A QUORUM-BASED COMMIT PROTOCOL
Dale Skeen

TR 82-483
February 1982

Department of Computer Science
Cornell University
Ithaca, New York 14853

A QUORUHK-BASED COHHIT PROTOCOL

Dale Skeen

Computer Science Department
Cornell University
Ithaca, New York

Abstract

Herein, we propose a commit protocol and an associated recovery protocol
that is resilient to site failures, lost messages, and network partitioning.
The protocols do not require that a failure be correctly identified or even
detected. The only potential effect of undetected failures is a degradation
in performance. The protocols use a weighted voting scheme that supports an
arbitrary degree of data replication (including none) and allows unila-
terally aborts by any site. This last property facilitates the integration
of these protocols with concurrency control protocols. Both protocols are
centralized protocols with low message overhead.

1. Irtroduction

A transaction is, by definition, an atomic operation on a distributed
database system. Either all changes by the transaction are permanently
installed in the database, in which case the transaction is said to be com-
mitted, or no changes persist, in which case the transaction is said to be
sborted. It is the task of a commit protocol to ensure that a transaction
is atomically executed.

In this paper we propose a commit protocol that is resilient to multi-
ple occurrences of the following classes of benevolent failures: arbitrary
site failures, lost messages, and network partltlonlng. It does not require
that the type of failure be correctly determined, in fact, resiliency is
guaranteed even if failures go undetected.

The protocol uses a weighted voting scheme to resolve conflicts during
failures. When failures occur, a transaction is committed only if a
minimum number of votes, called a commit quorum and denoted VC’ are cast for

committing. Slmllarly, in the presence of failures, a transaction will be
aborted only if a minimum number of votes, called an abort quorum and
denoted VA’ are cast for aborting. A commit quorum does not have to equal

an gbort quorum, but their sum must exceed the total number of votes.

Voting schemes have been proposed previously for transaction manage-
ment. Thomas introduced a majority voting scheme to ensure consistency in a
fully replicated database ([THOM79]). Gifford extended the scheme by
assigning weights to sites and using quorums rather than a simple majority
([GIFF79]). The proposed protocol differs from the previous work in several
important ways: °

(1) It is a commit protocol, not a concurrency control scheme. It provides
atomicity at a per transaction basis. Nonetheless, it is straightfor-
ward to integrate any type of concurrency control protocol into this
protocol.

(2) 1t allows unilateral aborts during the first phase of the transaction.
A site may decide to abort because of several reasons, for example, a
deadlock is detected locally.

(3) It is primarily intended for partially replicated distributed databases
where a transaction can read from any copy but must update all copies.

In addition, the protocol exhibits the following properties:

(1) It is a centralized protocol and, thus, benefits from the economy of
centralized protocols.

(2) 1In the absence of failures it is no more expensive than previously pro-
posed protocols that are resilient only to coordinator failures (and
not to a partitioning of the network).

(3) 1If all failures are eventually repaired, them the protocol will eventu-
ally terminate.

(4) It is a blocking protocol -- operational sites must occasionally wait
until a failure is repaired. This is an undesirable but necessary pro-
perty exhibited by any protocol that is resilient to network partition-
ing ([SKEE8lal). However, the protocol can be tuned so that the

frequency of blocking is low.

This paper is divided into six sections. The second section states our
assumptions and defines the terminology used in the remainder of the paper.
The third section develops a resilient quorum-based commit protocol, and the
fourth section develops a resilient quorum-based recovery protocol. The
recovery protocol is invoked whenever a group of sites can no longer commun-
icate with the original coordinator (either it has failed or the network has
partitioned). Like the commit protocol, it is a centralized protocol. The
fifth section discusses performance, and the sixth section concludes the
paper.

Although the protocols proposed are resilient to many classes of
failures, this paper will focus on the problem of network partitioning.
This class of failures is generally agreed to the most difficult class to
. handle. The other two classes, site failures and lost messages, can be cast
as special cases of a partitioned network. In a site failure, a single site
is isolated (partitioned) from the remainder: of the network. A lost message
can be viewed as a very short lived partitioning. In all cases, the proto-
cols work without modifications.

2. Background

We assume that an underlying communications network provides point-to-
point communication between any pair of sites. We also assume that it gen-
erates no spontaneous messages, and that garbled messages are detected and
deleted. We do not assume that messages arrive in order nor that it detects
lost messages.

