ON THE TIME AND TAPE COMPLEXITY

OF LANGUAGES*
Harry Bowen Hunt III

TR 73-182

A Thesis
Presented to the Faculty of the Graduate School
of Cornell University for the Degree of

Doctor of Philosophy

August 1973

Department of Computer Science
Cornell University
Ithaca, New York 14850

*This research was supported by a National Science Foundation Graduate
Fellowship in Computer Science.

ON THE TIME AND TAPE COMPLEXITY OF LANGUAGES

Harry Bowen Hunt 111, Ph.D.

Cornell University, 1973

ABSTRACT

We investigate the following:

(1) the relationship between the classes of languages
accepted by deterministic and nondeterministic
polynomial time bounded Turing machines;

(2) the relationship between the classes of languages
accepted by deterministic and nondeterministic linear
bounded automata;

(3) sufficient conditions for undecidability of linguistic
predicates; and

(4) the time and space complexity of seﬁeral predicates
on the regular sets.

We show that the set {R | R is a (U, ,*,n) regular
expression and L(R) = {0,1}*} is not recognizable by any
polynomial space bounded Turing machine. We also find
conditions which guarantee that any predicate on the
regular sets satisfying them is as hard to decide as

emptiness or equivalence.

BIOGRAPHICAL SKETCH
Harry Bowen Hunt III was born in Sharon, Pennsylvania
on July 1, 1949. He was graduated from Case Western
Reserve University in June, 1971, with the degrees of
Bachelor and Master of Science (both in Mathematics.) He
entered the graduate school at Cornell University in

July, 1971.

ii

to my parents and grandparents

iii

ACKNOWLEDGEMENTS

First, I would like to thank my thesis advisor
Professor John E. Hopcroft for his help, encouragement, and
time. I would also like to thank Professor Juris Hartmanis.
Several of the results of Sections 2.0 and 2.1 were arrived
at jointly with him. Thanks are also due to Professors
Michael Morley and John Dennis for serving on my special
committee.

Finally, this research was supported by a National

Science Foundation Graduate Fellowship in Computer Science.

iv

TABLE OF CONTENTS

BIOGRAPHICAL SKETCH
ACKNOWLEDGEMENTS

TABLE OF CONTENTS

Chapter 1 INTRODUCTION
1.0 Background
1.1 Basic Facts and Definitions

1.2 Outline of Results

Chapter 2 THE CLASSES PTIME, NPTIME, DCSL, AND
NDCSL
2.0 Preliminaries
2.1 Upwards Reducibilities and Effective
Translations

2.2 P-complete Languages and Operations

Chapter 3 GENERAL UNDECIDABILITY THEOREMS

Chapter 4 THE EQUIVALENCE AND EMPTINESS
PROBLEMS FOR REGULAR SETS
4.0 Introduction
4.1 Equiv(U, ",*) and Empty(U, ",*,Nn)
4.2 Equiv(u, " ,*,N)
4.3 Empty(U, ,*,~)

4.4 Two Way Finite Automata

ii

iv

15

24

32

40
40
41
50
62

68

Chapter 5 HARD LANGUAGES
5.0 Introduction
5.1 Predicates on the Regular Sets
5.2 A Natural Complexity Core

5.3 Some Related Hard Problems

Chapter 6 CONCLUSION
6.0 Summary

6.1 Open Problems

BIBLIOGRAPHY

vi

71
71
72

77

s

88
88

89

91

Chapter 1 INTRODUCTION

1.0 Background

Recently there has been considerable activity in
studying the computational complexity of combinatorial
problems. Cook [71] and Karp [72] have introduced the
concept of a p-reducibility and using it have shown that
a variety of combinatorial problems, such as finding if a
Boolean form is a tautology, finding if an undirected
graph has a Hamilton circuit, and finding if an undirected
graph has a clique of size k, have polynomial time bounded
deterministic algorithms if and only if the classes of
languages accepted by deterministic and nondeterministic
polynomial time bounded Turing machines are the same. This
result is of interest since it is generally agreed that a
problem is tractable on a digital computer only if it has
a deterministic polynomial time bounded algorithm. Thus,
these results strongly suggest but do not prove that these
combinatorial problems are not tractable.

Meyer and Stockmeyer [72] have shown that the equiva-
lence problem for regular expressions has a deterministic
polynomial time bounded algorithm if and only if the classes
of languages accepted by deterministic polynomial time

bounded and nondeterministic polynomial tape bounded Turing

-1-

machines are the same. Tﬁey have also shown that the
equivalence problem for extended regular expressions
(regular expressions with both complements'and inter-
sections added) is not elementary recursive. That is there
is no algorithm for this problem of time complexity 2n,
22", 222" ote.

We investigate the complexity of the emptiness and
equivalence problems for several other varieties of regular
and extended regular expressions. The equivalence problem |
for extended regular expressions, without complements but
with intersections, is shown to have-né polynomial space
bounded algorithm. Several natural conditions on predicates
on the regular sets, which imply that a predicate is as
hard to decide as emptiness or equivalence, are found. We
also study the relationships between the classes of lan-
guages accepted by deterministic and nondeterministic
polynomial time bounded Turing machines and between the

classes of languages accepted by deterministic and non-

deterministic linear bounded automata.

1.1 Basic Facts and Definitions

We assume the reader is familiar with both deterministic
and nondeterministic time and tape bounded multi-tape
Turing machines (abbreviated henceforth by Tms.) There are
two varieties of these machines studied in the literature.
In the first the input tape is ready only; in the second
all tapes are read-write. Our machines are always of the
second kind. Thus, a single tape Tm in this thesis is a
Turing machine with exactly 1 tape, which is used both for
input and work space. Similarly, a 2 tape Tm is a Turing
machine with 2 read-write tapes, one of which is used for
input. We also assume the reader is familiar with the
regular sets, regular grammars, context-free languages and
grammars (abbreviated by cfls and cfgs), and both
deterministic and nondeterministic linear bounded automata
(abbreviated by lba.) Details concerning any of the above
may be found in Hopcroft and Ullman [69].

Definition 1.1.0: N denotes the set of nonnegative integers.

Definition 1.1.1: PTIME is the class of all languages (over

some countably infinite alphabet ¥) recognized by
some deterministic polynomial time bounded Tm.

Definition 1.1.2: NPTIME is the class of all languages

(over some countably infinite alphabet 7) recognized

by some nondeterministic polynomial time

bounded Tm.

Definition 1.1.3: PTAPE is the class of all languages

(over some countably infinite alphabet)
recognized by some deterministic or nondeterminis-
tic polynomial tape bounded Tm. Savitch [70] has
shown that the classes of languages accepted by
deterministic and nondeterministic polynomial

tape bounded Tms are the same.

Definition 1.1.4: Dtime (T(n)) is the class of all lan-

guages (over some countably infinite alphabet)
recognized by some deterministic T(n) time bounded
Tm. Ndtime (T(n)) is defined analogously.

Definition 1.1.5: Let L(n) = n. Dtape (L(n)) is the class

of all languages (over some countably infinite
alphabet %) recognized by some deterministic L(n)

tape bounded Tm. Ndtape (L(n)) is defined

similarly.

Definition 1.1.6: DCSL is the class of all languages (over

some countably infinite alphabet %) recognized by
some deterministic 1lba. NDCSL is defined

analogously.

Definition 1.1.7: Let £ = {0,1}. Let 7 be the class of

functions from v* into T* computable by some
deterministic polynomial time bounded Tm. Let

L and M be languages. L is p-reducible to M,

written L M, if 7€z such that xeL iff

<
Ptime
f(x)eM. We leave it to the reader to extend this
definition to countably infinite alphabets T.

Definition 1.1.8: The (U,',*) regular expressions over

{0,1} are defined recursively as follows:

(a) A\, $, 0, 1 are (U,*,*) regular expressions
over {0,1},

(b) If A and B are (U, ,*) regular expressions
over {0,1}, then so are (A)U(B), (A) ° (B),
and (A)*, and

(c) A is a (U, ,*) regular expression over
f0,1} iff it satisfies (a) or (b). (U,');
W, ,nN, (U, ,*,n), and (U, ,*,.) regular
expressions over {0,1} are defined
similarly.

Definition 1.1.9: Inequiv (U, ,*) = {(RI,RZ) | R, and R

1 2

are (U, ,*) regular expressions over f0,1} and

L(Rl) # L(Rz)}. Notempty (U, ,*) = {R | R is a

(U, ,*) regular expression over f0,1} and

L(R) # Q}.Equiv, Inequiv, Empty and Notempty
are defined analogously for (U,"), (U, ,n),
W, ,*,n), and (U, ,*,.) regular expressions
over {0,1}.

Finally, in several places in this thesis we discuss
structures such as cfgs over arbitrarily large alphabets.
Since we are interested in the computational complexity
of languages over fixed size finite alphabets, we must
encode such structures. Thus, we talk about the set
G ={y | y is the code of a cfg with terminal alphabet
{0,1}}. We generally encode such objects using binary

integers'in the standard manner.

1.2 Outline of Results

We feel that a viable theory of algorithms must talk
about the complexity of classes of problems not just
individual ones. We introduce the intuitive concept of a
complexity core, that is, a finite set of conditions such
that any problem satisfying them has a complexity bound
(loﬁer or upper) derivable from the conditions of the core
alone. Thus, a complexity core characterizes the complexity
of the class. of problems which satisfies its conditions.
The problem is to find cores which are both natural and
describe the complexity of a broad class of problems. In
Chapter 5 we present one such core, which characterizes
the minimal complexity of a broad class of predicates
on the regular sets, inéluding almost all such predicates
studied in the literature.

Finally, we briefly outline the contents of this
thesis. 1In Chapter 2 we find several necessary and suffic-
ient conditions for PTIME to equal NPTIME and for DCSL
to equal NDCSL. We find several hardest languages in
each nondeterministic class. In Chapter 3, we extend the

undecidability theorems appearing in Greibach [68].

In Chapter 4 we characterize the computational
complexity of the emptiness and equivalence predicates
for (U, ,*), (U, ,*,n), and (U, ,*,.) regular expressions,
and for 2-way deterministic finite automata. In 5 we
find conditions which guarantee that a predicate on the
regular sets is as hard to decide as emptiness or equiva-
lence. We show that almost all predicates studied in the

literature satisfy these conditions. We also find several

natural hardest NDCSLs. Chapter 6 is a short conclusion.

Chapter 2 THE CLASSES PTIME, NPTIME, DCSL, AND NDSCL

2.0 Preliminaries

We study the relationships between the classes PTIME,
NPTIME, DCSL, and NDCSL. We show that there are hardest
languages in both nondeterministic.classes. These lan-
guages need be nothing more complex than universal time
or tape bounded Tms. We show that the relationships
between PTIME and NPTIME, and DCSL and NDCSL are strongly
reflected in the relationships between Dtime (T(n)) and
Ndtime (T(n)), and between Dtape (L(n)) and Ndtape (L(n))
for all functions T(n) and L(n) = n.

Definition 2.0.1: L1 is p-hard if LOeNPTIME implies

< . . . o
Lo Ptime Ll' L1 is p-complete if it is both

p-hard and an element of NPTIME.

Definition 2.0.2: L1 is a Savitch CSL iff L1

¢DCSL implies DCSL = NDCSL. Savitch languages

¢NDCSL; and

L
are named for W.J. Savitch, who in Savitch [70]
presented a hardest nondeterministic logn tape
recognizable language.

First, we prove that there is a simple p-complete
language, which is of linear nondeterministic time

complexity on some 2 tape Tm and of nlogn nondeterministic

time complexity on some single tape Tm.

-9-

-10-

To prove these results we need two technical results:

Lemma 2.0.3: (Vk = 1) (& a 2-tape Tm M) (Vv ¢ 1)

k
1|W|2

[L(Mk) =fx| x=w¢e $ with ¢, $ ¢ T}.

Moreover, M, operates within linear time.]

Lemma 2.0.4: (Vk = 1) (¥ a single-tape Em Mk) (Vw ¢ Z+)
[L(Mk) ={x| x=w¢l | w ‘2 $ with ¢, $ £ %}.
Moreover, Mk operates within time 0(|x| log |x|).]
The proofs of Lemmas 2.0.3 and 2.0.4 are standard.

Proof of 2.0.3: The lemma states that for any k = 1, there

is a 2-tape linear time Tm Mk whose accepted
language

L(M) = = |w|2k i
M) = xlx=we¢l $ with ¢, $, ¢ T}.

Only the details will be sketched.

The proof is by induction on k. Let k=1. The
first tape of M1 contains the input string x. The
second tape has 2 tracks; a counter of length I w|
is kept on each track. The |w|2 1's are divided}
into \w| sets; each set contains |[w|1l's. The bot-
tom counter records which set the machine is check-
ing off on the first tape. The top records which 1
in a given set the machine is checking off on the

first tape. The time used is 0(|x]).

-11-
Assume the lemma holds for k=i-1. The proof for k
=i is similar to that for k=1 with |w]| geplaced
by |W|2i-1.

