Proceedings of the North American
Process Algebra Workshop 1993
Ithaca, NY

Bard Bloom*

TR 93-1369
August 1993

Department of Computer Science
Cornell University
lthaca, NY 14853-7501

* Other members of the committee include: R. Cleaveland, R. van Glabbeek, I. Lee, N.
Lynch, and F. Vaandrager.

Proceedings of the
North American
Process Algebra Workshop

1993
Ithaca, NY

PROGRAM COMMITTEE:
B. Bloom (chair)
R. Cleaveland
R. van Glabbeek
I. Lee
N. Lynch
F. Vaandrager

Contents

A Semantic Theory for ML Higher Order Concurrency Primitives
Dominique Bolignano and Mourad Debabi

An Operational Semantics of Value Passing
Rance Cleaveland

An Information Flow Security Property for CCS
Riccardo Focardi and Roberto Gorrieri

Concurrent Kripke Structures
Vineet Gupta

Specification of Instruction-Level Parallelism
Ed Harcourt and Jon Mauney and Todd Cook

Specification of Transition Systems with Negation
. Rémi Lissajoux

A Comparison of Simulation and Algebraic Techniques for Verifying Concurrent Systems
Nancy Lynch and Roberto Segala

A note on Model Checking Context Free Processes
S. Purushothaman Iyer

State Refinement in Process Algebra
Andrew Uselton and Scott Smolka

Parametric Preorders for Process Description Languages
Daniel Yankelevich

A Semantic Theory for ML Higher Order Concurrency
Primitives

Dominique Bolignano

Mourad Debabi

Bull Corporate Research Center,
78340 Les Clayes-Sous-Bois, FRANCE
D.Bolignano@frcl.bull.fr, M.Debabi@frcl.bull.fr

Abstract

In this paper we deal with the theoretical founda-
tions of the unification of concurrent, functional and
imperative programming paradigms. The intent is to
present a denotational model for a language that is
atmed to integrate all the three paradigms. Concur-
rency is supported through the embedding of a CSP-like
process algebra into a functional language. FEzpres-
sions may communicate through unidirectional chan-
nels and can also be composed through some concur-
rency combinators. The notion of reference is used to
support imperative aspects. References, channels, and
functions are made first-class citizens. Following an
informal presentation of the language we will describe
1ts static semantics. This semantics is effect-based i.e.
for each expression it yields a type, the side effects and
the communication effects. The use of types and ef-
fects allows a safe and efficient integration of the three
programming paradigms and also solves some technical
problems related to the foundations of the dynamic do-
mains. Then the dynamic semantics is presented. It
is denotational and rests on an extension of the math-
ematical model of acceptance trees.

1 Motivation and Background

The intent of this paper is to provide theoretical
foundations for the unification of three computational
paradigms which we refer to as concurrent, functional
and imperative programming. A great deal of interest
has been expressed in each of this programming styles
and the underlying models have been deeply investi-
gated, albeit generally separately.

Concurrency models have been a focus of interest
for a great number of researchers. Accordingly, this
gave rise to plenty of calculi and models. Prominent

calculi are those that corresponds to process algebra
such as: CCS (Calculus for Communicating Systems)
[28, 27] and CSP (Communicating Sequential Pro-
cesses) [17, 18] for which mathematically well-behaved
models have been advanced. One can cite the failure-
sets model of Brooks, Hoare and Roscoe [7, 8, 9] or
the acceptance-trees model of Hennessy [13, 14]. How-
ever, in spite of the large activity of the concurrency
community, it remains that formalisms and techniques
devised for concurrent and distributed systems are
generally relevant to pure processes, in other words,
they focus on control aspects rather than data as-
pects. Thus, in such frameworks, there is no data, no
communication, no states,...etc. These simplifications
are generally adopted in order to put the emphasis
on the difficulties inherent to concurrent systems, for
instance, nondeterminism, the semantics of combina-
tors,...etc.

On the other hand, functional programming has
been extensively studied. Consequently, many power-
ful, general-purpose programming languages emerged
such as ML dialects. The latter rests on secure the-
oretical foundations that are exemplified by the large
body of results on pure and typed A-calculus. Gen-
erally, functional languages are endowed with impera-
tive features for efficiency reasons. Also programming
without such facilities becomes quickly tedious and
cumbersome in many situations.

There is an increasing need for programming lan-
guages and environments that combine all the three
paradigms. This need is justified by the growing num-
ber of applications that operate in distributed envi-
ronments. In addition, multiprocessor machines are
very common today and the challenge is to develop
appropriate languages that can take advantage from
the computing power of such systems.

