(S' = T \) and 1) is true by assumption. If \(S' = \text{begin} \ldots S_n \text{end} \), a must finish \(S_n \), and by induction post(\(S_n \)) is true after \(a \). Since post(\(S_n \)) \models post(\(S' \)), post(\(S' \)) is true after \(a \). If \(S' \) is \(\text{if B then } S_1 \text{ else } S_2 \), a finishes either \(S_1 \) or \(S_2 \). In either case, post(\(S_1 \)) is true after \(a \), and post(\(S_1 \)) \models post(\(S' \)), so post(\(S' \)) is true after \(a \).

Proof of 2): By Lemma 6.2, \(S' = \text{successor}(T) \). Considering Definition 6.1, either \(S' = \text{while B do } T' \), or \(S' \) follows \(T' \) in a sequence of statements. In either case, \(a \) finishes \(T' \), making post(\(T' \)) true after \(a \), and post(\(T' \)) \models pre(\(S' \)). Thus, pre(\(S' \)) is true after \(a \).

6.4 (2.15) Theorem: If pre and post are assertion functions for
(P) \(S \{Q\} \), \(S' \) a component of \(S \), and \(a \) a computation for \(S \) from a state \(s_0 \) satisfying pre(\(S \)), then 1) if \(S' \) is ready to execute after \(a \), pre(\(S' \)) is true after \(a \); and 2) if \(a \) finishes \(S' \), post(\(S' \)) is true after \(a \).

Proof: Use induction on the length of \(a \). If \(a \) is empty, 1) is satisfied because \(S \) is current initially and pre(\(S \))[\(s_0 \)] = true. 2) does not apply.

If \(a = a'T \) consider the cases for \(T \).

a) \(T \) is \(x:=E \). Then \(a'T \) finishes \(T \).
 \[
 \text{pre}(T)[\text{value}(s_0, a')] = \text{true} \quad \text{by induction}
 \]
post(T)_{E}[\text{value}(s_0,a')] = \text{true} \text{ since } \text{pre}(T) \vdash \text{post}(T)_{E}

post(T)[\text{value}(s_0,a')] = \text{true}, \text{ since executing } x:=E \text{ assigns the value of } E \text{ to } x.

By Lemma 6.3, 1) and 2) are satisfied.

b) T = \text{null}. By induction \text{pre}(T)[\text{value}(s_0,a')] = \text{true}. Now \text{pre}(T) \vdash \text{post}(T), \text{ and } T \text{ does not change any variables, so } \text{post}(T)[\text{value}(s_0,a')] = \text{true}. Applying Lemma 6.3 shows that 1) and 2) are satisfied.

c) T is \text{begin } T_1; \ldots; T_n \text{ end}. T \text{ is current after } a', \text{ so by induction } \text{pre}(T)[\text{value}(s_0,a')] = \text{true}. \text{ Then, } \text{pre}(T)[\text{value}(s_0,a)] = \text{true}, \text{ since } T \text{ does not change any variables, and } \text{pre}(T_i)[\text{value}(s_0,a)] = \text{true}, \text{ since } \text{pre}(T) \vdash \text{pre}(T_i). \text{ Thus 1) is satisfied, and 2) does not apply.}

d) T is \text{if } B \text{ then } T_1 \text{ else } T_2. \text{ By induction } \text{pre}(T)[\text{value}(s_0,a')] = \text{true}. \text{ If } B[\text{value}(s_0,a')] = \text{true}, T_1 \text{ is current after } a'T. \text{ Also, } (\text{pre}(T) \land B)[\text{value}(s_0,a'T)] = \text{true}, \text{ giving } \text{pre}(T_1)[\text{value}(s_0,a)] = \text{true}. \text{ If } \neg B[\text{value}(s_0,a')] = \text{true}, T_2 \text{ is current after } a'T \text{ and } \text{pre}(T_2)[\text{value}(s_0,a)] = \text{true}. \text{ Thus 1) holds and 2) does not apply.}

e) T is \text{while } B \text{ do } T_1 \text{ and } B[\text{value}(s_0,a')] = \text{true}. \text{ This is handled in the same way as case d).}

f) T is \text{while } B \text{ do } T_1 \text{ and } B[\text{value}(s_0,a')] = \text{false}. \text{ Then } a = a'T \text{ finishes } T, \text{ and } \text{post}(T)[\text{value}(s_0,a)] = \text{true} \text{ since } (\text{pre}(T) \land \neg B) \vdash \text{post}(T). \text{ Then by Lemma 6.3, 1) and 2) are satisfied.}
system for RPL. We will show that the axioms and inference rules given so far are complete in a special sense defined by Cook.

In this section we will give proofs for Theorems 2.15, 3.15, and 4.18, thus establishing the consistency of the deductive systems and the interpreters for SL, GPL, and RPL. The proofs follow the same pattern in all three cases.

Sequential Language.

The proof of Theorem 2.15 (and also of the other consistency theorems) requires a rather tedious analysis of computations and program states. A few preliminary definitions and lemmas are necessary. The following definition gives a characterization of successor(S), the statement which is next to be executed after S finishes.

6.1. Definition: If S' is a component of an SL program S and a primary component of the statement T, then

\[
\text{successor}(S') = T \quad \text{if } T = \textbf{while} \ B \ \textbf{do} \ S'
\]

= T' \quad \text{if } T = \begin{array}{c} \textbf{begin} \ldots \ S'; T' \ldots \end{array}

= \text{successor}(T) \quad \text{if } T = \begin{array}{c} \textbf{if} \ B \ \textbf{then} \ S' \ \textbf{else} \ T' \\
\quad \text{if } B \ \textbf{then} \ T' \ \textbf{else} \ S'
\end{array} \begin{array}{c} \textbf{begin} \ldots \ S' \ \textbf{end} \end{array}

If S' = S, i.e., S' is not a primary component of any T, S has no successor.
6.2. Lemma: If \(\alpha \) is a computation for an SL program \(S \), and \(\alpha \)
finishes \(S' \), then \(\text{successor}(S') \) is current after \(\alpha \).

Proof: This amounts to showing that program flow in the interpreter
follows the usual pattern. Use structural induction, starting with
\(S' = S \). In this case, \(\alpha \) executes \(S \), and no statement is current
after \(\alpha \), just as \(S \) has no successor.

Now if \(S' \) is a primary component of some statement \(T \), consider
the cases in the definition of \(\text{successor}(S') \). In the first two
cases, \(\text{next}(s,T) \) creates a control tree in which \(S' \) is a son of
\(\text{successor}(S') \). Thus, when \(S' \) is finished, \(\text{successor}(S') \) is a leaf
in the control tree and is current. In the last case, when \(\alpha \) finishes
\(S' \) it finishes \(T \), and by induction \(\text{successor}(S') = \text{successor}(T) \)
is current after \(\alpha \).

The next lemma will be used to show that \(\text{pre}(S) \) and \(\text{post}(S) \) hold
at appropriate times during program execution.

6.3. Lemma: Suppose \(\text{pre} \) and \(\text{post} \) are assertion functions for \(\{P \} S \{Q\} \),
and \(T \) is an assign, null, or while statement in \(S \). If \(\alpha \) is a
computation for \(S \) which finishes \(T \), and \(\text{post}(T) \) is true after \(\alpha \),
then

1) if \(\alpha \) finishes \(S' \), \(\text{post}(S') \) is true after \(\alpha \);

2) if \(S' \) is current after \(\alpha \), \(\text{pre}(S') \) is true after \(\alpha \).

Proof: The proof of this lemma relies on the consistency of the
deductive system for the data types of the program (this was discussed
6.10. (3.15) Theorem: If S is a GPL program with assertion functions pre and $post$ for $(P) S (Q)$, S' is a component of S and a a computation for S from s_0 with $P[s_0]$=true, then

1) if S' is current after a, $pre(S')$ holds after a;

2) if a finishes S', $post(S')$ holds after a.

Proof: By induction on the length of a. If a is empty, $pre(S)[value(s_0,a)]=pre(S)[s_0]=true$ by assumption, and no other statement is current after a. Also a does not finish any statement, so 2) does not apply. If $a=a'T$, there are two cases to consider.

Case 1: S' and T are from the same process. This is just the same as the sequential problem. It is only necessary to consider the two new cases of T.

g) $T = codbegin T_1 //...// T_n coend$. Then each T_i is current after $a'T$, and since $pre(T) \vdash (a_i \pre(T_i))$, $pre(T_i)[value(s_0,a)]$=true. This makes 1) hold, and 2) does not apply.

h) T is $await B$ then T_1. By induction and the fact that T is ready to execute after a', $(pre(T) \ A \ B)[value(s_0,a')]=true$, and $pre(T_1)[value(s_0,a')]=true$, since $pre(T) \ A \ B \vdash pre(T_1)$. Now $value(s_0,a'T)\execute(value(s_0,a), T_1)$, and by Corollary 6.6, $post(T_1)[value(s_0,a)]=true$. But then $post(T)[value(s_0,a)]=true$, since $post(T_1) \vdash post(T)$. Applying Lemma 6.9 shows that 1) and 2) hold.

Case 2: S' and T are from different processes. Note that if S' is current after $a'T$, S' is current for a' and by induction
pre(S') [value(s₀, a')] = true. If T is a null, if, begin, while, or parallel statement, the variables have the same value in a'T as in a', so pre(S') [value(s₀, a')] = true. If T is an assignment or await statement, (pre(T) \& pre(S')) T (pre(S')) can be proved (this is the interference-free property). Now by induction, (pre(T) \& pre(S')) [value(s₀, a')] = true, so pre(S') [value(s₀, a'T)] = true.

If a'T finishes S', a' also finishes S', and by induction post(S') [value(s₀, a')] = true. Once again the interference-free property guarantees that post(S') [value(s₀, a'T)] = true. Thus 1) and 2) hold in case 2.

6.11. (3.16) Corollary (consistency of A0-A7 for GPL): If S is a GPL program and {P} S {Q} can be proved, it is true in the interpretive model.

Proof: In Chapter 3.

6.12. (3.26) Theorem (consistency of A8 for GPL): If S' is a GPL program and S is a reduction of S' which satisfies the auxiliary variable rule, then {P} S {Q} is true in the model.

Proof: In Chapter 3.

The Restricted Parallel Language.

Consistency for the RPL deductive system can be proved in much the same way as for GPL.
6.5. (2.16) Corollary: If \(\{P\} S \{Q\} \) can be proved, it is true in the interpretive model.

Proof: Given in Chapter 2. This is the basic consistency result for sequential programs.

The following corollary will be useful in the discussion of GPL programs.

6.6. Corollary: If \(S' \) is current in program state \(s \), and \(\text{pre}(S')[s]\) = true, then \(\text{post}(S')\{\text{execute}(s,S')\}\) = true.

Proof: Recall from Definition 2.13 that \(\text{execute}(s,S')\) = \(\text{value}(s,a) \), where \(a \) executes \(S' \). Applying Corollary 6.5 yields \(\text{post}(S') \) \[\text{value}(s,a) \] = true.

The General Parallel Language.

Next, we prove the consistency of the deductive system for GPL. The first step is to generalize the definitions and lemmas of the last section to include await and parallel statements.

6.7. Definition: If \(S' \) is a component of a GPL program \(S \), and a primary component of \(T \),

\[
\text{successor}(S') = \text{successor}(T) \text{ if } T = \text{await } B \text{ then } S' \text{ or cohegin... //S'/... coend}
\]

\[
= \text{successor}(S') \text{ from Definition 6.1 otherwise.}
\]
6.8. **Lemma:** If α is a computation for a GPL program S, α finishes S', and a statement from the same process as S' is current after α, then that statement is successor(S').

