"ENUMERATION OF THE ELEMENTARY
CIRCUITS OF A DIRECTED GRAPH

Robert Tarjan

TR 72-145

September 1972

Department of Computer Science
Cornell University
Ithaca, N.Y. 14850

" Enumeration of the Elementary

“ Circuits of a Directed Graph

Robert Tarjan

Computer Science Department
Cornell University

Abstract:

An algorithm to enumerate all the elementafy circuits
of a directed graph is presented. - The algorithm uses back-
tracking with lookahead to avoid unnecessary work, and it
has a time bound of O ((V + E) (C+1)) when applied to a graph

with V vertices, E edges, and C elementary circuits.

Kexgords: Algorithm, circuit, cycle, graph

Many applications.requiré the enumeration of a certain
set of objects associated with a given graph. In some cases
the number of;objects may grow exponentially with the number
of vertices in the graph; thus thére are no algorithms with
time time bounds polynomial in the size of the graph for solv-
ing such problems. Examples include enumerating the elemen-

-~ tary circuité, the spanning trees, or the cliques of a given
graph. However, it may be possible to find algorithms with
time bounds bolynomial'(and hopefully linear) in the number
of objects generated. Presented here is an algorithm for

-~enumerating elementary circuits in a graph.which is "good"
in this sense. _

A (directed) graph G=(@L€) consists of a set of vertices
ngnd.a set of ordered pairs of vertices £, called the edges
of G. If (v,w) is an edge of G, vertices v and w are said to
be adjacent. A path in a graph is a sequence of edges (vl,vz)
(vi'v3)"°(vh-1'vh) such tha? the terminal vertex of an edge
in the seqﬁ;hce is théMiniiiai Vértex of the next edge. A.path .

may be denoted by the sequence of vertices on it. An elemen-

tary path contains no vertex twice. An elementary circuit is
an elementary path with the exception thét'ifé first and last
;verticesAare identical. For simplicity we shall aséumé that
a gfaph contains no self-loops (edges of the form (v,v)) and
no multiple edges.- |

Wé wish to enumerate all the elementary circuits of a

given graph. Tiernan [2] presents an algorithm for accom-

2 e

plishing this. His algoiithm uses an essentially unconstrained
backtracking procedure which explores elementary paths of the
gréph and checks to see if they are cycles. If the vertices of
the graph afé numbered f;om 1 to Vv, the algorithm will generate
all elementary paths p=(v1,v2,...,vk) with v,<v, for all 2<ick,
by starting from some vertex vl,vchodsing an edge to traverse

to some vertex Vo>V and continuing in this way. Whenever no
néq vertex can be reéched, the procedure backs up one vertex
~and chooses_a different edge to traverse. If vy is adjacent to
Vi s the algorithm lists an elementary cycle (vl,vz,...vk,vl).
The algorithm enumerates each elementary cycle exactly once,
since each sﬁch cycle contains a unique smallest vertex vy and
thus corresponds to a unique elementary path with starting ver-
tex e However, the algorithm is not a "good" one, because it
e#plores many more elementary paths'than are necessary. Consi-
der the graph G in Figure 1. It contains 3n+l vertices, 5n edges,
and 2n elementaryléircuits° However, G contains 20 eleméntary
paths from vertex 1 to vertex 3n+l, all of which will be genera-
ted by Tiernan's algorithm. Thus the worst case time bound of
fthe algorithm is exponential in the number of elementary cir-

cuits, as well as exponential in the size of the graph.

Weinbiatt [3] gives an algorithm for finding elementary cir
cuits which is related to Tierman's, but which requires substanéA
tially more bookkeeping. Weinblaft uses a depth-first seafch to
exploreAthe graph. A general description of the depth-first

search technique appears in [1]. Given a graph G, we start from

some vertex and choose an edge to follow. This edge leads to a

new vertex. We continue in this way; at eaéh step we select

- an uhexpiofed edge leading from a vertex already reached and
we .traverse this edge. vThe edge leads to some verte#, either
_ new or already reached. Whenever we run out of edges leading
from pld vertices we choose some unreached vertex, if any, and
begin a new exploration from this point. Eventually we will
fréverse all the edges of G, each exactly once. (A backtrack-
ing procedure such as Tiernan's may traverse each edge of a
~gréph many times.) Such a process is called a search of G.
Suppose we use the following choice rule to select the next
edge to traverse: always choose an edge.emanating from the
~vertex most recently reached which still has unexplored edges.