The work that will be presented hereafter, is meant
to explore whether programming styles and conve-

niences evolved as part of Concurrent, Functional and
Imperative programming could be somehow brought
together to coexist in a single language. More ac-
curately, the intention is to experiment our ideas on
an ML-like language extended with concurrency fea-
tures. Thus, the language described here supports
polymorphic types. It supports also both functional
and process abstractions as in CML [31, 32, 33] and
FACILE [10]: functions may be used to describe inter-
nal computations of concurrent processes. Functions,
processes, references and communication channels are
first-class values and thus can be passed along chan-
nels. Consequently, the mobility of these values is sup-
ported.

At the theoretical level, we will present the static
semantics of this language as well as the dynamic se-
mantics. The type inference system is based on an
extension of the type and effect discipline: a new ap-
proach to implicit typing that can be viewed as an ex-
tension of the ML-style type discipline. In addition to
that, as shown in [36], effect-based type disciplines are
more appropriate for integrating safely and efficiently
functional and imperative programming. In this paper
we will show that it contributes also significantly to
the integration of concurrency features. The dynamic
semantics presented here is denotational. It is based
on an extension of both the RSL (Raise Specification
Language [12]) models and VPLA (Value Passing Lan-
guage with Assignment) of Hennessy [15, 16]. Thus,
the presented model can be viewed as a CCS without
7's version.

The rest of the paper is organized as follows. A
comparison with related approaches is given in Sec-
tion 2. Then an informal description of the language
is presented in Section 3. Section 4 is devoted to the
denotational model as well as its algebraic properties.
A few concluding remarks and a discussion of further
research are ultimately sketched as a conclusion in Sec-
tion 5. Part of the denotational definition of the lan-
guage is given in the appendix.

2 Related Work

During the last decade, many proposals have been
advanced for concurrent programming languages. OC-
CAM [19] is a parallel imperative programming lan-
guage that is an incarnation of the pioneering work of
Hoare on CSP [17]. Recently, more modern languages
have been proposed that reconcile the functional, con-
current and imperative styles. For instance one can
cite CML [31, 32, 33], FACILE [10] and LCS [3]. All

the three languages emerged from the idea of com-
bining an SML-like language [30, 29] as a functional
and imperative core, with a CCS or a CSP-like pro-
cess algebra for process abstraction. They supports
polymorphism, functional and process abstractions,
dynamic behaviors and higher order objects.

These languages are quite expressive and as re-
ported in [1], there is a need to have a semantic theory
that enables one to reason about the programs and to
grasp the meaning of sophisticated constructions. A
structural operational semantics have been proposed
for both CML [33] and FACILE [10]. Another descrip-
tion of FACILE semantics has been developed using
the CHAM [2] (CHemical Abstract Machine) frame-
work [21]. In [5] we presented a structural operational
semantics for our language.

2.1 Typing

The static semantics (typing semantics) in CML,
FACILE and LCS rests on the type inference disci-
pline. It is well known that this discipline, is problem-
atic in the presence of non referentially transparent
constructs. More precisely, the problem is relevant to
type generalization in the presence of mutable data.
Therefore, many extensions of the initial work of Mil-
ner [26] have been proposed.

The classical way to deal with this issue, is the im-
perative type discipline [37]. An extension of this
approach has been used in the implementation of
Standard ML of New Jersey. It is based on weak
type variables: these type variables have an attached
strength information, denoting the number of applica-
tions needed to get a non trivial effect. In [20], another
method is proposed that consists in detecting some so
called dangerous type variables (the ones occurring in
the types of imperative objects), and labeling function
types accordingly.

Later, in [36], the type and effect discipline is intro-
duced. The latter yields as a result of the static evalu-
ation of an expression, not only its principal type, but
also all the minimal side effects. It should be noted
that the idea of considering the effects as part of the
static evaluation of an expression, has been suggested
in [22] and adopted in the FX project [11, 23].

In [5] we proposed a new inference typing system
that computes in addition to the principal types of ex-
pressions and their side effects, the minimal communi-
cation effects generated by the concurrent constructs.
We have also presented an adequate operational se-
mantics for our language and we proved that our typ-
ing system is consistent w.r.t. the static semantics.