Proof: Essentially the same as Lemma 6.2. There are two new cases for T, where S' is a primary component of T. If T is a parallel statement, finishing S' will not necessarily finish T, since other processes of T may still be in execution. In this case, however, no statement from the same process as S' is current. If α finishes T, by induction successor(T) = successor(S) is current in α.

If T is `await B` then S', the interpreter executes T indivisibly, and S' never appears in a computation. So this case does not occur.

6.9. **Lemma:** Suppose pre and post are assertion functions for
(P) S (Q), and α is a computation for S which finishes T, where T is an assign, null, while, or await statement. If post(T) holds after α, and S' and T are from the same process, then

1) if α finishes S', post(S') is true after α.
2) if S' is current after α, pre(S') is true after α.

Proof: 1) The same as Lemma 6.3, with two new cases for S'. If S' = `await ...`, then S' = T and l) is true. If S' = `cobegin S_i // ... // S_n coend` and α finishes S', α finishes each S_i. By induction, (A post(S_i)) is true after α, and since (A post(S_i)) ⊢ post(S'), post(S') is true after α.

2) Same as Lemma 6.3.
Also B[value(s₀,a')]=true, and by induction pre(T)[value(s₀,a')]=true.

Then pre(T₁)[value(s₀,a)]=true, since (pre(T) ∧ A ∧ I(r)) ⊢ pre(T₁)

and starting T does not modify any variable values. So 1) holds,

and 2) does not apply.

Case 2: S' and T are from different processes. Note that if S'
is current for a'T (or a'T finishes S'), S' is current for a'
(or a' finishes S') and by induction pre(S')[value(s₀,a')]=true
(or post(S')[value(s₀,a')]=true). By Lemma 4.14, T does not
change a variable in Proof-var(S'), so pre(S')[value(s₀,a)]=true
(or post(S')[value(s₀,a)]=true).

Finally, we must show that 3) holds. Let T' be the parallel
statement in which r was declared. If T' is not in execution for
a'T, 3) does not apply, so assume T' is in execution for a'T. If
T' is current for a', pre(T')[value(s₀,a)]=true and I(r).
[value(s₀,a)]=true since pre(T') ⊢ I(r). If not, T' is in
execution for a', and by induction, 3) is satisfied for a'. There
are two ways in which a'T could fail to satisfy 3).

a) T changes a variable which is free in I(r). But in this case r
is busy in a'T, so I(r) does not have to be true.

b) a'T finishes a critical section for r, i.e., T makes r not
busy. But then from case 1 above, I(r)[value(s₀,a)]=true.

6.17. (4.20) Corollary (consistency for RPL): If S is an RPL program
and (P) S (Q) can be proved, it is true in the interpretive model.
Proof: In Chapter 4.

The consistency results of this section imply that if \((P) S (Q) \) can be proved, it is true for the interpreter. If the interpreter is a good model of parallel execution on a real machine, then the deductive system is also valid for real machines.

There are several ways in which a real implementation might differ from the interpreter. The most fundamental is that the interpreter does not allow true parallel execution, but simulates it by nondeterminism. In this respect it is a model of multiprogramming, but not of multiprocession. In Chapter 3 and 4 we have argued that the languages GPL and RPL are defined in a way which guarantees that nondeterminism and parallelism give the same results for all programs.

A second possible difference is in the treatment of expressions which are normally considered to be undefined, such as those involving division by zero; this was discussed in Chapter 2. The interpreter gives these expressions an arbitrary value, but it would also be reasonable to stop execution as soon as such an expression was encountered. The axioms and inference rules are also consistent with this treatment of the problem, since any formula \((P) S (Q) \) is true if \(S \) does not terminate.

A third area in which a particular implementation might differ from the interpreter is by specifying in more detail the way parallel processes are scheduled. For example, processes which are competing for a resource might be guaranteed to receive it on a first-come, first-
6.13. Definition: If S' is a component of an RPL program S, and a primary component of T,

\[\text{successor}(S') = \text{successor}(T) \text{ if } T \text{ is resource } r_1, \ldots, r_m : \]
\[\text{cobegin} \ldots //S'// \ldots \text{ coend} \]
\[\text{or with } r \text{ when } B \text{ do } S' \]

\[= \text{successor}(S') \text{ from Definition 6.1 otherwise.} \]

6.14. Lemma: If α is a computation for a GPL program S which finishes S', and a statement from the same process as S' is current after α, then that statement is $\text{successor}(S')$.

Proof: As in Lemma 6.8, consider the cases for T, where S' is a primary component of T. If T is one of the five sequential statements, or a cobegin statement, the proof is the same as Lemma 6.8. If T is $\text{with } r \text{ when } B \text{ do } S'$, α finishes S', and by induction $\text{successor}(S') = \text{successor}(T)$ is current after α.

6.15. Lemma: Suppose pre, post, and I are assertion functions for (P) S (Q) and T is an assignment, null, or while statement in S. If $\alpha = \alpha'T$ is a computation for S which finishes T, and $\text{post}(T)$ holds after α, then

1) if α finishes S', $\text{post}(S')$ holds after α;

2) if S' is current after α, $\text{pre}(S')$ holds after α.

Proof: 1) Consider the cases for S'. If S' is assign, null, while, begin, if, or cobegin the argument is the same as for Lemma 6.9.
If \(S' \) is \textbf{with} \textbf{when} \(B \) do \(S_1 \), \(a \) finishes \(S_1 \), and by induction \(\text{post}(S'_1) \) holds after \(a \). Since \(\text{post}(S'_1) \models \text{post}(S') \), \(\text{post}(S') \) holds after \(a \).

2) Same as for Lemma 6.9.

6.16. (4.18) Theorem: Suppose \(S \) is an RPL program, and \(\text{pre} \), \(\text{post} \), and \(I \) are assertion functions for \((P) \) S (Q). If \(a \) is a computation for \(S \) from state \(s_0 \) with \(P[s_0]=\text{true} \), then

1) if \(S' \) is current after \(a \), \(\text{pre}(S') \) holds after \(a \);

2) if \(a \) finishes \(S' \), \(\text{post}(S') \) holds after \(a \);

3) if resource \(r \) is declared in a statement which is in execution for \(a \), and \(r \) is not busy for \(a \), \(I(r) \) holds after \(a \).

\textbf{Proof:} By induction on the length of \(a \).

If \(a \) is empty, \(\text{pre}(S)[\text{value}(s_0,a)]=\text{true} \) by assumption, and no other statement is current in \(a \), so 1) holds. \(a \) does not finish any statements, so 2) does not apply. If 3) applies, \(S \) must be a parallel statement in which \(r \) is declared, and 3) holds because \(\text{pre}(S) \models I(r) \).

If \(a = a'T \), we first show that 1) and 2) are satisfied. Consider two cases:

\textbf{Case 1:} \(S' \) and \(T \) are from the same process. This is the same as case 1 of Theorem 6.10 if \(T \) is \texttt{cobegin} or one of the five sequential statements. The other possibility is that \(T \) is \texttt{with} \texttt{when} \(B \) do \(T' \). After \(a \), \(T' \) is current. Since \(T \) is ready to execute after \(a' \), \(r \) is not busy for \(a' \), and by induction \(I(r)[\text{value}(s_0,a')]=\text{true} \).
for GPL and SL are also relatively complete, but that will not be proved here.) As a first step we prove relative completeness for programs in a language which contains the natural numbers with \(<\), \(=\), \(+\), and \(||\) (concatenation, to be defined shortly). The language 1. used for assertions in a program proof will be the first-order predicate calculus language whose nonlogical symbols are \(\langle\), \(=\), \(+\), \(||\), \(0\), \(1\), \(...\)

Concatenation is an operation which is useful for representing sequences of natural numbers: it is included in the programming language operations because it will be necessary to introduce auxiliary variables which store sequences.

6.18. Definition: The operation of concatenation, written \(x||y\), is defined by

\[
x||y = 10x + 2, \text{ if } y = 0
= (10x + 1)||y-1, \text{ otherwise}
\]

A finite sequence \(n_1, n_2, \ldots, n_k\) can be represented by the integer \((...((0||n_1)||n_2)...)||n_k\). Here each number \(n_i\) in the sequence is represented as \(n_i\) 1's followed by a 2. For example, the sequence 2, 0, 4 is expressed as

\(((0||2)||0)||4 = 112211112\).

Note that 0 represents the null sequence.

6.19. Theorem (Relative completeness of RPL): Let \(T\) be a program in a version of RPL whose data domain is the natural numbers with \(<\), \(=\), \(+\), and \(||\).
Let D' be a complete proof system for the natural numbers (D' will not be effective). Then if $\{P\} T \{Q\}$ is true in the interpretive model, it can be proved using D' and $A0$-$A8$.

Proof: Sections 6.2.1-6.2.3 are devoted to a proof of this theorem for the case in which T contains at most one `cobegin` statement. If T contains more than one `cobegin` the principle is the same, although the details are more complicated. The approach used in the proof is outlined below:

6.2.1. Construct a program T' by adding auxiliary variables to T.
 Show that $\{P\} T' \{Q\}$ is true in the interpretive model.

6.2.2. Define pre, $post$, and I for T'.

6.2.3. Show that pre, $post$, and I are assertion functions for $\{P\} T' \{Q\}$, which implies that $\{P\} T \{Q\}$ can be proved.
 Then $A8$ can be applied to remove auxiliary variables, giving a proof of $\{P\} T \{Q\}$.

The crux of the proof is defining assertion functions $pre(S)$, $post(S)$, and $I(r)$ which depend only on the variables in $Proof-var(S)$ and $Proof-var(r)$, respectively. In program T, which contains a single `cobegin` statement T_0

$\begin{align*}
L_0: & \text{ resource } r_1, \ldots, r_M: \text{ cobegin } L_1: T_1 // \ldots // L_N: T_N \text{ coend}
\end{align*}$

$Proof-var(r_j) = \{x: x \text{ is not assigned a value in } T_0 \text{ except in a withwhen statement for } r_j\}$

$Proof-var(S) = \{\text{variables of } T\} \text{ if } S \text{ is not a proper component of } T_0$
served basis. Such an implementation is consistent with the interpreter, so it is also consistent with the axioms and inference rules.

All of this suggests that the deductive system accurately describes the behavior of parallel programs when executed on a real machine. To prove that this is true for any particular machine requires a proof that the implementation of the language on that machine is correct with respect to the semantics defined by the interpreter. Such a proof would be a major undertaking, but a similar result has been obtained for the implementation of a sequential language [Mi72].

6.2. Completeness.

The last section established the consistency of the deductive system and the interpreter; now we would like to show that the deductive system is also complete with respect to the interpreter. Unfortunately we cannot hope to do this in general, as the following example shows.

If the programming language SL operates on data types which include the natural numbers and the standard operations on them, it can be used to encode a Turing machine. Let \(S \) be a program which encodes a Turing machine that does not halt on any input; then \(S \) does not terminate from any initial state. For such a program \((\text{true}) \ S \ (\text{false}) \) is trivially true. The set of Turing machines which do not halt on any input is not recursively enumerable, but the set of provable formulas is, so in general \((\text{true}) \ S \ (\text{false}) \) cannot be proved.

Although the deductive system cannot be complete for any programming language which includes the integers, this does not necessarily mean
that the axioms and inference rules are inadequate for describing the programming language. Part of the problem is the fact that there is no complete first-order deductive system for the natural numbers. Recall the form of A0 (the rule of consequence).

\[\begin{align*}
A0: & \quad (P') S (Q'), \; P \vdash P', \; Q' \vdash Q \\
& \quad (P) S (Q)
\end{align*} \]

In order to use this rule, it is necessary to prove \(P' \) from \(P \) and \(Q \) from \(Q' \), using some deductive system \(D \) for the data types of the programming language. When we presented A0 in Chapter 2, we made no assumptions about the choice of \(D \) except that it is consistent with the data types of the language. \(D \) cannot be complete if the data types include the natural numbers, by the Gödel incompleteness theorem, so the incompleteness of the deductive system for programming languages is not surprising. Now suppose \(D' \) is some complete proof system for the data types of the language (in general \(D' \) will not be effective). If using \(D' \) in A0 yields a complete proof system for the programming language, we will say that the original deductive system is relatively complete. Relative completeness suggests that the axioms and inference rules give "enough" information about program execution, and that the incompleteness of the deductive system is due to the incompleteness of \(D \). This approach is due to Cook [Co75], who used it to prove the relative completeness of a deductive system for a sequential language.

In this chapter we give a proof of the relative completeness of A0-A8 for RPL programs with a wide class of data domains. (The rules
precedes B1, or B1 precedes A1, or their execution overlaps. The same is true for A2 and B2, so the 6 possibilities in Figure 6.1 represent all of the interesting cases.

In order to prove \((true) \text{ AorB'(Afirst=1 V Bfirst=1)}\), it is necessary to add auxiliary variables to AorB. Figure 6.2 shows the augmented program AorB' and Figure 6.3 gives the final variable values for the six computations of Figure 6.1. Note that the final values of the variables Altime, A2time, B1time, B2time make it possible to reconstruct the order in which statements were executed. The rule is that if xtime<yt time, statement x was executed before statement y. If xtime=yt time, the two statements were executed at about the same time, with the exact order irrelevant. In the first computation, for example, we can tell that A1 was the first statement executed, and it was followed by A2, B1, and B2 in that order. For the second computation, the final values show that A1 was executed before A2 and B2, and that B1 preceded A2 and B2. We cannot tell whether or not A1 preceded B1, or A2 preceded B2, but this is unimportant because the final variable values are the same in any case.

Figure 6.4 gives some assertions for \((true) \text{ AorB'(Afirst=1 V Bfirst=1)}\). The reader can verify that they are correct. This is quite straightforward except for showing that \((\text{post(A) A post(B) A I(r1) A I(r2)) \models (Afirst=1 V Bfirst=1)}\). To verify this, assume \((\text{post(A) A post(B) A I(r1) A I(r2))}\). This implies:

1. A2time>Altime A B2time>B1time
2. Altime>B2time A B1time>A2time
AorB': begin
 Atime:=Btime:=r1time:=r2time:=0;
 Atime:=A2time:=B1time:=B2time:=0;
 doneA1:=doneB1:=0;
 resource r1(doneA1, r1time), r2(doneB1, r2time):
 cobegin
 A: begin
 A1: with r1 do
 begin
 Atime:=1+max(Atime, r1time);
 Atime:=r1time:=Atime;
 doneA1:=1
 end
 A2: with r2 do
 begin
 A2time:=1+max(Atime, r2time);
 Atime:=r2time:=A2time;
 Bfirst:=doneB1
 end
 end
 //
 B: begin
 B1: with r2 do
 begin
 B1time:=1+max(Btime, r2time);
 Btime:=r2time:=B1time;
 doneB1:=1
 end
 B2: with r1 do
 begin
 B2time:=1+max(Btime, r1time);
 Btime:=r1time:=B2time;
 Afirst:=doneA1
 end
 end
end

Figure 6.2. Program AorB'.
\[
\text{Proof-Var}(T_k) = \{x: \text{no statement of } T_j, \ j \neq k, \text{ assigns a value to } x\}
\]
\[
\text{Proof-Var}(S) = \text{Proof-Var}(T_k) \cup \left(\bigcup_{S \text{ a proper component of a when for } r} \text{Proof-Var}(r) \right)
\]

The details of the proof depend heavily on the operation of the RPL interpreter, and the reader may wish to review Section 4.2, especially Definition 4.4 to 4.10.

Section 6.2.4 considers the implications of the relative completeness theorem, and shows how it can be broadened to apply to the standard programming language data types.

6.2.1. The Program T*

In this section we will define a program T* by adding auxiliary variables to T. Before describing the general construction for T*, however, we present a simple example which illustrates the techniques involved.

An Example -- The Program AorB.

Consider the program AorB in Figure 6.1. For this program (true) AorB \((A\text{first}=1 \lor B\text{first}=1)\) is true in the interpretive model, because any computation must execute A1 before B2, setting A\text{first}=1, or B1 before A2, setting B\text{first}=1. This is illustrated in Figure 6.1 by listing several computations and the final variables values in each case. Note that not all computations are included, since A1 and B1, as well as A2 and B2, can be executed in parallel. Since A1 and B1 have no variables in common, the results are the same whether A1
AorB: begin doneA1:=doneB1:=0;

resource r1(doneA1), r2(doneB1): cobegin

A: begin
A1: with r1 do doneA1:=1;
A2: with r2 do Bfirst:=doneB1;
end

//

B: begin
B1: with r2 do doneB1:=1;
B2: with r1 do Afirst:=doneA1;
end

coend
end

<table>
<thead>
<tr>
<th>Computation</th>
<th>Afirst</th>
<th>Bfirst</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. A1 A2 B1 B2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2. A1 B1 A2 B2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3. A1 B1 B2 A2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4. B1 A1 A2 B2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5. B1 A1 B2 A2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6. B1 B2 A1 A2</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Figure 6.1. Program AorB and Several Computations.
3. \(B2time \rightarrow Atime \Rightarrow Afirst = 1 \)

4. \(A2time \rightarrow Btime \Rightarrow Bfirst = 1 \)

Assume \(Afirst \neq 1 \). Then from 3 and 2, \(Atime \rightarrow B2time \); from 1, \(A2time \rightarrow Btime \); and from 4, \(Bfirst = 1 \). Thus,

\[
(post(A) A post(B) A I(r1) A I(r2)) \models (Afirst = 1 V Bfirst = 1).
\]

The use of variables in the proof is legitimate, since

Proof-var(A) = \{doneA1, Bfirst, Atime, Atime, A2time\)

Proof-var(B) = \{doneB1, Afirst, Btime, Btime, B2time\)

Proof-var(r1) = \{doneA1, Afirst, r1time, Atime, B2time\)

Proof-var(r2) = \{doneB1, Bfirst, r2time, Btime, A2time\)

The auxiliary variables \(Atime \ldots B2time \) are particularly useful because each belongs to the proof-variables of a process and a resource. Thus \(Atime \), for example, can be used in pre and post assertions for statements in process \(A \), as well as in \(I(r1) \). Since the "time" variables encode enough information to determine the order of statement execution, they make it possible to prove that if \(A1 \) did not precede \(B2 \), \(B1 \) must have preceded \(A2 \).

The Definition of \(T^* \).

The construction of an augmented program \(T^* \) for an arbitrary program \(T \) containing at most one \(cobegin \) statement is accomplished by adding two kinds of auxiliary variables to \(T \). The first type are "time" variables, like those in \(AorB \); the second are "history" variables, used to record the values of program variables at key points during program execution.
6.20. Definition: Recall that program T of Theorem 6.19 has at most one `cobegin` statement $T_0 =$

\[
L_0: \text{resource } r_1, \ldots, r_M; \text{cobegin } L_1: T_1 // \ldots// L_N: T_N \text{ coend}
\]

Let S be any component of T. Then

\[
\text{resources}(S) = \{ r_j : S \text{ is a proper component of a } \text{within} \text{ statement for } r_j \}
\]

\[
\text{var}(S) = \{ \text{variables of } T \}, \text{ if } S \text{ is not a proper component of } T_0
\]

\[
= \{ x : x \text{ does not appear on the left side of an assignment statement in } T_i, \quad i \neq k \}, \text{ if } S = T_k
\]

\[
= \text{var}(T_k) \cup \left(\bigcup_{r \in \text{resources}(S)} r \right), \text{ if } S \text{ is a proper component of } T_k
\]

Note that $\text{var}(S)$ is the set of variables which may legally be used in S, according to Definition 4.3.

6.21. Definition: The auxiliary variables to be added to the program T of Theorem 6.19 are defined as follows. If T contains no parallel statement then T requires no auxiliary variables. If T contains the parallel statement $T_0 =$

\[
L_0: \text{resource } r_1, \ldots, r_M; \text{cobegin } L_1: T_1 // \ldots// L_N: T_N \text{ coend}
\]

the auxiliary variables are:
<table>
<thead>
<tr>
<th>Computation</th>
<th>Afirst</th>
<th>Bfirst</th>
<th>Atltime</th>
<th>A2time</th>
<th>Bltime</th>
<th>B2time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. A1 A2 B1 B2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>2. A1 B1 A2 B2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3. A1 B1 B2 A2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>4. B1 A1 A2 B2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5. B1 A1 B2 A2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>6. B1 B2 A1 A2</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Figure 6.3. Final Values for Computations of AorB'.
(true) begin
Atime:=Btime:=r1time:=r2time:=Alt ime:=A2time:=B1time:=B2time:=0;
doneA1:=doneB1:=0;
(all variables have the value 0)
resource r1(doneA1,r1time), r2(doneB1,r2time): cobegin
 A: {Atime=A2time=Atime>0}
 begin A1: with r1 do
 begin A1time:=1+max(Atime,r1time);
 Atime:=r1time:=Atime;
 doneA1:=1
 end
 {A2time=0 A Atime=Atime>0}
 A2: with r2 do
 begin A2time:=1+max(Atime,r2time);
 Atime:=r2time:=A2time;
 Bfirst:=doneB1;
 end
 {A2time=Atime=Atime>0}
 end
 {A2time=Atime>0}
end
{A2time=Atime>0}
//
{B1time=B2time=Btime=0} B {B2time>Btime>0}
(processes A and B are symmetric)
coend
{Afirst=1 V Bfirst=1}
end
{Afirst=1 V Bfirst=1}

I(r1) = { (Atime>0 = doneA1=1) A (r1time=Alt ime A r1time>B2time) A
(Alt ime=B2time = both are 0) A (B2time>Atime=0 = Afirst=1) }
I(r2) = { (Bltime>0 = doneB1=1) A (r2time=B1time A r2time=A2time)
(A2time=B1time = both are 0) A (A2time>B1time=0 = Bfirst=1) }

Figure 6.4. Informal Proof of (true)AorB'(Afirst=1 V Bfirst=1).
clear as the proof proceeds. For now, note that part of their usefulness stems from the variety of assertions in which they can appear:

L_0 initial x belongs to $\text{Proof-var}(L_k)$, $1 \leq k \leq N$, and $\text{Proof-var}(r_j)$, $1 \leq j \leq M$, since it is not modified at all inside the `cobegin
statement T_0.

L history x, where L is a `withwhen` statement for resource r_j in process T_k, belongs to $\text{Proof-var}(T_k)$ and $\text{Proof-var}(r_j)$ since it is changed only inside the statement L.

The variables added in creating $T*$ are auxiliary variables, as they satisfy Definition 3.17. This means that $(P) T (Q)$ can be proved by first proving $(P) T* (Q)$ and then using A to remove the added statements. The following theorem shows that $(P) T* (Q)$ is true for the interpretive model.

6.23. Theorem: Let AV be an auxiliary variable set for an RPL program S', S be a reduction of S' with respect to AV, and P' and Q' be assertions which do not contain free any variables from AV. Then if $(P') S (Q')$ is true for the interpreter, so is $(P') S' (Q')$.

Proof: This is the converse of Theorem 4.19, and the proof is very similar. We must show that if $P'[s_0]=\text{true}$ and α' executes S' then $Q'[\text{value}(s_0, \alpha')]=\text{true}$. Given α' which executes S', let α be a computation for S which is like α' except that the statement removed from S' is removed from α'. Now α and α' have the same flow of control and the same effect on the variables in P' and Q'
(see Lemma 3.19). Then $P'(s_0) = \text{true} \Rightarrow Q'([\text{value}(s_0, a)]) = \text{true}$ (because $P'(S' Q')$ is true in the model), and thus $Q'([\text{value}(s_0, a')]) = \text{true}$.

So $(P') S (Q')$ is true in the interpretive model.

6.24. **Corollary**: $(P) T (Q)$ is true in the interpretive model.

Proof: $(P) T (Q)$ is true for the interpreter, and T can be obtained from T^* by repeated reduction steps.

6.2.2. The Functions pre, post, and I for T^*.

Having constructed the program T^*, our next step will be to define assertion functions for $(P) T (Q)$. First let us consider a statement S which is not a proper component of the cobegin statement.

6.25. **Definition**: Let S be a component of T^*, but not a proper component of a cobegin statement. The predicates $\text{pre}'(S)$ and $\text{post}'(S)$ defined on program states are

$$\text{pre}'(S)(s) \equiv \exists a \text{ a program state } s_0 \text{ and a computation } a \text{ for } T^* \text{ such that } P[s_0] = \text{true} \text{ and } S \text{ is current after } a \text{ and } x[s] = x([\text{value}(s_0, a)]) \forall x.$$

$$\text{post}'(S)(s) \equiv \exists a \text{ a program state } s_0 \text{ and a computation } a \text{ for } T^* \text{ such that } P[s_0] = \text{true} \text{ and } a \text{ finishes } S \text{ and } x[s] = x([\text{value}(s_0, a)]) \forall x.$$

Informally, $\text{pre}'(S)(s)$ is true iff it is possible to start T^* with P true and reach S with variables as given by state s.
1. \(L_{1 \text{time}}, \ldots, L_{N \text{time}} \) - used like \(A_{\text{time}} \) and \(B_{\text{time}} \) in the program Aoră'

2. \(r_{1 \text{time}}, \ldots, r_{j \text{time}} \) - used like \(r_{1 \text{time}} \) and \(r_{2 \text{time}} \) in Aoră'

3. for each variable \(x \) in \(T \), \(L_{0 \text{initial}} x \) - records the value of \(x \) at the beginning of statement \(L_0 \)

4. for each statement in process \(T_k \) with the form \(L: \text{with} r_j \text{when} B \text{do} S_j \), and each variables \(x \in \text{var}(S_j) \cup (L_{k \text{time}}, r_j \text{time}) \), \(L_{\text{history}} x \) - records the sequence of values of \(x \) at the beginning of each execution of \(L \).

Of course it is assumed that none of these variables occur in the original program. If this is not true, some variables must be renamed.

6.22. Definition: The program \(T_\ast \) required in the proof of (P) T (Q) is obtained by adding auxiliary variables to \(T \) as described below:

1. if \(T \) contains no \texttt{cobegin} statement, \(T=\ast T \)

2. otherwise replace the \texttt{cobegin} statement

\[
L_0: \text{resource } r_1, \ldots, r_N; \text{cobegin } L_1: T_1 // \ldots // L_N: T_N \text{ coend}
\]

by

\[
\begin{align*}
\text{begin } r_1 \text{time}:= & r_2 \text{time}:= \ldots := r_N \text{time}:= 0; \\
L_1 \text{time}:= & L_2 \text{time}:= \ldots := L_N \text{time}:= 0; \\
L \text{history } x:= & 0; \quad (\text{for each } L \text{ history } x \text{ of Definition 6.21}) \\
L_{0 \text{initial}} x:= & x; \quad (\text{for each } x \in \text{var}(T)) \\
\text{resource } r_1(\ldots, r_1 \text{time}), \ldots, r_N(\ldots, r_N \text{time}): \\
\text{cobegin } L_1: T_1 \ast // \ldots // L_N: T_N \ast \text{ coend} \\
\end{align*}
\]

\textit{end}
Here T_k^* is the result of adding auxiliary variables to T_k.

Next, replace each statement L: with r_j when a do S_1 in process T_k by

\[
\begin{align*}
\text{begin} & \quad L, \text{time} := \max(L, \text{time}, r_j, \text{time}); \\
& \quad \text{L history } x \assign L \text{ history } x \mathrel{||} x; \quad (\text{for each } x \in \text{var}(S_1^*)) \\
& \quad S_1^*; \\
& \quad r_j, \text{time} := L, \text{time}; \\
\text{end}
\end{align*}
\]

Here S_1^* is the result of adding auxiliary variables to S_1.

The time variables are used as they were in AorS' to give information about the order in which critical sections are executed. Setting $L, \text{time} = \max(L, \text{time}, r_j, \text{time})$ records the fact that L was started after any critical section which has already been started in process T_k and after any other critical section for r_j which has already been executed. Because S_1 may contain a withwhen statement for another resource, L, time is updated before starting S_1^*. Since no other withwhen for r_j can be started until L is finished, r_j, time is updated after S_1^*, just before releasing control of r_j.

The L history and L_0 initial variables are used to record variable values at key points. L_0 initial x is the value x had when the most recent execution of the cobegin statement L_0 began.

L history x contains the sequence of values assumed by x at the beginning of each execution of statement L (in the most recent execution of L_0). The purpose of introducing these variables will become
2. for 1 \leq i \leq n
 a. \(S_i \) is current in \(s_{i-1} \)
 b. if \(S_i \) is \textit{with} \(r \) \textit{when} \(B \) \textit{do} \(S \), \(B(s_i) = \text{true} \)
 c. \(s_i = \text{next}(s_{i-1}, S_i) \) except that if \(x \notin \text{var}(S_i) \), \(x[s_i] \) may take on any value

If \(B \) is a local computation, let \(\text{value}(y) = s_n \).

Note that a computation and a local computation are very similar. There are 3 main differences.

1. In the local computation, 2c allows the values of nonlocal variables to change arbitrarily, reflecting the fact that other processes may modify their values while \(T_k \) is being executed.

2. In a computation for \(T_k \), each state \(s_i \) is uniquely defined by \(s_i = \text{next}(s_{i-1}, S_i) \), so the computation is determined by the initial state and the sequence of statements. In a local computation, \(s_i \) is not uniquely determined by \(s_{i-1} \) and \(S_i \), so the local computation consists of a sequence of statements and program states.

3. In a computation, \(S_i \) must be ready to execute (Definition 4.6) in \(s_{i-1} \). In a local computation, 2a and b are similar to "ready to execute", but it is not necessary to require that \(r \) is not busy, since we are only considering the execution of a single process.

If \(\alpha \) is a computation for \(T^* \) it is always possible to derive a local computation for process \(T_k \) which executes the statements of \(T_k \) in the same order as \(\alpha \). But it is not always possible to find a computation for \(T^* \) consistent with a given local computation for \(T_k \).
This is because Definition 6.27 may allow nonlocal variables to assume values that never could arise in a real computation.

6.28. Definition: A local computation \mathcal{E} for T_k is acceptably iff its initial state s_0 has $\text{pre}(T_0)[s_0] = \text{true}$, where T_0 is the parallel statement of T^*. This implies that it is possible to start T^* with P true and reach the beginning of T_k in state s_0.

A local computation contains only statements from one process. A related concept is the resource computation, which contains only statements which operate on a particular resource.

6.29. Definition: A resource computation γ for a resource r_j is a sequence $s_0 \ (S_1 \cdot s_1) \ldots \ (S_n \cdot s_n)$, $0 < n$, where s_i is a program state, $0 \leq i \leq n$, S_i is a component of a when statement for r_j, $1 \leq i \leq n$, and

1. the control state of s_0 is empty

2. if S_i is $S_{\text{with}} \ r_j \ \text{when} \ B \ \text{do} \ S'$, $1 \leq i \leq n$
 a. the control of s_{i-1} is empty
 b. the control of s_i is the single node S'
 c. $x[s_i] = x[s_{i-1}] \lor xr$

3. if S_i is not a when statement for r_j, $1 \leq i \leq n$
 a. S_i is current in s_{i-1}
 b. if S_i is $\text{with} \ r \ \text{when} \ B \ \text{do} \ S$, $B[s_i] = \text{true}$
 c. $s_i = \text{next}(s_{i-1}, S_i)$ except that if $x \notin \text{var}(S_i)$, $x[s_i]$ may take on any value;

If γ is a resource computation, let $\text{value}(\gamma) = s_n$.
Post'(S)(s) is true iff it is possible to start T* with P true and finish S with variables as given by state s.

Now pre' and post' as defined above are recursively enumerable predicates, and as such can always be expressed as first-order formulas in the language L whose nonlogical symbols are \(<, *, +, \cdot, ||, 0, 1, \ldots\).

6.26. Definition: For S a component of T*, but not a proper component of a cobegin statement, let pre(S) and post(S) be first-order formulas of L which express the predicates pre'(S) and post'(S), i.e.,

\[
\text{pre}(S)[s] \equiv \text{pre}'(S)(s) \\
\text{post}(S)[s] \equiv \text{post}'(S)(s).
\]

Pre and post as given above satisfy the definition of assertion functions (Definition 4.15). As an example, consider the case where S is the assignment statement \(y := E\). Part 2 of Definition 4.15 requires that \(\text{pre}(S) \vdash \text{post}(S)_E^Y\). The first step in verifying this is to show that \(\text{pre}(S) \equiv \text{post}(S)_E^Y\). Let s be a state with \(\text{pre}(S)[s] = \text{true}\). Then \(\text{pre}'(S)(s)\) is true, and

\[
\exists s_0, a \text{ such that } P[s_0] = \text{true} \text{ and } S \text{ is current after } a \text{, and } x(s) = x[\text{value}(s_0, a)] \lor x.
\]

Since S is current after a, aS is a computation, and \(\text{value}(s_0, a) = \text{value}(s_0, a) < y | E >\). Then aS is a computation which finishes S, and \(x[\text{value}(s_0, aS)] = x[\text{value}(s_0, a) < y | E >] = x[s < y | E >] \lor x\), giving
post'(S)(s<y|E>)=true. Thus, pre(S)[s] = post(S)[s<y|E>], or
pre(S) ⊆ post(S)^Y.

Since pre(S) = post(S)^Y is true for the natural numbers,
pre(S) ⊆ post(S)^Y using D', the complete proof system for the
natural numbers of Theorem 6.19.

