On The Global Convergence
of Broyden's Method

J.J. Moré and J.A. Trangenstein

TR 74-216

October 1974

Department of Computer Science
Cornell University
Ithaca, N.Y. 14853

† This research was supported in part by the National Science
Foundation under Grants GJ-40903 and GZ-03527
On the Global Convergence
of Broyden's Method

J.J. Moré and J.A. Trangenstein
Department of Computer Science
Cornell University
Ithaca, N.Y.

Abstract:
We consider Broyden's 1965 method for solving nonlinear equations. If the mapping is linear, then a simple modification of this method guarantees global and Q-superlinear convergence. For nonlinear mappings it is shown that the hybrid strategy for nonlinear equations due to Powell leads to R-superlinear convergence provided the search directions from a uniformly linearly independent sequence. We then explore this last concept and its connection with Broyden's method. Finally, we point out how the above results extend to Powell's symmetric version of Broyden's method.

*This research was supported in part by the National Science Foundation under Grants GJ-40903 and GZ-03527.
1. **Introduction**

Let \(F: \mathbb{R}^n + \mathbb{R}^n \) be a mapping with domain and range in real \(n \)-dimensional Euclidean space \(\mathbb{R}^n \) and consider the problem of finding a solution to the system of equations \(F(x) = 0 \) by Broyden's [1] method.

In this paper we show that a simple modification of Broyden's method leads to global and \(Q \)-superlinear convergence if \(F \) is an affine function with nonsingular coefficient matrix. This improves on a result of Broyden [2] which gives local and \(R \)-superlinear convergence to the unmodified method. For future reference, recall (for more information see [7, Chapter 9]) that if a sequence \(\{x_k\} \) converges to \(x^* \) then \(\{x_k\} \) converges \(R \)-superlinearly to \(x^* \) if

\[
\lim_{k \to \infty} \frac{\|x_k - x^*\|}{\|x_{k+1} - x^*\|} = 0,
\]

and that \(\{x_k\} \) converges \(Q \)-superlinearly to \(x^* \) if there is a sequence \(\{a_k\} \) converging to zero such that

\[
\|x_{k+1} - x^*\| \leq a_k \|x_k - x^*\|, \quad k \geq 0.
\]

Clearly, \(Q \)-superlinear convergence implies \(R \)-superlinear convergence but the converse does not hold.

If \(F \) is not affine, the above modification of Broyden's method fails to be globally convergent, although an improvement of a result of Broyden, Dennis and Moré [3], shows that it is locally and superlinearly convergent under very reasonable conditions.

In order to ensure the global convergence of Broyden's method we follow Powell's [8] hybrid method. For this algorithm
Powell proved a global convergence result, but did not analyze the rate of convergence. In this paper we show that if the sequence \(\{x_k\} \) generated by the hybrid method converges to a point \(x^* \) then \(F'(x^*)^T F(x^*) = 0 \) where \(F'(x^*) \) denotes the Jacobian matrix of \(F \) at \(x^* \). Thus if \(F'(x^*) \) is nonsingular then \(F(x^*) = 0 \) and under this condition we show that in general, \(\{x_k\} \) converges \(R \)-superlinearly to \(x^* \).

The hybrid method requires "special iterations" which guarantee that the Jacobian approximations in Broyden's method do not differ radically from the true Jacobians. Powell's [8] special iterations guarantee this by making sure that the directions generated by the algorithm are uniformly linearly independent. In Section 5 we examine this concept and show that the various definitions in the literature are equivalent. This leads to particularly easy proofs of the results of Powell [8] on the behavior of the matrices generated by Broyden's update.

Finally, in Section 6 we discuss the extension of the previous results to Powell's [10] symmetric form of Broyden's update.

As far as notation is concerned, we assume that \(\mathbb{R}^n \) is equipped with the usual inner product \(<x,y> = x^T y \) and \(||\cdot|| \) denotes the \(L_2 \) vector norm or the corresponding operator norm in \(L(\mathbb{R}^n) \) -- the linear space of all real matrices of order \(n \).

We shall also use the Frobenius norm

\[
(1.1) \quad ||A||_F = (\text{trace}(A^T A))^{1/2}
\]

and the fact that for any \(A \) and \(B \) in \(L(\mathbb{R}^n) \)

\[
(1.2) \quad ||AB||_F \leq ||A|| \cdot ||B||_F
\]
2. **Broyden's method**

Let \(F : \mathbb{R}^n \rightarrow \mathbb{R}^n \) be given. In its simplest form Broyden's method is of the form

\[
(2.1) \quad x_{k+1} = x_k - B_k^{-1} F(x_k)
\]

where, given an approximation \(B_0 \) to \(F'(x_0) \), the matrices \(\{B_k\} \) are generated by

\[
(2.2) \quad B_{k+1} = B_k + \frac{(y_k - B_k s_k) s_k^T}{||s_k||^2}
\]

and

\[
(2.3) \quad y_k = F(x_{k+1}) - F(x_k), \quad s_k = x_{k+1} - x_k.
\]

The motivation for Broyden's method is that the matrices generated by (2.2) are good approximations to the Jacobian matrices and thus (2.1) resembles Newton's method, but with the difference that (2.2) only requires one function evaluation and \(O(n^2) \) arithmetic operations while the Jacobian matrix requires the evaluation of \(n^2 \) partial derivatives. Moreover, (2.1) can be carried out in \(O(n^2) \) operations while Newton's method requires \(O(n^3) \).

There are two ways to compute \(x_{k+1} \) in \(O(n^2) \) arithmetic operations. In the first method the inverse of \(\{B_k\} \) can be computed by the Sherman-Morrison formula as

\[
(2.4) \quad H_{k+1} = H_k + \frac{(s_k - H_k y_k) s_k^T H_k}{s_k^T H_k y_k}
\]

while in the second method a QR factorization of \(B_k \) is carried along; for example, see the technique of Gill and Murray [6]. Either method can be done in \(O(n^2) \) arithmetic operations per iteration but the latter method is recommended for stability reasons.
Further information and motivation for Broyden's method can be found in the survey paper [5]; in particular, that paper contains a discussion of the following result of Broyden, Dennis and Moré [3].

Theorem 2.1: Let $F: \mathbb{R}^n \rightarrow \mathbb{R}^n$ be continuously differentiable in an open convex set D, and assume that $F(x^*) = 0$ and $F'(x^*)$ is nonsingular for some $x^* \in D$. In addition, suppose that F' is Lipschitz continuous at x^*, and consider Broyden's method as defined by (2.1), (2.2) and (2.3). Then Broyden's method is locally and Q-superlinearly convergent at x^*.

To be more precise, the conclusion of this theorem means that there is an $\epsilon > 0$ and a $\delta > 0$ such that if $||x_0 - x^*|| < \epsilon$ and $||B_0 - F'(x^*)|| < \delta$ then Broyden's method is well-defined, and if $\{x_k\}$ is the sequence generated then either $x_k = x^*$ for some k at which place the iteration stops, or $\{x_k\}$ converges Q-superlinearly to x^*.

