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Probabilistic models and surrogate solution are developed to characterize wind

loads acting on the structures and assess the corresponding structural responses

of linear systems, respectively. These developments can be regarded as essen-

tial building blocks in the prediction of structural reliability subject to extreme

wind. In this dissertation, we first review the commonly-used probabilistic

models in literature and benchmark these models on a test example to illus-

trate their properties and examine their advantages and disadvantages. It is

shown that the approximations based on these existing models on the extreme

estimates exhibit large discrepancies. A new probabilistic model is then pro-

posed to overcome this limitation. The model utilized Markov process whose

finite dimensional distribution is characterized in terms of copulas. Finally, an

efficient and accurate surrogate model is presented as an alternative to the tradi-

tional Monte Carlo method to evaluate the structural responses. The responses

are approximated by translation processes whose second-moment properties

and marginal distribution are obtained from linear random vibration theory

and moment equations. The statements in this dissertation are supported by

theoretical arguments and numerical examples.
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CHAPTER 1

INTRODUCTION

Performance-based engineering (PBE) is widely recognized as a rational ap-

proach to assess the risks of structures subject to natural hazards, both in the

design of new structures and in the rehabilitation of existing ones [7, 15]. The

objectives of PBE are to reduce casualty and minimize the structural damage

and functional disruption to acceptable degrees in the catastrophic events. Re-

liability, i.e., the probability that a structure performs according to design speci-

fications, is an essential ingredient of PBE that need to be determined. Reliabil-

ity estimates account for the uncertainties in loading, structural characteristics,

materials, load effects, and damages. In this dissertation, I focus on the PBE

framework for wind hazards, referred to as performance-based wind engineer-

ing (PBWE), and provide essential tools for its practical implementation.

Accurate prediction of structural behavior under extreme wind loads is a

prerequisite to estimate the reliability for PBWE. The assessment of structural

performance involves two steps: (1) the characterization of input wind loads

and (2) the evaluation of system responses to these input loads, as shown in

Fig. 1.1. Note that structural systems are assumed to be deterministic.

Figure 1.1: Analysis of structural behavior

Analytical methods, experimental tests, and computational fluid dynamics
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(CFD) are employed to characterize wind loads in Step 1. Analytical methods,

i.e., strip and quasi-static theories (see, e.g., [29]), provide a set of equations

which relates the wind loads to the wind velocities from quasi-static analysis.

With a suitable model on wind velocities, the spatial and temporal variations of

wind loads can be readily predicted. Nevertheless, since these theories do not

account for wind-structure interactions, the wind loads in the flow-separated

regions cannot be correctly characterized [35]. On the other hand, experimental

tests and CFD imitate in model scale the aerodynamic phenomena in the vicin-

ity of structures in the full-scale environment. The time series of aerodynamic

pressure acting on the structures are recorded through pressure taps. These

time-series records provide essential information concerning wind loads since

the effects of flow separation and vortex shedding have been taken into consid-

eration. However, cost limits these approaches so that the obtained records are

generally not sufficient to describe completely the probabilistic nature of wind

loads. Consequently, probabilistic models need to be further calibrated to these

pressure records in order to fully capture their uncertainties and extrapolate

their statistical properties.

Many probabilistic models have been developed in the past a few decades.

Gaussian models are the most commonly-used because of their mathematical

simplicity. However, these models are not consistent with the essential statisti-

cal features of wind loads. For example, the skewness and kurtosis are −2.8959

and 21.6948 for the wind-pressure time series in Fig. 1.2(a) obtained from the

experiment in Shimizu Corporation Laboratories (The skewness and kurtosis

of Gaussian distribution are 0 and 3) [37]. The measurements are taken on

the windward edge corner of a 0.1m×0.1m×0.5m rectangular building model.

Fig. 1.2(b) shows the histogram of the wind-pressure time series in Fig. 1.2(a).

2



The red solid line indicates the Gaussian density with corresponding mean and

variance with the time-series record.
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Figure 1.2: (a) time series of wind load and (b) its histogram

Attempts have been made to develop non-Gaussian models which are capa-

ble of matching the non-Gaussian features of the wind loads. The non-Gaussian

models can be categorized into two classes: (1) extensions of Gaussian models,

e.g., independent component analysis [30] and third-order spectral representa-

tion method (SRM) [51]; and (2) nonlinear transformation of Gaussian processes

such as polynomial chaos [49] and translation model [17]. A detailed descrip-

tion regarding their properties and limitations is presented in Section 2 and 3. A

common shortcoming of the aforementioned non-Gaussian models is that they

cannot provide accurate approximations on the extremes of wind loads which

are crucial for the reliability estimates in the PBWE framework.

The evaluation of the structural responses to the input wind loads is per-

formed in Step 2. This is commonly carried out by Monte Carlo simulation.

Large sets of sample wind loads are generated, structural responses are calcu-

lated for each wind-load sample, and statistical properties of responses such

as reliability are estimated subsequently. The primary advantage of the Monte

3



Carlo method is that it provides guaranteed convergence for the estimation of

any statistical property of the structural responses. Computational cost is the

only limitation of this method, especially for complex systems.

This dissertation addresses both steps of performance evaluation. The mod-

els and methods presented in the subsequent sections provide means to accu-

rately and efficiently predict the structural behavior. They can in turn be re-

garded as the essential building blocks of the PBWE framework. For Step 1,

we aim to provide a comprehensive review on commonly-used non-Gaussian

wind-load models and propose a novel non-Gaussian model to overcome the

limitations of the existing models. The proposed model adopts the Markov

assumption and its finite-dimensional distribution is characterized in terms of

copulas. We show that this model performs consistently and remarkably on

the extreme estimation of wind loads. Chapter 2 presents a new perspective on

independent component analysis (ICA), one of the non-Gaussian models. Its

applicability to non-Gaussian random vector and performance with respect to

the vector dimension are examined. In Chapter 3, a review on the remaining

aforementioned non-Gaussian models is provided following by the description

of the proposed non-Gaussian model. Their statistical properties are listed and

the accuracies are evaluated by a test case.

For Step 2, we present an alternative to the Monte Carlo simulation which

is accurate and efficient. The structural responses are approximated by transla-

tion processes whose second-moment properties and marginal distribution are

obtained from linear random vibration theory and moment equations, respec-

tively. The approach is presented in Chapter 4.

Finally, Chapter 5 contains the conclusions drawn from this study. The state-

4



ments in these chapters are supported by theoretical arguments and numerical

examples.
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CHAPTER 2

A NEW PERSPECTIVE ON INDEPENDENT COMPONENT ANALYSIS

2.1 Summary

We examine the performance of the independent component analysis(ICA)

which represents random vectors X by vectors X̃ whose components are lin-

ear forms of independent random variables. The representation holds exactly

or asymptotically in tails for Gaussian and non-Gaussian vectors with special

characteristic functions or Gaussian, translation, and non-Gaussian vectors with

independent tails. However, the distributions of X̃ and its target vector X dif-

fer for a board range of non-Gaussian vectors. This statement is supported by

numerical examples and theoretical arguments. It is also shown that the ICA

representation X̃ is approximately Gaussian for high dimensional vectors.

2.2 Introduction of ICA

Independent component analysis(ICA) is an useful tool in data processing and

has been used successfully in several fields, e.g., market forecast [1] and wind

engineering [5]. In ICA, a random vector is represented by a linear combination

of deterministic vectors with the same dimension, referred to as modes, modu-

lated by independent random variables. This representation has two benefits.

First, it provides an efficient algorithm for generating samples of dependent

random variables from samples of independent variables. Second, the modes

have various meaningful interpretations in different applications. For example,

6



the ICA modes for the wind-induced pressure field on bluff bodies have the

meaning of so-called coherent structures which reveal the flow behavior, detect

the recurrent appearances of pressure patterns, and provide the information of

vortex shedding in the neighborhood of the body [5].

Let X ∈ Rm be an m-dimensional random vector with covariance matrix Σ

and joint distribution F. It is assumed without loss of generality that X has mean

zero. The ICA represents X by X̃ which has the form

X ≈ X̃ = AS =
n∑
k=1

AkSk, (2.1)

where S = [S1, . . . , Sk, . . . , Sn]T is an n-dimensional vector with independent

components {Sk}(n ≤ m), and A = [A1, . . . , Ak, . . . , An] is anm×n deterministic

matrix, where the columns Ak ∈ Rm, k = 1, . . . , n, are modes [5].

We show that (1) it may not be possible to represent X by X̃ exactly, i.e.,

X d
= X̃ does not, generally, hold if {Sk} are independent, and (2) the discrepancy

between the target vector X and its ICA representation X̃ can be significant. We

only consider the case n = m. The construction of X̃ for this case involves three

steps. First, denote by L the Cholesky lower triangular matrix of known cor-

relation matrix Σ of X. Matrix L relates Σ through equation Σ = LLT , whose

entries {Ljk} can be calculated by [23, Sec. 5.2.1]

Ljk =

Σjk −
k−1∑
r=1

LjrLkr[
Σkk −

k−1∑
r=1

L2
kr

]1/2
, 1 ≤ k ≤ j ≤ m, with

0∑
r=1

LjrLkr = 0, (2.2)

where {Σjk} are the components of Σ. Second, set A = LΛ, where Λ is an

arbitrary orthogonal matrix [9]. Note that E[X̃] = E[X] = 0 and

E[X̃X̃
T

] = E
[
ASSTAT

]
= LΛE

[
SST

]
ΛTLT

= LΛΛTLT = LLT = Σ = E[XXT ], ∀ Λ, (2.3)

7



provided E[S] = 0 and E
[
SST

]
= I, in which 0 is a zero vector and I is the

identity matrix. Third, we use a metric to quantify the degree of dependence

among the components of S = ΛTL−1X to find an optimal Λ, e.g., the metric

d(S) = |
m∑
k=1

H(Sk) − H(S)|, where H(Sk) and H(S) are entropies defined by

H(Sk) = −
∫
fSk log fSkdsk and H(S) = −

∫
fS log fSds1 . . . dsm, respectively, in

which fSk and fS are marginal and joint densities of S [8, 30]. Note that d(S) = 0

iff S has independent components. Alternative metrics can be found in [43, 4,

57].

The remaining chapter has two parts. The first part presents cases in which

the ICA representation X̃ fully or partially characterizes X. The second part

provides several examples in which X̃ and X differ and examines the accuracy

of X̃ for low and high dimensional vectors.

2.3 Exact ICA representation

We present two classes of random vectors that admit the representation in

Eq. 2.1, Gaussian vectors and non-Gaussian vectors whose characteristic func-

tions satisfy some conditions, and a class of non-Gaussian vectors for which

Eq. 2.1 holds asymptotically in tails.

2.3.1 Gaussian vectors

If X ∈ Rm is an m-dimensional Gaussian random vector with mean zero and

correlation matrix Σ, then

X d
= X̃ = LS, (2.4)

8



where L is the Cholesky lower triangular matrix of Σ and {Sk}, the components

of S, are independent and identically standard Gaussian variables. The proof of

the validity of Eq. 2.4 can be found in [48, Sec. 3.5.3].

2.3.2 Non-Gaussian vectors

The distributions of X̃ and X are identical iff there exists an A such that the

characteristic function of X satisfies the following condition

ϕX(WTv) = E
[
exp{ivTWX}

]
=

m∏
k=1

E [exp{ivkSk}] =
m∏
k=1

E

[
exp{i

m∑
j=1

WkjvkXj}
]

=
m∏
k=1

ϕX(Wk1vk, . . . ,Wkjvk, . . . ,Wkmvk), (2.5)

where {Sk}, {Xj}, and {Wkj} are components of S, X, and W = A−1, respec-

tively. This follows from the definition of X̃ and the property of characteristic

functions for independent random variables.

It is possible to satisfy the condition in Eq. 2.5. For example, Eq. 2.5 becomes

ϕX(W11v1 +W21v2,W12v1 +W22v2) = ϕX(W11v1,W12v1)ϕX(W21v2,W22v2) (2.6)

for m = 2 and holds for a bivariate uniform vector X = [X1, X2]T with probabil-

ity density as shown in Fig. 2.1. The density and characteristic function of X in

this figure are

f(x1, x2) =


1
4
, for x1, x2 ∈ Au1.

0, otherwise.
(2.7)

and ϕ(v1, v2) =
2 [cos(v1)− cos(2v2)]

4v2
2 − v2

1

, (2.8)

respectively. Note that Eq. 2.6 holds when W11 = 2W12 and W21 = 2W22 so that

there exists such a matrix A that X̃ d
= X.