A partitioned network occurs when there are two or more disjoint groups
of sites such that no communication is possible between the groups. Each of
the disjoint groups is called a partition.

A distributed transaction T is decomposed into subtransactions Tl' Tz,

[N] T 9

N
sites. Any subtransaction can be unilaterally aborted, which results in the
abortion of the entire transaction. Hence, for transaction T to be commit-
ted, all sites must agree to commit their subtransaction. We assume that a
subtransaction can be atomically executed by a local transaction management
system ([GRAY79,LIND79]).

It is the responsibility of a commit protocol to ensure that all sub-
transactions are consistently committed or aborted. One of the simplest
commit protocols is the two-phase protocol ([GRAY79, LAMP76]) depicted in
Figure 1. The protocol uses a central site, the coordinator, to direct the
execution of the tramnsaction at the.other sites. Each slave has a chance to
abort the transaction by replying with a "no™ in the first round.

where a subtransaction is executed at one of the N participating

A commit protocol can be conveniently described by a set of state
diagrams, one for each participating site ([SKEE8lal). The diagram for Site
i describes the processing of subtransaction Ti' A state in the diagram is

called a local transaction state.

In the two-phase commit protocol, a single state diagram (illustrated
in Figure 2.) suffices to describe processing at all sites. For both the
coordinator and the slaves, there are four distinct and easily identified

CCORDIRATIOR SLAVE

(1) Transaction is received.
Subtransactions are
sent to each slave.

Subtransaction is received.
A reply is sent:

yes to commit,

no to abort.

(2) If all sites respond yes
then commit is sent;
else, abort is sent.

Either commit or abort is
received and processed.

Figure 1. The two-phase comnit protocol.

Figure 2. The state diagram for the two-phase commit protocol.

loca)l transaction states: the initial state (state q in the diagram), the

wait state (w), the abort state (a), and the commit state (c). A site occu-
pies the initial state until it decides whether to unilateral abort the
transaction. If the site decides against an abort, then the wait state is
entered. This state represents a period of uncertainty for the site, where
it has agreed to proceed with the transaction but does not yet know its out-
come (i.e. committed or aborted). The commit and abort states are self-
explanatory.

The local transaction states of any protocol form two disjoint subsets:
the committable states and the noncommittable states. A site occupies a
committable state only if all sites have agreed to proceed with the tramsac-
tion. For example, the only committable state in the two-phase commit pro-
tocol is the commit state. A state that is not a committable state is a
noncommittable state.

3. A Resilient Commit Protocol

The two-phase commit protocol is not a -very robust protocol. Whenever
the coordinator fails or becomes partitioned from the slaves, the slaves
must block until the failure can be repaired.

In this section we develop a very resilient commit protocol that allows
recovery from both of these types of failures. The section develops the
commit protocol in detail; the next section discusses the associated
recovery protocols for handling coordinator failures and partitioning.

Each site is assigned an integral nonnegative number of votes. (The
number can be 0, in which case the site is a passive participant.) The basic
idea is that whenever a group of communicating sites establishes a quorum,
they are allowed to proceed. There are two distinct types of quorums - a
commit quorum and an abort quorum.

Let V, VC’ and VA represent the total number of votes, the number

required for a commit quorum, and the number required for an abort quorum.
A resilient quorum-based protocol must obey the following properties
([SKEE81c]):

(1) VC+VA>V where 0<VC.VA<-V

(2) When any site is in the commit state, then at least a commit quorum of
sites are in committable states.

(3) When any site is in the abort state, then at least an abort gquorum of
sites are in poncommittable states.

These requirements are sufficient to ensure that a quorum-based proto-
col terminates in a consistent state -- if it does terminate ([SKEE8lcl).
The requirements are very similar to those for k-resiliency where a protocol
can tolerate upto k arbitrary site failures (see [ALSB76] for a definition
of k-resiliency and [SKEE81b] for a set of sufficient conditions ensuring
k-resiliency in a commit protocol). In both cases a minimum number of sites
must agree before an irrcversible decision is made by any site.

The seconrd requirement can be viewed as two subrequirements:

(2.1) Before the first site commits, a commit quorum of sites in committ-
able states must be obtained, and

COORDINATOR SLAVE"S RESPONSE

(1) Transaction is received.
Subtransactions are

sent to each slave.