A search which uses this rule is a depth—first‘search.

- A depth-first search is easy to program, pecause the set
of old vertices with possibly unexplored edges may be stored
on a stack. This sequence of vertices is an elementary path
from the initial vertex to the vertex currently being examined.
(Weinblétt calls it the TT, or.“trial thread".) Whenever we
traverse an edge leading to a vertex already on the stack, we
have found a new elementary circuit, corresponding to a sequence
of vertices on top of the stack. Whenever we traverse an edge
leading to an old vertex.which is not currently on the stack,
somé portion of the stack plus a sequence of subpaths from cir-
cuits already fbund may form a new elementéry'circuit. Weinblatt
ﬁses a recursive backtracking procedure to test combinations
of subpaths from old circuits to see if they give new circuits
in this way.

although Weinblatt's algorithm is offen much more efficient

than Tierman's, the recursive backtracking procedure requires ex-
ponential time in the worst case. For example, consider the
graph in Figure 2. It contains 3n+2 vertices, 5n+3 edges, and
2n+2 elementary circuits. Suppose we start Weinblatt's algorithm
by exploring the edge (0,1). Then the algorithm will generate
a11 circuits of the form (3i-2,3i+1,31,3i-2) and (3i-2, 3i+l,
3j-1, 3i-2) rapidly. Eventually the algorithm will traverse
edge (0,3n+l1) .. Then Weinblatt's recuréive procedure will at-
tempt to find an elementary path back to vertex 0 by combining
parts of old cycles.' The recursive backtracking will require

an exponential amount of time but will produce only one new

-5-
cycle; namely (0, 3n+l, 0). Thus Weinblatt's algorithm is not
"good" in the sense we desire.

However, it is possibie to construct a "good" algoiithm for .
the circuit enumeration problem. Such an algorithm uses a back-
tracking procedure restricted so that only fruitful paths are ex-
pPlored. The circuit enumeration algorithm is présented below in
Algol-like notation. The algoriﬁhm assumes that the vertices of
the graph are numbered from 1 to V, and that the graph is repre-
sented by a set of adjacency lists, one for each vertex. The
--adjacency list A(v) of vertex v contains all vertices w such that
(v,w) is an edge of the graph. The point stack used in the al-
gorithm dehotes the elementary path p currently being considered;
the elementary path has start vertex s. Every vertex v on such
a path must satisfy v>s. A vertex v is marked if it.is-on the
elementary path p or if every path leading from v to s intersects

p at a point other than s.

For each vertex s, the algorithm,génerates elementary paths
.which start at s and contain no vertex smaller than s. Once a
vertex v has been used in a path, it can only be used in a new
path when it has been deleted from the point stéck and when it
becomes unmarked. A'vertex v becomes unmarked when a path from
v to s which does not intersect the current elementary pat$ other
than at s is found. Whenever the last vertex on an elemen%ary

path is adjacént to the start vertex s, the elementary path cor-

responds to an elementary circuit which is enumerated.

o o -6 -

procedure circuit_enumeration;

begin

procedure BACKTRACK(integer value v, logical result f);

begin
logical g;
f:= false;
place v on point stack; -

mark(v) := true;
place v on marked stack;

for w€A(v) do

if w<s then delete w from A(v);
else if w=s then |
begin
output circuit from s to v to s éiven by point stack;
f:= true; |
end;

else if - mark (w) then

begin
BACKTRACK (w,q) ;
f:=f v g;

end;
comment f=true if an elementary circuit éontinuing the
- partial path on the stack has been found;

" if f=true then

“begin

while top of marked stack # v do

-begin
‘u:= top of marked stack;
delete u from marked stack;

.mark (u) := false;

end;

-7 -

delete v from marked stack;
mark (v) := false;
end;
delete v from point stack;
end;
integer n;

“ for i:=1 until v do mark(i):=false;

for s:=1 until v do

begin
. BACKTRACK (s, flaq) ;
while marked stack not empty do
begin '

u:= top of marked stack;

mark (u) := false;
delete u from marked stack;
end;

- end;

-end;

Lemma 1l: Let c = (vl,vz,...;vn,vl) be an elementary circuit
in a graph G. Consider applying BACKTRACK(vl) to G. For all

