
  

 

PATHOGENS, PRECIPITATION, POOP AND PRODUCE: THE ECOLOGY AND 

CONTROL OF FOODBORNE PATHOGENS IN PRODUCE PREHARVEST 

ENVIRONMENTS 

 

 

 

 

 

 

A Dissertation 

Presented to the Faculty of the Graduate School 

of Cornell University 

In Partial Fulfillment of the Requirements for the Degree of 

Doctor of Philosophy 

 

 

 

 

 

 

by 

Daniel L Weller 

May 2018



 

 

 

 

 

 

 

 

 

 

 

 

 

© 2018 Daniel L Weller



 

 

PATHOGENS, PRECIPITATION, POOP AND PRODUCE: THE ECOLOGY AND 

CONTROL OF FOODBORNE PATHOGENS IN PRODUCE PREHARVEST 

ENVIRONMENTS. 

Daniel L Weller, Ph. D.  

Cornell University 2018 

 
The complexity of the global food supply chain, and the demands of a growing 

population for safe, sustainable food requires novel, holistic, and adaptive approaches 

to produce safety. However, food is not produced in a vacuum; farms are closely 

linked to surrounding environments, which can function as pathogen reservoirs as well 

as pathways for pathogen dispersal into fields. Thus, a comprehensive understanding 

of the ecological processes that drive the presence, dispersal and persistence of 

bacterial pathogens in agricultural environments is essential for the development of 

adaptive approaches to fresh produce safety. In the studies presented here, we 

employed several approaches to investigate the ecological processes associated with 

pathogen dispersal in and contamination of produce production environments at 

multiple scales. Specifically, these studies investigated (i) spatial and temporal risk 

factors associated with L. monocytogenes isolation at the farm, field and sub-field 

levels, and (ii) factors associated with the transfer of generic E. coli from 

contaminated wildlife feces to and survival on individual, preharvest produce items. 

We observed that foodborne pathogens are not uniformly present in agricultural 

environments, and that specific spatial (e.g., proximity to pasture) and temporal (e.g., 

time between a rain event and harvest) factors were associated with an increased 



 

likelihood of pathogen detection. Using this information, we validated geospatial 

models that predict when and where pathogen contamination of produce production 

environments is likely to occur. We were also able to identify specific management 

practices that were associated with pathogen contamination of preharvest produce. For 

example, irrigation water was found to be a key pathway for pathogen dispersal in 

agricultural environments. The transfer of bacteria from in-field contamination 

sources, such as wildlife feces, to preharvest produce during irrigation was 

significantly associated with the distance between the produce and the feces. 

Following contamination, bacteria were able to survive on in-field produce for >10 

days. Die-off observed over these 10 days followed a biphasic pattern with more rapid 

die-off immediately following contamination (i.e., 0-106 hours post-contamination). 

Overall the findings of the studies reported here provide key data that can be used to 

develop targeted strategies for reducing the likelihood of preharvest produce 

contamination. 
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CHAPTER 1 

INTRODUCTION 

Foodborne illness is a major cause of morbidity and mortality worldwide. A study 

conducted by the Pan American Health Organization found that between 1993 and 

2010 approx. 9,180 foodborne disease outbreaks were reported in 20 Latin American 

and Caribbean countries (1). However, this number accounts for only reported 

outbreaks; since many foodborne illness cases are not associated with outbreaks or do 

not result in hospitalization, this number underestimates the true burden of foodborne 

illness in these countries. Indeed, although 271,974 cases of foodborne illness were 

reported in the United States (USA) between 1998 and 2008 (2), experts estimate that 

9.4 million cases of foodborne illness occur in the USA each year [i.e., an estimated 

94 million cases between 1998 and 2008; (3)]. Preventing foodborne illness is clearly 

a public-health priority as evidenced by the passage of the Food Safety Modernization 

Act (4) and other food safety legislation (5, 6) as well as the proliferation of outreach 

materials focused on consumer food safety [e.g., (7, 8)]. Since pathogen contamination 

of food and the resulting illnesses also are associated with substantial economic costs, 

preventing microbial contamination of food products is also an economic priority. For 

example, the total estimated medical cost of salmonellosis in the USA is 312 million 

dollars annually; this number excludes the cost of premature death and productivity 

losses as well as costs associated with other etiological agents (9). In fact, the total 

estimated annual cost of foodborne illness in the USA is approx. 15 billion dollars; 

this value was estimated by summing the costs associated with the 15 pathogens that 

account for > 95% of illnesses in the 
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Table 1.1: Estimated costs associated with foodborne illness due to specific etiological 

agents in the United States. a  

Etiological Agent Medical Costs b 

Campylobacter spp. $1,928,787,166 
Clostridium perfringens $342,668,498 
Cryptosporidium parvum $51,813,651.77 
Cyclospora cayetanensis $2,301,423 
Escherichia coli O157 $271,418,690 
non-O157 Shiga toxin-producing E. coli $27,364,561 
L. monocytogenes $2,834,444,202 
Norovirus $2,255,827,318 
Salmonella spp. $3,666,600,031 
Shigella spp. $137,965,962 
Toxoplasma gondii $3,303,984,478 
Vibrio parahaemolyticus $40,682,312 
Vibrio vulnificus $319,850,293 
Vibrio spp. c $142,086,209 
Yersinia enterocolitica $278,111,168 
Total $15,603,905,963 

a Data is from United States Department of Agriculture, Economic Research Service 

Reports (9).  

b Includes cost of visits to the physicians’ office, emergency room, and out-patient 

clinics as well as hospitalization, premature death, and productivity loss for non-fatal 

cases.  

c Costs due to Vibrio spp. excludes costs due to V. parahaemolyticus, and V. vulnifcus. 
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USA [Table 1.1; (9)]. It is important to note that outbreak costs extend beyond the 

hospital. For example, following a 2008 L. monocytogenes outbreak linked to ready-

to-eat-deli meat the Canadian government spent approx. $2.4 million on outbreak 

response, while the food facility implicated in the outbreak spent 77 million dollars 

[Table 1.2; (10)]. Even when pathogen contamination of food does not result in 

illness, it still necessitates food recalls. While recalls carry direct costs [e.g., lost 

product, shipping costs], consumer avoidance (11–13) and reductions in share price 

(14–16) following recalls negatively affect the bottom line of the company doing the 

recall as well as other companies in the same sector of the food industry. As such, the 

development of effective strategies for preventing or reducing foodborne pathogen 

contamination of food products is of substantial interest to public health, government, 

and industry stakeholders.  

Foodborne Pathogens, Fresh Produce, and the Preharvest Environment 

Fresh produce is increasingly recognized as a source of foodborne outbreaks 

worldwide (17–19). Between 1973 and 2015 the proportion of foodborne outbreaks 

attributable to fresh produce in the USA rose from 0.7% to 19% (18, 20). This trend is 

not limited to the USA; the number of outbreaks attributable to fresh produce in the 

European Union increased from 29 in 2006 to 34 in 2009 and 44 in 2010 (21). The 

globalized nature of the food supply chain, and the associated changes in the scale of 

and methods for harvesting, packing, and processing fresh produce means that produce 

contamination in one area has the potential to affect human health worldwide. This 

may explain, at least partially, the observed increase in produce-borne disease 

outbreaks (22, 23).  Other potential causes include (i) increased
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Table 1.2: Costs associated with select foodborne disease outbreaks and recalls a. 

Event Food Vehicle Country Medical b Costs 
(USD) 

Public Health and 
Government Costs (USD) 

Industry Costs 
(USD) Study 

2009 Salmonella recall Peanut 
products USA - -  133 million (24) 

2008 L. monocytogenes 
outbreak Deli meat Canada 162 million 2.4 million  77 million (10) 

2008 Salmonella recall d  Tomatoes  USA - -  250 million (24) 
2008 Salmonella 
outbreak Muskmelon  Canada; 

USA  - -  50 million (25) 

2007 Salmonella recall Peanut butter USA - -  133 million (24) 
2006 E. coli O157:H7 
outbreak  Spinach  USA - -  350 million (24, 

25) 
1992 E. coli O157:H7 
recall Hamburgers USA - -  160 million (24) 

1988 Salmonella 
outbreak Eggs UK - 26.2 million e - (13) 

1983 Salmonella 
outbreak Milk UK  114,800  31,000 - (26) 

1982 Salmonella 
outbreak Chocolate  UK  42,000   206,000 (26) 

1982 Salmonella 
outbreak Diet drink USA - -  2.4 million (26) 

1970-1 Salmonella 
outbreak Chocolate Sweden - -  83,000 (26) 

1964 Salmonella 
outbreak 

Canned corn 
beef UK  2,577,798  727,470 160 million (26) 

1963 Botulinum 
intoxication outbreak Canned tuna USA  8,000 - 163 million (26) 

 



Table 1.2 Continued 
 

20 

a Where possible the costs for a given outbreak and the associated recall have been reported in separate rows.  
b Costs were estimated by monetizing and summing the cost of medical care, premature death, and/or other costs to individuals.  
c Data not reported. 
d Reports costs of lost tomato sales due to incorrect identification of tomatoes as the food vehicle in a 2008 Salmonella outbreak 
traced back to contaminated peppers. 
e  Reports legal costs associated with a settlement that the United Kingdom Ministry of Agriculture, Fisheries and Food had to 
pay egg producers.
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consumption of fresh produce, (ii) year-round availability of fresh produce, (iii) 

intensification of agricultural production, and (iv) improvements in outbreak detection 

and reporting (27–29). Regardless of why the number of foodborne illness cases 

attributable to contaminated produce has increased, fresh produce presents a unique 

food safety challenge because produce does not undergo a kill step prior to 

consumption. Since the health benefits of consuming fresh produce are well-

recognized and substantial, reducing consumption of fresh produce is not a practical 

solution for reducing risk and improving public health. As a result, preventing 

contamination, as opposed to removing or killing pathogens present in the food 

product prior to consumption, is of particular importance for fresh produce 

commodities.  

 In 2012 a multistate Salmonella outbreak linked to cantaloupe sickened 261 

people (30). As part of the environmental assessment performed following the 

outbreak Salmonella of the same pulsotype as the outbreak strain was isolated from 

multiple environmental samples collected from an implicated farm, including 

preharvest produce (30). While the 2012 outbreak illustrates the potential for 

preharvest produce contamination to directly cause illness, previous studies (31, 32) 

have also shown that once preharvest produce is contaminated, pathogens can be 

transferred to other produce items as well as the post-harvest environment during 

harvest and processing. Once the post-harvest environment is contaminated, pathogens 

can proliferate and contaminate large amounts of product. In fact, several studies have 

found that environmental pathogen levels and pathogen levels on produce increase the 

farther downstream the produce supply chain the samples are collected (33–35). Thus, 
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preventing preharvest produce contamination is instrumental for minimizing pathogen 

contamination throughout the produce supply chain.  

Identifying and implementing effective strategies for reducing preharvest 

produce contamination is incredibly difficult due to the complexity of the preharvest 

environment. Indeed, preharvest environments are part of a larger landscape and are 

impacted by the surrounding natural and built environments. For example, agricultural 

water sources can act as a pathway for pathogen movement into produce fields. As a 

result, the use of contaminated water for produce production can serve as a direct route 

of produce contamination (20, 60). In fact, the probable contamination source for the 

aforementioned 2012 Salmonella outbreak was the use of contaminated water for 

irrigation (30). Similarly following a 2005 outbreak of E. coli O157:H7 linked to fresh 

lettuce, the outbreak strain was isolated from environmental samples collected at a 

dairy that was upstream of the implicated produce farm (55). The outbreak strain was 

also isolated from irrigation water samples collected at the implicated farm (55). As a 

result, contamination of the irrigation water source by cows at the upstream dairy, and 

the subsequent use of said water to irrigate crops on the implicated farm was identified 

as the probable contamination source for the 2005 outbreak (55). The 2005 outbreak is 

illustrative of how events that occur in farm-adjacent environments can effect on-farm 

produce safety. 

Like agricultural water, wildlife can also act as a vector for the movement of 

pathogens within and between natural and agricultural environments; several 

foodborne outbreaks have been traced back to wildlife intrusion in produce fields 
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(Table 1.3). Indeed, multiple studies have shown that foodborne pathogens can be 

isolated from wildlife feces [e.g., (36, 37)], and that once defecation occurs pathogens 

present in the feces can transfer via splash to preharvest produce (38, 39). In addition 

to wildlife intrusion and the use of contaminated water for produce production, there 

are a multitude of other pathways for the dispersal of pathogens within and between 

farm and farm-adjacent environments. For example, agricultural inputs, such as 

biological soil amendments and contaminated seed, have been identified as potential 

sources for preharvest contamination of produce (40–43). While produce can be 

directly contaminated through wildlife defecation on or the application of 

contaminated water and manure onto the edible portions of the crop, wildlife intrusion 

and the use of contaminated water and manure can also contaminate the preharvest 

environment. Once the produce production environment is contaminated pathogens 

may survive and proliferate in produce field soils; the pathogens are then available to 

transfer to preharvest produce at a later time. A field study conducted in the United 

Kingdom examined the survival of E. coli O157:H7 and Salmonella in produce field 

soils, and found that following irrigation with contaminated water (inoculum = 108 

CFU/mL) the inoculation strains persisted in the soil for more than 6 weeks (44). In a 

separate trial of the same study, the authors found that generic E. coli in field soils 

could transfer via splash to agar strips that were up to 45 cm (horizontal distance) and 

20 cm (vertical distance) from the drop  origin (44). A separate study conducted in
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Table 1.3: Contamination sources for select foodborne disease outbreaks linked to preharvest bacterial contamination of produce. 
Year Organism Food Vehicle Country Suspected Contamination Source(s) Study 
2014 Salmonella Cucumbers USA Manure (20, 45) 
2014 STEC Strawberries USA Wildlife Intrusion (46) 
2014 STEC Sprouts Germany Contaminated Seeds (47) 
2008 Camplyobacter jejuni Peas USA Wildlife Intrusion (48, 49) 
2008 Salmonella Peppers USA Agricultural Water (50, 51) 
2006 E. coli O157:H7 Spinach USA Agricultural Water; Wildlife Intrusion (52–54) 
2005 E. coli O157:H7 Lettuce Sweden Agricultural Water (55) 
2005 Salmonella Tomatoes USA Agricultural Water (56) 
2004 Yersinia pseudotuberculosis Carrots Finland Wildlife Intrusion (57) 
2002 Salmonella Tomatoes USA Agricultural Water (56) 
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California found that, on average, during a 2.5 h irrigation event 0.006% of E. coli in 

wildlife feces (inoculum = 1.29*108 CFU/5 g) transferred to preharvest lettuce that 

was < 1 m from the fecal pellet (39). However, the ability of pathogens to survive in 

the preharvest environment and transfer to preharvest produce appears to be mediated 

by weather (39, 44, 59). For example, in the aforementioned Californian study the E. 

coli concentration on lettuce upwind of the fecal pellet was significantly less than the 

concentration on lettuce that was downwind (39). Similarly, in an unpublished study 

conducted in Arizona the distance that E. coli in simulated wildlife feces (inoculum = 

107-108 CFU/g) transferred via splash during irrigation was associated with wind 

speed (60). As these studies as well as the 2012 Salmonella outbreak and 2006 E. coli 

outbreak illustrate, events that occur in farm-adjacent environments as well as on-farm 

conditions can impact preharvest produce safety, which suggests that produce 

contamination risks are not uniform across space and time. Thus, a one-size fits all 

approach to preharvest produce safety may not be the most effective strategy for 

reducing produce safety risks. As such, targeted management practices that can be 

tailored to the risks for a specific farm or field are needed. To best develop these 

strategies a systems-based approach to preharvest produce safety is needed, which 

requires a comprehensive understanding of the ecological processes that underpin the 

distribution, survival and dispersal of foodborne pathogens in and between agricultural 

and natural environments.  

The Food Safety Modernization Act’s Produce Safety Rule 

Recognizing the importance of preventing preharvest produce contamination, the 

produce industry, extension agents, and other stakeholders identified good agricultural 
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practices (GAPs) that growers can implement to reduce the likelihood of preharvest 

produce contamination. GAPs have been codified in the form of voluntary growers 

agreements (e.g., Ohio Produce Marketing Agreement, Leafy Greens Marketing 

Agreement), government guidelines (e.g., the USDA Guide to Minimize Microbial 

Food Safety Hazards for Fresh Fruits and Vegetables), and the establishment of 

produce safety extension programs (e.g., National GAPs Program). As part of the 

Food Safety Modernization Act, the US federal government also recently established 

the first federal law to regulate fresh produce safety, the Produce Safety Rule [PSR; 

(4)]. Unfortunately, produce production environments are complex, and there was 

insufficient data on which to base many of the standards established by the PSR. For 

example, the PSR mandates that water used for preharvest applications must meet 

specific standards; if agricultural water sources do not meet these standards then 

corrective actions are required (4). Potential corrective actions listed in the PSR 

include water treatment, allowing time for pathogens to die-off between irrigation and 

harvest (a time-to-harvest interval) or between harvest and end of storage, or finding 

an alternative water source (4). However, limited data is available on pathogen die-off 

under field and storage conditions, which makes implementation of the suggested 

corrective actions impractical, and could result in the harvesting and consumption of 

contaminated produce. There are similar issues with PSR guidance and standards for 

surface water testing and treatment, wildlife intrusion, and the use of biological soil 

amendments of animal origin. For example, the PSR requires growers to take all 

measures reasonably necessary to identify and not harvest produce that may have been 

microbially contaminated by wildlife. However, relatively little information is 
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available to help growers determine which wildlife prevention measures are 

appropriate for a given operation. For example, while no-harvest buffers around in-

field feces are often mentioned as a strategy that growers can use to reduce produce 

contamination risks associated with wildlife intrusion, there is limited data on the risk 

reductions associated with different buffer widths. These knowledge gaps mean that 

current standards are not only unclear, but are also likely to change. As a result, 

growers are unsure of how to best meet the standards established by the PSR, 

including which food safety measures they should implement on their farms and how 

these f measures should be implemented to best meet the needs of their operation. In 

fact, understanding and complying with ambiguous standards has been cited in 

industry magazines as one of the major obstacles facing growers (61). Clearly, 

additional research is needed to address these knowledge gaps, to facilitate the 

development of science-based, on-farm intervention and control strategies, and to 

support the implementation and revision of the PSR. Addressing these knowledge 

gaps was one aim of the studies included in this dissertation.  

Specifically, the aim of the studies described here were to (i) increase our 

understanding of the ecological processes that drive the distribution, survival and 

dispersal of foodborne pathogens in produce production environments, (ii) generate 

experimental data that can be used in quantitative risk assessments to address 

knowledge gaps in the PSR, (iii) identify potential intervention and control strategies 

for reducing the likelihood of preharvest produce contamination, and (iv) create and 

validate tools that can be used in the development of said strategies. Thus, four studies 

were conducted to (i) validate and refine geospatial models that predict L. 
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monocytogenes prevalence in produce fields (at the field-level), (ii) identify factors 

that could be used to predict pathogen contamination patterns within a field (i.e., at the 

sub-field level), (iii) calculate coefficients for the transfer of E. coli in feces to 

preharvest lettuce, and (iv) quantify die-off rates for E. coli under field conditions and 

compare this rate to previously reported rates.  
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PREDICTS THE PREVALENCE OF L. MONOCYTOGENES IN NEW YORK 

STATE PRODUCE FIELDS 
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Abstract 

 Technological advancements, particularly in geographic information systems (GIS), 

have made it possible to predict the likelihood of foodborne pathogen contamination 

in produce production environments using geospatial models. Yet, few studies have 

examined the validity and robustness of such models. This study was performed to test 

and refine rules associated with a previously developed, geospatial model that predicts 

L. monocytogenes prevalence for produce farms in New York State (NYS). Produce 

fields for each of four enrolled produce farms were categorized into areas of high or 

low predicted L. monocytogenes prevalence using rules based on a field’s available 

water storage (AWS), and its proximity to water, impervious cover, and pastures. Drag 

swabs (n=1,056) were collected from plots assigned to each risk category. Logistic 

regression, which tested the ability of each rule to accurately predict L. monocytogenes 

prevalence, validated the rules based on water and pasture. Samples collected near 

water (odds ratio (OR) = 3.0) and pasture (OR = 2.9) showed a significantly increased 

likelihood of L. monocytogenes isolation compared to samples collected far from 

water and pasture. Generalized linear mixed models identified additional land cover 

factors associated with an increased likelihood of L. monocytogenes isolation, such as 
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proximity to wetlands. These findings validated a subset of previously developed rules 

that predict L. monocytogenes prevalence for produce production environments. This 

suggests that GIS and geospatial models can be used to accurately predict L. 

monocytogenes prevalence on-farms, and prospectively used to minimize the risk of 

pre-harvest contamination of produce.  
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Introduction 

Fresh produce presents a unique food safety challenge due to the absence of a 

kill-step between harvest and consumption. An increase in recalls and reported 

outbreaks linked to fresh produce over the past decade (1–3) has been associated with 

consumer avoidance of products linked to outbreaks (4, 5). This trend can negatively 

affect growers and the produce industry (4–6). For example, following a 2011 

listeriosis outbreak in the United States (US) associated with fresh cantaloupe (7), 

cantaloupe consumption dropped 53% nationwide (6). Prevention of produce 

contamination in production environments is therefore a concern for growers, the 

produce industry and public health professionals. To develop effective prevention 

strategies, it is important to understand the ecological processes and environmental 

factors that affect foodborne pathogen prevalence in produce production 

environments. Technological advancements, such as geographic information systems 

(GIS), have the potential to drastically improve our ability to examine these processes, 

and to develop novel tools for ensuring fresh produce safety.  

Numerous studies (8–21) have examined the ecology of foodborne pathogens 

in agricultural environments, and several (22–27) have used GIS and geospatial 

analysis. For example, Chapin et al. (26) used GIS to organize and extract remotely 

sensed data to show that different species of Listeria occupy distinct ecological niches 

in agricultural and natural environments. Despite a number of studies that have used 

GIS to extract or visualize remotely sensed data (22–27), only one study (25) has used 

GIS to predict the distribution and prevalence of a specific foodborne pathogen in 

produce production environments. This study by Strawn et al. (25) used classification 
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tree analysis (CART) to develop a geospatial model that predicts the prevalence of L. 

monocytogenes in New York State (NYS) produce fields. This model consisted of a 

set of hierarchical rules based on, in order, proximity of fields to surface water, 

temperature, proximity of fields to impervious cover, available water storage (AWS) 

and proximity of fields to pasture (25). Studies in other disease systems (e.g., Lyme 

Disease and West Nile Virus) have not only developed (28–34) but have also validated 

(35–40) geospatial, predictive risk models. These validation studies (35–40) 

demonstrate the utility of geospatial risk models, like the model developed by Strawn 

et al. (25), for accurately and prospectively predicting pathogen prevalence. 

Additionally, these studies (37, 39, 40) used the output of their models to prioritize 

and identify risk management strategies, suggesting that geospatial models can also be 

integrated with on-farm food safety plans to develop targeted approaches to disease 

prevention. Thus, the purpose of this study was to (i) validate the ability of the model 

developed by Strawn et al. (25) to predict on-farm areas with a significantly higher or 

lower prevalence of L. monocytogenes and to (ii) identify additional land cover factors 

that were associated with L. monocytogenes isolation from produce production 

environments. This research also aimed to increase our understanding of foodborne 

pathogen ecology, and to develop targeted mitigation strategies for risk management 

in produce production environments (e.g., tailored on-farm food safety approaches). 

While multiple pathogens can contaminate produce at the production level, we chose 

L. monocytogenes as a model organism to examine contamination at the production 

level due to its high prevalence in NYS produce production environments (11, 22, 23, 

25). We recognize that the model developed by Strawn et al. (25) predicts L. 
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monocytogenes prevalence, however since Listeria spp. is an indicator for L. 

monocytogenes also tested the ability of the model to predict Listeria spp. prevalence.  

Materials and Methods  

Study design. A cross-sectional study was conducted over a six-week period 

in July and August of 2014 on four produce farms in NYS. Farms were located in 

three regions of NYS: Western New York (n=2), the Hudson Valley (n=1), and the 

Capitol District (n=1). Farms were not selected based on geographic location or 

management practices; farms were enrolled based on the willingness of the grower to 

participate.  

All fields within a farm were classified into four high risk categories and one 

low risk category (see Figure 1) based on a set of hierarchical rules that were adapted 

from Strawn et al. (25). The rules were based on a field’s proximity to water, 

impervious cover and pasture, and a field’s AWS (Supplemental Figure 1; see header 

“Geographic Data and Predicting Field Risk” for more information). All field areas 

classified into a given category (e.g., areas within 37.5 m of water) were then divided 

into 5 x 5 m plots, and a subset of plots were randomly selected from each category 

for sampling. One area drag swab was collected per plot. Methods used in this study 

were similar to Strawn et al. (25) to avoid bias between studies. However, unlike 

Strawn et al. (25), whose unit of analysis was the field, and who collected drag swab, 

composite soil, water and fecal samples, the unit of analysis in the study reported here 

was the plot (i.e., sub-field) and only drag swabs were collected. 

Geographic Data and Predicting Field Risk. All manipulations of 

geographic data were performed in ArcGIS (version 10.2.2, Environmental Systems 
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Research Institute, Redlands CA; 41). AWS data were obtained from the United States 

(US) Department of Agriculture (http://datagateway.nrcs.usda.gov/GDGOrder.aspx). 

Land cover data for NYS for 2006 were downloaded and extracted from the National 

Landcover Database (NLCD; http://www.mrlc.gov/nlcd06_data.php). Road data were 

downloaded from the Cornell University Geographic Information Repository 

(cugir.mannlib.cornell.edu).  Hydrologic data were downloaded from US  

 

 

 

Figure 2.1: Map of predicted prevalence of L. monocytogenes on the Homer C. 
Thompson Vegetable Research Farm at Cornell University; the expected prevalence 
of L. monocytogenes is listed in parentheses in the key. Note that this map is not based 
on any of the farms included in this study for confidentiality reasons. Map created 
using ArcGIS software, and the base map is from ArcGIS (ESRI [all rights reserved]). 
 

 

http://datagateway.nrcs.usda.gov/GDGOrder.aspx
http://www.mrlc.gov/nlcd06_data.php
http://cugir.mannlib.cornell.edu/
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Geological Survey National Hydrology Map 

(http://viewer.nationalmap.gov/viewer/nhd.html?p=nhd). Maps of each farm were 

obtained from the grower, uploaded into ArcGIS, and georeferenced. If the image 

could not be accurately georeferenced, a farm map was drawn in ArcGIS by 

identifying field boundaries in satellite images using the original PDF of the farm 

fields as a reference.  

Predicted field risk for L. monocytogenes was based on a hierarchical model 

developed by Strawn et al. (25) using classification tree analysis. Briefly, we adapted 

that model by removing the meteorological factors so the model only included spatial 

factors (i.e., proximity to water, proximity to impervious cover, AWS, and proximity 

to pastures; Supplemental Figure 1). This adapted model will be referred to as the 

CART model throughout this article. The CART model had four splits/rules, which in 

order, will be referred to as the Water Rule, the Impervious Cover Rule, the AWS 

Rule, and the Pasture Rule (Supplemental Figure 1).  

Before division of each farm into areas of high or low predicted L. 

monocytogenes prevalence, the relevant shapefiles for each farm were generated using 

ArcGIS. Hydrology shapefiles were buffered to 39.5 m, road shapefiles were buffered 

to 19.5 m, and pasture shapefiles were buffered to 62.5 m. Roads and waterways were 

buffered by an additional 10 m and 2 m, respectively, to give these features realistic 

width. Additionally, the AWS data was converted from raster to shapefile format. The 

AWS shapefile was then split into (i) areas with AWS > 4.2 cm, and (ii) areas with 

AWS ≤ to 4.2 cm (i.e., high and low AWS areas, respectively). The NLCD raster was 

also converted to shapefile format and split, creating separate files for each land cover 

http://viewer.nationalmap.gov/viewer/nhd.html?p=nhd
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class (e.g., pasture, grasslands, and woody wetlands). The NLCD shapefiles for 

developed areas were merged with the road map to create an impervious cover 

shapefile. Similarly, all NLCD shapefiles corresponding to wetland, and forest 

shapefile were merged to create a single wetlands shapefile and a single forest 

shapefile.  

After creation of the relevant shapefiles, each farm was categorized into areas 

of high or low predicted L. monocytogenes prevalence by following the splits in the 

CART model (Supplemental Figure 1). For example, the buffered hydrology shapefile 

corresponded to all areas with a high predicted L. monocytogenes prevalence 

according to the Water Rule. Similarly, all areas that did not have a high predicted 

prevalence according to the Water Rule but were included in the impervious cover 

shapefile corresponded to areas with a high predicted prevalence according to the 

Impervious Cover Rule.  

To assess additional risk factors, the distance was calculated from the center of 

each 5x5 m sampling plot to land covers of interest (i.e., barren land, grassland, forest, 

impervious cover, roads, scrubland, water, and wetlands). The split NLCD shapefiles 

were used to calculate distance to barren land, grassland, and scrubland. Similarly, the 

road and hydrology shapefiles were used to calculate distance to roads and water. 

Lastly, the merged forest, wetlands, and impervious cover shapefiles were used to 

calculate distance to those features.  

Sample collection and preparation. Samples were collected and prepared as 

previously described by Strawn et al. (25). Briefly, latex gloves (Nasco, Fort Atkinson, 

WI) were worn and changed for each sample collected. For each plot, a pre-moistened 
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drag swab (30 mL of buffered Listeria enrichment broth (Becton Dickinson, Franklin 

Lakes, NJ) in a sterile Whirl-Pak bag) was dragged around the perimeter and 

diagonals of the plot for 3-5 minutes. All samples were transported on ice, stored at 

4°C and processed within 24 h of collection. 

Bacterial Enrichment and Isolation. Listeria spp. and L. monocytogenes 

enrichment and isolation were performed as previously described (25). Briefly, each 

sample was diluted 1:10 with buffered Listeria enrichment broth (Becton Dickinson),  

followed by incubation at 30°C. After 4 h, Listeria selective enrichment supplement 

(Oxoid, Cambridge, UK) was added to each enrichment. After incubating for 24 and 

48 h, 50 µl of each enrichment was streaked onto L. monocytogenes plating medium 

(LMPM; Biosynth International, Itasca, IL) and Modified Oxford agar (MOX; Becton 

Dickinson); the plates were then incubated for 48 h at 35 and 30°C, respectively. 

Following incubation, up to four presumptive Listeria colonies were sub-streaked 

from MOX to LMPM and incubated at 35°C for 48 h. From all LMPM plates, up to 

four presumptive Listeria colonies were then sub-streaked onto brain-heart infusion 

plates (BHI; Becton Dickinson), followed by incubation at 37°C for 24 h. The species 

and sigB allelic type of one presumptive Listeria colony per sample was determined 

by PCR amplification and sequencing of the partial sigB gene as previously described 

(42–44).    

 Positive and negative controls were processed in parallel with field samples. L. 

monocytogenes FSL R3-0001 (45) and uninoculated enrichment media were used as 

the positive and negative controls, respectively. All isolates were preserved at -80°C 

and isolate information can be found at www.FoodMicrobeTracker.com.  

http://www.foodmicrobetracker.com/
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Statistical analysis. All statistical analyses were performed in R (version 3.1, 

R Core Team, Vienna, Austria). The frequency and prevalence of L. monocytogenes 

was calculated for each predicted risk area for each rule. Although the outcome of the 

CART model was a predicted prevalence for L. monocytogenes, all statistical analyses 

were performed for both (i) L. monocytogenes and (ii) Listeria spp. (including L. 

monocytogenes) since Listeria spp. is more common than L. monocytogenes in NYS 

produce production environments and is often used as an index organism for L. 

monocytogenes.  

In order to test the ability of each rule to accurately predict the prevalence of 

Listeria spp. and L. monocytogenes in produce fields, and to validate the CART 

model, multivariable logistic regression analyses were performed using the lme4 

package (46). The multivariable model originally contained all four rules, but was 

reduced using backwards selection. The outcome for the multivariable model was the 

presence of Listeria spp. or L. monocytogenes. Farm was included as a random effect.  

As the multivariable model used to validate the algorithm adapted from Strawn 

et al. (25) only contained four factors (i.e., proximity to surface water, impervious 

cover, and pasture, and AWS), univariable generalized linear mixed models (GLMM; 

46) were developed to examine the effect of additional land covers (i.e., proximity to 

barren land, forests, grassland, roads, scrubland, and wetlands) on the likelihood of 

Listeria spp. and L. monocytogenes isolation. Since the CART model was based on a 

binary interpretation of AWS, and proximity to water, impervious cover, and pasture, 

univariable GLMMs were also developed to examine the relationship between these 

four factors, as continuous variables, and Listeria spp. and L. monocytogenes 
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prevalence. In this and all other GLMMs performed for this study, farm was included 

as a random effect and the outcome was the prevalence of Listeria spp. or L. 

monocytogenes. All factors that were significantly associated with the isolation of 

Listeria spp. or L. monocytogenes were tested for correlation with all other factors that 

were found to be significant by univariable analysis.  

A multivariable GLMM was also developed de novo (i.e., not based on the 

rules reported by Strawn et al. (25)) to identify the most important land cover factors 

associated with Listeria spp. and L. monocytogenes isolation from drag swab samples. 

Factors that were not correlated and were significant by univariable analysis were 

considered candidate factors for inclusion in the multivariable model.  

Predictive models, based on the GLMMs for L. monocytogenes, were then 

applied in a GIS platform to generate predictive maps of L. monocytogenes prevalence 

at the sub-field level to compare with the map that was developed using the CART 

model (Figure 1). Predictive risk maps were developed by inputting the univariable 

and multivariable GLMMs into ArcGIS. The Homer C. Thompson Vegetable 

Research Farm at Cornell University was used to develop these maps to ensure 

confidentiality of the commercial growers enrolled in our study.  

Results 

The overall prevalence of Listeria spp. and L. monocytogenes for field drag 

swabs collected from NYS produce farms was 20% and 12%, respectively. 

Overall, Listeria spp. (including L. monocytogenes) was isolated from 20% (208/1056) 

of samples. L. monocytogenes was isolated from 12% (128/1056) of samples, L. 

innocua was isolated from 4.0% (42/1056) of samples, L. seeligeri was isolated from 
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2.0% (21/1056) of samples, and L. welshimeri was isolated from 1.6% (17/1056) of 

samples.  

Overall, the prevalence of Listeria spp. was greater for all field areas with a 

high predicted prevalence of L. monocytogenes isolation compared to field areas with 

a low predicted prevalence (Table 1; Figure 2). For example, Listeria spp. prevalence 

was 26% (51/195) in samples collected from areas with a high predicted prevalence 

according to the Water Rule, and 18% (157/861) in samples collected from areas with 

a low predicted prevalence according to the Water Rule (Table 1; Figure 2).   

The prevalence of L. monocytogenes was greater for all field areas with a high 

predicted prevalence of L. monocytogenes isolation compared to the field areas with a 

low predicted prevalence according to the Water, Pasture and AWS Rules (Table 1; 

Figure 3). For example, L. monocytogenes prevalence was 22% (43/195) in samples 

collected from areas with a high predicted prevalence according to the Water Rule, 

and 10% (85/861) in samples collected from areas with a low predicted prevalence 

according to the Water Rule (Table 1; Figure 3). 
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Table 2.1: Frequency and prevalence of Listeria species-positive and L. monocytogenes-positive samples for farm fields that had 
either a high or a low predicted risk of L. monocytogenes isolation based on land cover factors 

 
 

Rule 

Description by predicted prevalence (No. of 
Samples = 1,056) No. of samples positive for (prevalence [%]): 

High Low 

Listeria spp. (No. of Positive 
Samples = 208)a 

L. monocytogenes (No. of Positive 
Samples = 128) 

High predicted 
risk 

Low predicted 
risk 

High predicted 
risk 

Low predicted 
risk 

Water ≤37.5 m from water 
(195) 

>37.5 m from water 
(861) 51 (26) 157 (18) 43 (22) 85 (10) 

Road ≤9 m from roads 
(168) 

>9 m from roads 
(693) 36 (21) 121 (17) 11 (7) 74 (11) 

AWSb >4.2 cm3 AWS (106) ≤4.2 cm3 AWS (587) 23 (22) 98 (17) 20 (19) 54 (9) 

Pasture ≤62.5 m from pasture 
(49) 

>62.5 m from pasture 
(57) 12 (24) 11 (19) 11 (22) 9 (15) 

 

a Listeria spp. include L. monocytogenes. 
b AWS, available water storage. 
  

http://aem.asm.org/content/82/3/797/T1.expansion.html#fn-2
http://aem.asm.org/content/82/3/797/T1.expansion.html#fn-3
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Figure 2.2: Frequency and prevalence of positive Listeria species samples for farm fields that had either a high or a low predicted 

prevalence of L. monocytogenes isolation based on a hierarchical predictive risk model. 
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Figure 2.3: Frequency and prevalence of positive L. monocytogenes samples for farm fields that had either a high or a low 

predicted prevalence of L. monocytogenes isolation based on a hierarchical predictive risk model. 
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Rules based on surface water and pasture proximity accurately predict L. 

monocytogenes prevalence in environmental samples collected from NYS produce 

production environments. Logistic regression was performed to test the ability of 

each rule to accurately predict L. monocytogenes prevalence in NYS produce 

production environments. Logistic regression analysis showed that only the Water and 

Pasture Rules accurately predicted the prevalence of L. monocytogenes in NYS 

produce production environments (Table 2). Samples collected from field areas that 

had a high predicted prevalence of L. monocytogenes isolation by the Water Rule had 

an increased odds of L. monocytogenes isolation (OR = 3.0; 95% CI= 2.0, 4.6), 

compared to samples collected from field areas that had a low predicted prevalence. 

Samples collected from field areas that had a high predicted prevalence for L. 

monocytogenes by the Pasture Rule had an increased odds of L. monocytogenes 

isolation (OR = 2.9; 95% CI= 1.4, 6.0), compared to samples collected from field areas 

that had a low predicted prevalence. 

While the outcome of the CART model was L. monocytogenes prevalence, the 

ability of the model to predict Listeria spp. prevalence was also validated because 

Listeria spp. is more common than L. monocytogenes and as a result, the findings 

based on Listeria spp. are more robust. Multivariable logistic regression showed that 

only the Water Rule was found to accurately predict the prevalence of Listeria spp. in 

NYS produce production environments (Table 2). Samples collected from field areas 

that had a high predicted L. monocytogenes prevalence by the Water Rule had an 

increased odds of Listeria spp. isolation (OR = 1.6; 95% CI= 1.1, 2.4), compared to 

samples collected from field areas that had a low predicted prevalence.
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Table 2.2: Results of multivariable analyses built using backward regression (i.e., only 
factors with P ≤ 0.05 were retained) that tested previously identified rules to 
accurately predict the effect of different binary land cover factors (e.g., either far away 
from or close to water) on the likelihood of Listeria species and L. monocytogenes 
isolation. 

 

Species by rule 
Odds ratio for Listeria species or 

L. monocytogenes detection 95% CIa P value 
Listeria spp.b    
    Waterc 1.6 1.1, 2.4 0.008 
L. monocytogenes    
    Pastured 2.9 1.4, 6.0 0.005 
    Waterc 3.0 2.0, 4.6 <0.001 

 

a CI, confidence interval. 
b Listeria spp. include L. monocytogenes. 
c The water rule predicts a high prevalence of L. monocytogenes for areas within 
37.5 m of surface water and a low prevalence for areas >37.5 m from surface 
water. 
d The pasture rule predicts a high prevalence of L. monocytogenes for areas within 
62.5 m of pasture and a low prevalence for areas >62.5 m from surface water. 
 
 
  Proximity to wetlands and scrublands were associated with an altered 

likelihood of L. monocytogenes isolation from produce production environments 

in NYS. As the multivariable model used to validate the CART model (25) only 

contained four factors, GLMMs were developed to identify additional land cover 

factors that were associated with the isolation of L. monocytogenes from NYS produce 

production environments. Of the nine land cover factors that were evaluated, six 

features (i.e., proximity to forest, grasslands, pasture, scrublands, water and wetlands) 

were significantly associated with L. monocytogenes-positive samples by univariable 

analysis (Table 3). For example, for a 100 m increase in the distance of a sampling site 

from forests, the likelihood of L. monocytogenes isolation decreased by 14% (OR = 

http://aem.asm.org/content/82/3/797/T2.expansion.html#fn-4
http://aem.asm.org/content/82/3/797/T2.expansion.html#fn-5
http://aem.asm.org/content/82/3/797/T2.expansion.html#fn-6
http://aem.asm.org/content/82/3/797/T2.expansion.html#fn-7
http://aem.asm.org/content/82/3/797/T2.expansion.html#fn-6
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0.86; 95% CI= 0.74, 1.0). Similarly, for a 100 m increase in the distance of a sampling  

site from surface water, the likelihood of L. monocytogenes isolation decreased by 23% 

(OR = 0.77; 95% CI= 0.66, 0.90; Figure 4).  

 

Table 2.3: Results of univariable analyses that tested the effect of different land cover 
factors, treated as continuous variables, on the likelihood of Listeria species and L. 
monocytogenes isolation. 

 
Proximity by land cover factor Odds ratioa 95% CIb P value 
Listeria spp.c    
    Forest 0.84 0.74, 0.95 0.009 
    Pasture 0.92 0.83, 1.0 0.117 
    Scrubland 0.93 0.88, 0.99 0.044 
    Water 0.85 0.76, 0.95 0.005 
    Wetlands 0.93 0.86, 1.0 0.058 
L. monocytogenes    
    Forest 0.86 0.74, 1.0 0.060 
    Grassland 1.04 0.99, 1.1 0.104 
    Pasture 0.92 0.81, 1.0 0.148 
    Scrubland 0.88 0.81, 0.95 0.002 
    Water 0.77 0.66, 0.90 0.001 
    Wetlands 0.92 0.84, 1.0 0.088 

 

 

a For a 100-m increase in the distance of a given sampling point from the given 
land cover factors. 
b CI, confidence interval. 
c Listeria spp. include L. monocytogenes. 
   

http://aem.asm.org/content/82/3/797/T3.expansion.html#fn-8
http://aem.asm.org/content/82/3/797/T3.expansion.html#fn-9
http://aem.asm.org/content/82/3/797/T3.expansion.html#fn-10
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Figure 2.4: True prevalence (bars) and predicted prevalence of Listeria species-
positive samples (A) and L. monocytogenes-positive samples (B) (line) based on mixed 
models that included proximity to water as a risk factor. True prevalence was 
calculated for 50-m bins (e.g., all samples that were between 0 and 50 m from water 
went into the first bin); the sample size for each bin is noted at the bottom of each 
column. Among five samples collected >650 m away from water, two were Listeria 
species positive and none were L. monocytogenes positive. Prevalence is reported as a 
decimal. 
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To identify the most important land cover factors associated with L. 

monocytogenes isolation from produce production environments, a multivariable 

GLMM was developed. The six factors that were found to be significant by univariable 

analysis were included as candidate factors. In the final GLMM only three land cover 

features were retained (Supplemental Table 1); and no significant interactions (i.e., P < 

0.05) were observed between any variables in the model. For a 100 m increase in the 

distance of a sampling site from forests, the likelihood of L. monocytogenes isolation 

decreased by 13% (OR = 0.87; 95% CI= 0.76, 0.99).  For a 100 m increase in the 

distance of a sampling site from scrubland, the likelihood of L. monocytogenes 

isolation decreased by 6% (OR = 0.94; 95% CI= 0.88, 1.0). Lastly, for a 100 m 

increase in the distance of a sampling site from water, the likelihood of L. 

monocytogenes isolation decreased by 15% (OR = 0.85; 95% CI= 0.76, 0.95). 

Predictive risk maps (Figure 5) were then developed using the univariable and 

multivariable GLMMs for L. monocytogenes described above (Table 3; Supplemental 

Table 1). The maps were developed to allow for comparisons with the map based on 

the CART model (Figure 1), and as a proof of a concept to assess if the multivariable 

GLMM for L. monocytogenes could be used to predict L. monocytogenes prevalence at 

the sub-field level. This map shows that multivariable GLMM can be used to generate 

a map of L. monocytogenes prevalence, and that said map is at a finer scale compared 

to maps based on CART analyses. 
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Figure 2.5: Map of predicted prevalence of L. monocytogenes for the Homer C. 
Thompson Vegetable Research Farm at Cornell University based on the results of (i) 
univariable generalized linear mixed models in which proximities to scrubland (A), 
water (B), and wetlands (C) were included as risk factors and (ii) a multivariable 
generalized linear mixed model in which proximities to scrubland, water, and wetlands 
were included as risk factors (D). Note that this map is not based on any of the farms, 
included in this study for confidentiality reasons. Maps were created using ArcGIS 
software, and base maps are from ArcGIS (ESRI [all rights reserved]). 
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Figure 2.5: Continued 
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Proximity to forests and scrublands were associated with an increased 

likelihood of Listeria spp. isolation from produce production environments in 

NYS. Similar to L. monocytogenes, GLMMs were also developed to identify additional 

land cover factors that were associated with the isolation of Listeria spp. from NYS 

produce production environments. Of the nine land cover factors that were evaluated, 

five features (i.e., proximity to forest, pasture, scrublands, water and wetlands) were 

significantly associated with Listeria spp.-positive samples by univariable analysis 

(Table 3). For example, for a 100 m increase in the distance of a sampling site from 

forests, the likelihood of Listeria spp. isolation decreased by 16% (OR = 0.84; 95% 

CI= 0.74, 0.95). Similarly, for a 100 m increase in the distance of a sampling site from 

surface water, the likelihood of Listeria spp. isolation decreased by 15% (OR = 0.85; 

95% CI= 0.76, 0.95; Figure 4). No strong correlations (i.e., correlation coefficient less 

than 0.5) were observed between any of the significant factors by univariable analysis.  

To identify the most important land cover factors associated with Listeria spp. 

isolation from produce production environments, a multivariable GLMM was 

developed. The five factors that were found to be significant by univariable analysis 

were included as candidate factors. In the final GLMM only three land cover factors 

were retained (Supplemental Table 1) and no significant interactions were observed 

between variables in the final model. For a 100 m increase in the distance of a 

sampling site from scrubland, the likelihood of Listeria spp. isolation decreased by 

14% (OR = 0.86; 95% CI= 0.79, 0.93). For a 100 m increase in the distance of a 

sampling site from water, the likelihood of Listeria spp. isolation decreased by 24% 

(OR = 0.76; 95% CI= 0.65, 0.89). Lastly, for a 100 m increase in the distance of a 
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sampling site from wetlands, the likelihood of Listeria spp. isolation decreased by 9% 

(OR = 0.91; 95% CI= 0.83, 0.99). 

Discussion  

The primary objectives of this study were (i) to validate previously developed 

geospatial rules that predicted areas of significantly higher or lower prevalence of L. 

monocytogenes, and (ii) to identify additional land cover factors that may be associated 

with an increased or decreased likelihood of L. monocytogenes isolation in produce 

production environments. Our study validated two of the four rules (i.e., the Water and 

Pasture Rules) that comprised the CART model (25). Additionally, among land cover 

factors that were not included in the original CART model, but tested here, proximity 

to scrubland, and wetlands, were found to be significantly associated with an increased 

likelihood of L. monocytogenes isolation. These findings suggest that on-farm produce 

safety is complicated by the ecological context unique to each field, as well as the scale 

(e.g., farm, field, and sub-field levels) at which prevalence is assessed. Thus, it is 

essential to have tools that allow growers to account for both ecological context and 

scale when developing on-farm produce safety plans. The validation of the Water and 

Pasture Rules in this study demonstrates the application of geospatial models for 

prospective, and accurate prediction of pathogen prevalence on produce farms, 

suggesting that GIS is a promising tool for food safety. 

Geospatial models have the ability to accurately predict the likelihood of L. 

monocytogenes isolation from produce production environments. In this study, 

proximity to surface water and pasture were significantly associated with L. 

monocytogenes isolation from produce production environments by logistic regression. 
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These findings validated two of the four rules from the CART model adapted from 

Strawn et al. (25). These findings were also consistent with other studies conducted on 

L. monocytogenes in NYS agricultural environments (22, 23, 26), as well as studies 

conducted on L. monocytogenes and other foodborne pathogens in agricultural and 

non-agricultural environments (19, 47–50). For example, in a Canadian study, Lyautey 

et al. (47) found that proximity to dairy operations was one of the most important 

predictors of L. monocytogenes-positive surface water samples. The repeated 

identification of an association between L. monocytogenes isolation, and proximity to 

water, pasture and other livestock associated areas, suggests that our findings are 

translatable to other farms in NYS. In our study reported here proximity to water and 

pasture were significantly associated with L. monocytogenes isolation by GLMM as 

well as logistic regression, further supporting the robustness of this association. By 

validating two of the rules adapted from the CART model, our study demonstrates that 

geospatial models can be used to accurately, and prospectively predict the prevalence 

of L. monocytogenes in produce production environments.  