Yes to commit

No to abort
(2) If all sites respond yes

then

prepare to commit is sent;

continue to phase (3)
else

abort is sent;

stop.

Ack

(3) If the sum of the weights
of the responding sites equals
or exceeds V

C
then
send commit to all
else

block (wait until a "merge").

Figure 3. The quorum based commit protocol.

(2.2) After any site has committed, a commit quorum must be maintained.

As a consequence of (2.2), a site can safely move from a committable state
to a noncommittable state if and only if it can be shown that no site has
committed the transaction, or it can be shown that this will not destroy a
commit quorum.

The third requirement, concerning abort quorums, is analogous to (2).
Hence, there exists (3.1) and (3.2) which are the analogs of (2.1) and
(2.2).

The two-phase commit protocol does not satisfy the second rule, nor can
it be simply extended to satisfy it. Moreover, any protocol which has a
single committable state (which must be the commit state) cannot satisfy the.
rule. Hence, in a quorum-based commit protocol, we need to introduce a new
committable state, the prepared to commit (pc) state. This state will

substantially increase the cost of the protocol, but unfortunately, it 1is
necessarye.

The new protocol is described in Figure 3 and its state diagram is
given in Figure 4. It requires three phases to commit, two to abort. The
new phase is the second phase, where all sites move into the prepared to
commit state. The only explicit mention of quorums is in the third phase
where the transaction is committed only if a commit quorum of sites advance
to the prepared to commit state. Even though abort quorums are mnot expli-
citly mentioned, the third requirement is still satisfied. In fact, if any
site unilaterally aborts (including the coordinator), then no site ever
enters a committable state and the third rule is trivially satisfied.

The protocol is a pessimisiic protocol -- if any site fails or a parti-
tion occurs during the first phase, then the coordinator immediately aborts
the transaction.

4. Recovery

There are two aspects of recovery. When a group of sites is parti-
tioned from the rest of the sites, they will execute a protocol that

transition requires a
| commit quorum (V)

Figure 4. State diagram for the quorum based commit protocol.

attempts to form a quorum and terminate the transaction. These protocols,
called termination protocols are discussed in the first part of this sec-
tion. If a quorum can not be achieved within the partition, then the sites
must block until communication between partitions is restored. Once this is
achieved, the sites within the new partition can execute a merge protocol
and reattempt terminating the transaction.

Termination Protocol

As with the commit protocol, the major emphasis in the proposed proto-
col is on successful termination. Partially executed transaction will be
aborted, when necessary, to achieve this goal.

When a group of sites detect that they are partitioned from the
remainder of the network, they execute a two part termination protocol. The
first part consists of electing a surrogate coordinator and the second part
consists of an attempt to form a quorum.

There are several possible election protocols. We will not explicitly
discuss election protocols except to note that it is possible to elect a
unique coordinator at linear cost ([GARC81,HAMM79]). The resilency of a
quorum-based protocol is not dependent on the uniqueness of the outcome of
the election. Even if two surrogates are chosen, resiliency is guaranteed
but performance suffers.

When the election completes the surrogate executes a protocol similar
to the commit protocol in the previous section. The termination protocol is
slightly more complex for two reasons. First, a surrogate works with less
knowledge than the original coordinator, specifically, the surrogate may not
know if a transaction is committable. Second, whereas there was a single
coordinator originally, there many be many surrogates each operating in dif-

ferent partitions.

For the first problem, a surrogate can attempt to form a commit proto-
col only if a site within the partition is in the committable state. For
the second problem, a surrogate must explicitly form abort quorums. A site
indicates its willingness to participate in an abort quorum by moving into a

prepared to abort state.

The termination protocol is given in Figure 5. Like the commit proto-
col, it consists of three phases. In the first phase the surrogate coordi-
nator polls the sites about their local state, and these replies determine
the action taken in the next two phases. If any site has committed
(aborted), then the transaction is immediately committed (aborted) at all
sites. Otherwise, the surrogate will attempt to establish a quorum.

A commit quorum is possible if .at least ome site is in the prepared to
commit state and the sum of the weights of the sites occupying the prepared
to commit state and the wait states is at least VC. If this 1is the case,

the surrogates will attempt to move all sites in the walt state into the
prepared to commit state. Barring additional failures, the surrogate will
then commit the transactiom.

Or even in the same partition if the election protocol fails to uniquely
elect a surrogate.