Proof of 2.0.4: The method of proof follows that of

Lemma 2.0.3 with the following modifications:

1) the counters are on the same tape as the
input,

2) they are kept in base 2 and hence have maximum
size 0(1log !x|), and

3) they are moved one cell to the right each
time a new symbol is checked. Again the time
required is 0(log |x|). Hence the total
time required is 0(|x| log |x|).

Lemma 2.0.5: 1) There are polynomial complete problems of

nondeterministic time complexity O(n log n) on

single tape Tms.

2) There are polynomial complete problems of
linear nondeterministic time complexity on
2-tape Tms.

Proof: We only sketch the proof of 1. Both 1 and 2
follow from the fact that we are able to
deterministically pad inputs within the allowed

time bounds.

-12-

Using well-known results concerning encodings,
we can encode arbitrary single-tape Tms as strings
over a fixed finite alphabet. We can do this in
such a way that the following hold:

A. The encoding process is in PTIME;
B. There is a single-tape nondeterministic Tm M,
which given the code for the ith Tm M,

together with the code of an input x for Mi’

simulates the action of Mi on x; and
C. The time required for M to simulate n moves

of Mi on x is bounded by a polynomial in the

sum of n and the lengths of the encodings of

Mi and of x.

We modify M by adding a clock to shut M off
if M, computes for too long (> [x]z) and by
padding its inputs to cover the costs of C and
the bookkeeping required for running the clock.
The total time required is O(n log n).

Next, we find a simple Savitch CSL using the same
techniques as above; mainly our language is a universal

NDCSL.

-13-

Lemma 2.0.6: Let L = {M, # code (X,,...,X) # | M. is the
i 1 n i

code of an LBA using the symbols {(,),?,0,1,+,-},
X1 ce Xn € L(Mi) and the lengths of the codes
of Xl,...,Xn are all equal to the cardinality of
the tape alphabet of Mi + 1}.1 Then the L ¢
NDCSL, and L ¢ DCSL iff DCSL = NDCSL.

Proof: First, L ¢ NDCSL. This follows since we can check
in space | M, # code (Xl,...,Xn) # | that M, and
X = Xl"'xn are properly encoded. Secondly,
the space required to simulate Mi is at most K
(the cardinality of the tape alphabet of Mi)
times |x|. But K'n < | code (xl,...,xn) l.

Suppose L € DCSL. Let Mi be some LBA.
Define M&(i) as follows:
1) Given an input X = X

X writes out

1
Mi# code (Xl""’xn)#'

n’ Mc(i)

2) Mc(i) applies Mi0 as a subroutine to
M, # code (Xl,...,Xn)#, where Mio is some
deterministic LBA whose accepted language is

L. Then Mc(i) requires deterministic space
0(n),
1. Let the input alphabet to M be OpseeesOye Then

the code of o, is 10", where K is the cardinality of the

-14-

tape alphabet of M,. Similarly, the code of o, is 110871,

etc. Thus, the code of a symbol varies with'Mi.

-15-

2.1 Upwards Reducibilities and Effective Translations

In this section we show that the relationship between
PTIME and NPTIME is strongly reflected in the relationships
between Ndtime (f(n)) and Dtime (f(n)) for all f(n) = n.

We also show almost identical results concerning the
relationship between NDCSL and DCSL.

Theorem 2.1.1: The following are equivalent:

1) PTIME = NPTIME;

2) all linear time nondeterministic 2-tape Tm
languages are elements of PTIME;

3) all n log n time nondeterministic single
tape Tm languages are elements of PTIME;
and

4) there exists a positive integer k and a
recursive function o: N = N such that for
all functions T(n) = n, if Mi is a non-
deterministic T(n) time bounded Tm, then
Mo(i) is an equivalent [T(n)]k deterministic

time bounded Tm.

Proof: The equivalence of 1 and 2 and of 1 and 3 follow

from lemmas 2.0.3 and 2.0.4 respectively.

Let LO be some fixed language of single tape

et pd . . Ko
nondeterministic time complexity n ~. Then

-16=

]

1|w12$o!w € LO; ¢, $ £ the tape

L = {w ¢

j
alphabet of L_, and 2 °

> Ko } is of non-
deterministic linear time complexity on some 2
tape Tm. LO is of nondeterministic n log n time
complexity on some 1 tape Tm.

Clearly 4 implies 1. As is easily seen
and we shall prove in Theorem 2.2.3, the set
L = {(Rl,Rz) | R1 and R2 are (U,) regular
expressions over {0,1} and L(Rl) e L(RZ)} €
NPTIME. We now show how, given a single tape
Tm M with state set S, tape alphabet T, set of
accepting states F, start state 9, and an input
X = Xp.. X to M, to construct (U,’) regular
expressions Bx(n) a;d yx(n) such that
1) L(Bx) = (Tul) 4n"+2 if and only if M does

not accept X in time n, where T = {#}UTU(SXT);‘

2) ‘Bx(n)l < Cy 'n3, where C, depends only upon

M not X or n;

4n2+2
3) L(yx(n)) = (Tu\) if and only if all

computations of M on X halt in less than or
equal to n steps;
4)»|Yx(n)‘ < CM-nB, where C, depends only upon

M not X or n;

-17-

and 5) the deterministic time required for the
construction of Bx(n) and yx(n) given M,
X, and n is bounded by a polynomial in
n (we assume n > m).
We only sketch the constructions of Bx(n) and
yx(n) here. A more detailed discussion of
similar constructions appears in Chapter 4.
By is the union of the following:
1) strings in which one instantaneous desc ription
does not follow the preceeding one by 1

application of a move rule of M.

2
! (suap ™ L 202 (53 g (01,04,03))
OneOnq€l 1°27°2°°3
91292593»
2n2 -n -1
(zu{x)ux;

2) strings of length = 2n2 + n + 2 and of
(There are n i.d.'s each of length 2n
+ (n+1) "#'s".)

length < 4n2 + 2 --

2 2
2n° -
Z2n + n + 2. (sUix}) n n,

b

-18-

3) strings of 1ength.<2n2 +n+1-

2
awr - uap® ot

4) strings that do not begin with

-8 - (qpeX)) XKy Pe..T X BT 0 # of

length < 4n° + 2 --

L4 - u T oz - - oD

U U™ L (g XD

GEW U ... U ST] (zux)4n2 -
5) strings of length 2n2 + n + 1 that do not end

#2225) |

and 6) strings that do not accept --

2
2n° + n +
[2- (g lag) x DI AL

We assume n > m and n is sufficiently large
so that all exponents in the above strings are
positive. |Bx(n)| < O(n3).

Similarly, Yx(n) is the union of (1), (2),
(3), (4) and (5) above, plus (6') all strings of
length 2n2 + n + 1 which are in terminal
configurations, that is those in which there is

no next move which M can legally apply --

2
6y £ Tt syr -y L,
2n - 1

Uz * o« °], where o is the set of all

-19-

state-symbol pairs with no next move out of them.
Again |yx(n)| <0 (n3).

Let Mi be a nondeterministic T(n) time
bounded single tape Tm. Thus if x is an input
to Mi of length n, all computations of Mi on X
require time < T(n). Suppose PTIME = NPTIME,
then Inequiv (U,°) and Equiv (U,:) e PTIME.
Mo(i) executes the following algorithm:

For j « |x| step 1 Do
. Begin
Write out Bx(j);

.2
457 + 2 then

If L(R (3)) # (Tu\)
Begin Accept x; Halt; End;
Write out v_(j),
X
4'2 + 2
If Ly (§) = (3u)™ then
Begin Reject x; Halt; End; End;
Since M, is T(n) time bounded, the loop
is executed at most (T(n) + 1) times. Each
execution of the loop requires time < Pk(T3(n)),
where Pk is the time required to determine if
| . . 45% + 2
L(g,(3)) and L(y, (3)) = (ZU) :

-20-

Theorem 2.1.2: (1) NDCSL = DCSL if and only if (2) there

exists a recursive function s: N - N such that
for all functions L(n) = n, if Mi is a non-
deterministic L(n)tape bounded Tm, then
Ms(i) is an equivalent L(n) deterministic tape
bounded Tm.

Proof: Clearly 2 implies 1. As we shall prove in Chapter 5,

the set L = {(Rl,Rz) | R1 and R, are (U,",%)

2
regular expressions over {0,1} and L(Rl) #
L(R2)} € NDCSL. We now show how, given a single
tape Tm M with state set S, tape alphabet T,

set of accepting states F, start state q0 and

input X = X, ... X to M, to construct (U, ° %)

1
regular expressions Bx(n) and yx(n) such that
1) L(Bx(n)) = (QOUl)* if and only if M does not

accept x in tape n;

depends only upon

2) ,3x(n)| < CM - n, where CM

M and not X or n;
3) L(yx(n)) = (0Ul)* if and only if all computa-
tions of M on x require less than or equal

to n tape cells;

-21-

4) Iyx(n)l < Cy'n, where Cy depends only upon M
not x or n; and |
5) the deterministic space required for the con-
struction of Bx(n) and Yx(n) given M, x, and n
is linear in n; we assume n 2 m.
Again we only sketch the constructions of Sx(n)
and yx(n). A more detailed discussion of similar
constructions appears in Chapter 4.
Let [=TuU (S xT)U {#}. B _(n) is the
union of the following:
(1) all strings in which one instantaneous des-
cription doesnot follow the proceding one by 1

application of a move rule of M-
Coep® 2n-2 , 03 *..
Uabre e ftf abe [T ([7-£_(a,b,e)) [T;
all strings that donot begin with.#ﬁn(qo,xl)xz...
x B -
m

L(f-#)usCC[-8B)uBl...BL0 ([- (qp
x) U B0 Cf-#)1...0...0 0 3

(3) all strings that do not end in #-
f* ([-#); and

(4) all strings without an accepting state-

(- (Upp (@l xT) 7.

Similarly, Yx(n) is defined as the union of

-22-

(1), (2), and (3) above plus

(4') all strings in which the last instantaneous
description does not require more space-

f*#[afzn'l U fzn-lﬁ 1#, where a is the set of all
state-symbol pairs with no next move which moves
the tape head left and B is the set of all state-
symbol pairs with no next move which moves the
tape head right. Again IYX(n)I < 0(n).

Let M, be a nondeterministic L(n) tape bounéed
single tape Tm, where L(n) 2 n. Thus if |x| = n,
then all computations of Mi on x require < L(n)
tape cells. Suppose NDCSL = DCSL, then both
Inequiv (U, ,*) and Equiv(U,’,*) e DCSL. Ms(i)
executes the following algorithm:

For j + |x| step 1 Do
Begin

Write out Bx(j);

If L(ﬁx(j)) i {O,l}* then begin Accept(x);

Halt; end;

Write out Yx(j);

If L(Yx(n)) = {0,1}* then begin Reject(x);

Halt; end;
end;

Since Mi is L(n) tape bounded, the loop is

-23-

executed at most (L(n) + 1) times. Each execution
of the loop requires tape < 0(L(n)).

Finally for proofs of Theorems 2.1.1 and 2.1.2 not
using regular expressions the reader should see Hartmanis
and Hunt(73]. Several of the results of this section have
been discovered independently by R. Fagin(the equivalence of
1 and a weaker version of 4 in 2.1.1) and R.V. Book[72] and

[73] (the equivalence of 1 and 2 of 2.1.1 and 2.1.2.)

-24-

2.2 P-complete Languages and Operations

In this section we show that the equivalence and empti-
ness problemsfor several types of restricted regular expres-
sions are p-complete. We also investigate nondetermiﬁistic
polynomial time bounded operations that genérate NPTIME when
applied to elements of PTIME.

Theorem 2.2.1: The following are p-complete:

(1) Inequiv(U,’);

(2) { (M, M'") | M and M' are nondeterministic
finite automata (abbreviated nfa) which accept
finite sets and L(M) # L(M') };

(3) [Hopcroft and Hunt] Inequiv(U,’,Nn); and

(4) Notempty(U,",Nn).

Proof: Cook[71] has shown that D,-Tautology is p-complete.

3
(D3-Tautology is the set of nontautological Boolean
forms in Disjunctive normal form with at most 3
literals per clause.) Let f==:; ii be a D3-Boolean
form. Then each c; is the Booi;an product of at

most three literals. For each c. let B, = B..B.,...
"1 i i17i2

Bin' (The number of variables appearing in f is n.)
p..= ((OUl) if x. and x, are not literals in c,,
1] J J 1
(0) if EE is a literal in c;s and

(1) 1if xj is a literal in c,-

-25-

m
Let B = g= Bi. Then y € L(B) iff y satisfies some

1
clause c,. Then, L(B) = {0,1}" iff £ is a tautology.
Clearly the construction of B given f is deter-
ministic polynomial in |£|. Thus D3-Tautology <
ptime

Inequiv(U,*). (Usually D,-Tautology is the set of

3
D3-Tautologies. But using this definition it is not
known whether this set is p-complete. In fact it

is p-complete iff NPTIME is closed under com-

plementation.)

Next we show that Inequiv(U,’) € NPTIME. Given

a regular expression B and a string Xx,

we can check if x ¢ L(B) in deterministic time a
polynomial in max(|B|, |x|). But B a (U,") reg-
ular expression implies for all x ¢ L(B), |x| <
|3|. (Here B is a string over the finite alphabe;
{ o, », 0,1, U, ",(D)) . Hence given two (U,")
regular expressions a and B, to verify that L(a)
£ L(B), we need only guess a string x of length <
‘max(|a], |B]) such that x € L(a) N L(B) or x ¢

L(@) n EIET—-

-26-

(2) Given a (U,") regular expression R, we can
construct an nfa M in deterministic polynomial
time in |R| such that L(M) = L(R). Thus the fact
that the set { (M, M') | M and M' are nfa which
accept finite sets and L(M) + L(M') } is p-hard
follows from 1. Since M an nfa which accepts a
finite set and x ¢ L(M) implies that |x| < the
number of states of M, the set { (M, M') | M and
M' are nfa which accept finite sets and L(M) #
L(M') } is easily seen to be an element of NPTIME.
(3) From 1 Inequiv(U,’,n) is p-hard. We show that
it is an element of NPTIME. As in the proof of 1,
a, a (U, ,Nn) regular expression implies for all x
e L(a), |x| < |la|. Thus the proof of 1 would also
prove 3 provided given x with |x| = max(|a!,|B|)
we can in deterministic polynomial time in |x| de-
cide if x € L(a) N ETEY or x € L@) N L(B).

Let x be a string that differentiates between

n < max(|a|, [B]). W.l.g. we as-

a and B. |x]|

sume x € L(a) N L(B). There are at most O(EﬁE%ll)
proper substrings of x. There are at most (|la| +
|8|) regular subexpressions of a and B. (This is

easily seen by induction. a =o' “a'',a' Ua'',

-27-

or a' N a'" implies the number of regular sub-
expressions of a < |a'| + |a"| + 1.)

For each regular subexpression of a and for
each of B, we construct an array that indicates
which proper substrings of x are in the regular
set denoted by the subexpression and which are
not. The i,jth element of the array corresponds
to that proper substring of x beginning with the
ith and eﬁding with the j-1st character of x, i.e.,

It is 1 if x.x. is an

xixi+l"°xj-1' i 1+1"'xj-l
element of the set denoted by the subexpression
and 0 otherwise. Aij= 0if j<1i+ 1.

For each subexpression R we must know if & €
L(R) . Clearly, given R and S if we know if A €
L(R) or not and if we know if X ¢ L(S) or not,
then we know if‘k e L(RUS), LCRNS), or
LCR - S).

If |R| = 1 then the number of nonzero elements
of the corresponding array < n. (It is easy in
in deterministic polynomial time in n to compute
this matrix.) If |R| =2 2 then R = Rl U R2’ R1 N RZ’

or R, * R,. Let A, A', and A" be the corresponding

1 2°

matrices.

Case 1. If R =R, UR, then A = A'V A" and) €

-28-

L(R) iff X ¢ L(Rl) or \ € L(Rz), i.e., A,. =

]
VA'ij.

1

Case 2. If R = R, n R, then A.s
Case 4 i3

L(R) iff X € L(RZ) and \ € L(Rl)’ i.e., A., =

A A"ij .

Case 3. If R = R1 . R2 then A
L(Rl) and L(Rz).

= 1 "

i3 rvi<k<j Alik X Ak
wy ¥ :

P I
1 1

A5 Vices® ik
' v " v v

LA 15 Aig i<k

The operation Y is Boolean or.

Al

A',

ij ij

] 11
A iJ,/\ A iJ..and A €

Al

ij ij

is an element of both

if » § L(R)) and) ¢

L®R,),
n

* Ak |

and) ¢ L(RZ)’

if XA € L(Rl)

1"
X A K

and \ € L(Rz),

if a ¢ L(Rl)

"
ik X Ak

and \ ¢ L(Rz).

if A € L(Rl)

1" "

x"" denotes and.

(4) D3-tautology is the same as C3-satisfiability,

where C3

-satisfiability is the set of satisfiable

Boolean forms in conjunctive normal form with at

most three literals per clause.

appearing in f be {xl,..

.,xn}.

Let the variables

Then f is a D3-

Boolean form iff (by definition) £ =V‘:=1 cyo where

each term is the préduct(and) of at most three

literals.

-29-

W.l.g. we assume no pair of literals xj, ;;
appears in any term of f. Then f is a tautology
m
iff ~f = /]._=1 (~yilv ~yi2\l ~y]._3) is not satisfiable.

(Here c; = yifN in/\yiB') Let B =B, NB,y, N ...

N Bm, where Si = Bil U 612 U 613 and Bij = Bijl'
Byysr Byy reen By Mand
ijk='(ou1)ifyij=f xkandyij=|=x—k,
(1) if yij = 2;, and
ﬁ 0) if yij =X .
Let x = tl...tn € {0,1}n. Then x ¢ L(B) iff

~f(tl,...,tn) = true, i.e., ~f is satisfiable.
Finally, Notempty(U,’,Nn) ¢ NPTIME since we may guess
a string x and verify that x € L(B) in deterministic
time a polynomial in the length of x as shown in

the proof of 3.

Informally a p-complete problem is a generator of

NPTIME by deterministic polynomial time bounded operations.

We next investigate the related questions:

Is NPTIME generated by elements of PTIME by non-

deterministic polynomial time bounded operations? and

Are there complete operations?

We answer both questions affirmatively.

Theorem(Book and Greibach[70]): A language L is recognized

by a linear time nondeterministic multi-tape Tm

-30-

if and only if L is the epsilon-free homomorphic
image of the intersection of three context-free
languages.
Since we have already presented a p-complete problem of
linear nondeterministic time complexity, PTIME is closed
under intersection, and all cfls are elements of PTIME, we

have the following immediate corollaries-

Corollary 2.2.2: There are three cfls LO, Ll’ and L2 and an
epsilon-free homomorphism h such that h(LO n Ll N
L,) is p-complete; and

Corollary 2.2.3: PTIME = NPTIME iff PTIME is closed under

epsilon-free homomorphism.
(Book[72] has independently proved}2.2.3.) Thus, Corollaries
2.2.2 and 2.2.3 answer the first question above affirmatively.
Finally we present a fixed epsilon-free homomorphism h and a

fixed language L ¢ PTIME such that h(L) is p-complete.

Theorem 2.2.4: Let L = { fex | f is a D3-Boolean form
expressed as a string in some finite alphabet S.

0,1 & S. x = xl'.

f is a function of n variables tl""’tn and

X € {0,1}™ for some n > 0.

f(xl,...,xn) is false }. Let h be defined as

follows:

(1) h is an epsilon-free homomorphism from [S U

-31-

{ c,0,1 } dnto [S U { ¢,0,1} 17,
(2) for all s € S U fc}, h(s) = s,

(3) h(0) = 0, and

(4) h(1) = 0.

Then L ¢ PTIME and h(L) is p-complete.

Proof: Let f be a D3-Boolean form of n variables. Then

ngn e h(1) if and only if f is not a tautology.

(a) £cO" € h(L) implies that there exists an x =

X, oo

1
implies that f(xl,...,xn) is false. Hence f is

"X € {0,1}"™ such that fex e L. But this

not a tautology.

(b) £ is not a tautology implies that there ex-
ists an assignment of values (tl,...,tn) to the n
variables of f such that f(tl,...,tn) is false.
Then fcty...t ¢ L and £c0" ¢ h(L).

Thus h is a complete operation and answers the second

question above affirmatively.

-32-

Chapter 3 GENERAL UNDECIDABILITY THEOREMS

We state and prove new extensions of the undecidability
theorems appearing in Greibach{68]. These extensions lead,
naturally, to analogous theorems which give nontrivial lower
bounds on the minimal deterministic time needed to decide
many properties of the regular sets.

We state without proof Greibach's two undecidability
theorems. Next we state and prove our extensions of these
theorems. Finally, several examples are given where our the-
orems apply and those of Greibach do not.

Definition 3.0: Lyx = f{y | yx«L }. ®\L = { y | xysL }.

We call LA (X\L) the right (left) quotient of

L with the set {x}.

-33-

Definition 3.1: An effective family of languages is a

quintuple (Z,F,fl,fz,M) where

(1) £ is a countably infinite vocabulary

and M is a total recursive function such that

for any finite subset Zl of %, M(Zl) is an

element of Z-Zl;
(2) F is a family of languages over %;
(3) f1 is a function from N onto F such that
the mapping g defined on Nxz* by

g(n,w)= |1 if we fl(n)
undefined, otherwise

is partial recursive; and

(4) f2 is a total recursive function from N

into the finite subsets of ¥ such that

£, (el @1

Definition 3.2: (Z,F,fl,fz,M) is effectively closed under
a binary operation & on F, if there exists a total

recursive function 5:NxN*N such that fl(i(n,m))=

5(f1(n),f (m)). (Z,F,fl,fz,M) is effectively closed

-34-

under a binary operation p on F and the regular sets
over %(denoted by RZ)’ if there exists a total

recursive function p: NxR

;*N such that £,(e(n,R))=

p(£;(n),R).
Several words of éxplanation concerning the intuitive
meanings of 3.1 and 3.2 are in order:
(1) M is used to find a marker not in tape alphabet 21:

(2) £, enumerates the languages Li in F in such a way that

1
each Li is recursively enumerable;

(3) fz(i)'is the terminal alphabet of the language L;.
Similarly 3.2 means that given the indices i and j, we can

effectively find an index k such that Lk =ﬁ(Li,Lj).

Theorem(Greibach{68]): Let & =(Z,F,f1,f2,M) be an effective

family of languages, which is effectively closed
under union and under concatenation by regular sets.
Let “fl(n)=[f2(n)]*" be undecidable for Ln=f1(n) in
F. 1If P is any property defined on F such that

(a) there is an epsilon-free language L, in F

which does not have property P;

(b) all sets of the form fz(nﬁ'cnmfz(m? have

property P, where cnm=M(f2(n)Uf2(m)); and

(¢) if L has property P, R is regular and y is

a string, then LNR and y\L={ w | yweL} have

-35-

property P,
then P is undecidable for %.

Theorem(Greibach[68]): Let &¥=(g, F, £,, £,, M) be an effective

family of languages, which is effectively closed under
concatenation. Let "fl(n)= " be undecidable for
¢, If P is any property which
(a) 1is false for some epsilon-free L2 in F;
(b) is true for ¢; and
(c) 1is preserved by inverse gsm and intersection
with regular sets,
then P is undecidable for &.
Theorem3.3: Let é=(T, F, fl’ f2, M) be an effective family

of languages, which is effectively closed under

union and under concatenation by regular sets. Let
*

"fl(n)=[f2(n)] " be undecidable©? &, If P is any

property on F such that

(a) HLS&F-UXez* { x\L | P(L)= true } [or I LE

F- Uer* { LA | P(L)=true }] and
(b) P is true for all regular sets of the form
=M(fz(n)ufz(m)).

* *
fz(n) cnmfz(m) , where C m

Then P is undecidable on @.

Proof: Let Pp = U, { L | P(L)=true } and let Pe= U, ern

{ L/x | P(L)=true }. Let Li=f1(i) and let Zi=f2(i).

Theorem 3.

-36-

Assume F-P £ 0.

Given any i we can effectively find an index

* *
j such that Lj = Li s ka U Zi c kLk’ where Lk

is an element of F-PL. Then P(Lj) is true iff Li

*
=Z’ .
i
* * *
Casel. L, =%, . Themn L, = X, c, z
— i i j i ik "k
* *
Case2. L, ¥ T, . Then @x= £, - L,. Therefore,
E— 1 1 i 1
xe, §§Lj = L,. But P(Lj) true implies L & P,

which is a contradiction. Hence P(Lj) is false.
*
Thus, P(Lj) is true iff Li = Zi . The case
when P-P. + 0 is left to the reader.

4: Let & = (T,F,f fz,M) be an effective family of

1’

languages that is effectively closed under con-
catenation. Let "={" be undecidable in &. Let
P be any property that is

(a) true for O and

(b) such that F-P_ [or F-Py 1% 0,

then P is undecidable for ?.

Proof: Let L, < F- PL. Let Lj = Li ik Lk. Then Li =0

implies that Lj = § and that P(Lj) is true. L, +
¢ implies that there exists a string x @ L,. But
this implies that xe, QsLj = Lk . Thus P(Lj) is

false. Thus P(Lj) is true iff L; = 0-

-37-

Definition 3.5: An effective family of languages over {0,1}

is an ordered pair (F,f), where
(a) F is a family of languages over {0,1} and
(b) f is a function from N onto F such that
the mapping g defined on Nx{O,l}* by
g(n,w) = |1 if we f(n)
| undefined, otherwise
is partial recursive.

Theorem 3.6: Let & = (F,f) be an effective family of languages

over {0,1}, which is effectively closed under con-
catenation with regular sets, union, application
of the epsilon-free homomorphism h defined by h(0)
- 00 and h(1) = 01, and such that (00401) [A+0+1+
11(0+1)*] @ F. Let P be any predicate on F such
that

(a) P((0+1)™) is true and

(b) F-P, [or F-P, 1+9.
Then P is undecidable on ¢?.

Proof: Let F-P_ £ 0. Let L, @ F-P_. Then given an index i

k L

we can effectively find an index j such that Lj

* * * *
h(L,)10(0+1)* + (00+01) 101, + ~[(00+01) 10(0+1) 1.
* * *
L, = F, since ~[(00+01)"10(0+1)"] = (00+01) [A+0+
1411(0+1)*7 and F is closed under h, union, and

concatenation with regular sets.

-38-

Li = (0+1)*implies that Lj = (O+l)* and P(Lj) is
true. L, + (0+1)* implies that there exists x &
(0+1)" - 1,. This implies that h(x) & (00+01) -
Li)and h(x)lO\Lj = Lk. Hence P(Lj) is false. Thus
P(L,) is true iff L, = (0+1)". [Note that in the
statements and proofs of this theorem and of the
results in Chapter 5, + means union and ~ means

complementation.]

Corollary 3.7: Let & be an effective family of languages that

is effectively closed under concatenation. Let
"=0" be undecidable in &. If F contains both finife
and infinite languages, then finiteness is unde-
cidable for %.

Proof: Finiteness is preserved by quotient.

Corollary 3.8: Let R be any subset of the deterministic

*
context-free languages over {0,1} such that (0+1)
@ R. For the cfgs over {0,1}, the predicate "L(Gi)

& R" is undecidable.
Proof: Immediate from 3.6 since the deterministic cfls are
closed under quotient with regular sets on the right.

Corollary 3.9: The predicate "L=[L]rev" satisfies the con-

ditions of Theorems 3.6.
Proof: See the proof of Theorem 5.2.1.

Clearly Corollaries 3.8 and 3.9 do not satisfy the

-39-

conditions of the undecidability theorems mentioned above due
to Greibach. Thus, the extensions of Greibach's theorems in
this chapter include the following:

(1) P need not be preserved by intersection with regular
sets;

(2) P need not be closed under quotient with single
string; and

(3) If L is effectively closed under the epsilon-free
homomorphism h of 3.6 and (00+01) [A+0+1+11(0+1)] is an
element of F, then P need only be true for (O+l)*.
The power and importance of these extensions (especially 2)

will become apparent in Chapter 5.

CHAPTER 4 THE EQUIVALENCE AND EMPTINESS PROBLEMS

FOR REGULAR SETS

4.0 Introduction

Using the techniques of Meyer and Stockmeyer [12], we
investigate the complexity of the equivalence and emptiness
problems for various kinds of regular set descriptions (e.g.,

(U, *,*), (U,*,*,n), and (U,-,*,7) regular expressions.)

o 3 . S
Definition 4.0.1: Let Lo be a language. By PTAPE PTIME Lo

we mean that every language in PTAPE is p-reducible

<
PTIME Llo°

Lemma 4.0.2: Let L be a language over {0,1}. If &r > 0

to Lo, that is Le¢PTAPE implies L

< <
PTIME L, then PTAPE PTIME L.

. . < <
In particular if DCSL PTIME L, then PTAPE PTEIME L.

such that DTAPE (nr)

Proof: Left for the reader.

Finally, in each of the remaining sections of this
chapter we consider regular set descriptors over arbitrarily
large alphabets ¢ . It is left for the reader to
verify (see Lemma 5.1.1) that in each case, give a descriptor R,
we can effectively find a descriptor S over {0,1} such that
LR) = ¢ iff L(S) = @ or L(R) = T iff L(S) = 10,1)™.
Furthermore, this encoding process is linear in space and

deterministic polynomial in time.

-40-

-41-

4.1 Equiv (U,:,*) and Empty (U,*,*,N)

We show that PTAPE Inequiv (U, ,*) and that

<
PTIME

PTAPE Notempty (U, ,*,N). We do this by efficiently em-

<
PTIME
bedding arbitrary deterministic lba computations into
(U,*,*) and (U,",*,n) regular expressions.

Definition 4.1.1: Let M be a deterministic lba with tape

symbols T and states S. Assume 0,1,PeT, where

b denotes the blank tape square. An instantaneous
* *

description (i.d.) of M is a word in T -(SxT)'T .

Definition 4.1.2: Given any i.d. x =y * (s x t) - z for

y,z,e,T*, the next i.d., NextM(x) is defined as
follows: if when M is in state s with its read-
write head scanning symbol t, M enters state s'
and writes symbol t' then NextM(x) is
1) y-(s' x t')'z if M does not shift its head,
2) y't'"(s' x u)-w if M shifts its head right and
z=uwforueTand w ¢ T*,
3) w:(s' xu)-t'-z if M' shifts its head left
and vy = w'u for u ¢ T and w ¢ T*,
and 4) wundefined if (s x t) is a halting condition, or
if (s x t) is the rightmost symbol of x and M

shifts right, or if (8 x t) is the leftmost

symbol of x and M shifts left.

-42-

Definition 4.1.3: NextM(x,O) =x if x is an i.d. and is

undefined otherwise.
NextM(x{n+l) = NextM(NextM(x,n)).

Definition 4.1.4: Let # be a symbol not in T U (s x T).

The computation CM(x) of M from x is the following

word in ({#} U T U (S x T))*:

CM(x) = #'NextM(x,O)-#-NextM(x,l)'#'...'
#'NextM(x,n)'#.

Here, n is the least positive integer such that

(qf X t) occurs in NextM(x,n) for some t € T

and designated halting state q.. The computation

is undefined if there is no such n.

Given M as in the preceeding definitions, let
={#} UTWM (S xT). For any i.d. x, let CM

(i,x) be the J'.E-t—1 symbol of CM(x) for lsileM(X)l.
There is a function fM:z 3. y such that for any
i.d. x and any integer i, with |x\+2;ileM(x)|,
C (i,%) = £,(Cy(i-(Ix]+2) %), Cy(i-(1x|+1),x),
CM(i-(lxl,x)). This follows since the iEE
symbol of NextM(y) is determined uniquely by the

i-lEE, iEh and i+l§£ symbols of y.

-43-

Theorem 4.1.5:

(1) (Meyer and Stockmeyer [72])

2
PTIME

2
(2) (Hunt[73b1) Notempty (U,-,*,N) ,o\m PTAPE.

Inequiv (U, " ,%*) PTAPE.

Proof: From 4.0.2 we need only simulate all deterministic
linear bounded automata. Let M be a deterministic
linear bounded automata with states S, tape
alphabet T, designated halting state qfeS, and
designated start ététe qoeS. We assume qe is
final. Let I={#} UTU (S xT). Let
X =X,

1

(1) We construct a (U,',*) regular expression ﬁx

'xn be a given input to M.

*
such that L(Rx) =y 1iff X ¢ L(M). L(ﬂx) is the
set of invalid computations of M on x.

%
" L(BX) = I - CM(x). B, 1is characterized
as follows: By is the union of
a) all word that do not begin with
#'(qo,xl)-xz-...°xn'#;
b) all words not of the form
FrE - - #1;
c) all words that do not contain a halt state;

and

4l -

d) all words that violate the next move requirement
of M.
S By = TE=#) U # [(=(q_ %)) U9 ,x)
[G-x) UXy [... z=H1...770 ¢ (a)
u

YO RTINS AT W SeIT Ot T

* . *
U # G- g (b)
U
r U Fx TN
(2-0, Y (fag) x DY) ()
U "t 010,02 gn-1 £y (01,95,0%) 5
01,02,03 €z)

Clearly if a string ye{O,l}* is not a valid
computation of M on x then it satisfies (a),
(b), (¢), or (d). Similarly, if y satisfies
(a), (b), (¢), or (d) then y is not a valid
computation of M on x. - Finally, note that the
construction of By given x requires space
linear in |x|and time deterministic polynomial
in Ix!.

(2) We construct a (U,:,*,N) regular expression

By such that L(Bx) = CM(x). Let M be as in (1).

B is characterized as follows: By is the

intersection of

-45-

e) all words that begin with #-(qo,xl)-xz'...'xn°#,
f) all words that contain exactly one 9es
g) all words of form #[(T-#)n#W+, and

h) and i) all words that do not violate the next-move

requirement of M.

By def. #e(ago%y) Kyeen R HT ()
U .c U .
(@ - [pop (@ OD* [g (4e0)7 (£)
(T - Toop (@)% (8)
n

FT(2-#) "FIL (z-4) "%

*
n . :
n rt U cog.e gL, . <n=(i+D)| §
i20) 010,05 L fM(ol,02,03) z . .
01,02,035)3 g
o(z-g)es, &
(h)
1 n i 1
ﬂ # hd Z-u L ON U . . . n-= . .
N L 0170703 I TrEy(0y,05,03)

01,02,03,0,5 X

Zn—(i+1)j}{:#'(2—#)n'#,# . (1)

-46-

We claim L(Bx) = $, if M does not accept x and
CM(x), otherwise.

Clearly from (e), (f), and (g) a string.aeL(Bx)

only if ae# [(?-#)n#1k for some k > 1, o begins

properly with #'(qo,xl)fxz‘...°xn-#, and ¢ has

an accepting state. If ¢ satisfies (h) then for
* 3 ° ' '] °

each pair of consecutive i.d.'s (1d2i-1’1d21)

starting with.adl,idz), id2i follows from

idZi-l’ Similarly if a satisfies (i) then for

N e] e] \
each pair of consecutive i.d.'s (lei’ld2i+1?
starting with (idz,idS), id2i+1 follows from idZi.
Schematically this is illustrated by
h h h

20N

[# 1d1][# id, 10# id3]|'# id, 10# idS][# i’d6]

N NS A

Since id, is right by (e) this implies

1
o = #idl#idz#“°#idk# is a valid computation if
aeL(By). By noting the size of Bx, it is clear

that the reduction is deterministic polynomial

time bounded.

-47-

Proposition 4.1.6: Inequiv (U,’,*) ¢ DCSL = NDSCL = DCSL.

Proof: Let M be as in 4.1.5 except that M may now be
nondeterministic. We would like to simulate the
proof of 4.1.5. How~rer, we must modify the

definitions of £, NextM(x), and CM(x).

Let © = {#1 U T U (S x T).

3 53
1) fM: T = 2 defined as follows:
3 .
919,93 €z fM (010203) —,2022 if 010203£SxT or
oy = #;
ﬁ A(010203) if ol,o3eTU{#}
and ozeSxT;
k23, otherwise.
A(olczc3) is defined as follows. Let g8 =

3 .
B1ByB€T . Then B¢ A (010203) iff

= = q! ' =
(al) Bl 919 Bz s' xt', 53 o4 and
(s,t,s',t}0) is a move of M where o, = 8 x t, or
(a2) B1 =(s' x 01), By =t', By = 04 and
(s,t,s',t',-1) is a move of M, where o, # # and
g, = (s x t), or

- = ! = '
(a3) Bl = 097> B, t', B3 (s' x 03) and

(s,t,s',t',+1) is a move of M, where o4 # #

-48-

and 0y = (s x t), or

(a3) Bl =0ys BZ =t', B3 = (s' x 03) and
(s,t,s',t',+1) is a move of M, where o, # #
and 0, = (s x t).1
f guarantees that consecutive sets of three
symbols correspond to the same allowed move rule.
(fM as defined in the proof of 4.1.5 does not
do this.) |
2) NextM(x) = if x is an i.d. then {yly is an
i.d. and y follows from x by exactly 1 move of
M} else undefined.
3) (%) = if x is an i.d. then (#= e # #x #|
where X = X, each x;€ Next (Xi-l)’ and g X t
is a substring of X, where qf is an accepting
state and teT} else undefined.
Then By is the union of:
31, the .set of strings that do not begin with
#(qo,xl) Xy e xn#;
By the set of strings that do not contain a
symbol (qf,t), where qfeF;
(s,t,s',t',-1) is interpreted as follows: M when in
state s and scanning symbol t can change t to t',
changes state from s to s', and move its tape head 1

tape unit to the left. For a more detailed discussion
of Turing machines see Hopcroft and Ullman. [697.

And

8,

- -49-

83, the set of strings not of the form
#0(-HH™ #17; and
84, the set of strings that make a mistake

between one i.d. and the next.

But Bl = [(2-#‘) U #°[(z-(qo,x1)) U (qo’xl)

TEx) Uk, [Ux [E-HT L T

To understand 31 the reader should notice the
similarity of the above to Horner's rule for
evaluating polynomials, i.e.,

n A
a, + a; x + ... +anx = a0 + x Fal + X [a2 + ...

[an]...]].

(2 = (et (ag) » 1"

By= () T U T (B U # () s

*
usL # (z-#)n"'1
_us 0 0,0, T2 (23 - £,(0,0
B4t = g.0.0.ex0 123
17293¢€

Clearly 'Bxl s C | x| , where Cy depends only

M

upon M not Xx.

+

12 3)) 5.

-50-

4.2 Equiv(U, ,*,n)

In this section we show that Equiv(U,’,*,n) is not an
element of PTAPE. We show that we can in space 0(kn) embed
all nk- deterministic (or nondeterministic) tape bounded Tm
computations into (U,",*,n) regular expressions. We show
that using intersection we can in space 0(kn) write a language
Lk(n), such that Lk(n) is essentially Snk, for some finite
alphabet S. We illustrate this with several examples.
Example 1: Let # ¢ S. Then (S™# Y 0 (sTEHT = (s)T
But the length of the (U,’',*,Nn) regular expression (ST)*

n (S*#)n is 0(n). Since the set (ST)n is finite, the
length of any (U, ,*) regular expression denoting it must be
at least O(nz). (We note that the expression (s)* N

(S*# Y does not actually satisfy the definition of (U,’,%,
N) regular expressions given in 1.1.8. However as the reader
can easily verify, it can be converted into an equivalent
legal (U,",*,n) of length 0(n) by inserting parentheses.)
Example 2: Let #, $ ¢ S. Then (ST {#,$})*.ﬂ ((S*#)nS*$)*
N (s U [#))7sTs)™ = ((s™#)Ps™s). Again using inter-
section the length of the expression is 0(n).

In Lemmas 4.2.3, 4.2.4, and 4.2.5 we define Lk(n), de-
termine the length of any string in Lk(n), and determine
several other properties of Lk(n). We also show that in

space 0(kn) using intersection we can define Cycle(Lk(n)) =

-51-

{ xSy | yx$ € Lk(n) }, which is roughly the set of cyclic
permutations of elements of Lk(n).

We use essentially the same definitions of instantaneous
descriptions, NextM(x), and Cm(x) as those in Section 4.1.
However, symbols now are triples corresponding to the symbol
triples of Section 4.1. Thus, every tape cell's left and
right immediate neighbors are embeddeded in the symbol de-
noting it.

Definition 4.2.1: Let M be a deterministic Tm with state set

f, tape alphabet T, start state 9> and accepting
state q.. Let #1""’#k € TU ([xT). Then
(1)1 S'=TU ([xT)u{#,....,4 } and
(@) s = [S'U (x0T, =11l #,..h 1007,
(First, we could do this derectly for nondetermin-
istic Tms but this would only complicate the proofs.
Second, S's seemingly odd definition is due to the
fact that the symbols { #1""’#k } are only used
as hash marks. They are not used as computation
space. Thus the regular expressions describing the
instantaneous descriptions must allow for passing
information about change of state and of direction
of the tape-head across them.)

Let s = (a,b,c) € S. Then pl(s), pz(s),

and p3(s) are the first , second, and third pro-

-52-

jection functions, respectively, on S3. Thus,
pl(s) = a, pz(s) = b, and p3(s) = c¢. Finally,

for all s e TU ([xT), <s>={t | t €S and
pry(t) = s }. Similarly for all s ¢ { #1,...,#k},
<s>={t | teS and prz(t) = s or prz(t) €

(([xT)xs) }.

Definition 4.2.2: As in Section 4.1 Cm(x) = <#k>'<i.d.1> <#k>

<#k> -<i.d. > '<#k> where

(1) each i.d.j is a valid instantaneous description
of the Tm M,

(2) i.d.g e <(qg, x)> <xy>e..<x_><H >("<# >

(3) i.d.j follows from i.d.. , by one application

j-1
of a move of M, and

4) i.d.n is the first instantaneous description
in CM(x) in which an accepting state appears.
However, there are several differences.

(a) Each character in CM(x) is an ordered triple.
(b) I1If (a',b',e') * (a,b,c) is a proper sub-
string of CM(x) then b' = a.

.(c) If (a,b,c) * (a',b',c') is a proper sub-

string of CM(x) then ¢ = b'.

-53-

[(a) and (b) guarantee that the left and right con-
texts of a symbol are compatible with its first

and second projections. Thus knowing (a,b,c)

we can calculate the middle coordinate of the
corresponding element of the next instantaneous
description. The reader should note, however, that
a and b do not determine the first and third co-
ordinates of the corresponding element of the next
instantaneous description.]

(4) The tape-head of the Tm is allowed to move left
or right over #1”"’#k-1 but not over #k'

The definition of CM(x) will become clearer after
the statments and proofs of Lemmas 4.2.3, 4.2.4,

and 4.2.5.

Lemma 4.2.3: Let k be a positive integer = 4. We define Lk(n)'

to be the intersection of the following sets:

*
(1) <#k> - L (s - (<#k_l>, <#k>)) - <#k_1> .

* .n-1
(s - (<#k_1>,<#k>)) 1 <#k>,

@) <k > TGS - (<h >k > >) % - <h >

(5 - (<t o<t _><h>) 0* V0 <k >,

<#>) 17,

(k-1) <#k>- [0 (s - (<#1>,<#2>,...,<#k>))* -

-54-

< . - n-1 .
#1> (S (<#1>""’<#k>))*]
(<t,>,...,<t>) 1%, and
() <h > - [(8- (<hp>,.o,<h>))0 (<hp>seees
<#,)17 |
Then (a) #k occurs exactly twice;

(b) #k-l occurs exactly n-1 times;

(c) #k-2 occurs exactly n(n-1) times;

(k) #l occurs exactly nk-z(n-l) times.
Proof: First (1) is the set of all strings p over S such that
the first and last characters of B are #k's, no
other #k's appear in B, and exactly n-1 #k_l's
appear in B. (2) is the set of all strings P over

S that begin with #k and in which exactly n-1

#k-Z

Similarly, (k-1) is the set of all strings P over

's occur between consecutive #k's and #k_l's.

S that begin with #k and in which exactly n-1

#l's occur between consecutive #2,...,#k's.
Clearly (1) and (2) are true. Therefore, let j >
2. There are n-1 #j's for each #i such that j<i<k
eicept for the first #k' Therefore the number of

k
#j's = (n-l)x((z:i (the number of #i's)) -

=j+1

1]. But this equals (n-1)x{1+(n-1)+m(n-1)+...+
. k-(3+3) .

nk- (J+2) (n'l)] = n(n-l)[l+(n-1) z nl =

1=0

. (n-1)n

-55-

_k-(3+2)
n-1

l]_ n(a- 1)nk (3+2)_

(n-1)nl1+(n-1) (B
k- (J+1).

Lk(n) = <#k§\Lk(n)'. Thus the number of occurences of the

various 1evels of markers and nonmarkers in Lk(n) is the same

as that of Lk(n)' except that only 1 #k appears in Lk(n).

Lemma 4.2.4: All strings B in Lk(x) have the same length.

Furthermore |[B| > nk.

Proof: For each marker there are n different nonmarkers.

Lemma 4.2

Thus the number of nonmarkers appearing in B =

n[1+(n—1)+...+nk'2(n-1)] = n¥.

.5: Cycle(Lk(n)) equals the intersection of the fol-

lowing sets:

W L s™n (8- (<h>,.,<h>))
+

*
(<#1>,...,<#k>) - (S - (<#l>""’<#k>)) .1
*
2) (s - (<#1>""’<#k> Y) - (<#1>,...,<#k>)
n *
L (s -(<#1>,..., <#k>)) - (<#l>""'<#k>)]
(S - (,...<t>))7;

* *
3) (s - <#k>)" - <#k> - (s - <#k>) s

@ [(s -<k_>)" <k > (s <t >) 1t
(5,1) (S - (<b_><h>) <)

[(s - (< _p><h _><h>) E <t 2>

(s - (<#k o<t >t >) L (<

%
<#,>) 1 . (s - ¢ <t _17><h>))

-56-

6,1) [(S - (<t _p><H 1><h>))* -

(<t > h) o (S - (<h o<k ><#2)) 177

C (k<>) ST <k % >,<#>) .

s - C<h _o7<h _><h>))y <t _oZsh) -
(5 - (<h_p><t =<k >)" 7L

(7,1) TL(S-<h_,>) - <h >+ (S-<h)
™ 1%

(5,k-2) (S - (<# >""’<#k>))* - (<# >,...;

*
<#k>) . L { (s -(<#1>,...,<#k>)y) <#1> .

1

* n-
(s - (<#1>,...,<#k>)) 3 I <#2>,. .,

* *
<t >) 1 (5 - (b k>))

6,k-2) [(S - (<t >k >) < e <t>0) -

n-1

(8- (<h>,...,<h>) y ol o< > e <>)

8T (<>) LS - (<, <N

. . * .n-1
(<#>2) - (8-« <#1>""’<#k>)) 1T,

* *
(7,k-2) [L (s - <#1>) - <#1> - (S - <#1>)
]n‘l]+
Proof: (1) is the set of all strings B over S of length 2
n+l such that B = Bl . Bm, |Bl| = ... = |Bm|
= n+l, and exactly 1 marker appears in each 51.
[The reader should note that the proof of 4.2.4

ky k-1 _

shows that a ¢ Lk(n) + |a| = k'1(n+1).

Thus the length of every string in Cycle(Lk(n)) is

-57-

divisible by ntl.] (2) is the set of strings B
over S such that between every 2 consecutive markers
occuring in B there are exactly n nonmarkers.

(3) is the set of all strings B over S containing
exactly 1 occurrence of <#k>' .Similarly, (4) is

the set of all strings P over S containing ex-

actly n-1 occurrences of <#k—1>' (5,1) is the set

of all strings B over S containing at least 1 <#k-1>
or <#k> such that between every 2 consecutive oc-

currences of <#k-1> or <#k>’ there are exactly n-1

<#k_2>'s. (6,1) is the set of all strings B over S

containing at least 2 <#, .> or <#k>'s such that at

k-1

most n-1 <#k_2>'s occur, before the first <#,_1> OF

<#k> in B, and at most n-1 <#k_2>'s occur after the

last <#k-1> or <#k> in B. (7,1) is the set of all
strings B over S containing at least n <#k_2>'s

such that the number of <#, ,>'s in B is divisible

k-2

n. The remaining sets are defined analogously.

B e (1) n (2) implies that B is of the form

L alulﬁl 1-C a2“252 J-...-C amgmﬁm], where hyseees
u_ are markers, lall =,,, = |am|, |Bl| =.,,., =
'Bml’ |51G2| = .. = le@ll = n, and the only markers

appearing in B are Myseee sk o

-58-

Let 2 ¢ (1) N ... n (7,k-2). We show that P
C Cycle(Lk(n)). To do this we show that for any j,
1 < j < k, the number and distribution of <#j>'s
in B are the same as those of some string in
Cycle(Lk(n)). From (3) and (4) exactly 1 <#k> and
exactly n-1 <#k_1>'s appear in B.

Assume that for all i, j < i £ k, the <#i>'s
appearing in B have both the right number and dis-
tribution. By (5,j-2) between any 2 consecutive
markers <#,

>
il ?

exactly n-1 <#j>'s. Hence, the number of <#j>'s

<#12> in B with i1,i2 > 2, there are

between the first and last occurrence of a <#.+ >,
. 1

k=-(j+2) i

1=0 o] =

(n-1)x[nk-(3+1) -17], which is exactly n-1 fewer

""<#k> inB = (n-1)x[{ (n-1)

<#j3’s than the number in any string in Cycle(Lk(n)).
Let r be the number of <#j>'s before the first

<# ., or <#k> in B. Let s be the number of

41700
<# >'s after the last <#,,.>,..., or <# > in B.

j j+l k
By (6,j-2) r,s <n-1. By (7,j-2) the number of -
<#j>'s in B is divisible by n. Hence, if there are
too few or too many <#j>'s in B, there are at least

n too few Or at least n too many. But there are at

most n-1 too few <#j>'s in B as shown above. Hence,

-59-

there are not too few <#j>'s in B. If there are
too many <#j>'s in B then there are at least n too
many, which implies that r+s > n+(n-1). But r+s <
2(n-1) = 2n-2. Hence the number of <#j>'s in B is
correct. It is clear that the distribution of
<#j>'s in B is correct also. Thus if B e (1) n ...
n (7,k-2) and B ¢ Cycle(Lk(n)), it is not because
of the number or distribution of any of the markers
appearing in B. Finally as shown above, the num-
ber and distribution of the nonmarkers in P is
correct. Thus, B e (1) n ... N (7,k-2) » B €
Cycle(Lk(n)).

Finally it is clear that Cycle(Lk(n)) c (1)
N ... Nn(7,k-2) , since every string in Cycle(Lk(n))
satisfies (1), (2), ... , and (7,k-2).

Theorem 4.2.5: Equiv(U,’,*,n) ¢ PTAPE.

Proof: Let M be the deterministic Tm described in Definition
4.2.1. Let M be nk tape bounded. We construct a
(U, ,*,n) regular expression T such that L(T') is
the set of invalid computations of M on x, i.e.,
L(T) = S* - CM(x), and |T| is O(kle).
A € S* is not a valid computation iff

(1) ¢ <#k> . Lk(n)*, where n = |x|, or

-60-

(2) (a,b,c) * (a',b',c') is a proper substring
of A and b # a', or

3) (a,b,e) * (a',b',c') is a proper substring
of A and ¢ ¥ b', or

(4) X\ doesnot start with the right initial
instantaneous.description, or

(5) X doesnot have an accepting state, or

(6)) makes an error between one instantaneous
description and the next.

We can easily write out a (U, ,*,N) expression
for (2), (3), and (5).1If X ¢ <#k> . Lk(n)*, then
(i.0) A is the empty word , or
(i.1) A is of length at least two and doesnot
begin and end with <#k>, or
(i.2) between 2 consecutive <#k>'s in A there

are fewer or more than n-1 <#. .>'s, or

k-1

(i.3) between 2 consecutive <#k >'s or <#k>'s there

-1

are fewer or more than n-1 <# ,>'s, or... or

k-2
(i.k) between 2 consecutive <#2>,..., or <#k>'s
there are fewer or more than n-1 <#1>'s, or -
(i.k+1l) between 2 consecutive markers there are
fewer or more than n nonmarkers.

We leave it for the reader to construct (U, ,%*)

regular expressions for (i.0),...,(i.k+1).

-61-

(4) Since we know that all strings with
improper markér-nonmarker structure are covered by
the union of the expressions for (i.0),..., and
(i.k+1), the only possibilities for an invalid
initial instantaneous description that need be
covered are
(a)) does not begin with <#k> . <(qo,x1)> y
<x > - <#1> and
(b) there is a nonmarker nonblank to the right of
the first <#1> and to the left of the second <#k>
in M. Again the expression is easily coﬁstructed

and is left to the reader.

(6) Finally if X\ contains an error then X ¢

*
des 5 @ Crele(y TR) m)4e, (a))

1s". 1f we choose that string in Lk(n) whose
marker-nonmarker structure alligns with that of S a
then we find any errors that occur., If we choose
B e Cycle(Lk(n)) such that the marker-nonmarker
*

structure of B doesnot allign with that of S a ,

* %* *
then A € S a US implies A ¢ <#k> * L (n) and

‘therefore is not a valid computation.

-62-

4.3 Empty (U, ,*,~)

Definition 4.3.1: We define g(i,j): NxN =+ N as follows:

VieN, g(0,3) = 3,
Vi1, g(i,5) = 2803,

A language LO is elementary recursive if there

exists iO such that Loe thape(g(io,n)), i.e.,
L, is recognized by some 22"’2n} i, 2's non-
deterministic tape bounded Tm.
We will only sketch the details of a proof that
Empty (U, ,*,~) is not elementary recursive. This result and

the basic idea of the proof prsented here are due to A.R.

Meyer and L.J. Stockmeyer.

As in Section 4.2 we want (U, ,*,~) regular expressions
Rk(n) of relatively short length such that roﬁghly L(Rk(n))
= zg(k,n). Again we use Rk(n) as a yardstick to detect er-
rors between consecutive i.d.'s of length g(k,n). Again we

use the set Cycle(x#) = {xz#x1 | X Xy = X }. We change the

definition of valid computation slightly from that in 4.2.

-63-

Let M be a Tm with state set S, tape alphabet T,
designated start state qoeS, and designated accepting state
qg- Let A be final. Let y = Yy oo+ Yq be an input to M.

*
Let 21 = [T U (S x T)]3 U {#,8}. Let Z N Zl = (0. Let xe I.
LetI, =31 U {#,3}. Then a valid computation of M on y with
*
yardstick Cycle(x#) is a string in (¥; X Z,) .of the form
$ ¢y # c, # ... # C_ #

, where $ Cy # oo #CH#
$ x# x# ... # x i n

is a valid computation of M on y.

* *
Lemma 4.3.2: Let h: T -+ A be a length preserving homo-

morphism. Let R be a (U,’,*,~) regular expression
over T* such that L(R) < A* . Then there exists

a polynomial time bounded deterministic linear
bounded automaton M such that M, when given R as
input, outputs a (U, ,*,~) regular expression S
such that L(S)=h 1 (L(R)).

Proof: Since h is a length preserving homomorphism
we have h™L(aUB) = h™1(a) U h 1 (B)e h™l(a-B) =
hla) - nli@, hl@") = @t@en”, and

h'lcea) = ~n7tqa)).

Lemma 4.3.

-64-

2: Let R be a (U,*,*,~) regular expression

denoting cycle (x#). Then there exists a
deterministic polynomial time bounded Tm u

such that y, given R as input, outputs a
(U,*,*,~) regular expression S, which denotes
the complement of the set of cyclic permutations
of the valid computations of M with yardstick»

cycle (xi#).

Proof: We sketch some of the more important details. A

or

string vy is not a cyclic permutation of a valid
computation of M with yardstick cycle (x#) iff

1) v's lower track is not a cyclic permutation of
s (xb);

2) y's lower track is a cyclic permutation of

$ (x#)* but its upper track is not a cyclic
permutation of a valid computation of M on y;

3) the upper and lower tracks do not correspond
to the same cyclic permutation.

The strings satisfying (3) are those which do not
satisfy 1 or 2 in which the "$'"'s appearing

in the lower and upper tracks do not coincide.

-65-

* * '
Let ho: ¥ - T be the length preserving -
homomorphism defined by ho(#) = ho($) = # and
-1
s = =
6€Z, ho(o) c. Then hO (L(R))
{xl # Xys Xy $ x,] Xy i# X, € Cycle (x#)}. Let
R' be the (U,:,*, ~) regular expression output
by the Tm of 4.3.2, when given input R. Then
L(R') = ho'l (L(R)) and |[R'| = C * |R].
*
Let h1 and h2: (21 X 22) - T and o
be the length preserving homomorphisms defined by
hl((a x b)) = a and h2 ((a x b)) = b.
All strings satisfying (1) are given by
~(U1 n U2 O U3), where

U, = hé'l [Z*°(#U$)'(R'ﬂ(2* # U Y* $))* Z*];

1

U, =h," [(:zu#)* $ (z,uh"1; and
= _p -l K
U3"2[(R)]-

This follows since
(a) ysﬁz > exactly 1 "$" occurs in y's lower
track;

9 N 53 = y's lower track is of the form

Y1 # Yo Y3 # Y, Ys # ... Y $ yi+1#"'yj#yj+l’

(b) veU

-66-

where yl#yz, y3#y4, ys#y6,...,yj#yj+1c
{xl#xz, x1$x2 | xl#xzc Cycle (x#)1};
and c) ytﬁl - y2Y3 = y4y5 = ... = yj-lyj = X.
The set of strings satisfying (2) is harder
to describe. We only sketch thé most important

details. Suppose B does not satisfy (2), then

B is of the form

L # ... #cC C
Y, cj #C. i1 k S Co# . # cJ._2 #y,

J

X, # X X, # X, %, # ... #x1 X, i X, x2#"'#x1x2#x1

where
3 Cy.1 =Y
b) C0 is an initial i.d. and Ck is a final i.d.;

c) for each i C]._+1 € NextM (Ci);
= 1y ! : - s 1] = .
d c. y,'Y,"s with |y1 | lyll and |y2 l]yzl,

= " n s "l— L .
e) Ci 5 =vy" ¥v,", with ly,"[=]y,| and |y,"|=ly,|;

= X, with |xll=|y1‘ and |x2|=|yzl

=
el

N
I

It is easy to find any errors between consecutive

i.d.'s to the left or the right of the "$",.

men s (5857,-9)" by TH@) [y TR 0 (78) x (5,807

-1 *
h, (z;-f,(a)) (&) x ,) U

-67-

U

*
aev, -$ (Zx~ 2) h (a)[h (Rl)ﬂ((21-$)X(V2-$))]

hl‘l(zl-fM<a)) © (508, 5,9
This separation is necessary since the first i.d.
need not follow from the last one.

We must also, however, catch errors that
occur between y, and yl', and between y, and y2"

as pictured below.

Y
Yo # ;&L y2' # ... # y,"yy" ﬁ>z1

But this can be accomplished as follows:

b¢f a) (7=, 8), To=(E,9)7 - (B U (3,9))
m=(F,8), Tp=(#,8)" by () by reyele ($(x))1
(a) (zl-(#,$), 22-(#,$))*, etc.
(Note, Yy is characterized by the fact that
no "#" or "$" appears to its right.) The
remaining constructions are intricate but
straight forward given the above.

Theorem 4.3.4 (Meyer and Stockmeyer): Empty (U, ,*,~)

is not elementary recursive.

Proof: The theorem follows from repeated applications of
Lemma 4.3.3.

Note: The details of this proof where worked out with

Professor John Hopcroft and also appear in Aho,

Hopcroft, and Ullman ([73].

-68-

4.4 Two Way Finite Automata

We show that the emptiness problem for 2-way deterministic
finite automata is as hard as the equivalence problem for
regular expressions.

Definition 4.4.1 (Hopcroft and Ullman 69]): A 2-way

deterministic finite automation M over 7 is a
5-tuple (k,Z,G,qO,F), where K is a finite set of
states written as binary integers,

6: Kx T - K x {-1,0,1}, q €K is the start state,
and F € K is the set of final states

6(q,a) = (p,D), peK and De {-1,0,1} is inter-
preted to mean that M, in state q, scanning the
input symbol a, will move its input head one

cell to the left, to the right, or not move its
input head at all, depending on whether D

equals -1,1,0, respectively. L(M), the accepted
language of M, is defined in the standard manner.
(For mare details see Hopcroft and Ullman [69].)

Definition 4.4.2: Notempty (2dfa) = {MIM is a 2-way

deterministic finite automation with tape alphabet
f0,1} and L(M)#0#}. Inequiv (2dfa) is defined

analogously.

Theorem 4.

-69-

4.3: PTAPE __ 5 _ Notempty (2dfa).

PTIME

Proof: There exists a deterministic polynomial time bounded

and

Tm T(A) such that T(A) given input (M,x), where M
is a deterministic 1lba Qith taperalphabet T c A,
state set S, start state q, and accepting state
9es and xtT*, outputs a 2-way deterministic
finite automation AM,x suéh.that L(AM,X) = CM(x).
Thus, L(AM,x) =@ iff x¢L(M). Given an input y
AM,x operates as follows:
1) It checks that y begins with

(qo,xl) A #;
2) It checks that yet - [(5-9)" #17;

*

*
3) It checks that yeT [th (qe x €)1 * T

f
4) 1f y satisfies 1), 2), and 3) then AM
4 X
checks that y contains no errors. To do this
AM 5 uses its ability to move both ways on its
b
input tape. AM stores consecutive triples
, X

(01,02,03)rof characters of y in its finite
control, calculates fm(cl,02,03) counts n+l

tape cells to the right and compares the contents

of this tape cell with fM(01302’03)' If they

-70-

are not equal AM,x rejects y. Otherwise, it
counts n squares to the left and repeats the
process.
It is clear from the description of AM,X
above that
a) M exists and b) the construction of
M is deterministic polynomial time bounded.
Corollary 4.4.4: PTAPE PT;ME (M| Mis a 2-way deter-

ministic finite automation with tape alphabet

*
(0,1} and L(M) # {0,1} 3.
Proof: We can easily modify AM x in the proof of 4.4.2
b

so that L(A,) = Y‘.*-CM(X).

Chapter 5 HARD LANGUAGES

5.0 Introduction

In this chapter-we investigate the computational com-

plexity (bdth time and space) of many decidable predicates

in forﬁal language and automata theory. We find natural suf-
ficient conditions for predicates on the regular sets to be
as hard to decide as ﬁhe emptiness or équivalence problems
for several different kinds of regular set descriptors (e.g.,
(U, %), (U, ,*,n), and (U, ,*,~) regular expressions.)
These conditions are identical to those of Theorems 3.3, 3.4,
and 3.6. We also show that structural equivalence (defined
below) for cfgs is as hard to decide as is the equivalence
problem for (U, ,*) regular expressionms.

: * *
Definition 5f0.1: Let L < {0,1} and let x e {0,1} . Then

AL={y| xyeL}and/fx={y]| yxeL]}.

Definition 5.0.2: Let L = { Lis Loy wov 5 Ly e }, where
*
each Li c {0,1} . Then x\L = { x\Ll, X\LZ’ cee
x\Ln, ...} and L/x = { Lr/x, L2/x, cee Lﬁ/x,

R

-71-

-72-

5.1 Predicates on the Regular Sets

In Chapter 4 we saw the following:
(1) { RIR is a (U, ,*) regular expression over {0,1} and
*
L(R) ¥ {0,1} } otime PTAPE and is a Savitch CSL;
(2) { R |R is a (U,‘;*,n) regular expression over {0,1}

and L(R) £ 0 } otime PTAPE;

m
(3) { R IR is a (U, ,*,n) regular expression over {0,1}
*
and L(R) # {0,1} 1} is not an element of PTAPE;
(4) { M |M is a 2-way deterministic finite automaton (ab-
breviated 2dfa) with tape alphabet {0,1} and L(M) %

0 [or LaM) % {0,1}" ¢ PTAPE; and

1Y Sedm
(5) { R |R is a (U, ,*,~) regular expression over {0,1}

and L(R) % {0,1}* } is not elementary recursive.
Using these results we classify the time and tape complexity
of many predicates on the regular sets. Before stating and

proving our main theorems we need one technical result.

* *
Lemma 5.1.1: Let h:{0,1} - {0,1} be the epsilon-free

homomorphism defined by h(0) = 00 and h(1l) = Ol.
Then there exists a deterministic polynomial time
bounded 1lba M such that M, when given a (U, ,%*),
, ,*,n), or (U, ,*,~) regular expression R over
{0,1} as input, outputs a (U, ,%*), (U,',*,n),.or

(g,',*,~) regular expression S over {0,1} such that

-73-

h(L(R)) = L(S).

Proof: h(AUB) =

h(A)Uh(B), h(A-B) = h(A)-h(B), h(A") =

[h(A)]*, h(ANB) = h(A)nh(B), and h(~A) = ~h(A)nN

*
(00+01) . M applies these rules recursively on

R.

Theorem 5.1.2: Let P be any predicate on the regular sets

over

Then

{0,1} such that
. .
(a) P({0,1}) is true and

(B) P = Upro,13% [X\ | P(L) is true } or

PR = Upzro,13%

¢ regular sets over {o,1}.

{ L/x | P(L) is true }

(1) {R | R is a (U, ",*) regular expression
over {0,1} and P(L(R)) is false } ptime PTAPE
and is an element of DCSL only if DCSL = NDCSL;
(2) {R]|Ris a (U, ,*,n) regular expression
over {0,1} and P(L(R)) is false } is not an
element of PTAPE;

(3) fR| Ris a (U, ,*,~) regular expression
over {0,1} and P(L(R)) is false } is not
elementary recursive; and

(4) { M| Mis a 2dfa with tape alphabet {0,1}

and P(L(M)) is false } pt%me PTAPE.

Proof: From Chapter 4 we already know that (1), (2), (3), and

*
(4) are true when P is "L(R) equals {0,1} " or P is

-74-

: *
"L(M) equals {0,1} ", Let L, be a regular set over

0
{0,1} such that L, ¢ P,. Let h be the epsilon-free
homomorphism defined in Lemma 5.1.1. Then applying
5.1.1 given R, a (U, ,%), (U, ,*,n), or (U, ,*,~)
regular expression over {0,1}, we can effectively
find in linear space and deterministic polynomiai
time in |R| a (U, ,*), (U, ,*,n), or (U, ,*,~)

regular expression S such that

L(S) = h(L(R))10(0+1)™ + (00+01)*10L, +

0
~[(00+01)¥10(0+1) ™

R(L(R))10(0+1)™ + (00+01)"10L, +
(00+01) “[A+O0+1+11 (0+1) " 7.

Case 1: L(R) = (0+1)". Then h(L(R)) = (00+01)"
and L(S) = (0+1)". Hence, P(L(S)) is true.
Case 2: L(R) + (0+1)*. Then @x & (0+1) - L(R).
Hence h(x) & (00+01)* - h(L(R)). But P(L(S))

true implies h(x)1O\L(S) @ P Hence, P(L(S)) is

L
false. [h(x)1O0\L(S) = Ly-]

Therefore, P(L(S)) is true iff L(R) = (0+1) .
(1), (2), and (3) follow immediately since the
construction of S above, given R, requires at most
polynomial time on some deterministic lba. (4)

‘follows since given M, we can in deterministic

polynomial time in |M|, construct a 2dfa M' such

-75-

that L(M') = h(L(M))10(0+1)" + (oo+01)*10LO +

* *

~[(00+01) 10(0+1)]. M' behaves as follows-
*

M' given input x € {0,1} first checks if x &

(00+01)¥10L . + ~[(00+01)*10(0+1)*]. 1If x is an

0
element, then M' accepts it. Otherwise, M' applies
M as a subroutine to X.

The proof when PR T regular sets over {0,1}

is left to the reader.

Theorem 5.

1.3: Let P be any predicate on the regular sets

over {0,1} such that
(a) P(P) is true and
(®) P = Uy o (o,13% | X\L | P(L) is true }

or P { Lx | P(L) is true }

R - Yx e {0,1}*
T regular sets over {0,1}.

Then (1) { R | R is a (U, ,*,n) regular expression
over {0,1} and P(L(R)) is false } ptime PTAPE;
(2) {R| R is a (U, ,*,~) regular expression
over {0,1} and P(L(R)) is false } is not
elementary recursive; and

(3) { M| M is a 2dfa with tape alphabet {0,1}

and P(L(M)) is false } ptime PTAPE.

Proof: Assume PL i regular sets over {0,1}. Let L, be a

_regular set over {0,1} not in P

0
L The proof is
almost identical to that of 5.1.2 except that

-76-
L(S) = h(L(R))10L, and L(M') = h(L(M))lOLO.

1f L(R) = § then h(L(R)) = o.' Hence L(S) = §
and P(L(S)) is true. If L(R) # 0 then Ix & L(R).
But P(L(S)) true implies that h(x)1O\L(S) = Ly €
P, . Hence, P(L(S)) is true iff L(R) = 0. Similar-
ly, P(L(M)) is true iff L(M) = §. The case when
PR E regular sets over {0,1} is left for the

reader.

-77-

5.2 A Natural Complexity Core

The surprising fact is that almost all predicates on the
regular sets stuydied in the literature satisfy the conditions
of Theorems 5.1.2 and 5.1.3.

Theorem 5.2.1: The following predicates satisfy the conditions

of Theorem5.1.2:
(1) R = {0,1}%;
(2) R is a star event, i.e., R = R¥%;

(3) R is a code event, i.e., Iw ,w_ such that
n

1’...
= %

R (wlu...an) ;

(4) R is an ultimate, reverse ultimate, or

generalized ultimate definite event;

(5) R is a comet, reverse comet, or generalized

comet event;

(6) R = y(R), where y(R) = { y | 3x @ R and |y| =
|x| 3;

(7) R = Init(R), where Init(R) = { y | #x and
yx @ R };

(8) R = Final(R), where Final(R) = { y | &x and
Xy @ R };

(9) R = Subword(R), where Subword(R) = { y |

dx, z and xyz € R };
(10) R is cofinite;

(11) For all k =2 1, R is a k-definite, k-reverse

-78-~

definite, or k-generalized definite event;
(12) R is a definte, reverse definite, or gen-
eralized definite event;
(13) For all k = 1, R is k-testable in the strict
sense;
(14) TFor all k = 1, R is k-testable;
(15) R is locally testable in the strict sense;
(16) R is locally testable;
(17) R is a star-free, noncounting, or group-free
event;
(18) R is of restricted star height 1;
(19) R is accepted by some strongly connected
deterministic finite automaton; and
(20) R = [R] %Y,
(The definition of 4 may be found in Paz and Pelegl65]; that
of 5 may be found in Brzozowski and Cohen[69]. The defini-
tions of 11 through 17 may be found in McNaughton and Papert
[71]; that of 18 may be found in McNaughton[69]; and that of
19 may be found in Hartmanis and Stearns(66].)
Proof: 1, 2, 3, 4, and 5 are proved similarly. Here, we
prove only 5. A regular set R is a comet event if

there are regular sets R1 and R, such that R = Rl-

2
*
R,, R; = Ry, and Ry + {A\}. Let P be the predicate

"R is a comet event." Then P, c {0} u the infinite

-79-

regular sets over {0,1}. This follows since for
all x e {0,1}% either R/x = 0 or ¥y = Y1 Yy €
R

*
- R, such that y/x = w. But R, = R; 5 Ry £ (2}

1 2 1

and R/x + § imply there exists a string z @ R, such
that |z| = 1. Then for all k = 0 zky & R and zky
/x = zkw. Hence, R/x is infinite.

6. R = y(R) » for all x = {0,1}" Rk = v(R/xX).

Let y @ R/, then yx @ R. But R = y(R) implies for

all srings z such that |z| = |yx|, z @ R. Hence,
for all stfings z' such that |z'| = |y|, z'x = R.
Hence, for all étrings z' such that |z'| = |y|,
z' @ R/X.

7, 8, and 9 are proved similarly. Note that
9 follows immediately from 7 since { R | R is a
regular set over {0,1} and R = Subword(R) } <
{ R | R is a regular set over {0,1} and R = Init(R)}.
We prove only 7.
R = Init(R) implies for all x & {0,1}* X\R =
Init(x\R). This follows since y & x\R implies
x * Init(y) < Init(R). Thus, Init(y) < x\Init(R)
= R\R.

10. R is cofinite implies for all x = {0,1}

-80-

®\R is cofinite. Since all but a finite number of
strings over f0,1} are elements of R, all but a
finite number of strings over {0,1l} beginning with
X are elements of R.

11, 12, 13, 14, 15, 16, and 17 all follow from
17, since a regular set satisfies 1l tprough 16 only
if it satisfies 17. McNaughton and Papert(71] show
that the star-free, noncounting and group-free events
are the same.
By definition a regular set R is a noncounting
event over {0,1} if for some n 2 1 and for all words
U, V, W over { 0,1}, UVn+XW e R iff WWW & R, for
all positive integers x. R is a noncounting event
+ for all x G-{O,l}* x\R is a noncounting event.
R is a noncounting event implies ¥ n = 1 such that
for all U, V, W& {O,l}* and positive integers y,
UVn+yW & R iff UV'W @ R. Hence @n = 1 such that
for all U, V, We {0,1}* and positive integers vy,
X ° UVn+yw e R iff x - UV'W = R. (AN alternative
proof of 17 may be found in Hunt(73a].)

18 follows since quotient with single string
does not raise the restricted star height of a
regular set; and there are regular sets of arbitrary

restricted star height.

-81-

19. R is accepted by some sfrongly connected
deterministic finite automaton implies for all x =
[0,1}# ®\R is empty or infinite. Let M = (K,{0,1},
5,q0,F) be a strongly connected deterministic fi-
nite automaton which accepts R. Then x\L #0 - Iy in
{0,1}* such that a(qo,xy) =qc €< F. But M strongly
connected implies iz € {O,l}+ such that 5(qf,z) =
9p- Hence, for all k = 0 xy(zxy)k e R. Hence, X
\R is infinite. '

(20) results from the following two facts:

Fact 1. If for all x & {0,1}* L/x £ [L/x 1°%Y

, then
there is no regular set L, and no string y @ {0,1}*
such that L, = L L, 1%V and AL, = L.

Fact 2. For all x in {0,137 1(0+1)7x + [1(0+1)7/x

rev

]
We prove Facts 1 and 2. Suppose for all x in
* ,

{0,135 L/x ¥ C L/% 1%V but T a regular set Lo'and

a string y such that LO = LO 17V and NL = L.
\' rev._rev

But (ALy)/y =L (3\Lg)/y 1"~ . Hence L/y"

= [L/yrev]rev. Finally for all x,1(0+1)n/x c

* * *
{x} U 1(0+1) . But for all x in {0,1} 10 @ 1(0+1)/

*
x. Hence, 1(0+1) ¢ PL.

-82-

(The fact that quotient with single string doesnot raise
restricted star height was pointed out to the author by J.
Brzozowski. Fact 2 in 20 resulted from discussions with P.
M. Lewis 11, D.J. Rosenkrantz, and R.E. Stearms.)

Definition 5.2.2: A dot-free (U, ,*,~) regular expression

over {0,1} is a (U, ,*,~) regular expression over
{0,1} with no occurrence of """ . Let DF be the
set of regular sets that can be represented by a
dot-free (U,’,*,~) regular expression over {0,1}.

Lemma 5.2.3: R ¢ DF » R = [R]rev.

Proof: Any R ¢ DF can be built up from the finite sets 0,
{r}, {0}, and {1} by finitely many applications of
U, ~, and *. If R e { ¢, {3}, {0}, {1} }then R =
(R]F®V. Let A = [AJ™®V and B = [BI™®V. 1fcC =
rev

*
AUB, A, or ~A, then C = [C] .

Corollary 5.2.4: L= { R | R is a (U, ,*,~) regular expres-

sion over {0,1} and L(R)) € DF } is not elementary
recursive.
Proof: Immediate from 20 of 5.2.1 and 5.2.3.
t Theorem 5.2.5: The following satisfy the conditions of 5.1.3:
(1) R = 0;

(2) R is finite;

(3) R is of restricted star height 0;

(4) 2, 4-9, 11-17, 19 and 20 of 5.2.1;and

-83-

+
(5) R is bounded, i.e., Hxl, Xgs voe sX € {0,1}
* %
such that R x, ... x_ .
- 1 n
Proof: The proofs of 1, 2, and 3 are obvious. 4 follows
since § satisfies predicates 4-9, 11-17, 19 and

20 of 5.2.1. 5 follows since R bounded implies

both ONR and I\R are bounded. By definition R is

bounded if there exist nonempty words Xys eoe 5 X
* * * *

such that R < x, ... x . But OR < (0\x1) %

* * * * * *
Xy ... X U (0\32) ... x U...U (O\g{n) x .

%k * % * *
Hence R C (O\x1) X, (0\x2) Xg oo (O\xn) X
Informally as we briefly mentioned in Chapter 1, a

complexity core is a structure such that all problems con=-

taining it are hard. The structure of 5.1.2 and 5.1.3 is a

natural candidate for satisfying this intuitive definition.

-84 -

5.3 Some Related Hard Problems

In this section we discuss several poblems related to
those of Section 5.2. First, the construction in the proof
of 5.1.2 preserves the restricted star height of LO provided
Lois restricted star height 2 1. Thus, if there exists a
€ regular sets over {0,1} - P. of restricted

0 L
star height 1, we may replace (1) of Theorem 5.1.2 by

language L

{R| R is a (U, ,*) over {0,1} of restricted star
height L and P(L(R)) is fa1se } ptime PTAPE and is an
element of DCSL only if DCSL = NDCSL.

Secondly, we present a deterministic finite automaton

analogue of Theorem 5.1.2.

Definition 5.3.1: Let P be a predicate on the regular sets

over {0,1}. P is preserved by quotient with
single string on the left , if P(L) true implies
that both P(O\L) and P(1\L) are true.

Let ¢ be a set of deterministic finite automata en-
coded in some finite alphabet, where the input alphabet of
each automaton is {0,1}. Thus o = { M, oo s Mh, R
where Mi = (Qi’ {0,1}, Gi, qoi, Fi), Fi c Qi’ qoi € Qi’
and 6i:Qix{0,1}*Qi. Let A = { Li | Li = L(Mi) where Miem}.

Let Mi be some arbitrary element of ¢. Then given Mi we

show how to find two deterministic finite automata M, (0)

-85-
and M, (1) such that LM, (0)) = O\L(Mi) and L(Mi(l)) = 1\
L(Mi)'

There are two distinct cases to consider. If Gi(qol,O)
= qol then Mi(O) = Mi’ otherwise Mi(O) = (Qi’ {0,1}, Bi,

i _ i
6,(qy7,0), F,), where M, = (Q,, {0,1}, 8., q,

is defined analogously with 1 replacing 0. Thus if Mi €
implies both Mi(O) and Mi(l) are elements of ®, then the
predicate "Li e N, i.e., HMj € ¢ such that Li = L(Mj), is

preserved by quotient with single string on the left.

Theorem 5.3.2: Let ¢ be a set of deterministic finite auto-

mata as discussed above such that

(a) There exists N% € ¢ such that L(Mj) = {0,1}*;
(b) Mi € ¢ implies that both Mi(O) and Mi(l) are
elements of ¢; and

(¢) A= { L | M, € and L = L(Mi) } # regular sets
over {0,1}. Then the predicate "R ¢ A" satisfies

the conditions of Theorem 5.1.2.

We note that similar results hold for quotient on the
right with single string. Also the set of strongly con-
nected finite automata. satisfies the conditions of 5.3.2.

Next we prove that structural equivalence for cfgs is
as hard to decide as equivalence for regular expressionms.

Definition 5.3.3: Two cfgs G1 and G2 are said to be

-86-

structurally equivalent if they generate the same

strings and their parse trees are the same except

for labels.

Proposition 5.3.4: { (Gy, Gy) | G, and G, are representa-
tions over some fixed finite alphabet of cfgs
Tl and T2 , respectively, and'I‘1 and Fz are not
structurally equivalent } ptime PTAPE,

Proof: Given a regular expression R, we can convert it into a
-régular grammar G such that L(G) = L(R). We can
do this in deterministic polynomial time in |R|.
But G is a cfg and for regular grammars equivalence
and structural equivalence are the same.

Finally, we note that L = { (Rl’ R,y) | Rl and R2 are
regular expressions over {0,1} and L(Rl) + L(Rz) } ¢ NDCSL.
To see this note that to verify that L(R,) + L(R,) nondeter-
ministicly, we need only guess a string x, one character at
a time, and verify that x e C L(Rl) m’f?ﬁgi Jult i?ﬁ;i N
L(R2) J. But to do this we need keep only 1 character of x

at a time on our machine tape.

Corollary 5.3.5: Let Reg be the set of (U,’,*) regular ex-

pressions over {0,1}. Then the following are
Savitch CSLs:

(1) { (Ry, Ry) | R, and R, are elements of Reg

-87-

)

and L(Rl) + L(R,)

>

(2) { R | R € Reg and L(R) # {0,1}* 1

(3) {R | R e Reg and L(R) + [L(R)I™Y };
(4) { R | R € Reg and L(R) # L(R)* };
(5) { R | R € Reg and L(R) + v[L(R)] };
(6) For all k 21, { R | R € Reg and L(R) is not k-
definite or k-reverse definite }; and
(7) { R | R € Reg and L(R) is coinfinite }.

Proof: 1, 2, 3, 4, and 5 follow from the observation made
above that the set { (Rys Ry) | Ry, R, € Reg and
L(Rl) + L(Rz) } € NDCSL. 6 follows from the fact
that for any fixed k there are only a finite number
of k-definite events. 7 follows since L(R) is in-

finite iff Tz ¢ L(R) such that |z]| = 22IR| .

-88-

Chapter 6 CONCLUSION

There are five main results in this thesis. First, there
are natural and powerful complexity cores. These cores can
characterize the complexity of classes of problemé not just
individual ones. They can be found. Second, the interaction
between formal language theory and computational complexity
as in Chapters 3 and 5 can provide insights in both areas.
Third, there are natural problems which are provably hard.

We can no longer say that any reasonable language is context-
sensitive. Fourth, the regular expressions have far more
descriptive power than has been thought. Finally, a small
but nontrivial area of computational ;omplexity, the pred-

icates on regular sets, has been solved.

-89-

6.1 Open Problems

There are several results bearing on the subject of this
thesis which we have not included due to space and time con-
siderations:

(1) Both the emptiness and equivalence problems for 2dfa
are decidable by polynomial space bounded‘Tms;

(2) Empfy(u,',*,n) is an element of PTAPE;

(3) Equiv(u, ',*,n) requires space O(d/n) for some c>1l;

(4) For all rational r=zl, thape(nr) has a hardest tape
and time language(See Hartmanis and Hunt{73].)

Finally, we mention several open problems suggested by the
results of this thesis.

(1) 1Is structural equivalence for cfgs decidable in poly-
nomial space?

(2) Are there natural hardest tape languages for Ndtape(
n2), thape(nB), etc.?

(3) 1Is the equivalence problem for 2ndfsa decidable in
polynomial space?

(4) 1s PTIME equal to NPTIME?

(5) 1Is PTIME or NPTIME equal to PTAPE?

(6) 1Is DCSL equal to NDISL?

(7) Find other P-complete operations. In particular
note that the language Lo of Theorem 2.2.5 is recognizable

in Dtape(Log(n)). Thus Dtape(Log(n)) is an AFL implies that

-90-

PTIME equals NPTIME.

(8) Find sufficient conditions on predicates on graphs
such that any predicate satisfying them can be decided in
PTIME.

(9) Find sufficient conditions on predicates on graphs

such that any predicate satisfying them is P-complete.

(10) Find sufficient conditions on predicates on cfgs
(e.g., "Gi is LR(1L)", "Gi is LL(1)", etc.) such that any

predicate satisfying them is decidable or is undecidable.

BIBLIOGRAPHY

Aho, A.V., J.E. Hopcroft, and J.D. Ullman, 1973 . Pre-
liminary notes for a text on the theory of algorithms.

Book, R.V., (19721 . '"On languages accepted in polynomial
time,'" Harvard University technical report.

, £19731 . "Comparing complexity classes,'" Harvard
University technical report.

Book, R.V., and S.A. Greibach, [1970]. '"Quasi-realtime
languages," Mathematical Systems Theory, &4, 97-111.

Brzozowski, J.A., and R. Cohen, [1969] . "On the decomposi-
tion of regular events," JACM, 18:1, 4-18.

Cook, S.A., (19711 . "The complexity of theorem-proving
procedures," Proceedings of Third Annual ACM Sym-
posium on Theory of Computing, Shaker Heights, Ohio.

Greibach, S.A., {1968". "A note on undecidable properties
of formal languages.'" Mathematical Systems Theory, 2:1,

Hartmanis, J., and H.B. Huntlll, (19731 . "The 1ba problem
and its importance in the theory of computing,'" Amer.
Math. Soc. Symp. on the Complexity of Real Computation,
New York.

Hartmanis, J., and R.E. Stearns, (19661 . Algebraic Structure
Theory of Sequential Machines, Prentice-Hall, Englewood
Cliffs, N. J.

Hopcroft, J.E., and J.D. Ullman, (1969 . Formal Languages
and Their Relation to Automata, Addison-Wesley, Reading,
Mass.

Hunt, H.B. 111, (19732 . "On the time and tape complexity
oflanguages, 1," Cornell University Department of
Computer Science technical report no. 73-156.

E— E1973b]. "The equivalence problem for regular ex-
pressions with intersection is not polynomial in tape,"
Cornell University Department of Computer Science tech-
nical report no. 73-161.

-91-

-92-

Karp, R.M., [1972]. "Reducibility among combinatorial
problems," in Complexity of Computer Computations,
R.E. Miller and J.W. Thatcher, ed., Plenum Press,
New York, 86-104.

McNaughton, R., [19677. ''Parenthesis. grammers,' JACM, 14:3,
490-500.

—, [1969]. ''The loop complexity of regular events,"
Information Sciences, 1, 305-328.

McNaughton, R., and S. Papert, [1971]. Counter-Free
Automata, MIT Press, Cambridge, Mass.

Meyer, A.R., and L.J. Stockmeyer, [1972]. '"The equivalence
problem for regular expressions with squaring requires
exponential space," IEEE Conference Record of 13th
Annual Symposium on Switching and Automata Theory,
College Park, Maryland, 125-129.

Paull, M., and S.H. Unger, [19687. 'Structural equivalence
of context-free grammars,'" JCSS, 2:1, 427-463.

Paz, A., and B. Peleg, [1965]. '"Ultimate-definite and
symmetric-definite events and automata," JACM, 12:3,
399-410.

Savitch, W., [1970]. '"Relationships between nondeterministic
and deterministic tape complexities," JCSS, 4:2, 177-
192.

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif
	pdftemp/0026.tif
	pdftemp/0027.tif
	pdftemp/0028.tif
	pdftemp/0029.tif
	pdftemp/0030.tif
	pdftemp/0031.tif
	pdftemp/0032.tif
	pdftemp/0033.tif
	pdftemp/0034.tif
	pdftemp/0035.tif
	pdftemp/0036.tif
	pdftemp/0037.tif
	pdftemp/0038.tif
	pdftemp/0039.tif
	pdftemp/0040.tif
	pdftemp/0041.tif
	pdftemp/0042.tif
	pdftemp/0043.tif
	pdftemp/0044.tif
	pdftemp/0045.tif
	pdftemp/0046.tif
	pdftemp/0047.tif
	pdftemp/0048.tif
	pdftemp/0049.tif
	pdftemp/0050.tif
	pdftemp/0051.tif
	pdftemp/0052.tif
	pdftemp/0053.tif
	pdftemp/0054.tif
	pdftemp/0055.tif
	pdftemp/0056.tif
	pdftemp/0057.tif
	pdftemp/0058.tif
	pdftemp/0059.tif
	pdftemp/0060.tif
	pdftemp/0061.tif
	pdftemp/0062.tif
	pdftemp/0063.tif
	pdftemp/0064.tif
	pdftemp/0065.tif
	pdftemp/0066.tif
	pdftemp/0067.tif
	pdftemp/0068.tif
	pdftemp/0069.tif
	pdftemp/0070.tif
	pdftemp/0071.tif
	pdftemp/0072.tif
	pdftemp/0073.tif
	pdftemp/0074.tif
	pdftemp/0075.tif
	pdftemp/0076.tif
	pdftemp/0077.tif
	pdftemp/0078.tif
	pdftemp/0079.tif
	pdftemp/0080.tif
	pdftemp/0081.tif
	pdftemp/0082.tif
	pdftemp/0083.tif
	pdftemp/0084.tif
	pdftemp/0085.tif
	pdftemp/0086.tif
	pdftemp/0087.tif
	pdftemp/0088.tif
	pdftemp/0089.tif
	pdftemp/0090.tif
	pdftemp/0091.tif
	pdftemp/0092.tif
	pdftemp/0093.tif
	pdftemp/0094.tif
	pdftemp/0095.tif
	pdftemp/0096.tif
	pdftemp/0097.tif
	pdftemp/0098.tif
	pdftemp/0099.tif
	pdftemp/0100.tif
	pdftemp/0101.tif
	pdftemp/0102.tif
	pdftemp/0103.tif
	pdftemp/0104.tif
	pdftemp/0105.tif
	pdftemp/0106.tif