Broyden's method is sometimes modified by defining $\{x_k\}$ by (2.1) and (2.2) but instead of (2.3),

$$y_k = F(x_k + s_k) - F(x_k)$$

for some nonzero vector s_k. The proof of Theorem 2.1 shows that this version of Broyden's method is locally and linearly convergent if s_k satisfies a relationship of the form

$$||s_k|| \leq n \max(||x_{k+1} - x^*||, ||x_k - x^*||)$$

provided x_k, x_{k+1} belong to D. However, superlinear convergence will be lost unless the direction of s_k is chosen with
some care. For example, the choice \(s_k = ||F(x_{k+1})|| u \) for some fixed vector \(u \) leads to local and linear convergence, but rarely to superlinear convergence. In this connection note that under the assumptions of Theorem 2.1, Dennis and Moré [4] proved that if the sequence \(x_k \) generated by (2.1) converges to \(x^* \) then \(\{x_k\} \) converges Q-superlinearly to \(x^* \) if and only if

\[
\lim_{k \to \infty} \frac{||B_k - F'(x^*)||}{||s_k||} s_k = 0.
\]

This explains why the choice \(s_k = ||F(x_{k+1})|| u \) rarely leads to superlinear convergence. However, in Section 5 we will show that if the direction of \(s_k \) is chosen so that \(\{s_k/||s_k||\} \) is uniformly linearly independent then the matrices \(\{B_k\} \) generated by (2.2) converge to \(F'(x^*) \) and thus (2.6) holds. Hence, in this case we also have Q-superlinear convergence. Hence, but note that if \(s_k \notin x_{k+1} - x_k \) then the computation of (2.2) requires two function evaluations.

3. **Broyden's Method for Linear Equations**

We would like to improve Theorem 2.1 if \(F: \mathbb{R}^n \to \mathbb{R}^n \) is affine with nonsingular coefficient matrix; that is,

\[
(3.1) \quad F(x) = Ax - b, \quad A \in \mathbb{L}(\mathbb{R}^n) \text{ nonsingular.}
\]

To investigate this problem first note that the matrices generated by (2.2) may be singular. In fact, it is easy to verify that if \(B_k \) is nonsingular then \(B_{k+1} \) is nonsingular if and only if
\[\langle s_k', B_k^{-1} y_k \rangle \neq 0. \] This also follows from the following result, whose simple proof can be found, for example, in [5, Lemma 4.4].

Lemma 3.1: Let \(u, v \in \mathbb{R}^n \). Then \(\det(I + uv^T) = 1 + \langle u, v \rangle \).

This result also shows how to avoid singularity in \(B_{k+1} \).

Powell [9] sets

\[
B_{k+1} = B_k + \theta_k \frac{(y_k - B_k s_k) s_k^T}{\|s_k\|^2}
\]

where \(\theta_k \) is chosen so that \(B_{k+1} \) is nonsingular. To be more precise, given \(\sigma \in (0,1) \) we choose \(\theta_k \) so that

\[
|\det B_{k+1}| \geq \sigma |\det B_k|, \quad |\theta_k - 1| \leq \sigma.
\]

To see that this is possible, note that Lemma 3.1 implies that

\[
|\det B_{k+1}| = |\det B_k| |(1 - \theta_k) + \theta_k \langle B_k^{-1} y_k', s_k \rangle |.
\]

Thus, if \(y_k \) is defined by \(\langle B_k^{-1} y_k', s_k \rangle = y_k \|s_k\|^2 \) then we can choose

\[
\theta_k = \begin{cases}
1, & |y_k| \geq \sigma \\
\frac{1 - \text{sign}(y_k) \sigma}{1 - y_k}, & |y_k| < \sigma
\end{cases}
\]

where \(\text{sign}(0) = 1 \). It is not too difficult to show that this choice of \(\theta_k \) provides a number closest to unity so that (3.3) is satisfied. In the rest of the paper we will only assume that \(\theta_k \) is chosen to satisfy
(3.4) \(B_{k+1} \) nonsingular, \(|\theta_k - 1| < \delta < 1\).

Theorem 3.2: Let \(F : \mathbb{R}^n \rightarrow \mathbb{R}^n \) be given by (3.1) and consider Broyden's method as defined by (2.1), (2.3), (3.2) and (3.4). Then Broyden's method is globally and Q-superlinearly convergent.

Proof: The result follows from a careful estimation of the difference between \(||E_{k+1}||_F^2\) and \(||E_k||_F^2\) where \(E_k = B_k - A \) and \(||.||_F\) is the Frobenius norm. For this note that

\[
E_{k+1} = E_k (I - \theta_k \frac{s_k s_k^T}{||s_k||^2})
\]

and therefore, direct calculation with \(||E||_F^2 = \text{trace} (E^T E)\) yields

\[
||E_{k+1}||_F^2 = ||E_k||_F^2 - \theta_k (2 - \theta_k) \left(\frac{||E_k s_k||}{||s_k||} \right)^2
\]

This implies that

\[
(1 - \delta)^2 \sum_{k=0}^{\infty} \left(\frac{||E_k s_k||}{||s_k||} \right)^2 \leq ||E_0||_F^2
\]

and in particular,

\[
\lim_{k \to \infty} \frac{||E_k s_k||}{||s_k||} = 0
\]

Now note that \((B_k - A)s_k = -F(x_{k+1}) = -A(x_{k+1} - x^*)\) where \(x^* = A^{-1}b\). Therefore if \(\epsilon_k\) is defined by

\[
||A^{-1}|| \cdot ||E_k s_k|| = \epsilon_k \cdot ||s_k||
\]

then

\[
||x_{k+1} - x^*|| \leq \epsilon_k ||s_k|| \leq \epsilon_k (||x_{k+1} - x^*|| + ||x_k - x^*||)
\]

and (3.5) clearly shows that \(\{\epsilon_k\}\) converges to zero. The above inequality then implies that
\[||x_{k+1} - x^*|| \leq \frac{-\varepsilon_k}{1 - \varepsilon_k} ||x_k - x^*|| \]

for \(k \) sufficiently large, and this proves that \(\{x_k\} \) converges Q-superlinearly to \(x^* \).

Theorem 3.2 is interesting because to our knowledge it is the only iterative method which is globally and superlinearly convergent for arbitrary nonsingular linear systems.

While the above-mentioned modification of Broyden's method leads to global and superlinear convergence in the linear case, this does not hold for general nonlinear functions. In one dimension Broyden's method essentially reduces to the secant method and this method can cycle.

Example 3.3: Let \(f:R \rightarrow R \) be any continuously differentiable function such that

\[f(\pm 1) = \pm 1, \quad f(\pm (\sqrt{5} - 2)) = \pm (\frac{\sqrt{5}}{2} - 1) \, . \]

For example, \(f(x) = \alpha \arctan(\beta x) \) with \(\alpha = 0.733 \ldots \) and \(\beta = 4.75 \ldots \). It can then be verified that Broyden's method is defined by (2.1), (2.2) and (2.3) cycles if \(x_0 = 1 \) and \(B_0 = (3 - \sqrt{5})^{-1} \). To be more specific, it turns out that \(x_{2k+1} = (-1)^k (\sqrt{5} - 2) \) and that \(x_{2k} = (-1)^k x_0 \). Also note that if \(B_k \) is defined by (2.2) and (3.3), instead of by (2.2), then \(\theta_k = 1 \) satisfies (3.3) if \(\sigma \leq 0.37 \).

Example 3.3 shows that Broyden's method or its modification, may cycle and diverge. On the other hand, Theorem 2.1 actually shows that the modification is still locally and superlinearly convergent. This follows because the proof of Theorem
2.1 shows that $\varepsilon > 0$ and $\delta > 0$ can be chosen so that if

$$||x_0 - x^*|| < \varepsilon \quad \text{and} \quad ||B_0 - F'(x^*)|| < \delta$$

then $||B_k - F'(x^*)|| < 2\delta$

for all $k \geq 0$. Certainly δ can be further restricted so that $\theta_k = 1$ satisfies either (3.3) or (3.4). However, even if $\theta_k = 1$ is not chosen, we still have local and superlinear convergence.

Theorem 3.4: Let $F: \mathbb{R}^n \to \mathbb{R}^n$ satisfy the assumptions of Theorem 2.1, and consider Broyden's method as defined by (2.1), (3.2) and (3.4). Then Broyden's method is locally and superlinearly convergent at x^*.