2.2 Denotational Models

We are not aware of the existence of any denota-
tional model for the previously mentioned languages,
except for OCCAM. A denotational description of the
latter is presented in [34]. However, we are interested
here in some issues such as polymorphism, implicit
typing and higher order objects, that are not sup-
ported by OCCAM. Another important issue we are
dealing with here consists in providing a semantics for
a language that allows process and functional abstrac-
tions.

Denotational models are first important to get a
well understood foundations of the language. They
also allow the semantics designer to extract the proof
theory. They finally can serve as a model for the proof
theory.

As pointed out before, in the literature, the two
prominent denotational models for concurrency are
the failure-sets model [7, 8, 9] and the acceptance-
trees model [13, 14]. The failure-sets model has been
designed as a semantic theory for a quite abstract
version of CSP usually referred to as TCSP (Theo-
retical CSP). It supports only pure processes. The
acceptance-trees model is very similar to the failure-
sets model and has been devised as a model for TCSP
or CCS-like abstract languages.

To deal with data aspects that are value-passing,
assignment, return of results, store sharing as well
as some control aspects such as sequencing, Robert
Milne proposed an extension of the acceptance-trees
model [24] as part of the RSL models. The whole RSL
denotational semantics is presented in [25]. Inspired
by [24], Hennessy and Ing6lfsd6ttir investigated value-
passing and proposed a fully abstract model [15]. The
same authors [16] proposed a semantic theory for an
imperative language referred to as VPLA that sup-
ports value passing and assignments. In both [15] and
[16] the authors presented three semantic approaches
(i.e. denotational, axiomatic and operational) and
proved their equivalence. The foundations as well as
the algebraic properties of the RSL denotational mod-
els presented in [25] are detailed in [6].

To sum up, the language we present here, compares
with CML or FACILE, (1) by the use and the exten-
sion of the “type and effect discipline” to obtain a
more efficient type system, and (2) by the presentation
of a denotational semantics. The primary objective of
our work is to build upon the work done essentially
by Hennessy, Ing6lfsd6ttir and Milne, respectively on
VPLA and RSL, in order to get a denotational model
for a real-life concurrent, functional and imperative
language. Compared to RSL and VPLA we add in

particular (1) implicit typing, (2) full higher order pro-
cesses (which allows in particular to communicate ref-
erences and channel values through channels) (3) and
we take advantage of the effects provided by the type
inference system for the denotational semantics defi-
nition.

3 Informal presentation

The syntactic constructions allowed in our language
are close to those allowed in CML and FACILE. The
set of expressions includes:

o Literals such as integers, booleans true and false,
a distinguished value (), a constant skip which
models an expression that immediately termi-
nates successfully.

o Three binding operations that are the -
abstraction, the recursion and the let definition.

e Imperative aspects are supported through the no-
tion of reference. Expressions of the form ref (E)
stands for the allocation of a new reference and
assigns to it the value obtained by evaluating the
expression . We will use the unary operator !
for dereferencing and the binary operator := for
assignment,.

o Expressions may communicate through channels.
The expression channel() means allocate a new
channel. The expression E!'E’ means: evaluate
E', evaluate F and send then the result of E’
evaluation on the channel resulting from the eval-
uation of E. The whole expression evaluates then
to (). The expression E? evaluates to any value
received on the channel resulting from the evalu-
ation of E. Notice that the communications are
synchronized as in CCS and CSP.

e Three concurrency combinators:
-[]-+ Nondeterministic (internal) choice.

_[]+ External choice.
-||-: Parallel composition of two expressions.

¢ A sequencing operator: [-;-:].
More formally the BNF syntax of our language is:

E ::= () | true | false | Number n | ident z | skip |
ref E|!'E | E:= E | channel() | E? | E'E |
if EthenEelse E |letz=EinE |
recze E

In the following, we will use Py to stand for the fi-
nite powerset, A = B for the set of all finite mappings
(maps for short) from A to B and m m' for the over-
writing of the map m with the map m’. We will use
the notation [a; +— b1, ...,an — by,] to denote the map
that associates the elements b;’s to a;’s.

4 Static semantics

As we pointed out before, we propose hereafter an
extension of the type and effect discipline to give a
static semantics to our language. The reader may refer
to [5] for the main motivations underlying this choice.
We define the following static domains:

e The domain of Reference regions: The notion of
reference regions is introduced to abstract mem-
ory locations. Every data structure corresponds
to a region. Two values are in the same region if
they may share some memory locations. The do-
main consists in the disjoint union of a countable
set of constants and variables noted v. We will
use p, p', ... to represent reference regions.

o The domain of Reference effects: Reference effects
abstracts the memory side-effects. We define the
following basic effects: @ for the absence of effect,
¢ for a reference effect variable, init(p, 7) for the
reference allocation, read(p) for reading in the
region p and write(p) for assignments of values
to references in the region p. We introduce also a
union operator U for effects.

o == B|slinit(p, T)|read(p)|write(p)|oc U o

We will write 0 J ¢' & 30" 00 = ¢’ Ug"”. Equal-
ity on reference effects is modulo ACI (Associa-
tivity, Commutativity and Idempotence) with @
as the neutral element.

e The domain of Channel regions: As with reference
regions, channel regions are intended to abstract
channels. Their domain consists in the disjoint
union of a countable set of constants and variables
noted 6. We will use x,x',... to represent values
drawn from this domain.

e The domain of Channel effects: It is defined in-
ductively by:

k 2= Bln|chan(x, 7)|in(x)|out(x) | U &

We will use 7 to stand for a channel effect vari-
able. The basic channel effect chan(yx,) repre-
sents the creation of a channel of type 7 in the
channel region x. in(x) denotes the effect result-
ing from an input on a channel of the channel
region x while out(x) denotes an output on the
channel of the region x. We will write x J &' &
3k" e K = k' U k". Equality on effects is modulo
ACI with 0 as the neutral element.

e The domain of types: It is inductively defined by:
7 ::= Unit|Bool|Int|alre f,(7)|chany (7)|r 25 7

Unit is a type with only one element “()”, a a
type variable, ref,(7) is the type of references
in the region p to values of type 7, chan,(7) is
the type of channels in the communication region
X that are intended to be mediums for values of
type 7, T =5 7' is the type of functions that take
parameters of type 7 to values of type 7/ with a
latent reference effect o and a latent channel effect
k. We mean by latent effect, the effect generated
when the corresponding expression is evaluated.

We also define type schemes of the form Vv, ...,v, ®
T where v; can be type, reference region, channel re-
gion, reference effect and channel effect variable. A
type 7' is an instance of Vvy,...,v, ® T noted 7’ <
Yv1,...,Un ® T, if there exists a substitution 8 defined
OVer vy, ...,V such that 7 = 7. Our static semantics
contain sequents of the form: £ + E : 1,0, k; which
state that under some typing environment £ the ex-
pression E has a type 7, a reference effect o and a
channel effect k. Notice that type environments &
map identifiers to type schemes.

Type generalization in this type system states that
a variable cannot be generalized if it is free in the type
environment £ or if it is present in the observed refer-
ence effect, or present in the observed communication
effect. The first condition is classical while the two
others are due to the fact that types are bound to re-
gions in the effects. The reader should refer to [36] for
a detailed explanation of this issue.

Gen(o,k,E)(1) =
let {v1,..v.} = fo(7)\(fv(€) U fu(o) U fu(k))

in Vv;...v, e Tend
where:

fo(€) = U{fv(r)|3zez— 7 €&}
fv(o) U{fv(7) | 3p e init(p,7) € 0}

I

(unit) £+ ():Unit,0,0

(true) £+ true: Bool,0,0
(false) £+ false: Bool,0,0
(num) &+ Number n: Int,0,0
(chan) £+ channel() : chany(r), 8, chan(x, 7)

(skip) £+ skip : Unit, 0,0
1'<8!:0E
(var) Erz:7,0,0

Ext[g—= T]|FE: 7,0,k

FE:refy,(1),0,K

E)
(deref) £ FE : 7,0 Uread(p), k

EFE:refy(r),0,x EFE :71,0 K

(ass) EF E:= E":Unit,c Ud' Uwrite(p),x UK’

(in) EF E:chany(1),0,x
EFE?:1,0,kUn(x

(out) £t E:chany(r),0,6 EFE' :7,0 K
EF EE' : Unit,o Ua',k Uk’ Uout(x)
EFE:ro,x EFE :7 0K