This definition of pre and post is not acceptable for a statement
S which is a proper component of a cobegin statement, for then pre(S)
and post(S) can only refer to variables in Proof-var(S). In order to
define pre and post for such statements we need the concept of a local
computation for the parallel process containing S. Consider a
computation a for the program T*. If S is the subsequence of a
consisting of all statements from process T_k, a can be called a
local computation for T_k. But where a uniquely determines the
final values of the variables in Proof-var(T*) , S does not determine
the values of variables in Proof-var(T_k), because these may depend
on the values of resource variables which are changed unpredictably
by other processes. For this reason a local computation cannot be
just a sequence of statements, but must be a sequence of statements and
program states. More formally:

6.27. Definition: Let T_k be one of the parallel processes in
program T. A local computation S for T_k is a sequence
s_0 (s_1, s_2) ... (s_n, s_n) , 0 ≤ n , where s_i is a program state, 0 ≤ i ≤ n ,
s_i is a component of T_k , 1 ≤ i ≤ n , and
1. the control state of s_0 contains the single node T_k
post'(S)(s) \equiv \text{The state } s \text{ is compatible with some local computation which finishes } S. \text{ If } S \text{ is a proper component of a } \text{whenever statement for } r, \text{ } s \text{ is also compatible with some resource computation for } r \text{ which finishes } S.

I'(r)(s) \equiv \text{The state } s \text{ is compatible with some resource computation which is not in the midst of executing a critical section for } r.

Since pre'(S), post'(S), and I'(r) are recursively enumerable predicates, they can be expressed by first-order formulas in the language L containing the nonlogical symbols \(<, *, +, ||, 0, 1, \ldots \). Moreover, the formulas for pre'(S) and post'(S) can be written so that all free variables belong to Proof-var(S), since pre'(S) and post'(S) depend only on the values of variables in Proof-var(S).

Similarly, the formula for I'(r) can be written so that all free variables belong to Proof-var(r).

6.32. Definition: Let pre(S), post(S), and I(r) be first-order formulas of the language L which express pre'(S), post'(S), and I'(r) of Definition 6.31. The free variables in pre(S) and post(S) should belong to Proof-var(S), and the free variables of I(r) should belong to Proof-var(r).

6.2.3. Assertion Functions.

The functions pre, post, and I of Definition 6.32 are assertion functions for \(\{P \} \rightarrow \{Q \} \). In order to prove this we must show that they satisfy Definition 4.15. Most of the requirements in this
definition have the form $P_1 \vdash P_2$, where P_1 and P_2 are expressions involving pre, post, and I. In order to show $P_1 \vdash P_2$, i.e., that P_2 can be proved from P_1 using the deductive system D' of Theorem 6.19, we first show that $P_1 \Rightarrow P_2$ is a true statement about the natural numbers. Then P_1 can be proved from P_2 using D', since D' is a complete proof system for the natural numbers.

The following theorem shows that for each formula $P_1 \vdash P_2$ of Definition 4.15, $P_1 \Rightarrow P_2$ is true.

6.33. Theorem: The (universal closures) of the following formulas are true for the natural numbers:

1. $P \Rightarrow \text{pre}(T*)$ and $\text{post}(T*) \Rightarrow Q$
2. $\text{pre}(S) \Rightarrow \text{post}(S)'_E$ for all assignments $S (y:=E)$ in $T*$
3. $\text{pre}(S) \Rightarrow \text{post}(S)$ for all null S in $T*$
4. for all $S = \text{begin } S_1; \ldots; S_n \text{ end }$ in $T*$
 a. $\text{pre}(S) \Rightarrow \text{pre}(S_1)$ and $\text{post}(S_n) \Rightarrow \text{post}(S)$
 b. $\text{post}(S_1) \Rightarrow \text{pre}(S_{i-1}), 1 \leq i \leq n-1$
5. for all $S = \text{if } B \text{ then } S_1 \text{ else } S_2$ in $T*$
 a. $(\text{pre}(S) \land B) \Rightarrow \text{pre}(S_1)$ and $(\text{pre}(S) \land \neg B) \Rightarrow \text{pre}(S_2)$
 b. $\text{post}(S_1) \Rightarrow \text{post}(S)$ and $\text{post}(S_2) \Rightarrow \text{post}(S)$
6. for all $S = \text{while } B \text{ do } S_1$ in $T*$
 a. $(\text{pre}(S) \land B) \Rightarrow \text{pre}(S_1)$
 b. $\text{post}(S_1) \Rightarrow \text{pre}(S)$
 c. $(\text{pre}(S) \land \neg B) \Rightarrow \text{post}(S)$
A resource computation γ for r represents the execution of a sequence of \textit{when} statements -- the only statements where the variables of r are accessible. It has the form $\gamma = \gamma_1 \gamma_2 \cdots \gamma_k$, where γ_i is a subsequence of γ which executes one \textit{when} statement for r_j. Part 2 of the definition describes what happens when a new \textit{when} statement L is started, while part 3 (the same as 2a-c for a local computation) describes the remainder of the execution of L.

Because of 2a, a new \textit{when} for r_j cannot be started until the previous one is finished.

If α is a computation for T^*, it is always possible to derive a resource computation for r which executes critical sections for r in the same order as α. But it is not always possible to find a computation for T^* which is consistent with a particular resource computation, since 2c and 3c allow nonlocal variables to assume arbitrary values.

6.30. Definition: A resource computation γ is acceptable iff its initial state s_0 has $\text{pre}(T_0)(s_0) = \text{true}$, i.e., it is possible to start T^* with P true and reach T_0 in state s_0.

Now $\text{pre}(S)$, $\text{post}(S)$ and $I(r)$ can be defined using local and resource computations. The first step is to define predicates $\text{pre}'(S)$, $\text{post}'(S)$ and $I'(r)$ on program states.

6.31. Definition: If S is a component and r a resource of T^*, let the predicates $\text{pre}'(S)$, $\text{post}'(S)$, and $I'(r)$ be defined as follows. If S is not a proper component of the \texttt{begin} statement
T_0, $\text{pre}'(S)$ and $\text{post}'(S)$ are given in Definition 6.25. If S is a component of process T_k,

$\text{pre}'(S)(s) \equiv \exists \text{ an acceptable local computation } \gamma \text{ for } T_k \text{ with } S$

current after γ and $x[s]=x[\text{value}(\gamma)] \lor x \in \text{proof-var}(S)$,
and $\forall \text{ resources}(S) \exists \text{ an acceptable resource computation }$

γ_r for r with S current after γ_r and $x[s]=x[\text{value}(\gamma_r)] \land x \in \text{proof-var}(S)$.

$\text{post}'(S)(s) \equiv \exists \text{ an acceptable local computation } \gamma \text{ for } T_k \text{ which}$

finishes S, and $x[s]=x[\text{value}(\gamma)] \lor x \in \text{proof-var}(S)$, and $\forall \text{ resources}(S) \exists \text{ an acceptable resource computation }$

γ_r for r which finishes S, and $x[s]=x[\text{value}(\gamma_r)] \land x \in \text{proof-var}(S)$.

For all resources r_j,

$\text{I}'(r_j)(s) \equiv \exists \text{ an acceptable resource computation } \gamma \text{ for } r_j \text{ with the control of } \text{value}(\gamma) \text{ empty, and } x[s]=x[\text{value}(\gamma)]$

$\land x \in \text{proof-var}(r_j)$.

These definitions can be informally summarized as:

$\text{pre}'(S)(s) \equiv \text{The state } s \text{ is compatible with some local computation which reaches } S$. If S is a proper component of a with when statement for r, s is also compatible with some resource computation for r which reaches S.
Then \(B(s) = \text{true} \) \(\land \exists \) an acceptable local computation \(B \) for process \(T_k \) with \(S \) current after \(B \) and \(x[s] = x[\text{value}(B)] \) \(\lor \) \(x \text{cProof-var}(S) \), and \(\forall \text{resources}(S) \), \(\exists \) an acceptable resource computation \(\gamma_r \) for \(r \) with \(S \) current after \(\gamma_r \) and \(x[s] = x[\text{value}(\gamma_r)] \) \(\forall \) \(x \text{cProof-var}(S) \). \(\land \exists \) an acceptable resource computation \(\gamma \) for \(r_0 \) with the control of \(\text{value}(\gamma) \) empty and \(x[s] = x[\text{value}(\gamma)] \) \(\forall \) \(x \text{cProof-var}(r) \).

Let \(B' = B(S, s_1) \), where \(s_1 \) is the state whose control part is the same as the control of \(\text{next}(\text{value}(B), S) \), and whose variable part has \(x[s_1] = x[s] \) \(\forall \) \(x \). Then \(B' \) is an acceptable local computation for process \(T_k \) (see 2a-c of Definition 6.27) with \(S_1 \) current after \(B' \) and \(x[s] = x[\text{value}(B')] \) \(\forall \) \(x \text{cProof-var}(S_1) \).

For \(\text{resources}(S) \), let \(\gamma_r' = \gamma_r(S, s_r) \), where the control of \(s_r = \text{control of next}(\text{value}(\gamma_r), S) \), and \(x[s_r] = x[s] \) \(\forall \) \(x \). Then \(\gamma_r' \) is an acceptable resource computation for \(r \) (see 3a-c of Definition 6.29) with \(S_1 \) current after \(\gamma_r' \) and \(x[s] = x[\text{value}(\gamma_r')] \) \(\forall \) \(x \text{cProof-var}(S) \).

Finally, let \(\gamma_{r_0}' = (S, s_2) \) where the control of \(s_2 \) is the single node \(S_1 \) and \(x[s_2] = x[s] \) \(\forall \) \(x \). Then \(\gamma_{r_0}' \) is an acceptable resource computation for \(r_{0} \) (see 2a-c of Definition 6.29) with \(S_1 \) current after \(\gamma_{r_0}' \) and \(x[s] = x[\text{value}(\gamma_{r_0}')] \) \(\forall \) \(x \text{cProof-var}(S) \).

Thus \(\exists B' \) and \(\{ \gamma_r' : \text{resources}(S_1) \} = \text{resources}(S) \cup \{ r_0 \} \) which satisfy \(\text{pre}'(S_1)(s) \), and \((\text{pre}(S) \land I(r) \land B) \Rightarrow \text{pre}(S_1) \).

b. Show \(\text{post}(S_1) \equiv (\text{post}(S) \land I(r_0)) \)

Suppose \(S \) is a program state with \(\text{post}(S_1)(s) = \text{true} \). Then \(\exists \) an acceptable local computation \(B \) for process \(T_k \) which finishes \(S_1 \).
and \(x[s] = x[\text{value}(\gamma)] \) \(\forall x \) \(\text{cProof-var}(S) \), and \(\forall r \) \(\text{rcresources}(S) \) \(\exists \) an acceptable resource computation \(\gamma \) which finishes \(S \) with \(x[s] = x[\text{value}(\gamma)] \) \(\forall x \) \(\text{cProof-var}(S) \).

Since \(\gamma \), \(\gamma \) finish \(S \), they also finish \(S \). Also, since \(\gamma \) finishes \(S \), the control of \(\text{value}(\gamma) \) is empty. Then \(\exists \) an acceptable local computation \(\xi \) for process \(T_k \) which finishes \(S \), and \(x[s] = x[\text{value}(\xi)] \) \(\forall x \) \(\text{cProof-var}(S) \) (since \(\text{Proof-var}(S) \subseteq \text{Proof-var}(S) \)), and \(\forall r \) \(\text{rcresources}(S) \) \(\forall r \) \(\text{resources}(S) \) \(\forall r \) \(\text{resources}(S) \) \(\exists \) an acceptable resource computation \(\gamma \) which finishes \(S \) and has \(x[s] = x[\text{value}(\gamma)] \) \(\forall x \) \(\text{cProof-var}(S) \), and \(\exists \) an acceptable resource computation \(\gamma \) with the control of \(\text{value}(\gamma) \) empty and \(x[s] = x[\text{value}(\gamma)] \) \(\forall x \) \(\text{cProof-var}(r) \) \(\equiv \) \(\text{post}(S)[s] \) \(\land I(r)[s] \).

