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Over the last decade, researchers have made significant progress toward training

and understanding larger and more powerful deep neural networks. This thesis

contains several contributions toward this effort.

The first chapter gives a brief introduction. The next two chapters describe

applications and extensions of existing techniques to specific problems. First we

consider the task of creating gaits for legged robots and describe the performance of

various learning algorithms for automating generation of quadruped gaits. Notably,

labels employed for learning are gather entirely for real-world experiments run in

the learning loop. This results in a challenging learning scenario with limited

labels, but through the use of models with the appropriate assumptions, gaits are

found that are nine times faster than those designed by hand. In the next chapter,

we discuss the task of enabling easier design of three dimensional (3D) shapes via

machine learning. We describe the front end presentation and back end algorithms

that enabled non-expert users to generate millions of shapes online.

The remaining chapters describe approaches to understand network training

and behavior. The first details several visualizations useful for training Restricted

Boltzmann Machines (RBMs) and an application to a synthetic 3D data set. The

second investigates a basic property of trained neural networks: to what extent

parameters learned on one task can be transferred to another task. The third

discusses the Deep Visualization Toolbox, open source software written to aid in



understanding individual neurons in the middle of a large neural network. An

additional chapter is supplied in the appendix as the author of this thesis and

another researcher contributed equally to it. In this final section, the local vs.

distributed nature of neural network representations is studied experimentally.



BIOGRAPHICAL SKETCH

Jason Yosinski was born in 1983 on Halloween night to two parents who, on their

way out the door and to the hospital, hurried past surprised trick-or-treaters. He

grew up in rural New Jersey and later in Colorado, spending his days building

contraptions out of pipes, playing outside with his younger sisters, and reading a

lot of thin books of fiction and thick textbooks on any kind of science. When he

was in high school he spent most evenings working on constructing a house in the

forest with his parents and sisters.

He attended Caltech and studied Mechanical Engineering and Control and Dy-

namical systems. During his undergraduate he participated in the second incarna-

tion of the DARPA Grand Challenge, working with Richard Murray and a team of

25 other students, mostly undergraduates. He learned to code at larger scale and

wrote the second most lines of anyone on the team, including a small component

to control speed, the only to employ machine learning. After an enjoyable term

studying abroad in Cambridge, he graduated in 2006.

After undergraduate, he spent three years working with Randy Paffenroth,

Aubrey Poore, and other talented colleagues in applied mathematics research at

Numerica Corporation, where he designed efficient estimators with tight error

bounds for compressed sensing systems, designed and published a novel distributed

database system for multi-agent tracking, and served as Principle Investigator for

a new area of research for the company, with several projects resulting in papers

and further grants.

Partially overlapping with his time at Numerica, he co-founded Mink Labs with

Erik Dreyer and Dirk Neumann, a startup that produced an app called Voicebeep

to enable quick audio messaging between friends. Although some found the app

useful, it never quite hit the critical mass necessary to take off. Contemporane-

iii



ously he cofounded the Eliot Robotics program in the Pasadena Unified School

District with Stephen Crosby. The program replaced part of the 8th grade Al-

gebra curriculum in Eliot Middle School with a robotics class in which students

learned math by coding in C and playing with Lego NXT robots. By the end of

the year four schools were participating and the final competition was televised.

Though Jason bowed out of program to attend graduate school the following year,

others ambitiously carried the torch forward, obtaining grants each year and as of

the time of this writing eventually growing to serve over 1000 students in middle

and high schools across the district.

In 2010 Jason started graduate school at Cornell University, where he met and

began working with Hod Lipson and Jeff Clune on neural networks. His research

focused initially on evolutionary methods and reinforcement learning for robotics,

but later shifted to supervised and unsupervised learning, mostly for computer

vision. At the time few others at Cornell were researching neural networks, so to

avoid working in isolation he spent several stints as a visiting researcher at Yoshua

Bengio’s group at the University of Montreal. He was fortunate enough to receive

a NASA Space Technology Research Fellowship, which was critical in supporting

this travel and work. It also afforded him the opportunity to work as a visiting

researcher with Thomas Fuchs at the Jet Propulsion Laboratory in Los Angeles, a

peaceful time during which he had space to write the DeepVis Toolbox.

Near the end of his PhD, Jason joined a small group of scientists and hackers

at Geometric Intelligence, a startup where he now works on improving the scaling

properties of machine learning particularly to unbalanced, long tail data sets. He

lives in Brooklyn and works daily on his laptop out of an incubator in Manhattan.

iv



This document is dedicated

to Hanna Haile

and to the many others

who made the journey enjoyable.

v



ACKNOWLEDGEMENTS

A Ph.D. is a curious pursuit. Much of one’s time may be spent working happily

in the company of great collaborators and mentors, and it is difficult to accomplish

the best work without frequent input and feedback from others. However, incentive

structures skew strongly toward the individual, such that researchers sink or swim

irrespective of the progress of their peers. Thus, pursuing a Ph.D. is simultaneously

an intrinsically collaborative and a necessarily solitary endeavor. During my Ph.D.

I was fortunate enough to experience both aspects instead of just the latter. I’m

deeply grateful for the collaborators and mentors that taught, inspired, and worked

with me as well as for the friends that journeyed alongside me, either as others

pursuing a Ph.D. or along very different paths, making the landscape feel that

much sunnier.

First, I am deeply grateful and indebted to those who offered their advice and

mentorship, either as formally as members of my committee or informally in other

capacities.

• Hod Lipson, my adviser: for being so easily excitable, for taking a chance on

a student whose initial qualifications were little more than excitement about

a project with a little robot. For sticking with me even through the middle

of my Ph.D. when those in the field were discovering that their autoencoders

— and I was discovering that mine in particular — did not lead directly

to general artificial intelligence. I could not have gotten anywhere without

Hod’s long term support, and his style of fairly hands-off mentorship worked

perfectly with my personality and work style. When I started grad school,

I hadn’t a clue how to present work clearly and simply, and Hod taught me

both how to ask good questions and then to present the results in a way

that would be understood. Perhaps most importantly, his easy excitability

vi



reminded me constantly that, whatever else it was, science should also be

fun.

• Jeff Clune: for teaching me how to be a rigorous scientist, for teaching me

how to ask questions precisely and answer them without being sloppy, and

broadly for teaching me by example writing, thinking, and people skills that

transcend specific topics and tricks and trivia. For staying up late to work

on experiments and edit papers when most people — and me too, if he would

have let me — would have gone to sleep. For convincing me to reach outside

of Cornell to find the collaborators I needed, and for encouraging me to set

in motion what eventually became a move to Montreal and inflection point

in my Ph.D.

• Yoshua Bengio: for saying yes and agreeing to let me hang out in Montreal

with the him and the LISA lab. For selflessly taking the time for me and

many others who could offer him nothing and, in the process, convincing

me that someday if I too became a famous scientist, it would at least be

possible for me to do this without being arrogant about it. For answering

many questions prefaced with “Ok, so pardon my ignorance, but...”, and then

for answering three times before I’d finally understand.

• Shimon Edelman: for advice, conversations about models, brains, and life,

and for convincing me that working on what one cares deeply about is far

more important than worrying about potential repercussions of not being

fashionable at the moment.

• Emin Gün Sirer: for occasional but impactful talks on the overall state of

my Ph.D., blunt and honest advice, including convincing me to take the

important but scary step of abandoning my life in Ithaca to move to Montreal.

• Thomas Fuchs: for being so enthusiastic about anything related to ML and

vii



for supporting me while hacking away on the DeepVis Toolbox for months

straight without much visible progress.

• Randy Paffenroth: for teaching me how to write, how to manage people while

showing respect and without even seeming like a boss, and for giving me a

dozen other little patterns that I copied without even realizing it at the time.

For teaching me the value of optimism as a default.

Second, I’d like to thank the many great collaborators I’ve had the chance to

work with and colleagues that have shared their thoughts over the last few years.

• Anh Nguyen: for being one of the hardest working, most efficient, and fastest

collaborators I’ve had the chance to work with. For making me feel slow by

comparison. It’s really been a great, long journey together :).

• Yixuan Li: for carefully dancing between and balancing a few projects, direc-

tions, and people giving conflicting advice, and for pouring so much energy

into projects. For disagreeing strongly even when it was difficult.

• Guillaume Alain: for ignoring the cacophony and hype marching by each

day and instead taking the time to stop and think deeply about problems.

For mixing friendship so well with research; it was because of you that I first

realized that an academic life could be fulfilling not only because of the work,

but because of friendships strung together through conferences.

• Sina Honari: for all the great work on RecombinatorNets, and for being

excited enough to train dozens of models and stare at hundreds or thousands

of example predictions to slowly understand what works and what doesn’t.

• Alexey Dosovitskiy: for hikes, for good conversations, and for having some

of the best intuitions about convnets of anyone I know.

viii



• The robotics crew — Diana Hidalgo, Sarah Nguyen, Suchan Lee, Kyrre

Glette, Haocheng Shen, Petar Kormushev, Eric Gold, Jeremy Blum, and

Juan Cristobal Zagal: for endless hours and late nights spent designing,

printing, fixing, building, fixing, playing with, fixing, and running experi-

ments on our adorable but frustrating spider robots.

• Harm deVries: for coming up with the most creative ways of gathering

datasets.

• Eugene Doan: for all the hard work on EndlessForms.com

• Nick Cheney: for gathering people together to brew beer, chat about evolu-

tion, and generally for being a great person to brainstorm zany, off the wall

ideas with.

• Wendy Shang, Jim Tørresen, Raia Hadsell, Piotr Mirowski, Diogo Moitinho

de Almeida, Yann Dauphin, Brian Cheung, Andrej Karpathy, Andrea Ban-

ino, and Kyunghyun Cho: for helpful discussion and critical feedback on

ideas in progress.

• John Hopcroft, Cooper Bills, Li Yao, Saizheng Zhang, Éric Thibodeau-

Laufer, Thomas Brox, Pascal Vincent, and Christopher Pal: for being great

collaborators on papers included in other theses beside this one.

• Joost Huizinga, Roby Velez, and Kilian Weinberger: for help editing drafts

of papers.

Third, I am deeply thankful for those friends and family members who shared

their friendship, offered their support, and generally added their particular color

to my life during the years of my Ph.D. Without you, I couldn’t have done it.

• My mom and dad, who when I was young gave me calculators and pipes to

play with, spent endless hours talking with me about how the world and cars

ix



and machines work, and showed us by example how to try one’s hardest.

Granny and Pap, for warm dinners and messages and for sending me news-

paper clippings of so many articles about AI. My sisters, Kati, Shari, and

Jenny, who reminded me not to take myself too seriously during my Ph.D.

Shari, for travels on planes, trains, and boats, for sacrificing herself for my

blue cheese addiction, and for being one of the kindest and brightest souls

I’ve ever had the chance to meet. Also for giving great hugs. Jenny, for

showing us all how adversity can lead to beauty and love instead of bitter-

ness and for being so awesome it makes me proud to be a Yosinski. Kati and

Trevor, for showing me what it could look like for someone our age to build a

loving family; I hope to be able to copy you someday. And my niece Emery,

for while I lived in California never letting me sleep past 7am.

• Hanna: for long talks, many continuously extended for $1.24 each 15 minute

increment. For being up for anything: hiking, camping, walking, flying,

traveling, snowshoeing, or just laying on hammocks talking. For faithfully

being 30 days older than me and always acting it. I learned so much from

your older, wiser perspective. For silently judging me when you first met

me and then loudly judging me for the next six years. For teaching me how

to cook the tastiest dish ever and sharing your love of food, the spicier the

better. For sharing so much of the pain and so much of the joy of grad school,

for journeying alongside through the worst times of Ph.D.- and JSD-induced

depression, and journeying alongside during the other times too. I couldn’t

have done it without you, friend.

• Chen: for being brave. For saying yes to skydiving with someone you didn’t

even know. For teaching me about a completely different way of being. For

altering my heart, and for teaching me how to listen to those others don’t

x



see.

• Joanna, Vineet, Esther, and Eberhard: for, in varying subsets, many peaceful

and not-so-peaceful Sundays spent on the water with our ragtag crew, hikes,

camping, freezing, not quite freezing, and not quite getting stranded at the

top of a mountain at night.

• Ji: for co-founding the LL club, for keeping the books always in such exact

order, and for continuing to be one of its most stalwart members. For effort-

lessly convincing me to love NYC simply because you loved it so much. For

thinking about sinking and walks in the fall. For making me feel like maybe

I was an alright human. For making any ordinary thing seem beautiful just

because you were there.

• Basu, Sean, Igor, and Bishan: for movie nights and beers at CTB outside in

the summer heat.

• Ai: for helping me feel like I had a soul, for singing such beautiful songs,

for white and black Russians. For helping me feel like I could do it. For

convincing me to stay just on this side of the theoretical vs. practical divide.

For convincing me that all one needs to be happy is a bare light bulb, a

guitar, and a good problem to solve.

• Christine and Sheila: for road trips and friendship.

• Tiffany: for teaching me so much about life that I never could have learned

on my own. For changing my perspective and helping me love others more

and better and myself both more and less.

• Housemates of Stewart Little: for countless Saturday mornings spent prepar-

ing deliciousness in a cast iron pan, dinners and evenings on the porch, watch-

ing the sun set, and random and unpredictable conversations that before I

xi



never would have expected but after would not have traded for anything.

For being a loving community that changed my perspective on what home

life could or should be. You people are seriously the best.

• Trevor Hannon and Svend Andersen: for being such great housemates, for

somehow making the first year of grad school bearable, for ruining normal

knock-knock jokes forever, and then for quitting the whole thing early (you

cowards).

• Yohannes and Luam: for sharing such love with all around you, and for

convincing us that grad school couldn’t be that hard, because if you could

manage to do it while having a couple kids, maybe the rest of us were just

lazy.

• Matt and Jess: for beers, fajitas, evenings in the hot tub, and for reminding

me that there’s more to life than staring at code.

• Adam and Becky: for board games, camping, talks, and all the time spent

playing with your adorable kids.

• Erik: for working together on so much over the years — community at Avery,

everything at Mink, robotics programs that excite kids at Eliot — and for

always being the proactive one to reach out just to talk.

• Daniel: for sharing your particular form of life with me and all around you.

• Mijung and Patrick: for the most fun week I’ve ever spent on a bike.

• Rosanne Liu: for also starting at GI at about the same time without fully

graduating and then doing some combination of convincing and shaming me

into finishing my thesis. For always believing in me for whatever reason you

do.

xii



Finally, I am deeply indebted to the funding institutions that have made the

work in this thesis possible. Science consists of investigations that may or may

not pay off, and in those fortuitous cases that do pay off, not for a while; thus the

scientist must often rely on the patronage of forward looking institutions charged

with the difficult but important task making long-term bets. The work in this the-

sis would not have been possible without the support of the following institutions

and their willingness to take risky bets.

• The National Aeronautics and Space Administration: the NASA Space Tech-

nology Research Fellowship (award NNX13AL41H).

• The National Science Foundation: NSF CDI Grant ECCS 094156, NSF Post-

doctoral Research Fellowship in Biology to Jeff Clune (award DBI-1003220),

Career award 1453549, and Grant 1527232.

• The Defense Advanced Research Projects Agency: Open Manufacturing pro-

gram grant, DARPA project W911NF-12-1-0449.

• NSERC, Ubisift, and CIFAR: funding supporting Yoshua Bengio at various

times during his mentorship on the research contained herein.

• The NVIDIA corporation: donation of GPU hardware.

• The US Army Research Office: Grant W911NF-14-1-0477.

Some of the organizations above would like the reader to be reminded that

the content of this thesis is solely the responsibility of the author and does not

necessarily represent the official views of any of the sponsoring organizations.

xiii



LIST OF ABBREVIATIONS

Below is a list of abbreviations used in this thesis.

AJAX Asynchronous JavaScript and XML
ANN Artificial neural network
CAD Computer-aided design
CD Contrastive divergence

CIFAR Canadian Institute for Advanced Research
CNN Convolutional neural network

CPPN Compositional Pattern Producing Network
DARPA Defense Advanced Research Projects Agency

DBM Deep Boltzmann Machine
DBN Deep Belief Network
DNN Deep Neural Network
ECCS Division of Electrical, Communications and Cyber Systems

EC Evolutionary Computation
EF EndlessForms
FC Fully connected
GI Geometric Intelligence

GPU Graphics Processing Unit
HAC Hierarchical Agglomerative Clustering

HyperNEAT Hypercube-based NeuroEvolution of Augmenting Topologies
IEC Interactive Evolutionary Computation

ILSVRC ImageNet Large Scale Visual Recognition Challenge
IR Infrared

LASSO Least absolute shrinkage and selection operator
LED Light-emitting diode
LISA Laboratoire d’Informatique des Systèmes Adaptatifs
LRN Local response normalization

MCMC Markov chain Monte Carlo
MILA Montreal Institute for Learning Algorithms

ML Machine learning
NASA National Aeronautics and Space Administration
NEAT NeuroEvolution of Augmenting Topologies
NIPS Conference on Neural Information Processing Systems

NSERC Natural Sciences and Engineering Research Council
NSF National Science Foundation
PIL Python Imaging Library

RBM Restricted Boltzmann Machine
RGB Red, green, blue
RL Reinforcement learning

xiv



RNN Recurrent neural network
SGD Stochastic gradient descent
STL StereoLithography file format
VF Vertex Face file format

WebGL Web Graphics Library
XML Extensible Markup Language

xv



TABLE OF CONTENTS

Biographical Sketch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xx

1 Introduction 1

2 Robotics 3
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4.1 Platform Details . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4.2 Fitness Evaluation Details . . . . . . . . . . . . . . . . . . . 11

2.5 Gait Generation and Learning . . . . . . . . . . . . . . . . . . . . . 13
2.5.1 Parameterized Gaits . . . . . . . . . . . . . . . . . . . . . . 14
2.5.2 Learning Methods for Parameterized Gaits . . . . . . . . . . 15
2.5.3 HyperNEAT Gait Generation and Learning . . . . . . . . . 18

2.6 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.6.1 Exploration of Parameterized Gait Space . . . . . . . . . . . 22
2.6.2 Learning Methods for Parameterized Gaits . . . . . . . . . . 23
2.6.3 HyperNEAT Gaits . . . . . . . . . . . . . . . . . . . . . . . 24

2.7 Conclusions, Follow-up Work, and Future Work . . . . . . . . . . . 31

3 EndlessForms.com: Crowdsourced, Online Evolution of 3D-
Printable Shapes 34
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3 Components of the System . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.1 Compositional Pattern Producing Networks (CPPNs) . . . . 40
3.3.2 Training a CPPN using the NEAT algorithm . . . . . . . . . 43
3.3.3 Converting a function to a shape: marching cubes . . . . . . 47

3.4 Details of the EndlessForms Website . . . . . . . . . . . . . . . . . 48
3.5 EndlessForms Results and Discussion . . . . . . . . . . . . . . . . . 50

3.5.1 Chess Challenge . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.6 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . 59

xvi



4 Visually Debugging Restricted Boltzmann Machine Training with
a 3D Example 60
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.3 Debugging RBMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3.1 Code setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3.2 Probability of hidden activation . . . . . . . . . . . . . . . . 62
4.3.3 Weight Histograms . . . . . . . . . . . . . . . . . . . . . . . 65
4.3.4 Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.3.5 Reconstruction error . . . . . . . . . . . . . . . . . . . . . . 70
4.3.6 Typical Training Timeline . . . . . . . . . . . . . . . . . . . 70

4.4 Example Problem and Results: 3D Spheres . . . . . . . . . . . . . . 72
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5 How transferable are features in deep neural networks? 77
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.3 Generality vs. Specificity Measured as Transfer

Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.4 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.5.1 Similar Datasets: Random A/B splits . . . . . . . . . . . . . 85
5.5.2 Dissimilar Datasets: Splitting Man-made and

Natural Classes Into Separate Datasets . . . . . . . . . . . 91
5.5.3 Random Weights . . . . . . . . . . . . . . . . . . . . . . . . 91

5.6 Training Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.7 How Much Does an AlexNet Architecture Overfit? . . . . . . . . . . 95
5.8 Details of Man-made vs. Natural Split . . . . . . . . . . . . . . . . 97
5.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6 Understanding Neural Networks Through Deep Visualization 103
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.3 Visualizing Live Convnet Activations . . . . . . . . . . . . . . . . . 110
6.4 Visualizing via Regularized Optimization . . . . . . . . . . . . . . . 114
6.5 Aside: Why are gradient optimized images dominated by high fre-

quencies? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.6 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . 123

A Convergent Learning: Do different neural networks learn the same
representations? 126
A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
A.2 Background and Summary of Work . . . . . . . . . . . . . . . . . . 127
A.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

xvii



A.4 Is There a One-to-One Alignment Between Features Learned by
Different Neural Networks? . . . . . . . . . . . . . . . . . . . . . . . 132
A.4.1 Alignment via Correlation . . . . . . . . . . . . . . . . . . . 133
A.4.2 Alignment via Mutual Information . . . . . . . . . . . . . . 137

A.5 Relaxing the One-to-One Constraint to Find Sparse, Few-to-One
Mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

A.6 Comparing Average Neural Activations within and between Networks149
A.7 Conclusions and Future Directions . . . . . . . . . . . . . . . . . . 152

xviii



LIST OF TABLES

2.1 The SineModel5 motion model parameters. . . . . . . . . . . . . . 14
2.2 The average and standard deviation of the best gaits found for each

algorithm during each of three runs, in body lengths/minute. . . . 24

3.1 Selected relevant hyperparameters for the NEAT algorithm. . . . 46

4.1 A typical training timeline. . . . . . . . . . . . . . . . . . . . . . . 71
4.2 Training parameters used to learn a representation of 3D shapes in

Section 4.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.1 Performance boost of AnB+ over controls, averaged over different
ranges of layers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2 An enumeration of the points in Figure 5.4 for clarity. . . . . . . . 97

6.1 Four hyperparameter combinations that produce different styles of
recognizable images. . . . . . . . . . . . . . . . . . . . . . . . . . . 118

A.1 Average prediction error for mapping layers with varying L1 penalties.144

xix



LIST OF FIGURES

2.1 Quadruped robot used for gait evolution . . . . . . . . . . . . . . . 4
2.2 Several views of the quadruped robot with joints and associated

servos labeled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Robot position measuring apparatus using Nintendo Wii remote . . 10
2.4 Motion interpolation at beginning and end of robot gait runs . . . 13
2.5 Diagram of how HyperNEAT uses a CPPN to produce an ANN. . 19
2.6 HyperNEAT topology and ANN node embedding used for gait

learning experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.7 Fitness mean and standard deviation for independent parameter

exploration of SineModel5 (first three parameters) . . . . . . . . . 26
2.8 Fitness mean and standard deviation for independent parameter

exploration of SineModel5 (last two parameters) . . . . . . . . . . 27
2.9 Average results (± SE) for the parameterized learning methods. . . 28
2.10 Average fitness (± SE) of the highest performing individual in the

population for each generation of HyperNEAT runs. . . . . . . . . 29
2.11 Example of one high-performance gait produced by HyperNEAT

showing commands for each of nine motors. . . . . . . . . . . . . . 30

3.1 3D printable shapes evolved by web visitors to EndlessForms.com . 35
3.2 Operational view of a CPPN with example. . . . . . . . . . . . . . 42
3.3 Modular view of the EndlessForms server dataflow . . . . . . . . . 50
3.4 Selected screens from EndlessForms.com, demonstrating some of

the functionality of the website . . . . . . . . . . . . . . . . . . . . 54
3.5 A sample of shapes evolved on EndlessForms.com showing relation-

ships between shapes. . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.6 Google Analytics map showing unique visitors per country for the

EndlessForms.com website. . . . . . . . . . . . . . . . . . . . . . . 56
3.7 View of part of the ancestor tree from EndlessForms.com . . . . . . 57
3.8 Evolved shapes “queen”, “butterfly”, and “square lamp” printed in

silver, bronze, and plastic, respectively. . . . . . . . . . . . . . . . 58
3.9 3D printed chess pieces evolved as part of the Chess Challenge. . . 58

4.1 Hidden neuron activation probabilities for the first 100 neurons and
the first 20 example data points. . . . . . . . . . . . . . . . . . . . 63

4.2 Histograms of hBias, W , vBias (top row) and the last batch up-
dates to each (bottom row). . . . . . . . . . . . . . . . . . . . . . . 66

4.3 A 2D slice of the filters learned by an RBM for 3D shapes data. . . 68
4.4 RBM reconstruction error over time. . . . . . . . . . . . . . . . . . 71
4.5 Sphere exemplars from synthetic 3D dataset used for this study. . . 73
4.6 Filters learned by the RBM. . . . . . . . . . . . . . . . . . . . . . . 74
4.7 MCMC samples drawn from the learned distribution of shapes. . . 75

5.1 Overview of transfer learning experimental treatments and controls 84

xx



5.2 Network parameter transfer results . . . . . . . . . . . . . . . . . . 90
5.3 Performance degradation vs. layer. . . . . . . . . . . . . . . . . . . 93
5.4 Top-1 validation accuracy for networks trained on datasets contain-

ing reduced numbers of examples. . . . . . . . . . . . . . . . . . . . 96

6.1 Screenshot and visualization of information shown by the Deep Vi-
sualization Toolbox . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.2 Activations of a face neuron found on the fifth convolutional layer
of a neural network . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.3 The effects of each regularization method from Section 6.4 when
used individually . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.4 Visualizations of the preferred inputs for different class units on
layer fc8 of AlexNet . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.5 Visualization of example features of eight layers of a deep, convo-
lutional neural network . . . . . . . . . . . . . . . . . . . . . . . . 120

6.6 One optimized, preferred image for every channel of all five convo-
lutional layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

A.1 Correlation matrices for the conv1 layer, displayed as images with
minimum value at black and maximum at white. . . . . . . . . . . 132

A.2 Eight best and eight worst matched features between Net1 and Net2
for the conv1 – conv3 layers . . . . . . . . . . . . . . . . . . . . . . 134

A.3 Eight best and eight worst matched features between Net1 and Net2
for the conv1 through conv5 layers . . . . . . . . . . . . . . . . . . 138

A.4 Correlations between paired conv1 units in Net1 and Net2. . . . . . 139
A.5 Correlations between units in conv2 - conv5 layers of Net1 and their

paired units in Net2. . . . . . . . . . . . . . . . . . . . . . . . . . . 140
A.6 Average correlations between paired conv1 units in Net1 and Net2. 141
A.7 The eight best and worst features in the semi-matching between

Net1 and Net2 for the conv1 and conv2 layers. . . . . . . . . . . . . 141
A.8 A visualization of the network-to-network sparse “mapping layers”. 145
A.9 The learned mapping layer from Net1 to Net2 for the conv1 layer. . 148
A.10 The results of the Hierarchical Agglomerative Clustering (HAC)

algorithm on the conv1 layer. . . . . . . . . . . . . . . . . . . . . . 148
A.11 The average activation values of each unit on all layers of Net1 –

Net4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
A.12 The most active to least active conv1 filters from Net1 – Net4. . . . 151
A.13 Most active to least active conv2 filters. . . . . . . . . . . . . . . . 151

xxi



CHAPTER 1

INTRODUCTION

The work presented in this thesis was conducted from the fall of 2010 through

the spring of 2016. This period overlapped fortuitously well with the resurgence

of interest in neural networks from the scientific community that has occurred

roughly during the past decade from 2006–2016. The beginning of this period

was arguably demarcated by revolutionary work by Hinton and Salakhutdinov

(2006) in using stacks of Restricted Boltzmann Machines to pre-train deep neural

networks, “deep” at the time referring to networks with more than a single hidden

layer. Progress accelerated with the adoption of the rectified linear unit (ReLU)

nonlinearity (Nair and Hinton, 2010) and the availability of affordable graphics

processing units (GPUs), both of which enabled the 2012 publication of “AlexNet”,

a 60 million parameter network that revolutionized the fields of computer vision

and machine learning (Krizhevsky et al., 2012).

The chapters of this thesis comprise several papers that were motivated by,

intersected with, and contributed to supporting several trajectories of neural net-

work research. Each chapter is arranged as a standalone section with its own

introduction, description, and discussion. Chapter 2 describes a study on using

reinforcement learning to discover fast gaits for a legged robot. Chapter 3 discusses

a crowdsourced experiment called EndlessForms wherein user feedback guided de-

sign of three-dimensional (3D) shapes via the web. Chapter 4 details approaches

to debug and facilitate Restricted Boltzmann Machine (RBM) training and shows

an example application to a synthetic 3D dataset. Chapter 5 describes an analysis

of the generality vs. specificity of features learned in a network trained on the

ImageNet dataset (Deng et al., 2009). Chapter 6 presents the Deep Visualization
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Toolbox, an open-source software package written to enable visualization and in-

terpretation of individual neurons in a neural network. Appendix A contains a final

chapter with equal contribution by the author of this thesis and a colleague. In this

final chapter, the local vs. distributed nature of neural network representations is

studied experimentally.
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CHAPTER 2

ROBOTICS

2.1 Introduction

Creating gaits for legged robots is an important task to enable robots to ac-

cess rugged terrain, yet designing such gaits by hand is a challenging and time-

consuming process. In this chapter we investigate various algorithms for automat-

ing the creation of quadruped gaits. Because many robots do not have accu-

rate simulators, we test gait-learning algorithms entirely on a physical robot. We

compare the performance of two classes of gait-learning algorithms: local search

through parameter space for parameterized motion models and evolving artificial

neural networks with the HyperNEAT generative encoding. Specifically, we test six

different local parameter search learning strategies: uniform and Gaussian random

hill climbing, policy gradient reinforcement learning, Nelder-Mead simplex, a ran-

dom baseline, and a new method that builds a model of the fitness landscape with

linear regression to guide further exploration. While all parameter search methods

outperform a manually-designed gait, only the linear regression and Nelder-Mead

simplex strategies outperform a random baseline strategy. Gaits evolved with Hy-

perNEAT perform considerably better than all parameterized local search methods

and produce gaits nearly 9 times faster than a hand-designed gait. The best Hy-

perNEAT gaits exhibit complex motion patterns that contain multiple frequencies,

yet are regular in that the leg movements are coordinated.
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Figure 2.1: The quadruped robot for which gaits were evolved. The translucent
yellow components were produced by a 3D printer, and all other components are off
the shelf. Videos of the gaits can be viewed at http://yosinski.com/quadratot.

2.2 Background

Legged robots have the potential to access many types of terrain unsuitable for

wheeled robots, but doing so requires the creation of a gait specifying how the robot

walks. Such gaits may be designed either manually by an expert or via computer

learning algorithms. It is advantageous to automatically learn gaits because doing

so can save valuable engineering time and allows gaits to be customized to the

4
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idiosyncrasies of different robots. Additionally, learned gaits have outperformed

engineered gaits in some cases (Hornby et al., 2005; Valsalam and Miikkulainen,

2008).

In this chapter we compare the performance of two different broad methods

of learning gaits: parameterized gaits optimized using one of six different learning

methods, and gaits generated by evolving neural networks with the HyperNEAT

generative encoding (Stanley et al., 2009). While some of these methods, such as

HyperNEAT, have been tested in simulation (Clune et al., 2009a, 2011), we inves-

tigate how they perform where gait evolution is performed entirely on a physical

robot (Figure 2.1) using real world trials.

Previous work has shown that quadruped gaits perform better when they are

regular — when the joint motions are coordinated (Clune et al., 2009a, 2011; Val-

salam and Miikkulainen, 2008). For example, HyperNEAT produced fast, natural

gaits in part because its bias towards regular gaits created coordinated move-

ments that outperformed gaits evolved by an encoding not biased towards regu-

larity (Clune et al., 2009a, 2011). One of the motivations of this chapter is to

investigate whether any learning method biased towards regularity would perform

well at producing quadruped gaits, or whether HyperNEAT’s high performance

is due to additional factors, such as its abstraction of biological development (de-

scribed below). We test this hypothesis by comparing HyperNEAT to six local

search algorithms with a parametrization biased toward regularity.

An additional motivation is to test whether techniques for evolving gaits in

simulation, especially cutting-edge evolutionary algorithms, transfer to reality well.

Because HyperNEAT gaits performed well in simulation, it is interesting to test

whether HyperNEAT can produce fast gaits for a physical robot, including han-
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dling the noisy, unforgiving nature of the real world. Such tests help us better

understand the real world implications of results reported only in simulation. It is

additionally interesting to test how more traditional gait optimization techniques

compete with evolutionary algorithms when evolving in hardware. A final motiva-

tion of this research is simply to evolve effective gaits for a physical robot.

2.2.1 Related Work

Various machine learning techniques have proved to be effective at generating

gaits for legged robots. Kohl and Stone (2004) presented a policy gradient rein-

forcement learning approach for generating a fast walk on legged robots, which we

implemented for comparison. Others have evolved gaits for legged robots, produc-

ing competitive results (Chernova and Veloso, 2005; Hornby et al., 2005; Zykov

et al., 2004; Clune et al., 2009a, 2011, 2009b,c; Téllez et al., 2006; Valsalam and

Miikkulainen, 2008). Using evolution to automatically design gaits has been so

successful that an evolved gait was used in the first commercially-available version

of Sony’s AIBO robot (Hornby et al., 2005). Except for work with HyperNEAT

(Clune et al., 2009a, 2011, 2009b,c), the previous evolutionary approaches have

helped evolution exploit the regularity of the problem by manually decomposing

the task. Experimenters have to choose which legs should be coordinated, or oth-

erwise facilitate the coordination of motion. Part of the motivation of this chapter

is to compare the regularities produced by HyperNEAT to those generated by a

more systematic exploration of regularities via a parameterized model.
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2.3 Problem Definition

The gait learning problem aims to find a gait that maximizes some performance

metric. Mathematically, we define a gait as a function that specifies a vector of

commanded motor positions for a robot over time. We can write gaits without

feedback — also called open-loop gaits — as

~x = g(t) (2.1)

for commanded position vector ~x. The function is open-loop because it depends

only on time, not on any feedback from the environment.

It follows that open-loop gaits are deterministic, producing the same command

pattern each time they are run. While the commanded positions will be the same

from trial to trial, the actual robot motion and measured fitness will vary due to

the noisiness of trials in the real world. For the system evaluated in this chapter,

we chose to compare open-loop gaits generated by both the parameterized methods

and HyperNEAT. An interesting extension would be to allow closed-loop gaits that

depend on the measured servo positions, loads, voltage drops, or other quantities.

The ultimate goal was to design gaits that were as fast as possible, and so the

performance metric used was robot displacement over a fixed length evaluation

period of 12 seconds. Details of robot displacement measurement and scoring are

given in the next section.
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Figure 2.2: (a) Top-down perspective of the robot with the nine joints and asso-
ciated servos labeled. (b) The robot in a flat pose with the hip joint centered.
(c,d,e) Various views of a pose in which the hip joint is rotated.

2.4 Experimental Setup

2.4.1 Platform Details

The quadruped robot in this study was assembled from off-the-shelf components

and parts printed on the Objet Connex 500 3-D Printing System. It weighs 1.88

kg with the on-board computer and measures approximately 38 centimeters from
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leg to opposite leg in the crouch position depicted in Figure 2.1. The robot is

actuated by 9 AX-12+ Dynamixel servos: one inner joint and one outer joint servo

in each of the four legs and one servo at the center “hip” joint. This final servo

allows the two halves of the robot to rotate with respect to each other. Figure 2.2

shows this unique motion, as well as the positions and numerical designations of all

nine servos. Each servo could be commanded to an integer position in the range

[0, 1023], corresponding to a physical range [-120◦, +120◦]. The computer and

servos can be powered by on-board batteries, but for the tests presented in this

chapter, power was provided by a tethered cable.

All of the computation for gait learning, fitness evaluation, and robot control

was performed on the compact, on-board CompuLab Fit-PC2, running Ubuntu

Linux 10.10. The slowest portion of code was HyperNEAT, which took less than

one second per generation to run (excluding physical evaluations). Because the

computation (less than one second) was much less than the time required for a

physical trial (12 seconds), we chose not to offload any computation. All gait gen-

eration, learning, and fitness evaluation code, except HyperNEAT, was written in

Python and is available online at http://yosinski.com/quadratot. HyperNEAT

is written in C++. We controlled the servos with the Pydynamixel library Goebel

(2010), sending commanded positions at 40Hz. The robot connected to a wireless

network on boot, which enabled access and control via Secure Shell (SSH).

Robot gaits are defined by a Python gait function that takes time in seconds —

starting at 0 — as a single input and outputs a list of nine commanded positions

(one for each servo). To safeguard against limb collision with the robot body, the

control code cropped the commands to a safe range. This range was [-85◦, +60◦]

for the inner leg servos, [-113◦, +39◦] for the outer leg servos, and [-28◦, +28◦] for

9
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Figure 2.3: A Nintendo Wii remote provided the location of the robot by tracking
the infrared LED mounted on the robot’s antenna. The position was measured in
pixels and transmitted from the Wii remote to the robot via bluetooth.

the center hip servo.

10



2.4.2 Fitness Evaluation Details

To track the position of the robot and thus determine gait fitness, we mounted

a Nintendo Wii remote on the ceiling and an infrared LED on top of the robot

(Figure 2.3). The Wii remote contains an IR camera that tracks and reports

the position of IR sources within its field of view. The resolution of the camera

was 1024 × 768 pixels with view angles of about 40◦ × 30◦, which produced a

resolution of 1.7mm per pixel when mounted at a height of 2.63m. At this height,

the viewable window on the floor was approximately 175 × 120 cm.

A separate Python tracking server ran on the robot and interfaced with the

Wii remote via bluetooth using the CWiid library. Our fitness-testing code com-

municated with this server via a socket connection and requested position updates

at the beginning and end of each run.

As mentioned earlier, the metric for evaluating gaits was the Euclidian distance

the robot moved during a 12-second run on flat terrain. For the manual and

parameterized gaits, the fitness was this value. The HyperNEAT gaits stressed

the motors more than the other gaits, so to encourage gaits that did not tax the

motors we penalized gaits that caused the servos to stop responding. When the

servos stopped responding they could, in nearly all cases, be restarted by cycling

power, though over the course of this study we eventually had to replace four servos

that were damaged. The penalty was to set the fitness to half of the distance the

robot actually traveled. We tested whether the servos were responding after each

gait by commanding them to specific positions and checking whether they actually

moved to those positions. This test had the additional benefit of rewarding those

gaits that did not flip the robot into a position where it could not move its legs,

which happened occasionally: more often when using HyperNEAT than with other
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learning methods. Because the fitness of HyperNEAT gaits were often halved, when

evaluating results (Section 2.6) we compare actual distance traveled in addition to

fitness for the best gaits produced by each class of gait-generating algorithms.

Since only a single point on the robot — the IR LED — was measured for the

purposes of computing fitness, it was important that the position of the IR LED

accurately reflect the position of the robot as a whole. To enforce this constraint,

the robot was always measured while in the ready position (the position shown

in Figure 2.1). This was done to prevent assigning extra fitness to, for example,

gaits that ended with the robot leaning toward the direction of travel; such extra

distance would not likely generalize to an execution of the gait over a longer period

of time.

In order to measure the start and end position in the same pose, and to ensure

fair fitness evaluations with as little noise as possible, we linearly interpolated the

motion of the robot between the ready position and the commanded gait, g(t). As

shown in Figure 2.4, the instantaneous robot limb configuration during the first

one second and last two seconds of the evaluation was an interpolation between the

initial ready position and g(t); during the middle nine seconds of the evaluation,

the robot followed the commanded gait exactly.

The only human intervention required during most learning trials was to occa-

sionally move the robot back into the viewable area of the Wii remote whenever it

left this window. Initially this was a rare occurrence, as the gaits did not typically

produce motion as large as the size of the window (roughly 175 x 120 cm). How-

ever, as gaits improved, particularly when using HyperNEAT, the robot began to

walk out of the measurement area a non-negligible fraction of the time. Whenever

it did so, we would discard the trial and repeat it until the gait finished within the
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Figure 2.4: Motion was interpolated linearly between a stationary pose and the
commanded gait g(t) for one second at the beginning of each run and two seconds at
the end, as shown above. The position of the robot was measured at the beginning
and end of each run (red circles) in the ready pose.

window. While this process guaranteed that we always obtained a valid measure-

ment for a given gait before proceeding, it also biased measurements of the best

gaits downward. Because the performance of the robot on a given gait varied from

trial to trial, a successful measurement was more likely to be obtained when the

gait happened to perform poorly. This phenomenon was negligible at first, but

became more pronounced as gaits began traversing the entire area. HyperNEAT

gaits were especially likely to require additional trials, meaning that the reported

performance for HyperNEAT is worse than it would have been otherwise. Future

studies could employ an array of multiple Wii remotes to increase the size of the

measurement arena.

2.5 Gait Generation and Learning

We now describe in more detail the two classes of gait-generating algorithms —

Parameterized Gaits (Section 2.5.1) and HyperNEAT (Section 2.5.3) — as well as

the six learning methods used for to optimize parameter selection for the first class

(Section 2.5.2).
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Parameters
in ~θ Description Range
α Amplitude [0, 400]
τ Period [.5, 8]
mO Outer-motor multiplier [-2, 2]
mF Front-motor multiplier [-1, 1]
mR Right-motor multiplier [-1, 1]

Table 2.1: The SineModel5 motion model parameters.

2.5.1 Parameterized Gaits

By a parameterized gait, we mean a gait produced by a parameterized function

g(t; ~θ). Fixing the parameters ~θ yields a deterministic motion function over time.

We tried several parametrizations on the robot and, upon obtaining reasonable

early success, settled on one particular parametrization, which we call SineModel5.

Its root pattern is a sine wave, and it has five parameters (Table 2.1), the ranges

of which were fixed manually to a region deemed appropriate.

Intuitively, SineModel5 starts with 8 identical sine waves of amplitude α and

period τ , multiplies the waves for the four outer (as opposed to inner) motors by

mO, multiplies the waves for the four front (as opposed to rear) motors by mF ,

and multiplies the waves for the four right (as opposed to left) motors by mR.

To obtain the actual motor position commands, these waves are offset by fixed

constants (CO = 40 for outer motors, CI = 800 for inner motors, and CC = 512

for the center hip motor) so that the base position (when the sine waves are at 0)

is approximately a crouch (the position shown in Figure 2.1). To keep the size of

the model search space as small as possible, we decided to keep the ninth (center)

motor at a fixed neutral position. Thus, the commanded position for each motor

as a function of time is as follows, with elements in the vector enumerated in the
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joint order shown in Figure 2.2:

~g(t) =



α · sin(2πt/τ) · mF +CI

α · sin(2πt/τ) · mO · mF +CO

α · sin(2πt/τ) +CI

α · sin(2πt/τ) · mO +CO

α · sin(2πt/τ) · mR+CI

α · sin(2πt/τ) · mO · mR+CO

α · sin(2πt/τ) · mF · mR+CI

α · sin(2πt/τ) · mO · mF · mR+CO

0 +CC



2.5.2 Learning Methods for Parameterized Gaits

Given the SineModel5 parameterized motion model defined in the previous section

and the allowable ranges for its five parameters (Table 2.1), the task of discovering

fast gaits reduces to a parameter search over five dimensions for combinations that

produce fast robot motion.

If we choose a value for the five dimensional parameter ~θ, then a given physical

trial provides one measurement of the fitness f(~θ) of that parameter vector. Two

aspects of these physical trials make make learning difficult. First, each evaluation

of f(~θ) is expensive, taking 15-20 seconds on average. Second, the fitness returned

by such evaluations is often noisy: in repeated trials of the same ~theta we observed

in many cases the standard deviation of the noise to be roughly equivalent to the

magnitude of the measurement.

We tested the ability of different learning algorithms to choose the next value of
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~θ to try, given a list of the ~θ values already evaluated and their fitness measurements

f(~θ).

We evaluated the following six different learning algorithms for the parameter-

ized motion models:

1. Random: This method randomly generates parameter vectors in the allow-

able range for every trial. This strategy serves as as baseline for comparison.

2. Uniform random hill climbing : This method repeatedly starts with the cur-

rent best gait and then selects the next ~θ by randomly choosing one parameter

to adjust and replacing it with a new value chosen with uniform probability

in the allowable range for that parameter. This new point is evaluated, and

if it results in a longer distance walked than the previous best gait, it is saved

as the new best gait.

3. Gaussian random hill climbing : This method works similarly to Uniform ran-

dom hill climbing, except the next ~θ is generated by adding random Gaussian

noise to the current best gait. This results in all parameters being changed at

once, but the resulting vector is always fairly close to the previous best gait.

We used independently selected noise in each dimension, scaled such that

the standard deviation of the noise was 5% of the range of that dimension.

4. N-dimensional policy gradient ascent : We implemented the method by Kohl

and Stone (2004) of local gradient ascent for gait learning with noisy fitness

evaluations. This strategy explicitly estimates the gradient of the objective

function by first generating n parameter vectors near the initial vector by

perturbing each dimension of each vector randomly by either −ε, 0, or ε.

Then each vector is run on the robot, and for each dimension we segment the

results into three groups: −ε, 0, and ε. The gradient along this dimension is
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then estimated as the average score for the ε group minus the average score

for the −ε group. Finally, the method creates the next ~θ by changing all

parameters by a fixed-size step in the direction of the estimated gradient.

For this study we used values of ε equal to 5% of the allowable range in each

dimension (ranges listed in Table 2.1), and a step size scaled such that if all

dimensions were in the range [0, 1], the norm of the step size would be 0.1.

5. Nelder-Mead simplex method : The Nelder-Mead simplex method (Singer and

Nelder, 2009) creates an initial simplex with d + 1 vertices, where d is the

dimension of the parameter space. The initial parameter vector is stored

as the first vertex and the other five vertices are created by adding to one

dimension at a time one tenth of the allowable range for that parameter. The

fitness of each vertex is then tested, and in general the worst point is reflected

over the centroid in an attempt to improve it. However, to prevent cycles and

becoming stuck in local minima, several other rules are used. If the reflected

point is better than the second worst point and worse than the best point,

then the reflected point replaces the worst. If the reflected point is better

than the best point, the simplex is expanded in the direction of the reflected

point. The better of the reflected and the expanded point replaces the worst

point. If the reflected point is worse than the second worst point, then the

simplex is contracted away from the reflected point. If the contracted point

is better than the reflected point, the contracted point replaces the worst

point. If the contracted point is worse than the reflected point, the entire

simplex is shrunk. For more details, see Singer and Nelder (2009).

6. Linear regression: In this method we choose and evaluate five initial random

parameter vectors. The (parameter, fitness) samples are then fit with a linear

model. In a loop, the method then chooses and evaluates a new parameter
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vector generated by taking a fixed-size step in the direction of the gradient for

each parameter, and fits a new linear model to the last 10 vectors evaluated

(or as many as possible if less than 10), choosing the model to minimize the

sum of squared errors. The step size is the same as in N-dimensional policy

gradient ascent.

Three runs were performed per learning method. To most directly compare

learning methods, we evaluated the different methods by starting each of their

three runs, respectively, with the same three randomly-chosen initial parameter

vectors (~θA, ~θB, and ~θC). Runs were continued until the performance plateaued,

which we defined as when there was no improvement during the last third of a run.

2.5.3 HyperNEAT Gait Generation and Learning

HyperNEAT is an indirect encoding for evolving artificial neural networks (ANNs)

that is inspired by the way natural organisms develop, introduced by Stanley et al.

(2009). It evolves Compositional Pattern Producing Networks (CPPNs) (Stanley,

2007a), each of which is a genome that encodes an ANN phenotype (Stanley et al.,

2009). Each CPPN is itself a neural network: a directed where the nodes in the

graph are mathematical functions, such as sine or Gaussian. The nature of these

functions can facilitate the evolution of properties such as symmetry (e.g. using a

Gaussian function) and repetition (e.g. using a sine function) (Stanley et al., 2009;

Stanley, 2007a). The signal on each link in the CPPN is multiplied by that link’s

weight, which can magnify or diminish its effect.

As depicted in Figure 2.5, a CPPN is queried once for each link in the ANN

phenotype to determine that link’s weight. The inputs to the CPPN are the
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Figure 2.5: HyperNEAT produces ANNs from CPPNs. ANN weights are specified
as a function of the geometric coordinates of each connection’s source and target
nodes. These coordinates and a constant bias are iteratively passed to the CPPN
to determine each connection weight. The CPPN has two output values, which
specify the weights for each connection layer as shown. Figure drawn in style
adapted from Clune et al. (2011).

Cartesian coordinates of both the source (e.g. xin = 2, yin = 4) and target (e.g.

xout = 3, yout = 5) nodes of a link, as well as a constant bias value (not shown

in figure). The CPPN takes these five values as inputs and produces two output

values. The first output value determines the weight of the link between the

associated input (source) and hidden layer (target) nodes, and the second output

value determines the weight of the link between the associated hidden (source) and

output (target) layer nodes. All pairwise combinations of source and target nodes

in the ANN are iteratively passed as inputs to a CPPN to determine the weight of

each ANN connection.

HyperNEAT can exploit the geometry of a problem because the link values

between nodes in the ANN phenotype are a function of the geometric positions of

those nodes (Stanley et al., 2009; Clune et al., 2009c, 2011). For quadruped locomo-

tion, this property has been shown to help HyperNEAT produce gaits in simulation

with front-back, left-right, and four-way symmetries (Clune et al., 2009a, 2011).
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The evolution of the population of CPPNs occurs according to the principles

of the NeuroEvolution of Augmenting Topologies (NEAT) algorithm (Stanley and

Miikkulainen, 2002a), which was originally designed to evolve ANNs. NEAT can

be fruitfully applied to CPPNs because they are structurally just ANNs with a

particularly large set of possible activation functions at each node. Mutations can

add a node, and thus a function, to a CPPN graph, or change its link weights.

The NEAT algorithm is unique in three main ways (Stanley and Miikkulainen,

2002a). Initially, it starts with small genomes that encode simple networks and

slowly complexifies them via mutations that add nodes and links to the network,

enabling the algorithm to evolve the topology of an ANN in addition to its weights.

Secondly, NEAT has a fitness-sharing mechanism that preserves diversity in the

system and gives time for new innovations to be tuned by evolution before compet-

ing them against more adapted rivals. Finally, NEAT tracks historical information

to perform intelligent crossover while avoiding the need for expensive topologi-

cal analysis. A full explanation of NEAT is given by Stanley and Miikkulainen

(2002a).

The ANN configuration follows previous studies that evolved quadruped gaits

with HyperNEAT in simulation (Clune et al., 2011, 2009a), but it was adapted to

accommodate the physical robot in this chapter. Specifically, the ANN has a fixed

topology (i.e. the number of nodes does not evolve) that consists of three 3 × 4

Cartesian grids of nodes forming input, hidden, and output layers (Figure 2.6).

Adjacent layers were allowed to be completely connected, meaning that there are

2 · (3 · 4)2 = 288 links in each ANN, although evolution can set ANN weights to

0, functionally eliminating the connection. The inputs to the substrate were the

angles requested in the previous time step for each of the 9 joints of the robot

(recall that gaits are open-loop, so actual joint angles are unknown) and a sine
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Figure 2.6: ANN configuration for HyperNEAT runs. The first two columns of
each row of the input layer receive information about a single leg from the current
timestep (the angles requested in the previous time step for its two joints). The
final column provides the previously requested angle of the center joint and, to
encourage periodic movements, a sine and cosine wave. Evolution determines the
function of the hidden-layer nodes. The nodes in the output layer specify joint
angles for each respective joint for the next time step. Output layer activations
are then used as inputs for the next time step, effectively running the ANN as a
recurrent neural network (RNN). The unlabeled nodes in the input and output
layers are ignored. Figure drawn in style adapted from Clune et al. (2011).

and cosine wave (to facilitate the production of periodic behaviors). The sine and

cosine waves had a period of about half a second.

The outputs of the substrate at each time step were nine numbers in the range

[−1, 1], which were scaled according to the allowable ranges for each of the nine mo-

tors and then commanded the positions for each motor. Occasionally HyperNEAT

would produce networks that exhibited rapid oscillatory behaviors, switching from

extreme negative to extreme positive numbers each time step. This resulted in

motor commands to alternate extremes every 25ms (given the command rate of

40Hz), which tended to damage and overheat the motors. To ameliorate this prob-
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lem, we requested four times as many commanded positions from HyperNEAT

ANN’s and averaged over four commands at a time to obtain the actual gait g(t).

This solution did not decrease the expressiveness of the model, because such oscil-

latory gaits could still be expressed (by oscillating with a period of four time steps

instead of one), but biased the search toward gaits without such behaviors. This

bias was found to work well in practice.

As with the parameterized methods, three runs of HyperNEAT were performed.

Runs lasted 20 generations with a population size of 9 organisms in 3 species,

allowing a bare minimum of diversity within and between NEAT species. These

numbers were necessarily small given how much time it took to conduct evolution

directly on a real robot. The remaining parameters were identical to those used

by Clune et al. (2011).

2.6 Results and Discussion

2.6.1 Exploration of Parameterized Gait Space

Before optimizing the chosen family of parameterized gaits (Section 2.5.1) with

learning methods, we performed an experiment to explore the five dimensions of

the SineModel5 parameter space. Specifically, we selected a random parameter

vector that resulted in some motion but not an exceptional gait. We then varied

each of the five parameters individually and measured performance, repeating each

measurement twice to get a rough estimate of the measurement noise at each

point. The results of this exploration, shown in Figures 2.7 and 2.8, reveal that

for particular points in parameter space, fitness along some dimensions (α, τ , mF )

22



will be fairly smooth and exhibit global structure across the allowable parameter

range, while fitness along others (mO, mR) will exhibit more complex behavior.

In addition, it gives a rough indication that measurement noise is often significant

and is more likely to be larger for gaits that move more. Of course, this is only a

slice in each dimension through a single point, and slices through a different point

could reveal different behavior. The common point at the intersection of all slices

is shown as a red triangle in each plot of Figures 2.7 and 2.8.

2.6.2 Learning Methods for Parameterized Gaits

The results for the parameterized gaits are shown in Figure 2.9 and Table 2.2.

A total of 1217 hardware fitness evaluations were performed during the learning

of parameterized gaits, with the following distribution by learning method: 200

random, 234 uniform, 284 Gaussian, 174 policy gradient, 172 simplex, 153 linear

regression. The length of runs varies because each run plateaued at its own pace.

The single best overall gait for the parameterized methods was found by linear

regression, which also had the highest average performance. The Nelder-Mead

simplex also performed quite well on average. The other local search methods

did not outperform random search; however, all methods did manage to explore

enough of the parameter space to significantly improve on the previous hand-

coded gait in at least one of the three runs. No single strategy consistently beat

the others: for the first trial Linear Regression produced the fastest gait at 27.58

body lengths/minute, for the second a random gait actually won with 17.26, and

for the third trial the Nelder-Mead simplex method attained the fastest gait with

14.83.

One reason the randomly-generated SineModel5 gaits were so effective may
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Average Std. Dev.
Previous hand-coded gait 5.16 –

Random search 9.40 6.83
Uniform Random Hill Climbing 7.83 4.56
Gaussian Random Hill Climbing 10.03 6.00

Policy Gradient Ascent 6.32 7.39
Nelder-Mead simplex 12.32 3.35

Linear Regression 14.01 12.88
Evolved Neural Network

(HyperNEAT) 29.26 6.37

Table 2.2: The average and standard deviation of the best gaits found for each
algorithm during each of three runs, in body lengths/minute.

have been due to the SineModel5’s bias toward regular, symmetric gaits. This may

have allowed the random strategy — focusing on exploration — to be competitive

with the more directed strategies that exploit information from past evaluations.

2.6.3 HyperNEAT Gaits

The results for the gaits evolved by HyperNEAT are shown in Figure 2.10 and

Table 2.2. A total of 540 evaluations were performed for HyperNEAT (180 in each

of three runs). Overall the HyperNEAT gaits were the fastest by far, beating all the

parameterized models when comparing either average or best gaits. We believe that

this is because HyperNEAT was allowed to explore a much richer space of motions,

but did so while still utilizing symmetries when advantageous. The single best gait

found during this study had a speed of 45.72 body lengths/minute, 66% better

than the best non-HyperNEAT gait and 8.9 times faster than the hand-coded gait.

Figure 2.11 shows a typical HyperNEAT gait that had high fitness. The pattern

of motion is both complex (containing multiple frequencies and repeating patterns

across time) and regular, in that patterns of multiple motors are coordinated.
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The evaluation of the gaits produced by HyperNEAT was more noisy than for

the parameterized gaits, which made learning difficult. For example, we tested

an example HyperNEAT generation-champion gait 11 times and found that its

mean performance was 26 body lengths/minute (± 13 SD), but it had a max of

38 and a min of 3. Many effective HyperNEAT gaits were not preserved across

generations because a single poor-performing trial could prevent their selection.

The HyperNEAT learning curve would be smoother if the noise in each evaluation

could be reduced or more than one evaluation per individual could be afforded.
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Figure 2.7: Fitness mean and standard deviation when each of the five parameter
dimensions of SineModel5 are varied independently. The red triangle in each plot
represents the same point in the 5-dimensional parameter space. Three are shown
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2.7 Conclusions, Follow-up Work, and Future Work

We have presented an array of approaches for optimizing a quadrupedal gaits

for speed. We implemented and tested six learning strategies for parameterized

gaits and compared them to gaits produced by neural networks evolved with the

HyperNEAT generative encoding.

All methods resulted in an improvement over the robot’s previous hand-coded

gait. Building a model of gait performance with linear regression to predict promis-

ing directions for further exploration worked well, producing a gait of 27.5 body

lengths/minute. The Nelder-Mead simplex method performed nearly as well, likely

due to its robustness to noise. The other parameterized methods did not outper-

form random search. One reason the randomly-generated SineModel5 gaits per-

formed so well could be because the gait representation was biased towards effec-

tive, regular gaits, making the highly exploratory random strategy more effective

than more exploitative learning algorithms.

HyperNEAT produced higher-performing gaits than all of the parameterized

methods. Its best-performing gait traveled 45.7 body lengths per minute, which

is nearly 9 times the speed of the hand-coded gait. This could be because Hyper-

NEAT tends to generate coordinated gaits (Clune et al., 2011, 2009a), allowing it

to take advantage of the symmetries of the problem. HyperNEAT can also explore

a much larger space of possibilities than the more restrictive 5-dimensional param-

eterized space. HyperNEAT gaits tended to produce more complex sequences of

motor commands, with different frequencies and degrees of coordination, whereas

the parameterized gaits were restricted to scaling single-frequency sine waves and

could only produce certain types of motor regularities.
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Because all trials for this study — a total of 1757 — were performed using

hardware, it was difficult to gather enough data to properly rank the methods

statistically. When this study was first published (Yosinski et al., 2011), several

future directions were suggested that could compensate for the fact that hardware

evaluations are so expensive.

One possibility was to use a more robust hardware platform to collect data such

that the need for temporally expensive human interventions would be reduced. A

year later, Lohmann et al. (2012) introduced the open source, 3D printable Aracna

platform with just such a goal in mind: with its servos configured in a way to

maximize mechanical advantage of the servos over the legs, the frequency of motor

failure due to overheating was significantly reduced.

Another extension explored was the use of alternate encodings. A year after

this study, the RL power encoding was shown by Shen et al. (2012) to produce

gaits 14% faster using only hardware evaluations.

Another suggested extension was to combine frequent trials in simulation with

infrequent trials in hardware, as done by Bongard et al. (2006). The simulation

would produce the necessary volume of trials to allow the learning methods to be

effective, and the hardware trials would serve to continuously ground and refine the

simulator. Within two years, Glette et al. (2012) and Lee et al. (2013) separately

showed that this approach was indeed effective, producing gaits for the Quadratot

platform respectively 34% faster and 49% faster than the best reported in this

chapter when evaluations were performed using the same Quadratot hardware

used here. The speed and reliability of their simulator allowed for a vastly larger

number of evaluations: 40,000 per run vs. 180 per (HyperNEAT) run in this

chapter. Future work in this direction could also guide evolution to the most fertile
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territory by penalizing gaits that produced large discrepancies between simulation

and reality (Koos et al., 2010).

A final direction for extension is to allow gaits that sense the position of the

robot and other variables to enable the robot to adjust to its physical state, instead

of providing an open-loop sequence of motor commands. All of these approaches

could potentially improve the quality of automatically generated gaits for legged

robots, which will hasten the day that humanity can benefit from their vast po-

tential.
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CHAPTER 3

ENDLESSFORMS.COM: CROWDSOURCED, ONLINE

EVOLUTION OF 3D-PRINTABLE SHAPES

3.1 Introduction

Chapter 2 demonstrated the effectiveness of the HyperNEAT generative encod-

ing (Stanley et al., 2009) at incorporating very small numbers of labels when

training populations of networks to perform well at a task — in the case of that

chapter, producing fast robotic gaits. The NEAT algorithm (Stanley, 2007b) at

the basis of HyperNEAT has been previously shown to be adept at incorporating

noisy, binary labels provided by humans for evolving both 2D images (Secretan

et al., 2008) and 3D shapes (Clune and Lipson, 2011).

Inspired by these successes, we combined the web-scale crowdsourcing of Sec-

retan et al. (2008) with the 3D shape represenations used by Clune and Lipson

(2011) to create EndlessForms.com, the first website to allow users to interactively

evolve 3D shapes online. Fast rendering of shapes in visitors’ browsers is enabled

by Three.js (Cabello, 2012) backed by WebGL (Web Graphics Library), available

in most modern browsers. Visitors are able to evolve shapes that resemble natu-

ral organisms and engineered designs because the site builds on the cutting-edge

Compositional Pattern Producing Network (CPPN) generative encoding inspired

by concepts from developmental biology. The encoding used is an extension of

CPPN, a type of neural network that abstracts how natural organisms grow from

a single cell to complex morphologies. Visitors can publish their evolved designs

for anyone to see or fork and further evolve. Users can click a button and have

their evolved design 3D printed in materials ranging from plastic to silver. End-
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Figure 3.1: 3D printable shapes evolved by non-technical web visitors to End-
lessForms.com. Shapes exhibit repetition of elements and shared structure due
to the trained neural network encoding that represents them. Any shape on the
site may also be used a seed for further evolution; for example, the broken heart
(middle) was created by starting at the heart (second from left) and evolving a few
iterations.

lessForms.com thus brings together recent innovations in evolutionary computa-

tion, crowdsourcing, and 3D printing to create a powerful collaborative interactive

evolution experience that enables non-technical users to create objects and then

hold them their hand. Since the site’s inception, over four million objects have

been evolved by tens of thousands of visitors from 166 countries and every US

state. Visitors learn about evolution, explore the space of synthetically evolved

morphologies, and create 3D objects they can transfer to the physical world.

3.2 Background

The recent explosion of cheap, high quality 3D printers has been a boon to indus-

trial prototyping engineers and Do-It-Yourself hobbyists alike (Lipson and Kur-

man, 2012). Just as paper printers allow anyone to take a digital document and

convert it into physical form, 3D printers now give users the ability to convert

35



digital representations of 3D objects into physical form with ease. Arriving just

after this revolution bringing affordable hardware to the masses has been the real-

ization that the accompanying software design tools have not yet arrived. Current

procedure for creating and 3D printing a new design entails the use of computed-

aided design (CAD) software to translate a person’s idea into digital form before

the form can be 3D printed. While there are numerous CAD options available,

the fraction of the population skilled in the use of such programs is very small.

Reaching a basic level of CAD proficiency might be attainable for hobbyists with

free weekends to dedicate to the effort, but there will remain many who would

like to create and print their own designs who will not be able to invest the time

required to learn CAD. Further, while proficiency in CAD makes it possible to

express certain 3D ideas easily in digital form, others are more difficult. For exam-

ple, geometric shapes are often easy to express, but creating more organic, lifelike

patterns remains more difficult.

Thus, it seems that while the 3D printing revolution may be arriving, and there

may soon be a 3D printer in every home, there is not yet a CAD expert in every

home. It is as if the earlier revolution of 2D paper printers had arrived before the

advent of easy-to-use word processors and drawing programs.

This chapter describes a new type of design tool that is orders of magnitude

easier to use than CAD, so easy that even children can create new shapes with

them without any training. In fact, the heart shown in the second position of

Figure 3.1 was made by a eleven year-old with only a few minutes of experience

using the software.

The design tool, available at EndlessForms.com, capitalizes on and combines

several important factors:
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• It is available online and usable from a web-browser, without requiring the

installation of any additional software (Figure 3.4).

• It capitalizes on the fact that although many users may be poor artists, they

are often excellent art critics. Users may not know exactly how to translate

a geometric idea in their head into a form a computer would understand, but

they will “know it when they see it.”

• We use a particular type of hierarchical neural network to specify shapes in

an implicit functional form, which allows them to be visualized and printed

in different resolutions (Section 3.3.1).

• The neural network shape representations are trained using a genetic algo-

rithm that naturally allows us to take into account noisy user preferences

(Section 3.3.2).

• The methods of representation and training combine to enable aggregation

of the wisdom of the crowd as well as personal user preferences. This is

accomplished by allowing users to publish and tag designs they personally

find attractive and to rate other users’ creations. Critically, users may also

fork (copy, modify, and possibly re-publish) other designs to create their own.

This enables new users to quickly find a base shape and modify it to suit

their needs, building the database of available designs in the process. For

example, the broken heart (third from left in Figure 3.1) was created by one

user starting with the heart created by another user (second from the left)

and modifying it slightly in only a few clicks.

EndlessForms extends and merges two previous major directions of work: sim-

pler, more intuitive 3D design tools and Interactive Evolutionary Computation

(IEC).
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Many have recognized the limiting difficulty of using CAD programs and have

sought to provide easier to use methods of design. Most previous approaches have

centered around converting 2D sketches into 3D models. Lipson and Shpitalni

(1996) extracted an explicit edge-vertex graph from a 2D wireframe sketch and

and then used optimization to construct a 3D model whose wireframe matched

the drawing. Lipson and Shpitalni (2000) extended these methods and produced

the first 3D printed parts designed entirely by sketching. Igarashi et al. (1999)

demonstrated an easy to use interface where sketched 2D blobs were “inflated” to

3D using a model that biases wider blobs to be thick and narrower blobs to be thin.

Finally, Xu et al. (2014) demonstrated another system for converting sketches into

plausible 3D objects. Dubbed True2Form, their method also uses optimization to

balance a prior over 3D shapes with the likelihood of the user’s 2D drawing given

a proposed 3D instantiation. One of their key insights was use of a user model

that recognized artistic biases toward sketches that accurately convey to other

humans certain properties of the shape, like paired lines to indicate parallelism or

the intersection of curved lines to show orthogonality in the 3D space.

Our model takes a somewhat different approach from these past attempts.

Instead of incorporating user input via a 2D sketch, we simply ask users to select

out of a populations the set of shapes that are closer to their desired design.

This difference entails a few properties. First, we require not only a single user

interaction, as with sketch-based systems, but a series of interactions. We get

less data per interaction than a whole sketch, so the information from several

interactions must be combined. However, this need for more interactions is offset

by requiring much less time per interaction: typical screens requesting user input

take only a few seconds. Second, our system requires even less skill than sketch-

based solutions. The fraction of the population able to sketch out a design is
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perhaps larger than those able to design it with CAD, but it is still far smaller

than those that can provide binary feedback based on whether they like something

or not.

We aggregate user inputs to create designs by using evolutionary computation

(EC). EC has been used with great success in the past to create novel designs

in many media, from images (Rnoke, 2002), to music (Biles, 1994), to patterns

of walking on robots (Chapter 2), to virtual creatures moving through simulated

spaces (Sims, 1994; Lee et al., 2013). EndlessForms harnesses the power of evolu-

tionary computation through a framework of Interactive Evolutionary Computa-

tion, which evolves solutions toward some target objective that depends on human

interaction. IEC works by generating a population, or generation, of individual

organisms. The organisms are then presented to a human, who implicitly or ex-

plicitly assigns a fitness to each. IEC has been used in the past both with (Hornby

and Bongard, 2012) and without (Secretan et al., 2008) explicit models of the

user. Organisms with low fitness are dropped, and organisms with high fitness

are preferentially selected for reproduction and used to create the next generations

of individuals. Through this process, the organisms evolve in a way that makes

them more likely to be selected by the user in the next round. In cases like this

study, where individual shapes are selected by a user if that user likes the shape,

the shapes evolve to be more likable. Secretan et al. (2008) exploited this idea

to crowdsource the design of 2D images via the web, combining input from many

users to eventually produce many complex and organic shapes.

The following sections of this chapter describe the key algorithms and architec-

tures behind EndlessForms.com and the ways they are combined (Section 3.3), give

details of the website implementation (Section 3.4), and discuss the user interface,
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interactions, and resulting designs and data collected so far (Section 3.5).

3.3 Components of the System

As mentioned above, EndlessForms is made possible through the integration of

several key technologies. We briefly review these in this section, starting with the

implicit shape representation, how this representation is trained, and how it is

converted to an explicit set of triangles for display in the browser.

3.3.1 Compositional Pattern Producing Networks (CPPNs)

EndlessForms represents each shape using a Compositional Pattern Producing Net-

work (CPPN), as introduced by Stanley (2007b). A CPPN is a type of Artificial

Neural Network (ANN), and as is typical for neural networks, it can be represented

as a directed graph containing nodes and edges. Activations values flow through

the graph; as they traverse edges, they are multiplied by the edge’s weights, which

may be positive or negative. If multiple edges arrive at a node, they are summed

before being given as input to the node. The node applies a scalar activation

function to the sum of the inputs and provides the answer as its output.

CPPNs are derivatives of ANNs with several specialized properties:

• The CPPN graphs may be cyclic. In this study, we allowed cycles.

• ANNs are often thought of as having layers, which are nothing more than sets

of units, often (though not always) without connections between them, and

often (though not always) with identical activation functions within a layer.
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In CPPNs these conventions are usually not assumed. We allow connections

between any two units, and we don’t choose identical activations for large sets

of nodes. Thus, it is better to think of a CPPN as being a freeform directed

graph with arbitrary activation functions at each node. This is shown in

Figure 2a.

• The inputs to a CPPN are generally values along n spatial dimensions. For

example, in two dimensions, there could be two input units: one each for

x and y.

• The number of output units of a CPPN is generally small. In this study,

there is a single scalar output unit.

These last two properties motivate another view of CPPNs: they are simply

one way of encoding a function from some space to a value, e.g. f : x, y → value

in the two-dimensional case. If there is a single output unit, this function can

be seen as a method of painting a 2D space, in this case with a grayscale image.

We could query f at x and y values corresponding to a grid of pixel centers and

obtain an image. Note that if there were three output units, we could paint a color

image by connecting each unit to the red, green, or blue channels, respectively.

Also, because the image is specified in functional form, we can query x and y with

whatever inter-pixel spacing we wish. In effect, the image can be produced at any

resolution; we could say the function specifies an image with infinite resolution.

In Figure 3.2, a CPPN is shown that maps from two inputs — x and y — to

three color channel outputs. In contrast, the CPPN used in this chapter to encode

shapes maps from three inputs — x, y, z — to a single output.

Why do we choose to represent shapes in such an implicit functional way using

neural networks? The first reason is that of statistical efficiency: as computation
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Figure 3.2: A CPPN. (a) Operational view of the components of a CPPN. (b)
Evaluation of a CPPN on a grid of spatial points. If the CPPN has two inputs,
then we think of the CPPN as a function that specifies an image in 2D. Because
the specification is a function that can be queried at arbitrary x and y points, the
image has infinite resolution. Figure drawn in style adapted from Stanley (2007b)
and Clune et al. (2011).

flows through neural networks, values computed earlier on can be used for multiple

computations downstream. This basic property of deep neural networks is critical,

as it allows for the re-use of information (Bengio et al., 2013). Re-using information

from earlier computations to perform later computations has been shown to be

an effective prior in a surprisingly wide range of tasks. For example in image

recognition tasks, simpler lower-level functions can be composed to create a robust

and generalizable representations (Krizhevsky et al., 2012; Yosinski et al., 2014;

Zeiler and Fergus, 2013) in a way not possible with shallower networks that cannot

reuse information. In a completely different setting, robots learning to walk can

use a bias toward reuse of information to coordinate the motion of multiple limbs

(Lee et al., 2013; Yosinski et al., 2011). In these two disparate examples, the same
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effects are observed: reuse of information is a powerful prior. In our work, this

prior enables multiple parts of an object to share information, making it possible to

observe symmetry, repetition, and repetition with variation; the rightmost shape

in Figure 3.1 exhibits all three.

The second reason EndlessForms employs CPPNs is because there happens to

be an effective method of training them, as discussed in the next section. Past

studies have evaluated how best to encode complexity in a way amenable to search

by genetic algorithms (Bentley and Kumar, 1999; Hornby and Pollack, 2002) and

the CPPN and other such “indirect encodings” have proven particularly effective

(Stanley and Miikkulainen, 2003).

3.3.2 Training a CPPN using the NEAT algorithm

Given the operational and functional view of CPPNs presented in the previous

section, an important question remains: how do we train them? Assuming that

the wide family of functions expressable as a CPPN contains many interesting

functions — for example, one function from (x, y)→ (r, g, b) that paints the Mona

Lisa in some (x, y) box — how do we find the one we want?

A common approach to training ANNs is by using gradient descent, with gra-

dients computed via backprop. For this to work, we need two conditions to be

met. First, we need to fix the topology of the network, because topology changes

are non-differentiable. We must determine beforehand the set of edges, nodes, and

activation functions for each node; the network cannot grow during training. Sec-

ond, we must be able to capture the training criterion via a cost or loss function

L(~C) that takes the vector output of the CPPN and returns a scalar loss to be

43



minimized. This function needs to be differentiable with respect to the output of

the CPPN; that is, we need to be able to compute ∂L/∂Ci for each CPPN output

Ci. If both conditions are met, then we can train the edge weights using backprop.

In our case this condition is not met. We wish to take into account a direct

user preference as our cost (say, cost is the negative of the amount a user likes

a design). This preference function is complex and computed in the user’s brain,

so we do not have access to the derivative of the user’s opinion with respect to

the outputs. We can ask a user for feedback, for which we get only a single noisy

function evaluation, but we don’t have access to the derivative. Since we already

can’t use backprop, we’ll throw out the other condition as well and say we don’t

want to specify the topology up front.

With backprop not available, how can a CPPN be trained from user feedback?

Fortunately, training such networks has been studied by others. One solution

is to use an algorithm called NeuralEvolution of Augmenting Topologies (NEAT)

algorithm, introduced by Stanley and Miikkulainen (2002b). Training with NEAT

uses an evolutionary algorithm. A population of candidate CPPNs is maintained,

called one generation, and each candidate in a generation receives some fitness

score (the negative of the cost). The fitness scores of all networks in one genera-

tion are compared. The lowest scoring networks are thrown out, and the highest

scoring networks are chosen for reproduction and variation and continue to the

next generation. The process of reproduction entails two methods of varying the

current network: mutation and crossover. Mutations are comprised of random

changes to parts of the network: either the addition or deletion of a node or ran-

dom increments or decrements to an edges weight. Multiple mutations may occur

in parallel. Crossover is the process of combining partial solutions found by two
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separate networks. Crossover in NEAT entails choosing a random node from each

of the two networks and swapping the two subtrees rooted at those nodes.

An important feature of NEAT is that starts with simple solutions containing

few nodes and gradually adds complexity by adding nodes. In this way, complexity

may be added gradually over time.

We should add one additional detail before proceeding. The CPPNs found by

using the NEAT algorithm depend on the chosen hyperparameters of the NEAT

algorithm. For example, if we choose a relatively high probability of adding a node

vs. deleting a node, over times solutions will be biased toward greater complexity.

One important hyperparameter that must be chosen is the set of activations func-

tions available when mutations include node additions. For this study we included

sine, cosine, and Gaussian functions. The sine and cosine, in particular, enable

repetition of elements and, when combined with the effects from other units, rep-

etition with variation. The rightmost organism in Figure 3.1 shows an example of

this type of repetition. The inclusion of nodes with oscillatory behavior is impor-

tant for enabling the design of such interesting and natural looking shapes with

repetition.

It is a common trick to bias the solution found by augmenting the input nodes

with extra information. In addition to the x, y, and z input nodes, we also input

rxy, ryz, rxz, and rxyz with the following definitions:
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Table 3.1: Selected relevant hyperparameters for the NEAT algorithm.

Parameter Value
PopulationSize 15.0

MutateAddNodeProbability 0.1
MutateAddLinkProbability 0.1

MutateDemolishLinkProbability 0.03
MutateLinkWeightsProbability 0.95

MutateOnlyProbability 1.0
MutateLinkProbability 0.8

rxy =
√
x2 + y2 (3.1)

ryz =
√
y2 + z2 (3.2)

rxz =
√
x2 + z2 (3.3)

rxyz =
√
x2 + y2 + z2 (3.4)

This does not change at all the space of possible solutions, because the CPPN

could learn to implmenet any of these on it’s own by adding the appropriate nodes

near the bottom of the network, and vice-versa a network with these extra inputs

could learn to ignore them by setting any weights to these nodes to zero (or never

connecting them at all). But having these nodes provides a bias toward solutions

that exhibit rotational symmetry about one dimension (rxy, ryz, rxz) or spherical

symmetry (rxyz).

The settings of several important hyperparameters for the use of NEAT are

shown in Table 3.1.
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3.3.3 Converting a function to a shape: marching cubes

A CPPN produced using the above methods is, as we have mentioned, just a

function f from x, y, z to a real valued scalar. This provides a value at every

position in 3D space. To turn this functional representation into a shape, we take

the level set of the function at a chosen constant c. The boundary of the object is at

f(x, y, z) = c, and by convention points inside the object are where f(x, y, z) < c,

and points outside the object are where f(x, y, z) > c or where x, y, or z fall

outside the ranges defined by a canvas of fixed size. This is a straightforward

mathematical definition, but the implicitly defined object surface manifold still

must be converted to a set of triangles that tessellate the surface for display in a

web browser. To do this we first define a regular voxel grid of a pre-chosen size, in

our case 15 × 15 × 30.1 The function is evaluated at the locations corresponding

to the corners of each voxel on the grid, and each corner is marked with a 0 or

1 depending on whether it is inside the shape or on the boundary (f <= c) or

outside the shape (f > c). Then we use the standard marching cubes algorithm of

Lorensen and Cline (1987) to convert this binary representation to a set of triangles.

A complete description of marching cubes is beyond the scope of this chapter, but

a quick summary is that the voxels are considered one at a time. Each voxel has

eight corners, and so there are 28 = 256 possible configurations of the corners each

being inside or outside of the shape. Many configurations are symmetric, so the

number of unique, non-symmetric possibilities is actually only 15 (Lorensen and

Cline, 1987). For each configuration, one or more triangles is pre-defined through

the voxel that separate the 0s from the 1s. One voxel at a time, triangles are added

to a set which eventually tessellates the entire surface of the shape. An important
1Some early shapes on the site used 10× 10× 20 instead, but new shapes use a slightly finer

15× 15× 30 grid.
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property of the marching cubes algorithm is that it guarantees an airtight shape,

that is, that the triangles from adjoining regions will not have gaps between them

that would result in a shape with an ambiguous inside vs. outside. Airtightness

is a requirement if shapes are to be 3D printed. Triangle coordinates are saved

in a form similar to the STL (STereoLithography) file format but optimized for

streaming over the network and parsing in JavaScript in a user’s browser.

3.4 Details of the EndlessForms Website

The several components mentioned above — the CPPN, NEAT, and the marching

cubes algorithm — are integrated on a web server to create the EndlessForms

website where users can direct evolution of 3D shapes. The website itself is created

with the use of the Django web framework (Django Project, 2015) to manage and

connect the various components together and provide the interface to a MySQL

database backend to store user sessions, login info, shape metadata, and other

information. In this section we briefly describe the way information is handled

and passed around between the different backend components and the flow of the

website from the user’s perspective.

We use the Django web framework (Django Project, 2015) for Python to im-

plement the website itself, with modules in Django generating the homepage and

selection pages for evolution and coordinating calling the CPPN to generate shapes.

Figure 3.3 illustrates the manner in which the different blocks are connected to-

gether. With reference to the italicized numbers in the figure, the data flow of

a single generation of evolution (the repeating loop in Figure 3.4) is as follows,

beginning from a click on the “Evolve” button:
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1. Browser sends a POST request giving the selected organisms from the last

generation.

2. EndlessForms (EF) Django app queries MySQL for relevant information,

looking up the current generation and organisms from the database.

3. EF app hands 15 fitness values to managed CPPN/NEAT process running

in the background.

4. The CPPN/NEAT process evaluates fitness, first performing necessary re-

productions, mutations, and crossovers, then running marching cubes over

the new CPPN organisms. This process takes a few hundred milliseconds, so

meanwhile...

5. The server returns to the browser the URL of the next page, the browser

loads it, and the EndlessForms.js JavaScript library makes an Ajax (Asyn-

chronous JavaScript and XML) call to the server to fetch the new shapes,

which are transmitted in a simple “Vertex Face” (VF) file that describes the

vertices and faces.

6. This Ajax call is received on the server, which looks for the shape files whose

generation began in step 4. Usually this step is reached before the files are

finished being generated, so the server waits for them to be finished.

7. The CPPN and marching cubes code finishes generation of the 15 shape

definition files; the final result of this step is a series of 15 VF files.

8. The server sends the VF files back to the waiting client’s Ajax call. Upon re-

ception of each file, it is decoded and displayed in the appropriate organism’s

box. The user selects his or her favorite organisms and clicks the “Evolve”

button, returning to step 1.
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Figure 3.3: A modular view of the EndlessForms server showing the dataflow on
the backend during a single generation of evolution. Section 3.4 describes each
step in greater detail.

The above process of serving pages, sending the fitness, computing new shapes,

and transmitting both the new web page and new organisms could be greatly

simplified if all steps were done synchronously instead of asynchronously, but we

found that a critical ingredient for success was not making users wait for a long

time on a page that appeared just to be hanging. So instead we load the next page

as soon as possible, showing a loading indicator until the shape is in place, which

seemed to result in a better user experience, leading to more data being produced

by users, which in turn produced a greater quantity of shapes and those of higher

quality.

3.5 EndlessForms Results and Discussion

From a user’s perspective, EndlessForms is run as a typical database backed web-

site. Visitors may see the site at http://EndlessForms.com, register an account
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with an email address, log in, etc. To increase the useful traffic received by the

site, objects may be evolved and published without registration, although if users

register, they are able to track their objects and ratings.

Figure 3.4 shows the screens a user would typically see after arriving at the

homepage and beginning to evolve a shape. Users may begin evolution either

from scratch, in which case a generation of 15 new, random organisms (15 random

CPPNs) are created. These initial CPPNs are nearly empty, with only the minimal

connections required to connect input to output. Because of this, these shapes (top

right of Figure 3.4) are very simple; complexity is only added over time. Instead of

beginning from scratch, users my start evolution by forking a previously published

organism from another user (or perhaps from their own). This process is shown

down the right half of Figure 3.4. On each screen a user is shown 15 organisms,

selects from one to fifteen that that they prefer, and clicks “Evolve”. High fitness is

assigned to the selected organisms, low fitness to the rest, and the next generation

of 15 is created through mutation, crossover, and reproduction.

If the user eventually reaches a shape he or she particularly likes, it can be saved

(private to the user) or tagged and published (public). Published organisms are

viewable elsewhere on the site by other users, where they may be rated with one

to five stars or forked for further evolution by anyone on the site. The homepage

shows a selection of highly rated, published organisms. Since the date of site

launch, many interesting organisms have been found by users, a selection of which

are shown in Figure 3.5.

Since the site’s inception, over 320,000 generations have been evolved and over

4,700,000 organisms have been seen and evaluated by visitors from all over the

world. The 65,400 unique users that the site has had come from a total of 166
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different countries, as shown in Figure 3.6.

One interesting feature of the combination of an active user base and an evo-

lutionary algorithm is that we can construct the family tree of organisms that

have been evolved. A tree showing only about 3% of the generations is shown in

Figure 3.7. The zoomed in portion on the bottom of the figure shows a successful

organism (in this case, a shape tagged “mushroom”) that was on the front page and

forked many times. Many of the forks resulted in short evolutionary runs of only

a single or several generations, perhaps indicating that users were just trying out

the “Evolve” button to see what it would do. Other runs progress in long chains,

some eventually leading to other successful published shapes.

As shown in Figure 3.4, when shapes are created, users may download the

shape in one of several formats compatible with 3D printers. To test this, we

downloaded and printed some interesting shapes in different materials. Three

shapes and materials are shown in Figure 3.8. Other users have also tried printing

their shapes on their own 3D printers, with at least one documenting the end-to-

end process of designing and then printing a 3D vase on their blog (Quenneville,

2015).

3.5.1 Chess Challenge

The site was launched as an open-ended playground for creativity. Users were

not told to create anything in particular; it was completely up to them. After

several months, we decided to run an experiment in semi-directed evolution to see

if users on the Internet could evolve an entire set of chess pieces, so we posted

the “Chess Challenge”. The challenge was nothing more than a special page that
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shows a chess board containing on one half in light colors the highest rated organism

tagged “king”, “queen”, “rook”, and so on. On the other half of the board was the

second highest rated organism for each tag in a darker color. After the challenge

had been active for a while we returned to find 12 (six dark and six light) unique

chess pieces forming a very interesting evolved team! We printed out the light and

dark sets and show them in Figure 3.9. Due to the hereditary nature of the NEAT

algorithm, it happened that some of the pieces on each team were related to each

other, being either descendants of each other or of a common ancestor, and so they

share visual structure which makes the set of pieces look coordinated.
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Figure 3.4: Selected screens from EndlessForms.com, demonstrating some of the
functionality of the website. See Section 3.5 for a description.
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Figure 3.5: A sample of evolved shapes. Note that many of the shapes are related
to each other, both visually and literally (in the phylogeny of the evolving lineages),
revealing some of the variation that can be explored within a family of designs.
Thousands more can be viewed at EndlessForms.com
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Figure 3.6: A map from Google Analytics showing the number of unique users
per country. As of 2015, a total of 65,400 unique users from a total of 166 countries
and every US state have visited the site.
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Figure 3.7: An incrementally zoomed in view of the family tree of the evolved
organisms on the site, where each generation is shown as a circle. The most zoomed
out view shows only about 10,000 generations of organisms out of a total of 320,000
that have been evolved (about 3%). Each generation contains 15 organisms and
was shown on a screen similar to those on the right half of Figure 3.4.
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Figure 3.8: Evolved shapes “queen”, “butterfly”, and “square lamp” printed in
silver, bronze, and plastic, respectively.

Figure 3.9: 3D printed pieces evolved as part of the Chess Challenge. Due to
the evolutionary nature of the NEAT training algorithm, some of the pieces on
each team turn out to be related to each other and to share characteristics. For
example, the light colored king, queen, and bishop all share similar head and arm
structure, which allows pieces of a color have a related theme.
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3.6 Conclusions and Future Work

We have introduced and described the EndlessForms.com project, which enables

non-technical users to automatically create 3D-printable shapes online by driving

an interactive evolutionary algorithm. The shapes exhibit a wide range of visual

appearance, containing symmetries, repeating structure, and repetition with vari-

ation. This rich but structured variety is made possible by the combination of

a neural network representation and an evolutionary method of training the net-

work. The site offers users the ability to begin designs from scratch or to start

with designs that have been published by other users. The arrival of affordable

3D printing technology motivates the search for simpler, more intuitive, and more

fun design tools. Since the creation of EndlessForms, follow-up work has sought

to decrease even further the human cost per evaluation for 3D shape evolution

through the use of eye-tracking as a replacement for clicking on shapes (Cheney

et al., 2013; Clune et al., 2013). The number of visitors that have used Endless-

Forms to design, publish, and print their own shapes and the complexity of shapes

evolved indicates the promise for this type of approach to design.
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CHAPTER 4

VISUALLY DEBUGGING RESTRICTED BOLTZMANN MACHINE

TRAINING WITH A 3D EXAMPLE

4.1 Introduction

In contrast to the earlier portions of this thesis that focused on models for which

the gradient of the loss with respect to the parameters could not be computed, the

rest of this thesis focuses on models for which this gradient can be computed or

estimated. Such models allow easier, faster training for larger numbers of param-

eters.

Restricted Boltzmann Machines (RBMs) are one class of models in this family.

RBMs have been successfully applied to model data from many domains. In the

process of training an RBM, one must pick a number of parameters, but often

these parameters are brittle and produce poor performance when slightly off. Here

we describe several useful visualizations to assist in choosing appropriate values

for these parameters. We also demonstrate a successful application of an RBM to

a unique domain: learning a representation of synthetic 3D shapes.

4.2 Background

Restricted Boltzmann Machines (RBMs) have enjoyed recent success in learning

features in a number of domains (Hinton and Salakhutdinov, 2006; Bengio et al.,

2007; Lee et al., 2008; Ngiam et al., 2011). However, successfully training a Re-

stricted Boltzmann Machines (RBM) is far from a straightforward proposition.
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There are many tuning parameters that must be carefully chosen. Results are sen-

sitive to these parameters, and picking them correctly is often difficult. With this

in mind, we describe several visualizations that we have found helpful in tuning the

requisite parameters. Many are adapted from the very useful paper “A practical

guide to training restricted boltzmann machines” by Hinton (2010).

This guide is aimed toward a novice trainer of RBMs who wishes to spend as

little time in the trenches as possible. To this end we give concrete examples of how

to implement the plots in the form of code snippets in both Python and Octave /

Matlab.

For the remainder of the chapter, we assume the RBM is trained using mini-

batch based gradient descent using the Contrastive Divergence algorithm (Hinton,

2002).

4.3 Debugging RBMs

The four presented plots are arranged in roughly the order they should be used.

Undesired behavior in earlier plots will produce further undesired behavior in later

plots. Thus, debugging should be focused on the first plot showing unexpected

behavior. Some of the code is loosely based on the Theano RBM tutorials (Bergstra

et al., 2010).

4.3.1 Code setup

The following imports and initializations are assumed:
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Python:

from numpy import tanh, fabs, mean, ones

from PIL import Image

from matplotlib.pyplot import hist, title, subplot

def sigmoid(xx):

return .5 * (1 + tanh(xx / 2.))

Octave / Matlab:

sigmoid = inline(’.5 * (1 + tanh(z / 2.))’);

4.3.2 Probability of hidden activation

For a given input example, each hidden binary neuron has a probability of turning

on. This probability is deterministic (involves no sampling noise) and is, for obvious

reasons, always in [0,1]. Thus, in order to see how the hidden neurons are being

used, how often they are likely to be on vs. off, and whether they are correlated,

we plot this probability of activation for each hidden neuron for each example

input within a mini-batch. These probabilities can be effectively visualized as

grayscale values of an image where each row contains the hidden neuron activation

probabilities for a single example, and each column contains the probabilities for

a given neuron across examples. Figure 4.1 shows this plot.

Make sure to manually set the intensity limits to [0,1] rather than using any

autoscale feature (e.g. do not use Matlab’s imagesc with the default autoscaling

behavior).

Given a mini-batch of training examples in X (dimension 20 x 1000), the fol-
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Figure 4.1: Hidden neuron activation probabilities for the first 100 neurons (of
1,000) and the first 20 example data points (of 50,000), where black represents
p = 0 and white, p = 1. Each row shows different neurons’ activations for a
given input example, and each column shows a given neuron’s activations across
many examples. Top: the desired dithered gray before training begins. Values are
mostly in [0.4, 0.6]. Middle: Values pegged to black or white after one mini-batch.
Decrease initial W values or learning rate. Bottom: the learning has converged
well after 45 epochs of training.

lowing code produces the plots in Figure 4.1.

Python:

hMean = sigmoid(dot(X, rbm.W) + rbm.hBias)

image = Image.fromarray(hMean * 256).show()

Octave / Matlab:

hMean = sigmoid(X*W + repmat(hBias, 20, 1));

imagesc(hMean, [0, 1]);

colormap(’gray’); axis(’equal’);
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Before any training, the probability plot should be mostly a flat gray, perhaps

with a little visible noise. That is, most hidden probabilities should be around 0.5,

with some as low as 0.4 or as high as 0.6. If the plot is all black (near 0) or all white

(near 1), the weights W or the hidden biases hBias were initialized incorrectly.

The weights W should initially be random and centered at 0, and hBias should

be 0, or at least centered at 0. If the probability plot contains both pixels pegged

to black and pixels pegged to white, then the W has been initialized with values

too large. Intuitively, the problem with this case is that all hidden neurons have

already determined what features they are looking for before seeing any of the

data.

So first initialize the W and hBias such that this plot shows gray before train-

ing. It is useful to look at this plot each epoch for the same mini-batch, so one

can see how the neuron activations evolve. If we view probability plots for a given

mini-batch over time in quick succession (like a video), we can see the effect of

training. Once training begins, generally the neurons’ activations diverge from

gray and converge toward their final shades over the course of only several epochs.

Surprisingly, while the activations converge nearly to their final values after

only a few epochs, it is often an order of magnitude longer (say, 20 or 30 epochs)

before the reconstruction error decreases. Apparently the neurons decide on their

preferred stimulus easily, but then further fine tuning takes much longer.

Occasionally, if the learning rate is too high, the probabilities for a given mini-

batch will not converge smoothly. The video view of the probability plots (or the

filter plots in Figure 4.3) show this clearly as a flickering that persists for many

epochs. The solution is to use a lower learning rate. If the rate is already so low

that learning takes a long time, consider a smaller (simpler) input vector (e.g. for
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images use a smaller patch size).

4.3.3 Weight Histograms

In addition to the hidden probability plots above, which show the combined effects

of W and hBias to produce hidden probabilities, it is often useful to look at the

values of vBias,W , and hBias on aggregate. Figure 4.2 shows a set of useful plots:

the top three show a histogram of values in vBias,W , and hBias, respectively, and

the bottom three plots show histograms of the most recent (mini-batch) updates

to the vBias, W , and hBias values. For a quick sanity check without requiring

the user to interpret the axis scales, we also show in the title the mean absolute

magnitude of the values in each histogram.

Python:

def plotit(values):

hist(values);

title(’mm = %g’ % mean(fabs(values)))

subplot(231); plotit(rbm.vBias)

subplot(232); plotit(rbm.W.flatten())

subplot(232); plotit(rbm.hBias)

subplot(232); plotit(rbm.dvBias)

subplot(232); plotit(rbm.dW.flatten())

subplot(232); plotit(rbm.dhBias)

Octave / Matlab:

function plotit(values)

hist(values(:));

title(sprintf(’mm = %g’, mean(mean(abs(values)))));
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Figure 4.2: Histograms of hBias, W , vBias (top row) and the last batch updates
to each (bottom row). The mean absolute magnitude of the values is shown above
each plot.

end

subplot(231); plotit(vBias);

subplot(232); plotit(W);

subplot(233); plotit(hBias);

subplot(234); plotit(dvBias);

subplot(235); plotit(dW);

subplot(236); plotit(dhBias);

Under normal, desired conditions in the middle of training, all histograms

should look roughly Gaussian in shape, and the mean magnitudes of each of the
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lower three plots should be smaller than its corresponding upper plot by a factor

of 102 to 104. If the change in weights is too small (i.e. a separation of more than

104), then the learning rate can probably be increased. If the change in weights is

too large, the learning may explode and the weights diverge to infinity.

Note: occasionally the values of the weights may bifurcate into two separate,

Gaussian shaped clusters in the middle of training. If one cluster starts to move

off to infinity, the learning rate should be decreased to avoid divergence. However,

we sometimes observed the weights to bifurcate into two clusters and then, 2-10

epochs later, to reconverge. We are not sure why this happens, but it seems to

have no adverse effect.

Bifurcation notwithstanding, any time than any of the weights, even a small

tail, drift off to infinity, the learning should be decreased, learning stopped sooner,

or weights clamped to a finite range.

4.3.4 Filters

Once the probability image and weight histograms are behaving satisfactorily, we

plot the learned filter for each hidden neuron, one per column of W . Each filter is

of the same dimension as the input data, and it is most useful to visualize the filters

in the same way as the input data is visualized. In the cases of image patches,

we show each filter as an image patch, or in this chapter’s example, we show the

filters as 3D shapes as in Figure 4.6. Because readers are far more likely to train

on images than 3D voxel data, in Figure 4.3 we show a 2D slice of our learned 3D

filters and give code for the construction of this plot as if image data were used.

It is worth noting that filters may or may not be sparse. If filters are sparse,
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Figure 4.3: A 2D slice of the filters learned by an RBM for 3D shapes data. Each
10x10 tile shows a single layer (2D) slice of the preferred 3D stimulus for a single
hidden neuron. The values within each tile have been normalized to be in [0, 1] for
ease of visualization. White regions are areas that the neuron prefers to be filled
with voxels, and black areas are preferred not to be filled. Top: before learning,
filters are random. Bottom: after 45 epochs of learning, filters are strongly locally
correlated.

they will respond to very local features. Dense filters, on the other hand, respond

to stimuli across the entire filter. Although the two types of filter are qualitatively

different, we have observed cases in which both types are successful in learning

the underlying density; that is, both types of filter are able to generate reasonable

synthetic data using Gibbs sampling.

Python:

# Initialize background to dark gray

tiled = ones((11*10, 11*10), dtype=’uint8’) * 51

for row in xrange(nRows):
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for col in xrange(nCols):

patch = X[row*nCols + col].reshape((10,10))

normPatch = ((patch - patch.min()) / (patch.max()-patch.min()+1e-6))

tiled[row*11:row*11+10, col*11:col*11+10] = normPatch * 255

Image.fromarray(tiled).show()

Octave / Matlab:

tiled = ones(11*nRows, 11*nCols) * .2 # dark gray borders

for row = 1:nRows

for col = 1:nCols

patch = W(:,(row-1)*nCols+col);

normPatch = (patch - min(patch)) / (max(patch)-min(patch)+1e-6);

tiled((row-1)*11+1:(row-1)*11+10, (col-1)*11+1:(col-1)*11+10) = ...

reshape(normPatch, 10, 10);

end

end

imagesc(tiled, [0, 1]);

colormap(’gray’); axis(’equal’);

The above code works for an RBM or the first layer in a Deep Belief Network

(DBN) or Deep Boltzmann Machine (DBM) composed of several stacked layers.

Filters in layers beyond the first represent distributions over hidden neurons, not

visible neurons, so interpreting any visualization is more difficult. These higher

level filters can still be visualized by plotting the visible pattern that would maxi-

mally activate the higher level neuron, but the connection is less direct, and invari-

ances are difficult to visualize (at best) or lost completely (at worst). Chapter 6

discusses an approach to remedy this problem.
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4.3.5 Reconstruction error

Plotting the reconstruction error over time is also helpful. It should decrease, often

after an initial plateau. If the training diverges, the reconstruction error will in-

crease dramatically. Often we have obtained good results when the reconstruction

error drops from its initial higher value to a lower plateau about halfway through

training. A typical plot is shown in Figure 4.4; code is fairly simple and is omitted

for space. Note that although reconstruction error often decreases during training,

models with lower reconstruction error are not necessarily better than models with

higher reconstruction error, because RBMs are inherently stochastic, and better

reconstruction implies an MCMC chain that mixes more slowly.

4.3.6 Typical Training Timeline

In Table 4.1 we present an example timeline of events that occur during RBM

training. This is meant to illustrate the important milestones in training and to

provide a single example of the relative timing of notable events. It is not intended

to provide a template which much be matched exactly, or even approximately, for

differently sized models trained on different datasets than used here.
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Figure 4.4: RBM reconstruction error over time.

Table 4.1: A typical training timeline.

Epoch Event
0 Hidden probability plot gray, values .4 to .6
1 Hidden probability plot shows some pattern
2-4 Probability plot showing final pattern

which may not significantly change for
rest of training

0-45 Filters smoothly resolve over entire period
0-20 Reconstruction error decreases slowly
20-25 Reconstruction error decreases quickly
25-45 Reconstruction error decreases slowly

71



4.4 Example Problem and Results: 3D Spheres

We now consider an illustrative example of learning a feature representation for a

class of synthetic 3D shapes. The 3D shape data was generated in the following

manner. First, we define a 10 × 10 × 10 cube containing 1000 voxels. We then

choose an x, y, and z location for the center of a sphere randomly from these

1000 voxels, and a radius for the sphere randomly between 1 voxel and 1/3 of

the width (3.33 voxels). We then paint this sphere onto the 10 × 10 × 10 voxel

canvas. Portions of the sphere that would fall outside the canvas are ignored, so

partial spheres are common. Figure 4.5 shows example spheres from the dataset.

We then train an RBM on 50,000 example spheres from this dataset. The training

parameters are shown in Table 4.2.

Table 4.2: Training parameters used to learn a representation of 3D shapes in
Section 4.4

Parameter Value
Visible neurons 1000 binary
Hidden neurons 400 binary

size of a mini batch 20
Epochs 45

Learning rate .001
Initial vBias 0
Initial hBias 0

Initial W uniform(-.022, .022)
Weight decay none
Momentum none

Sampling method CD-1

The filters learned after 45 epochs of training are shown in Figure 4.6. Visual-

izing 3D shapes is difficult, but we can get a feel for the filters by plotting a solid

voxel where the filter’s response is high and increasingly transparent voxels when

the response is smaller.
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Figure 4.5: Sphere exemplars from synthetic 3D dataset used for this study. Each
sphere has a random (x, y, z) location and random width between 1 and 3.33 voxels.

Finally, in Figure 4.7 we show example Markov Chain Monte Carlo (MCMC)

draws from the learned distribution using Gibbs sampling.
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Figure 4.6: Filters learned by the RBM, i.e. columns of the W weight matrix.
Voxels where the filter’s response is high are opaque, and voxels where the response
is lower become increasingly transparent.
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Figure 4.7: MCMC samples drawn from the learned distribution of shapes. Con-
secutive samples are shown from bottom to top, left to right. The MCMC mixing
rate is low, so the samples are highly correlated, but note that the generated shapes
are all nearly spherical.
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4.5 Conclusion

RBMs are difficult to train because many parameters must be set correctly. We

have shown several visualizations that assist in picking these parameters and have

provided code that can be used to generate each. We have also demonstrated a

simple, though atypical, application of RBMs to learn a representation of synthetic

3D shapes, with good results.
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CHAPTER 5

HOW TRANSFERABLE ARE FEATURES IN DEEP NEURAL

NETWORKS?

5.1 Introduction

In this chapter, we investigate a basic property of trained neural networks: to

what extent parameters learned on one task can be transferred to another task.

Many deep neural networks trained to classify natural images exhibit a curious

phenomenon in common: on the first layer they learn features similar to Gabor

filters and color blobs. Such first-layer features appear not to be specific to a par-

ticular dataset or task, but general in that they are applicable to many datasets

and tasks. Features must eventually transition from general to specific by the

last layer of the network, but this transition has not been studied extensively. In

this chapter we experimentally quantify the generality versus specificity of neurons

in each layer of a deep convolutional neural network and report a few surprising

results. Transferability is negatively affected by two distinct issues: (1) the special-

ization of higher layer neurons to their original task at the expense of performance

on the target task, which was expected, and (2) optimization difficulties related to

splitting networks between co-adapted neurons, which was not expected. In an ex-

ample network trained on ImageNet, we demonstrate that either of these two issues

may dominate, depending on whether features are transferred from the bottom,

middle, or top of the network. We also document that the transferability of fea-

tures decreases as the distance between the base task and target task increases, but

that transferring features even from distant tasks can be better than using random

features. A final surprising result is that initializing a network with transferred
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features from almost any number of layers can produce a boost to generalization

that lingers even after fine-tuning to the target dataset.

5.2 Background

Modern deep neural networks exhibit a curious phenomenon: when trained on im-

ages, they all tend to learn first-layer features that resemble either Gabor filters or

color blobs. The appearance of these filters is so common that obtaining anything

else on a natural image dataset causes suspicion of poorly chosen hyperparameters

or a software bug. This phenomenon occurs not only for different datasets, but

even with very different training objectives, including supervised image classifica-

tion (Krizhevsky et al., 2012), unsupervised density learning (Lee et al., 2009), and

unsupervised learning of sparse representations (Le et al., 2011).

Because finding these standard features on the first layer seems to occur regard-

less of the exact cost function and natural image dataset, we call these first-layer

features general. On the other hand, we know that the features computed by the

last layer of a trained network must depend greatly on the chosen dataset and task.

For example, in a network with an N-dimensional softmax output layer that has

been successfully trained toward a supervised classification objective, each output

unit will be specific to a particular class. We thus call the last-layer features specific.

These are intuitive notions of general and specific for which we will provide more

rigorous definitions below. If first-layer features are general and last-layer features

are specific, then there must be a transition from general to specific somewhere in

the network. This observation raises a few questions:

• Can we quantify the degree to which a particular layer is general or specific?
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• Does the transition occur suddenly at a single layer, or is it spread out over

several layers?

• Where does this transition take place: near the first, middle, or last layer of

the network?

We are interested in the answers to these questions because, to the extent that

features within a network are general, we will be able to use them for transfer

learning (Caruana, 1995; Bengio et al., 2011; Bengio, 2011). In transfer learning,

we first train a base network on a base dataset and task, and then we repurpose

the learned features, or transfer them, to a second target network to be trained

on a target dataset and task. This process will tend to work if the features are

general, meaning suitable to both base and target tasks, instead of specific to the

base task.

When the target dataset is significantly smaller than the base dataset, transfer

learning can be a powerful tool to enable training a large target network without

overfitting; Recent studies have taken advantage of this fact to obtain state-of-the-

art results when transferring from higher layers (Donahue et al., 2013a; Zeiler and

Fergus, 2013; Sermanet et al., 2014), collectively suggesting that these layers of

neural networks do indeed compute features that are fairly general. These results

further emphasize the importance of studying the exact nature and extent of this

generality.

The usual transfer learning approach is to train a base network and then copy

its first n layers to the first n layers of a target network. The remaining layers

of the target network are then randomly initialized and trained toward the target

task. One can choose to backpropagate the errors from the new task into the base

(copied) features to fine-tune them to the new task, or the transferred feature
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layers can be left frozen, meaning that they do not change during training on the

new task. The choice of whether or not to fine-tune the first n layers of the target

network depends on the size of the target dataset and the number of parameters

in the first n layers. If the target dataset is small and the number of parameters

is large, fine-tuning may result in overfitting, so the features are often left frozen.

On the other hand, if the target dataset is large or the number of parameters is

small, so that overfitting is not a problem, then the base features can be fine-tuned

to the new task to improve performance. Of course, if the target dataset is very

large, there would be little need to transfer because the lower level filters could

just be learned from scratch on the target dataset. We compare results from each

of these two techniques — fine-tuned features or frozen features — in the following

sections.

In this chapter we make several contributions:

1. We define a way to quantify the degree to which a particular layer is general

or specific, namely, how well features at that layer transfer from one task to

another (Section 5.3). We then train pairs of convolutional neural networks

on the ImageNet dataset and characterize the layer-by-layer transition from

general to specific (Section 5.5), which yields the following four results.

2. We experimentally show two separate issues that cause performance degra-

dation when using transferred features without fine-tuning: (i) the specificity

of the features themselves, and (ii) optimization difficulties due to splitting

the base network between co-adapted neurons on neighboring layers. We

show how each of these two effects can dominate at different layers of the

network. (Section 5.5.1)

3. We quantify how the performance benefits of transferring features decreases
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the more dissimilar the base task and target task are. (Section 5.5.2)

4. On the relatively large ImageNet dataset, we find lower performance than has

been previously reported for smaller datasets (Jarrett et al., 2009) when using

features computed from random lower-layer weights vs. trained weights.

We compare random weights to transferred weights—both frozen and fine-

tuned—and find the transferred weights perform better. (Section 5.5.3)

5. Finally, we find that initializing a network with transferred features from al-

most any number of layers can produce a boost to generalization performance

after fine-tuning to a new dataset. This is particularly surprising because the

effect of having seen the first dataset persists even after extensive fine-tuning.

(Section 5.5.1)

5.3 Generality vs. Specificity Measured as Transfer

Performance

We have noted the curious tendency of Gabor filters and color blobs to show up

in the first layer of neural networks trained on natural images. In this study, we

define the degree of generality of a set of features learned on task A as the extent

to which the features can be used for another task B. It is important to note

that this definition depends on the similarity between A and B. We create pairs

of classification tasks A and B by constructing pairs of non-overlapping subsets of

the ImageNet dataset.1 These subsets can be chosen to be similar to or different

from each other.
1The ImageNet dataset, as released in the Large Scale Visual Recognition Challenge 2012

(ILSVRC2012) (Deng et al., 2009) contains 1,281,167 labeled training images and 50,000 test
images, with each image labeled with one of 1000 classes.
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To create tasks A and B, we randomly split the 1000 ImageNet classes into two

groups each containing 500 classes and approximately half of the data, or about

645,000 examples each. We train one eight-layer convolutional network on A and

another on B. These networks, which we call baseA and baseB, are shown in the

top two rows of Figure 5.1. We then choose a layer n from {1, 2, . . . , 7} and train

several new networks. In the following explanation and in Figure 5.1, we use layer

n = 3 as the example layer chosen. First, we define and train the following two

networks:

• A selffer network B3B: the first 3 layers are copied from baseB and frozen.

The five higher layers (4–8) are initialized randomly and trained on dataset

B. This network is a control for the next transfer network. (Figure 5.1, row

3)

• A transfer network A3B: the first 3 layers are copied from baseA and frozen.

The five higher layers (4–8) are initialized randomly and trained toward

dataset B. Intuitively, here we copy the first 3 layers from a network trained

on dataset A and then learn higher layer features on top of them to classify

a new target dataset B. If A3B performs as well as baseB, there is evidence

that the third-layer features are general, at least with respect to B. If per-

formance suffers, there is evidence that the third-layer features are specific

to A. (Figure 5.1, row 4)

We repeated this process for all n in {1, 2, . . . , 7}2 and in both directions (i.e.

AnB and BnA). In the above two networks, the transferred layers are frozen. We

also create versions of the above two networks where the transferred layers are

fine-tuned :
2Note that n = 8 doesn’t make sense in either case: B8B is just baseB, and A8B would not

work because it is never trained on B.
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• A selffer network B3B+: just like B3B, but where all layers learn.

• A transfer network A3B+: just like A3B, but where all layers learn.

To create base and target datasets that are similar to each other, we randomly

assign half of the 1000 ImageNet classes to A and half to B. ImageNet contains

clusters of similar classes, particularly dogs and cats, like these 13 classes from the

biological family Felidae: {tabby cat, tiger cat, Persian cat, Siamese cat, Egyptian

cat, mountain lion, lynx, leopard, snow leopard, jaguar, lion, tiger, cheetah}. On

average, A and B will each contain approximately 6 or 7 of these felid classes,

meaning that base networks trained on each dataset will have features at all levels

that help classify some types of felids. When generalizing to the other dataset,

we would expect that the new high-level felid detectors trained on top of old low-

level felid detectors would work well. Thus A and B are similar when created by

randomly assigning classes to each, and we expect that transferred features will

perform better than when A and B are less similar.

Fortunately, in ImageNet we are also provided with a hierarchy of parent classes.

This information allowed us to create a special split of the dataset into two halves

that are as semantically different from each other as possible: with dataset A con-

taining only man-made entities and B containing natural entities. The split is not

quite even, with 551 classes in the man-made group and 449 in the natural group.

Further details of this split and the classes in each half are given in Section 5.8. In

Section 5.5.2 we will show that features transfer more poorly (i.e. they are more

specific) when the datasets are less similar.
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Figure 5.1: Overview of the experimental treatments and controls. Top two rows:
The base networks are trained using standard supervised backprop on only half
of the ImageNet dataset (first row: A half, second row: B half). The labeled
rectangles (e.g. WA1) represent the weight vector learned for that layer, with the
color indicating which dataset the layer was originally trained on. The vertical,
ellipsoidal bars between weight vectors represent the activations of the network at
each layer. Third row: In the selffer network control, the first n weight layers of
the network (in this example, n = 3) are copied from a base network (e.g. one
trained on dataset B), the upper 8−n layers are randomly initialized, and then the
entire network is trained on that same dataset (in this example, dataset B). The
first n layers are either locked during training (“frozen” selffer treatment B3B) or
allowed to learn (“fine-tuned” selffer treatment B3B+). This treatment reveals the
occurrence of fragile co-adaptation, when neurons on neighboring layers co-adapt
during training in such a way that cannot be rediscovered when one layer is frozen.
Fourth row: The transfer network experimental treatment is the same as the selffer
treatment, except that the first n layers are copied from a network trained on one
dataset (e.g. A) and then the entire network is trained on the other dataset (e.g.
B). This treatment tests the extent to which the features on layer n are general or
specific.
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5.4 Experimental Setup

Since Krizhevsky et al. (2012) won the ImageNet 2012 competition, there has been

much interest and work toward tweaking hyperparameters of large convolutional

models. However, in this study we aim not to maximize absolute performance,

but rather to study transfer results on a well-known architecture. We use the

reference implementation provided by Caffe (Jia et al., 2014) so that our results

will be comparable, extensible, and useful to a large number of researchers. Fur-

ther details of the training setup (learning rates, etc.) are given in Section 5.6,

and code and parameter files to reproduce these experiments are available at

http://yosinski.com/transfer.

5.5 Results and Discussion

We performed three sets of experiments. The main experiment has random A/B

splits and is discussed in Section 5.5.1. Section 5.5.2 presents an experiment with

the man-made/natural split. Section 5.5.3 describes an experiment with random

weights.

5.5.1 Similar Datasets: Random A/B splits

The results of all A/B transfer learning experiments on randomly split (i.e. similar)

datasets are shown3 in Figure 5.2. The results yield many different conclusions.
3AnA networks and BnB networks are statistically equivalent, because in both cases a network

is trained on 500 random classes. To simplify notation we label these BnB networks. Similarly,
we have aggregated the statistically identical BnA and AnB networks and just call them AnB.
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In each of the following interpretations, we compare the performance to the base

case (white circles and dotted line in Figure 5.2).

1. The white baseB circles show that a network trained to classify a random

subset of 500 classes attains a top-1 accuracy of 0.625, or 37.5% error. This

error is lower than the 42.5% top-1 error attained on the 1000-class network.

While error might have been higher because the network is trained on only

half of the data, which could lead to more overfitting, the net result is that

error is lower because there are only 500 classes, so there are only half as

many ways to make mistakes.

2. The dark blue BnB points show a curious behavior. As expected, performance

at layer one is the same as the baseB points. That is, if we learn eight layers

of features, save the first layer of learned Gabor features and color blobs,

reinitialize the whole network, and retrain it toward the same task, it does

just as well. This result also holds true for layer 2. However, layers 3, 4, 5, and

6, particularly 4 and 5, exhibit worse performance. This performance drop

is evidence that the original network contained fragile co-adapted features on

successive layers, that is, features that interact with each other in a complex

or fragile way such that this co-adaptation could not be relearned by the

upper layers alone. Gradient descent was able to find a good solution the

first time, but this was only possible because the layers were jointly trained.

By layer 6 performance is nearly back to the base level, as is layer 7. As we

get closer and closer to the final, 500-way softmax output layer 8, there is less

to relearn, and apparently relearning these one or two layers is simple enough

for gradient descent to find a good solution. Alternately, we may say that

there is less co-adaptation of features between layers 6 & 7 and between 7 &

8 than between previous layers. To our knowledge it has not been previously
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observed in the literature that such optimization difficulties may be worse in

the middle of a network than near the bottom or top.

3. The light blue BnB+ points show that when the copied, lower-layer features

also learn on the target dataset (which here is the same as the base dataset),

performance is similar to the base case. Such fine-tuning thus prevents the

performance drop observed in the BnB networks.

4. The dark red AnB diamonds show the effect we set out to measure in the

first place: the transferability of features from one network to another at each

layer. Layers one and two transfer almost perfectly from A to B, giving evi-

dence that, at least for these two tasks, not only are the first-layer Gabor and

color blob features general, but the second layer features are general as well.

Layer three shows a slight drop, and layers 4-7 show a more significant drop

in performance. Thanks to the BnB points, we can tell that this drop is from

a combination of two separate effects: the drop from lost co-adaptation and

the drop from features that are less and less general. On layers 3, 4, and 5,

the first effect dominates, whereas on layers 6 and 7 the first effect diminishes

and the specificity of representation dominates the drop in performance.

Although examples of successful feature transfer have been reported else-

where in the literature (Girshick et al., 2013; Donahue et al., 2013b), to our

knowledge these results have been limited to noticing that transfer from a

given layer is much better than the alternative of training strictly on the

target task, i.e. noticing that the AnB points at some layer are much better

than training all layers from scratch. We believe this is the first time that

(1) the extent to which transfer is successful has been carefully quantified

layer by layer, and (2) that these two separate effects have been decoupled,

showing that each effect dominates in part of the regime.
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5. The light red AnB+ diamonds show a particularly surprising effect: that

transferring features and then fine-tuning them results in networks that gen-

eralize better than those trained directly on the target dataset. Previously,

the reason one might want to transfer learned features is to enable training

without overfitting on small target datasets, but this new result suggests

that transferring features will boost generalization performance even if the

target dataset is large. Note that this effect should not be attributed to the

longer total training time (450k base iterations + 450k fine-tuned iterations

for AnB+ vs. 450k for baseB), because the BnB+ networks are also trained

for the same longer length of time and do not exhibit this same performance

improvement. Thus, a plausible explanation is that even after 450k iterations

of fine-tuning (beginning with completely random top layers), the effects of

having seen the base dataset still linger, boosting generalization performance.

It is surprising that this effect lingers through so much retraining. This gen-

eralization improvement seems not to depend much on how much of the first

network we keep to initialize the second network: keeping anywhere from one

to seven layers produces improved performance, with slightly better perfor-

mance as we keep more layers. The average boost across layers 1 to 7 is 1.6%

over the base case, and the average if we keep at least five layers is 2.1%.4

The degree of performance boost is shown in Table 5.1.

4We aggregate performance over several layers because each point is computationally expen-
sive to obtain (9.5 days on a GPU), so at the time of publication we have few data points per
layer. The aggregation is informative, however, because the performance at each layer is based
on different random draws of the upper layer initialization weights. Thus, the fact that layers 5,
6, and 7 result in almost identical performance across random draws suggests that multiple runs
at a given layer would result in similar performance.
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Table 5.1: Performance boost of AnB+ over controls, averaged over different ranges
of layers.

mean boost mean boost
layers over over

aggregated baseB selffer BnB+

1-7 1.6% 1.4%
3-7 1.8% 1.4%
5-7 2.1% 1.7%
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Figure 5.2: The results from this chapter’s main experiment. Top: Each marker
in the figure represents the average accuracy over the validation set for a trained
network. The white circles above n = 0 represent the accuracy of baseB. There
are eight points, because we tested on four separate random A/B splits. Each dark
blue dot represents a BnB network. Light blue points represent BnB+ networks,
or fine-tuned versions of BnB. Dark red diamonds are AnB networks, and light red
diamonds are the fine-tuned AnB+ versions. Points are shifted slightly left or right
for visual clarity. Bottom: Lines connecting the means of each treatment. Num-
bered descriptions above each line refer to which interpretation from Section 5.5.1
applies.
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5.5.2 Dissimilar Datasets: Splitting Man-made and

Natural Classes Into Separate Datasets

As mentioned previously, the effectiveness of feature transfer is expected to de-

cline as the base and target tasks become less similar. We test this hypothesis

by comparing transfer performance on similar datasets (the random A/B splits

discussed above) to that on dissimilar datasets, created by assigning man-made

object classes to A and natural object classes to B. This man-made/natural split

creates datasets as dissimilar as possible within the ImageNet dataset.

The upper-left subplot of Figure 5.3 shows the accuracy of a baseA and baseB

network (white circles) and BnA and AnB networks (orange hexagons). Lines join

common target tasks. The upper of the two lines contains those networks trained

toward the target task containing natural categories (baseB and AnB). These

networks perform better than those trained toward the man-made categories, which

may be due to having only 449 classes instead of 551, or simply being an easier

task, or both.

5.5.3 Random Weights

We also compare to random, untrained weights because Jarrett et al. (2009) showed

— quite strikingly — that the combination of random convolutional filters, rec-

tification, pooling, and local normalization can work almost as well as learned

features. They reported this result on relatively small networks of two or three

learned layers and on the smaller Caltech-101 dataset (Fei-Fei et al., 2004). It is

natural to ask whether or not the nearly optimal performance of random filters
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they report carries over to a deeper network trained on a larger dataset.

The upper-right subplot of Figure 5.3 shows the accuracy obtained when using

random filters for the first n layers for various choices of n. Performance falls off

quickly in layers 1 and 2, and then drops to near-chance levels for layers 3+, which

suggests that getting random weights to work in convolutional neural networks

may not be as straightforward as it was for the smaller network size and smaller

dataset used by Jarrett et al. (2009). However, the comparison is not straightfor-

ward. Whereas our networks have max pooling and local normalization on layers

1 and 2, just as Jarrett et al. (2009) did, we use a different nonlinearity (relu(x)

instead of abs(tanh(x))), different layer sizes and number of layers, as well as other

differences. Additionally, their experiment only considered two layers of random

weights. The hyperparameter and architectural choices of our network collectively

provide one new datapoint, but it may well be possible to tweak layer sizes and ran-

dom initialization details to enable much better performance for random weights.5

The bottom subplot of Figure 5.3 shows the results of the experiments of the

previous two sections after subtracting the performance of their individual base

cases. These normalized performances are plotted across the number of layers n

that are either random or were trained on a different, base dataset. This compar-

ison makes two things apparent. First, the transferability gap when using frozen

features grows more quickly as n increases for dissimilar tasks (hexagons) than

similar tasks (diamonds), with a drop by the final layer for similar tasks of only

8% vs. 25% for dissimilar tasks. Second, transferring even from a distant task is

better than using random filters. One possible reason this latter result may differ

from Jarrett et al. (2009) is because their fully-trained (non-random) networks
5For example, the training loss of the network with three random layers failed to converge,

producing only chance-level validation performance. Much better convergence may be possible
with different hyperparameters.
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Figure 5.3: Performance degradation vs. layer. Top left : Degradation when trans-
ferring between dissimilar tasks (from man-made classes of ImageNet to natural
classes or vice versa). The upper line connects networks trained to the “natu-
ral” target task, and the lower line connects those trained toward the “man-made”
target task. Top right : Performance when the first n layers consist of random,
untrained weights. Bottom: The top two plots compared to the random A/B split
from Section 5.5.1 (red diamonds), all normalized by subtracting their base level
performance.

were overfitting more on the smaller Caltech-101 dataset than ours on the larger

ImageNet dataset, making their random filters perform better by comparison. In

the supplementary material, we provide an extra experiment indicating the extent

to which our networks are overfit.
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5.6 Training Details

Since Krizhevsky et al. (2012) won the ImageNet 2012 competition, there has

naturally been much interest and work toward tweaking hyperparameters of large

convolutional models. For example, Zeiler and Fergus (2013) found that it is better

to decrease the first layer filters sizes from 11 × 11 to 7 × 7 and to use a smaller

stride of 2 instead of 4. However, because this study aims not for maximum

absolute performance but to use a commonly studied architecture, we used the

reference implementation provided by Caffe (Jia et al., 2014). We followed Donahue

et al. (2013a) in making a few minor departures from Krizhevsky et al. (2012)

when training the convnets in this study. We skipped the data augmentation

trick of adding random multiples of principle components of pixel RGB values,

which produced only a 1% improvement in the original paper, and instead of

scaling to keep the aspect ratio and then cropping, we warped images to 256×256.

We also placed the Local Response Normalization layers just after the pooling

layers, instead of before them. As in previous studies, including Krizhevsky et al.

(2012), we use dropout (Hinton et al., 2012) on fully connected layers except for

the softmax output layer.

We trained with stochastic gradient descent (SGD) with momentum. Each

iteration of SGD used a batch size of 256, a momentum of 0.9, and a multiplicative

weight decay (for those weights with weight decay enabled, i.e. not for frozen

weights) of 0.0005 per iteration. The master learning rate started at 0.01, and

annealed over the course of training by dropping by a factor of 10 every 100,000

iterations. Learning stopped after 450,000 iterations. Each iteration took about

∼1.7 seconds on a NVidia K20 GPU, meaning the whole training procedure for a

single network took ∼9.5 days.
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Our base model attains a final top-1 error on the validation set of 42.5%,

about the same as the 42.9% reported by Donahue et al. (2013a) and 1.8% worse

than Krizhevsky et al. (2012), the latter difference probably due to the few minor

training differences explained above. We checked these values only to demonstrate

that the network was converging reasonably. As our goal is not to improve the

state of the art, but to investigate the properties of transfer, small differences in

raw performance are not of concern.

Because code is often more clear than text, we’ve also made all code

and parameter files necessary to reproduce these experiments available at

http://yosinski.com/transfer.

5.7 How Much Does an AlexNet Architecture Overfit?

We observed relatively poor performance of random filters in an AlexNet archi-

tecture (Krizhevsky et al., 2012) trained on ImageNet, which is in contrast to

previously reported successes with random filters in a smaller convolutional net-

works trained on the smaller Caltech-101 dataset (Jarrett et al., 2009). One

hypothesis presented earlier in this chapter is that this difference is observed

because ImageNet is large enough to support training an AlexNet architecture

without excessive overfitting. We sought to support or disprove this hypothe-

sis by creating reduced size datasets containing the same 1000 classes as Im-

ageNet, but where each class contained a maximum of n examples, for each

n ∈ {1300, 1000, 750, 500, 250, 100, 50, 25, 10, 5, 2, 1}. The case of n = 1300 is the

complete ImageNet dataset.

Because occupying a whole GPU for this long was infeasible given our available
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Figure 5.4: Top-1 validation accuracy for networks trained on datasets containing
reduced numbers of examples. The largest dataset contains the entire ILSVRC2012
(Deng et al., 2009) release with a maximum of 1300 examples per class, and the
smallest dataset contains only 1 example per class (1000 data points in total).
Top: linear axes. The slope of the rightmost line segment between 1000 and 1300
is nearly zero, indicating that the amount of overfit is slight. In this region the
validation accuracy rises by 0.010820 from 0.54094 to 0.55176. Bottom: logarithmic
axes. It is interesting to note that even the networks trained on a single example
per class or two examples per class manage to attain 3.8% or 4.4% accuracy,
respectively. Networks trained on {5,10,25,50,100} examples per class exhibit poor
convergence and attain only chance level performance.

computing resources, we also devised a set of hyperparameters to allow faster

learning by boosting the learning rate by 25% to 0.0125, annealing by a factor

of 10 after only 64,000 iterations, and stopping after 200,000 iterations. These

selections were made after looking at the learning curves for the base case and
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estimating at which points learning had plateaued and thus annealing could take

place. This faster training schedule was only used for the experiments in this

section. Each run took just over 4 days on a K20 GPU.

Table 5.2: An enumeration of the points in Figure 5.4 for clarity.

Number Top-1
of examples validation

per class accuracy
1300 0.55176
1000 0.54094
750 0.51470
500 0.47568
250 0.38428
100 0.00110
50 0.00111
25 0.00107
10 0.00106
5 0.00108
2 0.00444
1 0.00379

The results of this experiment are shown in Figure 5.4 and Table 5.2. The

rightmost few points in the top subplot of Figure 5.4 appear to converge, or nearly

converge, to an asymptote, suggesting that validation accuracy would not improve

significantly when using an AlexNet model with much more data, and thus, that

the degree of overfit is not severe.

5.8 Details of Man-made vs. Natural Split

In order to compare transfer performance between tasks A and B such that A and

B are as semantically dissimilar as possible, we sought to find two disjoint subsets

of the 1000 classes in ImageNet that were as unrelated as possible. To this end we
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annotated each node xi in the WordNet graph with a label ni such that ni is the

number of distinct ImageNet classes reachable by starting at xi and traversing the

graph only in the parent → child direction. The 20 nodes with largest ni are the

following:

n_i x_i

1000 n00001740: entity

997 n00001930: physical entity

958 n00002684: object, physical object

949 n00003553: whole, unit

522 n00021939: artifact, artefact

410 n00004475: organism, being

410 n00004258: living thing, animate thing

398 n00015388: animal, animate being, beast, brute, creature, fauna

358 n03575240: instrumentality, instrumentation

337 n01471682: vertebrate, craniate

337 n01466257: chordate

218 n01861778: mammal, mammalian

212 n01886756: placental, placental mammal, eutherian, eutherian mammal

158 n02075296: carnivore

130 n03183080: device

130 n02083346: canine, canid

123 n01317541: domestic animal, domesticated animal

118 n02084071: dog, domestic dog, Canis familiaris

100 n03094503: container

90 n03122748: covering

Starting from the top, we can see that the largest subset, entity, contains

all 1000 ImageNet categories. Moving down several items, the first subset we
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encounter containing approximately half of the classes is artifact with 522 classes.

The next is organism with 410. Fortunately for this study, it just so happens that

these two subsets are mutually exclusive, so we used the first to populate our

man-made category and the second to populate our natural category. There are

1000−522−410 = 68 classes remaining outside these two subsets, and we manually

assigned these to either category as seemed more appropriate. For example, we

placed pizza, cup, and bagel into man-made and strawberry, volcano, and

banana into natural. This process results in 551 and 449 classes, respectively. The

68 manual decisions are shown below, and the complete list of 551 man-made and

449 natural classes is available at http://yosinski.com/transfer.
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Classes manually placed into the man-made category:

n07697537 hotdog, hot dog, red hot

n07860988 dough

n07875152 potpie

n07583066 guacamole

n07892512 red wine

n07614500 ice cream, icecream

n09229709 bubble

n07831146 carbonara

n07565083 menu

n07871810 meat loaf, meatloaf

n07693725 bagel, beigel

n07920052 espresso

n07590611 hot pot, hotpot

n07873807 pizza, pizza pie

n07579787 plate

n06874185 traffic light, traffic signal, stoplight

n07836838 chocolate sauce, chocolate syrup

n15075141 toilet tissue, toilet paper, bathroom tissue

n07613480 trifle

n07880968 burrito

n06794110 street sign

n07711569 mashed potato

n07932039 eggnog

n07695742 pretzel

n07684084 French loaf

n07697313 cheeseburger

n07615774 ice lolly, lolly, lollipop, popsicle

n07584110 consomme

n07930864 cup

Classes manually placed into the natural category:
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n13133613 ear, spike, capitulum

n07745940 strawberry

n07714571 head cabbage

n09428293 seashore, coast, seacoast, sea-coast

n07753113 fig

n07753275 pineapple, ananas

n07730033 cardoon

n07749582 lemon

n07742313 Granny Smith

n12768682 buckeye, horse chestnut, conker

n07734744 mushroom

n09246464 cliff, drop, drop-off

n11879895 rapeseed

n07718472 cucumber, cuke

n09468604 valley, vale

n07802026 hay

n09288635 geyser

n07720875 bell pepper

n07760859 custard apple

n07716358 zucchini, courgette

n09332890 lakeside, lakeshore

n09193705 alp

n09399592 promontory, headland, head, foreland

n07717410 acorn squash

n07717556 butternut squash

n07714990 broccoli

n09256479 coral reef

n09472597 volcano

n07747607 orange

n07716906 spaghetti squash

n12620546 hip, rose hip, rosehip

n07768694 pomegranate

n12267677 acorn
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n12144580 corn

n07718747 artichoke, globe artichoke

n07753592 banana

n09421951 sandbar, sand bar

n07715103 cauliflower

n07754684 jackfruit, jak, jack

5.9 Conclusions

We have demonstrated a method for quantifying the transferability of features

from each layer of a neural network, which reveals their generality or specificity.

We showed how transferability is negatively affected by two distinct issues: op-

timization difficulties related to splitting networks in the middle of fragilely co-

adapted layers and the specialization of higher layer features to the original task

at the expense of performance on the target task. We observed that either of these

two issues may dominate, depending on whether features are transferred from the

bottom, middle, or top of the network. We also quantified how the transferability

gap grows as the distance between tasks increases, particularly when transferring

higher layers, but found that even features transferred from distant tasks are better

than random weights. Finally, we found that initializing with transferred features

can improve generalization performance even after substantial fine-tuning on a

new task, which could be a generally useful technique for improving deep neural

network performance.
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CHAPTER 6

UNDERSTANDING NEURAL NETWORKS THROUGH DEEP

VISUALIZATION

6.1 Introduction

Recent years have produced great advances in training large, deep neural net-

works (DNNs), including notable successes in training convolutional neural net-

works (convnets) to recognize natural images. However, our understanding of how

these models work, especially what computations they perform at intermediate

layers, has lagged behind. Progress in the field will be further accelerated by the

development of better tools for visualizing and interpreting neural nets. We intro-

duce two such tools here. The first is a tool that visualizes the activations produced

on each layer of a trained convnet as it processes an image or video (e.g. a live

webcam stream). We have found that looking at live activations that change in

response to user input helps build valuable intuitions about how convnets work.

The second tool enables visualizing features at each layer of a DNN via regularized

optimization in image space. Because previous versions of this idea produced less

recognizable images, here we introduce several new regularization methods that

combine to produce qualitatively clearer, more interpretable visualizations. Both

tools are open source and work on a pre-trained convnet with minimal setup.

6.2 Background

The last several years have produced tremendous progress in training powerful,

deep neural network models that are approaching and even surpassing human
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abilities on a variety of challenging machine learning tasks (Taigman et al., 2014;

Schroff et al., 2015; Hannun et al., 2014). A flagship example is training deep,

convolutional neural networks (CNNs) with supervised learning to classify natural

images (Krizhevsky et al., 2012). That area has benefitted from the combined

effects of faster computing (e.g. GPUs), better training techniques (e.g. dropout

(Hinton et al., 2012)), better activation units (e.g. rectified linear units (Glorot

et al., 2011)), and larger labeled datasets (Deng et al., 2009; Lin et al., 2014).

While there has thus been considerable improvements in our knowledge of how

to create high-performing architectures and learning algorithms, our understanding

of how these large neural models operate has lagged behind. Neural networks have

long been known as “black boxes” because it is difficult to understand exactly

how any particular, trained neural network functions due to the large number of

interacting, non-linear parts. Large modern neural networks are even harder to

study because of their size; for example, understanding the widely-used AlexNet

DNN involves making sense of the values taken by the 60 million trained network

parameters. Understanding what is learned is interesting in its own right, but

it is also one key way of further improving models: the intuitions provided by

understanding the current generation of models should suggest ways to make them

better. For example, the deconvolutional technique for visualizing the features

learned by the hidden units of DNNs suggested an architectural change of smaller

convolutional filters that led to state of the art performance on the ImageNet

benchmark in 2013 (Zeiler and Fergus, 2013).

We also note that tools that enable understanding will especially benefit the

vast numbers of newcomers to deep learning, who would like to take advantage

of off-the-shelf software packages — like Theano (Bergstra et al., 2010), Pylearn2
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(Goodfellow et al., 2013), Caffe (Jia et al., 2014), and Torch (Collobert et al., 2011)

— in new domains, but who may not have any intuition for why their models work

(or do not). Experts can also benefit as they iterate ideas for new models or

when they are searching for good hyperparameters. We thus believe that both

experts and newcomers will benefit from tools that provide intuitions about the

inner workings of DNNs. This chapter provides two such tools, both of which are

open source so that scientists and practitioners can integrate them with their own

DNNs to better understand them.

The first tool is software that interactively plots the activations produced on

each layer of a trained DNN for user-provided images or video. Static images afford

a slow, detailed investigation of a particular input, whereas video input highlights

the DNNs changing responses to dynamic input. At present, the videos are pro-

cessed live from a user’s computer camera, which is especially helpful because users

can move different items around the field of view, occlude and combine them, and

perform other manipulations to actively learn how different features in the network

respond.

The second tool we introduce enables better visualization of the learned features

computed by individual neurons at every layer of a DNN. Seeing what features have

been learned is important both to understand how current DNNs work and to fuel

intuitions for how to improve them.

Attempting to understand what computations are performed at each layer in

DNNs is an increasingly popular direction of research. One approach is to study

each layer as a group and investigate the type of computation performed by the

set of neurons on a layer as a whole (Yosinski et al., 2014; Mahendran and Vedaldi,

2014). This approach is informative because the neurons in a layer interact with
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each other to pass information to higher layers, and thus each neuron’s contribution

to the entire function performed by the DNN depends on that neuron’s context in

the layer.

Another approach is to try to interpret the function computed by each indi-

vidual neuron. Past studies in this vein roughly divide into two different camps:

dataset-centric and network-centric. The former requires both a trained DNN and

running data through that network; the latter requires only the trained network

itself. One dataset-centric approach is to display images from the training or test

set that cause high or low activations for individual units. Another is the decon-

volution method of Zeiler and Fergus (2013), which highlights the portions of a

particular image that are responsible for the firing of each neural unit.

Network-centric approaches investigate a network directly without any data

from a dataset. For example, Erhan et al. (2009b) synthesized images that cause

high activations for particular units. Starting with some initial input x = x0, the

activation ai(x) caused at some unit i by this input is computed, and then steps are

taken in input space along the gradient ∂ai(x)/∂x to synthesize inputs that cause

higher and higher activations of unit i, eventually terminating at some x∗ which is

deemed to be a preferred input stimulus for the unit in question. In the case where

the input space is an image, x∗ can be displayed directly for interpretation. Others

have followed suit, using the gradient to find images that cause higher activations

(Simonyan et al., 2013; Nguyen et al., 2015) or lower activations (Szegedy et al.,

2013) for output units.

These gradient-based approaches are attractive in their simplicity, but the op-

timization process tends to produce images that do not greatly resemble natural

images. Instead, they are composed of a collection of “hacks” that happen to

106



cause high (or low) activations: extreme pixel values, structured high frequency

patterns, and copies of common motifs without global structure (Simonyan et al.,

2013; Nguyen et al., 2015; Szegedy et al., 2013; Goodfellow et al., 2014). The

fact that activations may be effected by such hacks is better understood thanks

to several recent studies. Specifically, it has been shown that such hacks may be

applied to correctly classified images to cause them to be misclassified even via

imperceptibly small changes (Szegedy et al., 2013), that such hacks can be found

even without the gradient information to produce unrecognizable “fooling exam-

ples” (Nguyen et al., 2015), and that the abundance of non-natural looking images

that cause extreme activations can be explained by the locally linear behavior of

neural nets (Goodfellow et al., 2014).

With such strong evidence that optimizing images to cause high activations pro-

duces unrecognizable images, is there any hope of using such methods to obtain

useful visualizations? It turns out there is, if one is able to appropriately regularize

the optimization. Simonyan et al. (2013) showed that slightly discernible images for

the final layers of a convnet could be produced with L2-regularization. Mahendran

and Vedaldi (2014) also showed the importance of incorporating natural-image pri-

ors in the optimization process when producing images that mimic an entire-layer’s

firing pattern produced by a specific input image. We build on these works and

contribute three additional forms of regularization that, when combined, produce

more recognizable, optimization-based samples than previous methods. Because

the optimization is stochastic, by starting at different random initial images, we

can produce a set of optimized images whose variance provides information about

the invariances learned by the unit.

To summarize, this chapter makes the following two contributions:
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1. We describe and release a software tool that provides a live, interactive visual-

ization of every neuron in a trained convnet as it responds to a user-provided

image or video. The tool displays forward activation values, preferred stimuli

via gradient ascent, top images for each unit from the training set, deconv

highlighting (Zeiler and Fergus, 2013) of top images, and backward diffs com-

puted via backprop or deconv starting from arbitrary units. The combined

effect of these complementary visualizations promotes a greater understand-

ing of what a neuron computes than any single method on its own. We also

describe a few insights we have gained from using this tool. (Section 6.3).

2. We extend past efforts to visualize preferred activation patterns in input

space by adding several new types of regularization, which produce what

we believe are the most interpretable images for large convnets so far (Sec-

tion 6.4).

Both of our tools are released as open source and are available at

http://yosinski.com/deepvis. While the tools could be adapted to integrate

with any DNN software framework, they work out of the box with the popular Caffe

DNN software package (Jia et al., 2014). Users may run visualizations with their

own Caffe DNN or our pre-trained DNN, which comes with pre-computed images

optimized to activate each neuron in this trained network. Our pre-trained net-

work is nearly identical to the “AlexNet” architecture (Krizhevsky et al., 2012), but

with local reponse normalization layers after pooling layers following (Jia et al.,

2014). It was trained with the Caffe framework on the ImageNet 2012 dataset

(Deng et al., 2009).
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Figure 6.1: The bottom shows a screenshot from the interactive visualization software. The
webcam input is shown, along with the whole layer of conv5 activations. The selected channel
pane shows an enlarged version of the 13x13 conv5151 channel activations. Below it, the deconv
starting at the selected channel is shown. On the right, three selections of nine images are
shown: synthetic images produced using the regularized gradient ascent methods described in
Section 6.4, the top 9 image patches from the training set and the deconv of the those top 9
images. All areas highlighted with a green star relate to the particular selected channel, here
conv5151; when the selection changes, these panels update. The top depicts enlarged numerical
optimization results for this and other channels. conv52 is a channel that responds most strongly
to dog faces (as evidenced by the top nine images, which are not shown due to space constraints),
but it also responds to flowers on the blanket on the bottom and half way up the right side of the
image (as seen in the inset red highlight). This response to flowers can be partially seen in the
optimized images but would be missed in an analysis focusing only on the top nine images and
their deconv versions, which contain no flowers. conv5151 detects different types of faces. The
top nine images are all of human faces, but here we see it responds also to the cat’s face (and
in Figure 6.2 a lion’s face). Finally, conv5111 activates strongly for the cat’s face, the optimized
images show catlike fur and ears, and the top nine images (not shown here) are also all of cats.
For this image, the softmax output layer top two predictions are “Egyptian Cat” and “Computer
Keyboard.” All figures in this chapter are best viewed digitally, in color, significantly zoomed in.
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6.3 Visualizing Live Convnet Activations

Our first visualization method is straightforward: plotting the activation values

for the neurons in each layer of a convnet in response to an image or video. In

fully connected neural networks, the order of the units is irrelevant, so plots of

these vectors are not spatially informative. However, in convolutional networks,

filters are applied in a way that respects the underlying geometry of the input; in

the case of 2D images, filters are applied in a 2D convolution over the two spatial

dimensions of the image. This convolution produces activations on subsequent

layers that are, for each channel, also arranged spatially.

Figure 6.1 shows examples of this type of plot for the conv5 layer. The conv5

layer has size 256×13×13, which we depict as 256 separate 13×13 grayscale images.

Each of the 256 small images contains activations in the same spatial x-y spatial

layout as the input data, and the 256 images are simply and arbitrarily tiled into

a 16×16 grid in row-major order. Figure 6.2 shows a zoomed in view of one

particular channel, conv5151, that responds to human and animal faces. All layers

can be viewed in the software tool, including pooling and normalization layers.

Visualizing these layers provides intuitions about their effects and functions.

Although this visualization is simple to implement, we find it informative be-

cause all data flowing through the network can be visualized. There is nothing

mysterious happening behind the scenes. Because this convnet contains only a

single path from input to output, every layer is a bottleneck through which all

information must pass en-route to a classification decision. The layer sizes are all

small enough that any one layer can easily fit on a computer screen.1 So far, we
1The layer with the most activations is conv1 which, when tiled, is only 550x550 before adding

padding.
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have gleaned several surprising intuitions from using the tool:

• One of the most interesting conclusions so far has been that representations

on some layers seem to be surprisingly local. Instead of finding distributed

representations on all layers, we see, for example, detectors for text, flowers,

fruit, and faces on conv4 and conv5. These conclusions can be drawn either

from the live visualization or the optimized images (or, best, by using both

in concert) and suggest several directions for future research (discussed in

Section 6.6).

• When using direct file input to classify photos from Flickr or Google Images,

classifications are often correct and highly confident (softmax probability for

correct class near 1). On the other hand, when using input from a webcam,

predictions often cannot be correct because no items from the training set are

shown in the image. The training set’s 1000 classes, though numerous, do not

cover most common household objects. Thus, when shown a typical webcam

view of a person with no ImageNet classes present, the output has no single

high probability, as is expected. Surprisingly, however, this probability vector

is noisy and varies significantly in response to tiny changes in the input, often

changing merely in response to the noise from the webcam. We might have

instead expected unchanging and low confidence predictions for a given scene

when no object the network has been trained to classify is present. Plotting

the fully connected layers (fc6 and fc7) also reveals a similar sensitivity to

small input changes.

• Although the last three layers are sensitive to small input changes, much of

the lower layer computation is more robust. For example, when visualizing

the conv5 layer, one can find many invariant detectors for faces, shoulders,
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text, etc. by moving oneself or objects in front of the camera. Even though

the 1000 classes contain no explicitly labeled faces or text, the network learns

to identify these concepts simply because they represent useful partial infor-

mation for making a later classification decision. One face detector, denoted

conv5151 (channel number 151 on conv5), is shown in Figure 6.2 activating

for human and lion faces and in Figure 6.1 activating for a cat face. Zhou

et al. (2014) recently observed a similar effect where convnets trained only

to recognize different scene types — playgrounds, restaurant patios, living

rooms, etc. — learn object detectors (e.g. for chairs, books, and sofas) on

intermediate layers.

The reader is encouraged to try this visualization tool out for him or herself.

The code, together with pre-trained models and images synthesized by gradient

ascent, can be downloaded at http://yosinski.com/deepvis.
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Figure 6.2: A view of the 13×13 activations of the 151st channel on the conv5 layer
of a deep neural network trained on ImageNet, a dataset that does not contain
a face class, but does contain many images with faces. The channel responds to
human and animal faces and is robust to changes in scale, pose, lighting, and con-
text, which can be discerned by a user by actively changing the scene in front of a
webcam or by loading static images (e.g. of the lions) and seeing the correspond-
ing response of the unit. Photo of lions via Flickr user arnolouise, licensed under
Creative Commons BY-NC-SA 2.0.

113



6.4 Visualizing via Regularized Optimization

The second contribution of this work is introducing several regularization methods

to bias images found via optimization toward more visually interpretable examples.

While each of these regularization methods helps on its own, in combination they

are even more effective. We found useful combinations via a random hyperparam-

eter search, as discussed below.

Formally, consider an image x ∈ RC×H×W , where C = 3 color channels and the

height (H) and width (W ) are both 227 pixels. When this image is presented to a

neural network, it causes an activation ai(x) for some unit i, where for simplicity

i is an index that runs over all units on all layers. We also define a parameterized

regularization function Rθ(x) that penalizes images in various ways.

Our network was trained on ImageNet by first subtracting the per-pixel mean

of examples in ImageNet before inputting training examples to the network. Thus,

the direct input to the network, x, can be thought of as a zero-centered input. We

may pose the optimization problem as finding an image x∗ where

x∗ = argmax
x

(ai(x)−Rθ(x)) (6.1)

In practice, we use a slightly different formulation. Because we search for x∗ by

starting at some x0 and taking gradient steps, we instead define the regularization

via an operator rθ(·) that maps x to a slightly more regularized version of itself.

This latter definition is strictly more expressive, allowing regularization operators

rθ that are not the gradient of any Rθ. This method is easy to implement within

a gradient descent framework by simply alternating between taking a step toward
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the gradient of ai(x) and taking a step in the direction given by rθ. With a gradient

descent step size of η, a single step in this process applies the update:

x← rθ

(
x+ η

∂ai
∂x

)
(6.2)

We investigated the following four regularizations. All are designed to overcome

different pathologies commonly encountered by gradient descent without regular-

ization.

L2 decay: A common regularization, L2 decay penalizes large values and is

implemented as rθ(x) = (1 − θdecay) · x. L2 decay tends to prevent a small num-

ber of extreme pixel values from dominating the example image. Such extreme

single-pixel values neither occur naturally with great frequency nor are useful for

visualization. L2 decay was also used by Simonyan et al. (2013).

Gaussian blur: Producing images via gradient ascent tends to produce

examples with high frequency information (see Section 6.5 for a possible rea-

son). While these images cause high activations, they are neither realistic nor

interpretable (Nguyen et al., 2015). A useful regularization is thus to penal-

ize high frequency information. We implement this as a Gaussian blur step

rθ(x) = GaussianBlur(x, θb_width). Convolving with a blur kernel is more compu-

tationally expensive than the other regularization methods, so we added another

hyperparameter θb_every to allow, for example, blurring every several optimization

steps instead of every step. Blurring an image multiple times with a small width

Gaussian kernel is equivalent to blurring once with a larger width kernel, and the

effect will be similar even if the image changes slightly during the optimization

process. This technique thus lowers computational costs without limiting the ex-
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pressiveness of the regularization. Mahendran and Vedaldi (2014) used a penalty

with a similar effect to blurring, called total variation, in their work reconstructing

images from layer codes.

Clipping pixels with small norm: The first two regularizations suppress

high amplitude and high frequency information, so after applying both, we are left

with an x∗ that contains somewhat small, somewhat smooth values. However, x∗

will still tend to contain non-zero pixel values everywhere. Even if some pixels in

x∗ show the primary object or type of input causing the unit under consideration

to activate, the gradient with respect to all other pixels in x∗ will still generally be

non-zero, so these pixels will also shift to show some pattern as well, contributing

in whatever small way they can to ultimately raise the chosen unit’s activation. We

wish to bias the search away from such behavior and instead show only the main

object, letting other regions be exactly zero if they are not needed. We implement

this bias using an rθ(x) that computes the norm of each pixel (over red, green, and

blue channels) and then sets any pixels with small norm to zero. The threshold

for the norm, θn_pct, is specified as a percentile of all pixel norms in x.

Clipping pixels with small contribution: Instead of clipping pixels with

small norms, we can try something slightly smarter and clip pixels with small con-

tributions to the activation. One way of computing a pixel’s contribution to an

activation is to measure how much the activation increases or decreases when the

pixel is set to zero; that is, to compute the contribution as |ai(x)−ai(x−j)|, where

x−j is x but with the jth pixel set to zero. This approach is straightforward but

prohibitively slow, requiring a forward pass for every pixel. Instead, we approx-

imate this process by linearizing ai(x) around x, in which case the contribution

of each dimension of x can be estimated as the elementwise product of x and
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Figure 6.3: The effects of each regularization method from Section 6.4 when used
individually. Each of the four rows shows a linear sweep in hyperparameter space
from no regularization (left) to strong regularization (right). When applied too
strongly, some regularizations cause the optimization to fail (e.g. L2 decay, top
row) or the images to be less interpretable (small norm and small contribution
clipping, bottom two rows). For this reason, a random hyperparameter search
was useful for finding joint hyperparameter settings that worked well together (see
Figure 6.4). Best viewed electronically, zoomed in.

the gradient. We then sum over all three channels and take the absolute value,

computing |
∑

c x ◦ ∇xai(x)|. We use the absolute value to find pixels with small

contribution in either direction, positive or negative. While we could choose to

keep the pixel transitions where setting the pixel to zero would result in a large

activation increase, these shifts are already handled by gradient ascent, and here

we prefer to clip only the pixels that are deemed not to matter, not to take large

gradient steps outside the region where the linear approximation is most valid.

We define this rθ(x) as the operation that sets pixels with contribution under the

θc_pct percentile to zero.
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Table 6.1: Four hyperparameter combinations that produce different styles of rec-
ognizable images. We identified these four after reviewing images produced by 300
randomly selected hyperparameter combinations. From top to bottom, they are
the hyperparameter combinations that produced the top-left, top-right, bottom-
left, and bottom-right Gorilla class visualizations, respectively, in Figure 6.4. The
third row hyperparameters produced most of the visualizations for the other classes
in Figure 6.4, and all of those in Figure 6.5.

θdecay θb_width θb_every θn_pct θc_pct

0 0.5 4 50 0
0.3 0 0 20 0

0.0001 1.0 4 0 0
0 0.5 4 0 90

If the above regularization methods are applied individually, they are some-

what effective at producing more interpretable images; Figure 6.3 shows the effects

of each individual hyperparameter. However, preliminary experiments uncovered

that their combined effect produces better visualizations. To pick a reasonable

set of hyperparameters for all methods at once, we ran a random hyperparame-

ter search of 300 possible combinations and settled on four that complement each

other well. The four selected combinations are listed in Table 6.1 and optimized

images using each are shown for the “Gorilla” class output unit in Figure 6.4. Of

the four, some show high frequency information, others low frequency; some con-

tain dense pixel data, and others contain only sparse outlines of important regions.

We found the version in the lower-left quadrant to be the best single set of hyper-

parameters, but often greater intuition can be gleaned by considering all four at

once. Figure 6.5 shows the optimization results computed for a selection of units

on all layers. A single image for every filter of all five convolutional layers is shown

in Figure 6.6. Nine images for each filter of all layers, including each of the 1000

ImageNet output classes, can be viewed at http://yosinski.com/deepvis.

118

http://yosinski.com/deepvis


Figure 6.4: Visualizations of the preferred inputs for different class units on layer
fc8, the 1000-dimensional output of the network just before the final softmax. In
the lower left are 9 visualizations each (in 3×3 grids) for four different sets of reg-
ularization hyperparameters for the Gorilla class (Table 6.1). For all other classes,
we have selected four interpretable visualizations produced by our regularized op-
timization method. We chose the four combinations of regularization hyperparam-
eters by performing a random hyperparameter search and selecting combinations
that complement each other. For example, the lower left quadrant tends to show
lower frequency patterns, the upper right shows high frequency patterns, and the
upper left shows a sparse set of important regions. Often greater intuition can be
gleaned by considering all four at once. In nearly every case, we have found that
one can guess what class a neuron represents by viewing sets of these optimized,
preferred images. Best viewed electronically, zoomed in.
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Figure 6.5: Visualization of example features of eight layers of a deep, convolu-
tional neural network. The images reflect the true sizes of the features at different
layers. In each layer, we show visualizations from 4 random gradient descent runs
for each channel. While these images are hand picked to showcase the diversity
and interpretability of the visualizations, for completeness one image for each filter
of all five convolutional layers is shown in Figure 6.6. One can recognize impor-
tant features of objects at different scales, such as edges, corners, wheels, eyes,
shoulders, faces, handles, bottles, etc. The visualizations show the increase in
complexity and variation on higher layers, comprised of simpler components from
lower layers. The variation of patterns increases with increasing layer number, in-
dicating that increasingly invariant representations are learned. In particular, the
jump from Layer 5 (the last convolution layer) to Layer 6 (the first fully-connected
layer) brings about a large increase in variation. Best viewed electronically, zoomed
in.
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Figure 6.6: One optimized, preferred image for every channel of all five convolu-
tional layers. These images were produced with the hyperparameter combinations
from the third row of Table 6.1. Best viewed electronically, zoomed in.

121



6.5 Aside: Why are gradient optimized images dominated

by high frequencies?

In this chapter we mentioned that images produced by gradient ascent to maximize

the activations of neurons in convolutional networks tend to be dominated by high

frequency information (cf. the left column of Figure 6.3). One hypothesis for why

this occurs centers around the differing statistics of the activations of channels in

a convnet. The conv1 layer consists of blobs of color and oriented Gabor edge

filters of varying frequencies. The average activation values (after the rectifier) of

the edge filters vary across filters, with low frequency filters generally having much

higher average activation values than high frequency filters. In one experiment we

observed that the average activation values2 of the five lowest frequency edge filters

was 90 versus an average for the five highest frequency filters of 5.4, a difference

of a factor of 17 (see also Li et al. (2016) and Chapter A). The activation values

for blobs of color generally fall in the middle of the range. This phenomenon likely

arises for reasons related to the 1/f power spectrum of natural images in which

low spatial frequencies tend to contain higher energy than high spatial frequencies

(Torralba and Oliva, 2003).

Now consider the connections from the conv1 filters to a single unit on conv2.

In order to merge information from both low frequency and high frequency conv1

filters, the connection weights from high frequency conv1 units may generally have

to be larger than connections from low frequency conv1 units in order to allow both

signals to affect the conv2 unit’s activation similarly. If this is the case, then due to

the larger multipliers, the activation of this particular conv2 unit is affected more
2Activation values are averaged over the ImageNet validation set, over all spatial positions,

over the channels with the five {highest, lowest} frequencies, and over four separately trained
networks.
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by small changes in the activations of high frequency filters than low frequency

filters. Seen in the other direction: when gradient information is passed from

higher layers to lower layers during backprop, the partial derivative arriving at

this conv2 unit (a scalar) will be passed backward and multiplied by larger values

when destined for high frequency conv1 filters than low frequency filters. Thus,

following the gradient in pixel space may tend to produce an overabundance of

high frequency changes instead of low frequency changes.

The above discussion focuses on the differing statistics of edge filters in conv1,

but note that activation statistics on subsequent layers also vary across each layer.3

This may produce a similar (though more subtle to observe) effect in which rare

higher layer features are also overrepresented compared to more common higher

layer features.

Of course, this hypothesis is only one tentative explanation for why high fre-

quency information dominates the gradient. It relies on the assumption that the

average activation of a unit is a representative statistic of the whole distribution

of activations for that unit. In our observation this has been the case, with most

units having similar, albeit scaled, distributions. However, more study is needed

before a definitive conclusion can be reached.

6.6 Discussion and Conclusion

We have introduced two visual tools for aiding in the interpretation of trained

neural nets. Intuition gained from these tools may prompt ideas for improved
3We have observed that statistics vary on higher layers, but in a different manner: most

channels on these layers have similar average activations, with most of the variance across channels
being dominated by a small number of channels with unusually small or unusually large averages.
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methods and future research. Here we discuss several such ideas.

The interactive tool reveals that representations on later convolutional layers

tend to be somewhat local, where channels correspond to specific, natural parts

(e.g. wheels, faces) instead of being dimensions in a completely distributed code.

That said, not all features correspond to natural parts, raising the possibility of a

different decomposition of the world than humans might expect. These visualiza-

tions suggest that further study into the exact nature of learned representations

— whether they are local to a single channel or distributed across several — is

likely to be interesting (see Zhou et al. (2014) for work in this direction). The lo-

cality of the representation also suggests that during transfer learning, when new

models are trained atop the conv4 or conv5 representations, a bias toward sparse

connectivity could be helpful because it may be necessary to combine only a few

features from these layers to create important features at higher layers.

The second tool — new regularizations that enable improved, interpretable, op-

timized visualizations of learned features — will help researchers and practitioners

understand, debug, and improve their models. The visualizations also reveal a new

twist in an ongoing story. Previous studies have shown that discriminative net-

works can easily be fooled or hacked by the addition of certain structured noise in

image space (Szegedy et al., 2013; Nguyen et al., 2015). An oft-cited reason for this

property is that discriminative training leads networks to ignore non-discriminative

information in their input, e.g. learning to detect jaguars by matching the unique

spots on their fur while ignoring the fact that they have four legs. For this reason

it has been seen as a hopeless endeavor to create a generative model in which one

randomly samples an x from a broad distribution on the space of all possible im-

ages and then iteratively transforms x into a recognizable image by moving it to
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a region that satisfies both a prior p(x) and posterior p(y|x) for some class label

y. Past attempts have largely supported this view by producing unrealistic images

using this method (Nguyen et al., 2015; Simonyan et al., 2013).

However, the results presented here suggest an alternate possibility: the previ-

ously used priors may simply have been too weak (see Section 6.5 for one hypothesis

of why a strong p(x) model is needed). With the careful design or learning of a p(x)

model that biases toward realism, one may be able to harness the large number of

parameters present in a discriminately learned p(y|x) model to generate realistic

images by enforcing probability under both models simultaneously. Even with the

simple, hand-coded p(x) models we use in this chapter as regularizers, complex

dependencies between distant pixels already arise (cf. the beetles with structure

spanning over 100 pixels in Figure 6.4). This implies that the discriminative pa-

rameters also contain significant “generative” structure from the training dataset;

that is, the parameters encode not only the jaguar’s spots, but to some extent

also its four legs. With better, learned probabilistic models over the input and

activations of higher layers, much more structure may be apparent. Work by Dai

et al. (2015) shows some interesting results in this direction. While the images

generated in this chapter are far from being photo-realistic, they do suggest that

transferring discriminatively trained parameters to generative models — opposite

the direction of the usual unsupervised pretraining approach — may be a fruitful

area for further investigation.

125



APPENDIX A

CONVERGENT LEARNING: DO DIFFERENT NEURAL

NETWORKS LEARN THE SAME REPRESENTATIONS?

A.1 Introduction

Recent successes in training large, deep neural networks have prompted active

investigation into the representations learned on their intermediate layers. Such

research is difficult because it requires making sense of non-linear computations

performed by millions of learned parameters, but valuable because it increases

our ability to understand current models and training algorithms and thus create

improved versions of them. In this chapter we investigate the extent to which

neural networks exhibit what we call convergent learning, which is when the rep-

resentations learned by multiple nets converge to a set of features which are either

individually similar between networks or where subsets of features span similar

low-dimensional spaces. We propose a specific method of probing representations:

training multiple networks and then comparing and contrasting their individual,

learned representations at the level of neurons or groups of neurons. We begin

research into this question by introducing three techniques to approximately align

different neural networks on a feature or subspace level: a bipartite matching ap-

proach that makes one-to-one assignments between neurons, a sparse prediction

and clustering approach that finds one-to-many mappings, and a spectral cluster-

ing approach that finds many-to-many mappings. This initial investigation reveals

a few interesting, previously unknown properties of neural networks, and we argue

that future research into the question of convergent learning will yield many more.

The insights described here include (1) that some features are learned reliably in
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multiple networks, yet other features are not consistently learned; (2) that units

learn to span low-dimensional subspaces and, while these subspaces are common

to multiple networks, the specific basis vectors learned are not; (3) that the rep-

resentation codes show evidence of being a mix between a local (single unit) code

and slightly, but not fully, distributed codes across multiple units; (4) that the

average activation values of neurons vary considerably within a network, yet the

mean activation values across different networks converge to an almost identical

distribution.

A.2 Background and Summary of Work

Many recent studies have focused on understanding deep neural networks from

both a theoretical perspective (Arora et al., 2014; Neyshabur and Panigrahy, 2013;

Montavon et al., 2011; Paul and Venkatasubramanian, 2014; Goodfellow et al.,

2014) and from an empirical perspective (Erhan et al., 2009a; Eigen et al., 2013;

Szegedy et al., 2013; Simonyan et al., 2013; Zeiler and Fergus, 2013; Nguyen et al.,

2015; Yosinski et al., 2014; Mahendran and Vedaldi, 2014; Yosinski et al., 2015;

Zhou et al., 2014). In this chapter we continue this trajectory toward attaining

a deeper understanding of neural net training by proposing a new approach. We

begin by noting that modern deep neural networks (DNNs) exhibit an interest-

ing phenomenon: networks trained starting at different random initializations fre-

quently converge to solutions with similar performance (see Dauphin et al. (2014)

and Section A.3 below). Such similar performance by different networks raises

the question of to what extent the learned internal representations differ: Do the

networks learn radically different sets of features that happen to perform simi-

larly, or do they exhibit convergent learning, meaning that their learned feature
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representations are largely the same? This chapter makes a first attempt at ask-

ing and answering these questions. Any improved understanding of what neural

networks learn should improve our ability to design better architectures, learning

algorithms, and hyperparameters, ultimately enabling more capable models. For

instance, distributed data-parallel neural network training is more complicated

than distributed data-parallel training of convex models because periodic direct

averaging of model parameters is not an effective strategy: perhaps solving a neu-

ron correspondence problem before averaging would mitigate the need for constant

synchronization. As another example, if networks converge to diverse solutions,

then perhaps additional performance improvements are possible via training mul-

tiple models and then using model compilation techniques to realize the resulting

ensemble in a single model.

In this chapter, we investigate the similarities and differences between the rep-

resentations learned by neural networks with the same architecture trained from

different random initializations. We employ an architecture derived from AlexNet

(Krizhevsky et al., 2012) and train multiple networks on the ImageNet dataset

(Deng et al., 2009); details are given in Section A.3. We then compare the repre-

sentations learned across different networks. We demonstrate the effectiveness of

this method by both visually and quantitatively showing that the features learned

by some neuron clusters in one network can be quite similar to those learned by

neuron clusters in an independently trained neural network. Our specific contri-

butions are asking and shedding light on the following questions:

1. By defining a measure of similarity between units1 in different neural net-

works, can we come up with a permutation for the units of one network
1Note that we use the words “filters”, “channels”, “neurons”, and “units” interchangeably to

mean channels for a convolutional layer or individual units in a fully connected layer.
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to bring it into a one-to-one alignment with the units of another network

trained on the same task? Is this matching or alignment close, because fea-

tures learned by one network are learned nearly identically somewhere on the

same layer of the second network, or is the approach ill-fated, because the

representations of each network are unique? (Answer: a core representation

is shared, but some rare features are learned in one network but not another;

see Section A.4).

2. Are the above one-to-one alignment results robust with respect to different

measures of neuron similarity? (Answer: yes, under both linear correlation

and estimated mutual information metrics; see Section A.4.2).

3. To the extent that an accurate one-to-one neuron alignment is not possible,

is it simply because one network’s representation space is a rotated version2

of another’s? If so, can we find and characterize these rotations? (Answers:

by learning a sparse weight LASSO model to predict one representation from

only a few units of the other, we can see that the transform from one space to

the other can be possibly decoupled into transforms between small subspaces;

see Section A.5).

4. For two neurons detecting similar patterns, are the activation statistics sim-

ilar as well? (Answer: mostly, but with some differences; see Section A.6).

A.3 Experimental Setup

All networks in this study follow the basic architecture laid out by Krizhevsky

et al. (2012), with parameters learned in five convolutional layers (conv1 – conv5)
2Or, more generally, a space that is an affine transformation of the first network’s representa-

tion space.
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followed by three fully connected layers (fc6 – fc8). The structure is modified

slightly in two ways. First, Krizhevsky et al. (2012) employed limited connec-

tivity between certain pairs of layers to enable splitting the model across two

GPUs.3 Here we remove this artificial group structure and allow all channels

on each layer to connect to all channels on the preceding layer, as we wish to

study only the group structure, if any, that arises naturally, not that which is

created by architectural choices. Second, we place the local response normaliza-

tion layers after the pooling layers following the defaults released with the Caffe

framework, which does not significantly impact performance (Jia et al., 2014).

Networks are trained using Caffe on the ImageNet Large Scale Visual Recog-

nition Challenge (ILSVRC) 2012 dataset (Deng et al., 2009). Further details

and the complete code necessary to reproduce these experiments is available at

https://github.com/YixuanLi/convergent_learning.

We trained four networks in the above manner using four different random

initializations. We refer to these as Net1, Net2, Net3, and Net4. The four networks

perform very similarly on the validation set, achieving top-1 accuracies of 58.65%,

58.73%, 58.79%, and 58.84%, which are similar to the top-1 performance of 59.3%

reported in the original study (Krizhevsky et al., 2012).

We then aggregate certain statistics of the activations within the networks.

Given a network Netn trained in this manner, the scalar random variable X(n)
l,i

denotes the series of activation values produced over the entire ILSVRC validation

dataset by unit i on layer l ∈ {conv1, conv2, conv3, conv4, conv5, fc6, fc7}.4 We
3In Krizhevsky et al. (2012) the conv2, conv4, and conv5 layers were only connected to half of

the preceding layer’s channels.
4For the fully connected layers, the random variable X(n)

l,i has one specific value for each input

image; for the convolutional layers, the value of X(n)
l,i takes on different values at each spatial

position. In other words, to sample an X
(n)
l,i for an FC layer, we pick a random image from the

validation set; to sample X(n)
l,i for a conv layer, we sample a random image and a random position

130

https://github.com/YixuanLi/convergent_learning


collect the following statistics by aggregating over the validation set (and in the

case of convolutional layers also over spatial positions):

Mean: µ
(n)
l,i = E[X(n)

l,i ]

Standard deviation: σ
(n)
l,i =

√
(E[(X(n)

l,i − µ
(n)
l,i )

2])

Within-net correlation: c
(n)
l,i,j = E[(X(n)

l,i − µ
(n)
l,i )(X

(n)
l,j − µ

(n)
l,j )]/σ

(n)
l,i σ

(n)
l,j

Between-net correlation: c
(n,m)
l,i,j = E[(X(n)

l,i − µ
(n)
l,i )(X

(m)
l,j − µ

(m)
l,j )]/σ

(n)
l,i σ

(m)
l,j

Intuitively, we compute the mean and standard deviation of the activation

of each unit in the network over the validation set. For convolutional layers, we

compute the mean and standard deviation of each channel. The mean and standard

deviation for a given network and layer is a vector with length equal to the number

of channels (for convolutional layers) or units (for fully connected layers).5 The

within-net correlation values for each layer can be considered as a symmetric square

matrix with side length equal to the number of units in that layer (e.g. a 96× 96

matrix for conv1 as in Figure A.1a,b). For a pair of networks, the between-net

correlation values also form a square matrix, which in this case is not symmetric

(Figure A.1c,d).

We use these correlation values as a way of measuring how related the ac-

tivations of one unit are to another unit, either within the network or between

networks. We use correlation to measure similarity because it is independent of

the scale of the activations of units. Within-net correlation quantifies the similar-

ity between two neurons in the same network; whereas the between-net correlation

matrix quantifies the similarity of two neurons from different neural networks.

within the conv layer.
5For reference, the number of channels for conv1 to fc8 is given by: S =

{96, 256, 384, 384, 256, 4096, 4096, 1000}. The corresponding size of the correlation matrix in each
layer is: {s2 | ∀s ∈ S}. Furthermore, the spatial extents of each channel in each convolutional
layer is given by: {conv1 : 55×55, conv2 : 27×27, conv3 : 13×13, conv4 : 13×13, conv5 : 13×13}
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c(Net2)
conv1

within-net c(Net1,Net2)
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c(Net1)
conv1

(a) (b) (c) (d)

Figure A.1: Correlation matrices for the conv1 layer, displayed as images with
minimum value at black and maximum at white. (a,b) Within-net correlation
matrices for Net1 and Net2, respectively. (c) Between-net correlation for Net1 vs.
Net2. (d) Between-net correlation for Net1 vs. a version of Net2 that has been
permuted to approximate Net1’s feature order. The partially white diagonal of this
final matrix shows the extent to which the alignment is successful; see Figure A.4
for a plot of the values along this diagonal and further discussion.

Note that the units compared are always on the same layer on the network; we do

not compare units between different layers. To confirm that the correlation is a

sufficient measure of neuron-neuron similarity, we also tested with a full estimate

of the mutual information between units and found it to yield similar results to

correlation (see Section A.4.2 and Li et al. (2016) for more details).

A.4 Is There a One-to-One Alignment Between Features

Learned by Different Neural Networks?

We would like to investigate the similarities and differences between multiple train-

ing runs of same network architecture. Due to symmetries in the architecture and

weight initialization procedures, for any given parameter vector that is found, one

could create many equivalent solutions simply by permuting the unit orders within

a layer (and permuting the outgoing weights accordingly). Thus, as a first step to-
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ward analyzing the similarities and differences between different networks, we ask

the following question: if we allow ourselves to permute the units of one network,

to what extent can we bring it into alignment with another? To do so requires

finding equivalent or nearly-equivalent units across networks, and for this task we

adopt the magnitude independent measures of correlation and mutual information.

We primarily give results with the simpler, computationally faster correlation mea-

sure (Section A.4.1), but then confirm the mutual information measure provides

qualitatively similar results (Section A.4.2).

A.4.1 Alignment via Correlation

As discussed in Section A.3, we compute within-net and between-net unit cor-

relations. Figure A.1 shows the within-net correlation values computed between

units on a network and other units on the same network (panels a,b) as well as

the between-net correlations between two different networks (panel c). We find

matching units between a pair of networks — here Net1 and Net2 — in two ways.

In the first approach, for each unit in Net1, we find the unit in Net2 with maximum

correlation to it, which is the max along each row of Figure A.1c. This type of

assignment is known as a bipartite semi-matching in graph theory (Lawler, 1976),

and we adopt the same nomenclature here. This procedure can result in multiple

units of Net1 being paired with the same unit in Net2. Figure A.2 shows the eight

highest correlation matched features and eight lowest correlation matched features

for conv1 through conv3 using the semi-matching approach (corresponding to the

leftmost eight and rightmost eight points in Figure A.4). More exhaustive results,

including those for the conv4 and conv5 layers, can be found in Figure A.3. To

visualize the functionality each unit, we plot the image patch from the validation
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Figure A.2: With assignments chosen by semi-matching, the eight best (highest
correlation, left) and eight worst (lowest correlation, right) matched features be-
tween Net1 and Net2 for the conv1 – conv3 layers. For all layers visualized, (1)
the most correlated filters are near perfect matches, showing that many similar
features are learned by independently trained neural networks, and (2) the least
correlated features show that many features are learned by one network and are
not learned by the other network, at least not by a single neuron in the other
network. The results for the conv4 and conv5 layers can be found in Figure A.3.

set that causes the highest activation for that unit. For all the layers shown, the

most correlated filters (on the left) reveal that there are nearly perfect counter-

parts in each network, whereas the low-correlation filters (on the right) reveal that

there are many features learned by one network that are unique and thus have no

corollary in the other network.

An alternative approach is to find the one-to-one assignment between units

in Net1 and Net2 without replacement, such that every unit in each network is

paired with a unique unit in the other network. This more common approach

is known as bipartite matching.6 A matching that maximizes the sum of the

chosen correlation values may be found efficiently via the Hopcroft-Karp algorithm
6Note that the semi-matching is “row-wise greedy” and will always have equal or better sum of

correlation than the matching, which maximizes the same objective but must also satisfy global
constraints.
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(Hopcroft and Karp, 1973) after turning the between-net correlation matrix into a

weighted bipartite graph. Figure A.1c shows an example between-net correlation

matrix; the max weighted matching can be thought of as a path through the

matrix such that each row and each column are selected exactly once, and the

sum of elements along the path is maximized. Once such a path is found, we can

permute the units of Net2 to bring it into the best possible alignment with Net1, so

that the first channel of Net2 approximately matches (has high correlation with)

the first channel of Net1, the second channels of each also approximately match,

and so on. The correlation matrix of Net1 with the permuted version of Net2 is

shown in Figure A.1d. Whereas the diagonal of the self correlation matrices are

exactly one, the diagonal of the permuted between-net correlation matrix contains

values that are generally less than one. Note that the diagonal of the permuted

between-net correlation matrix is bright (close to white) in many places, which

shows that for many units in Net1 it is possible to find a unique, highly correlated

unit in Net2.

Figure A.4 shows a comparison of assignments produced by the semi-matching

and matching methods for the conv1 layer (Figure A.5 shows results for other lay-

ers). Insights into the differing representations learned can be gained from both

assignment methods. The first conclusion is that for most units, particularly those

with the higher semi-matching and matching correlations (Figure A.4, left), the

semi-matching and matching assignments coincide, revealing that for many units

a one-to-one assignment is possible. Both methods reveal that the average cor-

relation for one-to-one alignments varies from layer to layer (Figure A.6), with

the highest matches in the conv1 and conv5 layers, but worse matches in between.

This pattern implies that the path from a relatively matchable conv1 representa-

tion to conv5 representation passes through an intermediate middle region where
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matching is more difficult, suggesting that what is learned by different networks on

conv1 and conv2 is more convergent than conv3, conv4 and conv5. This result may

be related to previously observed greater complexity in the intermediate layers as

measured through the lens of optimization difficulty (see Yosinski et al. (2014) or

Chapter 5).

Next, we can see that where the semi-matching and matching differ, the match-

ing is often much worse. One hypothesis for why this occurs is that the two net-

works learn different numbers of units to span certain subspaces. For example,

Net1 might learn a representation that uses six filters to span a subspace of human

faces, but Net2 learns to span the same subspace with five filters. With unique

matching, five out of the six filters from Net1 may be matched to their nearest

counterpart in Net2, but the sixth Net1 unit will be left without a counterpart and

will end up paired with an almost unrelated filter.

Finally, with reference to Figure A.4 (but similarly observable in Figure A.5

for other layers), another salient observation is that the correlation of the semi-

matching falls significantly from the best-matched unit (correlations near 1) to the

lowest-matched (correlations near 0.3). This indicates that some filters in Net1 can

be paired up with filters in Net2 with high correlation, but other filters in Net1

and Net2 are network-specific and have no high-correlation pairing in the alternate

network, implying that those filters are rare and not always learned. This holds

across the conv1 – conv5 layers.
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A.4.2 Alignment via Mutual Information

Because correlation is a relatively simple mathematical metric that may miss some

forms of statistical dependence, we also performed one-to-one alignments of neu-

rons by measuring the mutual information between them. Mutual information

measures how much knowledge one gains about one variable by knowing the value

of another. Formally, the mutual information of the two random variables X(n)
l,i and

X
(m)
l,j representing the activation of the i-th neuron in Netn and the j-th neuron in

Netm, is defined as:

I
(
X

(n)
l,i ;X

(m)
l,j

)
=
∑

a∈X(n)
l,i

∑
b∈X(m)

l,j

p(a, b) log
( p(a, b)

p(a)p(b)

)
,

where p(a, b) is the joint probability distribution of X(n)
l,i and X(m)

l,j , and p(a) and

p(b) are their marginal probability distributions, respectively. The within-net mu-

tual information matrix and between-net mutual information matrix have the same

shapes as their equivalent correlation matrices.

We apply the same matching technique described in Section A.4.1 to the

between-net mutual information matrix,7 and compare the highest and lowest

mutual information matches (Figure A.7) to those obtained via correlation (Fig-

ure A.2). The results are qualitatively the same. For example, seven out of eight

best matched pairs in the conv1 layer stay the same. These results suggest that

correlation is an adequate measurement of the similarity between two neurons, and

that switching to a mutual information metric would not qualitatively change the

correlation-based conclusions presented above.

7The mutual information between each pair of neurons is estimated using 1D and 2D his-
tograms of paired activation values over 60,000 random activation samples. We discretize the
activation value distribution into percentile bins along each dimension, each of which captures
5% of the marginal distribution mass. We also add a special bin with range (− inf, 10−6] in order
to capture the significant mass around 0.
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Figure A.3: With assignments chosen by semi-matching, the eight best (high-
est correlation, left) and eight worst (lowest correlation, right) matched features
between Net1 and Net2 for the conv1 through conv5 layers. To visualize the func-
tionality each unit, we plot the nine image patches (in a three by three block) from
the validation set that causes the highest activation for that unit and directly be-
neath that block show the “deconv” visualization of each of the nine images. Best
view with siginicant zoom in.
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Figure A.4: Correlations between paired conv1 units in Net1 and Net2. Pairings
are made via semi-matching (light green), which allows the same unit in Net2 to
be matched with multiple units in Net1, or matching (dark green), which forces a
unique Net2 neuron to be paired with each Net1 neuron. Units are sorted by their
semi-matching values. See text for discussion.
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(a) conv2
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(b) conv3
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(c) conv4
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Figure A.5: Correlations between units in conv2 - conv5 layers of Net1 and their
paired units in Net2, where pairings are made via semi-matching (large light green
circles) or matching (small dark green dots).
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Figure A.6: Average correlations between paired conv1 units in Net1 and Net2.
Both semi-matching (light green) and matching (dark green) methods suggest that
features learned in different networks are most convergent on conv1 and least con-
vergent on conv4.
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Figure A.7: The eight best (highest mutual information, left) and eight worst
(lowest mutual information, right) features in the semi-matching between Net1
and Net2 for the conv1 and conv2 layers.
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A.5 Relaxing the One-to-One Constraint to Find Sparse,

Few-to-One Mappings

The preceding section showed that, while some neurons have a one-to-one match

in another network, for other neurons no one-to-one match exists (with correlation

above some modest threshold). For example, 17% of conv1 neurons in Net1 have

no match in Net2 with a correlation above 0.5 (Figure A.4); this number rises to

37% for conv2, 63% for conv3, and 92% for conv4, before dropping to 75% for conv5

(see Figure A.5).

These numbers indicate that, particularly for intermediate layers, a simple one-

to-one mapping is not a sufficient model to predict the activations of some neurons

in one network given the activations of neurons in another network (even with

the same architecture trained on the same task). That result could either be

because the representations are unique (i.e. not convergent), or because the best

possible one-to-one mapping is insufficient to tell the complete story of how one

representation is related to another, because the relationship is more complicated

than an affine transform. We can think of a one-to-one mapping as a model that

predicts activations in the second network by multiplying the activations of the

first by a permutation matrix — a square matrix constrained such that each row

and each column contain a single one and the rest zeros. Can we do better if we

learn a model without this constraint?

We can relax this one-to-one constraint to various degrees by learning amapping

layer with an L1 penalty, known as a LASSO model (Tibshirani, 1996), where

stronger penalties will lead to sparser (more few-to-one or one-to-one) mappings.

This sparsity pressure can be varied from quite strong (encouraging a mostly one-
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to-one mapping) all the way to zero, which encourages the learned linear model to

be dense. More specifically, to predict one layer’s representation from another, we

learn a single mapping layer from one to the other, similar to the “stitching layer” in

Lenc and Vedaldi (2015). In the case of convolutional layers, this mapping layer is

a convolutional layer with 1×1 kernel size and number of output channels equal to

the number of input channels. The mapping layer’s parameters can be considered

as a square weight matrix with side length equal to the number of units in the

layer; the layer learns to predict any unit in one network via a linear weighted

sum of any number of units in the other. The model and resulting square weight

matrices are shown in Figure A.8. This layer is then trained to minimize the sum

of squared prediction errors plus an L1 penalty, the strength of which is varied.8

Mapping layers are trained for layers conv1 – conv5. The average squared

prediction errors for each are shown in Table A.1 for a variety of L1 penalty weights

(i.e. different decay values). For the conv1 and conv2 layers, the prediction errors

do not rise with the imposition of a sparsity penalty until a penalty greater than

10−3. A sparsity penalty as high as 10−3 results in mapping layer models that

are nearly as accurate as their dense counterparts, but that contain mostly zero

weights. Additional experiments for conv1 revealed that a penalty multiplier of

10−2.6 provides a good trade-off between sparsity and accuracy, resulting in a model

with sparse prediction loss 0.235, and an average of 4.7 units used to predict each
8Both representations (input and target) are taken after the relu is applied. Before training,

each channel is normalized to have mean zero and standard deviation 1/
√
N , where N is the

number of dimensions of the representation at that layer (e.g. N = 55 · 55 · 96 = 290400 for
conv1). This normalization has two effects. First, the channels in a layer are all given equal
importance, without which the channels with large activation values (see Figure A.11) dominate
the cost and are predicted well at the expense of less active channels, a solution which provides
little information about the less active channels. Second, the representation at any layer for a
single image becomes approximately unit length, making the initial cost about the same on all
layers and allowing the same learning rate and SGD momentum hyperparameters to be used
for all layers. It also makes the effect of specific L1 multipliers approximately commensurate
and allows for rough comparison of prediction performance between layers, because the scale is
constant.
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Sparse Prediction Loss (after 4,500 iterations)
decay 0 decay 10−5 decay 10−4 decay 10−3 decay 10−2 decay 10−1

conv1 0.170 0.169 0.162 0.172 0.484 0.517
conv2 0.372 0.368 0.337 0.392 0.518 0.514
conv3 0.434 0.427 0.383 0.462 0.497 0.496
conv4 0.478 0.470 0.423 0.477 0.489 0.488
conv5 0.484 0.478 0.439 0.436 0.478 0.477

Table A.1: Average prediction error for mapping layers with varying L1 penalties
(i.e. decay terms). Larger decay parameters enforce stronger sparsity in the learned
weight matrix. Notably, on conv1 and conv2, the prediction errors do not rise much
compared to the dense (decay = 0) case with the imposition of a sparsity penalty
until after an L1 penalty weight of over 10−3 is used. This region of roughly
constant performance despite increasing sparsity pressure is shown in bold. That
such extreme sparsity does not hurt performance implies that each neuron in one
network can be predicted by only one or a few neurons in another network. For
the conv3, conv4, and conv5 layers, the overall error is higher, so it is difficult
to draw any strong conclusions regarding those layers. The high errors could be
because of the uniqueness of the learned representations, or the optimization could
be learning a suboptimal mapping layer for other reasons.

unit in the target network (i.e. an average of 4.7 significantly non-zero weights).

For conv2 the 10−3 multiplier worked well, producing a model with an average of

2.5 non-zero connections per predicted unit. The mapping layers for higher layers

(conv3 – conv5) showed poor performance even without regularization, for reasons

we do not yet fully understand, so further results on those layers are not included

here. Future investigation with different hyperparameters or different architectures

(e.g. multiple hidden layers) could train more powerful predictive models for these

layers.

The one-to-one results of Section A.4 considered in combination with these

results on sparse prediction shed light on the open, long-standing debate about

the extent to which learned representations are local vs. distributed. The units

that match well one-to-one suggest the presence of a local code, where each of

these dimensions is important enough, independent enough, or privileged enough
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Figure A.8: A visualization of the network-to-network sparse “mapping layers”
(green squares). The layers are trained independently of each other and with an
L1 weight penalty to encourage sparse weights.

in some other way to be relearned by different networks. Units that do not match

well one-to-one, but are predicted well by a sparse model, suggest the presence,

along those dimensions, of slightly distributed codes.

The results could have been otherwise: if all units could accurately be matched

one-to-one, we would suspect a local code across the whole layer. On the other

hand, if making predictions from one network to another required a dense affine

transformation, then we would interpret the code as fully distributed, with each

unit serving only as a basis vector used to span a large dimensional subspace,

whose only requirement was to have large projection onto the subspace (to be

useful) and small projection onto other basis vectors (to be orthogonal). The story

that actually emerges is that the first two layers use a mix of a local and a slightly

distributed code.

Figure A.9 shows a visualization of the learned weight matrix for conv1, along

with a permuted weight matrix that aligns units from Net2 with the Net1 units

that most predict them. We also show two example units in Net2 and, for each,

the only three units in Net1 that are needed to predict their activation values.
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These sparse prediction results suggest that small groups of units in each net-

work span similar subspaces, but we have not yet identified or visualized the par-

ticular subspaces that are spanned. Below we present one approach to do so by

using the sparse prediction matrix directly, and in the published version of this

work (Li et al., 2016), we discuss a related approach using spectral clustering.

For a layer with s channels we begin by creating a 2s× 2s block matrix B by

concatenating the blocks [I, W ; W T , I] where I is the s× s identity matrix and

W is the learned weight matrix. Then we use Hierarchical Agglomerative Cluster-

ing (HAC), as implemented in Scikit-learn (Pedregosa et al., 2011) to recursively

cluster individual units into clusters, and those clusters into larger clusters, until

all have been joined into one cluster. The HAC algorithm as adapted to this ap-

plication works in the following way: (1) For all pairs of units, we find the biggest

off-diagonal value in B, i.e. the largest prediction weight; (2) We pair those two

units together into a cluster and consider it as a single entity for the remainder of

the algorithm; (3) We start again from step 2 using the same process (still looking

for the biggest value), but whenever we need to compare unit ↔ cluster or clus-

ter ↔ cluster, we use the average unit ↔ unit weight over all cross-cluster pairs;

(4) Eventually the process terminates when there is a single cluster.9

The resulting clustering can be interpreted as a tree with units as leaves, clusters

as intermediate nodes, and the single final cluster as the root node. In Figure A.10

we plot the B matrix with rows and columns permuted together in the order leaves

are encountered when traversing the tree, and intermediate nodes are overlaid as

lines joining their subordinate units or clusters. For clarity, we color the diagonal

pixels (which all have value one) with green or red if the associated unit came from

Net1 or Net2, respectively.
9For example, in the conv1 layer with 96 channels, this happens after 96 · 2− 1 = 191 steps.
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Plotted in this way, structure is readily visible: Most parents of leaf clusters

(the smallest merges shown as two blue lines of length two covering a 2 × 2 re-

gion) contain one unit from Net1 and one from Net2. These units can be considered

most predictive of each other.10 Slightly higher level clusters show small subspaces,

comprised of multiple units from each network, where multiple units from one net-

work are useful for predicting activations from the other network (see the example

zoomed regions on the right side of Figure A.10).

The HAC method employs greedy merges, which could in some cases be subop-

timal. In the full, published version of this work (Li et al., 2016), a related method

using spectral clustering is explored that is less greedy but operates on the denser

correlation matrix instead. Future work investigating or developing other methods

for analyzing the structure of the sparse prediction matrices may shed further light

on the shared, learned subspaces of independently trained networks.

10Note that the upper right corner of B is W = W1→2, the matrix predicting Net1 → Net2,
and the lower left is just the transpose WT

1→2. The corners could instead be W1→2 and W2→1,
respectively.
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Figure A.9: (left) The learned mapping layer from Net1 to Net2 for the conv1
layer. (right) Two example units (bottom) in Net2 — which correspond to the
same colored rows in the left weight matrix — together with, for each, the only
three units in Net1 that are needed to predict their activation. To fully visualize the
functionality each unit, we plot the top 9 image patches from the validation set that
causes the highest activation for that unit (“maxim”), as well as its corresponding
“deconv” visualization introduced by Zeiler and Fergus (2013). We also show the
actual weight associated with each unit in Net1 in the sparse prediction matrix.

Figure A.10: The results of the Hierarchical Agglomerative Clustering (HAC) al-
gorithm described in Section A.5 on the conv1 layer. Left: The B matrix permuted
by the tree-traversal order of leaf nodes. Pixels on the diagonal are leaf nodes and
represent original units of either network (green for Net1 and red for Net2). The
brighter the gray pixel is, the larger the weight is in the matrix. See text for a
complete interpretation. Right: Two zoomed in regions of the diagonal, showing
two different four-dimensional subspaces spanned by four units in each network.
The top 9 and bottom 9 images correspond to the maxim and deconvolution visu-
alizations, respectively. Best viewed digitally with zoom.
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A.6 Comparing Average Neural Activations within and be-

tween Networks

In the above section, we noted in passing the non-homogeneous average activation

values within a layer, a phenomenon that led to the use of metrics invariant to

average activation, such as correlation and mutual information. Here we measure

this property more exactly.

The first layer of networks trained on natural images (here the conv1 layer)

tends to learn channels matching patterns similar to Gabor filters (oriented edge

filters) and blobs of color. As shown in Figures A.11, A.12, and A.13, there are

certain systematic biases in the relative magnitudes of the activations of the dif-

ferent channels of the first layer. Responses of the low frequency filters have much

higher magnitude than that of the high frequency filters. This phenomenon is

likely a consequence of the 1/f power spectrum of natural images in which, on

average, low spatial frequencies tend to contain higher energy (because they are

more common) than high spatial frequencies.

In Figure A.11 we show the mean activations for each unit of four networks,

plotted in sorted order from highest to lowest. First and most saliently, we see a

pattern of widely varying mean activation values across units, with a gap between

the most active and least active units of one or two orders of magnitude (depending

on the layer). Second, we observe a rough overall correspondence in the spectrum

of activations between the networks. However, the correspondence is not perfect:

although much of the spectrum matches well, the most active filters converged to

solutions of somewhat different magnitudes. For example, the average activation

value of the filter on conv2 with the highest average activation varies between 49
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Figure A.11: The average activation values of each unit on all layers of Net1 –
Net4. A couple salient effects are observable. First, in a given network, average
activations vary widely within each layer. While most activations fall within a
relatively narrow band (the middle of each plot), a rare few highly active units
have one or two orders of magnitude higher average output than the least active.
Second, the overall distribution of activation values is similar across networks.
However, also note that the max single activation does vary across networks in
some cases, e.g. on the conv2 layer by a factor of two between networks. For clarity,
on layers other than conv1 circle markers are shown only at the line endpoints.

to 120 over the four networks; the range for conv1 was 98 to 130.11 This effect

is more interesting considering that all filters were learned with constant weight

decay, which pushes all individual filter weights and biases (and thus subsequent

activations) toward zero with the same force.

Figure A.12 shows the conv1 units with the highest and lowest activations for

each of the four networks. As mentioned earlier (and as expected), filters for

lower spatial frequencies have higher average activation, and vice versa. What is

surprising is the relative lack of ordering between the four networks. For example,

the top two most active filters in Net1 respond to constant color regions of black

or light blue, whereas none of the top eight filters in Net2 or Net3 respond to

such patterns. One might have thought that whatever influence from the dataset

caused the largest filters to be black and blue in the first network would have
11Recall that the units use rectified linear activation functions, so the activation magnitude is

unbounded. The max activation over all channels and all spatial positions of the first layer is
often over 2000.
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Figure A.12: The most active (left) to least active (right) conv1 filters from Net1
– Net4, with average activation values printed above each filter. The most active
filters generally respond to low spatial frequencies, and the least active filtered to
high spatial frequencies, but the lack of alignment is interesting (see text).
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Figure A.13: Most active (left) to least active (right) conv2 filters as in Fig-
ure A.12. Compared to the conv1 filters, here the separation and misalignment
between the top filters is even larger. For example, the top unit responding to
horizontal lines in Net1 has average activation of 121.8, whereas similar units in
Net2 and Net4 average 27.2 and 26.9, respectively. The unit does not appear in
the top eight units of Net3 at all. The least active units seem to respond to rare
specific concepts.

caused similar constant color patches to dominate the other networks, but we did

not observe such consistency. Similar differences exist when observing the learned

edge filters: in Net1 and Net4 the most active edge filter is horizontal; in Net2 and

Net3 it is vertical. The right half of Figure A.12 depicts the least active filters.

The same lack of alignment arises, but here the activation values are more tightly

packed, so the exact ordering is less meaningful. Figure A.13 shows the even more

widely varying activations from conv2.
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A.7 Conclusions and Future Directions

We have demonstrated a method for quantifying the feature similarity between dif-

ferent, independently trained deep neural networks. We show how insights may be

gain by approximately aligning different neural networks on a feature or subspace

level by blending three approaches: a bipartite matching that makes one-to-one

assignments between neurons, a sparse prediction and clustering approach that

finds one-to-many mappings, and a hierarchical agglomerative clustering approach

that finds many-to-many mappings. Our main findings include:

1. Some features are learned reliably in multiple networks, yet other features

are not consistently learned.

2. Units learn to span low-dimensional subspaces and, while these subspaces

are common to multiple networks, the specific basis vectors learned are not.

3. The representation codes are a mix between a local (single unit) code and

slightly, but not fully, distributed codes across multiple units.

4. The average activation values of neurons vary considerably within a network,

yet the mean activation values across different networks converge to an almost

identical distribution.

The findings in this chapter open up new future research directions, for example:

1. Model compression. How would removing low-correlation, rare filters affect

performance?

2. Optimizing ensemble formation. The results show some features (and sub-

spaces) are shared between independently trained DNNs, and some are not.
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This suggests testing how feature correlation among different DNNs in an

ensemble affects ensemble performance. For example, the “shared cores" of

multiple networks could be deduplicated, but the unique features in the tails

of their feature sets could be kept.

3. Similarly, one could (a) post-hoc assemble ensembles with greater diversity,

or even (b) directly encourage ensemble feature diversity during training.

4. Certain visualization techniques, e.g., deconvolution (Zeiler and Fergus,

2013), DeepVis (Yosinski et al., 2015), have revealed neurons with multi-

ple functions (e.g. detectors that fire for wheels and faces). The proposed

matching methods could reveal more about why these arise. Are these units

consistently learned because they are helpful or are they just noisy, imperfect

features found in local optima?

5. Model combination: can multiple models be combined by concatenating their

features, deleting those with high overlap, and then fine-tuning?

6. Apply the analysis to networks with different architectures — for example,

networks with different numbers of layers or different layer sizes — or net-

works trained on different subsets of the training data.

7. Study the correlations of features in the same network, but across training

iterations, which could show whether some features are trained early and

not changed much later, versus perhaps others being changed in the later

stages of fine-tuning. This could lead to complementary insights on learning

dynamics to those reported by Erhan et al. (2009a).

8. Study whether particular regularization or optimization strategies (e.g.,

dropout, ordered dropout, path SGD, etc.) increase or decrease the con-

vergent properties of the representations to facilitate different goals (more
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convergent would be better for data-parallel training, and less convergent

would be better for ensemble formation and compilation).
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