(seq) 27 2 2

EFE; E 7 0oU0" kUK

(abs) TR El—E'B I E’_E"] 1 £'_EII_ n n
- JNE : E : Bool,g, Kk T, 0, K (T, 0 K
EFdeeB:r — 10,0 (if) E+if Ethen E' else E" : 1o Uo' Ud" kUK UK"
FE: g,k I’ I’] EFE' -) u’ "
(app) ££F(ET1;:;::’ZUKU’UU" NUZ'chJn"f (let) EFE 7o' K Et[z— Gen(d' K, E)T)FE: 7,0,k
’ ’ Erletz=E INE:r,0Uc kUK
EFE:1,0,k EFE :10 K
o — o £ FE:T0,
O e Ea B e U k0w (ree) EpllerllBiros
where: op=/],(],|
(obs)
(ref) EFE:T,0,K EFE:1,0,x o' 1 Observe(€,1,0) &' 3 Observe(E,T, k)
Erref E:ref,(r),0 Uinit(p,7), & EFE: 1,0 K
Table 1: The static semantics
v(k) = U{fv(r) | Ixechan(x,7) € Example 4.1 Let us consider a process that creates
X X X P p
fo(r) = {z |z appears free in 7} a reference to the number 1, a channel and then put in

The observation criterion has been introduced in or-
der to report only reference effects that can affect the
context of an expression.

Observe(€,1,0) ={s € ols € fv(E) U fu(r)}U
{init(p, '), read(p), write(p) € o|
pE frr(E)U frr(r)}

Observe(E,1,k) ={n € k|n € fv(€)U fu(r)}U
{chan(x,), in(x), out(x)ms|
X € fre(€)U fre(m)}

where fr.(£) and fr.(€) stand respectively for free

reference regions and free communication regions in
E:

fre(€) =
fre(€)

U{p|3zez—T€EApE fu(r)}
U{x|3zez— 7€ EAYE fu(r)}

In what follows let us give some examples on the
static evaluation of the expressions.

parallel an output expression and an input expression
followed by an assignment.

let x=ref 1

in
let c=channel ()
in x:=c? ||c!7
end

end

Let us denote by P the previous process. Without
using the observation criterion the type of the previous
expression under an empty typing environment is :

[]F P :Unit,
init(p, Int) U write(p),
chan(x, Int) Uin(x) U out(x)

After application of the observation criterion the type
of P becomes:

[]F P:Unit, 0,0

Example 4.2 If we consider an expression similar to
the previous one that returns the created channel value
after the parallel composition:

let x=ref 1

in
let c=channel ()
in (x:=c? ||c!7);c
end

end

Let us denote by Q the previous process. Without using
the observation criterion the type of Q under an empty
typing environment is :

[1+ Q :chany, (Int),
init(p, Int) U write(p),
chan(x, Int) Uin(x) U out(x)

After application of the observation criterion:

[1F Q :chan, (Int),

)

chan(x, Int) Uin(x) U out(x)

5 Denotational Semantics

One of the main novelties of this work, is to pro-
vide a denotational model for such a language that
can be easily adapted for other concurrent functional
languages such as Facile or CML. The technique con-
sidered here takes advantage of the existing work on
more abstract process algebra. More precisely, by im-
porting the acceptances model[13][14] which is known
to be mathematically well-behaved in the applicative
world of process algebra, and extending this model for
handling input, output, imperative aspects and higher
order objects.

It should be noticed that many adaptations of this
model have been proposed in the literature. The first
one has been proposed by [24], further explained in

[25] whose foundations are detailed and proven in in
[6], in order to design the models of RSL [12]. Also
inspired by the original RSL denotational description
[24], [15] and [16] proposed other accommodations re-
spectively for their languages VPL and VPLA.

5.1 Acceptance-trees Model

The intention hereafter is to recall briefly the gen-
eral model of acceptances trees. Let ¥ be a set of
events which the processes can perform. In the rest
of this section , we need the notion of saturated sets.
Thus a set A C Ps(X), is said to be saturated if it
satisfies the following closures:

LUA€eA ... union closure.
2. AABe Aand A C C C B implies C € A convex
closure.

The set of all saturated finite subsets of P;(X), all
saturated sets over I, is denoted by sat(X). Let c(.A)
be the saturated closure of a set A C Ps(X), defined
as the least set which satisfies:

1. ACc(A)
2. UA€ec(A)
3. A,Bec(A)and AC C C B implies C € c(A)

The process space D is then defined as:

Thus D is a set of pairs, each of which represents
a process. The first component of a pair is an as-
sociation (a map) between finitely many members of
¥ and members of D, while the second one is an ac-
ceptance set. It should be noted that the definition
given above is recursive, but such a domain exists and
satisfies elegant algebraic properties such as the Scott-
domainhood property [13].

Now, let us come back to the underlying intuition.
A process can be modeled as a pair (m, S) which stip-
ulates that the process is waiting to engage in one
event, say e, chosen from dom(m), and once chosen,
the process continues progressing as the process m(e).
We will refer to m(e) as the sequel of the process.