COORDIEATOR
(1) Request local state.

(2) slave responses coordinator's actions

2] commit send commits;

terminate
2]l abort send abort;

terminate
2] prepared to commit and send prepare to commit
weights of wait and ‘ continue with (3a)
prepared to commit ZVC
weights of wait and " send prepare to abort
prepared to abort 2V, continue with (3b)

(3a) if 2V, ack's then send commit
else block

(3b) if 2V, ack's then send abort
else block

(Slaves respond with their local state in Phase 1 and with an acknowledge-
ment in Phase 2).

Figure 5. The quorum-based termination protocol.

However, additional failures may prevent sites either from making the
transition or from acknowledging the transition. If an insufficient number
of acknowledgements is received, then the protocol blocks.

An abort quorum is possible if the sum of the weights of sites occupy-
ing the wait state and the prepared to abort state is at least Vye Unlike a
commit quorum, an abort quorum does not require any sites to occupy the
prepared to abort state. Again, the surrogate attempts to move an abort
quorum of sites into the prepared to abort state -- aborting the transaction
if it is successful, blocking otherwise.

The state transition diagram is given in Figure 6. A heavy line indi-
cates the normal movement of the site into a "prepared" state and then into
the corresponding final state. A dashed line indicates a path taken when
the site is not a participant in the formation of the quorum.

Figure 6. State diagram for the termination protocol.

Merging

Partition merging occurs whenever a failure is repaired and communica-
tion is established between two or more partitions. We assume that the re-

establishment of communication paths is detectable™.

The recovery strategy for merging is simple: execute the termination
protocol described in the last section. In this case the election process
can be streamlined -- the new coordinator can be chosen from among the old
coordinators, e.g. let the coordinator with lowest site number become the
new coordinator. The new coordinator then executes the three phases in the
second part of the termination protocol.

Site recovery is equally simple -- it is a special case of merging
where one partition contains a single site.

5. Performance

It is very difficult to analyze the expected performance of quorum-
based protocols, even if very simple and independent probability distribu-
tion functions are used to describe site failures. For nonzero failure pro-
babilities, it is clear that the worst case performance is unbounded, which
is expected from the results of the Two Generals Problem (see [GRAY79] for
an description of this problem and its ramifications).

2 . s . . .
A low level protocol can periodically attempt communication with other

sites. Eventually it will detect the repair of the partitionm.

- However, we argue that if all partitions are eventually resolved, then
the protocols will eventually terminate. They are acyclic, hence every
state transition moves a site closer to termination, and they are deadlock
free. This latter property is assured by the choice for the quorum sizes --
after the merging of all partitions, it must be the case that either an
abort quorum or a commit quorum can be formed.

In enviromments where failures are rare, the most important cost meas-
ure is the cost of the commit protocol in the absence of failures. The
quorum-based commit protocol requires 3 phases, 5 end-to-end message delays,
and about 5N messages (where N is the number of participants). This cost is
substantially higher than the cost of the two phase commit protocol --
higher by approximately 50%. However, the two-phase protocol is not very
resilient. A more resilient protocol, specifically one that is resilient to
a coordinator failure, requires at least three phases. Vhile several three
phase protocols are known ([GARC79, SKEE81b]), the quorum-based protocol is
the only one resilient to network partitioning.

There are two sets of parameters that determine the performance of the
protocol in the presence of failures: the weights assigned to individual
sites, and the values for VC and VA‘

The assignment of weights is often influenced by policy considerations
external to implementation of the system. However, some factors that are
relevant to performance are percentage downtime, failure rate, and percen-
tage of data stored at the site. The most intuitive rule is to assign
weights inversely proportional to the percentage downtime.

In choosing quorum sizes, it is not necessary for Ve to equal VA' In
fact, there are several strong arguments for choosing VC>VA. One argument

concerns protocols allowing unilateral aborts: if a significant number of

transactions are unilaterally aborted, then clearly VA should be smaller. A

stronger argument is that most site failures are expected to occur during
Phase 1 of the commit protocol since most of the transaction execution time
is spent in Phase 1. This phase is time consuming because the majority of
the data processing takes place during it; whereas, Phase 2 and Phase 3 syn-
chronize state information among the sites and require very little local
processing. If sites fail during Phase 1, then the transaction must be
aborted -- hence, it should be easy to abort.

