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ABSTRACT 

Low-ceiling temperature polymers with triggered transience have gained attention due to their 

potential applications in multiple fields, ranging from lithography to decomposable packaging, as 

well as for channel manufacturing in microfluidic devices. Besides the development of novel 

transient materials, advanced electrospinning techniques have also been utilized to increase a 

materials surface area, which can result in a faster decomposition rate. Thus, it would be of interest 

to explore the unique characterization of electrospun transient fiber mats made of low-ceiling 

temperature polymers and their potential usage as support substrate for microelectronic devices.  

This work reports the first transient electrospun nanofiber mat triggered by UV-irradiation using 

poly(propylene carbonate) (PPC)/poly(phthalaldehyde) (cPPA) polymer blends. The ability to 

trigger room temperature transience in nanofibers mats without the need for additional heat or 

solvent expands its utility in non-biological fields, especially for transient electronic devices. The 

addition of a photoacid-generator (PAG) to the system working in combination with UV light 

provides an acid source to enhance degradation since both polymer backbones are acid-sensitive. 

Electrospinning enables the production of PPC/cPPA composite nanofiber mats capable 

significant degradation upon exposure to UV radiation while maintaining relatively high 

mechanical properties. An acid amplifier (AA), an auto-catalytically decomposing compound 

triggered by acid, was used to generate more acid and accelerate nanofiber degradation. The 

electrospun fiber mats can be post-annealed to achieve an improved mat mechanical strength of ~ 

170 MPa.   
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Chapter 1 

1.1 Background  

1.1.1 Introduction to depolymerizable polymers 

Depolymerizable polymers, also known as stimuli-responsive polymers, with their close 

relationship to self-immolative polymers have gained significant attention in recent years due to 

their potential usage in a wide range of fields. Stimuli-responsive polymers are capable of 

depolymerization when response to external stimuli then generates separate monomers.1 To be 

clear, it must be mentioned that we define polymers that can degrade to monomer with no 

difference from the parent monomer as depolymerizable polymers while those that simply 

fragment to small segments are self-immolative polymers.2 For either case, their development is 

largely concentrated in low-ceiling temperature (Tc) polymers and several mechanisms have been 

established to explain the initiation of the unzipping sequence of polymer backbones.  

First, a brief introduction to the fundamental concept of polymers ceiling-temperatures (Tc) will 

be given.3 The basic idea of Tc depends on the thermal equilibrium temperature of polymerization 

reaction, as shown in scheme 1.1 below.  The radical polymerization process (Equation 1) in most 

cases are exothermic and exoentropic (both ∆H and ∆S below 0), therefore the polymerization free 

energy ∆Gp can inherently reach thermal equilibrium (∆Gp=0) at a certain critical temperature 

(Equation 2) and above which the whole reaction could be reversed (∆Gp above 0). This critical 

temperature is defined as ceiling-temperature, where the rate of polymerization is equivalent to the 

rate of depolymerization (Equation 3, 4), and the measurement of monomer concentration 

variation can enable us to determine Tc accurately (Equation 5) as shown in Figure 1.1.4,5 A 
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comprehensive understanding of Tc inspires us that by using sufficiently low-Tc polymers, the 

inherently unstable backbone chain bond could be cleaved under mild conditions. 

Then we need to discuss mechanisms to trigger the depolymerization process of typical low-Tc 

polymers.6 Since the unstable nature of low-Tc polymers requires “capping” at the end of the 

backbone to protect the free radical, hence the intuitive method to initiate depolymerization of the 

polymer chain uses external stimuli to cleave the “end-cap” and release a free radical. As illustrated 

in Figure 1.2, the synthetic process of poly(benzyl carbamate) is a step-growth propagation 

mechanism and quenched polymerization by end-cap group.7 Then depolymerization is triggered 

by external stimuli and the free radical is exposed due to end-cap cleavage, which leads to 
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Scheme 1.1. Classic radical polymerization reaction and derivative of Tc 

 

Figure 1.1. Polymerization and depolymerization rate as a function of temperature. [5] 
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monomer regeneration.  This depolymerization mechanism is known as end-chain scission or 

“unzipping”.8 Besides the end-chain scission mechanism, which predominately occurs on 

polymers stabilized with a stimuli responsive end-cap, there is another depolymerization 

mechanism called random-chain scission or “chain-shattering”.9 Other than depropagation from a 

chain end, a stimulus triggered group is functionalized on the random-chain scission polymer 

backbone. For instance, in a UV-triggered depolymerization process is shown in Figure 1.3, the 

functionalized UV-responsive group on the side chain, when exposed to UV irradiation, initiates 

depolymerization through an amine base and further heat-treatment causes a subsequent 

depolymerization process.10 The future development of depolymerizable polymers will 

concentrate on functional stimuli-responsive groups on the backbone that can be triggered by 

single stimuli and lead to direct depolymerization.  

 

Figure 1.2. Polymerization of poly(benzyl carbamate) and its depolymerization process following 
end-cap cleavage. [7] 
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1.1.2 Introduction to stimuli-responsive polymer applications 

1.1.2.1 Photolithography 

One of the original purposes of studying depolymerizable polymers was for photolithography 

applications, the effective depolymerization mechanism to degrade polymer into monomer with 

solubility changes of interest for lithography.2 Electron beam lithography, for instance, has been 

developed to fabricate microelectronic devices through delineation of conducting and insulating 

materials into specific patterns.11 In a lithographic step a substrate to support pattern delineation is 

covered with a depolymerizable polymeric film. In this field, a polymer such as poly(methyl 

methacrylate) (PMMA) is known as a suitable photoresist polymer capable of degrainge under 

electron beam irradiation, but its low photosensitivity limits its industrial fabrication on a large 

scale.12 To compensate for the limitations of PMMA, poly(olefin sulfone)s have been introduced 

due to their high photosensitivity under high energy irradiation.13 After extensive exploration of 

poly(olefin sulfone)s as candidates for photo-resist materials, poly(1-butene sulfone) has been 

largely commercialized because of its excellent properties such as rapid depolymerization rate and 

ideal film characterization. Besides that, the potential usages of low-Tc poly(phthalaldehyde) 

combined with photoacid generator as a polymeric photoresist film has been investigated as well 

due to its straightfoward synthesis procedure and solubility in commonly used organic solvents.  

 

Figure 1.3.  Chain shattering depolymerization triggered by UV-irradiation. [10] 
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1.1.2.2 Triggered release 

Stimuli-responsive polymerizable polymers are ubiquitous capsule materials to control the release 

of preserved contents in multiple fields include self-healing materials, nutrient preservation, drug 

delivery, etc. Triggering methods are different regarding its specific application, so a variety of 

stimuli have been developed to release contents accordingly, as shown in Figure 1.4.14 In this paper, 

we only give a brief introduction of stimuli-responsive drug release polymer capsules via end-cap 

cleavage depolymerization.  

 

 

Figure 1.4. Multiple stimuli-triggering mechanisms for depolymerizable polymer microcapsules. 
[14] 
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As illustrated above, end-capped depolymerizable polymers can be easily triggered to initiate end-

chain scission by external stimuli such as light, pH, chemistry, etc. The end-caps provide essential 

potential capability to amplify the signal of low-concentration stimulus. Poly(ethyl glyoxylate) 

(PEtG), a low-Tc polymer, has been reported by Gillies and co-workers as a self-immolative 

polymer because the low toxicity depolymerized products make PEtG a promising material as 

encapsulant for drug delivery.15 Furthermore, a UV light-responsive block co-polymer composed 

of PEtG and poly(ethylene oxide) (PEO) has been developed, and the triggered depolymerization 

of micellar nanoparticles formed by PEtG-PEO copolymer was achieved through photolysis of 

PEtG to initiate an unzipping process and release its contents using a decomposition progress as 

shown in Figure 1.5.  

1.1.2.3 Transient substrate and template materials  

Applying depolymerizable polymers into transient substrates and template materials is a growing 

interest in recent research compared to permanent stable structure materials.16 One of the essential 

uses of a depolymerizable polymers is for fabrication of temporary holders for mechanical and 

electrical devices taking advantage of the rapid stimuli-responsive change of polymers into low 

molecular weight monomer that can form a gas cavity or air gap in an encapsulation layer. Here 

 

Figure 1.5. UV-light triggering mechanism of PEtG-PEO microcapsule drug delivery. [15] 
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in this paper, we introduce poly(propylene carbonate) (PPC) utilization as a sacrificial polymer to 

fabricate air-gap microelectronic devices due to its excellent thermal decomposition properties.17 

Thermal decomposition of PPC involves two mechanisms as we have discussed in the section 

above, random chain scission takes place at higher temperature while unzipping predominates at 

lower temperature because the activation energy of chain scission is higher than unzipping process 

in thermal decomposition as shown in Figure 1.6. Studies of PPC have successfully expanded the 

onset depolymerization temperature of PPC in a wide temperature window from 70°C to 260°C 

(e.g., 5% weight loss temperature), so it can be applied in various applications. Also the low 

molecular weight products of propylene carbonate and carbon dioxide can escape most 

encapsulation layers to fabricate air-gaps effectively. The microelectronic patterning process with 

PPC is illustrated in Figure 1.7, where a photo-acid-generator (PAG) or photo-base-generator 

 

Figure 1.6. a. Unzipping process of PPC occurs at lower temperature. b. Random chain 
scission process dominates at higher temperature. [16] 
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(PBG) was incorporated into the PPC solution and spin-cast on a substrate to make a photo-

sensitive PPC layer, then both UV-irradiation and thermal treatment were applied to initiate the 

PPC depolymerization.  

Besides the application of PPC for microelectronic devices, it’s also important to introduce 

poly(phthalaldehyde) (PPA) as a transient substrate material for transient microelectronic devices. 

Jeffery Moore and co-workers have found a cyclic-structure PPA (cPPA) different from the 

traditional end-capped linear structure PPA.18 This novel polymer structure has shown higher 

stability in storage without the concern of a non-volatile end-capping group, thus it has been further 

employed as substrate support for transient microelectronic devices. As shown in Figure 1.8, when 

incorporated with PAG, this low-Tc polymer with acid-sensitive backbone has excellent 

decomposition properties triggered solely by UV-irradiation.  

 

Figure 1.7. Air-gap fabrication from PPC layer through two different patterning techniques. a. 
Reactive ion-etching (RIE). b. Direct photo-patterning process. [17] 
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1.1.3 Introduction to electrospinning  

Electrospinning, also known as electrostatic spinning, has been developed as a versatile technique 

to produce ultrathin fibers from a variety of polymers and composite materials.19 The 

straightforward electrospinning process in large scale production ensures its potential usage in a 

wide range of fields include tissue engineering and drug delivery that cross-link with potential 

applications of depolymerizable polymer materials.20 The another advantage to utilize 

electrospinning method to the field of depolymerizable polymer materials is the unique 

morphology of fiber formation, as a result of large surface area ratio of fiber mat, the response rate 

of stimuli-responsive polymers to external stimuli is therefore largely increased.21  

To begin with, it’s necessary that we briefly introduce the mechanism of electrospinning. A typical 

electrospinning set-up is shown in Figure 1.9, the conductive solution ejected from a syringe to 

collector via extremely high voltage difference in the gap (from 5 ~ 50 kV), meanwhile, the 

spinning process vaporizes solvent and continuously deposits polymer fibers on the collector.22 

The characteristics of collected fibers can be easily modulated by changing the electrospinning 

set-up parameters (solution concentration, applied voltage, flow rate, solvent conductivity, 

 

Figure 1.8. Triggered depolymerization of cPPA films as microelectronic substrate. Films are 
embedded with PAG such that UV-irradiation initiates acid-catalyzed depolymerization of 
substrate follower by electronic destruction. [18] 
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distance between syringe and collector, etc.). For example, by slightly increasing the applied 

voltage and flow rate, we can dramatically change the morphology of fibers with decreased fiber 

diameter. In addition, we can also acquire highly oriented fibers by alternating the collector plate 

by rotating the collector or using a co-axial syringe to produce core-shell structured fibers. The 

variation in morphology made possible by the electrospinning method guarantees that 

depolymerizable polymers are available for various fields.  

As we know, the degradation of stimuli-responsive polymers is highly dependent on the stimulus 

transfer rate to the material, thus the unique morphology properties of electrospinning nanofibers 

can boost the materials response time to a variety of stimuli (pH, temperature, photo, protein, gas, 

etc.).23 The extremely high surface area and porous structure of electrospun fibers is beneficial for 

controlling the degradation rate of stimuli-responsive polymers. For instance, Ober and co-workers 

have recently reported transient fiber mats of electrospun PPC composite with remarkable 

mechanical properties.24 As shown in Figure 1.10, the high surface ratio porous PPC composite 

fiber mats were investigated to achieve exceptional low thermal decomposition temperature and 

high mechanical properties by incorporating small amounts of PAG and nano-clay in the 

electrospinning solution. Furthermore, post-annealing techniques were later applied to the 

 

Figure 1.9. Vertical electrospinning set-up. [20] 
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electrospun fiber mats below the onset decomposition temperature to largely increase the Young’s 

modulus from 54.5 MPa to 746.8 MPa, which is a typical technique to optimize the mechanical 

properties of fiber mats.  

1.2 Motivation and goal  

The goal of this MS project has been to develop a UV-sensitive decomposable material that will 

vanish under mild conditions as a transient rigid support for microelectronic devices. To satisfy 

the goals of our projects, based on the information above, low-Tc stimuli-responsive polymers 

have been considered as ideal materials to meet the requirements due to their highly controllable 

stimulus selection and rapid depolymerization process. The specific choice of stimuli-responsive 

polymer candidates will be comprehensively explained in the following chapter. In addition, 

electrospinning methods have been applied to further increase the degradation and mechanical 

properties of depolymerizable polymers. 

  

 

Figure 1.10. Decomposition scheme of electrospun PPC composite fiber mat under UV 
irradiation. [24] 
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Chapter 2 

2.1 Background and motivation 

As we have discussed above, depolymerizable polymers are typically low ceiling temperature 

polymers, which can respond to specific external stimuli have garnered significant interest in 

recent years due to their potential use in a variety of fields,2 such as triggered release capsules,22 

transient electronic packaging,18, 12 photoresist materials in lithography,25 molecular amplifiers6, 26 

and self-healing composite materials.27, 28 The triggering stimuli varies depending on a particular 

application, including mechanical force,29, 30 chemical change,14 biological effect,31 thermal 

treatment32, 33 and UV irradiation.34 However, the majority of researchers have accomplished 

transience by submerging substrates into biofluid or aqueous solutions and making use of 

hydrolysis or enzymatic degradation. This triggering strategy limits their usage in non-biological 

applications.35 UV-triggers are an appealing agent in applications for release of microcapsule 

content with advantages of remotely applying precisely controlled irradiation intensity and 

exposure time, avoiding addition of external solvents or solutions,36 which is important for solid 

state applications.35 In this report, we focus our discussion on the use of UV irradiation as external 

stimulus. Several fabrication techniques have been utilized to process transient polymers in various 

morphologies for different usages.  

Electrospinning is a highly versatile technique23, 24 with the ability to efficiently produce non-

woven continuous fibers and control network micro-morphology in a straightforward manner. The 

resulting product has extremely high surface to volume ratio, which permits faster decomposition 

speed with stimuli-responsive polymers25 in contrast to a traditional high density product. Stimuli-

responsive electrospun fibers are attractive in a wide range of applications including drug delivery 

microcapsule production,25 transient filter applications,26 as sacrificial template27 and in tissue 
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engineering,28  Our previous investigation26 showed for the first time that electrospun 

poly(propylene carbonate) (PPC) composite fiber mats decompose in response to combined UV 

and thermal treatment.  However, high temperature thermal treatment is commonly an unfavorable 

approach to remotely trigger transient microelectronic device fabrication, since substantial power 

may be required.29 Poly(phthalaldehyde) (PPA) was first reported in 1967 then subsequently 

developed as a stimuli-responsive polymer in multiple fields due to its low ceiling temperature (~ 

- 40 °C) and  easily modulated end groups.30, 31 Joshua et al. created cyclic-poly(phthalaldehyde) 

(cPPA), which proved to be more stable under storage conditions and eliminated the concern of 

non-volatile end group residue, to improve its applicability as transient electronic device 

packaging.32 Nevertheless, the relatively poor mechanical properties including the brittleness of 

cPPA limit its applications.  

These findings inspired us to explore the possibility of combining PPC and cPPA through 

electrospinning techniques to optimize the properties of both. Electrospun polymer blends have 

been widely explored in tissue engineering as biodegradable scaffolds, as the unique synergistic 

degradation and mechanical properties of electrospun polymer blends fulfill the requirements to 

support cell growth.42, 43  Here, we demonstrate a new transient electrospun fiber mat, which 

requires only UV radiation exposure for full decomposition, while also initially possessing 

relatively high mechanical properties compared to other degradable fiber mats. Firstly, we 

characterize electrospun PPC/cPPA composite fiber mat in various compositions. Because the 

backbones of both polymers are acid sensitive, a photo-acid-generator (PAG) was selected in a 

fixed weight ratio compared to the polymer blend. Furthermore, 3-hydroxy-3-methylbutyl 4-

(trifluoromethyl)benzenesulfonate (acid amplifier, AA), a compound normally used in EUV 

lithography that decomposes auto-catalytically in the presence of acid to generate more acid,44, 45 
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was employed to optimize the degradation of the polymer blends. Post-annealing processes under 

controlled temperature conditions during manufacture have been demonstrated as an effective 

method to increase the strength of the fiber mat.46  

2.2  Experimental section 

2.2.1 Ingredients and materials synthesis 

All materials were used as received unless otherwise noted. Poly(propylene carbonate)  (PPC, 

MW~130.000 Da, Novomer), N-hydroxynaphthalimide triflate (PAG, >99%, Sigma-Aldrich), 

dichloromethane  (DCM, extra dry,  99.9 %, AcroSeal), pyridine  (extra dry, 99.5 %, AcroSeal), 

boron trifluoride diethyl etherate  (BF3·OEt2, ≥46.5 %, Aldrich), 3-methyl-1,3-butanediol 

(>98.0 %, TCI), 4- (Trifluorormethyl)benzenesulfonyl chloride  (97 %, Sigma-Aldrich). ο-

phthalaldehyde (o-PA, 98.0 %, Alfa-Aesar) was purified through hot filtration at the boiling 

temperature in DCM solution then recrystallized twice in DCM/hexane solution according to a 

literature procedure.  

Synthesis of cPPA. The cyclic-polyphthalaldehyde (cPPA) was synthesized following 

a literature procedure41 with minor modification. Recrystallized o-PA (3.0 g, 22.5 

mmol) was cooled to -78 °C in a solution of dry DCM (30 mL), freeze pump thawed 

three times, then BF3·OEt2 (0.06 mL, 0.48 mmol) was injected to the solution as 

initiator. After two hours of polymerization under strong stirring conditions, pyridine 

(0.36 mL, 4.5 mmol) was added to quench the reaction by stirring for two hours. The 

final product was brought to room temperature then precipitated by pouring into 

methanol. Further purification was conducted by re-dissolving into DCM and re-

precipitating into methanol at least two times. The final product was characterized by 
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1H NMR spectra. 1H NMR (400MHz, DMSO) δ 7.43 ppm (br, 4H, J = 4.00Hz),δ 6.65 

ppm (br, 2H, J = 2.11Hz). 

 

 

Polymer Yield (%) Mn (KDa) PDI 

cPPA 80 49 1.61 

 

Synthesis of Acid Amplifier (AA). The 3-hydroxy-3-methylbutyl 4-(trifluoromethyl) 

benzenesulfonate (Acid Amplifier) was synthesized following a literature procedure. 4-

(Trifluoromethyl) benzenesulfonyl chloride (5.63 g, 23 mmol) was added to a solution of 3-

methyl-1,3-butanediol (2.92 g, 27.9 mmol) in pyridine (23 mL). The mixed solution was stirred at 

0 °C for two hours then diluted with ethyl acetate (40 mL) and washed with HCl (3 x 50 mL). 

Saturated aqueous NaHCO3 (50 mL) and NaCl (50 mL) were used to neutralize the solution. Then 

the organics were dried over Na2SO4 and concentrated to get the final product (5.3 g, 62 %). The 

product was characterized by 1H NMR spectroscopy 1H NMR (400MHz, CDCl3) δ 8.06 ppm (d, 

2H, J = 0.96 Hz), δ 7.84 ppm (d, 2H, J = 0.99 Hz), δ 4.29 ppm (t, 2H, J = 0.97 Hz) δ 1.90 ppm (t, 

2H, J = 1.0 Hz), δ 1.24 (s, 6H, J = 3.08 Hz). 

2.2.2 Electrospinning set-up 

Spinning Solution Preparation. Based on our previous investigation, for 10 wt% PPC, relative to 

solvent, the optimum electrospinning solvent composition was dichloromethane 

(DCM)/dimethylformamide (DMF) with 80/20 vol%. In this research, the solutions of mixed PPC, 

cPPA, PAG, AA were prepared under yellow light in an aluminum foil covered glass vial. For the 
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precise composition, please see Table 1 (the subscript of polymer blends in Table 1 are PPC/cPPA 

weight ratio and PAG/AA shows in wt% are relative to polymer blends). The weight percent of 

polymer blend to the entire solution was 10 wt%, and solutions was shaken overnight to ensure 

homogeneous mixtures for continuous electrospinning conditions.  

Electrospinning Setup. The electrospinning was performed in a horizontal Spraybase 

electrospinning setup as shown in Scheme 2.1. Solutions were spun through a needle (inner 

diameter = 0.6mm) and collected on a stainless steel flat plate collector covered by parchment 

paper with graphite on the surface. For each solution composition according to Table 2.1, a 

constant total volume of 6 mL solution was electrospun onto the collector plate. Detailed spinning 

and environmental parameters (voltage, flow rate, collector distance, humidity, temperature) 

needed to achieve optimum continuous spun fibers and to avoid bead formation were listed in 

Table 1. Electrospun fiber mats were kept on a collector plate for another 12 hours to drive off the 

residual solvent. The electrospinning was processed in darkness or under yellow light when 

necessary.  

2.2.3 Post-annealing Treatment 

Some of the fiber mats were post-annealed upon a pre-heated hot-plate at a desired temperature 

(detailed information is in Table 2.2). Aluminum plates were placed on the top of the fiber mats 

during the heating process to avoid shrinkage.  

2.2.4 Degradation Test Setup  

Degradation testing was performed using a constant wavelength and intensity UV light (254 nm, 

dose = 2.2 mJ/S*cm-2) as trigger stimulus. Typically, 1 cm × 1 cm samples were cut out of 

electrospun fiber mats over a glass microscope slide and placed on a hot plate at room temperature 

(~ 17 °C). Then we adjusted the distance between samples and UV source at 1 cm before beginning 
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radiation exposure. The entire setup was covered by aluminum foil to avoid light contamination 

and limit air circulation. To compare degradation properties of various compositions shown in 

Table 2.1, the samples were exposed for fixed time periods before characterization.  

2.2.5 Characterization methods  

A Waters ambient temperature gel permeation chromatography (GPC) with THF as solvent was 

used to measure the molecular weight of polymers against a polystyrene standard. 1H NMR spectra 

were detected with a Varian INOVA 400 spectrometer at 400 MHz. Thermogravimetric analysis 

(TGA) was conducted on a TA Instrument Q500 using a heat ramp of 10 °C/min to reach 400 °C. 

Dynamic mechanical analysis (DMA) for both tensile test and storage modulus were measured on 

a TA Instrument Q800. The tensile testing with constant force ramp of 1 N/min at room 

temperature was performed on ASTM D638 Type V specimens. For storage modulus tests, 

electrospun fiber mats were cut into a rectangular shape (l.w.t) of 2.0 × 1.0 × 0.1 mm, and DMA 

tests were analyzed at 1 Hz, 0.05 % strain amplitude with a constant static force of 0.1 N. Scanning 

electron microscopy (SEM) for high resolution micrographs of Pt sputtered samples were captured 

on a MIRA3-TESCAN through channel SE and the accelerating voltage was 1.0 KV. Transmission 

electron microscopy (TEM) morphology characterization of RuO4 stained PPC70/cPPA30/PAG5wt% 

nanofibers were directly deposited on copper grid and captured on FEI F20 at accelerating voltage 

of 200 kV. 
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Table 1. Solutions and Electrospinning Conditions 

Sample Solutiona Distance 

(cm) 

Voltage 

(kV)b 

Flow Rate 

(mL/h) 

T (°C) Humidity 

(%) 

1 PPC100/PAG5wt% 20 14.40 1 21 60 

2 PPC90/cPPA10/ PAG5wt% 20 14.50 1 20 63 

3 PPC70/cPPA30/ PAG5wt% 20 14.60 1 21 59 

4 PPC60/cPPA40/ PAG5wt% 20 15.50 1 24 53 

5 PPC30/cPPA70/ PAG5wt% 20 15.55 1 21 62 

6 PPC10/cPPA90/ PAG5wt% 20 15.50 1 22 62 

7 cPPA100/ PAG5wt% 20 14.80 1 21 48 

8 PPC50/cPPA50 20 14.50 1 22 51 

9 PPC50/cPPA50/ 

PAG5wt%/AA3wt% 

20 14.60 1 21 58 

Scheme 2.1. Concept diagram of electrospun polymer blends fiber mat 
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aThe subscripts of PPC/cPPA represent the weight percentage of each polymer in polymer blends. 

The weight percentage of PAG refers to polymer blends. bThe electrospinning parameters were 

modulated by voltage with fixed distance and flow rate according to environmental conditions 

(temperature and humidity) to produce continuous nanofibers with minimum bead formation as 

shown in Figure S3 (please refer to Supporting Information).  

 

Table 2. Mechanical properties of PPC50/cPPA50/PAG5wt%/AA3wt% fiber mats as a function of post-

annealing temperaturea 

Sample Post-annealing 

Temperature 

(°°°°C) 

Post-

annealing 

time (min) 

Tensile 

strength 

(MPa) 

Strain 

(%) 

Young’s 

modulus 

(MPa)b 

Fiber diameter 

(nm) 

10 21  0 0.696 2.792 43 468.7 ± 102 

11 30 30 1.313 1.313 58.46 520.5 ± 198 

12 40 30 1.168 1.168 83.72 654.7 ± 213 

13 50 30 2.491 4.192 136 666.76 ± 98 

14 60 30 2.512 2.520 168.5 809.5 ± 174 

15 70 30 2.506 2.956 139.3 film  

16 80 30 1.784 4.944 120.2 film  

aThe subscripts of PPC/cPPA represent the weight percentage of each polymer in polymer blends. 

The weight percentage of PAG/AA refers to polymer blends. bYoung’s modulus was calculated 

according to the linear part of the stress-strain curve as shown in Figure S7 (please refer to 

Supporting Information). 
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2.3 Results and discussions 

2.3.1 Electrospun polymer blends 

PPC composite fiber mats with good mechanical properties after heat treatment have also 

possessed good degradation performance under UV light, but additional heat was required to 

achieve full decomposition. cPPA has shown potential usage in transient microelectronics due to 

its high acid sensitivity. We blended PPC and cPPA together to investigate any synergistic effects, 

and based on our prior research, used 5 wt% PAG relative to the polymer blend to initiate acid 

release by thermal or UV irradiation. Non-woven polymer blend fiber mats were electrospun in 

various compositions to explore the different characteristics. Electrospinning parameters for 

multiple compositions of polymer blends were optimized to produce consistent non-woven fiber 

mats with minimum formation of beads as shown in Figure S3(please see Supporting Information 

Figure S3 for SEM images of selected electrospun polymer blend fiber mats). To further 

understand PPC and cPPA heterogeneous morphologies in electrospun nanofibers, RuO4 stained 

fiber mats were characterized with TEM as shown by the micrograph in Figure S4 (please see 

Supporting Information Figure S4 for a detailed illustration). In the micrograph, the darker regions 

are the stained cPPA which is dispersed in the overall fiber PPC phase indicating a heterogenous 

mixture of the two phases. Following the nanofiber morphology characterization, Scheme 1 

represents the morphology of electrospun PPC/cPPA polymer blend nanofibers, with separate 

phases representing both cPPA and PPC domains resulting from their immiscibility during 

electrospinning.  

The variations in degradation temperature (Td, 5wt%) and Young’s modulus of the polymer blends 

with different compositions and fixed PAG content (5 wt% with respect to polymer blend) are 

shown in Figure 2.1. When the cPPA loading was less than 30 wt%, the degradation temperature 
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and Young’s modulus decreased steadily, since the continuous phase consists of PPC (the addition 

of cPPA from 0 wt% to 10 wt% caused dramatic decreases in degradation temperature); however, 

as the amount of cPPA increased, the continuous phase of PPC in the fiber was gradually switched 

to cPPA, until cPPA exceed 70 wt%, at which point both degradation and mechanical properties 

of electrospun polymer blends closely resembled that of pure cPPA. The reduction value of both 

degradation temperature and mechanical strength with respect to increasing amount of cPPA in 

electrospun solution composition indicates the alternate dominant phase in fiber would determine 

the fiber mats characteristic behavior.  

 

 

For completeness we have to mention when the two polymer components are at equivalent weight 

in the system, it forms a co-continuous phase. Degradation tests of electrospun polymer blends 

 

Figure 2.1. Degradation temperature and Young’s modulus change trend in relation to different 
cPPA wt% of electrospun PPC/cPPA polymer blends. All samples showed here contain 5 wt% 
PAG. The missing Young’s modulus data for samples of cPPA over 90 wt% results from the 
fiber mat being too brittle to cut it on shape for a DMA test. 
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under UV irradiation at room temperature were investigated.  As shown in Figure 2.2, with 5 wt% 

PAG, UV irradiation released acid which then started chain scission of PPC and cPPA.47 The full 

decomposition of electrospun fiber mats were observed with cPPA compositions over 70 wt%, 

with only a tacky residue left. However, different degrees of shrinkage occurred for fiber mats for 

cPPA compositions less than 70 wt%. 

The UV irradiation test conformed to the analysis presented in Figure 2.1, when cPPA was the 

continuous phase, the fiber mats exhibited similar properties. Nevertheless, the mechanical 

properties of UV only degradable samples are extremely poor. Since a minimal amount of solid 

residue remained after UV irradiation from the polymer blends of PPC/cPPA of 50/50, it was 

considered the best composition to avoid brittleness in further tests.  

 

Figure 2.2. Electrospun fiber mat with different cPPA loadings (wt%) (as shown by the red 
labels) before and after UV (254nm, 2.2mW/cm2) degradation over ~ 120 min at room 
temperature. All fiber mats were cut into 1 x 1 cm samples. 

Scheme 2. UV-triggered degradation process of PPC50/cPPA50/ PAG5wt%/AA3wt% fiber mat 
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2.3.2 Improving degradation performance 

For applications such as a rigid support for transient microelectronic devices, the fiber mat should 

be stable at room temperature unless triggered by external stimuli. It requires us to improve 

PPC50/cPPA50/PAG5wt% fiber mat transient performance without undermining its integrity at room 

temperature in the absence of triggers. Thus an acid amplifier (AA), was tested.45 On the basis of 

electrospun PPC50/cPPA50/PAG5wt% polymer blend fiber mats, we incorporated 3 wt% of acid 

amplifier into the system to optimize the degradation performance. The degradation mechanism 

shown in Scheme 2.2 illustrates the reaction sequence triggered by UV radiation exposure. First, 

as a result of UV exposure the PAG decomposes to release acid. Subsequently, the AA reacts to 

produce an additional strong acid and this combination maximizes both the production rate and 

amount of acid generated in the system. This increased concentration of acid leads to enhanced 

catalysis of the chain scission of PPC and cPPA, resulting in the fast degradation of the fiber mat.  

Thermogravimetric analysis (TGA) and gel permeation chromatography (GPC) measurements 

were done to confirm the degradation as shown in Figures 3 and 4. Comparing polymer blends at 

 

Figure 2.3. TGA trace of electrospun PPC/cPPA polymer blends in fixed composition (50/50) 
with no acid source (black), PAG (blue) or PAG/AA (red). Samples with both PAG and AA 
showed superior degradation behavior.   



 

 24

different compositions, the TGA curves in Figure 3 indicate the gradual decrease of Td with 

increasing incorporation of PAG and AA. The significant two stage decomposition of 

PPC50/cPPA50 (black curve) is a result of blending of the two kinds of polymers, the first stage 

being the decomposition of cPPA and the second being the decomposition of PPC. By 

incorporating 5 wt% PAG into the system (blue curve), the degradation temperature of both 

polymers decreases dramatically due to their backbones’ acid sensitivity. Incorporation of 3 wt% 

AA results in a decrease in the Td of PPC to 110 °C, which matches the decomposition temperature 

of the AA when blended in a phenolic photoresist polymer matrix reported by Kruger. 35  

The depolymerization of PPC50/cPPA50 with the addition of PAG and AA was confirmed using 

GPC by monitoring the molecular weight reduction during UV irradiation. Chromatograms were 

recorded using both UV and RI detectors, Figures 4a/4c and Figures 4b/4d, respectively. The UV 

detector was set at a wavelength of 254 nm, so only the cPPA component with aromatic groups in 

the polymer blend is observed. From the UV signal, a rapid decrease of the peak at 18 min elution 

time indicates the full decomposition of cPPA after 60 min of UV exposure, which occurs both 

with and without AA. From the RI, for the fiber mat with only PAG, while there was a rapid 

decrease in the cPPA peak after 60 min (blue curve), the PPC peak at 17 min elution time decreased 

slowly and was still prominent after 90 minutes of UV exposure (green curve in 4b). With the 

addition of 3 wt% AA, there is a significant decrease of the PPC peak at 17 minutes elution time, 

and the formation of dual peaks at 90 minutes of UV irradiation suggests that the sample was a 

mixture of species with different molecular weights of PPC. 
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 Images of the fiber mats before and after UV exposure shown in Figures 5 reveals that the 

incorporation of 3 wt% AA vastly improves the degradation performance of the PPC50/cPPA50/5 

wt% PAG at room temperature. There is a negligible amount of residue left visible to the naked 

eye. SEM characterization, Figure 6, shows that the morphology of the fiber mat was completely 

destroyed after 90 minutes of UV exposure. 

 

 

Figure 2.4. Comparison of GPC molecular weight change of electrospun fiber mat in 
PPC50/cPPA50 composition with 5 wt% PAG (4a and 4b) or 5 wt% PAG/3 wt% AA (4c and 4d) 
under UV irradiation for different exposure period: (a)  molecular weight change detected by 
UV signal of PPC50/cPPA50/PAG5wt%; (b) molecular weight change detected by RI signal of 
PPC50/cPPA50/PAG5wt%; (c) molecular weight change detected by UV signal of 
PPC50/cPPA50/PAG5wt%/AA3wt%; (d) molecular weight change detected by RI signal of 
PPC50/cPPA50/PAG5wt%/AA3wt%. The dose of UV light (254 nm, 2.2 mW/cm2) 
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Since mechanical properties are important in our system, the change in storage modulus of the 

electrospun fiber mat was measured through transient DMA testing while exposing it to UV 

irradiation (254 nm, dose = 2.2 mW/cm2) as shown in Figure 7. A dramatic loss of storage modulus 

up to ~ 85 % was observed with the addition of both the PAG and AA in polymer blends until the 

failure of fiber mat. The reference specimen with only PAG as an acid source exhibited a much 

slower decrease under UV irradiation which matches the GPC results above, while the polymer 

only sample maintained a constant modulus throughout the test. The DMA test emphasizes that 

the combination of AA and PAG accelerates the degradation process of whole system.  

 

  

 

Figure 2.5. UV degradation test of 1 x 1 cm electrospun fiber mats with different 
compositions, both samples combine both polymers and have PAG, but the right samples 
also have acid amplifier. 
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Figure 2.6. SEM characterization of PPC50/cPPA50/PAG5wt%/AA3wt% under UV irradiation 
(254nm, 2.2mJ/S*cm-2) for (a) 0 min; (b) 60 min; (c) 90 min. Scale bar is 5 μm 

 

Figure 2.7. Storage modulus trend lines of electrospun fiber mats in different compositions 
under UV irradiation. All the samples in different composition as shown in the image are cut 
into fixed rectangular shape and exposed to continuous irradiated until failure.  
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2.3.3 Strengthening mechanical properties   

Consistent with our previous work on electrospun PPC fiber mats, post-annealing effectively 

enhances mechanical properties by causing the strength of junction points of fibers to increase 

during heat treatment. M. Kancheva et al. has shown that heat treatment can greatly enhance the 

mechanical properties of electrospun polymer blend fiber mats. Thus in this investigation, we 

focused on post-annealing to strengthen the integrity of fiber mats with 

PPC50/cPPA50/PAG5wt%/AA3wt% composition (for detailed condition please see Table 2.2). As 

shown in Figure 2.8, annealing was performed at a variety of temperatures for a fixed time (30 

min). An increase in Young’s modulus is observed from 43 MPa to 170 MPa for annealing 

temperatures up to 60 °C, which is the highest mechanical strength recorded to date for room 

temperature degradable fiber mats. Higher annealing temperatures resulted in a subsequent 

decrease in mechanical properties. This reduction can be attributed to the thermally triggered 

release of acid from the PAG and AA that rapidly degrades the nanofibers. SEM characterization 

of the post-annealed fiber mats shows similar morphology changes at increasing annealing 

termperatures as was observed in the UV degradation imaged in Figure 6. This is consistent with 

our previous work, which showed the formation of films and loss of mechanical properties during 

post-annealing at higher temperautres.26 Furthermore, the UV degradation test of the fiber mat 

annealed at 60 °C was investigated as shown in Figure S9 where full decomposition wasobserved. 

This result proves that fiber mat degradation is not compromised by post-annealing steps. 
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Figure 2.8. Young’s modulus of post-annealed fiber mat for fixed time of 
30 min. The composition of all samples are PPC50/cPPA50/PAG5wt%/AA3wt%.  

 

Figure 2.9. SEM images of post-annealed PPC50/cPPA50/ PAG5wt%/AA3wt% fiber mat for 30 min 
at (a) 30 , (b) 40 , (c) 50 , (d) 60 , (e) 70 , (f) 80 °C. 
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2.4 Conclusion 

Considering these results, we have demonstrated a UV-triggered degradable electrospun fiber mat 

with optimized mechanical properties. In particular, the polymer blends with varied composition 

have proven that PPC50/cPPA50 forms a blend morphology in the fiber mat which enabled the 

achievement of our desired properties. With the addition of PAG, exposure to UV irradiation 

released strong acid to decompose the electrospun fiber mat. Besides that, the use of an acid 

amplifier (AA) is novel to nanofiber spinning and compensates for the limitations of acid generated 

from PAG through UV exposure. The thermal stability of the AA guarantees the integrity of the 

fiber mat in the absence of external stimuli, which is essential for many envisaged applications. 

The acid released from PAG induced by UV irradiation leads spontaneously to further production 

of acid through the AA, resulting in much more rapid depolymerization and disintegration of the 

whole system. Since the incorporation of the cPPA component compromises the fiber mat 

mechanical properties, we employed post-annealing methods to enhance their mechanical 

properties. The Young’s modulus (E) was improved by post-annealing, with 30 min heat treatment 

at 60 °C to raise E to 170 MPa due to the increased number of junction points. Consequently, the 

UV responsive degradable polymer fiber mat is applicable to a wide range of solid state 

applications, such as a transient rigid support for microelectronic devices and packaging materials, 

in which mild degradable conditions with high mechanical properties would be required.  

2.5 Complementary work 

While we can proudly announce that so far we have accomplished to produce UV-triggered 

transient fiber mats with decent mechanical strength for multiple usages, however, complementary 

research is needed to explore the reason how polymer blend morphology changes in various 

compositions determine the mechanical and physical properties of the blend.  
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To observe the two phases distribution in electrospun polymer blends fibers, SEM figures are 

apparently insufficient since no significant contradistinction between two polymers phases in 

fibers could be observed as shown in Figure S3 (Supporting Information). Therefore, we have to 

apply alternative characterization technique to advance our research. According to John S. Trent 

et al, ruthenium tetraoxide (RuO4) can selectively enhance electron density contrast for 

transmission electron microscope (TEM) of heterogeneous polymer systems.48 In our case, cPPA 

component in polymer blends contains aromatic moiety which can be stained by RuO4, meanwhile 

PPC component would stay intact.  

PPC70/cPPA30 composition was selected to further our research, first of all, electrospun 

PPC70/cPPA30 fiber mat was stained with RuO4 overnight. Then fully stained fiber mat was 

carefully installed in copper grid for further TEM characterization. The results are shown in Figure 

2.10, the stained regions are cPPA phase and unstained regions are PPC phase. We can easily 

conclude from Figure 2.10 that cPPA and PPC polymer blend are immiscible and their blends 

show heterogeneous morphologies. This result conforms to previous experiment as shown in 

Figure 2.1, the variation of PPC/cPPA compositions would not linearly change the physical and 

mechanical properties of polymer blends. Instead, significant conversion of polymer blends 

properties were observed when cPPA component weight percentage increased continuously. When 

cPPA component weight percent less than 30, the properties of electropsun polymer blends fiber 

mats were similar to pure PPC, as cPPA weight percentage increased over 70, the properties of 

electrospun polymer blends fiber mats were close to pure cPPA. In this two situations, the 

morphology of one phase dispersed in domains in the other. However, when the weights of cPPA 

and PPC reached equal in the composition, the electrospun fiber mat exhibited synergistic 
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properties, which means they have formed co-continuous which gives unique combination of the 

properties of the components.  

Although we can infer from the experimental results that PPC50/cPPA50 represents co-continuous 

morphology of electrospun polymer blends, additional experiments could be done to conform this 

result in the future. The morphologies of polymer mixing are relied on the relative viscosities and 

interfacial tension, and we define the co-continuous morphologies when the viscosities of two 

polymer components are equal in a specific composition. In this case, the coming graduate students 

who want to continue this project can operate comprehensively viscosities test of two polymer 

phases in different polymer compositions.  

 

  

 

Figure 2.10. TEM characterization of RuO4 stained electrospun polymer blends nanofibers with 
PPC70/cPPA30/PAG5wt% composition in 2 µm scale. The darker domain on a single nanofiber represents 
cPPA phase.  
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Chapter 3 

3.1 Future goals 

In this project, we have managed to realize decomposable PPC/cPPA fiber mats triggered by UV-

irradiation at room temperature. The mechanical properties of fiber mats have also been greatly 

enhanced after post-annealing processing, increasing from ~ 40 MPa to ~ 170 MPa. However, 

regarding many potential applications such as filters or tissue scaffolds, the mechanical properties 

of PPC/cPPA fiber mats is still not adequate. Therefore, in this chapter, we will introduce some 

methods identified from other studies that have proven to effectively reinforce electrospinning 

fiber mat stiffness apart from post-annealing processing.  

3.2 Filler reinforcement 

Pure fiber mats normally possess relatively few interactions between fibers in the matrix, so that 

the weaker interfacial bonding strength and adhesion force inside the fiber mats results in poor 

mechanical properties, which largely restricts their utilization in day to day use.49 Therefore, 

several methods have been developed to compensate for the mechanical limitations of fiber mats, 

such as incorporating pure fiber mats with coupling agents and surface modification components. 

In many cases, to achieve substantial mechanical strength improvement, one of the most efficient 

approaches is by introducing fillers into the fiber matrix.  

Fillers and electrospinning in combination are commonly used to produce composite nanofibers, 

whose properties can be significantly improved with respect to the matrix alone by using different 

fillers mixed into the fiber matrix.50 Therefore, it’s necessary to explore the possible combinations 

of fillers and depolymerizable polymers to harness synergistic effects that are capable of expanding 

the working properties of composite nanofibers. Thus a proper selection of filler and polymer 
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matrix composition may aid in developing composite nanofiber materials for applications in 

multiple fields such as the aerospace and automotive industries.51 

The nanoscale fillers widely used in electrospinning of fiber mats include nanoclays, carbon 

nanotubes and nanometals. One facet to diminished mechanical properties of fiber matrix (weaker 

than bulk properties) is polymer viscosity. Electrospinning fiber mats from solutions with large 

viscosity and lower conductivity tend to produce beads on fiber mats, which are known to 

compromise the mechanical performances. In this case, the introduction of nano-scale fillers into 

the system can result in a wide distribution range on fiber mats. Therefore, the wide range 

distribution of fillers would reduce the polymers solutions viscosity, so the flow of the fibers  

increases can subsequently reduce their possibility of beads formation. In addition, to enhance the 

mechanical strength of fiber mats, some studies have shown that those nanoscale fillers have the 

ability to increase thermal stability of low cost fiber mats compared to expensive high-performance 

materials.  

Therefore, we are expecting to achieve mechanical enhancement by incorporating appropriate 

nanofillers to our original PPC/cPPA polymer blend fiber mats, for instance, carbon nanotube and 

nano-clay are introduced as two potential candidates in this paper.  
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3.2.1 Carbon nanotube reinforcement  

Carbon nanotubes have attracted great interest in recent decades due to their remarkable properties. 

A carbon nanotube can be described as a hollow cylindrical structure with 1 – 2 nm diameter as 

shown in Figure 3.1 below.52 According to the cylindrical structure of carbon nanotubes, it can be 

defined in two forms as single-walled carbon nanotubes (SWCNT) and multi-walled carbon 

nanotubes (MWCNT).  

Because of its covalent bonding, carbon nanotubes are similar to graphite which arises from their 

sp2 hybridization, thus carbon nanotubes possess physical properties similar to graphite such as 

conductivity and thermal conductivity. Furthermore, with respect to mechanical properties, carbon 

nanotube also exhibits high tensile strength (~ 100 - 500 GPa), elastic modulus (~ 1 – 5 TPa) and 

extremely high flexibility due to their porous nanotube structure. Therefore, carbon nanotubes 

have been explored in the field of polymeric fiber mats for production of polymer-carbon nanotube 

composites with enhanced properties. According to reports in the literature, the carbon nanotube 

mixed polymer fiber matrix can potentially provide significant enhancement to both fiber mat 

modulus and strength since the interfacial shear strength in a carbon nanotube and fiber matrix 

 
 
Figure 3.1. Structure of single-walled carbon nanotubes (SWCNT) and multi-walled carbon 
nanotubes (MWCNT). [53] 
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composite is much larger than pure fiber matrix alone. In addition, carbon nanotubes are capable 

of increasing the melting-temperature, glass-transition temperature and thermal decomposition 

temperature of a polymer matrix.   

Here we will present representative research from Robert C. Haddon and his co-workers on 

electrospun single-walled carbon nanotube (SWCNT) reinforced polystyrene and polyurethane 

nanofibers.53 The ester functionalized form of SWCNTs cannot easily be dispersed in the organic 

solvent without agglomeration which is known to significantly affect the mechanical properties of 

fiber mats. Furthermore, the incorporation of the esters can improve chemical compatibility of 

SWCNTs with polymers and exfoliate the SWCNTs bundles as well. The stress-strain 

measurements of both electrospun ester functionalized SWCNTs reinforced polyurethane (EST-

SWNT-PU) fiber mats and SWCNTs reinforced polyurethane (AP-SWNT-PU) are shown in 

Figure 3.2 below, the significant increase of mechanical properties with respect to SWCNTs and 

ester-functionalized SWCNTs additives confirming the general features of the above theory.  

 

 

 

Figure 3.2. Stress-strain curve for electrospun fiber mat composed of polyurethane (PU), 
SWNT-reinforced polyurethane (AP-SWNT-PU) and ester functionalized SWNT polyurethane 
(EST-SWNT-PU).[54] 
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3.2.2 Nano-clay reinforcement 

Nanoclay, known as organo-modified montmorillonite (OMMT), is commonly used as a 

reinforcement component in polymeric fiber matrix. The various polymer/OMMT systems have 

been extensively investigated since OMMT can contribute to a fibers’ improvement in mechanical 

properties such as thermal resistance and mechanical strength.54 In recent decades, accompanied 

by the development of electrospinning, different types of polymer/OMMT nanocomposites have 

been produced with enhanced mechanical properties, including polyamide 6/OMMT, 

polystyrene/OMMT and poly(propylene carbonate) (PPC)/OMMT. Herein, we will also introduce 

our prior research to convey the potential use of OMMT for our electrospun PPC/cPPA polymer 

blend fiber mats.24 

The goal of this prior research was to fabricate transient PPC fiber mats with superior mechanical 

properties.  OMMT (20 Å) was incorporated into the system to enhance the mechanical properties 

of the PPC fiber mat. First, to avoid a significant increase of thermal decomposition temperature, 

the amount of OMMT introduced to the PPC fiber matrix was limited to a minimum quantity. 

Consequently, the preparation of PPC/OMMT in DMA solution required ultra-sonication to 

minimize agglomeration effects of the OMMT which is known to compromise the mechanical 

properties of a fiber mat. Finally, electrospinning parameters and post-annealing conditions were 

optimized to reach our desired properties.  

The amount of OMMT added to a PPC/PBG system was investigated as shown in Table 1, for 

clarification, a photo-base-generator (PBG) was added as a stimuli-response photochemical trigger 

to release base. Though with 5 % PBG incorporated, the PPC fiber mat exhibited its lowest 

decomposition temperature and highest mechanical properties, the fiber mat was shrank up to ~ 

20 % during storage. We can observe from Table 3.1 that adding 5 % OMMT would slightly 
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change the decomposition temperature of the PPC/PBG fiber mat from 146.2 °C to 154.9 °C; 

however, when the amount of OMMT reached 10% with respect to PPC, the decomposition 

temperature increased significantly to 169.4 °C. The combination of OMMT and PBG would 

reduce the Young’s modulus of the fiber mat from ~77.7 MPa to ~54.5 MPa because the interaction 

between PBG and OMMT would compromise the interfacial reaction between OMMT and PPC 

fibers.  

Next, various annealing treatments were applied to PPC/OMMT5%/PBG5% fiber mats as shown in 

Figure 3.3a, illustrating that post-annealing at 40 °C exhibited the highest Young’s modulus and 

tensile strength. Then, the post-annealing process at 50 °C at different times was investigated for 

PPC/OMMT/PBG represented in Figure 3.3b showing the highest Young’s modulus and tensile 

strength. The dramatic mechanical enhancement of PPC/OMMT5%/PBG5% resulted from either 

fiber mat densification or fiber mat internal bonding. Since shrinkage was purposely avoided 

during post-annealing process, it’s likely that OMMT caused enhanced overlapping junction point 

in fiber mats. But when post-annealing time at 50 °C exceeded 40 min, the mechanical properties 

of the fiber mat decreased due to the decrease of degree of order of the polymer chains among 

fiber mats induced by electrospinning and exfoliation of OMMT with its agglomeration. Based on 

Table 3.1. Tensile strength and Young’s modulus of PPC/OMMT/PBG fiber mat 
Amount of additives respect 

to PPC (weight percent) 
Decomposition 

temperature (°C) 
Fiber 

diameter (nm) 
Tensile 
strength 
(MPa) 

Young’s 
modulus 
(MPa) 

5% PBG 146.2 244 ± 110 4.1 ± 0.2 123.9 ± 
4.3 

5% OMMT 228.2 261 ± 133 2.8 ± 0.1 77.7 ± 1.5 
5% OMMT, 5% PBG 154.9 248 ± 108 2.2 ± 0.9 54.5 ± 

12.0 
10% OMMT, 5% PBG 169.4 146 ± 60 3.0 ± 0.6 105 ± 26.9 
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annealing tests of PPC/OMMT/PBG fiber mats, the mechanical properties could be modulated 

from 54.5 MPa to 746.8 MPa. This remarkable mechanical strength enhancement could allow this 

transient composite fiber mats to be useful for a wide range of applications. 

  

 

Figure 3.3. Tensile strength and Young’s modulus variation of PPC/OMMT/PBG fiber mats in (a) 
different annealing process type (b) different annealing time at fixed temperature. [24] 
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3.3 Advanced electrospinning set-up 

Our electrospinning conditions to produce PPC/cPPA fiber mats is a typical horizontal set-up 

including metallic capillary connected to high voltage and a collector with negative charge as 

shown in Figure 3.4.53 This traditional set-up can successfully fabricate continuous nanofiber from 

PPC/cPPA polymer blend solutions as discussed in Chapter 2. However, due to the instability of 

jet ejected from capillary, the fibers collected are normally randomly oriented structure, which 

would impair the mechanical strength of fiber mat. Therefore, according to literature, highly 

aligned fiber structure produced by modified electrospinning set-up as shown in Figure 3.5 is very 

important to help optimize mechanical strength of fiber mat.55 In this case, despite adding nano-

fillers to original composition, increasing alignment of fiber structure can be used to enhance the 

mechanical properties of PPC/cPPA fiber mat. Here we will introduce an advanced electrospinning 

set-up to fabricate orientated fiber mat.  

 

 

Figure 3.4. Traditional Horizontal electrospinning set-up. [53] 
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3.3.1 Aligned polymer fiber electrospinning set-up 

In this section we will refer work done by Chaobo Huang et al,56 who managed to significantly 

enhance the mechanical strength of polymer nanofiber mats through combing methods of adding 

multi-walled nano-carbon tube (MWNCT) and modified electrospinning set-up to fabricate 

orientated fiber structure. The SEM characterizations of non-aligned and aligned nanofiber 

structure are shown in Figure 3.6. Mechanical testing results are shown in Table 3.2 to indicate the 

tensile strength of polymer fiber mats depend on both the alignment of nanofiber structure and the 

incorporating of MWNCTs additives. To be clarify, the prepared electrospun polymer solution 

with MWNCTs are cured at high temperature to enhance the interfacial interaction between 

MWNCTs and nanofibers. According to Table 3.2, the non-aligned fiber mats tensile strength can 

be increased from 40MPa to 187MPa by increasing the nanofibers alignment to ~80%. Then by 

incorporating MWNCTs fillers with high temperature curing, the tensile strength would be 

significantly increase to 663.7MPa.  

 

Figure 3.5. Modified electrospinning set-up to fabricate orientated nanofiber structure. [55] 
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3.4 Alternative low-ceiling temperature polymer 

In the previous sections we have discussed some developed methods to enhance mechanical 

strength of electrospun polymer fiber mats, then in this section we will introduce an alternative 

low-ceiling temperature polymer with potentially usage for transient fiber mat. Referring to our 

previous research about transient electrospun PPC fiber mat,24 the depolymerization process of 

PPC was proved to be more sensitive in response to photo-base-generator (PBG) compared to 

photo-acid-generator (PAG). Regarding this circumstance, we will refer a photo induced 

depolymerizable poly(olefin sulfone)s with photo-base generating groups in the side chain from 

 

Figure 3.6. Electrospun polymer fiber mats. (A) Non-aligned and (B) aligned with rotating 
collector. [56] 

Table 3.2. Tensile strength of electrospun polymer nanofiber mats [56] 

Electrospinning 

composition 

Pure polymer Polymer with 

MWCNTs 

Polymer with 

MWCNTs 

Curing temperature 

(°C)/time (min) 

100/120 100/120 430/30 

Alignment Non-aligned ~80% Aligned ~80% Aligned 

Strain(%) 9.24 10.3 4.97 

Tensile Strength(MPa) 40 187 663.7 

 



 

 43

Hirosaki Yaguchi et al’s work,10 and replacing cPPA component in the polymer blends with it 

since cPPA phase induce the brittleness in the polymer blend fiber mat.  

Poly(olefin sulfone)s have gained attention in recent years because of their versatile functionalized 

side chain which can initiate depolymerization in responsive to heat, high energy irradiation or 

base. According to Hirosaki Yaguchi et al’s work,10 the depolymerization of poly(olefin sulfone)s 

is triggered by photo-responsive side group and followed by releasing of protected base in side 

group to attack the backbone of poly(olefin sulfone) as shown in Figure 3.7. Therefore, fully 

depolymerization process of poly(olefin sulfone)s by low-energy irradiation can be accomplished, 

which is favored as transience devices since minimize energy cost is important. Besides that, 

Olivia P. Lee et al have accomplished to manipulate thermally decomposition temperature of 

poly(olefin sulfone)s from ~213ºC to ~90ºC through changing the tert-butyl carbonate group in 

the side chain as shown in Figure 3.8.9 By manipulating side-chain substitutions, they are capable 

to increase side chain thermal stability to increase decomposition temperature since the thermal 

decomposition process of poly(vinly butyl olefin sulfone)s is carbonate elimination as rate-

 

Figure 3.7. Photo-triggered depolymerization mechanism of poly(olefin sulfone)s with photo-
base-generator group in the side chain. [10] 
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determination step. Therefore, with decreasing side-chain branching at β-carbon as shown in 

Figure 3.8, the decomposition temperature of polymers increase as well.  

 

3.5 Conclusion 

Based on the extensively developed studies of polymer/nano-particles composites fiber matrix, we 

think a filler would be a plausible method to increase the mechanical property of electrospun 

PPC/cPPA composite fiber mat. Our previous research has proven the positive mechanical 

reinforcement of OMMT (20 Å) in a PPC fiber mat. However, little investigation has been done 

to incorporate small amounts of 20 Å OMMT into PPC/cPPA/PAG/AA system and mechanical 

reinforcement effect. The reason for this could be the interfacial interaction between 20 Å OMMT 

and PPC phase in the fiber is inhibited by cPPA phase and PAG/AA components; therefore, 

reducing the size of OMMT from 20 Å to 10 Å could be helpful to increase the interaction effect. 

 

Figure 3.8. Thermal gravimetric analysis (TGA) comparison of poly(vinly butyl olefin 
sulfone)s with various tert-butyl carbonate structure in the side chain. [9] 
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In addition, single walled carbon nanotubes (SWCNT) could be an alternate filler to enhance the 

mechanical strength of PPC/cPPA polymer blend fiber mats due to its distinguished performance 

in a variety of polymer/SWCNT nanocomposites. Also by replacing our horizontal electrospinning 

set-up to modified electrospinning set-up with rotator collector to produce highly oriented 

nanofiber have been proved to largely enhance the mechanical strength of polymer fiber mats. So 

I believe the combination of nano-fillers and modified electrospinning set-up can optimize the 

mechanical property of transient electrospun PPC/cPPA polymer blend fiber mat. Besides, 

poly(olefin sulfone)s have been introduced as potential candidates to fabricate transient electronic 

devices due to its versatile functionalized stimuli-responsive group in the side chain. For instance, 

the protected base in the side chain of poly(olefin sulfone)s could be released by exposing to low 

energy irradiation and initiate depolymerization of backbone, which is intriguing since base 

sensitivity of PPC backbone have been proved in our previous research. Thus the transient 

electronic device made of PPC/Poly(Olefin Sulfone) polymer blend could be achieved with 

minimum energy required.  
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Supporting Information 

Contents:  

S1 NMR spectra for synthesized cyclic-polyphthalaldehyde (cPPA)  

S2 NMR spectra for synthesized acid amplifier (AA) 

S3 SEM characterizations of selected electrospun fiber mats 

S4 TEM characterization of stained fiber mat 

S5 Stress-strain curves of fiber mats in different compositions  

S6 TGA curves of fiber mats in different compositions  

S7 GPC graphs of pure PPC and cPPA polymers 

S8 Stress-strain curves of PPC50/cPPA50/PAG5wt%/AA3wt% fiber mats after post-annealing process 

S9 UV degradation test of post-annealed fiber mat 

 

 

 

 

 

 

 

 

  

 

Figure S1. NMR spectra of cyclic-polyphthalaldehyde (cPPA) 
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Figure S2. NMR spectra of 3-hydroxy-3-methylbutyl 4-(trifluoromethyl) benzenesulfonate 
(Acid Amplifier). 
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Figure S3. SEM images of selected fiber mats: (a) PPC30/cPPA70/ PAG5wt% (sample 5), (b) 
PPC50/cPPA50/ PAG5wt% (sample 4); (c) PPC70/cPPA30/ PAG5wt%(sample 3), (d) 
PPC90/cPPA10/ PAG5wt% (sample 2). 
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Figure S5. Stress-strain curves of fiber mats in different compositions. Young’s modulus 
(E) is labeled with the same color. 

 

Figure S4. TEM characterization of RuO4 electrospun PPC70/cPPA30 polymer blend fiber mats. 
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Figure S6. TGA curves of fiber mats in different compositions.  

 

Figure S7. Stress-strain curves of PPC50/cPPA50/PAG5wt%/AA3wt% fiber mats after post-
annealing process. Young’s modulus (E) is labeled with the same color. 
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Figure S8. GPC spectra of pure PPC and cPPA polymers.  

 

Figure S9. UV degradation test of electrospun PPC50/cPPA50/PAG5wt%/AA3wt% fiber mats. The 
sample in the left was post-annealed at 60 °C for 30 min and the right sample was non-annealed. 
Both samples exhibited full decomposition under UV exposure at room temperature for ~ 120 
min. 
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