9
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Figure 2.1: PDF of bivariate uniform distribution

2.3.3 Vectors with asymptotically independent components

Consider a special case of X̃ by setting A = I. Then, Eq. 2.1 becomes

X̃ d
= S, (2.9)

where S has independent components {Sj}which satisfy the condition Sj
d
= Xj ,

and so does X̃. Denote by X̃j, j = 1, . . . ,m, the components of X̃. We show that

X̃ and X have similar tails , i.e.,

lim
x1,...,xm→∞

[
P
( m⋂
j=1

{Xj ≤ xj}
)
−

m∏
j=1

P
(
X̃j ≤ xj

)]
= 0, (2.10)

if X is Gaussian or translation with dependent components, and if X is a non-

Gaussian, non-translation vector with independent tails.

Gaussian vectors

Suppose X is a standard Gaussian random vector. The proof of Eq. 2.10 follows

from (1) the fact that Xj and X̃j have the same distributions, i.e., Xj
d
= X̃j, j =

1, . . . ,m, (2) Corollary to the Normal Comparison Lemma which states that [40,

10



Corollary 2.1]∣∣∣∣P (
m⋂
j=1

{Xj ≤ xj})−
m∏
j=1

P (Xj ≤ xj)

∣∣∣∣ ≤ 1

4

∑
1≤r<t≤m

|ρrt| exp

[
− x2

r + x2
t

2(1 + |ρrt|)

]
, (2.11)

where ρrt is the covariance between Xr and Xt, and (3) the observation that the

upper bound in Eq. 2.11 approaches zero as x1, . . . , xm →∞.

Consider for illustration a bivariate Gaussian vector with mean zero and

correlation matrix Σ. The components of Σ are Σ11 = Σ22 = 1 and Σ12 = Σ21 =

0.5. Fig. 2.2 shows the probabilities 1 − P (X1 ≤ x,X2 ≤ x) and 1 − P (X̃1 ≤

x)P (X̃2 ≤ x). It can be seen that P (X1 ≤ x,X2 ≤ x) ≈ P (X̃1 ≤ x)P (X̃2 ≤ x) for

sufficiently large x.
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Figure 2.2: Plots of 1 − P (X1 ≤ x,X2 ≤ x) and 1 − P (X̃1 ≤ x)P (X̃2 ≤ x) for
bivariate standard Gaussian vector with ρ = 0.5: linear (a) and logarithmic (b)
scales

Translation vectors

Let Xj = hj(Gj), j = 1, . . . ,m, denote the components of a translation vector,

where {Gj} are correlated standard Gaussian variables and hj = F−1
j ◦Φ are gen-

erally nonlinear functions, in which Fj and Φ denote the distribution of Xj and

standard Gaussian distribution, respectively [17, Sec. 3.1]. Note that Eq. 2.10
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can be written as

lim
u1,...,um→1

[
P
( m⋂
j=1

{Xj ≤ F−1
j (uj)}

)
−

m∏
j=1

uj

]
= 0, (2.12)

since P (X̃j ≤ F−1
j (uj)) = uj , j = 1, . . . ,m.

The limit in Eq. 2.12 holds by the definition of translation vectors and the

property of Gaussian vectors. We have

lim
u1,...,um→1

P
( m⋂
j=1

{Xj ≤ F−1
j (uj)}

)
= lim

u1,...,um→1
P
( m⋂
j=1

{F−1
j (Φ(Gj)) ≤ F−1

j (uj)}
)

= lim
u1,...,um→1

P
( m⋂
j=1

{Gj ≤ Φ−1(uj)}
)

= lim
u1,...,um→1

m∏
j=1

uj. (2.13)

The above property can be illustrated by Fig. 2.3 which shows 1 − P (X1 ≤

x,X2 ≤ x) and 1 − P (X̃1 ≤ x)P (X̃2 ≤ x) for a bivariate translation vector with

standard exponential marginal distributions F1(x) = F2(x) = 1 − exp(−x). The

probabilities P (X1 ≤ x,X2 ≤ x) and P (X̃1 ≤ x)P (X̃2 ≤ x) match in the tail

region.

Non-Gaussian, non-translation vectors with independent tails

Consider a bivariate random vector X with components X1 and X2 with distri-

butions F1 and F2, respectively. Define by λu = P (X2 > F−1
2 (u)|X1 > F−1

1 (u))

the upper tail dependence coefficient. If

lim
u→1

λu = 0, (2.14)

then we say that X is upper tail independent [33, Sec. 2.1.10]. We show that

this definition implies that P (X1 ≤ F−1
1 (u), X2 ≤ F−1

2 (u)) approaches P (X1 ≤

12
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Figure 2.3: Plots of 1 − P (X1 ≤ x,X2 ≤ x) and 1 − P (X̃1 ≤ x)P (X̃2 ≤ x) for
bivariate translation vector with F1(x) = F2(x) = 1 − exp(−x): linear (a) and
logarithmic (b) scales

F−1
1 (u))P (X2 ≤ F−1

2 (u)) for u arbitrarily close to 1, in other words, Eq. 2.14 is a

sufficient condition for

lim
u→1

[
P (X1 ≤ F−1

1 (u), X2 ≤ F−1
2 (u))− u2

]
= 0. (2.15)

If Eq. 2.14 holds, then

0 = lim
u→1

P (X1 > F−1
1 (u), X2 > F−1

2 (u))

P (X1 > F−1
1 (u))

= lim
u→1

1− P (X1 ≤ F−1
1 (u))− P (X2 ≤ F−1

2 (u)) + P (X1 ≤ F−1
1 (u), X2 ≤ F−1

2 (u))

1− P (X1 ≤ F−1
1 (u))

= lim
u→1

1− 2u+ P (X1 ≤ F−1
1 (u), X2 ≤ F−1

2 (u))

1− u
= 2− lim

u→1

P (X1 ≤ F−1
1 (u), X2 ≤ F−1

2 (u))− 1

u− 1
×

lim
u→1

log u

logP (X1 ≤ F−1
1 (u), X2 ≤ F−1

2 (u))

logP (X1 ≤ F−1
1 (u), X2 ≤ F−1

2 (u))

log u

= 2− lim
u→1

logP (X1 ≤ F−1
1 (u), X2 ≤ F−1

2 (u))

log u
(2.16)

Let f(u) denote log u/ logP (X1 ≤ F−1
1 (u), X2 ≤ F−1

2 (u)). Note that Eq. 2.16

holds since

lim
u→1

f(u) = lim
u→1

P (X1 ≤ F−1
1 (u), X2 ≤ F−1

2 (u))

u d
du
P (X1 ≤ F−1

1 (u), X2 ≤ F−1
2 (u))

=
1

2
<∞. (2.17)
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Then, by multiplying limu→1 log u on both sides of Eq. 2.16, we have

0 = lim
u→1

logP (X1 ≤ F−1
1 (u), X2 ≤ F−1

2 (u))

log u
lim
u→1

log u− 2 lim
u→1

log u

= lim
u→1

[
P (X1 ≤ F−1

1 (u), X2 ≤ F−1
2 (u))− u2

]
. (2.18)

On the other hand, Eq. 2.15 does not imply Eq. 2.14. One counterexample is

a bivariate vector with distribution

F (x1, x2) = exp
{
−
[
x
− 1
θ

1 + x
− 1
θ

2

]θ }
x1, x2 ≥ 0, θ ∈ (0, 1]. (2.19)

This distribution satisfies Eq. 2.15 but λu = 2− 2θ 6= 0 if θ 6= 1.
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Figure 2.4: Plots of 1 − P (X1 ≤ x,X2 ≤ x) and 1 − P (X̃1 ≤ x)P (X̃2 ≤ x) for
bivariate Gumbel distribution with α = 0.5: linear (a) and logarithmic (b) scales

An example for upper tail independent random vector is a bivariate Gumbel

vector with joint and marginal distributions of X1 and X2 defined by [38, Sec.

2.2]

F (x1, x2) = (1− exp(−x1))(1− exp(−x2))(1 + α exp(−x1 − x2))

x1, x2 ≥ 0, α ∈ [−1, 1] , (2.20)
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and

Fj(xj) = 1− exp(−xj), j = 1, 2, (2.21)

respectively. Note that this is not a translation vector since f(x1, x2)
2∏
j=1

φ(gj)/f(xj)

does not admit the form of Gaussian joint density with arguments gj, j = 1, 2,

where gj = Φ−1(Fj(xj)), φ is standard Gaussian density, and f(x1, x2) and

f(xj), j = 1, 2, denote the joint and marginal densities of X1 and X2, respec-

tively. Fig. 2.4 shows the probabilities 1 − P (X1 ≤ x,X2 ≤ x) and 1 − P (X̃1 ≤

x)P (X̃2 ≤ x) with α = 0.5. It can be seen that P (X1 ≤ x,X2 ≤ x) ≈ P (X̃1 ≤

x)P (X̃2 ≤ x) in the tail region which supports Eq. 2.15.

2.4 Approximate ICA representation

We give examples of low dimensional non-Gaussian vectors for which the ICA

representation does not hold, and examine the accuracy of X̃ for this case. We

also show that the ICA representation X̃ for arbitrary high dimensional non-

Gaussian vectors is approximately Gaussian.

2.4.1 Low dimensional vectors

There are numerous non-Gaussian vectors that do not admit the ICA represen-

tation. We give one example to support this statement. The components X1

and X2 of X have joint density f(x1, x2) = (2π)−1(1 + x2
1 + x2

2)−
3
2 , which is

known as the circular bivariate Cauchy distribution. The characteristic func-

tion of X is ϕX(v1, v2) = exp{−(v2
1 + v2

2)
1
2} [12]. The equality of Eq. 2.6 holds

iff W11W22 + W12W21 = 0 which indicates the singularity of matrix W = A−1.

15



Therefore, matrix A does not exist in this example.

Figure 2.5: Joint densities of target vector X (a) and the ICA representation X̃ (b)
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Figure 2.6: Plots of 1 − P (X1 ≤ x,X2 ≤ x) and 1 − P (X̃1 ≤ x, X̃2 ≤ x) of X
and X̃ for bivariate translation vectors with Gamma marginals: linear (a) and
logarithmic (b) scales

Moreover, two examples are provided to reveal the performance of X̃ for low

dimensional vectors. The ICA representation X̃ may be a satisfactory approxi-

mation of X. The example for illustration is a bivariate translation vector with

components Xj = F−1
j (Φ(Gj)), j = 1, 2, where {G1, G2} are correlated standard

Gaussian variables with correlation coefficient ρ = 0.5, and F1 = F2 are Gamma

distribution with shape coefficient k = 2 and scale coefficient θ = 2. The joint

density of X̃ almost coincides with that of target vector X, as shown in Fig. 2.5.

Fig. 2.6 shows the probabilities 1−P (X1 ≤ x,X2 ≤ x) and 1−P (X̃1 ≤ x, X̃2 ≤ x).
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The differences of two lines are almost indistinguishable at the figure scale. Sup-

pose now X = [X1, X2]T is a bivariate zero-mean T-distributed random vector

with density

f(x1, x2) =
Γ [ν/2 + 1]

Γ(ν/2)νπ
√
|Σ| [1 + xTΣ−1x/ν]ν/2+1

=
1

2π
√
|Σ| [1 + xTΣ−1x/ν]ν/2+1

,

(2.22)

where x = [x1, x2]T , ν > 2 is the degree of freedom, Γ denotes Gamma function,

and Σ is the correlation matrix. Consider the special case where the compo-

nents of correlation matrix Σij = δij , in which δij indicates the Kronecker delta

function. Then, equation S = ΛTL−1X takes the form

S1 =
1

a
cosψX1 +

1

a
sinψX2,

S2 = −1

a
sinψX1 +

1

a
cosψX2, (2.23)

where a =
√
ν/(ν − 2) and Λ has columns [cosψ, sinψ]T and [− sinψ, cosψ]T .

The joint density of S, denoted by fS(s1, s2), has the expression

fS(s1, s2) = f(a cosψs1 − a sinψs2, a sinψs1 + a cosψs2)

=
1

2π

[
1 + a2(s2

1 + s2
2)/ν

]−(ν/2+1)
. (2.24)

We can see that fS(s1, s2) is irrespective of the direction ψ which implies that

there is no theoretical optimal Λ. However, optimal Λ results if the information

of X consists of a finite number of samples. Figs. 2.7 and 2.8 show the joint

densities of X and X̃ and the probabilities 1−P (X1 ≤ x,X2 ≤ x) and 1−P (X̃1 ≤

x, X̃2 ≤ x) for ν = 5 from 100000 samples. The differences in the tail region are

large.
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Figure 2.7: Joint densities of target vector X (a) and the ICA representation X̃ (b)
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Figure 2.8: Plots of 1 − P (X1 ≤ x,X2 ≤ x) and 1 − P (X̃1 ≤ x, X̃2 ≤ x) of X and
X̃ for bivariate T-distributed vectors: linear (a) and logarithmic (b) scales

2.4.2 High dimensional vectors

The ICA representation X̃ performs poorly for high dimensional vectors. We

prove this statement by using the Lindeberg-Feller Central Limit Theorem that

is stated here for convenience.