Interestingly while our findings were generally consistent with the previously 

reported CART model (25), neither the AWS nor the Impervious Cover Rules were 

validated by our findings. This may be the result of small differences in sampling 

protocols between Strawn et al. (25) and the study reported here. Strawn et al. (25) 

used drag swab, composite soil, fecal and water samples in their analyses, while in the 

study reported here only drag swab samples were collected. As each sample type likely 

represents a unique L. monocytogenes population from a distinct ecological niche (e.g., 

water versus soil), it seems plausible that different factors would be associated with the 



 

61 

isolation of L. monocytogenes in each study. Therefore, the fact that the AWS and 

Impervious Cover Rules were not validated may indicate that these rules are associated 

with L. monocytogenes isolation from one of the sample types that were collected by 

Strawn et al. (25) but not in the study here (e.g., water samples). Future studies that 

investigate geospatial factors associated with contamination risk for actual produce 

(i.e., not environmental samples) are thus needed to increase the accuracy of predictive 

models and allow growers to maximize surveillance efforts. However, these studies 

will require considerably larger samples sizes, as pathogen prevalence on produce 

tends to be significantly lower than in environmental samples (22). Also, in the study 

reported here more samples were collected from areas with low predicted risk as 

compared to areas with high predicted risk; this was due to the fact that samples were 

collected in commercial settings. Future studies should aim to collect comparable 

sample sizes from high and low risk areas as well. 

Identification of additional factors (e.g., proximity to wetlands) that were not 

included in the original CART model, but were found to be associated with the 

prevalence of L. monocytogenes in produce production environments, may aid in the 

refinement of prediction models. Importantly, these same factors have also been 

identified as risk factors for Listeria and L. monocytogenes contamination in past 

studies of natural (26) and agricultural environments (23, 26). However, while the 

study reported here did not find any significant interactions between the different 

landscape factors studied, a previous report did find that interactions between 

landscape and meteorological factors significantly affected the probability of isolating 

Listeria spp. from soil, vegetation and water (24). Similarly, previous studies (9, 11, 
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19, 49, 51–53) found that management practices were significantly associated with the 

likelihood of isolating L. monocytogenes from on-farm environments. Management 

practices and meteorological factors, which were not considered in the study reported 

here, may thus affect the relationships between L. monocytogenes prevalence and 

landscape factors.  Further improvement of geospatial models may therefore be 

achieved by integration of additional environmental (both landscape and 

meteorological) and management practice data. While development of such models 

would require larger datasets, these models could account for temporal (e.g., changes 

in management practices or meteorological factors over time), as well as spatial 

variation, and would thus facilitate identification of additional risk factors as well as 

additional control strategies.  

Issues of scale need to be considered when developing and validating 

geospatial models for pre-harvest produce safety assessment. Despite the fact that 

the Pasture Rule was validated by logistic regression, proximity to pasture was not 

retained in the final multivariable GLMM. This difference may be a function of scale, 

which is defined by the resolution (i.e., grain) and extent of the available spatial data. 

Numerous studies (54–62) have found that changing study scale, changes the strength 

of associations and interactions. For example, in a study on habitat use by Eleodes 

hispilabris, McIntyre (62) found that E. hispilabris avoided shrubs at small scales, but 

selectively occupied shrubland at larger scales which may be due to different 

mechanisms influencing habitat selection at the different scales. Thus, studies that look 

at similar outcomes (e.g., L. monocytogenes prevalence) at different scales (e.g., field 

and sub-field level) may identify different predictor variables. The issue of scale is 
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complicated by the grain and accuracy of the remotely sensed data available, 

particularly if the scale of the input data differs from the model’s scale (63). For 

example, while the 2006 NLCD has a national accuracy of 78% (64), the odds of 

misclassification increases as landscape heterogeneity increases (65). Therefore, in 

highly mosaic environments, such as produce farms, NLCD accuracy is lower. This 

may also explain why proximity to pasture was not retained in the final GLMM, 

particularly since misclassification of grass-dominated landscapes, such as pasture, 

accounted for 26% of all inaccuracies (64). It is therefore important that researchers are 

cognizant of the limitations associated with the use of remotely sensed data to develop 

geospatial predictive risk models. On the other hand, these limitations can be 

minimized by carefully designing studies, and using appropriate analyses that account 

for scale (54, 63, 66). In addition, improved data collection strategies (e.g., using 

drones) could be used to address these issues in the future. Despite differences in study 

scale, it is important to note that proximity to pasture was significantly associated with 

L. monocytogenes prevalence by univariable GLMM, which does support the 

validation of the Pasture Rule by logistic regression. 

Ecological and food safety implications of edge interactions on farm 

landscapes.  In the present work, edge interactions between produce farms and four 

other land cover types (i.e., forest, scrubland, water and wetland) were observed.  The 

elevated prevalence of L. monocytogenes in ecotones (i.e., the transitional area where 

two ecological communities meet) is consistent with patterns observed in other disease 

systems (e.g. Lyme disease; 67–70). This is also consistent with our current 

understanding of infectious disease emergence; infectious diseases frequently arise at 
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the interface between human habitats and other ecosystems (67–71). Ecotones are most 

abundant in fragmented landscapes, and their presence intensifies ecological processes. 

For example, ecotones are often more diverse than surrounding communities (69, 72, 

73), and provide ideal habitat for "edge species" (e.g., ticks and rodents; 69). 

Additionally, ecotones, and the associated habitat fragmentation, affects the nature and 

rate of species interaction (e.g., intensifying competition; 69, 74). In this context, our 

results suggest that food grown within short distances of ecotones, specifically the 

boundaries between farm fields, and forests, water, scrublands or wetlands are at an 

increased risk of L. monocytogenes contamination. Thus, risk management plans need 

to consider the potential for increased pre-harvest food safety risks associated with 

produce grown in or near ecotones. For example, growers could create buffer zones of 

unharvested product near the edges of fields, increase surveillance and/or 

decontamination of produce grown near field edges, or stage harvesting and processing 

so that higher risk material (i.e., produce grown near field edges) are harvested and 

processed last. These concerns are particularly pertinent for small farms who have a 

larger ratio of ecotone to field area; thus future studies should account for farm size 

when developing and validating on-farm intervention strategies 

Predictive risk maps based on GIS-enabled models allow for the 

visualization of pre-harvest food safety risk at multiple scales. The CART model 

predicted prevalence at the field-level, while the GLMMs developed in the study 

reported here, predicted L. monocytogenes prevalence at every point within a field (i.e., 

at the sub-field level). Thus, the CART model generated a map of discrete areas of 

high and low predicted prevalence (Figure 1), while the GLMMs produced a risk 
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gradient map (Figure 5). As previously mentioned, different mechanisms drive 

ecological processes at different scales, so factors that are significantly associated with 

L. monocytogenes isolation at the field and sub-field levels may differ. Therefore, the 

model and predictive map that are most appropriate for use by the grower depend on 

the scale of their risk management plan (i.e., farm, field, or sub-field level). In general, 

maps based on the GLMM are more appropriate as those maps offer greater resolution, 

which allows for development of more targeted mitigation strategies, compared to 

maps based on CART models. However, the ability to develop both map types 

demonstrates the flexibility of geospatial tools, and the utility of GIS for visualizing 

the output of different model types. Overall, GIS offers a unique opportunity to look at 

variation across scales, and to account for cross-scale differences in predictive models 

by allowing for the integration and visualization of remotely sensed and field 

collected-data.  

Conclusion 

This study yielded quantitative data that showed that L. monocytogenes 

contamination on produce farms is dependent on the specific ecological context of a 

produce farm, and that geospatial, predictive risk maps can be used to accurately, and 

prospectively predict L. monocytogenes prevalence for NYS produce production 

environments. Additionally, other land cover factors were identified that should be 

examined in future studies to develop higher resolution models. The implementation of 

geospatial predictive models by the produce industry may increase the understanding 

of risk factors that promote foodborne pathogen prevalence and persistence in produce 

fields, and will assist growers in focusing their food safety efforts. Geospatial models 
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allow for the development of individualized preventive measures on produce farms, as 

they enable growers to proactively assess and address environmental factors that may 

increase the risk of contamination events on their specific farms. For example, 

predictive risk maps can identify areas of high predicted pathogen prevalence within 

farms, and enable growers to make more informed decisions about the management of 

crops in these areas including targeted pathogen surveillance programs and altered 

management practices. Thus, geospatial predictive risk models and maps have a 

promising future in pre-harvest food safety as they can be applied to any location and 

utilize a farms’ unique combination of landscape characteristics (e.g., proximity to 

domestic animal operations), soil properties (e.g., available water storage), and climate 

(e.g., precipitation) in the prediction process. 
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SPATIAL AND TEMPORAL FACTORS ASSOCIATED WITH AN INCREASED 

PREVALENCE OF L. MONOCYTOGENES IN SPINACH FIELDS IN NEW YORK 

STATE 
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Abstract 

While rain and irrigation events have been associated with an increased 

prevalence of foodborne pathogens in produce production environments, quantitative 

data are needed to determine the effects of various spatial and temporal factors on the 

risk of produce contamination following these events. This study was performed to 

quantify these effects and to determine the impact of rain and irrigation events on 

Listeria species (including L. monocytogenes) and L. monocytogenes detection 

frequency and diversity in produce fields. Two spinach fields, with a high and low 

predicted risk of L. monocytogenes isolation, were sampled 24, 48, 72 and 144-192 h 

following irrigation and rain events. Predicted risk was a function of a field’s 

proximity to water and roads. Factors were evaluated for their association with 

Listeria spp. and L. monocytogenes isolation using generalized linear mixed models 

(GLMM). In total, 1,492 (1,092 soil, 334 leaf, 14 fecal and 52 water) samples were 

collected. According to GLMM, the likelihood of Listeria spp. and L. monocytogenes 

isolation from soil samples was highest during the 24 h immediately following an 

event (OR = 7.7 and OR = 25, respectively). Additionally, Listeria spp. and L. 
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monocytogenes isolates associated with irrigation events showed significantly lower 

sigB allelic type diversity (as determined by Shannon-Weiner Index) than isolates 

associated with precipitation events (P = < 0.001; T-Hutcheson test), suggesting that 

irrigation water may be a point source for L. monocytogenes contamination. Small 

changes in management practices (e.g., not irrigating before harvest) may therefore 

reduce the risk of L. monocytogenes contamination of fresh produce.   
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Introduction 

Foodborne outbreaks have been increasingly linked to fresh produce in the 

United States (US; 1–6). In fact, the proportion of foodborne outbreaks that were 

attributed to produce between 1998 and 2008, 46%, was over twice that attributed to 

meat, 22% (6). Similarly, between 2002 and 2011 produce-associated outbreaks 

caused, on average, more illnesses per outbreak than any other food (1). As a result, 

the safety of fresh produce has come into question, negatively affecting produce 

growers, the food industry, and local economies (7, 8). For example, as a consequence 

of a 2011 listeriosis outbreak linked to fresh cantaloupes in the US (9), cantaloupe 

consumption dropped nationwide by 53% (10). The instability of the cantaloupe 

market following the 2011 outbreak is indicative of a larger trend of wide scale 

consumer avoidance of products associated with outbreaks, even when the outbreak is 

associated with point source events (7, 8). Thus, prevention of produce-associated 

outbreaks is of key concern for the produce industry. Although most listeriosis 

outbreaks associated with fresh produce are traced back to processing environments, 

the prevention of produce contamination in production environments is crucial. In fact, 

past studies have shown that low-level sporadic contamination of produce in 

production environments can result in pathogen proliferation and widespread 

contamination throughout the supply chain (11–13). In order to minimize pre-harvest 

produce contamination, it is necessary to understand how different spatial (e.g., 

proximity to water, roads) and temporal factors (e.g., time since irrigation) affect the 

likelihood of a contamination event in production environments. 
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Numerous studies have examined the relationship between environmental 

factors and the prevalence of L. monocytogenes (14–18) and L. monocytogenes 

surrogates (e.g., Listeria spp.; 19, 20) in produce production environments. Many of 

these studies (14–16) determined that water-related factors were significantly 

associated with the isolation of L. monocytogenes from environmental samples. 

Similar studies conducted in non-agricultural environments also found similar results 

(16, 21, 22). For example, Ivanek et al. (21) found that the isolation of Listeria spp. 

from samples collected in forested environments was positively associated with 

rainfall. Additionally, Strawn et al. (15) developed a geospatial algorithm, which 

included several water-related factors (e.g., available water storage (AWS) and 

proximity to water), to predict L. monocytogenes prevalence in NYS pre-harvest 

environments. Strawn et al.’s (15) findings also suggest that not all fields are at equal 

risk of pathogen contamination. Therefore, to identify and develop effective mitigation 

strategies to reduce the risk of on-farm produce contamination, it is essential to 

understand how contamination risk differs within and between fields due to variation 

in spatial (e.g., proximity to water) and temporal (e.g., time since a rain event) factors. 

Past studies have also found that management practices affect the risk of 

contamination by L. monocytogenes (14, 23–28) and L. monocytogenes’ surrogates 

(19, 20). For example, irrigation has repeatedly been associated with an increased risk 

of pre-harvest produce contamination by L. monocytogenes (14, 15, 26) and other 

foodborne pathogens (29–31). In fact, two studies (14, 25) have found that irrigation 

was one of the most important risk factors associated with L. monocytogenes isolation 

from samples collected in pre-harvest environments; both studies collected samples 



 

77 

from multiple farms growing a variety of crops. Moreover, contaminated irrigation 

water has been identified or suspected as the source of contamination for several 

produce-associated Escherichia coli and Salmonella outbreaks (32–36). Despite the 

repeated identification of irrigation as a risk factor for pre-harvest produce 

contamination, no study, to the authors’ knowledge, has reported, quantitatively, the 

impact of irrigation over time (i.e., over subsequent 24 h periods following an 

irrigation event) on the risk of produce contamination in production environments.  

Therefore, the purpose of this study was (i) to quantify the effects of various 

spatial (e.g., proximity to water) and temporal (e.g., time since an irrigation event) 

factors on the risk of produce contamination after rain and irrigation events, and (ii) to 

determine the impact of rain and irrigation events on Listeria spp. and L. 

monocytogenes diversity in spinach fields. The ultimate goal of this research was to 

identify potential mitigation strategies that can reduce the risk of produce 

contamination at the pre-harvest level. 

Materials and Methods 

Study design. A longitudinal study was conducted in two spinach (Unipack 

15-F1, Harris Seeds) fields at the Homer C. Thompson Vegetable Research Farm over 

a seven-week period in May, June, and July 2014. Two 0.2 ha fields (Figure 3.1) were 

selected based on their respective predicted prevalence of L. monocytogenes (i.e., one 

high and one low risk field), which was a function of the fields’ proximity to water 

and roads (see header “Landscape Data and Determining Predicted Field Risk”). 

Fields were prepared for planting by harrowing, and treatment with a 13-13-13 

fertilizer at a rate of 789 kg per hectare. The herbicide metalolchlor (DuPont, 
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Figure 3.1: Locations of the low- and high-risk fields and the surface water sampling 
sites included in this study. 
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Wilmington, Delaware) was applied at a rate of 0.58 L per hectare immediately 

following seeding. Irrigation water was drawn from Fall Creek (Figure 3.1). 

Each field was divided into 21 13x13 m plots. Soil sample sites were randomly 

selected from within each plot using the ‘Create Random Points’ function in ArcGIS 

(version 10.2.2, Environmental Systems Research Institute, Redlands CA) for each 

sampling trip (i.e., the same location within each plot was only sampled once during 

the course of the study). New sampling sites were selected for each sampling trip to 

ensure (i) that a representative sample of Listeria spp. and L. monocytogenes was 

collected from each plot during the course of the study, and (ii) that there was 

sufficient variation in sample location to statistically determine the effect of spatially-

specific factors (e.g., distance of a sampling site to water) on the likelihood of Listeria 

spp. and L monocytogenes isolation. Soil samples were collected on the day of 

planting, and 24, 48, 72, and 144-192 h after an “irrigation” or “rain” event. An 

irrigation event was defined as any time irrigation water was applied to the field. A 

rain event was defined as > 6 mm of rain over a 24 h time period (i.e., 9 am to 9 am). 

If multiple subsequent 24 h periods each received > 6 mm of rain, then the first sample 

collection (i.e., t = 24 h) was performed 24 h after the last 24 h time period with > 6 

mm of rain (i.e., if it rained more than > 6 mm on Tuesday and Wednesday then the 24 

h samples were collected Thursday). Two multi-day rain events lasting 48 h occurred 

during the course of the study. To account for the effect of a multi-day rain event on 

our results, the amount of rainfall 0, 1, 2, 3, 0-1, 0-2 and 0-3 days preceding sample 

collection were included as risk factors in the statistical analyses (see header 
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“Statistical Analysis” for more information). If a rain or irrigation event did not occur 

between 144-192 h after a rain event, a “dry” event sampling was performed. 

Sampling at a later time point (e.g., 192 h versus 144 h) was given preference, if 

forecasts clearly indicated absence of rainfall for more than 144 h. Each set of samples 

(i.e., 24, 48, 72 h and 144-192 h, if collected,) was defined as representing either an 

irrigation or rain event depending on which “event type” initiated sample collection. 

Overall, seven sets of samples were collected: (i) five sets that represented rain events 

including three sets where samples were collected 144-192 h after the event, (ii) two 

sets that represented irrigation events including one set where samples were collected 

144-192 h after the event. Additionally, a set of samples was collected prior to seeding 

on the day of planting. Overall, each plot was sampled 26 times. 

Water, leaf and fecal samples were also collected. Water samples were 

collected from Fall Creek (Figure 3.1), the water source used for irrigation. Fecal 

samples were collected when observed within 5 m of the sampled fields or Fall Creek. 

Fecal samples were not identified to species-level due to the high misclassification 

rate associated with visual identification of wildlife scat (37, 38). Composite leaf 

samples were collected for each plot once the spinach plants were large enough to 

survive harvesting (i.e., 36 d after planting). Composite leaf samples were hand 

collected by gathering leaves from 6-12 spinach plants growing along the perimeter 

and diagonals of each plot. Global positioning system (GPS) coordinates were 

recorded for each soil and water sample. In total, 1,092 soil, 52 water, 334 leaf and 14 

fecal samples were collected (n=1,492 total).  
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Sample collection and preparation. Samples were collected and tested as 

previously described by Strawn et al. (15). Briefly, latex gloves (Nasco, Fort Atkinson, 

WI) were worn and changed for each sample collected. For each plot, a soil sample 

was collected from approximately 4 in (10.16 cm) below the soil surface by 5 mL 

sterile scoops (Fisher Scientific, Hampton, NH) and placed in a sterile Whirl-pak bag 

(Nasco, Fort Atkinson, WI). Twenty-five g of soil was then weighed into a separate 

sterile filter Whirl-pak bag. Water samples were collected directly into sterile jars 

using a sampling pole (Nasco) and processed according to the Environmental 

Protection Agency (EPA) standard methods (39). Briefly, a 250 mL water sample was 

passed through a 0.45 μm filter (Nalgene, Rochester, NY) and the filter was 

aseptically transferred to a sterile Whirl-Pak bag. Additionally, 10 g of each fecal 

sample and 25 g of each composite leaf sample were weighed out and aseptically 

transferred to separate sterile filter Whirl-pak bags. All samples were transported on 

ice and processed within 3 h of collection.  

Bacterial enrichment and isolation. To enrich and isolate Listeria spp. and L. 

monocytogenes, samples were prepared as previously described by Strawn et al. (15). 

Briefly, each sample was diluted 1:10 with buffered Listeria enrichment broth (Becton 

Dickinson, Franklin Lakes, NJ) and incubated at 30°C for 24 h. After 4 h, Listeria 

selective enrichment supplement was added to each sample enrichment bag. At 24 and 

48 h, 50 µl of each sample enrichment was plated onto L. monocytogenes plating 

medium agar (LMPM; Biosynth International, Itasca, IL) and Modified Oxford agar 

(MOX; Becton Dickinson). After incubation for 48 h at 35 (LMPM) and 30 (MOX) 

°C, up to four presumptive Listeria colonies were sub-streaked from LMPM and 
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MOX onto brain-heart infusion agar plates (BHI; Becton Dickinson). The BHI plates 

were then incubated at 37°C for 24 h. Presumptive Listeria colonies were confirmed 

by PCR amplification and sequencing of the partial sigB gene as previously described 

(40–42). Isolates were identified to allelic type (AT) by comparison of partial sigB 

sequences to an internal reference database (Food Safety Laboratory, Cornell 

University, Ithaca, NY; 40–42). The authors acknowledge that more discriminatory 

subtyping methods exist which are more translatable to other subtyping schemes 

commonly used (e.g., multi-locus sequence typing, and multi-locus genotyping); 

however, a previous study (43) showed that DNA-based subtyping methods, such as 

sigB AT, can efficiently differentiate between species of Listeria. More advanced 

subtyping schemes, such as whole genome sequencing, should be used in future 

studies to assess the relatedness of isolates across time and space.     

 Positive and negative controls were processed in parallel for each sample. L. 

monocytogenes FSL R3-001 (44) inoculated in BHI broth was used as the positive 

control and un-inoculated enrichment media was used as the negative control. All 

isolates were preserved at -80°C. Isolate information can be found at 

www.FoodMicrobeTracker.com and in Table S1.  

Landscape data and determining predicted field risk. Landscape data 

(Table S2) were derived using ArcGIS as described by Weller et al. (14). Predicted 

risk was based on a geospatial algorithm previously described by Strawn et al. (15). 

Briefly, the GPS coordinates for each field and soil sampling site were imported into 

ArcMap using the Universal Transverse Mercator, North American Datum, 1983. 

Road and hydrologic data were downloaded from the Cornell University 

http://www.foodmicrobetracker.com/


 

83 

Environmental Information Repository (cugir.mannlib.cornell.edu). Soil data were 

obtained from the Natural Resource Conservation Service Web Soil Survey 

(http://websoilsurvey.sc.egov.usda.gov/). Shapefiles for field edge and irrigation lines 

were created using the ‘Create Features (Editor)’ function. Data on the proximity of 

each sample collection point to field edge, irrigation lines, roads and surface water 

were derived using the ‘Near (Analysis) ’ function. 

Based on the data and models described by Strawn et al. (15), a field was 

considered at high risk for L. monocytogenes if it was ≤ 37.5 m from water and ≤ 9.5 

m from a road (15). A field was considered at low risk for L. monocytogenes if it was 

> 37.5 m from water and > 9.5 m from a road (15). The high risk field also had, on 

average, a higher AWS (i.e., an AWS for 0-100 cm below the soil surface of > 4.2 cm) 

compared to the low risk field. Soil in the high risk field was Eel silt loam, and for 0-

100 cm below the soil surface was, on average, 60% sand, 30% silt, 11% clay and 2% 

organic matter; these values are based on representative values for several soil layers 

and a large area space (30 m2) and therefore do not add up to 100%. Soil in the low 

risk field was Howard gravelly, loam, and for 0-100 cm below the soil surface was, on 

average, 47% silt, 39% sand, 13% clay, and 1% organic matter content. Both fields 

were level (i.e., slope < 5%). Lastly, spinach, and a clover-rye cover crop were planted 

in the high risk field in 2013 and 2012, respectively, while cucurbits and broccoli were 

planted in the low risk field in 2013 and 2012, respectively.  

Meteorological data. Meteorological data (Table S2) were obtained from the 

Cornell University weather station located at the Homer C. Thompson Vegetable 

Research Farm (Rainwise Inc., Trenton, NJ). Data on leaf wetness were obtained from 

http://cugir.mannlib.cornell.edu/


 

84 

the Cornell University Network for the Environment and Weather Applications 

(Network for Environment and Weather Applications, Cornell University, Ithaca, 

NY). Data were downloaded for each sample collection date and the three preceding 

24 h periods (i.e., 9 am to 9 am). Average values for each factor for 0 to 1, 0 to 2, and 

0 to 3 d before sample collection were also calculated.  For a description of all 

meteorological factors included in this study see Table S2.  