This result follows from a modification to the proof of Theorem 2.1 as given by Broyden, Dennis and Moré [3], so we will omit its proof. Note that since Theorem 3.4 lets us choose any θ_k which satisfies (3.4), this gives a certain amount of stability to Broyden's method.

4. **Powell's Hybrid Method**

In view of Example 3.3, Broyden's method must be modified in order to achieve global convergence. In this section we outline a modification due to Powell [8] which achieves this aim; for a more thorough presentation see the original papers [8,9].

Powell's hybrid method was designed to find solutions to $F(x) = 0$ where $F: \mathbb{R}^n \to \mathbb{R}^n$ is continuously differentiable in some open set D, but we are not able or willing to calculate the Jacobian matrix. Basically, the method attempts to minimize the functional $\psi: \mathbb{R}^n \to \mathbb{R}$ defined by
(4.1) \[\psi(x) = (1/2) ||F(x)||^2 \]

while making full use of the form of \(\psi \).

At the beginning of the \(k \)th iteration, we have the iterate \(x_k \), an approximation \(J_k \) to \(F'(x_k) \) and a step-bound \(\Delta_k \) such that the quadratic

(4.2) \[\phi_k(p) = (1/2) ||F(x_k) + J_k p||^2 \]

is a good approximation to \(\psi(x_k + p) \) for \(||p|| \leq \Delta_k \). Below we specify how a correction \(p_k \) is determined with \(||p_k|| \leq \Delta_k \). Once this is done then the next iterate is given by

\[
\begin{align*}
x_{k+1} &= x_k + p_k \quad \text{if} \quad \psi(x_k + p_k) < \psi(x_k) \\
&= x_k \quad \text{otherwise}.
\end{align*}
\]

Thus to complete the description of the \(k \)th iteration we need to define \(p_k \), \(\Delta_{k+1} \), and \(J_{k+1} \).

The correction \(p_k \) can either be chosen by an ordinary iteration or by a special iteration. The idea behind the choice of \(p_k \) in an ordinary iteration is that the Newton direction of \(F \)

(4.4) \[p_k^N = -J_k^{-1} F(x_k) \]

is suitable if \(||p_k^N|| \leq \Delta_k \). Otherwise \(p_k \) should be chosen as a convex combination of \(p_k^N \) and some multiple of the steepest (or gradient) direction of \(\phi_k \),

(4.5) \[p_k^G = -J_k^T F(x_k) \]
which reduces \(\phi_k \) in some sense. Hence, if \(||p_k^N||| \leq \Delta_k\) then
\[p_k = p_k^N, \]
but if \(||p_k^N||| > \Delta_k\) we examine \(\phi_k \) on the ray along \(p_k^G \).
It is not difficult to verify that on this ray \(\phi_k \) stops decreasing at
\[
(4.6) \quad \hat{p}_k = \left(\frac{||p_k^G||}{||J_kp_k^G||}\right)^2 p_k^G.
\]

Thus if \(||\hat{p}_k||| \geq \Delta_k\) then it is reasonable to choose
\[
p_k = \Delta_k \frac{p_k^G}{||p_k^G||}.
\]

If \(||\hat{p}_k||| < \Delta_k\) we can decrease \(\phi_k \) further by proceeding
toward \(p_k^N \); in this case we choose \(p_k \) as the convex combination
of \(\hat{p}_k \) and \(p_k^N \) which minimizes \(\phi_k \) subject to \(||p_k||| \leq \Delta_k\).
Hence, if \(||p_k||| > \Delta_k\) and \(||\hat{p}_k||| < \Delta_k\) then \(p_k \) is deter-
mined by finding \(\alpha \in (0,1) \) such that
\[
|| (1-\alpha)\hat{p}_k + \alpha p_k^N || = \Delta_k
\]
and setting \(p_k = (1-\alpha)\hat{p}_k + \alpha p_k^N \). To change the step bound \(\Delta_k \) in an ordinary iteration we test whether or not
\[
(4.7) \quad \psi(x_k) - \psi(x_k + p_k) \geq \rho[\phi_k(0) - \phi_k(p_k)]
\]
where \(\rho \in (0,1) \) is a given constant. If (4.7) holds then
the iteration is successful and
\[
\Delta_{k+1} \in [\Delta_k, \mu \Delta_k]
\]
for some \(\mu > 1 \). Otherwise the iteration is unsuccessful and
\[\Delta_{k+1} \in [\rho_1 \Delta_k, \rho_2 \Delta_k] \]

where \(\rho_1 \leq \rho_2 < 1 \). In the program given by Powell [9] the values \(\rho = 0.1, \nu = 2, \rho_1 = \rho_2 = 0.5 \) are used.

This completes the description of how the correction vector \(p_k \) is calculated and how the step bound \(\Delta_{k+1} \) is changed in an ordinary iteration. Special iterations are needed because sometimes it is convenient not to define \(p_k \) by the procedure outlined above. This is particularly true if \(J_{k+1} \) is determined from \(J_k \) by Broyden's method; see the discussion after equation (4.8). At this point the particular method for determining \(p_k \) in a special iteration is not important, but we assume that \(||p_k|| \leq \Delta_k \) and that at most \(n \) consecutive special iterations are necessary. Finally, in a special iteration \(\Delta_{k+1} = \Delta_k \).

The matrix \(J_{k+1} \) is determined from \(x_k, p_k \) and \(J_k \) in such a way that for some fixed \(\gamma > 0 \) and all \(k \geq 0 \),

(a) \(J_k \) is nonsingular and \(||J_k|| \leq \gamma \)

(4.8)

(b) If \(\{x_k\} \) converges to \(x \) in \(D \) and \(\{p_k\} \) converges to zero then \(\{J_k\} \) converges to \(F'(x) \).

There are several ways to define \(\{J_k\} \) so that (4.8) is satisfied. We will be particularly interested if it is determined by Broyden's method:

\[J_{k+1} = J_k + \theta_k \frac{[F(x_k + p_k) - F(x_k) - J_k p_k]p_k^T}{||p_k||^2} \]

and \(\theta_k \) is chosen so that \(J_{k+1} \) is nonsingular and \(|\theta_k - 1| \leq \theta \).
In this case, however, (4.8) does not hold unless careful use
is made of the special iterations. For example, if the sequence
\{p_k\} does not span \(R^n \) then there is a \(v \neq 0 \) with \(\langle v, p_k \rangle = 0 \)
for \(k \geq 0 \) and then (4.9) implies that \(J_k v = J_0 v \). Hence, (4.8)
(b) will not hold unless the choice of \(J_0 \) was somewhat fortunate.
On the other hand, in the next section we prove that if the special
iterations are used to guarantee that \(\{p_k\} \) satisfies a uniform
linear independence condition then (4.8) holds.

One way to guarantee that \(\{p_k\} \) satisfies a uniform linear
independence condition is to choose, at periodic intervals, \(p_k \)
to be a suitable multiple of a unit basis vector so that for some
integer \(m \geq n \),

\[
\{e_1, \ldots, e_n\} \subset \left\{ \pm \frac{p_{k+1}}{|p_{k+1}|}, \ldots, \pm \frac{p_{k+m}}{|p_{k+m}|} \right\} .
\]

If this strategy is used in connection with (4.9) then this amounts
to replacing, at periodic intervals, a column of \(J_k \) by a divided
difference. To see this, note that if \(\theta_k = -1 \) and \(p_k = n e_j \)
is used in (4.9) then the \(j \)th column of \(J_k \) is replaced by

\[F(x_k + n e_j) - F(x_k) / n , \]

and the other columns of \(J_k \) are unchanged.