An interesting beuristic for choosing Va is based on a rough estimate

of the failure distribution of the sites. This heuristic is useful in
enviromments where site failures, rather than network partitions, predom-
inate. Let P(VA) be the probability that at least an abort quorum is opera-

tional. P(VA) is a decreasing function in V,- The point is to choose the
maximum V, such that V,<=V, and P(VA) exceeds a minimum level of desired
availability.

As mentioned before, the weight of a site can be zero, in which case
the site contributes nothing toward forming a quorum. (However, such a site
can still unilaterally abort the transacticn.) When designing a protocol, a
zero-weighted site can be eliminated from all phases requiring the formationm

of a quorum. In the extreme case, where only a single site has a non-zero
weight, a quorum based commit protocol degenerates into the standard two-

10

phase protocol with all of its disadvantages. Specifically, all sites must
block on the failure of the only nonzero weighted site {which is normally
the coordinator).

6. Conclusion

The use of quorums is a standard recovery technique for handling net-
work partitioning (even primary site schemes, e.g. [STON79], are a degen-
erate case of using quorums). We have presented a very general quorum-based
commit protocol that can be used with both replicated and nonreplicated
data. Unlike previous schemes it allows a single site to unilaterally abort
the transaction.

Quorum-based protocols are resilient because a site is allowed to par-
ticipate in only one type of quorum. Quorum sizes are carefully chosen such
that the formation of both a commit and an abort quorum requires the parti-
cipation of a common site. In this way mutual exclusion is assured -- only
one type of quorum can be formed during the execution of a transaction.
(However, it is possible for multiple occurrences of a single type of quorum
to be formed. For example, since abort quorums are usually small, more than
one can be formed concurrently.) In such a scheme the concurrent execution
of several coordinators, even if they are within the same partition, does
not destroy consistency.

When a new coordinator is elected in the proposed recovery protocol, it
polls all sites about their current local state. In making a commit deci-
sion, only the replies from the latest poll is used -- information obtained
in earlier polls is ignored. Less conservative approaches which uses previ-
ous information can be found in [SKEE8lc].

REFEREHCES

[ALSB761] Alsberg, P. and Day, J., "A Principle for Resilient Sharing of
Distributed Resources," Proc. 2nd Internatiopal Conference om

Software Engipeering, San Francisco, Ca., October 1976.

[GARC79] Garcia-Molina, Hector, Ph.D. Thesis, Stanford University,
1979.
[GARCS81] Garcia-Molina, Hector, "Elections in a Distributed Computing

System,™ TR No. 280, Princeton University, December, 1980.

[GIFF79] Gifford, David, "Weighted Voting for Replicated Data" Qperaf-
mwm: 13, 5, Dec., 1979, PP 150-9.

[GRAY79] Gray, J. N., "Notes on Database Operating Systems,™ in QOperat-
ing Systems: An Advanced Course, Springer-Verlag, 1979.

[HAMM79] Hammer, M. and Shipman, D., "Reliability Mechanisms for SDD-1:

A System for Distributed Databases," Computer Corporation of
America, Cambridge, Mass., July 1979.

i1

[LAMP76]

[LIND79]

[SKEES8la]

[SKEE81b]

[SKEE81c]

[sTON791]

[THOM791]

Lampson, B. and Sturgis, H., "Crash Recovery in a Distributed
Storage System," .Tech. Report, Computer Science Laboratory,
Xerox Parc, Palo Alto, California, 1976.

Lindsay, B.G. et al., "Notes on Distributed Databases,™ IBM
Research Report, no. RJ2571 (July 1979).

Skeen, D. and M. Stonebraker, "A Formal Model of Crash
Recovery in a Distributed System," IEEE Iransactions on
Software Engineering, (to appear).

Skeen, D., "Nonblocking Commit Protocols,™ SIGMOD Interna-
tional Conf. on Management of Data, Ann Arbor, Michigan, 1981.

Skeen, D., "Crash Recovery in a Distributed Database System,"
Ph.D. Thesis, University of California, Berkeley (in prepara-
tion).

Stonebraker, M., "Concurrency Control and Consistency of Mul-
tiple Copies in Distributed INGRES," IEEE Iransactions on
Software Engineering, May 1979.

Thomas, Robert, "A Majority Consensus Approach to Concurrency
Control,™ Transactions on Database Systems, 4, 2, June 1979.

12

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif

