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l. Introduction

The secant method 1s well known to be an excellent compu=
tatfonal tool for the solution of nonlinear equations in a single
variable, It is therefore quite understandable that much effort
has gone into finding multi-variate analogues, Historically this
work has been directed toward generalizations which preserve the
order of convergence of the scalar method. Most of these methods
tend to be computationally inconvenient 1f not actually unstable,
although for fairly wide classes of problems they are quite use-
ful. (See Collatz 1965, Hofmann 1970). The secant method is not
really a high order scalar method, instead 1ts main value lies in
bging fast relative to the small amount of computing it requires,
(See Ralston 1965). For this reason, the so-called update methods
seem to be the real spiritual heirs of the secant method. They
require very little computation and they certainly are eligible

for the name since they can be written
x .. o= x_ - AlR(x) : (1)
n+l- n n n’?

vhere F = (£1.....£n)r is the system whose zero we desire

and An 1s chosen to satisfy the divided difference relation
An+1(xn+1 - xn) - F(xn+1) - F(xn). (2)
This is sometimes called the '"quasi-Newton equation", though

of course, Newton's method, ie A - F'(xn+1), does not

n+l
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satisfy it, We will call (2) the "secant equation”.
Quite often the update methods are implemented not

in the form (1) but rather as
x -x -t AT r(x) (3)
n+l n nn n’ °*

vhere t“ is chosen by some descent criterion., Our interest
here 1s in perfbrmance near a root, when tn -1, It is
certainly granted that to get near enough, t, eor indeed An'

may need to be chosen differently.

2, A General Theorem,

In this section we present the general theorem and
notation which will be useful in the sequal.

Sometimes in un'implementation of (1) we wish to
leave An constant for some number of iterations, and
' teef:lugte it only at irregular intervals in the compu-
. tation.: This can be quite eaaily incorporated into the
theory and so we make the following definition (Dennis 1969a
and 1971).

' 2,1 Definition
A recalculation sequence {an) is a nondecreasing

sequence of nonnegative integers such that ay = 0 and

a = a or a = n, (1) with recalculation sequence
n n=-1 n

(a“) is L)

-1
L AunF(xn). (4)
Let ||'|| denote a vector norm and the subordinate

matrix norm, D will be a convex set.
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2.2 Definition
A method of bounded deteriation is any method (1) such

that as long as x and P'(xn) are defined,

lag - rall s sy ey Y lxy=xlle @

=1

2.3 Definition
F' € Lipx(D) for some set D 41f and only if there

exists -omé K > 0 such that for every pair x,y € D,
e (x) - (] < x ||x-yl] (5)

The following theorem shows that a method of bounded

deteriation is generally locally convergent,

2.4 Theorem (Dennis, 1971)

Let FP'€ Lip, D x4 € D and let A, bea nonsingular

KXX matrix with
-1 -1
”Ao P(xo)” £n, IIAO ” _<_8

Assune that there are nonnegative real numbers 8§ and Y
such that for every n for which Xg seeesX, as defined
»

by (1), are in D,

" on
L DR T )
i=1

6 <&§ for n>0.
n -



"1f£, in addition

1> 86, + 288 142}
% > hE (2y+K)Bn - (8)
= (1-2866-88 ) .
and
1
1-(1-2nw) 2

N(xo.ro)‘C D, where r, = (1 - 288 850)

B(2Y +K)

then {xn) generated by (1) exists &n N(xo,to) and con-

* *
verges to X . X is the unique root of F 1in

1
Rixg 22022003 - )y, where n's —BXL— ang 1f

(1-86)

1
2z
1 * 1+(1-2h')
h <3, then x  1s unique in D AN(x,, ( BK (- 88,)).
If one applies the previous theorem to the special case
of Newton's method then 6n » 0= y and the result is the
Kantorovich theorem., Note that the existence of a solution

is asscrted not assumed,

3., The single rank methods

C. G. Broyden (1965) described a class of secant methods

based on the following solutions to (2), the secant equation.
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e
ne1 = An T Fxpy) g .

n

A

w3 3
-

-]

oY

dT

A"l . A'l - A-lr(x )2 .
n+l n n n+l’ T .
4 (Flx_,y) = F(x))

dn must be chosen s0 that neither denominator is zero.