Statistical analysis. All statistical analyses were performed in R (version 3.1, 

R Core Team, Vienna, Austria). Prevalence was calculated for each field (high or low 

risk), time period (24, 48, 72 and 144-192 h), event type (rain versus irrigation event) 

and sample type (leaf, soil and water). The total number of ATs (i.e., allelic type 

richness) for Listeria spp. and L. monocytogenes was determined and the Shannon-

Wiener index was calculated. A T-Hutcheson test (45) was performed to compare the 

Shannon-Wiener indices for the high risk and low risk fields, and for irrigation and 

rain events. 

Univariable analyses were performed to determine the effect of spatial and 

meteorological factors, time since event, predicted field risk, and event type (i.e., 

irrigation versus rain event) on the odds of Listeria spp. and L. monocytogenes 

isolation. Correlation between significant factors (at P ≤ 0.20) was assessed using the 

corrplot package (version 0.73, http://cran.r-project.org/web/packages/corrplot). 

Principal component analysis (PCA) was performed on each set of meteorological 

factors (e.g., all humidity factors), with the exception of rainfall. PCA was only 

performed if the factors were significant by univariable analysis and correlated, and if 

combination was biologically plausible. The first eigenvector from each PCA was 
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added to the dataset as a potential covariate for inclusion in the final model. Factors 

that were identified as significant by univariable analysis but not included in a PCA 

were included as potential covariates in the final model, as well. 

Generalized linear mixed models (GLMM; Bates, Maechler, Bolker and 

Walker, submitted for publication) were developed using the logit link function. The 

outcome was the presence or absence of Listeria spp. or L. monocytogenes. Event 

type, hours and either predicted field risk, or proximity to water and road were 

included as fixed effects. Set and plot were included as random effects. The model 

was built using a backwards selection method (i.e., factors were removed from the 

model until only factors significant at P ≤ 0.05 remained).  

Spatial analysis. Model residuals were obtained for each GLMM, and a 

residual variogram was created to determine if there were spatial dependencies in the 

data that were not accounted for by the multivariable model (46). 

Results 

Prevalence and diversity of L. monocytogenes, and Listeria spp. in produce 

production environments. The overall prevalence of Listeria spp. was 14% 

(204/1492). The prevalence of Listeria spp. was higher in water samples, 90% (47/52) 

and fecal samples, 79% (11/14), compared to soil samples, 12% (126/1092) and leaf 

samples, 6% (19/334; Table 3.1). The prevalence of Listeria spp. was higher in soil 

samples collected from the high risk field, 15% (84/546), compared to the low risk 

field, 8% (42/546; Table 3.2; Figure 3.2). The prevalence of Listeria spp. was higher 

in soil samples collected 24 h after irrigation and rain events, 23% (68/294), compared 

to soil 
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Table 3.1: Effect of sample type on the frequency and prevalence of Listeria spp. and 
L. monocytogenes isolates from soil samples collected from spinach fields previously 
identified as being at high or low risk for L. monocytogenes isolation. 

Sampling site and sample type (no. of samples) 
No. (%) of samples positive for: 
Listeria spp.a L. monocytogenes 

High-risk field (726) 109 (15) 73 (10) 
    Fecal (13) 11 (85) 9 (69) 
    Leaf (167) 14 (8) 2 (1) 
    Soil (546) 84 (15) 62 (11) 
Low-risk field (714) 48 (7) 24 (3) 
    Fecal (1) 0 (0) 0 (0) 
    Leaf (167) 5 (3) 0 (0) 
    Soil (546) 43 (8) 24 (4) 
Surface waterb  (52) 47 (90) 33 (63) 

 

a Listeria spp. including L. monocytogenes. 
b Surface water used for irrigation. 
 
samples collected 48 h, 10% (28/294), 72 h, 5% (14/294), and 144-192 h, 3% (5/168) 

after irrigation and rain events (Table 3.2). The prevalence of Listeria spp. was higher 

in soil samples collected after irrigation events, 14% (40/294), compared to rain 

events, 10% (75/756; Table 3.2). 

Twenty-seven different Listeria spp. allelic types were isolated from the 

Listeria spp. positive soil samples collected in this study (Table S3). While there was a 

greater diversity of AT in soil samples collected from the low risk field, compared to 

the high risk field, the difference was not statistically significant according to T-

Hutcheson’s test (P = 0.08; Table 3.3; Figure 3.3). The diversity of Listeria spp. AT 

types isolated from soil samples following rain events was significantly greater (P < 

0.001) than the diversity of allelic types isolated from soil samples following irrigation 

events (Table 3.3). The diversity of Listeria spp. ATs isolated from water samples was

http://aem.asm.org/content/81/17/6059/T1.expansion.html#fn-2
http://aem.asm.org/content/81/17/6059/T1.expansion.html#fn-3
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Table 3.2: Frequency and prevalence of Listeria spp. and L monocytogenes in soil 
samples collected 24, 48, 72, and 144 to 192 h after irrigation and rain events from 
two spinach fields previously identified as being at high or low risk for L. 
monocytogenes isolation. 

Event typea Time (h)b (no. of samples) 
No. (%) of samples positive for: 
Listeria spp.c L. monocytogenes 

Low-risk field    
    Pre-sample NA (21) 1 (5) 1 (5) 
    Irrigation 24 (42) 8 (19) 7 (17) 
 48 (42) 3 (7) 2 (5) 
 72 (42) 2 (5) 2 (5) 
 144–192 (21) 0 (0) 0 (0) 
    Rain 24 (105) 16 (15) 7 (7) 
 48 (105) 7 (7) 2 (3) 
 72 (105) 4 (4) 2 (3) 
 144–192 (63) 2 (3) 1 (1) 
High-risk field    
    Pre-sample NA (21) 4 (19) 2 (10) 
    Irrigation 24 (42) 11 (26) 10 (24) 
 48 (42) 11 (26) 11 (26) 
 72 (42) 5 (12) 2 (5) 
 144–192 (21) 0 (0) 0 (0) 
    Rain 24 (105) 33 (31) 28 (27) 
 48 (105) 7 (7) 3 (3) 
 72 (105) 3 (3) 5 (12) 
 144–192 (63) 3 (5) 1 (16) 

 

a Event type (i.e., irrigation or rain event) that initiated sample collection. 
b Time in hours (i.e., 24, 48, 72, or 144 to 192 h) since the event. NA (not 
applicable) indicates that samples were collected before study initiation. 
c Listeria spp. including L. monocytogenes.

http://aem.asm.org/content/81/17/6059/T2.expansion.html#fn-4
http://aem.asm.org/content/81/17/6059/T2.expansion.html#fn-5
http://aem.asm.org/content/81/17/6059/T2.expansion.html#fn-6
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Figure 3.2: Distribution of Listeria species (including L. monocytogenes)-positive and -negative samples in the low-risk (A) and 
high-risk (B) fields and of L. monocytogenes-positive and -negative samples in the low-risk (C) and high-risk (D) fields. Fall Creek, 
the source of irrigation water in this study, is visible in the bottom right-hand corner of panels B and D. 
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Table 3.3: Diversity of Listeria species and L. monocytogenes allelic types isolated from soil and water samples collected from 
spinach fields previously identified as being at high or low risk for L. monocytogenes isolation. 

Sampling site Event typea 
Listeria spp.b L. monocytogenes 

No. of allelic types Shannon-Weiner index No. of allelic types Shannon-Weiner index 
Low-risk field — 18 2.4 7 1.2 
 Irrigation 4 0.84 2 0.33 
 Rain 16 2.5 6 1.4 
High-risk field — 21 2.0 7 1.1 
 Irrigation 8 1.1 4 0.53 
 Rain 18 2.2 6 1.2 
Surface water — 14 0.85 6 0.99 
 Irrigation 4 0.67 3 0.39 
 Rain 12 1.1 5 0.60 

 

a Event type (i.e., irrigation or rain event) that initiated sample collection. — indicates information for all samples collected 
from the high-risk field, the low-risk field, or surface water regardless of the event type that initiated collection. The number of 
allelic types is not a simple summation of the numbers of ATs found following irrigation and rain events, as some ATs may 
have been found following events of both types. 
b Listeria spp. including L. monocytogenes.

http://aem.asm.org/content/81/17/6059/T3.expansion.html#fn-7
http://aem.asm.org/content/81/17/6059/T3.expansion.html#fn-8
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not significantly different from the diversity of Listeria spp. ATs isolated from soil 

samples following irrigation events (P=0.36). However, the diversity of Listeria spp. 

ATs isolated from water samples was significantly lower than the diversity of the 

Listeria spp. ATs isolated from soil samples following rain events (P<0.001). 

The overall prevalence of L. monocytogenes was 9% (130/1,492). The 

prevalence of L. monocytogenes was higher in fecal samples, 64% (9/14) and water 

samples, 63% (33/52), compared to soil samples, 8% (86/1092) and leaf samples, 

0.6% (2/334; Table 3.1). The prevalence of L. monocytogenes was higher in soil 

samples collected from the high risk field (11%; 62/546), compared to the low risk 

field (4%; 24/546; Table 3.1; Figure 3.2). The prevalence of L. monocytogenes was 

higher in soil samples collected 24 h after irrigation and rain events, 18% (52/294), 

compared to soil samples collected 48 h, 6% (18/294), 72 h, 4% (11/294) and 144-192 

h, 1% (2/168), after irrigation and rain events (Table 3.2). Lastly, the prevalence of L. 

monocytogenes was higher in soil samples collected after irrigation events, 12% 

(34/294), compared to rain events, 6% (49/756; Table 3.2). 

Nine different L. monocytogenes ATs allelic types were isolated from L. 

monocytogenes positive soil samples (Table S3); all isolates were from Lineage I or II.  

While there was a greater diversity of ATs in soil samples collected from the low risk 

field, compared to the high risk field (Figure 3.3), the difference was not statistically 

significant according to T-Hutcheson’s test (P = 0.39; Table 3.3). The diversity of L. 

monocytogenes ATs isolated from soil samples following rain events was significantly 
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Figure 3.3: Distribution of L. monocytogenes allelic types in the low-risk (A) and 
high-risk (B) fields. Fall Creek, the source of irrigation water in this study, is visible 
in the bottom right-hand corner of panel B. 
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greater (P <0.001), than the diversity of L. monocytogenes ATs isolated from soil 

samples following irrigation events (Table 3.3). The diversity of L. monocytogenes 

ATs isolated from water samples was not significantly different from the diversity of 

L. monocytogenes ATs isolated from soil samples following irrigation events 

(P=0.45). However, the diversity of L. monocytogenes ATs isolated from water 

samples was significantly lower than the diversity of L. monocytogenes ATs isolated 

from soil samples following rain events (P=0.03).  

Risk factors associated with Listeria spp. isolation from soil samples. Of 

the 107 factors that were evaluated, 39 factors were significantly associated with 

Listeria spp.-positive soil samples by univariable analysis including two study 

parameters, two spatial factors, one dew point factors, six humidity factors, three 

irrigation factors, three leaf wetness factors, 15 temperature factors, three precipitation 

factors, and four wind speed factors (Table S4).  PCA was performed for the leaf 

wetness factors as a group, the temperature factors as a group, and the wind speed 

factors as a group (Table S5). 

In the multivariable analysis, four factors (hours since event occurred, amount 

of irrigation water applied to the fields two days before sampling, amount of rain 

water that precipitated two days before sampling, predicted field risk) were retained 

(Table 3.4). Although event type was not found to be significant by multivariable 

analysis, it was retained in the final model so the effect of irrigation events compared 

to rain events could be quantified as this was of interest to the study. All factors 

retained in the final model were also retained when proximity to water and proximity 

to road were substituted for predicted field risk (Table S6). No significant interactions 
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between any factors were identified for either of the models. The model containing 

predicted field risk was selected as the final model because it had a lower Akaike 

information criterion (AIC), compared to the model containing proximity to water and 

road (AIC = 654.7 and 658.0, respectively). The odds of Listeria spp. isolation in soil 

samples were 8 times greater (OR = 7.7; 95% CI= 2.9, 20) for samples collected 24 h 

after an event, compared to soil samples collected 144-192 h after any event. The odds 

of Listeria spp. isolation in soil samples were 2 and 3 times greater for samples 

collected 48 and 72 h after an event (OR = 2.1; 95% CI= 0.74, 6.2 and OR = 2.5, 95% 

CI = 0.94, 6.9; respectively), compared to soil samples collected 144-192 h after an 

event. The odds of Listeria spp. isolation were 2 times greater (OR = 2.3; 95% CI= 

1.5, 3.5) in soil samples collected from the high risk field, compared to soil samples 

collected from the low risk field. Lastly, for each 1 mm increase in the amount of 

irrigation water applied to a field, the odds of Listeria spp. isolation increased (OR = 

1.1; 95% CI= 1.0, 1.2) and for each 1 mm increase in the amount of rain that fell on a 

field, the odds of Listeria spp. isolation also increased (OR = 1.4; 95% CI= 1.1, 1.8). 

The residual variogram for the Listeria spp. final model (Figure S1) suggests that the 

final model effectively accounts for all spatial dependencies within the data. 

Risk Factors associated with L. monocytogenes isolation from soil samples. 

Of the 107 factors that were evaluated (Table S2), 46 were significantly associated 

with L. monocytogenes-positive soil samples by univariable analysis including two 

study parameters, two spatial factors, five dew point factors, ten humidity factors, 

three irrigation factors, two leaf wetness factors, 20 temperature factors, one 

precipitation factor, and one wind direction factor (Table S4). PCA was performed for 
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Table 3.4: Final multivariable model for the likelihood of isolating Listeria spp. and 
L. monocytogenes from spinach fields based on testing of soil samples and given a P 
value cutoff of 0.05. 

 
Factor ORa 95% CIb P-value 
Factors significant for Listeria spp.c    
   Amount of irrigation water (mm) applied to fields   
            2 days before sample collection 1.1 1.0, 1.2 0.04 
   Event type that initiated sample collection    
        Irrigation 0.71 0.40, 1.2 0.22 
        Rain 1.0   
   Time since event occurred (h)    
        24 7.7 2.9, 20 <0.01 
        48 2.1 0.74, 6.2 0.16 
        72 2.5 0.94, 6.9 0.07 
        144–192 1.0   
   Predicted field risk    
        Low 1.0   
        High 2.3 1.5, 3.5 <0.01 
   Total amount of rain (mm) on day 2 before   
            sample collection 1.4 1.1, 1.8 <0.01 
Factors significant for L. monocytogenes    
    Amount of irrigation water applied to fields 2                 
             days before sample collection 1.2 1.1, 1.3 <0.01 
   Event type that initiated sample collection    
        Irrigation 0.74 0.41, 1.3 0.33 
        Rain 1.0   
   Time (h) since event occurred    
        24 25 5.7, 99 <0.01 
        48 2.5 0.49, 12 0.27 
        72 3.4 0.74, 15 0.11 
        144–192 1.0   
   Predicted field risk    
        Low 1.0   
        High 3.5 2.0, 6.0 <0.01 

 

 

http://aem.asm.org/content/81/17/6059/T4.expansion.html#fn-9
http://aem.asm.org/content/81/17/6059/T4.expansion.html#fn-10
http://aem.asm.org/content/81/17/6059/T4.expansion.html#fn-11
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Table 4.4: Continued 

a For continuous factors, OR refers to the change in the odds of isolating Listeria spp. 
or L. monocytogenes associated with a one-unit increase in the factor (e.g., a 1-mm 
increase in the amount of irrigation water applied). 
b CI, confidence interval for the odds ratio. 
c Listeria spp. including L. monocytogenes. 
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the dew point factors as a group, the humidity factors as a group, the leaf wetness 

factors as a group, and the temperature factors as a group (Table S5). 

In the multivariable analysis, three factors (hours since event occurred, amount 

of irrigation water applied to the fields two days before sampling, and predicted field 

risk) were retained (Table 3.4). Although event type was not significant, it was 

retained in the final model. All factors retained in the final model were also retained 

when proximity to water and proximity to road were substituted for predicted field risk 

(Table S6). No significant interactions between any factors were identified for either 

of the models. The model containing predicted field risk was selected as the final 

model because it had a lower AIC, compared to the model containing proximity to 

water and road (AIC = 461.5 and 465.9, respectively). The odds of L. monocytogenes 

isolation in soil samples were 25 times greater (OR = 25; 95% CI= 5.7,99) for samples 

collected 24 h after an event, compared to soil samples collected 144-192 h after any 

event. The odds of L. monocytogenes isolation in soil samples were about 3 times 

greater for samples collected 48 h (OR = 2.5; 95% CI= 0.49, 12) and 72 h (OR = 3.4; 

95% CI= 0.74, 15) after an event, compared to soil samples collected 144-192 h after 

an event. While, statistically, the odds of isolating L. monocytogenes were greatest 

during the 24 h immediately following an irrigation or rain event, for the high risk 

field the observed prevalence of L. monocytogenes was higher 48 h compared to 24 h 

after irrigation (Table 3.2). The odds of L. monocytogenes isolation were 3.5 times 

greater (OR = 3.5; 95% CI= 2.0, 6.0) for soil samples collected from the high risk 

field, compared to soil samples collected from the low risk field. Lastly, for each 1 

mm increase in the amount of irrigation water applied to a field, the odds of L. 
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monocytogenes isolation increased (OR = 1.2; 95% CI= 1.1, 1.3). The residual 

variogram (Figure S1) for the final model also suggests that the final model effectively 

accounted for all spatial dependencies within the data. 

Discussion 

The objectives of this study were (i) to quantify the effects of different spatial 

and temporal factors associated with the isolation of Listeria spp. and L. 

monocytogenes from produce fields following rain and irrigation events; and (ii) to 

determine how rain and irrigation events affect the detection frequency and diversity 

of Listeria spp. and L. monocytogenes in produce fields. Our study showed that the 

likelihood of isolating Listeria spp. and L. monocytogenes was greatest during the 24 h 

immediately following rain or irrigation events, and that the diversity of Listeria spp. 

and L. monocytogenes subtypes (ATs) was lower after irrigation events compared to 

rain events. Additionally, we show that proximity to water and roads were associated 

with an increased likelihood of isolating L. monocytogenes from soil samples collected 

in produce fields. These findings are consistent with previous research performed in 

NYS produce production environments (14–16, 25, 47), supporting a robust 

relationship between these factors, and Listeria spp. and L. monocytogenes  isolation. 

Our study is unique as it quantified changes in Listeria spp. and L. monocytogenes 

prevalence over subsequent 24 h periods following rain and irrigation events. It is 

important to note that these findings are based on a single study conducted on two 

fields over the course of one growing season, and that additional studies are needed to 

determine if our findings are translatable to other farms. However, the results do 
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support previous studies’(14, 25, 48–50) conclusions that management practice-based 

interventions may reduce the risk of pre-harvest produce contamination. 

Irrigation can be a point source of Listeria contamination, while rain 

appears to increase Listeria detection prevalence through non-point source 

mechanisms. Analysis of sigB AT diversity showed that, in our study here, the 

diversity of Listeria spp. and L. monocytogenes isolates was significantly lower in soil 

samples collected after irrigation events compared to rain events. The lower diversity 

following irrigation events suggests that irrigation water served as a homogenous, 

point source for Listeria spp. and L. monocytogenes contamination in the produce 

fields studied here. This is supported by the fact that the diversity of ATs in soil 

samples collected after irrigation events was not statistically different from the 

diversity of ATs in water samples collected from Fall Creek, the source of irrigation 

water used in this study. These findings are consistent with the findings of previous 

studies (14, 25, 26, 47, 51, 52) that identified irrigation water as a potential pre-harvest 

source of bacterial contamination of produce. Multiple studies have also reported 

significant associations between irrigation water and fresh produce contamination (12, 

13, 19, 20). The relationship between irrigation and L. monocytogenes isolation in this 

study may be explained by the fact that surface water is a known reservoir for 

foodborne pathogens in produce production environments (22, 52–56). As our study 

and others (14, 21, 25, 47, 51, 52) have demonstrated, irrigation is an important risk 

factor for pre-harvest produce contamination, particularly if the irrigation water is 

drawn from a surface water source. Therefore, intervention at the irrigation-level may 

decrease the risk of L. monocytogenes contamination of produce. For example, in a 



 

99 

review of pre- and postharvest measures to reduce microbial contamination of fresh 

produce, Gil et al. (48) identified selection of proper irrigation methods, protection of 

surface water sources, and periodic testing of irrigation water as critical interventions 

for preventing microbial contamination.   

The higher diversity of Listeria spp. and L. monocytogenes ATs associated 

with rain events suggests that rain increases the likelihood of Listeria spp. and L. 

monocytogenes detection. For example, rain may facilitate the movement of diverse 

Listeria into field environments, or facilitate the growth and detection of Listeria 

strains already present in the field. This is supported by past studies (15, 57), which 

found that pathogens transmitted by runoff and splash associated with rain events can 

bypass physical barriers to movement into and within fields. The findings of these 

earlier studies may also explain why all of the positive leaf samples in our study were 

associated with rain events. Additionally, rain events may create favorable conditions 

for foodborne pathogen growth (e.g., higher soil moisture; 55, 58–60), amplifying 

existing Listeria populations within the field and increasing the likelihood of detection 

during sampling. Similarly, higher nutrient loads associated with runoff (61–64) could 

facilitate microbial growth in fields (62, 65–67). As rain and irrigation events can 

affect the diversity of Listeria spp. and L. monocytogenes in produce production 

environments differently. Therefore, interventions to reduce the risk of pathogen 

contamination in fields may need to take into account the water source (i.e., surface 

water versus rain).   

Meteorological factors were significantly associated with L. monocytogenes 

isolation from produce production environments. In previous studies, temperature-
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related (e.g., heat index and maximum temperature; 15, 19–21, 60, 68, 69) and water-

related (e.g., humidity and leaf wetness; 20, 21, 69) meteorological factors were 

significantly associated with pathogen isolation from produce production 

environments. For example, in a study conducted on Spanish lettuce fields, Oliveira et 

al. (20) found that humidity and temperature influence L. innocua survival following 

irrigation. Interestingly, in the study reported here, multiple meteorological factors 

(except rain) were significantly associated with L. monocytogenes isolation by 

univariable analysis but no meteorological factors were retained in the final 

multivariable model for L. monocytogenes; this is consistent with the findings of 

Weller et al. (14). Moreover, in the model developed by Strawn et al. (15) to predict 

risk of L. monocytogenes isolation from produce production environments, 

temperature was ranked below proximity to water, suggesting that spatial factors (e.g., 

proximity to water) have a greater influence on L. monocytogenes isolation than 

meteorological factors (e.g., temperature). Combined, the findings reported here and in 

other studies (14, 15) may indicate that, although meteorological factors are associated 

with L. monocytogenes isolation, they are not the most important risk factors for L. 

monocytogenes isolation. Thus, meteorological factors (other than rain) should not be 

the primary focus of risk management strategies for L. monocytogenes in produce 

production environments; rather risk management strategies that focus on landscape 

factors or management practices may be more beneficial long-term. However, due to 

the previously mentioned weaknesses of this study, further research is needed to 

determine if these conclusions are translatable to other farms both within and outside 

NYS.  
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Risk of produce contamination was highest within 24 h of irrigation and 

rain events. In our study, the odds of isolating L. monocytogenes in soil samples were 

greatest during the 24 h immediately following rain or irrigation events, compared to 

48, 72 or 144-192 h following rain or irrigation events. Overall, our findings suggest 

that L. monocytogenes levels spike after an initial inoculation event, such as irrigation, 

and then decrease over subsequent 24 h periods. While no other study, to the authors’ 

knowledge, has investigated L. monocytogenes survival in produce production 

environments over subsequent 24 h periods, previous studies (17, 19, 60, 68, 70) that 

investigated the persistence and survival of L. monocytogenes in non-produce 

production environments found similar patterns. For example, McLaughlin et al. (60)  

found that L. monocytogenes populations in soils collected from urban and forest 

environments declined after inoculation and were undetectable in 8-10 days. Similarly, 

Castro-Ibanez et al. (68) and Taylor et al. (70) both showed that fecal indicator 

bacteria levels peaked immediately following flooding events and then declined over 

subsequent sampling events. In the context of these studies, our findings suggest that 

waiting 24 h after irrigation and rain events to harvest crops may significantly reduce 

the risk of L. monocytogenes contamination. This time frame offers a tangible solution 

to growers that can be implemented with limited economic impact.  

Landscape factors accurately predicted the risk of L. monocytogenes 

contamination. In our study the odds of isolating L. monocytogenes were 

significantly higher for samples collected from the high risk field compared to the low 

risk field, suggesting that landscape factors (e.g., proximity to road and water) may be 

useful for accurately predicting the likelihood of L. monocytogenes isolation from 
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produce production environments. This is not surprising since past studies have 

repeatedly associated landscape factors with foodborne pathogen isolation from 

produce production environments (14–16, 22, 71). However, it is important to note 

that the model that included predicted risk fit the data better than the model containing 

proximity to water and roads. This may suggest, that for the dataset discussed here, the 

model containing predicted risk accounted for additional differences between the two 

fields, such as soil type and field history. As previously mentioned, differences in soil 

properties are known to affect the likelihood of isolating L. monocytogenes from soil 

samples, and the high risk field had, on average, a higher AWS than the low risk field. 

Overall, the findings reported here and in other studies (14–16, 22, 60) support the 

conclusion that not all cropland is at equal risk of foodborne pathogen contamination. 

Clearly, preharvest contamination of fresh produce is the result of complex 

interactions between factors, including factors that were not included in this study 

(e.g., seasonal effects, and worker activity). However, our findings do suggest that the 

use of landscape factors to predict risk and to tailor cropping schemes to reduce risk 

(e.g., planting high risk crops in low risk areas) may be useful for developing targeted 

on-farm food safety risk management plans.  

The association between L. monocytogenes prevalence, and proximity to water 

and road found in this study, is consistent with the existing literature (14–16, 71). For 

example, Strawn et al. (15) and Sauders et al. (71) found that the closer a field or 

location were to a road the greater the likelihood of L. monocytogenes isolation. 

Roadside ditches, like surface water, may act as a reservoir and transmission pathway 

for foodborne pathogens in produce productions environments (72). Heavy rain, 
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melting snow, wind, flooding, and human activity may also act as mechanisms for the 

spread of foodborne pathogens from ditches and waterways to produce fields. 

Additionally, roads, roadside ditches and riparian areas may act as corridors for animal 

movement. Therefore, fields that are closer to roads and water may be at greater risk 

for wildlife intrusion, which has previously been associated with produce 

contamination by foodborne pathogens (73–75). Since past studies have found that 

buffer zones (25, 76, 77) and wetlands (78) reduce the risk of microbial contamination 

in produce production and other environments, the construction of buffer zones and 

the conservation of wetlands around fields may reduce the risk of L. monocytogenes 

contamination of produce. However, more research is needed to quantify the impact of 

buffer zones and wetlands on the risk of produce contamination and to determine how 

buffer zones and wetlands can be most effectively used to reduce produce 

contamination risks. 

Overall, our findings suggest that small changes in management practices may 

have a significant effect on the risk of L. monocytogenes contamination in produce 

production environments. For example, growers may reduce L. monocytogenes 

contamination risk by waiting 24 h to harvest crops following rain events, or by not 

irrigating within 24 h of harvest. Additionally, interventions at the irrigation-level, 

such as treatment of irrigation water (e.g., by chlorine tabs), may reduce the risk of 

pre-harvest contamination. Other potential intervention strategies may include 

constructing buffer zones or conserving wetlands around fields near water or roads, 

altering cropping schemes (e.g., planting high risk crops in low risk fields), and 

monitoring pathogen levels in irrigation water.  
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CHAPTER 4 

 

ESCHERICHIA COLI TRANSFER FROM SIMULATED WILDLIFE FECES TO 

LETTUCE DURING FOLIAR IRRIGATION: A FIELD STUDY IN THE 

NORTHEASTERN UNITED STATES 

Published in: Food Microbiology (2017) 68: 24-33. 

Abstract 

Wildlife intrusion has been associated with pathogen contamination of produce. 

However, few studies have examined pathogen transfer from wildlife feces to pre-

harvest produce. This study was performed to calculate transfer coefficients for 

Escherichia coli from simulated wildlife feces to field-grown lettuce during irrigation. 

Rabbit feces inoculated with a 3-strain cocktail of non-pathogenic E. coli were placed 

in a lettuce field 2.5-72 hours before irrigation. Following irrigation, the E. coli 

concentration on the lettuce was determined. After exclusion of an outlier with high E. 

coli levels (Most Probable Number = 5.94*108), the average percent of E. coli in the 

feces that transferred to intact lettuce heads was 0.0267% (Standard Error [SE] = 

0.0172). Log-   linear regression showed that significantly more E. coli transferred to 

outer leaves compared to inner leaves (Effect = 1.3; 95% Confidence Interval = 0.4, 

2.1). Additionally, the percent of E. coli that transferred from the feces to the lettuce 

decreased significantly with time after fecal placement, and as the distance between 

the lettuce and the feces, and the lettuce and the sprinklers increased. These findings 

provide key data that may be used in future quantitative risk assessments to identify 
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potential intervention strategies for reducing food safety risks associated with fresh 

produce.  
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Introduction 

Produce contaminated with pathogenic organisms is a significant source of 

foodborne illness in the United States  [US; (1–3)]  and internationally (2). In fact, 

researchers estimate that produce-related illnesses result in an annual loss of over 

1,397 million dollars due to medical expenses in the US alone [calculated using data 

reported in Batz et al. (2012)]. Thus, there is interest in preventing or mitigating the 

food safety risks associated with fresh produce consumption, including through 

grower voluntary agreements [e.g., Leafy Greens Marketing Agreement (2012)] and 

government regulation [e.g. Food Safety Modernization Act (2015)]. While fresh 

produce contamination can occur throughout the post-harvest supply chain (6, 7), pre-

harvest sources of contamination (e.g., wildlife) are also a food safety concern. 

Scientific studies that examine potential pre-harvest sources of contamination are 

needed to provide data to facilitate the development of effective, grower-level 

interventions that reduce the likelihood of produce contamination.  

Past studies have identified wildlife as a potential source of bacterial 

pathogens, including pathogenic Escherichia coli, in pre-harvest environments (8–10). 

In fact, traceback analyses following produce-associated outbreaks have identified 

wildlife as a probable source of contamination in a number of instances (11–14). 

Understanding how pathogens transfer from wildlife to pre-harvest produce is critical 

for understanding and assessing the food safety risks associated with wildlife intrusion 

into produce fields. However, to the authors’ knowledge only one peer-reviewed study 

has examined the transfer of bacterial pathogens from wildlife feces to field-grown 

produce via splash. Specifically, Atwill et al. (2015) conducted a field trial in Salinas, 
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California to investigate the transfer of E. coli O157:H7 from simulated wildlife feces 

(inoculum = 1.29*108 CFU/5 g) to lettuce during a 2.5 h irrigation event. That study 

(15) reported that 0.006% of the E. coli present in the feces transferred to the lettuce, 

and that several spatial factors (e.g., distance between fecal pellets and lettuce) were 

associated with the transfer of E. coli from the fecal pellets to the lettuce. Such data 

has the potential to inform quantitative risk assessment, and facilitate the development 

of science-based food safety controls. However, additional studies are needed to verify 

that the Atwill et al.’s (2015) findings are reproducible in and generalizable to 

produce-growing regions outside California. Testing the robustness of a finding to 

minor variations in experimental procedures [e.g., conducting a field trial under 

different environmental conditions (e.g., weather, soil type), using slightly different 

management practices] is key for establishing that the finding is believable and 

informative (16). As such, this study was designed to repeat, in a different region of 

the United States and with slight modifications, the study conducted by Atwill et al. 

(2015) in order to obtain additional data on (i) transfer coefficients for E. coli in 

wildlife feces to field-grown lettuce during foliar irrigation, and (ii) the impact of 

spatial factors on these coefficients.  

Materials and Methods 

Field Setup. A field study was conducted in a romaine lettuce (Lactuca sativa 

L. var. longifolia cv. Green Towers; Harris Seeds, Rochester NY) field at the Homer 

C. Thompson Vegetable Research Farm in Freeville, NY during summer 2015. 

Throughout the growing season tine weeding, hand weeding and rototilling were used 

to thin the lettuce (at 4 weeks) and to weed the study field. The field consisted of (i) a 



 

115 

3.1 m bare ground buffer around the entire field, (ii) three 8.5 m x 59.5 m cells divided 

into seven 8.5 m x 8.5 m plots numbered 1-21, and (iii) two 8.5 m x 59.5 m bare 

ground buffers between each cell (Supplemental Material 1). Within each cell there 

were five longitudinal beds (each 1.2 m wide) separated by a 0.6 m furrow; each bed 

consisted of 4 rows of seed planted 0.4 m apart (Supplemental Material 1). Seeding 

was performed using a Monosem MS vegetable seeder (Monosem Inc., Edwardsville, 

KS) with a 1.5 in (3.81 cm) seeding rate. Overhead impact sprinklers (Nelson F33 

sprinklers, Nelson Irrigation, Walla Walla, WA) were spaced around the field with 

approx. 15 m between sprinklers. Irrigation occurred, as needed, up to one week 

before harvest. On the day of harvest irrigation commenced at 7:30 am and ended at 

10:00 am. During this time approx. 25 mm of water were applied to the field.  

Twenty of the 21 plots were randomly assigned to one of four treatments (fecal 

placement at 72, 48, 24 or 2.5 h before irrigation; 5 plots per treatment); treatment will 

henceforth be referred to as fecal age. The remaining plot did not receive a fecal pellet. 

Fecal placement sites were randomly selected from within each plot so that only (i) 

one fecal pellet was placed in each plot, (ii) each fecal pellet was placed in a furrow 

between two lettuce rows, and (iii) all fecal pellets were at least 7 m from each other. 

The six lettuce heads closest to each fecal placement site were selected for sampling. 

If there were not six heads within 1 m of the fecal placement site, a different site 

within the given plot was selected. Each lettuce head that was selected for inclusion in 

this study received a unique identification number (the head ID).  

Geographic positioning system (GPS) coordinates were obtained with +/- 10 

cm accuracy for the lettuce heads, fecal pellets, sprinkler locations and field 
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boundaries using a Geo 7x series GPS unit (Trimble, Sunnyvale, CA). GPS 

coordinates for post-irrigation pools (i.e., pools of water that formed in the field during 

irrigation) were also recorded. The distance and degree angle between (i) the lettuce 

and other features (i.e., sprinklers and fecal pellets), and (ii) the fecal pellets and 

sprinklers were calculated using the Spatial Analyst extension in ArcGIS (17).  

To determine the likelihood of false positives due to indigenous rifampicin 

resistant E. coli, environmental sampling was performed before the study began. 

Briefly, 3 composite soil samples, 3 vegetation samples, and 4 irrigation water 

samples were collected. Each 250-mL water sample was passed through a 0.45 μm 

filter (Nalgene, Rochester, NY). The filter was then transferred to a Whirl-Pak bag 

(Nasco, Fort Atkinson, WI), and enriched with 90 mL of tryptic soy broth (Becton, 

Dickinson and Company, Franklin Lakes, NJ) supplemented with rifampicin  (EMD 

Chemicals, San Diego, CA) to a final concentration of 100 μg/mL (TSB+R). 

Following incubation at 37°C for 24 h, 50 μL of enrichment were streaked onto E. coli 

CHROMagar (DRG International, Inc., Springfield, NJ) supplemented with rifampicin 

to a final concentration of 100 ug/mL (ECC+R). The ECC+R plates were then 

incubated at 42°C for 18-24 h. Soil and vegetation samples were first diluted 1:2 in 

PBS, and then, in duplicate, serially diluted in 2 log steps to 10-11 in TSB+R. 

Following incubation at 37°C for 24 h, 3 μL of each dilution were streaked onto 

ECC+R. The ECC+R plates were then incubated at 42°C for 18-24 h. While one soil 

sample tested positive for rifampicin-resistant E. coli, clpX allelic typing (performed 

as described below) differentiated this isolate from the inoculation strains used in the 

study reported here.  
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Bacterial Strain and Inoculum Preparation. Three rifampicin-resistant, non-

pathogenic E. coli  strains [TVS 353, TVS 354 and TVS 355; (18)] were obtained 

from the University of California, Davis. Each strain was grown separately on tryptic 

soy agar plates (TSA; Becton, Dickinson and Company) at 37°C to stationary phase 

(18-24 h). Following incubation, each plate was flooded with 10 mL of phosphate 

buffered saline (PBS) and the cells were resuspended using a serological pipette. 

Bacterial suspensions were then separately transferred to a 15 mL Falcon tube, and 

centrifuged at 2500xG for 5 min. The culture pellet was washed twice with 10 mL 

PBS, and re-suspended in 5 mL of PBS. The bacterial suspension was diluted 1:32 in 

PBS, and the optical density (OD600) was measured. Based on the optical density the 

culture was diluted in PBS to achieve a concentration of approx. 4 x 107 cfu/mL. The 

inoculum was then prepared by mixing the three strains in equal proportions (approx. 

16.7 mL of each strain) in a 100 mL Erlenmeyer flask. While Atwill et al. (2015) used 

an attenuated E. coli O157:H7 strain (ATCC 700728) in their study, we used a 

cocktail of 3 non-pathogenic E. coli strains (TVS 353, TVS 354 and TVS 355). While 

the use of non-pathogenic, surrogate E. coli strains (as opposed to pathogenic strains) 

is a limitation of our study, pathogenic E. coli could not be used due to biosecurity 

concerns. The 3 strain cocktail used in this study was chosen for the reasons discussed 

in Weller et al. (19). Briefly, several studies (18, 20) have reported that the 3 strain 

cocktail used here demonstrated greater environmental fitness compared to individual 

E. coli strains, including ATCC 700728. For example, one study found that the non-

pathogenic E. coli cocktail used in the study presented here persisted for a greater 

amount of time in hydroponic and soil environments compared to ATCC 700728 (20). 
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The authors attributed this to the fact that one of the three cocktail strains (TVS 355) 

was isolated from produce field soils, and therefore may be adapted to the stresses 

experienced during the course of their study (20). Gutiérrez-Rodríguez et al. (20) also 

reported that the survival and persistence of pathogenic and non-pathogenic E. coli 

was strain dependent. The use of strains isolated from relevant environments therefore 

may help to provide a conservative estimate of pathogen survival in feces and, 

pathogen transfer to lettuce.  

Fecal Pellet Preparation and Placement. Fecal pellet preparation was 

performed in a similar manner to that described in Atwill et al. (2015). Briefly, 

laboratory rabbit (CoVance, Princeton, NJ; Oryctolagus cuniculus) feces were used as 

a proxy for wildlife feces. Fifty grams of feces and 50 mL of inoculum were placed in 

a Whirl-Pak bag and hand-massaged for five minutes. Five gram portions of the feces-

inoculum mixture were weighed out and formed into 5 g pellets. The pellets were then 

placed in pre-labeled, sterile Whirl-Pak bags (Nasco, Fort Atkinson, WI) and stored at 

4°C for < 16 h. Pellets were placed on the soil surface 72, 48, 24 or 2.5 h before the 

start of irrigation on the day of harvest.  

The concentration of E. coli in the fecal pellets was determined by separately 

mixing three pellets with PBS and spiral plating the 10-3, 10-4, and 10-5 dilutions on 

TSA+R.  The TSA+R plates were then incubated at 37°C for 18-24 h. Colonies were 

then enumerated using a Q-Count (Advanced Instruments, Norwood, MA). On 

average the fecal pellets contained 3.65*108 CFUs of E. coli per 5 g fecal pellet (Table 

4.1). We inoculated the feces with a high concentration of E. coli to ensure 

comparability with Atwill et al. (2015).
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Table 4.1 Concentration of non-pathogenic E. coli in the fecal pellets prior to fecal placement and at harvest. 

Fecal age 

(h) 

Geometric mean CFU  

per fecal pellet at placement 

(95% CIa) 

Geometric mean MPN  

per fecal pellet at harvestb 

(95% CIa) 

Change in the average log10 E. coli 

concentration between placement 

and harvest  

2.5 2.62*108 (1.99*108, 3.45*108) 4.84*108 (1.07*105, 2.18*1012) 0.27 

24 2.15*108 (1.20*108, 3.87*108) 2.23*108 (6.21*105, 7.99*1010) 0.02 

48 8.04*108 (9.66*107, 6.69*109) 1.93*106 (1.52*102, 2.44*1010) -2.62 

72 1.77*108 (1.45*108, 2.16*108) 2.82*106 (3.36*103, 2.37*109) -1.80 

 

 

a Confidence Interval (CI) 
b Geometric mean was calculated by taking the average of the log10 MPN per fecal pellet across a time group and raising 10 to the 
power of this average.
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Harvest. Lettuce heads were harvested immediately following 2.5 h of foliar 

irrigation. Briefly, harvesting was conducted by teams of two, consisting of a bagger 

and harvester. Heads were harvested by hand using a food-grade knife. Gloves and 

shoe covers were changed between collection of each sample, and the knife was 

decontaminated using a 10% bleach wipe followed by a 70% ethanol wipe. In total 

120 lettuce heads were collected, including (i) 100 intact heads, and (ii) 20 heads 

where the inner 1/3 of  the head, and the outer 2/3 were harvested separately. Inner 

and outer leaves were treated as separate samples for all analyses (hence the 120 

lettuce heads harvested represent 140 samples that were tested). Following harvest, all 

samples were placed in pre-labeled, sterile Whirl-Pak bags, transported back to lab in 

insulated containers, stored at 4 °C, and processed within 6 h.  

 Following irrigation, the fecal pellets and approx. 1.27 cm of soil immediately 

underneath each fecal pellet were collected using 5 mL sterile scoops (Fisher 

Scientific, Hampton, NH) and placed in pre-labeled, sterile Whirl-Pak bags. Fecal 

pellets were transported back to lab in insulated containers, stored at 4 °C and 

processed within 6 h.   

E. coli Enumeration. E. coli enumeration was performed on the lettuce 

samples and the post-harvest fecal pellets (i.e., the fecal pellets that were collected 

from the field following irrigation) using a tripartite scheme (i.e., a high concentration 

assay, a low concentration assay and an enrichment assay) that was adapted from 

Atwill et al. (2015). The tripartite scheme described here is sequential. The high 

concentration assay was performed on all lettuce heads. The low concentration assay 

was then performed only on those heads that were below the detection limit of the 
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high concentration assay (300 cells per lettuce head). Similarly, the enrichment assay 

was performed only on heads that were below the detection limits of both the high and 

low concentration assays (2 cells per lettuce head). A sample was only considered 

negative if it was negative according to all three assays. All samples were held at 4 C 

for the duration of the study.  

Conceptually, the high concentration assay was a 2-tube, 6-dilution most 

probable number (MPN) determination, while the low concentration assay was a 3-

tube, 4-dilution MPN determination. It is important to note that E. coli levels in the 

fecal pellets tested before field placement were enumerated by direct plating as 

described above (yielding CFU per fecal pellet). However, E. coli levels in the fecal 

pellets collected from the field following irrigation were enumerated using the MPN 

approach outlined here to allow for quantification of potentially low E. coli levels that 

would not be detected by direct plating. 

For the high concentration assay 600 mL of PBS were added directly to each 

Whirl-Pak bag containing a lettuce sample; 90 mL of PBS was added to each Whirl-

Pak bag containing a post-harvest fecal pellet. Samples were then hand-massaged for 1 

min. In duplicate, 1 mL of washate was transferred to the first and seventh wells of a 

twelve-well deep well plate (VWR International, Radnor, PA), which contained 9 mL 

of TSB+R. Five serial 100-fold dilutions (0.1 mL into 9.9 mL of TSB+R) were 

performed starting from each of the two initial wells. Following incubation at 37°C for 

24 h, 3 L of each dilution were streaked onto ECC+R. The plates were then 

incubated at 42°C for 24 h. Blue colonies indicated the presumptive presence of one of 

the E. coli strains used in this study.  
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 Since the detection limit for the high concentration assay was 300 cells per 

lettuce head, a low concentration assay was performed on all heads that were negative 

according to the high concentration assay. Briefly, 19 g of sterile tryptic soy broth 

powder and 0.75 mL of an 80 mg rifampicin/mL of dimethyl sulfoxide solution were 

aseptically added to the remaining washate to achieve a final concentration of 100 

g/mL of rifampicin. The head was then shaken until the powder had dissolved. The 

washate was then divided into three tubes each of 100 mL, 10 mL, 1 mL and 0.1 mL. 

Following incubation at 37°C for 24 h, 3 μL from each tube were streaked onto 

ECC+R; the plates were then incubated at 42°C for 24 h.  

 Since the detection limit for the low concentration assay was 2 cells per lettuce 

head, an enrichment assay was performed on all heads that were negative according to 

both the high and low concentration assays. The enrichment assay was designed to 

allow for detection of one E. coli cell per sample (i.e., detection limit = 1 MPN of E. 

coli per lettuce head). Briefly, heads were enriched by adding 500 mL of TSB+R, and 

then hand-massaged for 1 min. Following incubation at 37°C for 24 h, 50 μL from 

each enrichment were streaked onto ECC+R; the plates were then incubated at 42°C 

for 24 h.  

Since one soil sample collected before the study began tested positive for 

rifampicin resistant E. coli, detection of the inoculation strains (TVS 353, TVS 354 

and TVS 355) was confirmed on 10% of presumptive positive lettuce heads using 

PCR amplification and Sanger sequencing of the clpX gene as described in Walk et al. 

(2009).  
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 The MPN of E. coli per lettuce head or fecal pellet (for fecal pellets collected 

after irrigation) was calculated using an unpublished R package (D. Kent, 

dk657@cornell.edu, 316 Stocking Hall, Cornell University, Ithaca, NY 14853; see 

Supplemental Materials S1 in Weller et al. (22)).  

Statistical Analysis. All statistical analyses were performed in R (version 3.1, 

R Core Team, Vienna, Austria). For each fecal age (2.5, 24, 48, and 72 h) and head 

type (inner, outer, and intact) we calculated (i) the number and percent of lettuce heads 

that had detectable levels of E. coli, (ii) the percent of E. coli that transferred from the 

closest fecal pellet to each lettuce head (percent of E. coli transferred), and (iii) the 

geometric mean and 95% confidence interval for the MPN of E. coli on positive 

lettuce heads at harvest. The percent of E. coli transferred was calculated by dividing 

the MPN of E. coli per lettuce head at harvest by the CFU of E. coli per fecal pellet at 

fecal placement, and multiplying the product by 100. Variability in the E. coli 

concentration on the lettuce was visualized by plotting the mean and standard 

deviation of the log10 MPN of E. coli per lettuce head for each fecal age and head type. 

The proportion of positive and negative inner, outer and intact heads observed in this 

study were compared to the proportion reported by Atwill et al. (2015) using chi 

square and Fisher’s exact tests. 

To characterize the change in E. coli levels in the fecal pellets over the course 

of the study the geometric mean and 95% confidence interval for the CFU of E. coli 

per fecal pellet at fecal placement, and for the MPN of E. coli per fecal pellet at harvest 

were calculated for each fecal age (2.5, 24, 48 and 72 h). It is important to note that 

the MPN of E. coli per fecal pellet at harvest was likely affected by bacterial die-off in 
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the feces as well as loss due to splash and run-off during irrigation. The daily change 

in the log10 E. coli concentration per fecal pellet was determined by subtracting the 

average log10 MPN per fecal pellet at harvest from the average log10 CFU per fecal 

pellet at placement.  

Using the lme4 package (23) two generalized linear mixed models (GLMM) 

were developed to describe (i) the percent of E. coli transferred from the fecal pellets 

to the lettuce (the transfer model), and (ii) the concentration of E. coli on the lettuce at 

harvest (the concentration model). The outcome of the transfer and concentration 

models were the logw0 percent of E. coli transferred, and the logw0 MPN of E. coli on 

the lettuce, respectively. The data used in the regression analyses was transformed 

using a logw0 rather than a log10 transformation because the logw0 transformation 

preserves relationships within the data when the data includes zeros [(24, 25); see 

Supplemental Materials 2 for the R code for the log w0 function as well as the function 

to back transform logw0 values].  Head ID nested within plot, and plot nested within 

fecal age were included as random effects in both models. The candidate explanatory 

variables for both models were (i) fecal age (fecal placement 2.5, 24, 48, and 72 h 

before irrigation), (ii) head type (intact, inner, and outer), (iii) the proximity of the 

lettuce to other features (i.e., lettuce-feces distance, lettuce-sprinklers distance, lettuce-

field edge distance, and lettuce-post-irrigation pool distance), (iv) the sine of the wind 

direction relative to the lettuce-feces axis, and (v) the sine of the wind direction 

relative to the lettuce-sprinkler axis. Fecal age and head type were both coded as 

categorical variables. Fecal age was treated as a categorical variable due to the 

relatively small number of fecal ages (i.e., 4), the variability in the data, and the small 
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number of lettuce heads associated with each fecal age (i.e., 25 intact heads, 5 inner 

heads and 5 outer heads for each fecal age).  All candidate variables were included in a 

full model. To test for multicollinearity the variance inflation factor (VIF) for each 

variable in the full model was determined; any variable with a VIF1/2 > 2 was removed 

from consideration as a candidate factor. Notably, feces-sprinkler distance was 

removed from consideration as a candidate factor due to multicollinearity with feces-

lettuce distance. The models were reduced by backwards stepwise regression based on 

the Akaike’s Information Criteria (AIC). Briefly, each variable was removed from the 

full model. The AIC was then determined and the variable whose removal resulted in 

the largest decrease in AIC was removed from the model. This process was repeated 

until the removal of additional variables failed to reduce the AIC.  