Of course, it will not be possible to define \(J_{k+1} \) so that
(4.8) is satisfied unless \(F' \) is bounded on a set which contains
the iterates. With this in mind, note that \(x_{k+1} \in L \) where
\[L = \{ x \in D : ||F(x)|| \leq ||F(x_0)|| \} , \]

but that \(x_k + p_k \) may not lie in \(L \). Therefore the algorithm requires a \(\Delta > 0 \) such that if

\[L_\Delta = \{ y \in \mathbb{R}^n : ||y - x|| \leq \Delta \text{ for some } x \in L \} \]

then \(L_\Delta \subset D \), and in all cases \(\Delta_{k+1} \) is not allowed to exceed \(\Delta \).

Note that \(L_\Delta \subset D \) is automatically satisfied if \(D = \mathbb{R}^n \) while if \(D \) is open but otherwise arbitrary and \(L \) is compact, then there is always a \(\Delta > 0 \) such that \(L_\Delta \subset D \).

In what follows, Powell's hybrid method refers to the algorithm outlined above, where in particular, the sequence \(\{J_k\} \) satisfies (4.8). The main convergence theorem for this algorithm is due to Powell [8, Theorem 5].

Theorem 4.1: Let \(D \) be an open set such that \(L_\Delta \subset D \) and assume that \(F: \mathbb{R}^n \rightarrow \mathbb{R}^n \) is continuously differentiable on \(D \) and \(F' \) is bounded on \(L_\Delta \). Then for each \(\varepsilon > 0 \) Powell's hybrid method produces a \(k \) such that \(||J_k^T F(x_k)|| < \varepsilon \).

The above result leaves some questions unanswered. For example, if \(\{x_k\} \) converges to some \(x^* \) in \(D \), does it follow that \(F'(x^*)^T F(x^*) = 0 \)? Also, if \(F'(x^*) \) is nonsingular (and hence \(F(x^*) = 0 \)), at what rate does \(\{x_k\} \) converge to \(x^* \)? In the remainder of this section we answer these two questions.

Theorem 4.2: Let \(F: \mathbb{R}^n \rightarrow \mathbb{R}^n \) satisfy the assumptions of Theorem 4.1 on the open set \(D \). If the sequence \(\{x_k\} \) generated by Powell's hybrid method converges to some \(x^* \) in \(D \), then \(F'(x^*)^T F(x^*) = 0 \).
Proof: We first assume that there is an infinite number of successful Newton iterations. In this case, since (4.7) implies that

$$||F(x_{k+1})|| \leq (1-\rho)||F(x_k)||$$

whenever the kth iteration is a successful Newton iteration and since for all iterations $$||F(x_{k+1})|| \leq ||F(x_k)||$$, it follows that if there are an infinite number of successful Newton iterations then $$\{||F(x_k)||\}$$ converges to zero and hence, $$F(x^*) = 0$$.

Suppose now that there is a $$k_0 > 0$$ such that if $$k \geq k_0$$ then the kth iteration is not a successful Newton iteration. In this case, if k corresponds to an ordinary iteration then

$$\Delta_{k+1} \leq \rho_2 \Delta_k$$ if the iteration is unsuccessful, or $$\Delta_{k+1} \leq \mu \Delta_k$$ if the iteration is successful. Moreover, in the latter instance

$$\Delta_k = ||x_{k+1} - x_k||$$ since $$p_k \neq p_k^N$$. Hence, in an ordinary iteration k with $$k \geq k_0$$,

$$\Delta_{k+1} \leq \max\{\rho_2 \Delta_k, \mu ||x_{k+1} - x_k||\}$$.

A special iteration sets $$\Delta_{k+1} = \zeta_k$$ and there are at most n consecutive special iterations. Thus, since $$\{||x_{k+1} - x_k||\}$$ converges to zero it follows that $$\{\Delta_k\}$$ and hence, $$\{p_k\}$$ converges to zero. Now (4.8) guarantees that $$\{J_k\}$$ converges to $$F'(x^*)$$ and then Theorem 4.1 shows that $$F'(x^*)^TF(x^*) = 0$$ as desired.

If we assume in Theorem 4.2 that $$F'(x^*)$$ is nonsingular then $$F(x^*) = 0$$. The following result shows that in this case the sequence $$\{x_k\}$$ will usually converge R-superlinearly to $$x^*$$.
Theorem 4.3: Let $F: \mathbb{R}^n \rightarrow \mathbb{R}^n$ satisfy the assumptions of Theorem 4.1 on the open set D and assume that the sequence \(\{x_k\} \) generated by Powell's hybrid method converges to a point x^* in D and that \(\{p_k\} \) converges to zero. If $F'(x^*)$ is nonsingular then $F(x^*) = 0$ and $\{x_k\}$ converges R-superlinearly to x^*.

Proof: That $F(x^*) = 0$ follows from Theorem 4.2. Moreover, since we have assumed that $\{p_k\}$ converges to zero, (4.8) guarantees that $\{J_k\}$ converges to $F'(x^*)$, and since $F'(x^*)$ is nonsingular there is a $\sigma > 0$ such that $||J_k^{-1}|| \leq \sigma$. It also follows that if

$$\eta_k = \sup\{||F'(x_k + tp_k) - J_k|| : 0 \leq t \leq 1\}$$

then $\{\eta_k\}$ converges to zero.

For the most part, the proof consists of showing that eventually all the ordinary iterations are successful. This means that there is a $k_1 > 0$ such that if k is an ordinary iteration and $k \geq k_1$ then

(4.10) \(x_{k+1} = x_k + p_k, \Delta_{k+1} \geq \Delta_k \).

But $\Delta_{k+1} = \Delta_k$ for special iterations so that $\Delta_{k+1} \geq \Delta_k$ for all $k \geq k_1$. In particular, since $||J_k^{-1}|| \leq \sigma$ it follows that

$$||p_k|| \leq \sigma ||F(x_k)|| \leq \Delta_k,$$

and thus all ordinary iterations eventually choose $p_k = p_k^N$.

The first equation in (4.10) now shows that
\[||F(x_{k+1})|| = ||F(x_{k+1}) - F(x_k) - J_k p_k|| \leq \eta_k ||p_k|| \leq \sigma \eta_k ||F(x_k)|| \]
where \(k \) corresponds to an ordinary iteration. Since \(\{\eta_k\} \)
converges to zero, given \(\epsilon \) in \((0,1)\) there is a \(k_2 > 0 \) such
that \(\sigma \eta_k \leq \epsilon \) for \(k \geq k_2 \). Now recall that
\[||F(x_{k+1})|| \leq ||F(x_k)|| \]
in all cases and that we have assumed that there is at least one
ordinary iteration in each set of \(n+1 \) consecutive iterations.
Hence, if \(\ell \geq (k-k_2)/n \) then
\[||F(x_k)|| \leq \epsilon ||F(x_{k-n})|| \leq \cdots \leq \epsilon^\ell ||F(x_{k-n})|| \]
so that if \(\ell = \ell(k) \) is the smallest integer that exceeds
\((k-k_2)/n \) then
\[\limsup_{k \to +\infty} ||F(x_k)||^{1/k} \leq \limsup_{k \to +\infty} \epsilon^{\ell/k} \leq \epsilon^{1/n}. \]
Since \(\epsilon > 0 \) was arbitrary it follows that
\[\lim_{k \to +\infty} ||F(x_k)||^{1/k} = 0, \]
and since \(\{x_k\} \) converges to \(x^* \) and \(F'(x^*) \) is nonsingular
(4.11) implies that \(\{x_k\} \) converges \(R\)-superlinearly to \(x^* \).

To complete the proof it is only necessary to show that
eventually all the ordinary iterations are successful. For this
we first prove that if \(k \) corresponds to an ordinary iteration
then
\[\psi(x_k) - \phi_k(p_k) \geq (1/2)||p_k||^3 \min(\Delta_k, \frac{||p_k^G||^3}{||J_k p_k^G||^2}) \]
where \(\psi(x_k) = \phi_k(p_k) \geq (1/2)||p_k||^3 \min(\Delta_k, \frac{||p_k^G||^3}{||J_k p_k^G||^2}) \).
(4.13) \(\psi(x_k + p_k) - \phi_k(p_k) \leq \eta_k ||p_k|| \left(\left(\frac{n_k}{2} \right) ||p_k|| + ||F(x_k) + J_k p_k|| \right) \)

where \(\psi \) and \(\phi_k \) are defined by (4.1) and (4.2) respectively. To prove (4.12) note that if \(0 \leq \lambda \leq \Delta_k \) then

\[
\phi_k(p_k) \leq \phi_k \left(\lambda \frac{p_k}{||p_k||} \right).
\]

In particular, if \(\lambda_k = \min(\Delta_k, ||\hat{p}_k||) \) where \(\hat{p}_k \) is defined by (4.6) then

(4.14) \(\psi(x_k) - \phi_k(p_k) \geq \phi_k(0) - \phi_k \left(\lambda_k \frac{p_k}{||p_k||} \right) \).

To estimate the right side of this inequality note that for any \(\lambda \geq 0 \)

\[
\phi_k(0) - \phi_k \left(\lambda \frac{p_k}{||p_k||} \right) = \lambda ||p_k|| \left(1 - \frac{\lambda}{2} \frac{||J_k p_k||^2}{||p_k||^3} \right)
\]

and since \(\lambda_k ||J_k p_k||^2 \leq ||p_k||^3 \),

\[
\phi_k(0) - \phi_k \left(\lambda_k \frac{p_k}{||p_k||} \right) \geq \frac{\lambda_k}{2} ||p_k||
\]

It now follows from (4.14) and the definitions of \(\lambda_k \) and \(\hat{p}_k \) that (4.12) holds.

To prove (4.13) note that

\[
||F(x_k + p_k)|| - ||F(x_k) + J_k p_k|| \leq \eta_k ||p_k||,
\]

and since \(\alpha^2 - \beta^2 \leq |\alpha - \beta| (|\alpha - \beta| + 2|\beta|) \), inequality (4.13) follows immediately from the definitions of \(\psi \) and \(\phi \).

It is now easy to prove that eventually all the ordinary iterations are successful. Note that \(||p_k|| \leq ||p_k^N|| \) and therefore

(4.15) \(||p_k|| \leq \sigma^2 ||p_k||. \)
Hence (4.12) implies that

\[\psi(x_k) - \phi_k(p_k) \geq \frac{1}{2} \|p_k^G\| \|p_k\| \min(1, (\sigma \gamma)^{-2}) \]

Next note that

\[\|F(x_k)\| \leq \sigma \|p_k^G\| \]

so that (4.13) and (4.15) imply that

\[\psi(x_k + p_k) - \phi_k(p_k) \leq \eta_k \|p_k\| \|p_k^G\| \{(\frac{\eta_k}{2}) + \gamma\sigma^2 + \sigma\} \]

It is now clear from (4.16) and (4.17) that there is an index \(k_1 > 0 \) such that for \(k > k_1 \),

\[(1-\rho)[\psi(x_k) - \phi_k(p_k)] \geq \psi(x_k + p_k) - \phi_k(p_k) \]

or equivalently,

\[\psi(x_k) - \psi(x_k + p_k) \geq \rho[\phi_k(0) - \phi_k(p_k)] \]

This shows that eventually all the ordinary iterations of the algorithm are successful and concludes the proof.

Theorem 4.3 assumes that the sequence \(\{p_k\} \) converges to zero. At first sight it would seem that this follows from the fact that \(\{x_k\} \) converges, but the following example shows that if the choice of \(\{J_k\} \) is careless enough, then \(\{p_k\} \) may not converge to zero.

Example 4.4: Let \(f: \mathbb{R} \to \mathbb{R} \) be defined by \(f(x) = x \) and consider Powell's hybrid method with \(\rho = \rho_1 = \rho_2 = 0.5 \) and \(\mu = 2 \).
Assume that \(x_k = (1/2)^k \) and \(\Delta_k \geq 0.5 \), we will show that it is possible to choose \(\{J_k\} \) so that \(x_{k+2} = (1/2)^{k+1} \) and \(\Delta_{k+2} = \Delta_k \). To see this, note that if \(J_k = 2 \) then \(p_k = p_k^N \) is successful and hence \(x_{k+1} = (1/2)^{k+1} \). Since the iteration is successful we are allowed to take \(\Delta_{k+1} = 2\Delta_k \). Now choose \(J_{k+1} = -2^k \). Then \(p_k = p_k^N \) but in this case the step is unsuccessful and moreover, \(x_{k+2} = x_{k+1} \) and \(\Delta_{k+2} = (1/2)^{\Delta_{k+1}} \). Hence \(x_{k+2} = (1/2)^{k+1} \) and \(\Delta_{k+2} = \Delta_k \) so that the same pattern can be repeated. Thus \(\{x_k\} \) converges to \(x^* = 0 \) but the rate of convergence is not superlinear.

Example 4.4 shows that some subsequence of \(\{||p_k||\} \) can be bounded away from zero and therefore (4.8) does not force \(\{J_k\} \) to converge to \(F'(x^*) \). There are several ways to remedy the situation.

One solution consists of setting \(J_{k+1} = J_k \) if \(||F(x_k + p_k)|| > ||F(x_k)|| \) in the ordinary iterations, and taking care, in the special iterations, that the correction vector \(p_k \) converges to zero if \(\{x_k\} \) converges. For example, this can be done by taking \(||p_k|| = \mathcal{O}(||x_k - x_{k-1}||) \). This modification would guarantee that \(\{J_k\} \) is only calculated from a sequence \(\{p_k\} \) which converges to zero if \(\{x_k\} \) converges.

Another solution would be to modify the definition of the step-bound and require

\[
\Delta_{k+1} \in \left[\rho_1 ||p_k||, \rho_2 ||p_k|| \right]
\]

if the kth step is unsuccessful, and

\[
\Delta_{k+1} \in \left[||p_k||, \nu ||p_k|| \right]
\]
if the step is successful. In this case

\[\Delta_{k+1} \leq \max\{\rho^2, \Delta_k, \mu ||x_{k+1}-x_k||\} , \]

and thus if \(\{x_k\} \) converges then \(\Delta_k \) converges to zero and hence, \(\{p_k\} \) must also converge to zero. This choice of step-bound is analogous to the one used in Powell's [10] hybrid method for unconstrained minimization.

Note that the second solution is actually a modification of the hybrid method and thus requires new proofs for the previous three results. This can be done, so from a theoretical point of view both modifications appear to be equally reasonable. Therefore it would be interesting to compare numerically the above two approaches.

5. **Uniform linear independence**

The purpose of this section is to study the concept of uniform linear independence and to show that most of the definitions available in the literature are, in fact, equivalent. As our starting point we take a definition that Ortega and Rheinboldt [7] used in the study of iterative methods for unconstrained minimization.