Suppose {Sk, k = 1, . . . , n} is a set of independent random variables with

mean zero, variances σ2
k = E[S2

k ], and distributions F S
k . Set w2

n =
n∑
k=1

σ2
k and

Wn = S1 + · · · + Sn. We say that {Sk} satisfies the Lindeberg-Feller condition if

18



we have

1

w2
n

n∑
k=1

E
[
S2
k 1(|Sk/wn|>ξ)

]
=

1

w2
n

n∑
k=1

∫
|sk|>ξ wn

s2
k F

S
k (dsk)→ 0, as n→∞, ∀ξ > 0.

(2.25)

This condition means that most of the probability mass of Sk is in an interval

about the mean and this interval is small relative to wn. The Lindeberg-Feller

Central Limit Theorem states that the Lindeberg-Feller condition impliesWn/wn

converges in distribution to N(0, 1) as n → ∞, where N(0, 1) denotes the stan-

dard Gaussian random variable [47, Sec. 9.8].

Recall the ICA representation in Eq. 2.1, i.e., X̃ = AS, where S is a n-

dimensional random vector with independent components {Sk} of mean zero

and finite variances, X̃ is a Rm-valued random vector, and A is the m× n trans-

formation matrix with components {Ajk}. Note that we do not restrict X̃ and S

to have the same dimension, i.e., m = n, in this proof. Set

Wn =
m∑
j=1

βjX̃j =
m∑
j=1

n∑
k=1

AjkβjSk =
n∑
k=1

[
m∑
j=1

Ajkβj

]
Sk =

n∑
k=1

Yk, (2.26)

where Yk =

[
m∑
j=1

Ajkβj

]
Sk and {βj} are arbitrary constants. The random vari-

ables {Yk} have finite variances provided E[S2
k ] < ∞. Since {Sk} are indepen-

dent and the distributions are assumed to satisfy the Lindeberg-Feller condition,

so are {Yk}. Accordingly, Wn/wn → N(0, 1) in distribution as n → ∞ with the

notation wn =
n∑
k=1

E[Y 2
k ], and since {βj} are arbitrary, X̃ becomes a Gaussian vec-

tor as n increases indefinitely. Denote the characteristic functions of Wn and X̃

by ϕW (t) and ϕX̃(v), respectively. The above statement can be proved based on

(1) the equivalence of ϕW (t) and ϕX̃(v), i.e.,

ϕW (t) = E [exp (iWnt)] = E

[
exp {i(

m∑
j=1

βjX̃j)t}
]

= E

[
exp {i(

m∑
j=1

vjX̃j)}
]

= ϕX̃(v),

(2.27)
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with the notation vj = βjt, and (2) the fact that ϕW (t) converges to Gaussian

characteristic function as n→∞. Hence, X̃ is approximately Gaussian for suffi-

ciently large n.
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Figure 2.9: Marginal distributions of X, X̃, and multivariate Gaussian distribu-
tion with dimensions: n = 20 (a) and n = 40 (b)

The above theoretical arguments can be illustrated by a numerical example.

Consider a T-distributed random vector with five degrees-of-freedom. Fig. 2.9

shows the marginal distributions of X, X̃, and multivariate Gaussian distribu-

tion with dimensions n = 20 and n = 40. It can be seen that the distribution of

X̃ tends to be Gaussian for large n.

Generally, the dimension of X is larger than that of S, i.e., n < m. Yet, if the

ratio of these dimensions is kept constant, we note that n → ∞ as m → ∞ so

that the previous statement applies.

2.5 Chapter summary

We have provided a critical evaluation of the performance of the independent

component analysis (ICA). In ICA, random vectors X are characterized by vec-

20



tors X̃ which are defined by the summations of deterministic vectors with the

same dimension, multiplied by independent random variables. We have shown

that (1) X̃ and X have the same distribution if X follows Gaussian and non-

Gaussian probability laws of which the characteristic functions satisfy some

conditions; and (2) X̃ can represent X in tails if X is non-Gaussian with inde-

pendent tails.

However, the representation X̃ does not, generally, hold for non-Gaussian X.

The validity of this statement and the accuracy of X̃ have been illustrated by sev-

eral numerical examples for low dimensional non-Gaussian vectors. Moreover,

Lindeberg-Feller Central Limit Theorem shows that X̃ is approximately Gaus-

sian for high dimensional non-Gaussian vectors. It was concluded that ICA is

an useful tool which provides exact representation or satisfactory approxima-

tion for some cases, but it needs to be used with great caution for the others.
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CHAPTER 3

REVIEW OF NON-GAUSSIAN MODELS AND COPULA-BASED

MARKOV MODEL

3.1 Summary

A probabilistic model is developed for stochastic processes that have been

widely applied in engineering mechanics. We review the other three commonly-

used models introduced in introduction and benchmark these models on a test

example to illustrate their properties and examine their advantages and disad-

vantages. It is shown that the approximations based on these existing models

on the metric of distribution of extreme exhibit large discrepancies. We propose

a new probabilistic model to overcome this limitation. The model utilizes mth-

order Markov process whose finite dimensional distribution is characterized in

terms of copulas. The parameters of the copulas are selected such that the errors

on the linear combinations of quantities of interest are minimized. Theoretical

arguments and numerical examples are provided to demonstrate the properties

of the model. The model is then applied to the wind pressure process obtained

from the wind tunnel experiment to illustrate its practical use.

3.2 Introduction of models for stochastic processes

Stochastic processes Q(t) abound in engineering mechanics. For example, they

can represent wind loads on the buildings, wave forces on the offshore plat-

forms, and seismic ground accelerations on the structural foundations. Statis-
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tical analysis of the system responses subjected to these actions is commonly

carried out in the context of Monte Carlo simulation where a large number of

sample processes are generated, the system governing equations are solved for

each sample process, and the outputs are evaluated statistically. However, the

number of available records of these stochastic processes Q(t) is generally in-

sufficient to perform such analysis. Models Q̃(t), which approximate the proba-

bility law of Q(t) to an acceptable degree, need to be used to characterize these

stochastic processes beyond their records.

Many probabilistic models have been developed in the past few decades.

The most commonly-used models are the Karhunen-Loéve and spectral repre-

sentations. Suppose that the stochastic process Q(t) has mean zero and finite

correlation function r(τ) = E[Q(t + τ)Q(t)], Karhunen-Loéve representation

Q̃KL
m (t) approximates Q(t) by [24](p. 161)

Q(t) ≈ Q̃KL
m (t) =

m∑
k=1

φk(t)Zk, t ∈ D, (3.1)

where m is the truncation level, D is a bounded time interval, {Zk} are uncorre-

lated random variables with means zero and variances {λk}, and {λk, φk(t)} are

eigenvalues and eigenfunctions of r(τ). Under the further assumption that Q(t)

is stationary, the spectral representation Q̃SR
m (t) has the expression

Q(t) ≈ Q̃SR
m (t) =

m∑
k=1

[cos(ωkt)∆uk + sin(ωkt)∆vk], t ∈ D, (3.2)

where {ωk,∆ωk} are partitions of non-negative frequencies ω, S(ω) is the two-

sided spectral density of Q(t), and the orthogonal increments ∆uk := Xk and

∆vk := Yk can be considered as independent Gaussian random variables with

means zero and variances 2S(ωk)∆ωk. An alternative form of spectral repre-

sentation defines the orthogonal increments ∆uk := 2
√
S(ωk)∆ωk cos(ψk) and
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∆vk := 2
√
S(ωk)∆ωk sin(ψk), where {ψk} are independent uniform random vari-

ables in the range [0, 2π]. The properties and differences of these two forms of

spectral representations are presented in [20].

The aforementioned models have the second-order nature, that is, they are

constructed to represent the stochastic process Q(t) up to the second moments,

unless Q(t) is Gaussian-distributed. However, the Gaussian assumption is not

realistic in practical applications. For example, wind velocities and wind pres-

sures in the flow separated region have been shown to follow distributions

which are clearly non-Gaussian [36]. Attempts have been made to develop non-

Gaussian models so that information onQ(t) can be captured beyond the second

moments. A direct extension of Karhunen-Loéve representation is provided in

[46], wherein the basis functions {φk(t)} in Eq. 3.1 remain the eigenfunctions

of correlation function r(τ) and the samples of Zk, k = 1, . . . ,m, are iteratively

updated so that the marginal distribution of the model Q̃KL
m (t) converges to that

of Q(t). However, such convergence is not guaranteed and the marginal dis-

tribution of Q̃KL
m (t) generally does not match the marginal distribution of Q(t)

exactly. The spectral representation method is generalized in [51], referred to

as the third-order spectral representation method (SRM). The orthogonal incre-

ments ∆uk and ∆vk are required to satisfy the additional third-order orthogo-

nality conditions. As a consequence, the resulting representation matches the

prescribed third-order cumulant function. Nonetheless, this representation is

not able to capture the marginal distribution of Q(t) and cannot distinguish be-

tween processes that are equal in the third moment sense, as illustrated in the

numerical example.

Aside from these direct extensions, nonlinear transformations of standard
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Gaussian process are another class of non-Gaussian models. Two types of mod-

els are considered here. The first model utilizes the polynomial chaos represen-

tation which represents the process Q(t) in terms of the Hermite polynomials

of standard Gaussian process with deterministic coefficients [49]. The repre-

sentation is truncated such that the resulting approximation is accurate to an

acceptable degree and can be constructed within the computational budget. It

can be shown that polynomial chaos approximation converges to Q(t) in the

mean square sense and in finite dimensional distribution. However, limitations

of such approximation are explored in [14, 13]. For example, higher-order mo-

ments of the approximation may diverge as the truncation level increases. The

second type is the translation model which constitutes the mapping between the

target process Q(t) and standard Gaussian process by using the marginal distri-

bution of Q(t) [18]. The translation model is capable of matching the marginal

distribution and the correlation function of Q(t) if they are consistent with each

other. Recent developments of algorithms have enabled the efficient use of this

model for simulation.

In this work, a comprehensive review of the aforementioned non-Gaussian

models is provided. The detailed properties of these models are listed and their

accuracies are examined by numerical example. The metric of the distribution

of extreme, i.e., Fmax(q) = P (max
t∈D

Q(t) ≤ q), is of particular interest since it is

crucial for reliability analysis in the practical applications. It is shown that the

translation model provides the best approximation on the distribution of ex-

treme. Its performance is superior if the dependence between simultaneously

large values of Q(t) at different time points is weak. Yet, when such depen-

dence is strong, the translation model performs poorly. To address this issue, we

propose a new non-Gaussian model that is based on the higher-order Markov
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process. The finite dimensional distributions of the Markov process are char-

acterized in terms of copulas whose parameters are selected by optimization

algorithms such that the resulting model fits best the specified quantities of in-

terest. This model can be viewed as the extension of the works in [10, 6, 31].

Theoretical arguments and numerical examples are presented to show that the

model matches the marginal distribution of the target process Q(t) and is flex-

ible enough to approximate satisfactorily the combinations of the quantities of

interest, including the distribution of extreme. We also apply this model to the

simulation of a wind pressure process obtained from the wind tunnel experi-

ment to illustrate its practical use.

The outline of the remaining sections is as follows. In section 3.3, we provide

the review of the non-Gaussian models. Section 3.4 describes the construction

of the copula-based Markov model and the algorithm of model calibration. The

numerical examples are in section 3.5.

3.3 Review of non-Gaussian models for stochastic processes

Let Q(t), t ∈ [0, τ ∗], denote a R-valued zero-mean stationary process, where

[0, τ ∗] is a bounded time interval. Three types of non-Gaussian models for Q(t),

namely third-order spectral representation method (SRM), polynomial chaos,

and translation model, are of interest. The constructions and properties of these

models are summarized in this section. Note that the higher-order extension

of Karhunen-Loéve representation in [46] is not considered in this work as its

properties are analogous to those of the translation model. The connection and

comparison between these two models can be found in [39].
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3.3.1 Third-order SRM

Third-order SRM is first introduced in [51] and has been successfully applied to

various stochastic processes. Suppose that stochastic process Q(t) can be par-

tially specified by the correlation function r(τ) = E[Q(t + τ)Q(t)] with two-

sided spectral density S(ω) =
∫
R r(τ) exp(−iωτ)dτ/2π, and the third-order cu-

mulant function c(τ1, τ2) = E[Q(t)Q(t+τ1)Q(t+τ2)] with bispectrumB(ω1, ω2) =∫∫
R2 c(τ1, τ2) exp[−i(ω1τ1 + ω2τ2)]dτ1dτ2/4π

2. It is further assumed that S(ω)

only have values in [−ω∗, ω∗] and B(ω1, ω2) in the first quadrant is bounded

by [0, ω∗] × [0, ω∗], 0 < ω∗ < ∞, respectively. Denote by {ωk, k = 1, . . . ,m}

an even partition of the interval [0, ω∗], where 0 < ω1 < · · · < ωm = ω∗,

with ∆ω1 = (ω1 + ω2)/2, ∆ωk = (ωk+1 − ωk−1)/2, k = 2, . . . ,m − 1, and

∆ωm = (ωm − ωm−1)/2. The third-order SRM has the form

Q̃SR
m (t) =

m∑
k=1

{
2
√
Sp(ωk)∆ωk cos(ωkt− ψk)

+

ωi≥ωj>0∑
ωi+ωj=ωk

2
√
S(ωk)∆ωkb2

p(ωi, ωj) cos[ωkt− (ψi + ψj + β(ωi, ωj))]
}
, (3.3)

where {ψk, k = 1, . . . ,m} are independently uniformly distributed random vari-

ables in the range [0, 2π], β(ωi, ωj) = arctan[=(B(ωi, ωj))/<(B(ωi, ωj))] is the

phase of the bispectrum, in which =(B(ωi, ωj)), <(B(ωi, ωj)) denote the imagi-

nary and real parts ofB(ωi, ωj), and b2
p(ωi, ωj) and Sp(ωk) are the so-called partial

bicoherence and pure-power spectrum which have the expressions

b2
p(ωi, ωj) =

|B(ωi, ωj)|2∆ωi∆ωj
Sp(ωi)Sp(ωj)S(ωi + ωj)∆(ωi + ωj)

, (3.4)

Sp(ωk) = S(ωk)[1−
ωi≥ωj>0∑
ωi+ωj=ωk

b2
p(ωi, ωj)]. (3.5)

Partial bicoherence and pure-power spectrum correspond to the contributions

of wave interactions and waves with single frequencies. Detailed descriptions

27



on these two quantities can be found in [51](p. 4). It is also worth noting that a

first glimpse of Eqs. 3.4 and 3.5 seems to suggest that b2
p(ωi, ωj) must be obtained

in order to calculate Sp(ωk) and vice versa. However, they can be constructed

together in a term-by-term fashion, starting to calculate Sp(ω1), b2
p(ω1, ω1), Sp(ω2)

and so on. We now investigate the properties of this model which are first

proved in [51]. We present the alternative proofs here.

Property 1: Q̃SR
m (t) has mean zero.

This property follows readily from taking expectation on both sides of Eq. 3.3,

i.e.,

E[Q̃SR
m (t)] =

m∑
k=1

{
2
√
Sp(ωk)∆ωkE[cos(ωkt− ψk)]

+

ωi≥ωj>0∑
ωi+ωj=ωk

2
√
S(ωk)∆ωkb2

p(ωi, ωj)E[cos(ωkt− (ψi + ψj + β(ωi, ωj)))]
}
. (3.6)

Since E[cos(ωkt−ψk)] = 0 and E[cos(ωkt− (ψi +ψj + β(ωi, ωj)))] = 0, ∀ψk, ψi, ψj ,

i, j, k = 1, . . . ,m, we have E[Q̃SR
m (t)] = 0.

Property 2: Q̃SR
m (t) converges to Q(t) in the second and the third moment

sense as m→∞.

The proof of the second-moment convergence is from the fact that

E[Q̃SR
m (t+ τ)Q̃SR

m (t)]

=
m∑
k=1

m∑
l=1

4
√
Sp(ωk)Sl(ωl)∆ωk∆ωlE[cos(ωk(t+ τ)− ψk) cos(ωlt− ψl)]

+
m∑
k=1

m∑
l=1

ωi≥ωj>0∑
ωi+ωj=ωk

ω′i≥ω′j>0∑
ω′i+ω

′
j=ωl

4
√
S(ωk)∆ωkb2

p(ωi, ωj)S(ωl)∆ωlb2
p(ω

′
i, ω
′
j)

E[cos(ωk(t+ τ)− (ψi + ψj + β(ωi, ωj))) cos(ωlt− (ψ′i + ψ′j + β(ω′i, ω
′
j)))]. (3.7)
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Note that the first term is non-zero only if k = l, i.e.,
m∑
k=1

m∑
l=1

4
√
Sp(ωk)Sl(ωl)∆ωk∆ωlE[cos(ωk(t+ τ)− ψk) cos(ωlt− ψl)]

=
m∑
k=1

4Sp(ωk)∆ωkE[cos(ωk(t+ τ)− ψk) cos(ωkt− ψk)]

=
m∑
k=1

2Sp(ωk)∆ωk cos(ωkτ). (3.8)

In the second term, the non-zero expectations arise when k = l, i = i′, and j = j′.

The second term then becomes
m∑
k=1

ωi≥ωj>0∑
ωi+ωj=ωk

2S(ωk)∆ωkb
2
p(ωi, ωj) cos(ωkτ)

=
m∑
k=1

2S(ωk)∆ωk cos(ωkτ)

ωi≥ωj>0∑
ωi+ωj=ωk

b2
p(ωi, ωj). (3.9)

From the definition of Sp(ωk), we have

E[Q̃SR
m (t+ τ)Q̃SR

m (t)] =
m∑
k=1

2Sp(ωk)∆ωk cos(ωkτ)

+
m∑
k=1

2S(ωk)∆ωk cos(ωkτ)

ωi≥ωj>0∑
ωi+ωj=ωk

b2
p(ωi, ωj) =

m∑
k=1

2S(ωk)∆ωk cos(ωkτ). (3.10)

The expression in Eq. 3.10 is the Riemann sum of r(τ) =
∫∞

0
2S(ω) cos(ωτ)dω

which converges to r(τ) as m → ∞. The property that Q̃SR
m (t) converges to

Q(t) in the third moment sense can be shown similarly and the proof is given in

Appendix A.

Property 3: Q̃SR
m (t) is weakly stationary.

This property follows directly from Property 1 and the observation that the

correlation function of Q̃SR
m (t) in Eq. 3.10 only depends on time lag τ .

In summary, third-order SRM extends the traditional second-order SRM

by introducing partial bicoherence and pure-power spectrum, which decou-

ple the contributions of wave interactions and waves with single frequencies.
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This model has mean zero and is weakly stationary. It converges to the target

stochastic process in the second and the third moment sense. However, this

model cannot distinguish between processes with the same third moment and

is not able to match exactly the marginal distribution of Q(t). This may result in

large discrepancies in the tail of the distribution which may have a profound ef-

fect on the estimate of distribution of extreme based on this model, as illustrated

in the numerical example.

3.3.2 Polynomial chaos

Under the assumption that Q(t) is a stationary stochastic process with mean

zero and finite correlation function r(τ) = E[Q(t + τ)Q(t)], the infinite series

[49]

Q(t) =
∞∑
k=0

βkhk(G(t)) (3.11)

constitutes the polynomial chaos representation for Q(t), where {βk} are the

deterministic coefficients that need to be determined, G(t) is a zero-mean, unit

variance Gaussian process with correlation function ρ(τ) = E[G(t+τ)G(t)], and

hk(x) = (−1)ke−
x2

2
dk

dxk
e−

x2

2 (3.12)

are the one-dimensional Hermite polynomials. The collection {hk(G(t))} have

means zero except that

E[h0(G(t))] = 1 and satisfy the orthogonalities with respect to the probability

measure, i.e.,

E[hk(G(t))hl(G(t))] = k! δkl, (3.13)
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where δkl denotes the Kronecker delta. From the properties of Gaussian random

variables [18](p. 383), Eq. 3.13 can be further extended as

E[hk(G(t+ τ))hl(G(t))] = k!ρk(τ) δkl. (3.14)

We note that the representation in Eq. 3.11 is completely defined by {βk} and

ρ(τ) which can be evaluated by using the orthogonalities in Eqs. 3.13 and 3.14.

More specifically, the coefficients {βk} are calculated according to the equation

βk =
1

k!
E[Q(t)hk(G(t))], (3.15)

since E[Q(t)hk(G(t))] =
∞∑
l=0

βlE[hk(G(t))hl(G(t))] = βkk!, and the correlation

function ρ(τ) of G(t) is the solution to the polynomial equation

r(τ) = E[Q(t+ τ)Q(t)] =
∞∑
k=0

∞∑
l=0

βkβlE[hk(G(t+ τ))hl(G(t))] =
∞∑
k=0

β2
kk!ρk(τ).

(3.16)

Eqs. 3.15 and 3.16 also indicate that β0 = E[Q(t)] = 0, and the variance of Q(t),

r(0) = E[Q2(t)] =
∞∑
k=0

βk
2k!.

By retaining the first m terms of the series, Eq. 3.11 yields

Q(t) ≈ Q̃PC
m (t) =

m∑
k=0

βkhk(G(t)), (3.17)

which is defined as the polynomial chaos approximation for Q(t). We present

and prove the properties of Q̃PC
m (t). Some of the proofs can also be found in [13].

Property 1: From direct derivation, the second-moment properties of Q̃PC
m (t)
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are given by

E[Q̃PC
m (t)] =

m∑
k=0

βkE[hk(G(t))] = β0 = 0, (3.18)

E[Q̃PC2

m (t)] =
m∑
k=0

m∑
l=0

βkβlE[hk(G(t))hl(G(t))] =
m∑
k=0

β2
kk!, (3.19)

E[Q̃PC
m (t+ τ)Q̃PC

m (t)] =
m∑
k=0

m∑
l=0

βkβlE[hk(G(t+ τ))hl(G(t))] =
m∑
k=0

β2
kk!ρk(τ),

(3.20)

which converge to the corresponding second-moment properties ofQ(t) asm→

∞.

Property 2: Q̃PC
m (t) converges to Q(t) in L2, ∀t.

This property follows from

lim
m→∞

E[(Q̃PC
m (t)−Q(t))2] = E[Q2(t)] + lim

m→∞
(E[Q̃PC2

m (t)]− 2E[Q̃PC
m (t)Q(t)])

=
∞∑
k=0

β2
kk! + lim

m→∞
(
m∑
k=0

β2
kk!− 2

m∑
k=0

β2
kk!) = lim

m→∞

∞∑
k≥m+1

β2
kk! = 0, (3.21)

provided that E[Q̃PC
m (t)Q(t)] =

m∑
k=0

∞∑
l=0

βkβlE[hk(G(t))hl(G(t))] =
m∑
k=0

β2
kk!. This

property also implies the convergence in distribution, that is, the marginal dis-

tribution of Q̃PC
m (t) converges to that of Q(t) as m increases.

Property 3: The finite dimensional distribution of Q̃PC
m (t) converges to the

corresponding finite dimensional distribution of Q(t) as m→∞.

The above statement holds if and only if
∑n

j=1 yjQ̃
PC
m (tj)

d→∑n
j=1 yjQ(tj) for

each (y1, . . . , yn) ∈ Rn, where t1, . . . , tn are n arbitrary distinct time points [32]

(Theorem 2.14). Hence, it suffices to show that

n∑
j=1

yjQ̃
PC
m (tj)

L2

→
n∑
j=1

yjQ(tj), (3.22)
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for every (y1, . . . , yn) ∈ Rn. From the definition of the L2 convergence of a

random variable, we have

E
[( n∑

j=1

yj(Q̃
PC
m (tj)−Q(tj))

)2]
=

n∑
i=1

n∑
j=1

yiyjE[(Q̃PC
m (ti)−Q(ti))(Q̃

PC
m (tj)−Q(tj))],

which is bounded above by

E
[( n∑

j=1

yj(Q̃
PC
m (tj)−Q(tj))

)2]
≤

n∑
i=1

n∑
j=1

yiyjE[(Q̃PC
m (ti)−Q(ti))

2]E[(Q̃PC
m (tj)−Q(tj))

2]→ 0, (3.23)

resulted from Cauchy-Schwarz inequality and Eq. 3.21.

Even though we have shown that Q̃PC
m (t) exhibits convergence in L2 and in

finite dimensional distribution, it has been pointed out in [13] that Q̃PC
m (t) is not

stationary and the higher-order marginal moments (greater than two) of Q̃PC
m (t)

may or may not converge as m grows. It may result in a slow convergence

on the tail of the distribution of Q̃PC
m (t). As a consequence, the estimate of the

distribution of extreme based on Q̃PC
m (t) can have large errors, even when m is

large. Moreover, the development of Q̃PC
m (t) may be computational demanding,

or even prohibitive, because of the large number of coefficients that need to be

calculated [14].

3.3.3 Translation model

Recall thatQ(t) is a stationary stochastic process with mean zero and correlation

function r(τ) = E[Q(t + τ)Q(t)]. Denote by F (q) = P (Q(t) ≤ q) the marginal
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distribution of Q(t). It is commonly assumed that F is continuous in practical

applications. The translation model Q̃T (t) has the expression [18]

Q(t) ≈ Q̃T (t) = h(G(t)) = F−1 ◦ Φ(G(t)), (3.24)

where h = F−1 ◦ Φ, F−1 denotes the inverse of F which exists because of the

assumed continuity of F , Φ is the distribution of the standard Gaussian variable

N(0, 1), and G(t) is a stationary Gaussian process with mean zero, variance one,

and correlation function ρ(τ) = E[G(t+ τ)G(t)]. The probability law of Q̃T (t) is

completely specified by F and ρ(τ), where the correlation function ρ(τ) can be

obtained through the following equation

r(τ) =

∫ ∞
−∞

∫ ∞
−∞

h(g1)h(g2)φ(g1, g2; ρ(τ))dg1dg2, (3.25)

in which φ(g1, g2; ρ(τ)) is the density of a bivariate standard Gaussian vector

with correlation coefficient ρ(τ), i.e.,

φ(g1, g2; ρ(τ)) =
1

2π
√

1− ρ2(τ)
exp

(
− g2

1 + g2
2 − 2ρ(τ)g1g2

2(1− ρ2(τ))

)
. (3.26)

Properties of the translation model Q̃T (t) are provided next. The proofs of prop-

erties 1 and 3 are taken from [18].

Property 1: The translation model Q̃T (t) is stationary and has marginal dis-

tributions F .

The first property holds since

P (Q̃T (t1) ≤ q1, . . . , Q̃T (tn) ≤ qn) = P (∩ni=1{Q̃T (ti) ≤ qi})

=P (∩ni=1{h(G(ti)) ≤ qi}) = P (∩ni=1{G(ti) ≤ h−1(qi)})

=P (∩ni=1{G(ti + τ) ≤ h−1(qi)}) = P (∩ni=1{h(G(ti + τ)) ≤ qi})

=P (∩ni=1{Q̃T (ti + τ) ≤ qi}), (3.27)
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for arbitrary t1, . . . , tn, τ . The above equalities follow from the fact that Gaus-

sian process G(t) is stationary and function h is invertible because it is contin-

uous and strictly increasing. The latter property is true since P (Q̃T (t) ≤ q) =

P (F−1 ◦ Φ(G(t)) ≤ q) = P (Φ(G(t)) ≤ F (q)) = F (q), provided that Φ(G(t)) is

a uniform random variable. It is also worth noting that since the translation

model matches exactly the marginal distribution, it can be regarded as the limit

of the polynomial chaos approximation at a fixed time as the truncation level

approaches infinity.

Property 2: Simultaneously large values of the translation model Q̃T (t) at

different time points are independent [58].

This statement is equivalent to the following equation

lim
u1,...,un→1

∣∣∣P (∩ni=1{Q̃T (ti) ≤ F−1(ui)})−
n∏
i=1

ui

∣∣∣ = 0, (3.28)

where t1, . . . , tn are n distinct time arguments. From the definition of the trans-

lation model, Eq. 3.28 yields

lim
u1,...,un→1

∣∣∣P (∩ni=1{Q̃T (ti) ≤ F−1(ui)})−
n∏
i=1

ui

∣∣∣
= lim

u1,...,un→1

∣∣∣P (∩ni=1{F−1[Φ(G(ti))] ≤ F−1(ui)})−
n∏
i=1

ui

∣∣∣
= lim

u1,...,un→1

∣∣∣P (∩ni=1{G(ti) ≤ Φ−1(ui)})−
n∏
i=1

ui

∣∣∣ = 0. (3.29)

The proof of Eq. 3.29 follows from (1) the corollary to the Normal Comparison

Lemma which states that [41]∣∣∣P (∩ni=1{G(ti) ≤ Φ−1(ui)})−
n∏
i=1

ui

∣∣∣ ≤ 1

4

∑
1≤k<j≤n

|ρkj| exp
[
−Φ−1(uk)

2 + Φ−1(uj)
2

2(1 + |ρkj|)
]
,

(3.30)

where ρkj is the covariance betweenG(tk) andG(tj), and (2) the observation that
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the upper bound in Eq. 3.30 approaches zero as u1, . . . , un → 1. This property is

referred to as the tail independence of the translation model.

Property 3: The correlation function ρ(τ) of G(t) may or may not exist to

match the prescribed marginal distribution F and correlation function r(τ) of

Q(t). The translation model has exact or approximate second-moment proper-

ties of Q(t), respectively.

The pair (F, r(τ)) is said to be inconsistent if ρ(τ) does not exist [19, 16].

There are two types of inconsistencies that can occur between a given marginal

distributions F and a prescribed correlation function r(τ). The first type arises

when r(τ) has certain values which lie outside of the admissible range [rL, rU ],

where G is a Gaussian random variable, and

rL = E[h(G)h(−G)], rU = E[h(G)h(G)]. (3.31)

This admissible range results from (1) the Price Theorem which states that [22]

∂r(τ)

∂ρ(τ)
= E

[dh(G(t+ τ))

dG(t+ τ)

dh(G(t))

dG(t)

]
> 0, (3.32)

since the function h is strictly increasing for continuous F , and (2) the definition

of r(τ) which shows that

r(τ) =


E[h(G)h(−G)] if ρ(τ) = −1,

E[h(G)h(G)] if ρ(τ) = 1.

(3.33)

The second type of inconsistency occurs when the resulting correlation function

ρ(τ) from Eq. 3.25 is not positive semi-definite. Examples of these inconsisten-

cies are given in [18](p. 52).

Simulation algorithms have been developed for constructing translation

models such that, for consistent pairs (F, r(τ)), match F and r(τ), and, for incon-

sistent pairs (F, r(τ)), match F and approximate r(τ). These algorithms involve
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(1) direct transformation which estimates the correlation function ρ(τ), provided

that it exists, from samples of G(t) obtained from the inverse map h−1 of sam-

ples of Q(t) [28]; (2) iterative schemes which iteratively upgrade ρ(τ) so that the

error between resulting and target correlation functions of Q(t) is within an ac-

ceptable tolerance [56, 11, 3, 50]; or (3) optimization approaches which find the

optimal ρ(τ) by minimizing the error on r(τ) [19]. A detailed summary of these

simulation algorithms can be found in [50].

After providing a review of three types of non-Gaussian models, a compar-

ison of their key features is summarized in Table. 3.1. The accuracies on the

estimates of distributions of extremes based on these three models are exam-

ined in the first numerical example in section 4. It is shown that the trans-

lation model provides the best approximation on the distribution of extreme,

especially when the dependence between simultaneously large values of target

process at different time points is weak. However, when such tail dependence

grows, the accuracy of the approximation from translation model exacerbates.

This observation results from the second property of the translation model. In

the next section, we present an alternative non-Gaussian model which is based

on the higher-order Markov process to overcome this limitation.
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Stationarity Second-moment
properties

Third-moment
properties

Marginal distri-
bution

Finite dimensional
distribution

Third-order
SRM

Weakly X X 7 7

Polynomial
chaos

7 ≈ (Approximate) 7 ≈ ≈

Translation
model

Strictly X or ≈ 7 X 7

Table 3.1: Comparison of non-Gaussian models for stochastic process
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3.4 Copula-based Markov model for stochastic processes

Recall that Q(t), t ∈ [0, τ ∗], is a stationary stochastic process with mean zero,

correlation function r(τ), and marginal distribution F (q). In this section, we de-

velop a new non-Gaussian model for Q(t). The model aims to not only match

the marginal distribution F (q) and approximate the correlation function r(τ)

of Q(t) but also capture the information beyond them, e.g., the joint distribu-

tion at different times, the distribution of extreme, and the mean crossing rate

of Q(t). We refer to these statistical quantities as the quantities of interest. The

objective can be achieved by representing Q(t) as a m-th order Markov process

Q̃M
m (t). Let 0 = t1 < · · · < tn = τ ∗ be n distinct time arguments which evenly

partition the time interval [0, τ ∗]. The m-th order Markov process is defined

such that the conditional random variables (Q̃M
m (ti)|Q̃M

m (ti−1), . . . , Q̃M
m (ti−m))

and (Q̃M
m (ti−m−1), . . . , Q̃M

m (t1)|Q̃M
m (ti−1), . . . , Q̃M

m (ti−m)) are independent for i =

m + 1, . . . , n [31]. Under the assumption that the joint density of the random

vector [Q̃M
m (t1), . . . , Q̃M

m (tn)]T exists, the definition of Q̃M
m (t) implies that

fi|i−1,...,1(qi|qi−1, . . . , q1) = fi|i−1,...,i−m(qi|qi−1, . . . , qi−m), (3.34)

where the subscripts of f indicate the reference random variables. For exam-

ple, the function fi|i−1,...,i−m is the density of (Q̃M
m (ti)|Q̃M

m (ti−1), . . . , Q̃M
m (ti−m)).

The proof of Eq. 3.34 is the straightforward extension of the proof in

[24] (p. 121). Eq. 3.34 suggests that conditional random variables

(Q̃M
m (ti)|Q̃M

m (ti−1), . . . , Q̃M
m (t1)) and (Q̃M

m (ti)|Q̃M
m (ti−1), . . . , Q̃M

m (ti−m)) have the

same density fi|i−1,...,i−m, referred to as the transition density. Hence, Q̃M
m (t) can
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be defined at distinct time arguments ti, i = 1, . . . , n, and has the form

Q̃M
m (t1) = F−1(U1),

Q̃M
m (ti) = F−1

i|i−1,...,max(1,i−m)(Ui), i = 2, . . . , n, (3.35)

where Ui, i = 1, . . . , n, are independent uniform random variables, and

Fi|i−1,...,max(1,i−m) denote the distributions of conditional random variables

(Q̃M
m (ti)|Q̃M

m (ti−1), . . . , Q̃M
m (tmax(1,i−m))) with corresponding densities

fi|i−1,...,max(1,i−m). From Eq. 3.35, the samples of Q̃M
m (t) are generated in a sequen-

tial manner, i.e., starting to obtain Q̃M
m (t1), calculating the conditional distribu-

tion F2|1, then generating Q̃m(t2) from F−1
2|1 (U2) and so on.

The construction of the model Q̃M
m (t) in Eq. 3.35 requires the knowledge of

the transition density, i.e., fi|i−1,...,i−m(qi|qi−1, . . . , qi−m), or equivalently the joint

distribution at m consecutive times F1,...,m(q1, . . . , qm). In this work, we model

this joint distribution by m-copula. The parameters of the m-copula are selected

such that the resulting model Q̃M
m (t) fits best the pre-specified quantities of inter-

est. In the section 3.1, the concepts and examples of the m-copula are presented.

The estimation of the parameters of the m-copula is also discussed. Then, we

investigate the properties of this copula-based Markov model Q̃M
m (t) in section

3.2.

3.4.1 m-copula and estimation of parameters

A m-copula is a multivariate CDF defined in the unit cube [0, 1]m with uniform

marginal distributions. More formally, it is defined as a mapping C: [0, 1]m →

[0, 1] with the following properties: [34]

(1) ∀u = [u1, . . . , um] ∈ [0, 1]m, C(u) = 0 if at least one coordinate of u equals 0;
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(2) C(u) = uk if all the coordinates of u are equal to 1 except uk;

(3) ∀a and b ∈ [0, 1]m such that ak ≤ bk, k = 1, . . . ,m, VC([a, b]) ≥ 0, where VC

denotes the C-volume defined in [45] (p. 45, def. 2.10.5).

Denote by F̃1,...,m(q1, . . . , qm) a m-dimensional joint distribution with

marginal distribution F . The most important theorem in copula theory, named

Sklar’s Theorem [27], states that if the marginal distribution F is continuous,

then there exists an unique C such that ∀q1, . . . , qm,

F̃1,...,m(q1, . . . , qm) = C(F (q1), . . . , F (qm)) = C(u1, . . . , um), (3.36)

where F (qk) = uk, k = 1, . . . ,m. By Sklar’s Theorem, the joint distribution

F̃1,...,m(q1, . . . , qm) can be fully captured by m-copula, and so are the marginal

distributions. In Table. B.1 and B.2 of Appendix B, we list some commonly-used

families of m-copulas, along with the ranges of the parameters, properties, and

the corresponding references. It is worth noting that any weighted sum of the

m-copulas is also a m-copula. For example, let C1(u1, u2) and C2(u1, u2) be two

arbitrary 2-copulas in Table. B.1 and B.2, then C(u1, u2) = θC1(u1, u2) + (1 −

θ)C2(u1, u2) is another valid 2-copula if θ ∈ [0, 1]. The copulas shown in the

table as well as their weighted sums suffice in practical applications since they

can cover a variety of dependence structures.

The parameters of the m-copula are grouped into a vector, denoted by Θ.

The optimal group of parameters is selected such that the discrepancies on the

quantities of interest are minimized. In other words, Θ is the solution of the

optimization problem

min
Θ
{e(Θ)}, (3.37)

where e(Θ) =
∑

j αjej(Θ) measures the errors between quantities of interest of

Q(t) and Q̃m(t), and αj ≥ 0 are weighting factors which are tuned to prioritize
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ej(Θ) according to their hierarchy of importance. Some examples of ej(Θ) are shown in Table. 3.2.

Correlation functions e1(Θ) =
∫

[0,τ∗]
(r(τ)− r̃(τ))2dτ

Third-order cumulant functions e2(Θ) =
∫

[0,τ∗]2
(c(τ1, τ2)− c̃(τ1, τ2))2dτ1dτ2

Joint distributions at consecutive times e3(Θ) =
∫
Rm(F1,...,m(q1, . . . , qm)− F̃1,...,m(q1, . . . , qm))2dq1 · · · dqm

Distributions of extremes e4(Θ) =
∫
R(Fmax(q)− F̃max(q))2dq

Mean crossing rates e5(Θ) =
∫
R(ν(q)− ν̃(q))2dq

Notes: 1. The quantities with ∼ and without ∼ are estimated from the model Q̃M
m (t) and the target process Q(t).

2. The definition of mean crossing rates can be found in [24] (p. 165).

Table 3.2: Examples of quantities of interest
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3.4.2 Properties of the copula-based Markov model Q̃M
m (t)

We now investigate the properties of Q̃M
m (t).

Property 1: The Copula-based Markov model Q̃M
m (t) preserves the marginal

distribution of Q(t), and the finite dimensional densities of Q̃M
m (t) are defined

completely by the marginal and transition densities.

We prove the second part of the property. Let i1 < i2 < · · · < il be l consecu-

tive integers from set {1, . . . , n}. If l > m, we have

fi1,...,il(q1, . . . , ql) = fil|il−1,...,i1(ql|ql−1, . . . , q1)fi1,...,il−1
(q1, . . . , ql−1)

= fil|il−1,...,il−m(ql|ql−1, . . . , ql−m)fi1,...,il−1
(q1, . . . , ql−1).

Repeated use of the above formula gives

fi1,...,il(q1, . . . , ql) = f(q1)
l∏

j=2

fij |ij−1,...,imax(j−m,1)(qj|qj−1, . . . , qmax(j−m,1)), (3.38)

where f denotes the marginal density of Q(t). If l ≤ m, then fi1,...,il(q1, . . . , ql)

can be matched exactly by the transition density or its marginal densities of

order 2 to m − 1. It is worthy noting that the finite dimensional densities at

non-consecutive time arguments can be further obtained via the integrations of

those at consecutive time arguments.

Property 2: The Copula-based Markov model Q̃M
m (t) is stationary.

It suffices to show the finite dimensional densities in Eq. 3.38 are invariant

under arbitrary time shifts. Set p < n−il an arbitrary integer. Since the transition
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density remains constant under time shift, we have

fi1,...,il(q1, . . . , ql) = f(q1)
l∏

j=2

fij |ij−1,...,imax(j−m,1)(qj|qj−1, . . . , qmax(j−m,1))

= f(q1)
l∏

j=2

fij+p|ij−1+p,...,imax(j−m,1)+p(qj|qj−1, . . . , qmax(j−m,1))

= fi1+p,...,il+p(q1, . . . , ql),

which completes the proof.

It is also worth noting that Aside from properties 1 and 2, the features of

the copula-based Markov model are related to the choices of the quantities of

interest in the parameter estimation defined in Eq. 3.37. For example, if the

objective function in Eq. 3.37 is selected to be e(Θ) = α1e1(Θ) + α3e3(Θ), where

e1(Θ) and e3(Θ) denote the errors on correlation function and joint distribution

which defined in Table. 3.2, then the features of the model are summarized in

Table. 3.3. In the next section, the implementation and properties of the copula-

based Markov model are illustrated by the numerical examples.
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Stationarity Second-moment
properties

Third-moment
properties

Marginal distri-
bution

Finite dimensional
distribution

Third-order
SRM

Weakly X X 7 7

Polynomial
chaos

7 ≈ (Approximate) 7 ≈ ≈

Translation
model

Strictly X or ≈ 7 X 7

Copula-based
Markov model

Strictly ≈ 7 X ≈ up to order m

Table 3.3: One example of the features of Markov model
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3.5 Numerical examples

Numerical examples are provided to examine the performances of the non-

Gaussian models which include third-order SRM, polynomial chaos, translation

model, and the copula-based Markov model. In the first example, we calibrate

the first three non-Gaussian models introduced in section 2 to the solutions of

the stochastic differential equations. The metrics used in the evaluations are cor-

relation function, third-order cumulant function, marginal distribution, and the

distribution of extreme. Note that the choices of the test case and metrics pro-

vide a fair comparison for the non-Gaussian models. In the second example, we

repeat the calibration in Example 1 for copula-based Markov model with two

different sets of quantities of interest to illustrate the flexibility and accuracy of

the model. In the third example, the copula-based Markov model is applied to

a wind pressure process obtained from the wind tunnel experiment to illustrate

its practical use. We compare the performances of the copula-based Markov

model with the translation model in the second and third examples.

3.5.1 Example 1

Let Q(t) be the solution of a stochastic differential equation driven by the Brow-

nian motion B(t) with linear drift term and diffusion term b(Q(t)), i.e., Q(t)

satisfies the equation

dQ(t) = −αQ(t)dt+ b(Q(t))dB(t), (3.39)

in which α is a deterministic parameter. The stationary part of Q(t) has mean

zero, exponential correlation and third-order cumulant functions irrespective of
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the functional form of the diffusion term b(Q(t)), that is,

γ1 = E[Q(t)] = 0, (3.40)

r(τ)

γ2

=
E[Q(t+ τ)Q(t)]

E[Q2(t)]
= exp(−ατ), and (3.41)

c(τ1, τ2)

γ3

=
E[Q(t)Q(t+ τ1)Q(t+ τ2)]

E[Q3(t)]
=


exp[−αmax(|τ1|, |τ2|)], if τ1τ2 ≥ 0

exp[−α(|τ1|+ |τ2|)], if τ1τ2 < 0,

(3.42)

where γ1, γ2, and γ3 are the mean, variance, and skewness of Q(t), respectively.

By applying Itô’s formula to the mapping Q(t) 7→ Q(t) in the time interval [t, t+

τ ], we have

Q(t+ τ)−Q(t) =

∫ t+τ

t

dQ(v) =

∫ t+τ

t

−αQ(v)dv + b(Q(v))dB(v). (3.43)

Eq. 3.40 follows from taking expectation on Eq. 3.43 and the property of condi-

tional expectation that E[b(Q(v))dB(v)]

= E
{
E[b(Q(v))dB(v)|Fv]

}
= E

{
b(Q(v))E[dB(v)|Fv]

}
= 0, where Fv is the natu-

ral filtration of B(u), 0 ≤ u ≤ v. Eq. 3.41 can be obtained by multiplying Eq. 3.43

with Q(t), i.e.,

Q(t+ τ)Q(t)−Q(t)Q(t) =

∫ t+τ

t

−αQ(t)Q(v)dv +Q(t)b(Q(v))dB(v).

The average of the above equation gives

r(τ)− r(0) =

∫ t+τ

t

−αr(v − t)dv, (3.44)

since E[Q(t)b(Q(v))dB(v)] = E
{
Q(t)E[b(Q(v))dB(v)|Ft]

}
= E

{
Q(t)E{E[b(Q(v))dB(v)|Fv]|Ft}

}
= 0. The differentiation of Eq. 3.44 with

respect to τ yields Eq. 3.41 [24](p. 435). Eq. 3.42 can be proved in the same

manner.
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The diffusion term b(Q(t)) relates to the marginal distribution of Q(t)

through the stationary Fokker-Planck equation defined in [24](p. 482). We select

b(Q(t)) to be

b(Q(t)) =

√
b1(Q(t))b2(Q(t))

σW
, (3.45)

where

b1(Q(t)) =
2α

fW (σWQ(t) + µW )
, (3.46)

b2(Q(t)) = λΓ
(

1 +
1

k
,
[σWQ(t) + µW

λ

]k)
− µW e−((σWQ(t)+µW )/λ)k , (3.47)

Γ(∗, ∗) is the incomplete Gamma function, and fW is the Weibull density with

scale parameter λ, shape parameter k, mean µW , and standard deviation σW .

Then, the marginal density of Q(t), denoted by fQ(q), is the normalized Weibull

density, i.e.,

fQ(q) =


σW k
λ

(
σW x+µW

λ

)k−1

exp
[
−
(
σW x+µW

λ

)k]
, if x ≥ −µW/σW

0, if x < −µW/σW .
(3.48)

We note thatQ(t) is bounded below by−µW/σW , referred to as the lower bound.
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Figure 3.1: (a) Correlation functions, (b) target and (c) estimated third-order
cumulant functions of third-order SRM

Set α = 2, k = 1.5, and λ = 1. Fig. 3.1 shows the target correlation func-

tion and third-order cumulant function ofQ(t) and the corresponding estimated
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quantities from samples of third-order SRM. Since the third-order SRM Q̃SR
m (t)

converges to Q(t) in the second and the third moment senses, the discrepan-

cies on correlation function and third-order cumulant function are almost indis-

tinguishable. However, because of the incapability of matching the marginal

distribution, stochastic processes with different marginal distributions can have

the same model from third-order SRM. For example, consider another stochastic

differential equation defined in the following equation

dQ∗(t) = −αQ∗(t)dt+ b∗(Q∗(t))dB(t), (3.49)

where

b∗(Q∗(t))

=
1

σl

√
2αµl(Φ[(log(σlQ∗(t) + µl)− µ)/σ]− Φ[(log(σlQ∗(t) + µl)− µ)/σ − σ])

fl(σlQ∗(t) + µl)
,

(3.50)

in which Φ is the distribution of the standard Gaussian variable, µl and σl are

the mean and standard deviation of the log-normal density fl with parame-

ters µ and σ. We set parameters µ = 0 and σ = 0.3342 so that the skewness

of Q∗(t) is equal to γ3. Then, processes Q(t) and Q∗(t) have the identical first

three moments defined in Eqs. 3.40-3.42. Therefore, the third-order SRM for

Q(t) and Q∗(t) remain the same although the marginal distribution of Q∗(t) fol-

lows the normalized log-normal distribution, as shown in Fig. 3.2. Note that

the distributions in the right panel are plotted in the logarithmic scale so that

the discrepancies in the tails of the distributions can be clearly seen. In this ex-

ample, the third-order SRM may underestimate or overestimate the tail of the

distribution. As a result, denote by Qmax = max
t∈[0,τ∗]

Q(t), Q∗max = max
t∈[0,τ∗]

Q∗(t),

and Q̃max = max
t∈[0,τ∗]

Q̃SR
m (t) the maximums of Q(t), Q∗(t), and third-order SRM

Q̃SR
m (t) over the time interval [0, τ ∗], respectively. The distribution of extreme,
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i.e., P (Q̃max ≤ q), based on the third-order SRM exhibits large errors when q is

large, as shown in Fig. 3.3.
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Figure 3.2: (a) Marginal densities and (b) marginal distributions of Q(t), Q∗(t),
and third-order SRM Q̃SR

m (t)
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Figure 3.3: (a) Densities and (b) distributions of Qmax, Q∗max, and Q̃max based on
third-order SRM

Figs. 3.4 and 3.5 show the convergences of polynomial chaos Q̃PC
m (t) to Q(t)

in marginal distribution and in correlation function as truncation levelm grows.

The third-order cumulant functions of Q̃PC
m (t) at truncation levels m = 1, 6,

and 10 are shown in Fig. 3.6. It is not surprising that the third-order cumulant

function at truncation level m = 1 is zero because Q̃PC
1 (t) = G(t) is a Gaus-

sian process. As for this example, the third-order cumulant function is conver-

gent to the target third-order cumulant function. Fig. 3.7 shows the exact maps
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Figure 3.4: Marginal distributions of polynomial chaos at truncation level m =
(a) 1, (b) 6, and (c) 10
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Figure 3.5: Correlation functions of polynomial chaos at truncation level m =
(a) 1, (b) 6, and (c) 10

Q(t) = h(G(t)) and Q∗(t) = h∗(G(t)) at fix time t and the approximate maps

Q̃PC
m (t) = hPCm (G(t)) =

m∑
k=0

βkhk(G(t)) from polynomial chaos at truncation lev-

elsm = 1, 6, 10. The red solid line in the figure indicates the lower bounds. Note

that in Fig. 3.7(a), the models Q̃PC
1 (t), Q̃PC

6 (t), and Q̃PC
10 (t) have values below

the lower bound, although it is not obvious in the middle and right panels of

Fig. 3.4.

Fig. 3.8 shows the marginal distributions of Q(t), Q∗(t), and corresponding

estimates from polynomial chaos Q̃PC
m (t) at truncation levels 1, 6, 10. The tails of

the distributions of Q̃PC
m (t) deviate dramatically because the maps hPC6 and hPC10

have notable oscillations in a vicinity ofG(t) = 5, as shown in Fig. 3.7 (a) and (b).