To statistically describe the concentration of E. coli in the fecal pellets at 

harvest a linear model was developed. The outcome of the model was the change in 

the log10 MPN of E. coli per fecal pellet between fecal placement and harvest. The 

candidate explanatory variables included in the full model were (i) fecal age (2.5, 24, 

48 or 72 h), (ii) the distance between the fecal pellets and other features (i.e., feces-

sprinkler distance, feces-field edge distance, feces-post-irrigation pool distance), and 

(iii) the sine of the wind direction relative to the feces-sprinkler axis. All candidate 

variables were included in a full model, which was reduced by backwards stepwise 

regression based on AIC.  

Wind direction relative to the lettuce-feces axis is defined as the angle between 

the average wind direction between 7:30 am and 10:00 am on the day of harvest and 

the the line connecting the lettuce and the closest fecal pellet.  This is calcuated using 
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the formula, |Y-W|, where W is the compass bearing of the average wind direction 

between 7:30 and 10:00 on the day of harvest (when the field was irrigated), and 

where Y is the compass bearing of the line connecting the lettuce and the closest fecal 

pellet (Supplemental Material 3).  Similarly, wind direction relative to the feces-

sprinkler axis can be similarly described by the formula, |X-W|, where W is as above 

and where X is the compass bearing of the line connecting the fecal pellet and the 

closest sprinkler. 

Weather conditions for the entire course of the study are reported to enable 

readers to better assess our findings (Supplemental Material 4). Weather data was 

obtained from a weather station (Rainwise Inc., Trenton, NJ) located at the Homer C. 

Thompson Vegetable Research Farm as described in Weller et al. (2015). 

Results 

E. coli transfer to intact heads, and inner and outer lettuce leaves. Eighty-

nine percent (88/99) of intact heads had detectable levels of E. coli (≥1 E. coli per 

lettuce head; Table 4.2). One intact lettuce head near a fecal pellet that was placed 24 

h before irrigation had a substantially higher MPN of E. coli (5.94*108) compared to 

other intact heads near 24 h fecal pellets, which had E. coli levels that ranged from 

1.00*100-4.08*104 MPN per lettuce head (Table 4.2). Due to the presence of this 

outlier all analyses using the lettuce data were conducted with the outlier excluded 

(results reported in the tables included in the main text) and with the outlier included 

(results reported in Supplemental Materials 5-7). The average percent of E. coli that 

transferred to a given intact lettuce head from the closest fecal pellet was 0.0267% 

when the outlier was excluded from the dataset (Table 4.2). When the outlier was 
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included in the dataset, the average concentration of E. coli that transferred to a given 

intact lettuce head was 0.5976% (Supplemental Material 5). Similarly, the geometric 

mean MPN of E. coli per lettuce head for positive intact heads was 872 when the 

outlier was excluded from the dataset (Table 4.2), and 1,014 when the outlier was 

included in the dataset (Supplemental Material 5). 

Among the inner and outer leaf samples, 75% (15/20) and 80% (16/20), 

respectively, had detectable levels of E. coli. The geometric mean MPN of E. coli per 

lettuce head was 35 for positive inner leaves, and 1,106 for positive outer leaves 

(Table 4.2). The average percent of E. coli that transferred from the closest fecal pellet 

to the outer leaves (0.0030%) was 1.5 log greater than the percent that transferred to 

the inner leaves (0.0001%; Table 4.2). 

On average the logw0 MPN of E. coli per lettuce head decreased with the 

increasing age of the associated fecal pellet (Figure 4.1). For example, the geometric 

mean log10 MPN of E. coli per positive, intact lettuce heads associated with the 2.5, 24 

and 48 h fecal pellets was 5,256, 1,042 (without the outlier), and 111, respectively 

(Table 4.2). 
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Table 4.2 Summary of E. coli test results for each lettuce head type and different times between fecal placement and harvest. Note 1 
that information in bold summarizes all data for lettuce heads of a given head type (i.e., inner, outer, and intact heads). 2 

 3 

Head 
Type 

Fecal Age 
(i.e., time 

between fecal 
placement and 

harvest) 

No. of 
Negative 
Heads (% 
Negative 
Heads) 

No. of 
Positive 

Heads (% 
Positive 
Heads) 

Minimum and 
Maximum MPN 

per positive head a 

Average MPN per positive 
head (95% CI b) c 

Average percent of 
E. coli that 

transferred from the 
closest fecal pellet 

to the lettuce  d 
Inner - 5 (25%) 15 (75%) 1.00*100-3.00*103 35 (2.53*10-1, 4.90*103) 0.0001 % 

 2.5 h 0 (0%) 5 (100%) 2.16*100-4.08*102 57 (5.41*10-1, 5.98*103) 0.0001 % 

 24 h 3 (60%) 2 (40%) 1.38*102-4.08*102 237 (5.12*101, 1.10*103) < 0.0001 % 

 48 h 2 (40%) 3 (60%) 1.00*100-3.00*103 18 (2.40*10-3, 1.31*105)  0.0003 % 

 72 h 0 (0%) 5 (100%) 2.16*100-1.38*102 15 (6.44*10-1, 3.65*102) < 0.0001 % 
Outer - 4 (20%) 16 (80%) 1.00*100-2.76*105 1,106 (2.64*100, 4.62*105) 0.0030 % 

 2.5 h 0 (0%) 5 (100%) 3.00*103-4.08*104 5,056 (4.90*102, 5.22*104) 0.0059 % 

 24 h 1 (20%) 4 (80%) 3.00*103-2.76*105 9,291 (1.01*102, 8.55*105) 0.0055 % 

 48 h 2 (40%) 3 (60%) 1.00*100-1.38*102 15 (1.02*10-1, 2.26*103) < 0.0001 % 

 72 h 1 (20%) 4 (80%) 2.52*101-3.00*103 492 (5.01*100, 4.83*104) 0.0005 % 
Intact e - 11 (11%) 88 (89%) 1.00*100-3.00*106 872 (1.00*100, 7.58*105) 0.0267 % 

 2.5 h 0 (0%) 25 (100%) 2.16*100-3.00*106 5,256 (8.21*100, 3.36*106) 0.0968 % 

 24 h f 0 (0%) 24 (100%) 1.00*100-4.08*104 1,042 (4.08*100, 2.67*105) 0.0009 % 

 48 h 10 (40%) 15 (60%) 1.00*100-2.76*105 111 (4.28*10-2, 2.87*105) 0.0056 % 
  72 h 1 (4%) 24 (96%) 1.00*100-8.40*104 408 (1.23*100, 1.35*105) 0.0023 % 

4 
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Table 4.2 Continued. 5 

a The detection limit of the tripartite enumeration scheme used in the study reported 6 
here was 1 MPN per lettuce head. 7 
b Confidence Interval 8 
c Geometric mean was calculated by taking the average of the log10 MPN per positive 9 
head across a time group and raising 10 to the power of this average.  10 
d The percent of E. coli transferred to the lettuce head was calculated by dividing the 11 
MPN per lettuce head by the average CFU of E. coli per fecal pellet at the time of 12 
placement for the given fecal age and multiplying the product by 100.  The average 13 
percent transfer was calculated by summing percent transfer for a given head type and 14 
fecal age (e.g., inner leaves 2.5 h) and dividing by the number of heads; both positive 15 
and negative heads were included in this calculation 16 
e One intact head collected from a plot where the fecal pellet was placed 24 h before 17 
irrigation had extremely high levels of E. coli (i.e., 5.94*108) and could be considered 18 
an outlier; this head was excluded from the calculations reported here. When this head 19 
was included in the calculations, (i) the maximum MPN per head changed to 5.94*108 20 
(from of 3.00*106), (ii) the average MPN per head changed to 1014 (from 872), and 21 
(iii) average percent of E. coli that transferred to lettuce heads changed to 0.5976% 22 
(from 0.0267%). 23 
f When the outlier is included in the calculations for the intact, 24 h row, (i) the 24 
maximum MPN per head changed to 5.94*108 (from 4.08*104), (ii) average MPN per 25 
head changed to 1,771 (from 1,042), and (iii) average percent of E. coli in the fecal 26 
pellets that transferred to lettuce heads changed to 2.2855% (from 0.0009%). 27 
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Figure 4.1. Mean logw0 MPN of E. coli per lettuce head on (A) intact heads, (B) outer leaves, and (C) inner leaves for each fecal 
age (i.e., fecal pellet placement at 2.5, 24, 48 and 72 h before irrigation); specific data points are shown in Table 4.2. The bars 
represent the standard deviation for each fecal age.  
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Factors associated with the percent of E. coli transferred from simulated 

wildlife feces to lettuce during foliar irrigation. Of the 8 factors that were included 

in the full model, only 5 factors (fecal age, head type, lettuce-feces distance, lettuce-

sprinkler distance, and lettuce-post-irrigation pool distance) were retained in the final 

model for the logw0 percent of E. coli that transferred from the fecal pellets to the 

lettuce (transfer model; Table 4.3). The same 5 factors were also retained in the final 

model for the logw0 MPN of E. coli on the lettuce heads at harvest (concentration 

model; Table 4.4). The full transfer and concentration models were pared down using 

backwards selection based on the AIC as described in section 2.6. According to the 

transfer model the logw0 percent of E. coli that transferred from the fecal pellets to the 

lettuce was significantly greater for lettuce heads near 2.5 h fecal pellets compared to 

heads near 24 h (effect= -1.5), 48 h (effect= -2.6) and 72 h (effect= -1.0) fecal pellets 

(Table 4.3); this translates to a 97%, 100% and 90% decrease in the percent of E. coli 

that transferred to heads near 24 h, 48 h, and 72 h feces, respectively. For each 10 cm 

increase in the distance between the lettuce and the closest fecal pellet the logw0 

percent of E. coli that transferred from the fecal pellets to the lettuce heads decreased, 

on average, by 0.3, representing a 54% decrease in the percent of E. coli transferred 

for each 10 cm increase in the distance between the lettuce and closest fecal pellet 

(Table 4.3). Moreover, the logw0 percent of E. coli that transferred from the fecal 

pellets to the lettuce heads was also significantly greater for outer leaves (effect = 1.3) 

and intact heads (effect = 1.9) compared to inner leaves (Table 4.3); this translates to 

an 1,884%, and 7,120% increase in the percent of E. coli that transferred to outer 

leaves and intact heads, respectively (relative to inner leaves).
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Table 4.3 Final multivariable model for the logw0 percent of E. coli transferred from the fecal pellets to the lettuce heads.a 

 
Factors Effect 95% CIb P-value 
Fecal age  - - <0.001 
 2.5 h  0.00 c - - 
 24 h  -1.49  (-2.14, -0.84) <0.001 
 48 h  -2.56 (-3.24, -1.89) <0.001 
 72 h  -1.02 (-1.70, -0.33) 0.004 
Head Type   - - <0.001 
 Inner Leaves 0.00 d - - 
 Outer Leaves 1.29  (0.45, 2.14) 0.003 
 Intact Head 1.86 (1.19, 2.52) <0.001 
Distance between Lettuce and Feces (10 cm) e -0.34 f (-0.44, -0.24) <0.001 
Distance between Lettuce and Post-irrigation pools (m) g  -0.08 h (-0.15, -0.01) 0.022 
Distance between Lettuce and Sprinkler (m) i -0.08 j (-0.15, -0.02) 0.008 

 

a Percent E. coli transferred is the MPN for a given positive lettuce head divided by the average CFU of E. coli per fecal pellet at 
the time of placement for the given fecal age. For use in the model these values were transformed using the logw0transformation. 
The effect estimates and 95% confidence intervals for the effect estimates are reported for the transformed data. 
b Confidence Interval 
c Compared to lettuce heads that were near fecal pellets that were placed 2.5 before irrigation there was a 97%, 100% and 90% 
decrease in the percent of E. coli transferred to lettuce heads near fecal pellets that were placed 24 h, 48 h and 72 h before 
irrigation, respectively.
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Table 4.3 Continued. 

d Compared to inner heads there was a 1,884%, and 7,120% increase in the percent of 
E. coli transferred to outer heads and intact heads, respectively. 
e The minimum, maximum and mean distance between the lettuce heads and the 
closest fecal pellet were 3 cm, 99 cm and 49 cm, respectively.  
f There was a 54% decrease in the percent of E. coli transferred for each 10 cm 
increase in the distance between the lettuce heads and the closest fecal pellet (e.g., 
from 0 to 10 cm, from 50 cm to 60 cm). 
g The minimum, maximum and mean distance between the lettuce heads and the 
nearest post-irrigation pool were 0.0 m, 11.9 m and 3.4 m, respectively.  
h There was a 17% decrease in the percent of E. coli transferred for each 1 m increase 
in the distance between the lettuce heads and the closest pool (e.g., from 0 to 1 m, 
from 5 to 6 m). 
i The minimum, maximum and mean distance between the lettuce heads and the 
nearest sprinkler upwind of the lettuce head were 3.0 m, 17.9 m and 11.2 m, 
respectively.  
j There was a 18% decrease in the percent of E. coli transferred for each 1 m increase 
in the distance between the lettuce heads and the closest sprinkler head (e.g., from 0 to 
1 m, from 5 to 6 m).
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Table 4.4 Final multivariable model for the logw0MPN of E. coli on lettuce heads.a 

 
Factors Effect  95% C b  P-value 
Fecal age  - - < 0.001 

  2.5 h  0.00 c - - 
  24 h  -0.62 (-1.15, -0.09) 0.024 
  48 h  -1.84 (-2.38, -1.29) < 0.001 
  72 h  -0.78 (-1.34, -0.23) 0.007 

Head Type  - - < 0.001 
  Inner Leaves 0.00 d - - 
  Outer Leaves 1.24 (0.56, 1.93) 0.001 
  Intact Head 1.65 (1.11, 2.19) < 0.001 

 Distance between Lettuce and Feces (10 cm)e   -0.28 f (-0.36, -0. 20) < 0.001 
 Distance between Lettuce and Post-irrigation pools (m) g -0.06 h (-0.12, -0.01) 0.029 
 Distance between Lettuce and Sprinklers (m) i -0.08 j (-0.13, -0.03) 0.003 

 

a  For use in the model the MPN of E. coli on each lettuce head was transformed using the logw0transformation; the effect estimates 
and 95% confidence intervals for the effect estimates are reported for the transformed data. 
b Confidence Interval 
c Compared to lettuce heads that were near fecal pellets that were placed 2.5 before irrigation there was a 76%, 99% and 84% 
decrease in the MPN of E. coli on the lettuce heads near fecal pellets that were placed 24 h, 48 h and 72 h before irrigation, 
respectively.
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Table 4.4 Continued. 

d Compared to inner leaves there was a 1,815%, and 4,821% increase in the MPN of E. 
coli on outer leaves and intact heads, respectively. 
e The minimum, maximum and mean distance between the lettuce heads and the 
closest fecal pellet were 3 cm, 99 cm and 49 cm, respectively.  
f There was a 48% decrease in the MPN of E. coli on the lettuce heads for each 10 cm 
increase in the distance between the lettuce heads and the closest fecal pellet (e.g., 
from 0 to 10 cm, from 50 cm to 60 cm). 
g The minimum, maximum and mean distance between the lettuce heads and the 
nearest post-irrigation pool were 0.0 m, 11.9 m and 3.4 m, respectively.  
h There was a 14% decrease in the MPN of E. coli on the lettuce heads for each 1 m 
increase in the distance between the lettuce heads and the closest pool (e.g., from 0 to 
1 m, from 5 to 6 m). 
i The minimum, maximum and mean distance between the lettuce heads and the 
nearest sprinkler upwind of the lettuce head were 3.0 m, 17.9 m and 11.2 m, 
respectively.  
j There was a 16% decrease in the MPN of E. coli on the lettuce heads for each 1 m 
increase in the distance between the lettuce heads and the closest sprinkler head (e.g., 
from 0 to 1 m, from 5 to 6 m). 
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Survival of E. coli in simulated wildlife feces under field conditions. All 

fecal pellets had detectable levels of E. coli at the time of harvest (detection limit = 45 

MPN of E. coli per fecal pellet; Table 4.1). E. coli concentrations increased between 

fecal placement and harvest for fecal pellets placed 2.5 h and 24 h before irrigation, 

but decreased for the fecal pellets placed 48 h and 72 h before irrigation (Table 4.1). A 

regression model for the change in the E. coli concentration per fecal pellet between 

fecal placement and harvest showed, that among the 5 factors included in the full 

model, only fecal age (P=0.04) was retained in the final model (Table 4.5). While 

fecal pellets placed 48 and 72 h before irrigation had approx. 2-3 log lower E. coli 

concentrations at harvest (relative to the average concentration of E. coli in the 48 and 

72 h fecal pellets at placement, respectively; Table 4.1), only the die-off in the fecal 

pellets placed 48h before irrigation was significantly different from the 2.5 h baseline 

(Table 4.5).
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Table 4.5. Final multivariable model for the change in the log10 MPN of E. coli per fecal pellet between fecal placement and 
harvest.a 

 
Factors Effect  95% C b  P-value 
Fecal Age - - 0.041 

  2.5 h  0.00 - - 

  24 h  -0.25 (-2.51, 2.00) 0.816 
  48 h  -2.89 (-5.14, -0.63) 0.015 
  72 h  -2.06 (-4.32, 0.19) 0.070 

 

a  For use in the model the MPN of E. coli in each fecal pellet at harvest (Ch) was divided by the average CFU of E. coli in the fecal 
pellets at the time of fecal placement (C0). The quotient (Ch/ C0) was then transformed using the log10 transformation; the effect 
estimates and 95% confidence intervals for the effect estimates are reported for the transformed data. 
b Confidence Interval 
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Discussion 

Comparison of transfer coefficient estimates for 2 studies conducted in 

different produce-growing regions of the United States. The objective of this study 

was to estimate E. coli transfer coefficients from simulated wildlife feces to field-

grown lettuce during foliar irrigation. Our study adapted the methods used by Atwill et 

al. (2015), who examined the transfer of an attenuated E. coli O157:H7 strain from 

simulated wildlife feces (inoculum = 1.29*108 CFU per 5 g fecal pellet) to field-grown 

lettuce during a 2.5 h irrigation event in Salinas, CA. While our findings were 

generally consistent with Atwill et al. (2015), the number of positive heads that we 

observed and the transfer coefficients that we calculated were substantially greater 

than those reported by Atwill et al. (2015). For example, the proportion of intact heads 

(89%), and outer (80%) and inner (75%) leaves with detectable levels of E. coli in our 

study were significantly greater (P<0.001 for all head types)  than the corresponding 

proportions (38%, 25% and 0%, respectively) reported by Atwill et al. (2015). The 

maximum MPN per lettuce head observed in our study (3.00*106) was also an order of 

magnitude greater than the maximum MPN per lettuce head  observed by Atwill et al. 

[2.30*105; (2015)] when the outlier was excluded from the dataset; the difference was 

approx. 3 orders of magnitude when the outlier (i.e., a lettuce head with 5.94*108 

MPN of E. coli) was included in our dataset. Additionally, the percent of E. coli in the 

fecal pellets that transferred to intact heads was approx. 5 times greater in our study 

(0.0267%) compared to Atwill et al. [0.006%; (2015)]. Since we used a 3 strain-

cocktail of non-pathogenic E. coli and Atwill et al. (2015) used an attenuated strain of 

E. coli O157:H7, strain differences (e.g., with regard to stress resistance, expression of 
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adhesins) could contribute to the higher transfer coefficients observed here as 

compared to Atwill et al. (2015).  However, differences in management practices may 

be more likely to account for the observed differences in transfer coefficients; 

specifically, the amount of irrigation water applied in our study (approx. 25 mm) was 

at least 6 times the amount applied by Atwill et al. [1.25-3.85 mm; (2015)] during the 

same time period (~2.5 h). The larger volume of water used in our study may have (i) 

altered fecal pellet consistency (e.g., softening the pellets) facilitating the release of E. 

coli from the feces (e.g., transfer via splash, erosion of the fecal pellets), which will be 

discussed in more detail later, and (ii) facilitated transfer by moving E. coli within the 

field (e.g., in runoff, flooded furrows, and in-field pools). In fact, we found a 

significant, positive association between the percent of E. coli transferred, and the 

distance between the lettuce head and pools that formed during irrigation. 

Environmental conditions, including weather, also may have impacted the findings of 

both studies. Further studies, with a standardized strain cocktail and study design, in 

different regions, and under different weather conditions will thus be needed to assess 

the specific effect of management practices, weather, and other factors on the transfer 

of E. coli from wildlife feces to field-grown produce via splash.  

Removal of outer leaves may reduce pre-harvest food safety risks 

associated with fresh lettuce. Both Atwill et al. (2015) and the study reported here 

found that outer leaves were significantly more likely than inner leaves to become 

contaminated via splash. While no other peer-reviewed studies, with the exception of 

Atwill et al. (2015), have examined the splash of E. coli from feces to lettuce, one 

study (Oliveira et al., 2012) investigated the transfer of E. coli O157:H7 from (i) 
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contaminated compost (inoculum = 106 CFU/g; calculated using data reported by 

Oliveira et al., 2012), and (ii) soil irrigated with contaminated water (inoculum = 107 

CFU/mL) to lettuce in two separate trials. In both trials E. coli O157:H7 was more 

frequently detected on outer leaves compared to inner leaves (Oliveira et al., 2012). 

Interestingly, several studies (Brandl and Amundson, 2008; Mootian et al., 2009; Van 

der Linden et al., 2013) that irrigated lettuce with or immersed lettuce in contaminated 

water found that E. coli concentrations on inner leaves were, on average, higher than 

the concentration on middle and outer leaves. This is logical since past studies (Brandl 

and Amundson, 2008; Peleg, 2006; Van der Linden et al., 2013) also found that 

bacteria are more likely to survive in protected sites, and sites with conditions 

conducive to bacterial growth, such as the inner leaves. For example, Brandl and 

Amundson (2008) found that bacteria, including E. coli, colonized younger, inner 

leaves at higher densities and more locations compared to older, outer leaves due to 

greater nutrient availability on the inner leaves. Based on the findings of this and other 

studies (Atwill et al., 2015; Oliveira et al., 2012) we can conclude that E. coli is more 

likely to splash to outer leaves than inner leaves. Thus, while outer leaves may act as a 

source of inner leaf contamination during harvest and post-harvest, once 

contamination occurs E. coli may be more likely to survive and proliferate on inner 

leaves. Therefore, removing the outer leaves at harvest, which is current industry 

practice, eliminates the part of the lettuce head that is most likely to become 

contaminated with a high bacterial load by splash from in-field wildlife feces.  

Effect of time on the transfer of E. coli from simulated feces to lettuce 

under field conditions. In our study we observed limited evidence for significant 
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changes in the concentration of E. coli in the fecal pellets between placement and 

harvest, which occurred at 2.5, 24, 48, and 72 h after placement. The change in the E. 

coli concentration in the fecal pellets between placement and harvest ranged from an 

increase of 0.27 log10 MPN (2.5 h) to a decrease of 2.62 log10 MPN (48 h). However, 

the only change that was significantly different from the 2.5 h baseline was the change 

in the E. coli concentration in the fecal pellets that were placed 48 h before irrigation. 