Definition 5.1: A sequence of unit vectors \(\{u_j\} \) in \(\mathbb{R}^n \) is uniformly linearly independent if there is a \(\beta > 0 \), a \(k_0 \geq 0 \) and an \(m \geq n \) such that for \(k \geq k_0 \) and \(||x|| = 1 \),

\[\max\{|<x,u_j>|: j = k+1,\ldots,k+m\} \geq \beta . \]

This definition requires that each set of \(m \) consecutive vectors in the sequence \(\{u_j\} \) spans \(\mathbb{R}^n \). However, it requires more.
For example, if
\[u_{2k} = \left(\frac{1}{\sqrt{k^2+1}} \right)(k,1) \]
and \(u_j = (1,0) \) for \(j \) odd then each \(m=2 \) consecutive vectors spans \(\mathbb{R}^2 \), but this sequence is not uniformly linearly independent.

Also note that the term "uniformly linearly independent" is a misnomer since, of course, the sequence \(\{u_j\} \) is not linearly independent. It would be better to say that \(\{u_j\} \) spans \(\mathbb{R}^n \) uniformly if the sequence satisfies Definition 5.1.

Lemma 5.2: Let \(u_1, \ldots, u_m \) be unit vectors in \(\mathbb{R}^n \) and assume that \(\theta_j \in (0,2) \) for \(1 \leq j \leq m \). Then \(\{u_1, \ldots, u_m\} \) spans \(\mathbb{R}^n \) if and only if
\[
\left| \prod_{j=1}^{m} (I - \theta_j u_j u_j^T) \right| < 1.
\]

Proof: Assume first that \(\{u_1, \ldots, u_m\} \) does not span \(\mathbb{R}^n \), and let
\[
P = \prod_{j=1}^{m} (I - \theta_j u_j u_j^T).
\]
Then there is an \(x \neq 0 \) such that \(\langle x, u_j \rangle = 0 \) for \(1 \leq j \leq m \) and thus \(Px = x \). In particular, \(\|P\| > 1 \).

Assume now that \(\{u_1, \ldots, u_m\} \) spans \(\mathbb{R}^n \). To show that \(\|P\| < 1 \) choose \(z_1 \) in \(\mathbb{R}^n \) and define
\[
z_{j+1} = (I - \theta_j u_j u_j^T)z_j \quad j = 1, \ldots, m
\]
so that \(z_{m+1} = Pz_1 \). We now show that \(\|z_{m+1}\| < 1 \) if \(\|z_1\| = 1 \).

For this note that
\[
\|z_{j+1}\|^2 = \|z_j\|^2 - \theta_j (2 - \theta_j) \langle u_j, z_j \rangle^2.
\]
In particular, \(\|z_{j+1}\| \leq \|z_j\| \), so that if \(\|z_{m+1}\| = 1 \) then \(\|z_{j+1}\| = \|z_j\| \), and by the previous relationship \(\langle u_j, z_j \rangle = 0 \) for \(1 \leq j \leq m \). Thus (5.1) implies \(z_{j+1} = z_j \) for \(1 \leq j \leq m \) and therefore
\[
\langle u_j, z_j \rangle = \langle u_j, z_j \rangle = 0, \ 1 \leq j \leq m
\]
Since \(\{u_1, \ldots, u_m\} \) spans \(\mathbb{R}^n \) it follows that \(z_1 = 0 \). This contradicts the assumption \(||z_1|| = 1 \) and therefore proves the result.

Lemma 5.2 is closely related to a result of Powell's [14, Theorem 6] in which he shows that the special iterations generated by his algorithm satisfy (5.2) (b) below. In the result that follows \(A^+ \) denotes the generalized inverse \(A^T(AA^T)^{-1} \) of an \(n \times m \) matrix of rank \(n \).

Theorem 5.3: Let \(\{u_k\} \) be a sequence of unit vectors in \(\mathbb{R}^n \). Then the following conditions are equivalent.

(a) The sequence \(\{u_k\} \) is uniformly linearly independent.

(b) For any \(\hat{\theta} \in (0,1) \) there is a constant \(\alpha \in (0,1) \) such that

\[
|\prod_{j=k+1}^{k+m} (I - \theta_j u_j u_j^T)| \leq \alpha, \quad k \geq k_0.
\]

(c) There is a constant \(\gamma > 0 \) such that for each \(||x|| = 1 \) and \(k \geq k_0 \) there are coefficients \(\eta_j(x) \) such that for

\[
x = \sum_{j=k+1}^{k+m} \eta_j(x) u_j, \quad |\eta_j(x)| \leq \gamma.
\]

(d) If the \(n \times m \) matrix \(A_{k,m} \) is defined by

\[
A_{k,m} = [u_{k+1}, \ldots, u_{k+m}]
\]

then there is a constant \(\mu > 0 \) such that for \(k \geq k_0 \), \(A_{k,m} \) has full rank and \(||A_{k,m}^+|| \leq \mu \).
Proof: Assume first that \(\{u_k^*\} \) is uniformly linearly independent according to Definition 5.1, and let us show that (5.2) holds. If not, there is a subsequence \(\{k_i^*\} \) such that

\[
\lim_{i \to \infty} \prod_{j=k_i^*+1}^{k_i^*+m} | | I - \theta_j u_j u_j^T | | = 1.
\]

A compactness argument now shows that there is a subsequence of \(\{k_i^*\} \) -- without loss of generality we assume that it is the full sequence -- such that \(u_{k_i^*+j} \) and \(\theta_{k_i^*+j} \) converge for \(1 \leq j \leq m \).

If \(u_j^* \) and \(\theta_j^* \) are the values to which they converge then (5.5) implies that

\[
\prod_{j=1}^{m} | | I - \theta_j^* u_j^* u_j^*^T | | = 1.
\]

Thus Lemma 5.2 implies that \(\{u_1^*, ..., u_m^*\} \) do not span \(\mathbb{R}^n \). However, Definition 5.1 implies that

\[
\max \{|<x, u_j^*>| : j = 1, ..., m\} \geq \beta
\]

and this in turn implies that \(u_1^*, ..., u_m^* \) span \(\mathbb{R}^n \). This contradiction shows that (a) implies (b).

Assume now that (b) holds, and let \(\hat{\theta} = 0 \). Then there is a constant \(\alpha \in (0, 1) \) such that for \(k \geq k_0 \),

\[
| | P_k | | \leq \prod_{j=k+1}^{k+m} | | I - u_j u_j^T | | \leq \alpha
\]

We now proceed as in the proof of Lemma 5.1 and define

\[
(5.6) \quad z_j = (I - u_j u_j^T) z_j, \quad k+1 \leq j \leq k+m.
\]

Then \(z_{k+m+1} = P_k z_{k+1} \) and

\[
z_{k+1} - z_{k+m+1} = \sum_{j=k+1}^{k+m} < u_j, z_j > u_j.
\]
But z_{k+1} is arbitrary, so for any given $||x|| = 1$ it can be chosen so that $(I - P_k)z_{k+1} = x$. Thus the above expression implies that

$$x = \sum_{j=k+1}^{k+m} \langle u_j, z_j \rangle u_j.$$

To bound the coefficients $\langle u_j, z_j \rangle$ note that (5.6) implies that $||z_{j+1}|| \leq ||z_j||$ and thus

$$||u_j, z_j|| \leq ||z_{k+1}|| \leq ||(I - P_k)^{-1}|| \leq (1 - \alpha)^{-1}.$$

Hence (5.3) holds with $\gamma = (1 - \alpha)^{-1}$.

Assume that (c) holds and let $||x|| = 1$ be given. Then (5.3) implies that A_k is of full rank and that

$$A_k z = x, \quad z = (\eta_{k+1}, \ldots, \eta_{k+m}).$$

Since $||A_k^+ x|| \leq ||z||$ if $A_k z = x$, we have that $||A_k^+ x|| \leq m^{1/2} \gamma$ and therefore $||A_k^+|| \leq m^{1/2} \gamma$. Thus (d) holds with $\mu = m^{1/2} \gamma$.