Besides, the convergence rates of the distributions of Q̃PC
m (t) in the tail region

are slow. The distributions of extremes of the target processes Q(t), Q∗(t) and
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Figure 3.6: Third-order cumulant functions of polynomial chaos at truncation
level m = (a) 1, (b) 6, and (c) 10
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Figure 3.7: Exact maps, (a) Q(t) = h(G(t)) and (b) Q∗(t) = h∗(G(t)), vs. PC
approximate maps, Q̃PC

m (t) = hPCm (G(t))
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Figure 3.8: Marginal distributions of (a) Q(t), (b) Q∗(t), and polynomial chaos
Q̃PC
m (t) at truncation levels 1, 6, 10

polynomial chaos Q̃PC
m (t) are shown in Fig. 3.9. The accuracies of the estimates

from polynomial chaos are unsatisfactory and decrease with the argument q.
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Figure 3.9: Distributions of (a) Qmax, (b) Q∗max, and Q̃max based on polynomial
chaos at truncation levels 1, 6, 10
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Figure 3.10: (a) Correlation functions, (b) target and (c) estimated third-order
cumulant functions of translation model
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Figure 3.11: Marginal distributions of (a) Q(t), (b) Q∗(t), and translation model
Q̃T (t)

Figs. 3.10 and 3.11 show the target marginal distribution, correlation func-

tion, and the third-order cumulant function of Q(t) and the corresponding es-
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Figure 3.12: Distributions of (a) Qmax, (b) Q∗max, and Q̃max based on the transla-
tion model Q̃T (t)

timated quantities from samples of translation model. In this example, Q̃T (t)

can match both marginal distribution and correlation function exactly because

(1) r(τ) is positive for all τ and the admissible bounds rL = −0.8623, rU = 1

so that r(τ) ∈ [rL, rU ], and (2) the resulting ρ(τ) from Eq. 3.25 is positive semi-

definite. The third-order cumulant function of Q̃T (t) approximates that of Q(t)

satisfactorily.

The plots in Fig. 3.12 are for the distributions of extremes. The red dash

lines are the estimates from the target processes Q(t) and Q∗(t), and the black

solid lines are the corresponding approximations from the translation model

Q̃T (t). The blue dotted lines in the figure are the probabilities 1 − FQ(q)n and

1 − FQ∗(q)n, where FQ(q) and FQ∗(q) are the marginal distributions of Q(t) and

Q∗(t), and n is the number of time points which partition the time interval [0, τ ∗]

in the numerical calculation. The convergences of the blue dotted lines to the

black solid lines as q increases validate the tail independence (second property)

of the translation model. The accuracy of the distribution of extreme based on

the translation model is remarkable in the left panel, but is slightly worse in

the right panel. If we consider another stochastic process Q∗∗(t) defined in the
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Eqs. 3.49-3.50 with log-normal marginal distribution and parameters µ = 0 and

σ = 1, the quality of the extreme estimate based on the translation model further

deteriorates, as shown in Fig. 3.13(a). This observation results from the fact that

the dependences between simultaneously large values of Q(t), Q∗(t), and Q∗∗(t)

at different time points are in ascending order. We characterize such depen-

dence by, e.g., the correlation coefficient of Q|‖Q‖ > p, denoted by ρQ, where

p is large, t1, t2 are two time arguments, Q = [Q(t1), Q(t2)], FQ is the marginal

distribution of Q(t), and norm ‖Q‖ =
√
FQ(Q(t1))2 + FQ(Q(t2))2. Fig. 3.13(b)

shows the correlation coefficients ρQ, ρQ∗ , and ρQ∗∗ . As p approaches
√

2, we

have ρQ∗∗ > ρQ∗ > ρQ ≈ 0 which is consistent with the observation and the

above statement.
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Figure 3.13: (a) Distribution of extremes of Q∗∗(t) and Q̃T (t) and (b) correlation
coefficients ρQ, ρQ∗ , and ρQ∗∗

In summary, the non-Gaussian models, i.e., third-order SRM, polynomial

chaos, and translation model, can match exactly or approximate satisfactorily

the correlation function and third-order cumulant function of the target pro-

cesses in this example. However, only translation model captures the marginal

distributions. It provides the best approximations on the distributions of ex-

tremes, especially when the tail dependence of the target process is weak. It has
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also been shown that as the tail dependence grows, the quality of the extreme

estimate based on the translation model deteriorates.

3.5.2 Example 2

We now construct a copula-based Markov model Q̃M
m (t) with m = 2 for target

process Q(t) defined in Eq. 3.39. The model Q̃M
2 (t) has the form

Q̃M
2 (t1) = F−1

Q (U1), and

Q̃M
2 (ti) = F−1

i|i−1(Ui), i = 2, . . . , n, (3.51)

where t1, . . . , tn evenly partition the bounded time interval [0, τ ∗], U1, . . . , Un are

independent uniform random variables, and Fi|i−1(q2|q1) is the distribution of

the conditional random variable Q(ti)|Q(ti−1). The corresponding joint distri-

butions Fi,i−1(q1, q2) of [Q(ti), Q(ti−1)]T , i = 2, . . . , n, are approximated by the

following 2-copula

Fi,i−1(q1, q2) ≈ C(u1, u2)

=θ3(u−θ11 + u−θ12 − 1)−1/θ1 + (1− θ3) exp
(
− [(− log u1)θ2 + (− log u2)θ2 ]1/θ2

)
,

(3.52)

where u1 = FQ(q1), u2 = FQ(q2), and θ1 ≥ 0, θ2 ≥ 1, θ3 ∈ [0, 1] are parameters

that need to be determined. It is worth noting that from Eq. 3.36, the conditional

distributions Fi|i−1(q2|q1) can be linked with C(u1, u2) through the equation

Fi|i−1(q2|q1) =
∂C(u1, u2)

∂u1

. (3.53)

The proof of Eq. 3.53 is in [45] (p. 41). The set of parameters Θ = [θ1, θ2, θ3] are

obtained by minimizing the objective function in Eq. 3.37 that is set to be e(Θ) =

α1e1(Θ) + α2e2(Θ) + α3e3(Θ), where e1(Θ), e2(Θ), and e3(Θ) are for correlation
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function, third-order cumulant function, and joint distribution at 2 consecutive

time points which are defined in Table. 3.2. The plots in Figs. 3.14 and 3.15 show

the aforementioned quantities and the corresponding estimates from samples of

the model Q̃M
2 (t). Optimal values of these parameters are selected so that all the

quantities of interest can be matched almost perfectly.
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Figure 3.14: (a) Correlation functions, (b) target and (c) estimated third-order
cumulant functions of the Copula-based Markov model
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Figure 3.15: (a) Marginal distributions and (b) joint distributions at consecutive
times of Q(t) and model Q̃M

2 (t)

We now use the same copula model in Eq. 3.52 and change the quantities of

interest to be e(Θ) = α1e1(Θ) +α3e3(Θ) +α4e4(Θ) +α5e5(Θ) which are related to

correlation function, joint distribution, distribution of extreme and mean cross-

ing rate. The results of Q(t) are also extended to the target processes Q∗(t) and

Q∗∗(t) introduced in the previous example. We compare the relative perfor-

mances of the translation and the copula-based Markov models.
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Figure 3.16: Correlation functions of (a) Q(t), (b) Q∗(t), and (c) Q∗∗(t) and corre-
sponding estimates from Q̃M

2 (t)
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Figure 3.17: Joint distributions of (a) Q(t), (b) Q∗(t), and (c) Q∗∗(t) and corre-
sponding estimates from Q̃M
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Figure 3.18: Distribution of extremes of (a) Q(t), (b) Q∗(t), and (c) Q∗∗(t) and
corresponding estimates from Q̃M

2 (t)

The results are shown in Figs. 3.16-3.19. The solid and dotted contour plots

in Fig. 3.17, and the black solid lines and blue dotted lines in Figs. 3.18 and 3.19

correspond to the copula-based Markov and translation models, respectively.

As can be seen from Fig. 3.18, the performances of the copula-based Markov

model are satisfactory for all test cases, while the quality of the approximation
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Figure 3.19: Mean crossing rates of (a) Q(t), (b) Q∗(t), and (c) Q∗∗(t) and corre-
sponding estimates from Q̃M

2 (t)

from translation model depends strongly on the tail dependence of the target

process. The same observations are in Figs. 3.17 and 3.19, i.e., the dotted lines

deviate from the target dash lines as the tail dependence increases, but the solid

lines approximate accurately and consistently the dash lines, especially in the

tail region. This also suggests the inherent relations among the distribution of

extreme, mean crossing rate, and the joint distribution at 2 consecutive time

points. It has been shown in [44] that under the Poisson assumption, the distri-

bution of extreme F̃max(q) is given in terms of the mean crossing rate ν̃(q) by

F̃max(q) = P ( max
t∈[0,τ∗]

Q̃M
m (t) ≤ q) = exp(−ν̃(q)τ ∗), (3.54)

where the mean crossing rate ν̃(q) can be estimated by P (Q̃M
m (ti) ≤ q, Q̃M

m (ti+1) >

q)/∆t = (F (q)−C(F (q), F (q)))/∆t, in which ∆t is the time step between ti+1 and

ti, F is its marginal distribution, and C is the 2-copula defined in Eq. 3.52 which

is equivalent to the joint distribution at 2 consecutive time points. Therefore, a

good approximation of one quantity may lead to accurate approximations for

the other two. The above statement is extremely useful when the accurate esti-

mate is only available for the mean crossing rate (or equivalently the joint dis-

tribution) because of the limited data size in the practical applications. We use

Eq. 3.54 to infer the distribution of extreme.
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3.5.3 Example 3

We calibrate the copula-based Markov model to a wind pressure process ob-

tained from the wind tunnel experiment and compare its performance with the

translation model.

The wind tunnel records from Shimizu Corporation Laboratories for zero

wind direction are used in this analysis. The mean wind velocity profile cor-

responds to the urban terrain. The building model is a CAARC standard tall

building with square cross section and has 500 wind pressure taps uniformly

distributed on its sides. The size of the building model is 0.1m × 0.1m × 0.5m

and the length scale is 1 : 400. The wind pressure process is from the pressure

tap located in the flow separated region where the complex aerodynamic phe-

nomenon occurs. The time history is shown in Fig. 3.20. A total of 32768 mea-

surements of non-dimensional pressure coefficients are recorded continuously

with 1000 Hz measurement frequency. Further details can be in [37].
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Figure 3.20: Time history of wind pressure process

We estimate the marginal distribution F empirically and the transition den-
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sity of the Markov model is approximated by a 3-copula which has the form

C(u) = θ9 exp
{
−
[ 3∑
j=1

θ1pzj +
[
(pzθ21 )θ3 + (pzθ22 )θ3

] 1
θ3 +

[
(pzθ22 )θ3 + (pzθ23 )θ3

] 1
θ3

+
[
(pzθ21 )θ4 + (pzθ23 )θ4

] 1
θ4

] 1
θ2

}
+ (1− θ9)

[ 3∑
j=1

u−θ6j − 2−
[
û−θ71 + û−θ72

]− 1
θ7

+
[
û−θ72 + û−θ73

]− 1
θ7

[
û−θ81 + û−θ83

]− 1
θ8

]− 1
θ6 , (3.55)

where u = [u1, u2, u3], p = (θ1 + 2)−1, zj = − log uj , and ûj = (u−θ2j − 1)/(θ5 + 2),

j = 1, 2, 3. The ranges of the parameter θ1, . . . , θ9 are in Table. B.1 and B.2. As

explained in the previous example, the accurate estimate on the distribution of

extreme cannot be obtained because of the limited size of the available records.

Hence, the objective function in Eq. 3.37 is selected to be e(Θ) = α1e1(Θ) +

α3e3(Θ)+α5e5(Θ) instead, where e1(Θ), e3(Θ), and e5(Θ) correspond to the errors

in correlation function, joint distribution at 2 consecutive time points, and mean

crossing rate, respectively. Note that since Q(t) is highly negatively-skewed, we

focus on the mean downcrossing rate, i.e., the mean rate that Q(t) downcrosses

−q.
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Figure 3.21: (a) Correlation functions and (b) marginal distributions of Q(t),
Q̃M

3 (t) and Q̃T (t)

The performances of the copula-based Markov model Q̃M
3 (t) and the trans-
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Figure 3.22: (a) Joint distributions and (b) mean crossing rates of Q(t), Q̃3(t) and
Q̃T (t)

lation model Q̃T (t) are in Figs. 3.21 and 3.22. The copula-based Markov model

provides worse approximation on the correlation function comparing to the

translation model, but performs almost perfectly for the joint distribution and

the mean downcrossing rate, especially in the tail region. The approximation

on the correlation function can be improved by increasing the dimension of the

copula m. Preliminary study shows that m should be at least greater than 6 in

order to capture the wavy shape of this correlation function. It is also worthy

noting that the computational cost on constructing the copula-based Markov

model depends on the dimension of the copula and it is generally more expen-

sive than the construction of the translation model. It is not our intention here

to make a judgment as to which model is preferable. Instead, we outline the

strengths and limitations of each model such that the modeler may make the

best judgment for the application.
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3.6 Chapter summary

The comprehensive review has been presented for three non-Gaussian models,

i.e., third-order SRM, polynomials chaos, and translation model. Their accura-

cies on the estimates of distributions of extremes have been examined by nu-

merical example. It has been shown that the translation model provides the

best approximation on the distribution of extreme. Its performance is remark-

able when the target process is almost tail independent, yet deteriorates when

the tail dependence of the target process increases.