So \(\text{post}(S) \) \(\equiv \) \((\text{post}(S) \land I(r)[s]) \).

8. \(T_0 \) is the parallel statement

\[
L_0: \text{resource } r_1, \ldots, r_M: \begin{aligned}
\text{co begin } L_1: T_1 &// \ldots // L_N: T_N \text{ co end}
\end{aligned}
\]

a. We must show that \(\text{pre}(T_0) \equiv (\text{pre}(T_1) \land \ldots \land \text{pre}(T_N) \land I(r_1) \land \ldots \land I(r_M)) \).

Suppose \(s \) is a program state with \(\text{pre}(T_0)[s] = \text{true} \). Let \(s_k, 1 \leq k \leq N \), be the state whose control part is the single node \(T_k \) and whose variable part has \(x[s_k] = x[s] \) \(\forall x \). Let \(\beta_k = s_k \). Then \(\beta_k \) is an acceptable local computation for \(T_k \) (\(\beta_k \) has initial state \(s_k \) and no statements executed) with \(T_k \) current after \(\beta_k \) and \(x[s] = x[\text{value}(\beta_k)] \) \(\forall x \). Thus, \(\text{pre}(T_k)[s] = \text{true} \), \(1 \leq k \leq N \).
7. for all \(S = \text{with } r \text{ when } B \to S_1 \text{ in } T^* \)
 a. \((\text{pre}(S) \land B \land I(r)) \Rightarrow \text{pre}(S_1)\)
 b. \((\text{post}(S_1) \Rightarrow (\text{post}(S) \land I(r))\)

8. for \(T_0 = L: \text{resource } r_1, \ldots, r_N: \text{cobergin } L_1: T_1 \// \ldots \// L_N: T_N \text{ coend} \)
 a. \((\text{pre}(T_0) \Rightarrow (\text{pre}(T_1) \land \ldots \land \text{pre}(T_N) \land I(r_1) \land \ldots \land I(r_N))\)
 b. \((\text{post}(T_1) \land \ldots \land \text{post}(T_N) \land I(r_1) \land \ldots \land I(r_N)) \Rightarrow \text{post}(T_0)\)

Proof:
1. We must show \(P[s] \Rightarrow \text{pre}(T^*)[s] , \text{post}(T^*)[s] \Rightarrow Q[s] \).

 \(\text{pre}(T^*)[s] \equiv \exists a, s_0 \text{ such that } P[s_0] = \text{true and } a \text{ is a computation for } T^* \text{ with } T^* \text{ current after } a \text{ and } x[s] = x(\text{value}(s_0, a)) \forall x.\)

 Letting \(a \) be empty and \(s_0 = s \), gives \(P[s] \Rightarrow \text{pre}(T^*)[s]. \)

 \(\text{post}(T^*)[s] \equiv \exists a, s_0 \text{ such that } P[s_0] = \text{true and } a \text{ finishes } T^* \text{ and } x[s] = x(\text{value}(s_0, a)) \forall x. \)

 \(\Rightarrow Q[s], \text{ since } (P) \text{ is true for the interpreter}.\)

2.-6. The five sequential statements are treated in much the same way.

As an example we show how to deal with assignment statements. If \(S \) is \(y := E \), we must show \(\text{pre}(S) \Rightarrow \text{post}(S)[y]. \)

 a. The case when \(S \) is not a proper component of the \text{cobergin} statement was given earlier.

 b. Let \(S \) be a component of process \(T_k \) of the \text{cobergin} statement, and suppose \(s \) is a state such that \(\text{pre}(S)[s] \) is true.
\[\text{pre}(S)[s] \equiv \exists \gamma \text{ an acceptable local computation } \mathcal{E} \text{ for process } T_k, \]

with \(S \) current after \(\mathcal{E} \) and \(\bar{x}[s] = x[\text{value}(&^E)] \lor x\text{Proof-var}(S) \), and for all \(r \text{resources}(S) \), \(\exists \gamma \text{ an acceptable resource computation } \gamma_r \text{ for } r \text{ with } S \)

current after \(\gamma_r \) and \(x[s] = x[\text{value}(\gamma_r)] \lor x\text{Proof-var}(S) \).

Let \(s' = s \land y \in \mathcal{E} \)

\[\mathcal{E}' = \mathcal{E}(S, \text{next}(\text{value}(\mathcal{E}), S)) \]

\[\gamma_r' = \gamma_r(S, \text{next}(\text{value}(\gamma_r), S)) \text{ for } r \text{resources}(S) \]

Now \(\mathcal{E}' \) is an acceptable local computation for process \(T_k \) which

finishes \(S \), and \(x[s'] = x[\text{value}(\mathcal{E}')] \lor x\text{Proof-var}(S) \). (To check

that \(\mathcal{E}' \) is an acceptable local computation it is only necessary to verify 2a-c of Definition 6.27 for the new element \((S, \text{next}(\text{value}(\mathcal{E}), S)) \)

in the sequence.)

For all \(r \text{resources}(S) \), \(\gamma_r' \) is an acceptable resource computation which finishes \(S \) and has \(x[s'] = x[\text{value}(\gamma_r')] \lor x\text{Proof-var}(S) \).

(To check this, it is only necessary to verify 3a-c of Definition 6.29

for the new element of the sequence.)

But this implies \(\text{post}(S)[s'] = \text{true} \), giving \(\text{pre}(S)[s] \Rightarrow \text{post}(S)[s \land y \in \mathcal{E}] \) or \(\text{pre}(S) \Rightarrow \text{post}(S) \gamma \).

7. \(S \) is with \(r_0 \) when \(B \) do \(S_1 \), \(S \) in process \(T_k \)

a. Assume \(s \) is a program state with \((\text{pre}(S) \land B \land I(r_0))[s] = \text{true} \).
variable \(L_k \) time, but if \(S \) is a \texttt{when} statement, the "time" for \(S \) is \(1\times\max(L_k \text{time}, r_j \text{time}) \), which will be assigned to \(L_k \) \text{time} as soon as the first statement of the critical section is executed.

6.35. \textbf{Definition}: Let \(\alpha_2 \) be a sequence of statements obtained by merging the statements of \(\beta_1, \ldots, \beta_N \) in a way which preserves the order of statements within a single \(\beta_k \), and puts the \(i \)th occurrence of \(S \) from \(T_k \) before the \(j \)th occurrence of \(S' \) from \(T_m \) if \(\text{time}(S, i, \beta_k) < \text{time}(S', j, \beta_m) \). (Since time is nondecreasing within \(\beta_k \), these two requirements do not conflict.)

We must show \(\alpha = \alpha_1 \cdot \alpha_2 \) satisfies \(b \) and \(c \) from (\(* \)). The following \textbf{lemma} is the basis of the proof.

6.36. \textbf{Lemma}: \(\alpha = \alpha_1 \cdot \alpha_2 \) is a computation for \(T^* \) with

\[
\begin{align*}
\text{x}[\text{value}(s_0, \alpha)] &= \text{x}[\text{value}(\beta_k)] \land \text{xvar}(T_k), & 1 \leq k \leq N, \\
\text{x}[\text{value}(s_0, \alpha)] &= \text{x}[\text{value}(\gamma_j)] \land \text{xcr}_j, & 1 \leq j \leq M.
\end{align*}
\]

\textbf{Proof}: Here we sketch the proof; a formal proof is given in Section 6.2.5. Basically, \(\alpha \) yields the same values as \(\beta_k \) for the appropriate variables because \(\alpha_2 \) executes statements from process \(T_k \) in the same order and with the same variable values as \(\beta_k \). \(\alpha_2 \) also executes statements for resource \(r_j \) in the same order and with the same variable values as \(\gamma_j \).

It is clear from the definition of \(\alpha_2 \) that it executes statements from \(T_k \) in the same order as \(\beta_k \). To see that \(\alpha_2 \) executes
statements for resource \(r_j \) in the same order as \(\gamma_j \), let \(L \) be a statement with \(r_j \) when \(B \) do \(S_1 \) in process \(T_k \). Once \(L \) starts execution, the way in which it executes is determined by the variables in \(\text{var}(S_1) \), since these are the only variables which can be used in \(S_1 \). The auxiliary variables \(L \) history \(x \), \(x\text{var}(S_1) \), record these values each time \(L \) begins execution. Because

\[
L \text{ history } x[\text{value}(\beta_k)] = L \text{ history } x[s] = L \text{ history } x[\text{value}(\gamma_j)].
\]

\(L \) is executed the same way in \(\beta_k \) and \(\gamma_j \). This is true for each statement for \(r_j \), so \(\alpha_2 \), which is derived from the \(\beta \)'s, contains the same statements as \(\gamma_j \). Moreover, they have the same order in \(\alpha_2 \) as in \(\gamma_j \) because "time" increases throughout \(\gamma_j \), and statements in \(\alpha_2 \) are ordered by "time".

To see that the final values of \(\alpha_2 \) are those given in the lemma, let \(\alpha_2' \) be an initial segment of \(\alpha_2 \). Let \(\beta_k' \) and \(\gamma_j' \) be the corresponding initial segments of \(\beta_k \) and \(\gamma_j \), \(1 \leq k \leq M \), \(1 \leq j \leq M \).

Then by induction on the length of \(\alpha_2' \),

\[
x[\text{value}(s_0, \alpha_1, T, o_2')] = x[\text{value}(\beta_k')] \land x\text{var}(T_k) .
\]

\[
x[\text{value}(s_0, \alpha_1, T, o_2')] = x[\text{value}(\gamma_j')] \land x\text{var}_j .
\]

If \(\alpha_2' \) is empty, \(\text{value}(s_0, \alpha_1, T, o_2') = \text{value}(\beta_1') = \text{value}(\beta_k') = \text{value}(\gamma_j') \), since all the \(\beta \)'s and \(\gamma \)'s start with the initial state given by \(L_0 \) initial \(x[s] \). If \(\alpha_2' = \alpha_2'' S \), where \(S \) is from process \(T_k \),
Next let \(s' \) be the program state whose control part is empty and variable part has \(x[s]=x[s'] \lor x \). Let \(\gamma_j = s' \), \(1 \leq j \leq M \). Then \(\gamma_j \) is an acceptable resource computation for \(\tau_j \) (\(\gamma_j \) has initial state \(s' \) and no statements executed) with control of \(\text{value}(\gamma_j) \) empty and \(x[s]=x[\text{value}(\gamma_j)] \lor x \). This gives \(I(\tau_j)[s]=\text{true}, \ 1 \leq j \leq M \). So \(\text{pre}(T_0) \Rightarrow (\text{pre}(T_1) \land \ldots \land \text{pre}(T_N) \land I(\tau_1) \land \ldots \land I(\tau_M)) \).

b. We must show

\[
\text{post}(T_1) \land \ldots \land \text{post}(T_N) \land I(\tau_1) \land \ldots \land I(\tau_M) \Rightarrow \text{post}(T_0).
\]

Suppose \(s \) is a program state with

\[
\text{post}(T_1) \land \ldots \land \text{post}(T_N) \land I(\tau_1) \land \ldots \land I(\tau_M)[s]=\text{true}.
\]

Then from \(\text{post}(S_k)[s], \ 1 \leq k \leq N \), \(\exists \) an acceptable local computation \(S_k \) which finishes \(S_k \) and has \(x[s]=x[\text{value}(S_k)] \lor x \land \text{Proof-var}(T_k) \).

From \(I(\tau_j)[s], \ 1 \leq j \leq M \), \(\exists \) an acceptable resource computation \(\gamma_j \) with the control of \(\text{value}(\gamma_j) \) empty and \(x[s]=x[\text{value}(\gamma_j)] \lor x \land \text{Proof-var}(\tau_j) \).

To prove \(\text{post}(T_0)[s] \) we need \(s_0, a \) such that

\[
\begin{cases}
 a. & P[s_0]=\text{true} \\
 b. & a \text{ is a computation for } T_0 \text{ which finishes } T_0 \\
 c. & x[s]=x[\text{value}(s_0,a)] \lor x
\end{cases}
\]

\(s_0 \) and \(a \) can be derived from \(\beta_1, \ldots, \beta_N \).

First, to find \(s_0 \), let \(s_1 \) be the initial state of the local computation \(\beta_1 \) (any \(\beta_k, \ 1 \leq k \leq N \), would do). Since \(\beta_1 \) is
acceptable, \(\text{pre}(T_0)[s_1] = \text{true} \), i.e., \(\exists s_0, a_1 \) such that \(P[s_0] = \text{true} \), and \(a_1 \) is a computation for \(T^* \) with \(T_0 \) current after \(a_1 \) and \(x[s_1] = x[\text{value}(s_0, a_1)] \forall x \).

This yields \(s_0 \) which satisfies a) above. For a), take \(a = a_1 T_0 a_2 \), where \(a_2 \) is obtained by merging the statements of \(\beta_1, \ldots, \beta_N \). Because of the auxiliary variables in \(T^* \) it is possible to define \(a_2 \) so that the subsequence of \(a_2 \) consisting of statements from process \(T_k \) contains the same statements as \(\beta_k \), while the subsequence of \(a_2 \) consisting of components of \text{withwhen} statements for resource \(r_j \) contains the same statements as \(\gamma_j \). This is done by defining \(a_2 \) by merging the statements of \(\beta_1, \ldots, \beta_N \) in a way which is consistent with the "time" at which statements were executed.

More formally:

6.34. **Definition:** Let \(\delta \) be a computation (standard, resource, or local) and \(S \) a statement from process \(T_k \) of \(T^* \).

If \(S \) occurs less than \(i \) times in \(\delta \), \(\text{time}(S, i, \delta) = 0 \).

If \(S \) occurs at least \(i \) times in \(\delta \), let \(s \) be the program state in \(\delta \) just after the \(i^{\text{th}} \) occurrence of \(S \). Then

\[
\text{time}(S, i, \delta) = \begin{cases}
L_k \text{time}[s], & \text{if } S \text{ is not a } \text{withwhen} \text{ statement} \\
(1 + \max[L_k \text{time}, r_j \text{time})[s]), & \text{if } S \text{ is } \text{with } r_j \text{ when } B \text{ do } S_1 \end{cases}
\]

Thus, \(\text{time}(S, i, \delta) \) represents the "time" at which \(S \) was executed for the \(i^{\text{th}} \) time in \(\delta \). In most cases "time" is given by the
of addition, multiplication, and concatenation. In this section, we
generalize this result to programs with any of the usual data domains
and then discuss the significance of relative completeness for proofs
of program correctness.

Let us consider a program T in a language with data type(s)
which include a set of values A and operations (o_1, \ldots, o_n). This
language may differ from the one of Theorem 6.19 both by failing to
include the natural numbers with $(\leq, +, \times, |)$ and by containing
additional data values and operations.

First, suppose the language does not contain all of the natural
numbers and $(\leq, +, \times, |)$. This is a common case, as most real pro-
gramming languages have only a finite subset of the natural numbers and
do not include our kind of concatenation. The power of the natural
numbers was required in the partial correctness proof for the statements
which manipulate the "time" and "history" auxiliary variables. So we
will simply expand the programming language to data types A' with
operations (o_1, \ldots, o_n) by adding $(\leq, +, \times, |, 0, 1, \ldots)$, with the
restriction that new operations and data values can only be used in
statements for auxiliary variables.

If A' and (o_1, \ldots, o_n) contain data types and operations which
were not in the programming language of Theorem 6.19, there are two
areas of concern. The first is the auxiliary variable L history x, which
must be able to encode a sequence of values of x. We have
shown how to encode a sequence of natural numbers, and the techniques
can be applied to encode any sequence of values from an enumerable
domain. If A' is an enumerable set, let $e:A'\rightarrow N$ be an enumeration of the elements of A'. A sequence a_1,\ldots,a_k of values from A' can be represented by

$$((\ldots((0||e(a_1)||e(a_2))\ldots)||e(a_k))$$

So by adding the operation $e()$ to \forall (again to be used only with auxiliary variables), we can represent the auxiliary variables.

The second problem is that it must be possible to express the assertions $pre(S)$, $post(S)$, and $I(r)$ as first-order formulas over the domain of the programming language. This was possible when the language contained $\langle<,\cdot,+,\cdot,||,0,1,\ldots\rangle$, because then the assertions represented recursively enumerable predicates. Now if A' is an enumerable set, and the operations $\{o_1,\ldots,o_m\}$ are recursive, the assertions for a program using A' and $\{o_1,\ldots,o_m\}$ are also recursively enumerable, and pre, $post$, and I can be expressed as first-order formulas.

This discussion leads to the following theorem.

6.38. Theorem: The proof-rules $A0-AS$ are relatively complete for programs in any version of RPL which has an enumerable domain and recursive operations.

Proof: The domain may be extended by adding the natural numbers, $+$, \cdot, $||$, and e. Let D' be a complete proof system for this
adding \(S \) to \(S_k \) has the same effect as adding it to \(a_2 \) because the variables on which \(S \) operates are the same in both cases.

We observed when local and resource computations were defined that it is not always possible to find a program computation which is compatible with a given local or resource computation. The fact that we can find \(a_2 \) which is compatible with all the \(B \)'s and \(\gamma \)'s is due to the auxiliary variables of \(T^* \).

Given this lemma, b) and c) of (**) follow easily. b) is satisfied because \(a \) is a computation for \(T^* \) which finishes \(S \) (since each \(S_k \) finishes \(S_k \)). c) is satisfied because all the variables of \(T^* \) belong to some \(\text{var}(T_k) \) or \(r_j \) (see the RPL syntax rules, Definition 4.3). If \(x \in \text{var}(T_k) \), \(x[\text{value}(s_0,a)] = x[\text{value}(B_k)] = x[s] \). If \(x \in r_j \), \(x[\text{value}(s_0,a)] = x[\text{value}(\gamma_j)] = x[s] \). So, \(x[\text{value}(s_0,a)] = x[s] \) for all \(x \) in \(T^* \). This establishes that \(s_0 \) and \(a \) satisfy \(a,b,c \) so post(\(T_0 \))[s] = true. Thus

\[
(\text{post}(T_L) \land \ldots \land \text{post}(T_N) \land I(r_1) \land \ldots \land I(r_N)) \implies \text{post}(T_0).
\]

This finishes the proof of Theorem 6.33. We next show that \(\text{pre} \), \(\text{post} \), and \(I \) are assertion functions.

6.37. Corollary: Let \(D \) be the proof system consisting of A0-A7, and \(D' \), a complete proof system for the natural numbers. Then \(\text{pre} \), \(\text{post} \), and \(I \) of Definition 6.32 are assertion functions for \(\{P\} T^* \{Q\} \).
Proof: We must show that pre, post, and I satisfy Definition 4.15. Most of the criteria are easily verified, since for each condition $P_1 \Rightarrow P_2$ in the definition, $P_1 \Rightarrow P_2$ is true (Theorem 6.33) so that P_2 can be proved from P_1 using D'. Requirement 8c restricts the free variables in pre(S) and post(S) to elements of Proof-var(S), and this is satisfied by Definition 6.32. Similarly, 8d restricts the free variables of $I(r)$ to those in Proof-var(r), and this requirement is also satisfied by Definition 6.32.

6.19. Theorem (Relative Completeness of RPL): If $(P) T (Q)$ is true in the interpreter, where T is a program in a version of RPL whose data domain is the natural numbers with $<, *, +, $, and $|$, then $(P) T (Q)$ can be proved using A0-A8 and a complete proof system D' for the natural numbers.

Proof: Given T, first construct a program $T*$ by adding auxiliary variables to T as done in Definition 6.22. Then by Corollary 6.24, $(P) T* (Q)$ is also true for the interpreter. By Corollary 6.37, pre, post, and I of Definition 6.32 are assertion functions for $(P) T* (Q)$ using the deductive system D'. Then by Theorem 4.16, there is a proof of $(P) T* (Q)$ using D', and by repeated applications of A8 the auxiliary variables can be removed to give a proof of $(P) T (Q)$.

6.2.4. Implications of the Relative Completeness Theorem.

Theorem 6.19 states that the RPL proof rules A0-A8 are relatively complete for programs which use the natural numbers and the operations
resource \(r_m \), the \(L' \) history \(x \) variables record the value of \(xcr_m \) when \(L' \) starts execution. Since \(L' \) history \(x \in \text{Proof-var}(T_k) \cap \text{Proof-var}(r_j) \) (\(L' \) history \(x \) is changed only within \(L \), a \textbf{within} statement for \(r_j \))

\[
L' \text{ history } x[\text{value}(\beta_k)] = L' \text{ history } x[s] = L' \text{ history } x[\text{value}(\gamma_j)] .
\]

and \(\beta_k \) and \(\gamma_j \) obtain the same values for \(xcr_m \) when they start \(L' \).

Thus, \(\beta_k \) and \(\gamma_j \) execute statement \(L \) the same number of times, and each time they start with the same variable values; this implies that they execute \(L \) identically.

6.41. \textbf{Lemma}: The statements in \(\alpha_2 \) for resource \(r_j \) are in the same order as the statements in \(\gamma_j \).

\textbf{Proof}: The statements of \(\alpha_2 \) come from the \(\beta_k \)'s, \(1 \leq k \leq \mu \). Each \(L: \text{with} \ r_j \text{ when } B \text{ do } S_1 \text{ in } T_k \) is executed the same way in \(\beta_k \) and \(\gamma_j \). So \(\alpha_2 \) contains the same statements for \(r_j \) as \(\gamma_j \) does. They are in the same order because \(\alpha_2 \) is ordered by "time". Recall that

\[
\gamma_j = \gamma_j^1, \gamma_j^2, ..., \gamma_j^n ,
\]

where each \(\gamma_j^m \) is a subsequence which executes a \textbf{within} statement for \(r_j \). Now if \(S \) and \(S' \) occur in \(\gamma_j \), with the \(i^{th} \) occurrence of \(S \) before the \(k^{th} \) occurrence of \(S' \), either \(S \) and \(S' \) are in the same \(\gamma_j^m \) or \(\text{time}(S,i,\gamma_j) < \text{time}(S',k,\gamma_j) \), because \(r_j \text{time} \) is updated at the end of each \(\gamma_j^m \). By Lemma 6.40, \(\text{time}(S,i,\gamma_j) < \)
time(S',k,γ_j) implies that time(S,i,δ_m) $<$ time(S',k,δ_n). Because the merging of statements from S which yields a_2 preserves both the order of statements from a single process and the time order, the ith occurrence of S precedes the jth occurrence of S' in a_2.

6.42. Lemma: Let a_2' be an initial segment of a_2, and δ_k', γ_j', $1 \leq j \leq M$ be the corresponding initial segments of δ_k, γ_j. Then

1. $a' = a_1 T_0 a_2'$ is a computation for T_e.
2. a. $x[value(s_0,a')] = x[value(\delta_k')] \forall x \in var(T_k)$, $1 \leq k \leq N$.
 b. if S is current after δ_k', S is current after a'.
3. $x[value(s_0,a')] = x[value(\gamma_j')] \forall x \in var(T)$, $1 \leq j \leq M$.

Proof: By induction on the length of a_2'.

If a_2' is empty:

1. $a' = a_1 T_0$ is a computation for T_e because a_1 is defined as a computation for T_e with T_0 current after a_1.

2.a. By the definition of a_1, $x[value(s_0,a_1)] = x[value(s_i)] \forall x$.
Now δ_k, $1 \leq k \leq N$, is an acceptable local computation, so its initial state s_k satisfies $proc(T_0)$. This means that the time and history variables have the value 0 in s_k, and $\forall x \in var(T)$, $x[s_k]$ = L_0 initial $x[s_k]$ (the auxiliary variables receive these values just before L_0 begins). Since L_0 initial x \in $Proof-var(T_k)$, $1 \leq k \leq N$.

L_0 initial $x[value(\delta_k')] = L_0$ initial $x[s]$.

extended domain. Then the proof of Theorem 6.19 (with the operations on L history modified as suggested above) becomes a proof of 6.38.

Since any implementable programming language must operate over an enumerable data domain with recursive operations, Theorem 6.38 implies the relative completeness of RPL for any reasonable choice of data types. This seems to indicate that A0-AS are an adequate set of proof-rules in the sense that they capture all the information about program statements that is relevant for partial correctness. Since A0-AS are not complete in the absolute sense, there are programs for which valid partial correctness formulas cannot be proved. Our main interest, however, is in proving the partial correctness of programs written by programmers who understand them and why they work. In such a case the programmer knows how to prove the necessary facts about the program domain. The relative completeness of A0-AS implies that in this case it is possible to prove the program's partial correctness.

6.2.5. Proof of Lemma 6.31.

In Section 6.2.3 we gave an informal proof of Lemma 6.31. We now give a more detailed proof using four subsidiary lemmas. Recall that s is a program state with post(T_0)[s]=true; θ_k is an acceptable local computation for process T_k, with x[value(θ_k)]=x[s] ∀ xcvar(T_k). 1≤k≤N; γ_j is an acceptable resource computation for r_j with the control of value(γ_j) empty and x[value(γ_j)]=x[s] ∀ xcvar(γ_j); s_0.a_1 are defined in such a way that pre(T_0)[value(s_0.a_1)]=true, and the
initial state of β_1 is $\text{value}(s_0, a_1)$; a_2 is a sequence of statements obtained by merging the statements of the ε's in a way which preserves the "time" at which the statements were executed.

6.39. Lemma: The statements in a_2 for process T_k are in the same order as the statements of ε_k.

Proof: Obvious from the definition of a_2.

6.40. Lemma: If L: with r_j when B do S_1 is a statement in process T_k, L is executed in the same way in ε_k as in γ_j, i.e., the subsequences of statements from L in ε_k and γ_j are identical.

Moreover, if ε_k' is an initial segment of ε_k which has S_1, a component of S_1, current, and γ_j' is the corresponding initial segment of γ_j, then

$$x[\text{value}(\varepsilon_k')]=x[\text{value}(\gamma_j')] \forall x \text{cvar}(S_1).$$

Proof: Note that

$$L \text{ history } x[\text{value}(\varepsilon_k')]=L \text{ history } x[s]=L \text{ history } x[\text{value}(\gamma_j')] \land \forall x \text{cvar}(S_1), \text{ because } L \text{ history } x \text{cProof-var}(T_k) \cap \text{ Proof-var}(r_j).$$

This means that L is executed the same number of times in ε_k as in γ_j, and that each time the initial variable values are the same in both computations. If L does not properly contain any withwhen statements, this implies that L is executed in exactly the same way in ε_k and γ_j, since the only variables accessible inside L are those in $\text{var}(S_1)$. If L does contain a withwhen statement L' for
\[x[\text{value}(s_0.a'')] = x[\text{value}(s_k'')] \land xcvar(S) \quad \text{(proved in 2 above)} \]

\[= x[\text{value}(\gamma_j'')] \land xcvar(S) \quad \text{(Lemma 6.40)} \]

So \(S \) has the same effect on variables in \(a_2 \) and \(\gamma_j \), yielding 3.
CHAPTER 7

CONCLUSIONS AND COMMENTS

In this thesis we have presented a method for verification of parallel programs. Our techniques are based on Hoare's axiomatic approach for proving partial correctness. We first provided axioms and inference rules for two parallel languages: a General Parallel Language and a Restricted Parallel Language. GPL is not a realistic programming language: it is introduced because it is powerful enough to represent most of the standard synchronizing operations. Thus, the deductive system for GPL can be used to establish the correctness of a program which uses semaphores, events, or any of the other common synchronizing tools. Unfortunately, these proofs may be quite complex because the verification of the interference-free property requires that each assertion be tested for invariance over each assignment statement from another process.

RPL avoids this complexity by restricting the use of shared variables to critical sections, so that only one process at a time has access to a particular variable. This gives RPL programs a structure which makes them easy to understand and to verify. In proving the correctness of an RPL program one must first define the invariant for each resource (possibly adding auxiliary variables to do so). The rest of the verification process requires only sequential reasoning, and is much simpler than a GPL proof.
So all E_k's start with the same initial state, i.e.,

\[x[\text{value}(E_k')] = x[s_k] = x[s_1] = x[\text{value}(s_0, a')] \land x. \]

2. The only statement current after E_k' is T_k (see Definition 6.27), and T_k is also current after a'.

3. The initial state of each y_j, $1 \leq j \leq n$, is also identical to $\text{value}(s_0, a')$; the proof is the same as for 2a.

Induction step: If $a_2' = a_2'' S$, assume the lemma is satisfied for a_2'' and the corresponding E_k'' and y_j''. Let S belong to process T_k.

1. $a' = a_1 T_0 a_2'' S$ is a computation iff S is ready to execute after $a'' = a_1 T_0 a_2''$. This requires two conditions to be satisfied.

a. S is current after a''. Since S is the next statement after E_k'' in E_k, S is current after E_k'' (see Definition 6.27). By 2a of the induction hypothesis this implies that S is current after a''.

b. If S is with r_j when B do S_1, r_j is not busy in a_2'' and $B[\text{value}(s_0, a'')]=true$. Since y_j finishes one withwhen statement before it starts another, and a_2 executes statements for r_j in the same order as y_j, r_j is not busy in a_2''. To see that $B[\text{value}(s_0, a'')]=true$, note that $B[\text{value}(E_k')] = true$ by part 2b of Definition 6.27. Now

\[x[\text{value}(s_0, a'')] = x[\text{value}(E_k')] \land \text{xevar}(S) \quad \text{(proved in 2 below)} \]

\[= x[\text{value}(E_k')] \land \text{xevar}(S), \text{since } S \text{ does not change any variable values.} \]
\[x[\text{value}(s_0,a'')] = x[\text{value}(\gamma'')] \land x'r_j \text{ (induction)} \]
\[= x[\text{value}(\gamma'')] \land x'r_j, \text{ since } S \text{ does not change any variable values} \]
\[= x[\text{value}(\beta'')] \land x'r_j \text{ (Lemma 6.40)} \]

So \(x[\text{value}(s_0,a'')] = x[\text{value}(\beta'')] \land x\text{var}(S_1) \), and \(E[\text{value}(s_0,a'')] = \text{true} \).

2. \(a \) and \(b \). \(S \) has the same effect in \(a'' \) as in \(\beta'' \) if all the variables in \(\text{var}(S) \) have the same values in both computations. Now

\[\text{var}(S) = \text{var}(T_k) \cup (\cup_{r \in \text{resources}(S)} r). \]

By induction \(x[\text{value}(s_0,a'')] = x[\text{value}(\beta'')] \land x\text{var}(T_k) \).

For \(r_j \in \text{resources}(S) \),

\[x[\text{value}(s_0,a'')] = x[\text{value}(\gamma'')] \land x'r_j \text{ (induction)} \]
\[= x[\text{value}(\beta'')] \land x'r_j \text{ (Lemma 6.40)} \]

3. If \(S \) is not a component of a \texttt{withwhen} statement for \(r_j \), 3 is satisfied by induction, since \(S \) does not affect the variables of \(r_j \).

If \(S \) is \(L: \text{with } r_j \text{ when } B \text{ do } S_1 \), \(S \) does not change any variables when added to \(a'' \) and \(\beta'' \), so again 3 is satisfied by induction.

If \(S \) is a proper component of \(L: \text{with } r_j \text{ when } B \text{ do } S_1 \),
Finally, the results of this thesis should be very applicable to automatic program verification. We visualize an approach in which the programmer works with an interactive system, like the one described by Good, et al. [Go75]. He first gives his program, possibly with auxiliary variables, and defines resource and loop invariants. The verification system is then left with the mechanical problem of checking whether the invariants and input and output conditions are consistent. It may respond that they are consistent, thus establishing the correctness of the program; that they are inconsistent, implying an error in either the program or the invariants; or that there is insufficient information to decide. In the last case the programmer can provide more information by adding auxiliary variables or strengthening the invariants.
BIBLIOGRAPHY

The deductive systems for RPL and GPL are primarily intended for partial correctness proofs. However, a number of other properties are important for parallel programs, and the information obtained from a partial correctness proof can often be applied to verify that other properties also hold. In Chapter 5 we showed how the pre, post, and resource invariant assertions from a partial correctness proof can be used to establish mutual exclusion, freedom from deadlock, and program termination.

Finally, we evaluated the axioms and inference rules by defining interpreters for the languages RPL and GPL; the interpreters model the effect of executing programs on a real computer. The RPL and GPL deductive systems were shown to be consistent with the interpreters, i.e., they accurately describe the effects of program execution. For RPL we also showed that the deductive system was relatively complete with respect to the interpreter, i.e., given adequate knowledge about the data domain of the program, any true partial correctness formula can be proved. Thus, the axioms and inference rules do not omit any crucial information about program execution.

Our results suggest several directions for future work. One important task is the extension of the deductive system to a more powerful programming language. A major weakness of RPL and GPL is that both are limited to programs with a fixed degree of parallelism. Parallel execution is initiated by the cobegin statement, which starts a fixed number of parallel processes. The addition of recursive procedures would overcome this limitation, since a recursive procedure which contained a cobegin statement could create an arbitrary number of parallel
processes. We conjecture that recursive procedures would increase the complexity of partial correctness proofs only as much as in the sequential case, i.e., a new rule describing recursion must be added, but no change in the existing axioms is necessary. However, mutual exclusion and deadlock proof techniques may require more significant modification.

More generally, it is clear that neither RPL nor GPL is a perfect language for parallel programming. GPL is too powerful to be feasible for implementation, and it does not provide enough structure to aid the programmer in organizing his program. Although RPL is an improvement in both these areas, the conditional critical section is still somewhat inefficient as a synchronizing operation. Moreover, there are some problems which do not fit reasonably into the RPL framework -- for example the readers and writers problem discussed in Chapter 5. There is a need for new language constructions which can be implemented efficiently and which provide a basis for organizing programs in a clear and easily verified manner.

Another area in which further work is needed is the verification of properties other than partial correctness. Although techniques were presented in Chapter 5 for proving some of these properties, there are many more to consider, e.g., priority scheduling and progress for each process. Not all of these properties will be amenable to the axiomatic approach (see the discussion at the end of Chapter 5), but the range of properties which can be verified using this and other techniques can certainly be extended.