If (d) holds and $||x|| = 1$, then since A_k has full rank, $x = A_k (A_k^+ x)$. Hence

$$1 = ||x||^2 = <A_k^T x, A_k^+ x> \leq \mu ||A_k x||.$$

It follows that (a) holds with $\beta = 1/(m^{1/2} \gamma)$.

As noted before, (a) is due to Ortega and Rheinboldt [7]. Conditions (b) and (c) were used by Powell [8, 10] in a hybrid strategy for unconstrained minimization and nonlinear equations, respectively, but Powell did not investigate the relationship between these two conditions. Finally, (d) seems to be new in the case $m > n$, although when $m = n$ it appears quite frequently.

It should also be clear that there are other variations of Theorem 5.3. In particular, (d) is equivalent to the existence of $\mu > 0$ such that
(e) \(|(A_{km}A_{km}^T)^{-1}|| < u\) for \(k \geq k_0\).

This follows from the fact that if the \(n\) by \(m\) matrix \(A\) is of full row rank then \(||A^+|||^2 = ||(AA^T)^{-1}||| \).

Theorem 5.4: Let \(\{u_k\}\) be a sequence of unit vectors in \(\mathbb{R}^n\). Then the following conditions are equivalent:

(a) The sequence \(\{u_k\}\) is uniformly linearly independent with \(m = n\).

(b) There is a \(\sigma > 0\) such that for \(k \geq k_0\), \(|\det A_{k,n}| \geq \sigma\).

(c) There is a \(\mu > 0\) such that for \(k \geq k_0\), \(||A_{k,n}^{-1}||| \leq \mu\).

Proof: Theorem 5.3 implies that (a) and (c) are equivalent. Now if (c) holds and \(\lambda\) is an eigenvalue of \(A_{k,n}\) then \(|\lambda| \geq 1/\mu\). Thus \(|\det A| \geq 1/\mu^n\) so that (b) holds with \(\sigma = 1/\mu^n\).

To show that (b) implies (c), let \(A_{k,n} = QL\) where \(L\) is lower triangular and \(Q\) is orthogonal. Then all the columns of \(L\) are of unit norm and thus \(|\ell_{ij}| \leq 1\). Moreover, since \(|\det L| \geq \sigma\), we also have that \(|\ell_{ii}| \geq \sigma\). Now, given \(x\) in \(\mathbb{R}^n\) with \(||Lx|| = 1\) it follows, by induction, that \(|\xi_j| \leq 2^{j-1}/\sigma^j\) where \(x = (\xi_j)\). Hence, \(||x|| \leq (2/\sigma)^n\) and therefore,

\[||A_{k,n}^{-1}||| = ||L^{-1}Q^{-1}||| = ||L^{-1}||| \leq (2/\sigma)^n.\]

Thus (c) holds with \(\mu = (2/\sigma)^n\).

To illustrate the usefulness of Theorem 5.3 we present simple proofs of the asymptotic behavior of the matrices generated by Broyden's update. For this purpose consider...
\begin{align}
(5.7) \quad J_{k+1} &= J_k + \frac{\langle y_k - J_k p_k \rangle p_k^T}{||p_k||^2} \\
y_k &= F(x_k + p_k) - F(x_k),
\end{align}

where $F: \mathbb{R}^n \rightarrow \mathbb{R}^n$ is continuously differentiable in an open set D, and assume that the following conditions are satisfied.

(a) The sequence $\{x_k\}$ remains in some set $D_0 \subset D$ and

\begin{align}
|\theta_k - 1| \leq \theta \text{ for some } \theta \in (0,1).
\end{align}

(b) The sequence of non-zero vectors $\{p_k\}$ is uniformly linearly independent and the line segment from x_k to $x_k + p_k$ lies in D_0.

As an initial step in analyzing (5.7), we will need the following simple result.

Lemma 5.5: Let $\{\phi_k\}$ and $\{\delta_k\}$ be sequences of non-negative numbers such that

$$
\phi_{k+m} \leq \alpha \phi_k + \delta_k
$$

for some fixed integer $m \geq 1$ and $\alpha \in (0,1)$. If $\{\delta_k\}$ is bounded, then $\{\phi_k\}$ is also bounded, and if in addition, $\{\delta_k\}$ converges to zero, then $\{\phi_k\}$ converges to zero.

Proof: Assume first that $m = 1$. It can then be verified that

$$
\phi_k \leq \alpha \phi_0 + \sum_{j=0}^{k-1} \alpha^{k-j} \delta_j,
$$

so that if δ is a bound for $\{\delta_k\}$ then

$$
\phi_k \leq \alpha \phi_0 + \delta (1 - \alpha)^{-1}.
$$

It follows that $\{\phi_k\}$ is bounded; a similar argument shows that if $\{\delta_k\}$ converges to zero then $\{\phi_k\}$ also converges to zero. If $m > 1$ let $\hat{\phi}_k = \phi_{km+i}$ for any integer $0 \leq i \leq m-1$. Then
\[\hat{\phi}_{k+1} \leq \alpha \hat{\phi}_k + \delta_{km+1}, \]

and thus the above argument shows that if \(\{ \delta_k \} \) is bounded then \(\{ \hat{\phi}_k \} \) is bounded for any \(0 \leq i \leq m-1 \) and therefore \(\{ \hat{\phi}_k \} \) is bounded. Similarly, if \(\{ \delta_k \} \) converges to zero then \(\{ \hat{\phi}_k \} \) also converges to zero.

The following two results are due to Powell [8], but since he used version (c) of Theorem 5.3, his proofs are quite involved.

Theorem 5.6: Let \(F: \mathbb{R}^n \rightarrow \mathbb{R}^n \) be continuously differentiable on the open set \(D \) and assume that \(F' \) is bounded on some \(D_0 \subset D \). If the sequence \(\{ J_k \} \) is defined by (5.7) and assumptions (5.8) hold, then \(\{ J_k \} \) is bounded.

Proof: Equation (5.7) shows that

\[J_{k+1} = J_k Q_k + \theta_k \frac{y_k p_k^T}{||p_k||^2}, \quad Q_k = I - \theta_k \frac{p_k p_k^T}{||p_k||^2}. \]

Now note that \(||Q_k|| \leq 1 \) and that \(|\theta_k| \leq 2 \) so that an induction argument on \(m \) yields

\[||J_{k+m+1}|| \leq ||J_{k+1} Q_{k+1} \cdots Q_{k+m}|| + 2 \sum_{j=k+1}^{k+m} \frac{||y_j||}{||p_j||}. \]

If \(||F'(x)|| \leq \mu \) for \(x \) in \(D_0 \) then \(||y_j|| \leq \mu ||p_j|| \). Therefore Theorem 5.3 shows that there is a \(k_0 \geq 0 \) and \(\alpha \in (0,1) \) such that

\[||J_{k+m+1}|| \leq \alpha ||J_{k+1}|| + 2 \mu \mu. \]

The result now follows from Lemma 5.5.

For the application of this result to the hybrid method, \(D_0 = L_\Delta \). Also note that Theorem 5.6 has applications to least squares.
methods since this result is unchanged if \(F \) maps \(\mathbb{R}^n \) into \(\mathbb{R}^p \) for some \(p \neq n \). These same remarks apply to the next result.

Theorem 5.7: Let \(F: \mathbb{R}^n \to \mathbb{R}^n \) be continuously differentiable in the open set \(D \) and consider the sequence \(\{J_k\} \) defined by (5.7).

If assumptions (5.8) hold, and in addition \(\{x_k\} \) converges to some \(x \) in \(D \) and \(\{p_k\} \) converges to zero, then \(\{J_k\} \) converges to \(F'(x) \).