Broyden (1965) suggested &_ = P(x_,,) - F(x ) and a;hHTatex).

These approximations are usually denoted by Bn and Hn respec-
tively. We conform to this convention and also generalize the

formulae to give a Jacobian approximation at x"given an approxi-

mation B and H = Bl at x.

aTs
B' = B + (F(x') - F(x) = B(x' = x) —¢ (9)
d"B(x'-x)

. T
B = B - (H(F(x') = F()) = (x' = %)=
d*(F(x') = F(x))

(10)

In (Dennia, 1969b) we proved the following theorem,

ree (111 = [1-11,e

3.1 Theorem. )
Let F € LipKD and let x,x' € D with B a nonsingular
matrix, If B' 1s defined by (9),

[18* = p*x)]] < qllB = Pr@0) ||+ k(1 + @/2)|[x* - x]]

vhere q = ~1lﬁ';xll,'|ldTnLl .
' [a"B(x'-x)]
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This allows a straightforward induction proof of the

following.

3.2 Theorem (Dennis, 1969b)
Let P € LipyD and let xo.....x“+1). so.....nn+1 bde

generated by any single rank method. If (xist-o.....n+1¥=n,

then

' n
||Bn+1 - P'(xn+1)[| < Gl 11!'30 - F'<’o)||
n

n
+ K Z (Jjﬂqi)(nq,/z)llxjﬂ -5l an
3=0

vhere qJ is defined as
T
1,00 = %401 118y8,11
j+1.ri 14 s for 320
[dJBJ(xj+1-xj)|
v .
and ) a, = 1l;r = 0,)l,.00 &
imr4+l
Now in order for the single rank method to be of bounded
n
deteriation (according to this analysis) we need I y to bde
1=0

uniformly bounded. There is no problem in the case of Broyden's
T
method, d.1 Hj (xJ+1 - xj) since then a 1, its minirum

value. Otherwise, it 1is neccessary and sufficient that
©

Ez}qj-l) converge (Knopp, 1947), It is an open problem to

3=0 -

characterize dj in terms of the convergence of Z (qj-l).
j=0

Some special cases of interest will be mentioned in the next



.

section. We £finish this section with a theorem giving conditions
- T
i - -
for convergence of Broyden's method, dn Hn(xn+1 xn) although

it should be clear how to give a theorem for the case

(q,~1) < ®» , This theorem strengthens one in Dennis(1969b).
3
- 570

3.3 Theoren.
Let F € Lip,D, xOGD, and H, be a nonsingular NXxN matrix

bounded in norm by B, Assume also that' n > IlHOP(xo)l[, and

(12, - P*(x )] < 6. 1£ 1> 388, 2>nz=880 _ ,nq
0 V] -— 8 ~ 2
% (1-386)
E(xo,ro) SD for r, = 1-(1-2h (1-388) then Broyden's method
4BK

*
with arbitrary recalculation sequence converges to X , a zero

of P 14in N(xo,ro).

Proof: The proof consists simply of noticing that by Theorem
3.2, Broyden's method satisfies tﬁe hypotheses of Theorem 2.4
with 6n = § and 1y = 3K/2,

In (Dennis, 1971), we give theoretical justification as

well as numerical examples in support of the error bounds

Higl ]

1 *
L ln gy - =l < Hx* = = 1] < 4
: Ilug 1
n

llxn+1-xnll

for the case wvhen § 1s very small and the hypotheses of the

previous theorem are satisfied.

4., A class of double rank formulae

Broyden's method works very well for the solution of

general nonlinear vector equations but in the unconstrained



minimization problem, i£ suffers from the fact that even though
P'(x) = (V£)'(x) = £"(x) 1s symmetric and even if R s,
Hn+1 need not be symmetric. In fact, a glance at (10) showvs
that the method with d = n 1s the only single ra;k method
with this property.

Powell (1970c) gave the following procedure., Given G,
a symmetric nonsingular matrix, update G = G(o) using the
Broyden single rank formula to obtain 6(1/2>. This Hessian
approximation satisfies the secant equation (2), but it is not
symmetric., Set G(l) - (G(llz) + 0(1/2)1)/2. G(l) doesn't
eatisfy (2), so repeat the process. Powell gives the limit

of G(k) as

Coe T + 6y sTuesT
.6 =G + 2 - y (12)
sl I8l :
vhere § = x' - x, Y= VE(x'), and y = y - GS,
D. Goldfarb in a private communication was the first to
notice that the analysis of the previous section could be applied
to (12). Before making this analysis, we give the results ob-

tained by applying Powell's procedure to (9) and (10)

¢* w4 2dc+ capT _6Tucaa%c
a'cs (a%cs)?

(13)

g e g ndt +an” . ynaa®
T T_ 2
LI ¢ 4"y

’ (14)
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vhere n = Hu, Notice that even 4f GH = I, unless we consider
the special symmetric single rank case, d = n, G*H*¢ I in ‘
general, (14) intersects the class of double rank formulae

defined in Broyden (1967), only 1f d = clﬂy + c26; We could

refer to (13) and (14) as "dual" update formulae.

TABLE I

Some. examples of dual formulae
*

d G B

. o+ w8TouT ___sTuss” y - neTusnen® . y'nnes’n
I1s112 TN sThy (6Thy) 2

. T
Y "'WT GTp YYT - MTHHlmE ‘YTHH Yyt
Hy ¢ + L - ] H T L S
Y$ (Y $§) YHY (yny)
s ¢ + u8Tcrceu™ sTucssTe g . 08T+ sn” | y'nse®
8Tcs (8Tcs)? 6Ty 6Ty
A wfescy T 6Tue vl nyfe? T 7
Y G+ T T 1 7
Y 6§ Y G§ RN IR{A

L

First consider the Hy = d row, By straightforward algebra,
one finds that (G.)-l is the Davidon-Fletcher-Powell update,
See Powell (1971). 1It's dual is an update method discovered by

Creenstadt and given favorable reports in Greenstadt (1970),
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n*  °£ the d = § row is a method found independen:li by Broyden
(1969), Goldfarb (1970), Shanno (1970), and Pletcher (1970).. It
is interesting to note that the underlying single rank method is
due to Pearson. The bottom right hand element was found by
Greenstadt (1970) and is the symmetrization of Broyden's poor
method, We return to this table in Section 6.

Let us now proceed to analyze Newton-like methods based on
(13). Powell (1970c) mentions that for his update G. for

d = U8, 1f £ 1s a quadratic with Hessian G, G satisfles

* - T
G ~ G = (I - —————7)(6 - G) (1 =« ———>

88
2
Hell sl

*
The importance of this identity 4s clearly that G is at least

66T
|8

as good an approximation as G 4in the quadratic case., One can

easlly show that (13) satisfies the identify

T T
* - -
¢ -8 1-ec-Ba -5,
4°Gé d"Gé§

Note that the Lz norm of the projectors is q > 1, The following
double rank analogue of Theorem 3,1 generalizes this identify to

the nonlinear case,

4.1 Let £"€L1p,D and let G' be determined by (13) for

x, x' €D, then

2
He* - el < avlle = €7 || + x/2) (24g+a®) | [x"=x]|

' - lleell [lx'-x]]
vhere q Ich(x'-x)I
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Proof: Straightforwvard aslgebra gives

' - £7(x') = 6" - £U(x) + £"(x) - £"(x")

(y - £"(x)8)dTG + Gd(y = £"(x)8)T

aTcs

8T(y - £"(x)6)cdd"c

(a%cs)?

_ (6 - £"(x))64Tc+cd6T (G-£"(x))
a%cs

8T(c - £"(x))8 cdd'c

(a%ce)?

Hence
cas”
a%cs

T
)6 - £ (x - $4E
. acs

¢ - f"(x') = (1 -

(y- £"(x)8)d%¢c
aTee

T
- gd (Y- f"(x)G)T(I - 5.%._9) + f”(x) - t“(a').
4766 a°cs '

T T
Sow [lx - S35 |j a1 -84C]| o q (Broyden 1965)
a%cs aTcs

and ||y - £7(x)¢6]] < x/2)11611% oo
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81121 1a%¢c

6" = £ x 1] < 116 = £ (x) || + (’/2) “or
la*cs|

a%cs

" .ll.li“-Ul-w/z)llcll’ q + k|8l

and the result follows,

. n
This time, in analogy with 3.2 we need 2

120qi be
uniformly bounded. Certainly for Powell's update, Q4 1,

it 1s.

4,2 Theorem,
Let f£" €LipyD, xq € D and “0 be a symmetric nonsingular
NxN matrix bounded in norm by B. Assume also that nllIHOVS(xo)ll
and  []G =" (xgd|]<6. T 1> 388, .12 hE BEL_ and
(1-388)
1
1 - (1-2m)? .
.N(xo,ro) c D for T, = '__EEE———'—'(1‘336)' then Powell's

update procedure with arbitrary recalculation sequence converges

* -
to x , a stationary point of £ in N(xo.ro).

Proof: Since the previous theorem for the case of Powell's update
reduces to I[G*-f"(x')llillG'-f"(x)||+2K[|x‘-x|| it needs only
-an easy induction argument to ehow that the analogue of (11) is
n
oy - e 11 £ 116g = £ 1]+ 26 ) Hxgay = 5311
3=0
" Now apply Theorem 2.4, with & = §, Y= 2K.
The same error estimates noted at the end of section 3
‘for Broyden's method should be of value here. They have not

been tested, .
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S. A class of methods for nonlincar least squares ,

Suppose we wish to minimize
M

£0x) = Z(ogmz

i=1

vheréf‘&i is a scalar function defined on a subset of
X [

E, M i*u. Let us assume that we are willing to calculate

VE(x) J 20" (x)%(x), where ¢ = (wl,....WH)T. One way to
apply the update methods 1s the rather obvious way of applying
a correction to an approximation to the Hessian of £, A better
though less obvious way was given in Brown-Dennis (1970a). We

sketch it below.

M
£7(x) = Z“‘z‘*”‘x""" + ot Ter (x),
i=1

Notice that we have assumed ¢&'(x) can be computed and so its
ith row, Vwi(x) is available, Hence an update method can bde
used to approximate wi“(xn+1), given 0'(xn+l) and ¢'(xn).
If one of the formulae of section 4 i1s used then since the

01"(xn+1) approximations will be symmetric, the algorithm

requires the same storage as Newton's method applied to YVf

2
\J
dut none of the L;

+ NM cross partials of that method,

In the reference examples are given which show the method to out
perform Levenberg-Marquardt when £ 418 large .at the solution

ie M>>N, which justifies the additional arithmetic in that

case. A theorem based on the analysis of section 2 1s also
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given which sho#a the method to be second order when the Powell
update 1s used and f 18 zero at the minimum. This last will
usually correspond to the case M=N and one then has another
update method due to Powell (1970b) available vhicﬁ does not
require ¢', One also has the finite difference analogue of
Levenberg-Marquardt given in Brown-Dennis (1970b) available

which seems to be very good when the minimum of f 41s small,

6, Numerical results and discussion.

When the results of section 3 where first given 1t did
not really seem very important whether or not Broyden's method
was the only single rank method of bounded deteriation., Gen-
erally the other work on single rank methods was more con-
cerned with the minimization problem than the solution of
vector equations, The relationship between the single and
double rank methods shown in section 4 makes this question

of much more interest, One certainly cannot dismiss the

methods given in Table I,

Whether or not q for say the Davidon-Fletcher-Powell
method satisfies Q > ; 94, 0 = 0,1,..., 1t would be in-
teresting to know if th:-gpdate generates a locally convergent
Newton-1like method, that is, can one add to Powell's (1971)
theorem that t in (3) can eventually be taken as (1)?

See the computational results in this context. If a counter-

example can be found, this will certainly mean that one can

not be. completely half-hearted in his choice of tn.
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It is also possible to be irreverent and ask 1f possibly
one of these methods could be better than the Davidon-?letcherf
Povell, even when used in connection with iteration (3).

The examples we report are of course subject to error,

.and even if they are correct, they prove nothing. All the
conmputations were done on the Cornell University IBM 360/65,
The programs were written in FPRTRAN and the WATFIV compiler
wvas used. All gradients were obtained analytically,

Problem I refers to Rosenbrock's function:

f(x) = 100(x2 - xl)2 + (1 - xl)2

x5 * (-1.2,1,0), £, = 24,2

0
P
x = (1,1) min £ = 0 .

Problem II 4s

2 2 2 2 4
) f(x) = x) + 2xz + 3x3 + 4x4 + (x1+xz+x3+x‘)
xq = (1,-1,-1,1) fo = 10
*
x = (0,0,0,0) minf = 0 .

Algorithm I.

Algorithm I 1s based on Powell's MINFA routine (197148),"
Povell's update, (13) with d = HS, 1is used to approximate the
Bessian and (14) with d = y furnishes the inverse Hessian
approximation. The program used did not have a singularity

monitor.,
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Problem I; In 203 iterations and the same number of
function and gradient calls, £ was reduced to .24:10-10.
The execution time was 7.79 seconds.

Problem II: In 21 iterations nﬁd the same number of
function and gradient calls, f was reduced to .16:10-21.

The execution time was .99 seconds.

Alporithm II
This algorithm used a modification of Powell's MINFA
with Powell's Hessian approximation and the dual approximation

to the inverse Hessian, ie, the first row of Table 1.

Problem I: After 50 iterations, function value and

gradient calls, f was .2x10-9. The last 5 iterations were

Newton-1ike and reduced £ from about 10-2. The execution
time was 1,94 seconds.
Problem II: 1In 19 iterations f was .8;10-2‘. Again
the aigorithm seem to exhibit superlinear convergence once
it was near the minimum. The execution time was .86 seconds.
Algorithm II could probably be improved by experimenting

"with the program parameters.

Algorithm III: This algorithm is MINFA using the bottom
right hand elcment of Table I as the inverse Hessian approxi-

mation and its inverse matrix as the lessian approximation.

Problem I: In 95 iteration £ was only reduced to 3.6.

The Hessian approximation became very nearly singular,
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Problem IXI: In 142 iterations f was 10-19 but the
algorithn never became Newton-like, The execution time was

5.91 seconds.,

Algorithm IV This algorithm was MINPA using row two of Table I,

{e, the DFP and Greenstat's methods.

’
Problem I: 1In 299 iterations f was .7 with an execution
time of 5 seconds.

Problem IX: In 22 iterations £ was 2.3x].0_22 with an

execution time of ,88 seconds.

Algorithm V This algorithm was a slight change in MINFA
(2 or 3 cards were changed). It was based on Powell's update,
Problen I: 43 iterations and .71 seconds reduced £ to
.36:10-11 as opposed to MINFA's £ = 0 after 49 iterations and
.88 seconds, f was .21x10-3 after 45 iterations., Both
versions appeared superlinear, .
Problem II: 18 iterations gave f = .95x10.21 in .83

seconds,

These five algorithms are based on the assumption
that the underlying method is locally convergent., Algorithm
11 and V both based on Broyden's method seem on the strength
on admittedly thin evidence to perform better than Algorithm
III which is dased on the Dévidon-?letchet-?owell. Greenstadt
dual pair. The next question we investigate is how these
‘nethods compare in a standard descent algorithm. The updates
were all used in {teration (3) where t“ was chosen by

subroutine VDO2A from the A,E.R.E. llarwell subroutine library.
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Powell's update fail?d almost immediately on both prodblems.
The elements of H* became about 1030. The formula for B',
given in (Powell, 1970d) secms susceptible to this behavior.
The dual of Powell's update performs quite well., Problem I
was reduced to 0 after 21 iterations, 121 function values and
gradient calculations and 1,26 seconds. Problem II was reduced
-34

to .28x10 aftet 12 iterations, 41 each function and gradient

evaluations and .74 seconds.

Greenstadt's method gave the same performance on Problem I
as the dual Powell but with an execution time of 1.51 seconds.
The DFP method gave £ = 0 4n 18 iterations, 96 each function
and gradient evaluations and ,98 seconds. On Problem II,
Greenstadt's method and the DFP reduced f to .52x10-34 in
10 iterations and 34 cach function and gradient values in .59
seconds.

Thus the new update,

2 e neTn + nénT ; _y'nussTn
6Thy (6Tuy)?

shows promise of being a very versital formula worthy of
‘further investigation., The first project probably should be

to fit this update more snugly into the MINFA framework.
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