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Abstract

A permutation group on n letters may always be représented by a
small set of generators, even though its size may be exponential in n.
We show that it is practical to use such a representation since many
froblems such as membership testing, equality testing, and inclusion
testing are decidable in polynomial time. In addition, we demonstrate
that the normal closure of a subgroup can be computed in polynomial
time, and that this procedure can.be used to test a group for solvabil-
ity. We also describe an approach to computing the intersection of two
groups. The procedures and techniques have wide applicability and have

recently been used to improve many graph isomorphism algorithms.
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Il.l:l. e

Let gjs««+sg, be permutations of the set {l,...,n}. The collection
of permutations expressible as finite compositions of these g5 forms a
group; a group whose size may easily be exponential in n and'k. For
example, take the set Sn of all n! permutations. It can be generated by
just two permutations, a cyclic shift of the n letters, and a transposi-
tion of the letters 1 and 2. In fact, every subgroup G of S  can be

represented succinctly by 0(logl|G|) generators.

It is natural to ask, from a computational perspective, whether
using such a short representation of such a large collection is practi-
cal. More to the point, is it possible to answer basic questions about
a group G that is defined by a list of genmerators? For example, can
membership be tested? can the size be determined? can two groups be
tested for equality? can one be shown to include the other? We provide
positive answers to each of these questions in the form of polynomial-
time algorithms. Classical algorithms to solve these problems have been
known to computational group theorists for some time, but without accu-

rate analyses of running times [3,7].

Permutation groups, depending upon how they are represented, either
have polynomial-time membership tests, or they don't. Those that do we
call polynomial-time recognizable. Any group represented by generators
is polynomial-time recognizable. The automorphism group of a graph is
also polynomial-time recognizable, even if generators for it are unk-
nown, since testing whether a permutation is an automorphism is easye.
As an important corollary we will prove that given generators for a

group G, generators for any polynomial-time recognizable subgroup with
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small index can be found in polynomial time.

Using these techniques, in [4] L. Babai's probabilistic
polynomial-time isomorphism test for graphs of bounded color multipli-
city [2] was improved to deterministic polynomial time, C. Hof fmann's
probabilistic o(nclogn) isomorphism test for cone graphs was improved to
clogn)

deterministic O(n time, and a subexponential algorithm for

trivalent graph isomorphism was described. In these proceedings E. Luks
[6] shows that the last two problems are decidable in deterministic
polynomial time. Many other problems of permutation groups seem to have
polynomial-time solutions. We give two examples, an algorithm for com-
puting the normal closure of a subgroup, and an algorithm to test a
group for solvability. In addition, we describe an approach to the

problem of computing group intersections.

Preliminari

A permutation group on {l,...sn} is a collection of 1-1 maps from
{l1,...sn} onto itself that forms a group under composition. Let G be a
group. The order of G, |G|, is the number of permutations in G. Let H
be a subgroup of G, written G > H. The quotient symbol G/H stands for
the collection of cosets of H in G, i.e., the collection of equivalence
classes of elements of G in which x =y if and only if x-ly is in H.
From Lagrange's theorem we know that every coset of G/H has the same

size and, therefore, [G]| = IG/H] |H]. The size of G/H is called the

index of H in G.

If -SERTTEY - are permutations, then the group <g1.....gk>. gen-

erated by the g, is the group of all permutations formed by products of
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the gi° We use the symbol I to mean the unique group generated by the

. idenﬁity permutation.
Testing Membership and Determining the Ordexr of a Group

Let G be a group of permutations on {l,...yn} generated by
gpoeeesBye There is a descending chain of subgroups,
G = G0 2 G D eee > G, =1 from G to the identity group, in which G; is

the subgroup of G fixing lseeesi. Consider the quotients

Gi/Gi+1’ for i=0seeesn-1. The group G can be expressed as

(3]
!

ors G (Go/Gl)(Gl/GZ)...(Gn_l/Gn).

Therefore, any element g in G can be written in the form
g = aoal---an;l. where a; is an element of Gi/Gi+l' Intuitively this
says that any permutation in G can be realized as a permutation that
moves 1 to the correct place, followed by a permutation that fixes 1 and
moves 2 to the Eorrect place, followed by a permutation that fixes 1 and
2 and moves 3 to the correct place, etc. The collection of elements in

Gi/G i=0seeesn-1, are called strong generators fer G. Our first

i+1?
theorem yi-lds an algorithm, like the one proposed by Sims [7], that
computes coset representatives for each of the quotients in polynomial

time.

Theorem l: Let G be a group generated by ByseeerByn Let Gi be the sub-
group of G fixing letters lse..pi. Coset representatives for Gi/Gi+1’

i=0se.sesn-1 can be determined in polynomial time.

 Proof! The maximum value that |G;/G;, ;| can have is mn since cosets only
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differ by where they map the letter i+l. We will construct a table T
with n rows, labelled 0 to n-1, and n columns, labelled 1 to n, whose
ith row is a set of right coset representatives for Gi/Gi+1' The table
will be organized in such a way that the permutation in the i, jth posi-
tion fixes letters l,.;..i-l and maps letter i to position j. Thus the

entries in T will only lie on or above the diagonal.

When we are finished, the table should have the property that g is
in G if and only if g can be expressed as aja;*°*a _;» where a; is a
member of the ith row. This we will call the canonical representation

of g.

To start, initialize T with the diagonal elements equal to the
identity and all others empty. The procedure sift(x), defined below,
modifies the table by inserting at most onme new coset representative in
such a way that x can be written in canonical form.

sift(x):
i«0
while (i # n-1 and
there is a y in row 1 such that

y and x map i+l to the same letter)

do

i«igl

X<y 'x
if x is not a member if row 1
then insert x in row i

As an example of how sift works, suppose the table for the tower

G0 26 26,26y = I at some point looks like Figure l.

(GO=) I_J._.___I Gl + I__.a__._l Gl + I_.._.__.l Gl~
(G].:) l—1 | Gz + | G2 + I___l G2~
(GZ:) l—1 | G3 + l_____l G3 + | G3~

Figure 1



1

Consider the call sift(b) for some b in G0 but not in Gl' If a b

is in Gl’ and a-lb is not in G,, then after the call sift(b) the table
would look like Figure 2. In this table b is expressible in canonical

N

form as a(a-lb)l.

1 | & bl I—1

Figure 2

At this point we make a key observation: all of the coset represen-

tatives have been found if and only if
(1) each generator can be written in canonical form, and

(2) each product of a pair of representatives in the table can be

written in canonical form.

Since we will only sift elements from G we need only verify that
when (1) and (2) are satisfied any g in G can be written in the canoni-
cal form. Let g be an element of G. Write g as a product of generators
and write each generator in canonical form. If this product is not in

canonical form, use (2) to rewrite it.

By using (2) we can take an adjacent pair of representatives X,y in
the string representing g and, if x comes from a higher numbered row

than y, rewrite xy in canonical form. This has the ef fect of moving an
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element from a lower numbered row past an element of a higher numbered
row to the left in the string representing g. Moving all the row 0
representatives to the left, then all the row 1 representatives, and so
on, we can put the string in canonical form. It is important to note
here that writing xy in'canonical form does not require the gntroduction

of any elements from lower numbered rows than the one y comes from.

The whole algorithm can be described as
Step 1. Sift all the generators.

Step 2. Close the table such that .the product xy, for every pair

(x,y) in the table, can be written in canonical form.

To perform Step 2 simply run through all pairs (x,y) from the table
and sift their product. The number of coset representatives in the
table is at most n2. The number of calls to sift is at most (n%) (n?)

and each call to sift takes roughly n2 time. Therefore, the running

time is 0(n6). a polynomial in n.

Once the coset representatives have been found, testing membership
and computing the size of G is not hard. To determine if x is an ele-
ment of G, run sift with argument x. If x can be written in canonical
form without the introduction of new elements into the table, then x has
can be written as a product of generators. If x cannot be written in
canonical form, then x is not in G. The order of G is the product of

the sizes of Gi/Gi+1'

The group G = <gyreeergy> contains H = <hjseeeshy> if and only if
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each hi is a member of G. Two groups are equal if and only if each con-
‘tains the other. Therefore, the polynomial-time membership test gives

polynomial-time inclusion and equality tests for permutation groups.

The following important corollary to Theorem 1 is used by E. Luks

[6] in his polynomial-time, bounded-valence graph isomorphism test.

Corollary l: Let G be a permutation group on {l,...,n} generated by
ByseserBye Let H be a polynomial?time recognizable subgroup of G, whose
index in G is at most a polynomial in n. Generators for H can be found

in polynomial time.

Proof: The sequence of groups G > H > H1 D eee D Hn = I, where Hi is the
subgroup of H that fixes the letters lyeessis can be used just as the
sequence G > Gl D> e+ D G, was used in Theorem 1, with two changes. The
first is that row 0 may have a polynomial number of entries instead of
at most n. The second is that to test whether two elements x and y of G
are in different cosets of G/H, the permutation x-ly has to be tested

for membership irn H.

Straight-Lane Programs

By a straight line program we mean a sequence of imstructions

hl“'-"hm in WhiCh

hjhk with j,k < i, or

gj. where gj is a generator.

Not every permutation x in G can necessarily be expressed by a
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polynomial-length word in the g;0 however, our next theorem states that

every x can be expressed as the result of a short straight-line program.

Theorem 2: Let G = <gjsee.sg, > be a group of permutations on {l,e..sn}.
There is a polynomial p such that each permutation x in G can be com-

puted by a straight-line program hl”“’hm = x, where m < p(n).

Proof: Using the polynomial-time procedure of Theorem 1, compute a table
of strong generators for G. Before the algorithm begins, form a
directed acyclic graph with k leaves, one for each of the generators,
and no edges. As the table is built, new products are formed. Each
time a product is formed, add a new node to the dag in such a way that

the sons of this node correspond to the factors of the product.

When the procedure terminates, a polynomial-size dag will have been
formed and every permutation represented by a node in the graph will
have an obvious polynomial-length straight-line program to compute it.
Since each permutation in G is the product of exactly n strong genera-

torss each can be computed by a polynomial-length straight-line programe.

O

c -] . licati

Let H be a subgroup of a permutation group G on {l,...sn}. H is
normal in G if g-IHg = H for any g in G. The normal closure of H in G
is the smalles; normal subgroup, K, of G that contains H. To illustrate
the wusefulness of the sift and «close operations we present a
polynomial-time algorithm to compute generators for the normal closure

of H in G.
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Theorem 3: Let H = <h1.....hr> be a subgroup of G = <gprecesgy,>e Gen-
erators for K, the normal closure of H in G, can be computed in polyno-

mial time.

Proof: Form a table T of strong generators for H using the algorithm of
Theorem 1. In order to get generators for K we will modify T until it

is a table of strong generators for K.

Since H is a subset of K, and K is normal in G, each product of the
form gzlhgi. where 85 is a generator of G and h is a coset representa-
tive from T, should be in K. 1In order to achieve this we will take
every such product and sift it into T. The following program takes T
and augments it using the sift and close steps until T has the property
that for alllh in T, and for all'generators 8; of G, the product g-ilhgi
is expressible in'canonical form using representatives of T.

while there is an x in T
not processed by this loop

do RS |
for each g.: sift(g. xg.)
i i %1
close T :
The main loop 1is executed at most a poljnomial number of times.

Since sifting and closing are polynomial-time operatiomns, the whole pro-

gram runs in polynomial time.

Let Group(T) stand for the group generated by the permutations in
the table T. Certainly Group(T) contains H. A simple induction proves
that the T produced by the above algorithm contains only permufations
that are generated from products of the form x or g-i-lxgi where x is an
element of the normal closure of H in G. Therefore, if Group(T) is nor-

mal in G, then it is the smallest normal subgroup of G that contains H.
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To see that Group(T) is normal in G, observe that for each gemera-
tor g, of G, and each generator x of Group(T), the product g;.lxgi is in
Group(T). Let X;see.sx be some of the generators of Group(T). For
each generatbr g; of G, define x; to be gzlxjgi. ;n element of Group(T).
If y = XjXgeeeXs then

_1 -
8 Y&i T &i *1°°**p8j
RS
X181 *2°°**p8j
' ' -
X1 *nbi 8§
' '
X *e*X , an element of Group(T).

It is not hard to see from this that if g is any element of G and y is
any element of Group(T), then g-lyg is an element of Group(T). There-

fores, Group(T) is the normal closure of H in G.

The derived subgroup G' of a group G is defined to be the group
1

generated by all products of the form a b-lab. where a,b are elements

of G. The group G is called solvable if the sequence
G > G' Deeed G(i)D--- terminates at I. Solvable groups play an iﬁpor-
tant role in the study of field extensions and ultimately relate to the
conditions undg; which a polynomial equation has a solution in radicals.

Using the normal closure algorithm we can get a polynomial-time test for

solvability.

Theorem 4: Let G = <g1,...,gk> be a group of permutations on {lseeesn}e

In polynomial time G can be tested for solvability.

Proof: It is a fact, which we don't prove here, that the derived sub-

group of G is equal to the normal closure in G of the subgroup generated
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by all products of the form gllgglgigj. By forming all such products,
and compﬁting the normal closure, the derived subgroup of G can be com-

puted in polynomial time.

If the sequence G © G' Dee+e converges to I, then it does so within

a polynomial number of steps, since |G If the sequence

doesn't converge to I, then for some polynomially _ bounded i,
G(l) = G(l+l). The derived groups can be computed, and group equality
can be tested in polynomial time. Therefore, it can be determined, in

polynomial time, whether the sequence converges to I. Hence, G can be

" tested for solvability in polynomial time.

Ihe Intersection Problem

In [4), [5], and [6] a relationship has been established between
certain graph isomorphism problems and the problem of computing genera-
tors for the intersection of two groups. Given an arbitrary pair of
groups, G=<g1.....gk>. and H=<hl....,hr>‘we do not know whether it 1is
possible to compute generators for their intersection quickly. There
are, however, certain situations in which the intersection can be found

in polynomial time.
Polynomially Accessible Iowers

The theorem proved in section 1 that computes coset representatives
for the quotient groups Gi/Gi+1 relies on four properties of the tower

G0 D> eee > G, =1 for its polynomial running time. They are
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( i)the number of groups is polynomial in n,
( ii)generators for Gy are known,

(iii)the size of G,/G,, ; is bounded by a polynomial in n, and

~

( iv)there is a polynomial-time test to determine if a and b from

G; are from the same coset of Gi[Gi+l'

Any tower that satisfies these four conditions we call polynomially

accessible. Using this definition we can restate the first theorem.

Theorem 5: Let G0 D eee D Gr = I be a polynomially accessible tower of
groups. Coset representatives for the quotients Gi/Gi+1’ for

ij=0seeesr-1, can be determined in polynomial time.
This allows us to prove the main theorem of this section.

Theorem 6: Let G and H be any two polynomial-time recognizable groupse.
Let S be a group for which generators are known. If § contains both G
and H, and there are two polynomially accessible towers, one from S
through G to I, and the other from S through H to I, then generators for

GNH can be found in polynomial time.

Proof: Let §=Hy> eee > H =H»> H > eee2H ;=1 and

r+l

S = G0 D eee D Gp =G> G D eee D Gq_1 = I be the two towers. Con-

ptl
struct an s X q table whose i,jth entry is the group GinHj‘ Each entry

is a recognizable group since it is the intersection of recognizable

groups.

Both IHj/Hj+1I and lGi/Gi+ll are bo?nded by some polynomial p(m).

Consider the two groups Gi"Hj and GinHj+l' Let a and b be distinct



- 14 -

coset representatives of X = (GinHj)/(GinHj+1)' The elements a and b
are both from the group Hj' Furthermore, if a'lb were an element of
Hj+l’ it would also be an element of GinHj+1° Sénce a and b are from
different cosets of X it follows that a-lb is not in Hj+l' Therefores a

and b are distinct coset representatives of Hj/H Hence

j*l°
I(GinHj)/(GinHj+l)| is less than or equal to [Hi/Hg ;| < p(n). Simi-

181'1y: I(Ginﬂj)/(cﬂlnﬂj)l < P(n)-

Let P be any path in the table beginning at S, moving only one row
down or one column across at a time, passing through GnH, and ending at
I. This path P describes a polynomially accessible tower of groups from

S through GnH to I.

For example, the tower s> Hl =] HZ D eee D HDO GlnB =]
ese D Gan > GnH > Gp+lnH D eee D I can be used to get generators for

GnE in polynomial time.

A natural conclusion that we can draw from this theorem is that
many group intersection problems lie in NPncoNP. For example, this will

be the case whenever we know that G and H
(1) 1lie under a common group S, and

(2) there exists a chain of groups between S and G, and a chain

between S and H whose indices are polynomially bounded.

The reason computing GnH, for such G and H, is in NPncoNP is that one
can use nondeterminism to guess generators for S and for each of the

groups in the chains. Towers from G to I, and from H to I can be
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obtained by fixing letters, and then the algorithm in Theorem 5 can be

used to verify the guesses.
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