This is not unexpected as past studies that examined E. coli survival in feces did not 

observe die-off until several days after fecal deposition [3-13 days; (Guber et al., 

2015; Oladeinde et al., 2014; Soupir et al., 2008; Van Kessel et al., 2007)].  Although 

E. coli die-off in the fecal pellets placed 24 h and 72 h before irrigation did not differ 

significantly from the 2.5 h baseline, the logw0 percent of E. coli in the fecal pellets 

that transferred to the lettuce was significantly greater for lettuce near 2.5 h fecal 

pellets compared to 24, 48 and 72 h pellets. This may be attributable to the larger 

sample size per fecal age for the lettuce (N=35) compared to the fecal pellets (N=5), 

which provided for greater power to detect differences in E. coli concentration on the 

lettuce head. This difference may also suggest that, in addition to bacterial die-off and 

growth, other factors also affected the transfer of E. coli from the fecal pellets to the 

lettuce heads. For example, changes in fecal pellet consistency or moisture content 

may have altered the structure of the pellet surface, increasing the amount of energy 

needed to detach fecal particles and E. coli. While no study, to the authors’ 

knowledge, has examined the impact of fecal structure on the splash kinetics of E. 

coli, several studies have examined the effect of fecal structure on the transfer of other 

organisms. For example, a study that examined the dispersal of Cooperia larva from 
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cow pats via splash found that immediately following a rain event no Cooperia was 

transferred from the pats due to the formation of a dry crust on the surface of the pats 

(Gronvold, 1984). Studies (Kress and Gifford, 1984; Thelin and Gifford, 1983) on the 

release of fecal coliforms from cow pats during rain events also noted that a dry crust 

formed on older pats, and that pat moisture content was positively associated with the 

release of fecal coliforms. Fecal pellet consistency may also be affected by the volume 

of water applied during irrigation (e.g., by softening the pellet, causing puddles to 

form on the pellet surface). Therefore, the larger volume of irrigation water applied in 

this study compared to Atwill et al. (2015) may have facilitated transfer, and may 

explain the larger transfer coefficients reported here compared to Atwill et al. (2015). 

To effectively model E. coli survival in feces, and its impact on the transfer of E. coli 

from feces to pre-harvest produce, future studies need to (i) increase the number of 

fecal pellets collected per time point, and (ii) collect data on changes in fecal structure, 

moisture content and consistency over time.  

 The effect of geospatial factors on the transfer of E. coli from feces 

to lettuce under field conditions. In the study reported here the same geospatial 

factors were retained in the final model for the logw0 percent of E. coli transferred, and 

the final model for the logw0 concentration of E. coli on the lettuce at harvest. One of 

these geospatial factors (lettuce-feces distance) was also retained in one the models for 

the concentration of E. coli on the lettuce at harvest reported by Atwill et al. (2015). 

This suggests that the relationship between E. coli transfer and lettuce-feces distance is 

reproducible. This is consistent with previous studies (Butterworth and McCartney, 

1991; Girardin et al., 2005; Gronvold, 1984; Monaghan and Hutchison, 2012; Penet et 



 

143 

al., 2014) that found a strong negative correlation between the number of splash 

droplets and the distance from the splash origin, which was the fecal pellets in the 

study reported here. For example, under laboratory conditions, the number of 

Colletotrichum gloeosporiodes spores transported by splash decreased exponentially 

as the distance from the origin increased (Penet et al., 2014). Similarly, a study that 

examined the transfer of E. coli from contaminated soil to agar strips found that 

bacterial growth covered 16-18% of the strips 0-10 cm from the splash origin but 

covered less than 2% of the strips 25-45 cm from the origin (Monaghan and 

Hutchison, 2012). Since more energy is required to transport drops farther, one would 

expect fewer splash droplets and less bacteria per droplet to reach lettuce heads that 

were farther from the fecal pellets compared to heads that were closer to the fecal 

pellets, which was observed. Thus, the likelihood of E. coli transfer from feces to 

produce should be minimal past a given distance. Establishing a no-harvest buffer at 

this distance around in-field feces may therefore reduce the risk of harvesting 

microbially contaminated produce. Since all lettuce heads in our study were within 1 

m of the fecal pellets we cannot make any recommendations on the use of buffers > 1 

m in size. However, our findings suggest that a no-harvest buffer of 0.5 m around in-

field wildlife feces would reduce the proportion of E. coli transferred by 

approximately 1.5 logw0 (i.e., a 98% decrease in the percent of E. coli transferred to 

lettuce heads 0 cm from a fecal pellet compared to lettuce heads 50 cm from a fecal 

pellet). Additional research is needed (i) to test the robustness of our findings, and (ii) 

to quantify the transfer reductions expected for produce that is more than 1 m from in-

field feces.  
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Similar to lettuce-feces distance, lettuce-sprinkler distance, which was another 

of the geospatial factors retained in our lettuce models, may also affect splash kinetics. 

While Atwill et al. (2015) did not include lettuce-sprinkler distance as a candidate 

factor in their models for the concentration of E. coli on the lettuce, they did include 

and retain feces-sprinkler distance. The identification of lettuce-sprinkler and feces-

sprinkler distance makes logical sense because the horizontal and vertical distance that 

a drop travels from the sprinkler to the fecal pellets will affect the force of the drop at 

impact. Interestingly, studies on splash kinetics have also found that drop size is 

correlated with the kinetic energy of the drop, and therefore the distance that splash 

droplets will travel (Kincaid, 1996; Ntahimpera et al., 2007; Perryman et al., 2014). 

Past studies have also related rain intensity to drop kinetic energy, and splash 

mediated dispersal (Madden, 1997; Quansah, 1981; Yang et al., 1990). In fact, a study 

(Quansah, 1981) that examined the detachment and splash of soil particles during a 

simulated rain event found that rain intensity was one of the most important factors 

associated with splash mediated transport of soil particles. Since the amount of 

irrigation water applied to the field in the study reported here (approx. 25 mm over 2.5 

h) was at least 6 times greater than that applied by Atwill et al. [1.25-3.85 mm over 2.5 

h; (2015)], one can conclude that the intensity of water application was greater in this 

study compared to Atwill et al. (2015). This difference in irrigation intensity may 

explain the discrepancy between the transfer coefficients reported here and by Atwill 

et al. (2015). Irrigation intensity, and similar factors also may affect the subsequent 

wash-off of E. coli from the lettuce following splash; splash and wash-off are both 

captured in the transfer coefficients presented here. Overall, this suggests that 
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irrigation system set-up (e.g., water pressure, sprinkler setting, sprinkler height) may 

affect the transfer of E. coli from feces to lettuce. Therefore, altering the irrigation set-

up (e.g., reducing water pressure, changing sprinkler head to reduce drop size) or type 

(e.g., from overhead sprinkler to drip) may be a risk management strategy that growers 

can use to reduce the likelihood of pathogen transfer from in-field feces to pre-harvest 

produce. 

Conclusion 

Our study was designed to simulate a study conducted by Atwill et al. (2015) in 

Salinas, CA, in another region of the country and with slight modifications. The study 

presented here and Atwill et al. (2015) are, to the authors’ knowledge, the only peer-

reviewed studies that have examined the transfer of E. coli from wildlife feces to field-

grown lettuce via splash. Many of our findings (e.g., that fecal age is significantly 

associated with E. coli transfer from the fecal pellets to the lettuce heads) are 

consistent with those of Atwill et al. (2015). However, the average transfer coefficient 

associated with E. coli splash from wildlife feces to intact lettuce was approx. 5 times 

greater in the study reported here compared to Atwill et al. (2015). This difference 

could be due to a number of factors, including management practices (e.g., amount of 

irrigation water applied), and environmental conditions (e.g., New York versus 

California). Additional research is therefore needed to determine which of these 

factors are most important in determining the efficiency of transfer, and to assess the 

validity of generalizing field data on pathogen transfer to growing regions other than 

those in which the data were originally collected. Despite the need for additional 
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research, we can conclude that bacteria are readily transferred from in-field wildlife 

feces to field-grown lettuce via splash during foliar irrigation.  
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CHAPTER 5 

 

SURVIVAL OF ESCHERICHIA COLI ON LETTUCE UNDER FIELD 

CONDITIONS ENCOUNTERED IN THE NORTHEASTERN UNITED STATES 

Published in: Journal of Food Protection (2017) 80: 1214-1221. 

Abstract 

While wildlife intrusion and untreated manure have been associated with microbial 

contamination of produce, relatively few studies have examined the survival of 

Escherichia coli on produce under field conditions following contamination (e.g., via 

splash from wildlife feces). This experimental study was performed to estimate the 

die-off rate of E. coli on pre-harvest lettuce following contamination with a fecal 

slurry. During August 2015, field-grown lettuce was inoculated, via pipette, with a 

fecal slurry that was spiked with a 3-strain cocktail of rifampicin resistant, non-

pathogenic E. coli. Ten lettuce heads were harvested at each of 13 different time 

points following inoculation (0, 2.5, 5, and 24 h after inoculation, and every 24 h 

thereafter until day 10).  The most probable number (MPN) of E. coli on each lettuce 

head was determined and die-off rates were estimated. The relationship between time 

and the log10 MPN of E. coli per head was modeled using a segmented linear model.  

The segmented linear model had a breakpoint at 106 h (Confidence Interval = 69, 142 

h) following inoculation, with a daily decrease of 0.70 and 0.19 log10 MPN, for 0-106 

h and 106-240 h following inoculation, respectively. The findings reported here are 

consistent with die-off rates observed in similar studies that assessed E. coli survival 
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on produce following irrigation. Overall, the findings reported here provide die-off 

rates for E. coli on lettuce that can be used in future quantitative risk assessments. 
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Introduction 

Between 2003 and 2012 Escherichia coli O157 outbreaks reported in the 

United States (US) sickened 4,928, hospitalized 1,272, and killed 33 people (1). A 

number of recent E. coli O157 outbreaks have been associated with leafy greens [e.g., 

(2–4)], including a 2006 outbreak linked to fresh spinach that sickened 199, 

hospitalized 102, and killed 3 people throughout the United States (5). Microbial 

contamination of fresh produce, including leafy greens, can occur in the field (6–8), in 

processing environments [e.g., in packing houses or fresh-cut operations; (7, 8)], and 

immediately prior to consumption [e.g., in the home (8)]. Multiple foodborne disease 

outbreaks associated with leafy greens also have been traced back to probable pre-

harvest contamination events (9–12). Thus, understanding the survival and 

transmission of foodborne pathogens in the pre-harvest environment is essential for 

developing effective and feasible strategies for reducing the foodborne disease risks 

associated with the consumption of produce. 

Foodborne pathogens, including E. coli O157 and other Shiga-toxin producing 

E. coli,  have been isolated from a variety of wild and domestic animals, indicating 

their potential to serve as a source of microbial contamination (13–17). Past studies 

have shown that pathogens present in wildlife scat and untreated manure can be 

transferred to produce following defecation in or application to produce fields (6, 18–

20). For example, Atwill et al. (6) showed that E. coli O157:H7 in simulated wildlife 

feces could be transferred to field-grown lettuce via splash during foliar irrigation. The 

use of fecally-contaminated water for irrigation or frost protection can also serve as a 

direct route of produce contamination (21, 22). In fact, cases of foodborne disease 
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have been associated with wildlife intrusion into produce fields (23–26), and the use 

of contaminated surface water for produce production (12, 27, 28). However, pathogen 

populations that transfer to produce die off under field conditions over time (22, 29–

31). Thus, die-off rates can be used in quantitative risk assessments to identify 

potential intervention and control strategies for reducing food safety risks associated 

with fresh produce consumption.  For example, die-off rates can be used in risk 

models to estimate levels of contamination on produce at specific times following 

potential contamination events (32). 

A number of studies have investigated bacterial die-off rates on field-grown 

produce, and reported mean die-off rates for E. coli (22, 29, 31, 33) ranging from 0.4 

to 1.64 log10  CFU d-1. For example, Wood et al. (22) observed die-off rates ranging 

between 0.54 to 1.64 log10  CFU of E. coli O157:H7 d-1 on field-grown spinach in 

Nova Scotia, Canada.  By comparison, daily die-off rates for Salmonella on field-

grown spinach and lettuce in the United Kingdom ranged from 0.43 to 0.76 log10  CFU 

d-1 (31). Variation in bacterial die-off rates on produce has been associated with 

multiple factors, including plant health and leaf age (34, 35), environmental conditions 

(22, 36), and pathogen transfer matrix. For example, Wood et al. (22) found that the 

time to reach the detection limit for E. coli O157:H7 on spinach grown in full sun and 

in partial shade was 72 to 100 hours, and > 150 hours, respectively. Due to the 

variability in previously reported die-off rates for E. coli on pre-harvest produce, more 

research is needed to evaluate existing data and generate new data that can be used to 

determine appropriate risk management strategies for reducing risks associated with 

the consumption of produce. The study reported here was thus conducted to generate 
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experimental data on the die-off rate of E. coli on fresh produce under field conditions 

in the Northeastern US, and to subsequently compare the observed die-off rate to 

previously reported rates for E. coli on pre-harvest produce. 

Materials and Methods 

Field Setup. This field study was conducted in a romaine lettuce (Lactuca 

sativa L. var. longifolia cv. Green Towers; Harris Seeds, Rochester NY) field at the 

Homer C. Thompson Vegetable Research Farm in Freeville, New York. Throughout 

the growing season a combination of tine weeding, hand weeding and rototilling was 

used to thin the lettuce heads (at ~ 4 weeks) and weed the study field. The field 

consisted of an 8.5 m x 59.5 m planted area with 5 longitudinal beds (each bed was 1.2 

m wide) separated by 0.6 m furrows (see map provided in Supplemental Materials 1; 

https://foodsafety.foodscience.cornell.edu/research-and-publications/supplementary-

materials-manuscripts/2017). Each bed consisted of 4 rows of seed planted 0.4 m apart 

(20 rows in total). Seeding was performed using a mechanical seeder (Monosem Inc., 

Edwardsville, KS) and a 1.5 in (3.81 cm) seeding rate was achieved. The field was 

surrounded by a bare ground buffer of at least 3.1 m on each side. Overhead impact 

sprinklers were spaced around the field (with approx. 15 m between sprinklers); 

irrigation occurred as needed up to one week before inoculation of the lettuce with E. 

coli. 

One hundred and thirty lettuce heads growing in the study field were randomly 

selected for inclusion in the study. The 130 heads were randomly divided into one of 

13 treatment groups. Each treatment group of 10 lettuce heads was harvested and 

quantitatively tested for E. coli at a given time point after inoculation of the lettuce 

https://foodsafety.foodscience.cornell.edu/research-and-publications/supplementary-materials-manuscripts/2016
https://foodsafety.foodscience.cornell.edu/research-and-publications/supplementary-materials-manuscripts/2016
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heads; the time points were 0 h, 2.5 h, 5 h, and 24 h after inoculation, and every 24 h 

thereafter until day 10.  

Bacterial Strains. Three rifampicin-resistant non-pathogenic E. coli strains 

[TVS 353, TVS 354 and TVS 355 (37)] were obtained from the University of 

California, Davis; these strains were used to prepare a 3-strain cocktail that was used 

for lettuce inoculation. Briefly, each strain was grown in duplicate on tryptic soy agar 

plates (TSA; Becton, Dickinson and Company, Franklin Lakes, NJ) at 37°C to 

stationary phase (18-24 h). Each plate was then flooded with 10 mL of phosphate 

buffered saline (PBS) and the cells were resuspended using a 10 uL loop and 10 mL 

stripette. Bacterial suspensions were separately transferred into 15 mL Falcon tubes. 

Following centrifugation at 2,500xG (for 5 min) the culture supernatant was removed. 

The pellet was washed twice with 10 mL PBS, and re-suspended in 5 mL of PBS. The 

bacterial suspension was diluted 1:32 in PBS, and the optical density (OD600) was 

measured. Based on the optical density the culture was diluted in PBS to achieve a 

concentration of ~ 1010 CFU mL-1. 

To assess the potential of false positives due to naturally occurring rifampicin 

resistant E. coli, sampling was performed prior to the start of the study. Briefly, 3 

composite soil samples, 3 vegetation samples, and 4 water samples were collected 

from nearby environments, including Fall Creek, the source of irrigation water used in 

this study. Soil and vegetation samples were diluted 1:2 in PBS, and then, in duplicate, 

serially diluted to 10-11 in tryptic soy broth (Becton, Dickinson and Company) 

supplemented with 100 mg L-1 rifampicin (TSB+R; EMD Chemicals, San Diego, CA). 

After incubation for 18-24 h at 37°C, 3 μL of each dilution were cross-streaked on E. 
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coli ChromAgar (DRG International, Inc., Springfield, NJ) supplemented with 100 mg 

L-1 rifampicin (ECC+R). The ECC+R plates were then incubated at 42°C for 18-24 h. 

Water samples were processed as described in Weller et al. (38). Briefly, a 250-mL 

sample of water was passed through a 0.45 μm filter unit (Nalgene, Rochester, NY). 

The filter was then transferred to a Whirl-Pak bag (Nasco, Fort Atkinson, WI), and 

enriched with 90 mL of TSB+R. Following incubation at 37°C for 18-24 h, 50 μL of 

enrichment were streaked onto ECC+R agar plates, which were incubated at 42°C for 

18-24 h. While one soil sample was culture-positive for rifampicin-resistant E. coli 

following plating on ECC+R, we were not able to confirm this culture as E. coli using 

clpX PCR.  

It is important to note that in this study we used a cocktail of 3 non-pathogenic 

E. coli strains. While the use of non-pathogenic surrogate strains (rather than 

pathogenic wild type strains) may be considered a drawback, pathogenic E. coli could 

not be used in our study due to biosecurity concerns. The 3-strain cocktail used here 

was selected since several studies (37, 39) have found that the E. coli cocktail used in 

our study demonstrated greater environmental fitness compared to individual 

attenuated E. coli O157:H7 strains. As a result, the die-off rates for non-pathogenic E. 

coli that are reported in our study provide conservative estimates for pathogenic E. 

coli die-off on pre-harvest, field grown lettuce. Moreover, Gutiérrez-Rodríguez et al. 

(39) reported that the survival and persistence of pathogenic and non-pathogenic E. 

coli was strain dependent. The use of non-pathogenic surrogates can therefore provide 

valuable information to further define E. coli strain variability with regard to survival 

on produce. 
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Fecal Slurry Preparation. Laboratory rabbit (Oryctolagus cuniculus; 

CoVance, Princeton, NJ) feces were used as a proxy for wildlife feces in the study 

reported here. Past studies (13–15) have identified wild and domestic rabbits as 

reservoirs for pathogenic E. coli. Fifty grams of feces, 200 mL of PBS and 2.5 mL of 

the 3-strain E. coli cocktail (consisting of 0.833 mL culture of each strain) were 

combined in a sterile filter Whirl-Pak bag (Nasco, Fort Atkinson, WI) and hand 

massaged for 5 min. The solid matter was then separated from the liquid portion of the 

fecal-culture mixture by pipetting the liquid portion (designated as the “fecal slurry”) 

into a 50 mL Falcon tube. The fecal slurry was then stored overnight at 4°C. The final 

concentration of E. coli in the fecal slurry (3.5x108 CFU mL-1) was confirmed on the 

morning of inoculation by, in triplicate, diluting a 1 mL aliquot of the fecal slurry with 

PBS, and spiral plating 50 μL of the 10-3, 10-4, and 10-5 dilutions on tryptic soy agar 

plates supplemented with 100 mg L-1 rifampicin. Plates were incubated at 37°C for 18-

24 h and colonies were enumerated using a Q-Count (Advanced Instruments, 

Norwood, MA).  

Inoculation. Inoculation of each lettuce head was performed by pipetting 1 

mL of fecal slurry onto the northernmost lettuce leaf from a height of ~ 7 cm. Due to 

the volume of inoculum, and lettuce growth structure and leaf shape, the slurry tended 

to spread across the inoculated leaf toward and onto the stem, and to drip onto lower 

leaves.  It is important to note that the inoculation method used in this study is not 

representative of all feces-related contamination events in terms of bacteria 

(rifampicin resistant non-pathogenic E. coli), source (rabbit feces) or deposition (in a 

single spot on the lettuce in the form of a slurry with a high bacterial count). However, 
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our experimental design allowed us to control for confounders (e.g., feces sources, 

location of inoculum on the lettuce leaf), and to track E. coli die-off in the pre-harvest 

environment. For example, although E. coli contamination of fresh produce is likely to 

occur at much lower levels than that used in this study, a higher concentration was 

used here to ensure comparability with previous studies (29, 33, 40). A high initial 

inoculum was also used to allow for accurate quantification of die-off (33), which was 

expected to be > 4 log over the 10 day time frame (22, 29, 30). In fact, in their review 

of studies that examined pathogen die-off on produce Snellman et al. (33) only 

included studies that used a high initial inoculum because of the difficulty in 

determining cell densities accurately at low inoculum densities. 

Harvest.   Harvest occurred at pre-determined time points following 

inoculation (0, 2.5, 5, and 24 h after inoculation, and every 24 h thereafter until day 

10); inoculation occurred 84 days after seeding. Lettuce heads were harvested by 

teams of two, consisting of a bagger and a harvester each of whom wore gloves. Heads 

were harvested with gloved hands using a food grade knife. Gloves were changed 

between collection of each lettuce head, and the knife was decontaminated with a 10% 

bleach wipe followed by a 70% ethanol wipe. In total 130 lettuce heads were collected 

(10 heads per time points). All heads were placed in pre-labeled Whirl-Pak bags 

(Nasco), stored at 4°C, and processed within 3 h of harvest. 

Enumeration of E. coli on Lettuce. The enumeration methods used in the 

study described here were adapted from Atwill et al. (6). Briefly, 600 mL of PBS were 

added directly to each of the Whirl-Pak bags (Nasco) containing a lettuce head. 

Samples were then hand-massaged for 1 min. Rifampicin resistant E. coli were then 
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enumerated using a most probable number (MPN) determination with 6 dilutions 

tested in duplicate. In a twelve-well deep well plate (VWR International, Radnor, PA), 

1 mL of sample suspension was transferred to each of two wells, which contained 9 

mL of TSB+R. Five serial 100 fold dilutions (0.1 mL into 9.9 mL of TSB+R) were 

subsequently performed starting from each of the two initial wells. Following 

incubation for 24 h at 37°C, 3 μL from each well were streaked onto ECC+R. The 

ECC+R plates were then incubated at 42°C for 18-24 h. Blue colonies indicated the 

presumptive presence of one of the inoculation strains (TVS 353, TVS 354 and TVS 

355) used in this study. Detection of the inoculation strains was confirmed on 10% of 

presumptive positive lettuce heads using PCR amplification and Sanger sequencing of 

clpX as described in Walk et al. (41). Only a subset of isolates from positive lettuce 

heads was tested by clpX PCR and sequencing since all E. coli isolates that were tested 

were confirmed as a clpX allelic type that matched one of the inoculation strains. The 

MPN of cells per head was calculated as described by Cochran (42); the R script used 

to implement the method outlined by Cochran (42) is reported in Supplemental 

Materials 2 (https://foodsafety.foodscience.cornell.edu/research-and-

publications/supplementary-materials-manuscripts/2017).  

Statistical Analysis. All statistical analyses were performed in R (version 3.1, 

R Core Team, Vienna, Austria). The p-value cut-off for significant results was 0.05 for 

all analyses. Die-off was visualized by plotting the average log10 MPN per head 

against time. Die-off per unit time between each time point (e.g., 0 and 2.5 h, 2.5 and 

5 h) and each day (e.g., 0 and 24 h, 24 and 48 h) was calculated using the formula: 

https://foodsafety.foodscience.cornell.edu/research-and-publications/supplementary-materials-manuscripts/2017
https://foodsafety.foodscience.cornell.edu/research-and-publications/supplementary-materials-manuscripts/2017
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𝛥𝛥𝑙𝑙𝑙𝑙𝑙𝑙10𝑀𝑀𝑀𝑀𝑀𝑀
𝛥𝛥𝛥𝛥

= 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑙𝑙𝑙𝑙𝑙𝑙10𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡−1 − 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑙𝑙𝑙𝑙𝑙𝑙10𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡, where t-1 and t 

are the two sampling points of interest, and 𝛥𝛥𝛥𝛥 is the length of time between these two 

sampling points. To statistically describe the change in log10 MPN per head over time 

a linear regression model was developed. However, past studies have shown that 

microbial die-off can be biphasic (43, 44), and may be better modeled using a 

segmented linear model or a Weibull model. Using the segmented package in R (45, 

46) we conducted a Davies test to determine if the linear model included a non-

constant regression parameter (this is the breakpoint), and developed a segmented 

linear model. We then retested the segmented linear model to determine if there was a 

second breakpoint. Using the nlsMicrobio package in R (47) we developed a Weibull 

model as parameterized by Mafart et al. (48). The formula for the Weibull model is nt 

= n0- (t/δ)p, where nt = log10 MPN of E. coli at time t, n0 = log10 MPN of E. coli at time 

0, δ = time to the first decimal reduction, and p = a parameter that describes the 

concavity of the curve described by the model. Akaike’s information criteria (AIC) 

was used to determine whether the linear, segmented linear or Weibull model best fit 

the data.  

Die-off was calculated using a log10 transformation because this is the 

transformation traditionally used by microbiologists, as well as by industry and 

government stakeholders. To provide decay rates for modeling purposes (i.e., k in Ct = 

Ci + ekt, where Ct is concentration at time t, and Ci is initial concentration), the slopes 

of the linear and segmented linear models are also reported using a natural logarithm 

transformation.  
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Weather conditions for the day of lettuce head inoculation, and 1-9 d after 

lettuce head inoculation are reported in Supplemental Materials 3 

(https://foodsafety.foodscience.cornell.edu/research-and-publications/supplementary-

materials-manuscripts/2017). Weather data were obtained from the Cornell University 

weather station (Rainwise Inc., Trenton, NJ) located at the Homer C. Thompson 

Vegetable Research Farm as described in Weller et al. (38). Linear regression was 

used to statistically describe the relationship between the log10 MPN of E. coli per 

head and weather (this will be referred to as the weather model). The dependent 

variable of the model was the log10 MPN of E. coli per head. The explanatory 

variables were (i) the period of time between inoculation and harvest (hours), (ii) 

average temperature, relative humidity, and wind speed for the 24 h preceding harvest, 

(iii) total leaf wetness for the 24 h preceding harvest, and (iv) whether the lettuce head 

was harvested before or after the rain event (~7.1 mm) that occurred between 64 and 

69 h after inoculation (post-rain). The interaction between hours and the post-rain 

variable was also included in the model. The full model was reduced by backwards 

stepwise regression based on AIC. Briefly, each variable was removed from the full 

model and the AIC determined. The variable whose removal resulted in the largest 

decrease in AIC was removed from the model. This process was repeated until the 

removal of additional variables failed to reduce the AIC.  

Results and Discussion 

The observed die-off rate for E. coli was 0.52 log10 MPN per day. During 

the 240 h between inoculation and harvest on day 10 the average log10 MPN per head 

decreased from 8.86 to 3.64 (Figure 5.1), a log reduction of 5.22. On average, we 

https://foodsafety.foodscience.cornell.edu/research-and-publications/supplementary-materials-manuscripts/2016
https://foodsafety.foodscience.cornell.edu/research-and-publications/supplementary-materials-manuscripts/2016
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observed a die-off rate of 0.52 log10  MPN d-1 [95% Confidence Interval (CI) = 0.17, 

0.87; Table 5.1];  this falls within the range of previously reported daily die-off rates 

for E. coli on produce, which ranged from 0.4 to 1.64 log10  MPN d-1 (22, 29, 31, 33). 

The observed die-off rate was also similar to die-off rates that can be calculated using 

the findings of Barker-Reid et al. [0.44 log10  d-1 for non-pathogenic E. coli on 

uninjured lettuce (49)], and Bezanson et al. [0.56 log10  CFU d-1 for E. coli O157:H7 

on lettuce (30)].  Further comparisons of the die-off rate observed in this study and 

previous studies will be presented in subsequent sections. 
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Figure 5.1. E. coli levels (log MPN per lettuce head) for each time point (e.g., 0, 2.5, and 5 h) reported as mean (gray points) and 
standard deviation (gray bars) and minimum and maximum (blue shading). The linear regression (A), segmented linear (B), and 
Weibull (C) models describe E. coli die-off over time. 
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Table 5.1. Average die-off of inoculated E. coli on lettuce heads grown under field conditions 

 

 

a Total die-offs within the first 24 h were 1.16, 0.03, 0.28 log MPN for 0 to 2.5, 2.5 to 5, and 5 to 24 h, respectively. 
b Difference in log MPN per lettuce between first and end time points. 
c 95% confidence interval = 0.169, 0.871 log MPN per day
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E. coli is still detectable on the lettuce 10 d after inoculation. It is important 

to note that 10 days after inoculation, E. coli was still detectable on the lettuce heads 

[Figure 5.1; mean log10 MPN of E. coli 10 days post inoculation (dpi) = 3.64; standard 

deviation = 0.75]. By comparison past studies that used high inoculum levels for E. 

coli (105 to 109 CFU mL-1) found a range of times until E. coli numbers dropped below 

detection limits for the respective methods used (29, 50–52). For example, a study 

conducted in Georgia, US (40) found that E. coli O157:H7 was still detectable on 

lettuce 77 days after fertilization with contaminated manure (inoculum = 107 CFU g-1); 

similarly E. coli O157:H7 was still detectable on lettuce 77 days after irrigation with 

contaminated water (inoculum = 105 CFU mL-1). However, another study conducted 

in Georgia, US, found that E. coli was not detectable by enrichment 7 days after 

irrigation with contaminated water [inoculum = 106 CFU mL-1; (51)]. In comparison, 

82% of lettuce samples in a multi-year study in California had less than 10 E. coli cells 

per head 7 dpi [inoculum = 107 CFU of E. coli O157:H7 mL-1; (29)]. Past studies have 

also found that environmental conditions, including weather and season, (22, 36, 37, 

53) appear to be associated with E. coli survival on pre-harvest produce. For example, 

Xu et al. (36) found that E. coli populations on field-grown spinach increased by up to 

1 log following < 20 mm of rain, while E. coli populations decreased following > 35 

mm of rain. Future studies with multiple replicates over time (e.g., multiple growing 

seasons, multi-year studies, staggered planting of fields) and/or space (e.g., trials on 

different farms, regions) will be needed to further assess and quantify the effect of 

environmental conditions on E. coli die-off on field-grown produce. 
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Segmented linear model indicates that E. coli die-off follows a biphasic 

pattern with rapid initial die-off over the first approximately 100 h and more 

gradual die-off thereafter.  A linear regression model built with the data generated 

here predicted a mean daily decrease of 0.46 log10 MPN of E. coli per lettuce head 

(95% CI = 0.38, 0.50; Table 5.2; Figure 5.1A), which is similar to the daily die-off 

rate reported by previous studies (22, 29, 31, 33). The linear model accounted for 66% 

of all variation in the log10 MPN decrease per head observed here (R2 = 0.66). 

However, the raw data suggested a biphasic decrease (Figure 5.1B), which may be 

better represented by a segmented linear model. Using a Davies test, we determined 

that there was a non-constant regression parameter in the linear predictor (P < 0.001). 

Therefore, we developed a segmented linear model (Table 5.2; Figure 5.1B) with a 

breakpoint at 106 hours (95% CI= 69 h, 142 h). After visually examining the data 

(Figure 5.1B), we thought there might be a second breakpoint in the first 48 h 

immediately following inoculation. We therefore ran a second Davies test using the 

segmented linear model, and identified a second breakpoint at ~5 h. However, this 

breakpoint was not statistically significant (P = 0.38), and was not included in the final 

segmented model (Table 5.2). The segmented linear model predicts a mean daily 

decrease of 0.70 (95% CI= 0.55, 0.86) log10 MPN, and 0.19 (95% CI= 0.05, 0.36) 

log10 MPN, for 0-106 h and 106-240 h, respectively (Table 5.2). The segmented linear 

model accounted for 71% of all variation in the decrease in log10 MPN per head 

observed in this study (R2 = 0.71). Since past studies have found that Weibull models 

accurately describe bacterial die-off (44, 48), we also developed a Weibull model. The 

formula for the Weibull model is nt = n0- (t/δ)p, where nt = log10 MPN of E. coli at 
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time t, n0 = log10 MPN of E. coli at time 0, δ = time to the first decimal reduction, and 

p describes the concavity of the curve described by the model. The Weibull model for 

the study reported here is nt = 8.62- (t/10.21)0.50 (Table 5.3). The AIC for the 

segmented linear (380) and Weibull (380) models were the same, and were lower than 

the AIC for the linear model (396; Tables 2 and 3). This suggests that the segmented 

model and Weibull model are comparable, and better fit the data than the linear model. 

However, since the parameters of the segmented model have a more intuitive 

interpretation than the parameters of the Weibull model, we will focus on the 

segmented model in our discussion.  

As part of our analyses we also examined the relationship between the log10 

MPN of E. coli per head and weather using a linear regression model. Of the 7 factors 

that were included in the full model, 5 factors were retained in the final model (Table 

5.4). The model accounted for 70% of all variation in the decrease in log10 MPN per 

head observed in this study (R2 = 0.70). The AIC for the model is 381 and the BIC for 

the model is 401.
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Table 5.2. Average die-off of inoculated E. coli on lettuce heads grown under field conditions 

 

a Confidence Interval 
b The reported parameters are for log10 transformed data. For natural log transformed data, the slope for the linear model is -0.043 (-
0.048, -0.037). The slopes for the segmented linear model are -0.068 (-0.084,-0.052), and -0.020 (-0.034, -0.005), for 0-106h and 
106-240 h, respectively.  
c Akaike’s information criteria  
d Bayesian information criterion 
 



 

170 

Table 5.3. Parameters for a Weibull model that statistically characterizes the relationship between hours from inoculation to 
harvest and the E. coli level per lettuce head 
 

 

 

a Akaike’s information criteria 
b Bayesian information criterion 
c The formula for the Weibull model is nt = n0- (t/δ)p, where nt = log10 MPN of E. coli at time t, n0 = log10 MPN of E. coli at time 0, 
δ = time to the first decimal reduction, and p describes the concavity of the curve described by the model. 
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Table 5.4. Parameters for a linear regression model that characterizes the 
relationship between hours from inoculation to harvest, weather, and the E. coli level 
per lettuce head. a 

 

 

 

a Lettuce heads that were harvested before or during the rain event were coded 0; 
heads that were harvested after the rain event are coded 1.  
b Hours between inoculation and harvest.  

 

Our findings suggest that during the first ~100 hours following inoculation 

there is a period of rapid E. coli die-off, which has also been observed in previous 

studies (22, 29, 34, 37). Our findings that die-off was biphasic, and was best 

represented by the segmented linear and Weibull models are also consistent with past 

studies on E. coli die-off conducted in agricultural (30, 44, 54) and non-agricultural 

environments (43, 55). For example, McKellar et al. (44) evaluated different 

approaches for modeling E. coli die-off on field-grown lettuce using previously 

published datasets, and found that E. coli die-off followed a biphasic pattern with a 

rapid initial decline. As the study reported here only collected data over 10 days, and 

only included 4 data points for the first 48 h immediately following inoculation, we 

were not able to model die-off after 10 days or determine whether additional break-
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points occurred during the first 48 h immediately following inoculation. Future studies 

should therefore (i) collect samples for more than 10 d, and (ii) collect additional data 

points during the first 48 h following inoculation. However, our data does indicate that 

the time immediately following inoculation (the first ~100 h) is the most important for 

E. coli reduction due to rapid die-off during this time.  

Various mechanisms may explain the biphasic die-off pattern observed here 

and in other studies (29, 44, 56, 57). One possible explanation could be heterogeneity 

within the microbial population of the inoculum (e.g., use of multiple strains, 

heterogeneous bacterial populations in stationary phase), or adaptation of the surviving 

microbial population to field conditions. Variation in environmental conditions (e.g., 

inner versus outer leaves) could also cause the biphasic pattern observed in this study. 

For example, Peleg et al. (58) postulated that microbial die-off is driven by 

environmental conditions, and as a result, exposed populations (e.g., on outer leaves) 

decline more rapidly than protected populations (e.g., on inner leaves). In fact, past 

research has shown that the contamination of inner, younger leaves and other 

protected areas [e.g., shaded leaves; (22, 35, 51, 59)] facilitates survival. Moreover, 

studies have associated environmental conditions, such as UV radiation (22, 60, 61) 

and moisture levels (49, 59) with microbial die-off rates. While analysis of weather 

patterns showed no evidence of a significant association between temperature and die-

off, there appeared to be a significant association between precipitation and die-off 

(Table 5.4). Specifically the breakpoint identified in the segmented model (at ~106 h, 

95% CI = 69, 142 h) occurred shortly after a moderate rain event (~7.1 mm; at 64-69 

h). In fact, according to linear regression analysis (i.e., the weather model) the die-off 
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rate was significantly lower on heads harvested after the rain event that occurred 

between 64 and 69 h after inoculation compared to lettuce heads that were harvested 

before the rain event (Table 5.4). While the moderate rain event may have washed 

bacteria off of the leaves, other factors including relative humidity and leaf wetness 

also were found to be associated with bacterial die-off (Table 5.4). Since our study 

was conducted over the course of a single growing season (and we thus lacked a 

comparison group), the impact of weather is difficult to separate from the impact of 

time since inoculation. Since the weather model reported in Table 5.4 accounts for 

slightly less variation in the data (R2=70%) compared to the segmented model 

(R2=71%), the observed biphasic pattern in microbial die-off could be explained 

almost equally well with or without the explicit consideration of weather. 

Interestingly, a biphasic die-off pattern for E. coli on produce has been reported 

previously (44) based on experiments conducted under presumably different 

environmental, including weather, conditions. As such, further studies with larger data 

sets collected over multiple growing seasons are needed to confirm our findings, and 

build upon the data presented here.  

The die-off rates reported in this and other studies appear to be 

comparable. The die-off rates that were observed (0.52 log10 MPN d-1) and calculated 

(0.70 and 0.19 log10  MPN d-1, for 0-106 h and 106-240 h, respectively) as part of this 

study are at the lower end of the range reported by previous studies [0.4 to 1.64 log10  

MPN d-1; (22, 29, 31, 33)].  However, past studies (22, 30, 31, 49) have shown that 

die-off rates of 0.70 log10  MPN d-1 and lower do occur. Moreover, McKellar et al. 

(44) found that die-off rates were positively associated with inoculum concentration. 



 

174 

Since the inoculum levels for natural contamination events are likely lower than the 

inoculum levels used in this and other studies (22, 29, 31, 49), die-off rates following 

actual contamination events may be lower than those reported by past studies. Thus, 

while die-off rates similar to the rates reported in this study provide conservative 

estimates for calculating time-to-harvest intervals, their use may overestimate die-off 

following contamination with low levels of E. coli or other, similar bacteria. However, 

the daily die-off rates reported in this and previous studies (22, 29, 31, 33) were all 

within an approximately 1 log range, even though the studies used different study 

designs [e.g., E. coli strains (including the use of pathogenic and non-pathogenic 

strains), produce type, inoculation procedures] and were performed under different 

conditions (e.g., weather, soil type). This suggests that the die-off rates reported to 

date are reasonable and comparable, and can be used in quantitative risk assessments 

to evaluate the public health impact of pre-harvest risk management strategies.   

Overall, the findings reported here are consistent with the die-off rates 

observed in past studies. As such, the die-off rates reported by this and similar studies 

can be used in quantitative risk assessments, and may therefore contribute to the 

development of effective risk management strategies, including the development of 

time-to-harvest recommendations following potential contamination events. The study 

reported here is also the first to calculate die-off rates for field-grown, pre-harvest 

produce in New York State, and as such, provides a foundational dataset on which 

future studies can build. 
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CHAPTER 6 

CONCLUSION 

Due to the increasing number of foodborne outbreaks attributed to pathogen 

contamination of fresh produce, growers face increased pressure to minimize the 

likelihood of preharvest produce contamination. However, to develop these 

approaches a comprehensive understanding of the ecological processes that drive the 

presence, dispersal and persistence of bacterial pathogens in produce production 

environments is essential. The studies presented here investigated these processes, and 

identified targeted risk management strategies that growers can use to reduce the 

likelihood of preharvest produce contamination. Specifically, the first two studies 

presented here focused on factors associated with the detection and diversity of L. 

monocytogenes with the aim of developing and validating decision-support tools (e.g., 

predictive models and risk maps) that growers can use to identify on-farm areas with a 

higher or lower predicted pathogen prevalence. While the first two studies investigated 

processes at the field and subfield-levels, the third and fourth studies focused on 

processes that occur at the level of the individual plant, specifically the transfer of 

bacteria in wildlife feces to and die-off on preharvest produce.   

Factors associated with the detection and diversity of L. monocytogenes at 

the field and subfield levels. In the first two studies we investigated factors that could 

be used to predict pathogen contamination patterns within a farm (i.e., at the field-

level), and within a field (i.e., at the subfield level), and used this information to 

validate and refine geospatial models (5) that predicted the likelihood of isolating L. 
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monocytogenes from produce field soils based on a field’s soil properties, and its 

proximity to certain land covers (water, impervious cover and pasture).  

In the first study (the validation study), fields located on four commercial 

farms were categorized into areas of high or low predicted L. monocytogenes 

prevalence using existing geospatial models (5). Drag swabs were collected from a 

subset of fields within each category and tested for L. monocytogenes presence. 

Logistic regression, which tested the ability of each rule to accurately predict L. 

monocytogenes prevalence for each field, validated the rules based on water and 

pasture. Since the geospatial model predicted L. monocytogenes prevalence at the 

field-level, factors associated with L. monocytogenes isolation at the sub-field level 

were also identified. Although, only one factor (proximity to water) was found to be 

significantly associated with the odds of L. monocytogenes isolation at the sub-field 

and field levels, we consistently found that the likelihood of L. monocytogenes 

isolation was higher in edge areas. This suggests that, regardless of scale, produce 

grown within a short distance of ecotones is at an increased risk of L. monocytogenes 

contamination. 

In the second study (the irrigation study), soil, leaf, water, and fecal samples 

were collected from spinach fields 1, 2, 3, and 6-9 d following irrigation and rain 

events. Samples were then tested to determine L. monocytogenes presence; all isolates 

were identified to allelic type (AT) by comparison of partial sigB sequences to an 

internal reference database. Environmental factors (e.g., time since irrigation or rain 

event) were then evaluated for their association with L. monocytogenes isolation using 

regression analysis. Similar to the validation study, we found that the likelihood of L. 
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monocytogenes isolation was higher in edge areas. We also found that the odds of L. 

monocytogenes isolation from soil samples was greatest during the 24 h immediately 

following irrigation and rain events. In fact, we found that the odds of L. 

monocytogenes isolation were approx. 25 times higher during the 24 h immediately 

following rain or irrigation events compared to 144-192 h following rain or irrigation 

events. Thus, waiting 24 h after rain events to harvest crops may significantly reduce 

the risk of L. monocytogenes contamination of preharvest produce. Since waiting 24 h 

should have a limited economic impact on growers, it offers a tangible solution that 

growers can use to reduce produce contamination risks.  

Overall, the findings from the validation and irrigation studies suggest that 

landscape structure (e.g., proximity to certain land-cover types) drives the spatial 

distribution of L. monocytogenes within a field, while meteorological factors (i.e., 

precipitation) and management practices (i.e., irrigation) drive the temporal 

distribution of L. monocytogenes within a field. As such, on-farm produce safety is 

complicated by the ecological context unique to each field as well as the conditions 

during the time that risk is being assessed. Thus, it is essential to have tools that allow 

growers to account for ecological context when developing on-farm produce safety 

plans. Since geographic information systems (GIS) platforms offer users the unique 

opportunity to look at spatial variation and to account for cross-scale differences by 

allowing for the integration and visualization of remotely sensed and field-collected 

data, GIS-enabled tools and geospatial models may allow growers to account for 

ecological context when developing on-farm produce safety plans. The validation of 

the geospatial model in the validation study demonstrates the utility of geospatial 
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models for predicting pathogen prevalence on produce farms, further suggesting that 

GIS-enabled tools may be promising for food safety. Indeed, by knowing where and 

when L. monocytogenes is likely to be found within a field growers will be able make 

small changes in their management practices that can greatly reduce the risk of 

produce contamination, such as planting high risk crops (e.g., cantaloupe) in low risk 

areas (away from ecotones). Additional research is needed to determine if the 

validated models can accurately predict the prevalence of L. monocytogenes for farms 

outside New York State. Studies are also needed to determine if the findings of the 

irrigation study are replicable in other produce-growing areas, and for other pathogens 

(e.g., Salmonella).   

Escherichia coli transfer from simulated wildlife feces to and die-off on 

individual, preharvest produce items. The third and fourth studies included in this 

dissertation focused on the transfer of bacteria in simulated wildlife feces to preharvest 

produce items (the transfer study), and the die-off of bacteria on produce following 

fecal contamination (the die-off study). In the transfer study rabbit feces inoculated 

with a 3-strain cocktail of non-pathogenic E. coli were placed in a lettuce field 2.5–72 

h before irrigation. Following irrigation, the E. coli concentration on the lettuce was 

determined. Regression analysis showed that significantly more E. coli transferred to 

outer leaves compared to inner leaves. Therefore, removing the outer leaves at harvest, 

which is current industry practice, eliminates the part of the lettuce head that is most 

likely to become contaminated with a high bacterial load by splash from in-field feces. 

This may reduce the likelihood of harvesting contaminated produce reducing the 

potential for pathogen transfer to equipment and other produce items during harvest 
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and post-harvest processing. Additionally, we found that the percent of E. coli that 

transferred from the feces to the lettuce decreased significantly as the distance 

between the lettuce and the feces increased. It is therefore logical that the likelihood 

of E. coli transfer from feces to produce via splash during irrigation should be minimal 

past a given distance. Establishing a no-harvest buffer at this distance around in-field 

feces may reduce the risk of harvesting microbially contaminated produce. However, a 

dissertation published since completion and publication of the transfer study (2) 

showed that bacteria in feces can transfer to lettuce heads that are up to 1.63 m from 

the feces via splash during irrigation. Since all lettuce heads sampled in the transfer 

study were within 1 m of the nearest fecal pellet additional research is needed to 

examine bacterial transfer from feces to produce that is > 1 m from the feces. Despite 

this limitation, the transfer study generated key data that can be used, in conjunction 

with the results of future studies, to calculate transfer reductions associated with no-

harvest buffers of various sizes.  

In the survival study, lettuce was inoculated with E. coli, and harvested 0-10 

days following inoculation. The E. coli concentration on the lettuce was determined 

and die-off rates were calculated. We found that die-off followed a biphasic pattern, 

and that the relationship between sample time and the log MPN of E. coli per head 

was best modeled using a segmented linear model. This model had a breakpoint at 106 

h (95% confidence interval = 69, 142 h) after inoculation, with a daily decrease of 

0.70 and 0.19 log MPN for 0 to 106 h and 106 to 240 h following inoculation, 

respectively.  Overall, our findings were consistent with die-off rates observed in past 

studies; in fact the die-rates calculated as part of our study were within an 
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approximately 1 log range of those reported by previous studies (1, 3, 4, 6). This 

suggests that the die-off rates reported to-date are reasonable and comparable, and can 

be used in quantitative risk assessments. 

The findings of the transfer and die-off studies provide data that can be used in 

quantitative risk assessments to identify potential intervention and control strategies 

for reducing food safety risks associated with fresh produce consumption. The studies 

reported here are also the first, to the author’s knowledge, to investigate the transfer of 

bacteria in wildlife feces to pre-harvest produce and to quantify die-off rates for field-

grown, pre-harvest produce in the Northeastern United States. As such these studies 

provide foundational datasets on which future studies can build. The next generation 

of research should utilize similar methods to the studies reported here to ensure 

comparability between these and future studies, and allow for meta-analysis. However, 

these future projects need to address some of the limitations of the studies reported 

here. For example, because the transfer and die-off studies were both conducted in one 

field over one growing season the impact of weather is impossible to distinguish from 

the impact of time in both studies. As such future projects should include multiple 

replicates over time (e.g., multiple growing seasons, multi-year studies, staggered 

planting of fields) and/or space (e.g., trials on different farms, regions) to allow for 

more comprehensive analysis of the impact of environmental conditions on the 

transfer of bacteria in feces to and die-off on pre-harvest produce 

Conclusion. Since it is highly improbable that a technology will be developed 

in the near future that can remove 100% of pathogens on fresh produce prior to 

consumption preventing produce contamination is critical for reducing food safety 
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risks associated with fresh produce consumption. The four studies included here 

further our understanding of the ecological processes that underpin the distribution, 

dispersal and persistence of foodborne pathogens in produce production environments. 

The information generated by these studies provides key data that can be used in the 

development of science-based strategies for preventing preharvest produce 

contamination. In fact, as part of the discussion in each study we identified potential 

intervention and control strategies that our data suggested may reduce the likelihood 

of preharvest produce contamination. Specifically, we identified strategies that 

growers can use to target produce safety risks for individual fields, individual parts of 

fields and individual plants. The types of targeted and adaptive strategies discussed in 

the four studies included here are key to ensuring fresh produce safety as these 

strategies will provide growers with the flexibility needed to deal with complex 

interactions that underpin pathogen dispersal, distribution, and persistence in produce 

production environments. 
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