1<k<n, will be unmarked unless, for some j>k, vj is on the

Yk
stack.
Proof: Vertex v is unmarked unless it is on the stack, since
(Vn,vl) is an edge of the graph and an elementary circuit con-
taining v, will be found each time v is placed on the stack,
causing v to be unmarked whenever it is removed from the stack.
Let the Lemma be true for vi with i>k. Suppose v is

placed on the stack. If Vi is placed on top of some Vj’ j>k,
Vi will become unmarked before vj becomes unmarked (since

then
appears on top of vj in the marked stack). While vj is marked,

Yk
there is some vy with 2>3j on the stack by the induction hypoth-
esis, and sihce-&zjzk the Lemma holds for v, .

On the other hand if Vi is not placed on top of any Vj’ j>k,
thgn by the induction hypothesis all the Vj' j>k, are unmarked.
Thus when the edge (Vk'vk+l) is examined, Vit will beAunmarked
and will be added to the stack. Subsequently Vigor Viazreee1Vq
will be added to the stack and an elementary circuit containing
Vi will be found. Thus vy will be ﬁnmarked when it is removed

from the point stack and the Lemma holds for V) o By induction

the Lemma holds in general.
Lemma 2: The circuit enumeration algorithm lists each elementary
circuit of a given graph exactly once.

Proof: The starting vertex of any elementary path p generated

by the algorithm is the lowest numbered vertex in the path p.

-9 -

Since the algorithm generates an elementary path at most once,
andbsince an elementary circuit has only one lowest numbered
vertex, each elementary circuit is generated at mosf once.

Let c = (vl'VZ"'°’Vn'vl) be an elementary circuit. Con-
sidgr the application of BACKTRACK(vl) to a graph. If
(vl,...,vk) is on the point stack for any 1<k<n, then by Lemma 1
Vie+l must be unmarked.and Vit will be added to the point stack
on top of Vi when edge (Vk'vk+l) is examlned By lnductlon
(L rVgreserVy) will eventually be on the point stack, and the

N algorlthm will enumerate the circuit c. Thus each elementary

circuit is generated at least once.

Lemma 3: If G is a graph with V vertices and E edges, applying
the circuit enumeration algorithm to G requires O(V+E+S) spacé,
where S is the sum of the lengths of all the elementary circuits,
and O((V+E) (C+1)) time, where C is.the number of elementary. cir-

cuits.

Proof: The space bound is obvious; storage of the graph's adja-

cency lists requires O(V+E) space, storage for the algorithm's

' data structures requires Q(V)~space, and storage for the output
requires O(S) space. If we do not want to store ail the elemen-
tary circuits after they are generated the algorithm requires
only O(V+E) space,

The time bound follows from the oLservation that afte} a
vertex is marked, it cannot become unmarked until a new ci}cuit
is generated. Thus only O (V+E) time elapses between the génera—
tion of two circuits, and the total circuit generation time is

O((V+E) (C+1)). This bound is tight for the algorithm presented

here, as one may see by constructing suitable example graphs.

- 10 -

A "good" algorithm for the enuﬁeration of all the elemen-
tary‘circuits of a directed graph has been presented. The
algorithm is not only good in the sense that its theoretical
time and space bounds are polynomial (in fact, bilinear) in
the size of its input and output, but the algorithm is simple
to understand, easy to program, and superior to other algorithms
in the literature. The algorithm uses backtracking with look-
al&ad, an idea which is eésily adaptable to other enumeration
problems. It is an open gquestion whether a circuit enumeration
"algorithm exists whose time bound is linear in the size of its

input and output.

- 11 -

References:

{11 Tarjan, R., "Depth4first search and linear graph algorithms",

SIAM J. Comput., Vol. 1, No.2 (June, 1972), 146-160.

[2] Tiernan, J.C., "An efficient search algorithm to find the
elementary circuits of a graphj} CACM, Vol. 13, No. 12
(Dec., 1870), 722-726. |

[3] Weinblatt, H., "A new search algorithm for finding the

simple cycles of a finite direcfed graph," JACM, Vol 19,

No. 1 (Jan 1972), 43-56.

3n+1l

Figure 1l: An example showing the inefficiency of

Tiernan's algorithm.

Figure 2: An example showing the inefficiency of Weinblatt's

algorithm.

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif

