A LINEAR ALGORITHM FOR TESTING EQUVALENCE OF FINITE AUTOMATA

J. E. Hopcroft
Cornell University
Ithaca, New York

R. M. Karp
University of California
Berkeley, California

TR 71 - 114

December 1971
A LINEAR ALGORITHM FOR TESTING EQUVALENCE OF FINITE AUTOMATA

J. E. Hopcroft
Cornell University
Ithaca, New York

R. M. Karp
University of California
Berkeley, California

ABSTRACT
An algorithm is given for determining if two finite automata with start states are equivalent. The asymptotic running time of the algorithm is bounded by a constant times the product of the number of states of the larger automaton with the size of the input alphabet.
À LINEAR ALGORITHM FOR TESTING*
EQUIVALENCE OF FINITE AUTOMATA

J. E. Hopcroft
Cornell University
Ithaca, New York

R. M. Karp
University of California
Berkeley, California

I. Introduction

The algorithms for testing equivalence of finite automata
given in most texts [1,5] have asymptotic growth rates propor-
tional to the square of the number of states. A recent algorithm
[2] minimizes the number of states in a finite automaton in
O(n log n) steps where n is the number of states. Clearly
the minimization algorithm can be used to test the equivalence of
two finite automata by treating them as a single automaton, mini-
mizing the number of states, and seeing if their respective start
states are equivalent. However, if the finite automata have start
states and one wishes solely to test equivalence, then the algo-
rithm presented here can be used and the running time is bounded
by a constant times the product of the number of states in the
larger automaton and the size of the input alphabet.

The algorithm makes use of a linear list merging algorithm
described elsewhere [3]. The linear list merging algorithm
starts with n sets, each set consisting of a single integer
between 1 and n. The set containing the integer i is given
the name i. The list merging algorithm executes two types of
instructions, a merge instruction and a find instruction. The
execution of an instruction MERGE(i,j,k) causes the set named
i and the set named j to be combined into a single set named k.

*This research was supported by the National Science Foundation
Grants GP 35-66 and GP 25609, and the Office of Naval Research Grant.
The execution of an instruction \(\text{FIND}(i) \) determines the name of the set currently containing \(i \). The important property of the algorithm is that the time necessary to execute any sequence of merge and find instructions, whose length does not exceed a constant times \(n \), is bounded by a constant times \(n \).

II. Notation

A **finite automaton** \(M = (S, I, \delta, q_0, F) \) where \(S \) and \(I \) are finite sets of **states** and **input symbols**, respectively; \(\delta \) is a function mapping \(S \times I \) into \(S \), \(q_0 \) in \(S \) is the **start state** and \(F \subseteq S \) is the set of **final states**. The function \(\delta \) is extended from \(S \times I \) into \(S \) to \(S \times I^* \) into \(S \) in the obvious manner [4] where \(I^* \) is the set of all finite length strings of symbols from \(I \). Let

\[M_1 = (S_1, I, \delta_1, q_0, F_1) \] and \[M_2 = (S_2, I, \delta_2, p_0, F_2) \]

be finite automata. To simplify notation we assume \(S_1 \) and \(S_2 \) are disjoint and define \(\delta(q,a) = \delta_i(q,a) \) for \(q \) in \(S_i \), \(1 \leq i \leq 2 \). An equivalence relation \(\equiv \) over \(S_1 \cup S_2 \) is called a **right-invariant equivalence relation** if, for all \(q \) and \(p \) in \(S_1 \cup S_2 \), and all \(a \) in \(I \), \(q \equiv p \) implies \(\delta(q,a) \equiv \delta(p,a) \).

States \(q \) and \(p \) in \(S_1 \cup S_2 \) are said to be **equivalent** if for all \(x \) in \(I^* \), \(\delta(q,x) \in F_1 \cup F_2 \) if and only if \(\delta(p,x) \in F_1 \cup F_2 \).

\(M_1 \) and \(M_2 \) are said to be **equivalent** if \(q_0 \) is equivalent to \(p_0 \).

III. Algorithm for testing the equivalence of finite automata.

The algorithm for testing the equivalence of finite automata makes use of the following observations. If \(M_1 \) and \(M_2 \) are equivalent, then \(q_0 \) and \(p_0 \) must be equivalent. If states \(q \) and \(p \) are equivalent then for each \(a \) in \(I \), \(\delta(q,a) \) and \(\delta(p,a) \) must be equivalent. The algorithm starts by setting up a set for each state, and then merging two sets whenever it is
discovered that a state in one set must be equivalent to a state
in the other if M_1 is to be equivalent to M_2. Whenever two
sets are combined, a state from each set is selected and for
each a in I, the sets containing the pair of successor states
are combined. When the point is reached where every pair of
states in the same set has its successor pair for each a in I
in a single set, the process is stopped. M_1 and M_2 are equiva-
 lent if and only if at this point no set contains both a final and
a non final state.

Step 1: Initialize the linear list merging algorithm with

$n = |S_1| + |S_2|$. That is, set up n sets each con-
taining a single element corresponding to a state in
$S_1 \cup S_2$. The set containing the state q is assigned
the name q.

Step 2: Execute the instruction $\text{MERGE}(q_0, p_0, p_0)$ and place
the pair (q_0, p_0) on a pushdown store.

Step 3: While the pushdown store is nonempty do the following.

(a) Pop the top pair (q_1, q_2) from the pushdown store.

(b) For each a in I

(i) execute instructions $\text{FIND}(\delta(q_1, a))$ and
$\text{FIND}(\delta(q_2, a))$.

(ii) Let r_1 and r_2 be the names of the lists
containing $\delta(q_1, a)$ and $\delta(q_2, a)$ respectively.
If r_1 is not equal to r_2, then execute the
instruction $\text{MERGE}(r_1, r_2, r_2)$ and place the pair
(r_1, r_2) on the pushdown store.

Step 4: Scan the states on each list. The two finite automata
are equivalent if and only if no list contains both a
final and a non final state.
Analysis of the algorithm

We assume that the algorithm is executed on a random access computer.

Theorem 1: The execution time of the algorithm for testing equivalence of finite automata is bounded by a constant times the product of the number of input symbols with the sum of the number of states of each of the automata.

Proof: Steps 1, 2 and 4 are executed in an amount of time bounded by a constant times n. Let m be the cardinality of the set I. The time to execute Step 3 is bounded by a constant times m times the number of pairs popped from the pushdown store. It remains to show that the number of pairs popped from the pushdown store is bounded by n. Each time a pair is placed on the pushdown store, two sets are merged and thus the total number of sets is decreased by one. Since initially there are only n sets, at most $n-1$ pairs are placed on the pushdown store.

For the next lemma we need the following definition. At a given step in the execution of the algorithm, a sequence of states q_1, q_2, \ldots, q_r is said to be a connecting sequence if for $1 \leq i < r$ either

(1) for all $a \in I$ $\delta(q_i, a)$ and $\delta(q_{i+1}, a)$ are on the same list, or

(2) the pair (q_i, q_{i+1}) is on the pushdown store.

States q and p are said to be joined by the connecting sequence q_1, q_2, \ldots, q_r if $q = q_1$ and $p = q_r$.

Lemma 1: Let E be an equivalence relation on $S_1 \cup S_2$ defined by $q E p$ if and only if q and p appear on the same list at the termination of the algorithm. Then E is the coarsest right invariant equivalence relation which identifies q_0 and p_0.
Proof: Clearly E is an equivalence relation and identifies q_0 and p_0. Two lists are merged at Step 3bii only if there exist p_1 and p_2, already on the same list, and an a in I such that $\delta_1(p_1,a)$ and $\delta_2(p_2,a)$ are on different lists. Hence the algorithm does not make too many identifications.

That E is right invariant can be proved by induction as follows. Induction hypothesis: Immediately prior to the kth execution of the body of the while statement in Step 3 if states q and p are on the same list then q and p are joined by a connecting sequence.

Clearly the induction hypothesis is true the first time the body of the while statement is executed since q_0 and p_0 are the only states which are on the same list and the pair (q_0,p_0) is on the pushdown store. Thus q_0,p_0 is a connecting sequence joining q_0 and p_0.

If states p and q are joined prior to the kth execution of the body of the while statement, then they are joined after the kth execution. Whenever two lists are merged during the kth execution, a state on the first list is joined to a state on the second list. Assume p and q are on the same list after the kth execution. Consider two cases.

Case 1: States p and q were on the same list prior to the kth execution in which case they were joined and hence remain joined.

Case 2: States p and q end up on the same list as a result of a sequence of merges during the kth execution. In this case several lists have been merged into one list. Each time a pair
of lists were merged a state in one list was joined to a state in the other. Since the join relation is reflexive, transitive and symmetric, every pair of elements on the new list are joined. Thus after the kth execution states p and q are joined.

Theorem 2: The algorithm for testing the equivalence of finite automata is correct.

Proof: Combine M_1 and M_2 into a single automaton

$$ M_3 = (S_1 \cup S_2, I, \delta, q, F = F_1 \cup F_2) . $$

Let E' be the equivalence relation $q E' p$ if and only if for all x in I, $\delta(q,x)$ is in F if and only if $\delta(p,x)$ is in F. If M_1 is equivalent to M_2, then $q_0 E' p_0$ and since E' is right invariant, then E' must be a refinement (possibly trivial) of E. Since E' does not identify any final and nonfinal states, E cannot. Therefore, if M_1 and M_2 are equivalent, no list can contain both a final and nonfinal state.

It remains to show that if M_1 is not equivalent to M_2, then some list must contain a final and nonfinal state. Clearly without loss of generality we can assume there exists an x such that $\delta_1(q_0,x)$ is in F_1 and $\delta_2(p_0,x)$ is in F_2. Since E is right invariant $\delta_1(q_0,x) E \delta_2(p_0,x)$ and hence $\delta_1(q_0,x)$ and $\delta_2(p_0,x)$ are on the same list. Therefore the list contains both a final and a nonfinal state.
REFERENCES