Proof: The proof of this result is very similar to that of Theorem 5.6. In fact, (5.7) shows that

\[
J_{k+1} - F'(x) = [J_k - F'(x)]Q_k + \theta_k \frac{[y_k - F'(x)p_k]p_k^T}{||p_k||^2}.
\]

Also note that \(||y_k - F'(x)p_k|| \leq c_k ||p_k|| \) where

\[
c_k = \max(||F'(x_k + tp_k) - F'(x)|| : 0 \leq t \leq 1).
\]

Thus an induction argument on \(m \) and Theorem 5.3 show that there is a \(k_0 \geq 0 \) and \(\alpha \in (0,1) \) such that

\[
||J_{k+m+1} - F'(x)|| \leq \alpha ||J_{k+1} - F'(x)|| + 2 \sum_{j=k+1}^{k+m} \epsilon_j.
\]

Since \(\{\epsilon_k\} \) converges to zero, the result follows from Lemma 5.5.

The proofs of Theorem 5.6 and 5.7 are similar to those presented by Powell [10] for the symmetric form of Broyden's update. However, here the assumptions are weaker and our formulation clearly shows that these results do not depend on the particular algorithms which generate \(\{x_k\} \) and \(\{p_k\} \).

Finally we note that Powell [8] and Schwetlick [13] discuss algorithms for maintaining uniform linear independence.
6. **Powell's symmetric version of Broyden's method**

Assume as before that \(F: \mathbb{R}^n \rightarrow \mathbb{R}^n \) is continuously differentiable on some open set \(D \), but in addition, suppose that \(F'(x) \) is symmetric for all \(x \) in \(D \). In this case it is advantageous to modify update (3.2) so as to take into account the symmetry of \(F' \). One such modification is due to Powell [10]:

\[
B_{k+1} = B_k + \theta_k \frac{v_k s_k^T + s_k v_k^T}{||s_k||^2} - \theta_k^2 \frac{<v_k, s_k>}{||s_k||^4} s_k s_k^T
\]

(6.1)

\[v_k = y_k - B_k s_k\]

where the parameter \(\theta_k \) is chosen so that \(B_{k+1} \) is nonsingular. In this section we point out how the results of the previous section are changed if (3.2) is replaced by (6.1).

For the motivation and derivation of this update in the case \(\theta_k = 1 \) we refer to the survey article [5]. In this paper we follow Powell [11] and outline how \(\theta_k \) can be chosen so that \(B_{k+1} \) is nonsingular and (3.4) holds for some \(\hat{\theta} \).

It is not too difficult to show (see, for example, Lemma 7.6 in [5]) that as a consequence of Lemma 3.1

\[
\det(I + uv^T + pq^T) = (1 + <u,v>)(1 + <p,q>) - <u,q><v,p>.
\]

From this identity and after some manipulation it follows that if \(B_k = H_k^{-1} \) is nonsingular then \(\det B_{k+1} = \phi_k(\theta_k) \det B_k \) where

\[
\phi_k(\theta) = 1 - 2\theta \frac{s_k, H_k v_k}{||s_k||^2} + \theta^2 \frac{s_k, H_k s_k}{||s_k||^4} - \frac{s_k, H_k s_k - v_k, H_k v_k + s_k}{||s_k||^4}
\]

Given \(\sigma \) in \((0,1)\), Powell [11] chooses \(\theta_k = 1 \) if \(|\phi_k(1)| > \sigma \) and otherwise \(\theta_k \) is chosen to be a number closest to unity such that \(\phi_k(\theta) = \sigma \). An important point about this choice of \(\theta_k \) is that...
\[|\theta_k - 1| \leq \left(\frac{2\alpha}{\sigma+1} \right)^{1/2}. \]

However, we emphasize that in this paper \(\theta_k \) need only satisfy (3.4).

It is now natural to consider the symmetric analogue of Broyden's method in which the sequence \(\{x_k\} \) is defined by (2.1), (2.3) and \(\{B_k\} \) is generated by (6.1) and (3.4) with \(B_0 \) symmetric and nonsingular. This method is known as the Powell-symmetric-Broyden algorithm.

Theorem 6.1: Let \(F: \mathbb{R}^n \to \mathbb{R}^n \) satisfy the assumptions of Theorem 2.1 and in addition, suppose that \(F'(x^*) \) is symmetric. Then the Powell-symmetric-Broyden algorithm is locally and superlinearly convergent at \(x^* \).

This result is due to Broyden, Dennis and More [3] if \(\theta_k \equiv 1 \); if \(\theta_k \) is just restricted by (3.4) the proof is very similar, so it is omitted.

Theorem 6.1 is the analogue of Theorem 3.4; the following result parallels Theorem 3.2.

Theorem 6.2: Let \(F: \mathbb{R}^n \to \mathbb{R}^n \) be defined by \(F(x) = Ax - b \) where \(A \) in \(L(\mathbb{R}^n) \) is symmetric and nonsingular. Then the Powell-symmetric-Broyden algorithm is globally and superlinearly convergent.

Proof: If \(E_k = B_k - A \) then (6.1) implies that
\[E_{k+1} = Q_k E_k Q_k^T, \]
\[Q_k = I - \frac{\theta_k s_k s_k^T}{\|s_k\|^2}, \]
and since \(\|Q_k\| \leq 1 \), estimate (1.2) yields that
\[\|E_{k+1}\|_F^2 \leq \|E_k^O_k\|_F^2. \]

However, in the proof of Theorem 3.2 we proved
\[\|E_k^O_k\|_F^2 = \|E_k\|_F^2 - \theta_k(2 - \theta_k)(\frac{\|E_k s_k\|}{\|s_k\|})^2, \]
so that the last three estimates show that
\[(1 - \hat{\theta})^2 \left(\frac{\|E_k s_k\|}{\|s_k\|} \right)^2 \leq \|E_k\|_F^2 - \|E_k+1\|_F^2. \]

This inequality implies (3.5) and thus the proof proceeds as in Theorem 3.2.

It should now be clear that Theorems 5.6 and 5.7 remain essentially unchanged if \((J_k^*\) is generated by
\[J_{k+1} = J_k + \theta_k \frac{v_k p_k^T + p_k v_k^T}{\|p_k\|^2} - \theta_k \frac{2<v_k,p_k^*>}{\|p_k\|^4} p_k p_k^T \]
(6.2)
\[v_k = F(x_k + p_k) - F(x_k) - B_k p_k, \]
with \(J_0^*\) symmetric; the only difference is that now \(F'(x)\) is assumed to be symmetric for \(x\) in \(D\).
7. Concluding remarks

It is interesting to compare our results with those obtained for Powell's 1970 hybrid method [10] for the unconstrained minimization of a functional \(f \).

Powell [12] shows that if update (6.2) is used without special iterations, then there is global and superlinear convergence. However, his results do not apply to the functional \(\phi \) defined by (4.1) because he assumes that the gradient of the functional can be calculated exactly. It is an open question whether Theorems 4.1 and 4.2 hold for the sequence \(\{J_k\} \) defined by (5.7) if no special iterations are performed, but our numerical experiments show that in most cases special iterations are numerically desirable.

Thomas [13] in his Ph.D. thesis shows that if Powell's 1970 hybrid method is slightly modified then -- with special iterations -- the sequence \(\{\nabla f(x_k)\} \) converges to zero while Powell only shows that this holds for some subsequence. It would be interesting to show that a similar result holds for the hybrid method of this paper so that in Theorem 4.1 we actually obtain the convergence of \(\{\|J_k F(x_k)\|\} \) to zero.
References