In order to overcome this limitation, a copula-based Markov model has been

proposed in this work. The model utilizes the concept of higher-order Markov

process whose transition density is characterized by copulas. The optimization

algorithm has been developed to estimate the parameters in the copulas such

that the errors on the pre-specified quantities of interest are minimized. Theo-

retical arguments and numerical examples have been provided to illustrate the

properties, flexibility, and accuracies of this model on different combinations of

quantities of interest. It has been shown that the copula-based Markov model is

capable of providing consistent estimation on distribution of extreme, or equiv-

alently the mean crossing rate, regardless of the tail dependence of the target

process. The model has also been applied to a wind pressure process from wind

tunnel experiment to illustrate its practical use.
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CHAPTER 4

TRANSLATION-MODEL-BASED RELIABILITY ANALYSIS FOR WIND

LOADS

4.1 Summary

Probabilistic models for wind loads are developed and used to estimate the

properties of the responses of linear systems. This analysis involves four steps.

First, along-wind, across-wind forces, and torque are represented as polyno-

mials of turbulence fluctuations and wake excitations, which are assumed to

be stationary Gaussian processes. Second, two types of models are provided,

namely, the empirical model and the mathematical model, for the second-

moment properties of the turbulence fluctuations and wake excitations so that

the probability law of the wind loads is characterized completely. Proposed

models are then calibrated to the experimental observations. Third, the mathe-

matical model provides an efficient method to estimate the response properties

relative to Monte Carlo simulation. The responses are modeled by translation

processes that match the target second-moment properties and marginal distri-

butions of the responses. Fourth, the response properties that are of interest,

e.g., the mean rates at which the responses exit the safe set, are calculated from

the resulting translation processes. This procedure is illustrated by one numer-

ical example.
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4.2 Introduction to the methodology

Experimental and mathematical approaches are used to characterize structural

responses induced by wind loads. Experimental approaches include the full-

scale and/or wind-tunnel tests that provide valuable information on both wind

loads on structures and structural responses. Cost limits this approach [2].

Mathematical approaches construct deterministic and probabilistic models for

wind loads that can be used to estimate the properties of structural responses.

This paper proposes probabilistic models to represent wind loads, calibrate

these models to the experimental observations, and assess the structural reli-

ability for wind-load effects subjected to these models.

The probabilistic models for wind loads are based on the wind-load model

proposed in [52]. Three components of the wind loads, i.e., along-wind, across-

wind forces, and torque, are defined by polynomials of the fluctuating part of

the wind velocities. Because of the vortex wake formed at the rear region of the

structure, additional forces are applied to capture the effects of the wake exci-

tations. Then, the wind loads are fully described by the turbulence fluctuation

and wake excitation terms.

Under the assumption that turbulence fluctuations and wake excitations

are stationary Gaussian processes, two types of the models for their second-

moment properties are considered. The first model is the empirical model that

has been used extensively in turbulence and wake excitation modeling. The

functional forms of this model result from large amounts of experimental obser-

vations and satisfy the physics of the turbulence [53]. The second model repre-

sents the turbulence fluctuation and wake excitation terms by filtered Gaussian
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processes whose second-moment properties are similar to the empirical model,

referred to as the mathematical model [26]. This model is used to develop an

efficient method for calculating the response properties of linear structures. The

method is based on translation processes that match the target marginal distri-

butions as well as the second-moment properties of the responses. The first two

moments of the responses are obtained by methods of the linear random vi-

bration theory [26, 21] and marginal distributions are fitted to the marginal mo-

ments calculated exactly by Its formula following an approach in [25]. Then, the

structural reliability can be estimated from the resulting translation processes.

The mean rate at which the structural responses exit the safe set, referred to

as the mean outcrossing rate or mean failure rate, is used to characterize the

structural reliability.

The outline of the remaining sections is as follows. Section 4.3 presents the

probabilistic models for wind loads including the existing wind-load model and

two models for turbulence fluctuations and wake excitations. Section 4.4 de-

scribes the experimental records and the algorithm of model calibration. The

construction of the translation processes for responses and the use of the method

to approximate the mean outcrossing rate are in Section 4.5.

4.3 Probabilistic models for wind loads

The existing wind-load model is summarized first, then this model is used to

characterize the second-moment properties of the wind loads and two types of

models for turbulence fluctuations and wake excitations are presented.
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4.3.1 Wind loads on slender rigid building

Consider a slender rigid building immersed in an ideal bidimensional wind

field with wind velocity V (t) = [u(x, t), v(x, t)]T where x = (x1, x2, x3) is the

spatial coordinates shown in Fig. 4.1(a), and u(x, t) and v(x, t) are the wind ve-

locities along with and perpendicular to the mean wind direction (measured by

the angle between x1 and x0,1 as shown in Fig. 4.1(b)), referred to as along-wind

and across-wind velocities, respectively. Under the assumption that the wind

field is stationary, the along-wind and across-wind velocities u(x, t) and v(x, t)

admit the representations [53]

u(x, t) = U + ũ(x, t), and v(x, t) = ṽ(x, t), (4.1)

where U(x) = mean wind velocity; and ũ(x, t) and ṽ(x, t) = along-wind and

across-wind turbulence fluctuations. The building is idealized as a linear system

with lumped masses at the floor levels. Each lumped mass has three degrees of

freedom: along-wind, across-wind displacements, and rotation. Let F (t) be the

total force at one floor, and Fx(t), Fy(t) and Mz(t) be the along-wind, across-

wind forces, and torque corresponding to the degrees-of-freedom, as shown in

Figs. 1(a,b).

The wind-load model proposed in [52] is adopted to represent these forces.

The construction of this model involves three steps. First, denote by Fd(t) and

Fl(t) the projections of F (t) on the coordinate system aligned with the instan-

taneous direction of the wind velocity γ(t) = β + δ(t) (measured by the angle

between x′1 and x0,1, where δ(t) = arcsin [ṽ(t)/V (t)]), in which H3 is the height

of the floor, U = U [(0, 0, H3)], ũ(t) = ũ[(0, 0, H), t], ṽ(t) = ṽ[(0, 0, H), t], and

V (t) =
√
U + ũ(t)2 + ṽ2(t). As shown in Fig. 4.1(b), Fx(t) and Fy(t) relate Fd(t)
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Figure 4.1: (a) Side and (b) top views of the building

and Fl(t) through

Fx(t) = Fd(t) cos δ(t)− F1(t) sin δ(t), (4.2)

Fy(t) = Fd(t) sin δ(t)− F1(t) cos δ(t), (4.3)

Second, set

Fd(t) = ρV 2(t)Cd[γ(t)]B/2, and Fl(t) = ρV 2(t)Cl[γ(t)]B/2, (4.4)

where ρ = air density; B = reference width of the building; and Cd[γ(t)]

and Cl[γ(t)]= nondimensional force coefficients corresponding to Fd(t) and

Fl(t),respectively [52]. The Taylor expansion of Cd[γ(t)] and Cl[γ(t)] at β gives

Cd[γ(t)] = Cd + C ′dδ(t) +O[δ2(t)]

Cl[γ(t)] = Cl + C ′dδ(t) +O[δ2(t)],

(4.5)

where Ck = Ck(β), and C ′k = θCk[γ(t)/θγ(t)]γ(t)=β , k = d, l. Eqs. 4.4 and 4.5 are

substituted into Eqs. 4.2 and 4.3. Under the assumption of small δ(t), Eqs. 4.2
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and 4.3 become

Fx(t) =
1

2
ρU

2
B2Cm + ρUũ(t)Cd +

1

2
ρũ2(t)BCd +

1

2
ρU (̃v)(t)B(C ′d − C1), (4.6)

Fl(t) =
1

2
ρU

2
BCl + ρUũ(t)BCl +

1

2
ρUṽ(t)B(Cd + C ′l), (4.7)

Analogously, torque Mz(t) has the form

Mz(t) =
1

2
ρU

2
B2Cm + ρUũ(t)B2Cm +

1

2
ρUṽ(t)B2C ′m, (4.8)

with the notations Cm = Cm(β) and C ′m = θCm[γ(t)]/θγ(t)|γ(t)=β . Third, due to

the presence of vortex shedding in the rear region of the building, additional

forces associated with wake excitations are added linearly to Eqs. 4.6-4.8. Then

the non-dimensional forms of Eqs. 4.6-4.8 are

Cx(t) =
Fx(t)

1
2
ρU

2
B

= Cd + 2
ũ(t)

U
Cd +

ũ2(t)

U
2 Cd +

ṽ(t)

U
(Cd − C ′l) +Wx(t), (4.9)

Cy(t) =
Fy(t)

1
2
ρU

2
B

= Cl + 2
ũ(t)

U
Cl +

ṽ(t)

U
Cd +

ṽ(t)

U
(Cd + C ′l) +Wy(t), (4.10)

Cz(t) =
MZ(t)
1
2
ρU

2
B

= Cm + 2
ũ(t)

U
Cm +

ṽ(t)

U
C ′m +Wz(t), (4.11)

where Cx(t), Cy(t), and Cz(t) = non-dimensional along-wind, across-wind, and

torsional force coefficients; andWx(t),Wy(t) andWz(t) = zero-mean along-wind,

across-wind, and torsional force coefficients associated with wake excitations,

respectively.

Turbulence fluctuations ũ(t) and ṽ(t) can be modeled by Gaussian processes

[26]. Assume that Wk(t), k = x, y, z, are independent Gaussian processes, then

Cy(t) and Cz(t) are Gaussian processes while Cx(t) is a non-Gaussian process,

which is consistent with the experimental observations.

Eqs. 4.9-4.11 can be simplified for zero-mean wind direction, i.e., β = 0. In

this special case, turbulence fluctuations ũ(t) and ṽ(t) are regarded to be inde-

pendent because of the symmetry of the flow field that indicates E[ũ(t)ṽ(t)] = 0
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and experimental observations (Appendix C). Moreover, C ′d = Cl = Cm = 0 and

Wx(t) contribute insignificantly to Cx(t) [54]. Accordingly, Eqs. 4.9-4.11 yield

Cx(t) = Cd + 2
ũ(t)

U
Cd +

ũ2(t)

U
2 Cd, (4.12)

Cy(t) =
ṽ(t)

U
(Cd + C ′l) +Wy(t), (4.13)

Cy(t) =
ṽ(t)

U
C ′m +Wz(t), (4.14)

In this special case, along-wind force coefficient Cx(t) is independent of Cy(t)

and Cz(t).

4.3.2 Second-moment characterization

Let C(t) = [Cx(t), Cy(t), Cz(t)]
T be the non-dimensional wind-load vector pro-

cess. The second-moment properties of C(t) are shown for the zero-mean wind-

direction case. First, the mean of C(t), E[C(t)] , is [Cd{1 + E[ũ2(t)]/U
2}, 0, 0]T .

Second, denote by Γkq(T ) = E[Ck(t + γ)Cq(t)] − E[Ck(t + γ)Cq(t)], k, q = x, y, z

the covariance functions between two arbitrary components ofC(t), where γ de-

notes the time lag. The spectral densities of wind loads are Skq(v) = F [Γkq(γ)],

where v is the circular frequency and F is the Fourier transform operator. These

spectral densities have the expressions

Sxx(v) =
4C2

dSũ(v)

U
2 +

C2
dSũ2(v)

U
4 , (4.15)

Syy(v) =
(Cd + C ′l)Sv(v)

U
2 + Swy(v), (4.16)

Szz(v) =
C ′mSv(v)

U
2 + Swz(v), (4.17)

Sxy(v) = Sxz(v)) = 0, (4.18)
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Syz(v) =
(Cd + C ′l)C

′
mSv(v)

U
2 , (4.19)

with the notations Sη(v) = F{E[η(t + γ)η(t)]}, η = u, v, Sũ2(v) =

FE[ũ2(t+ γ)ũ2(t)] and Swξ(v) = FEWξ(t+ γ)Wξ(t), ξ = y, z. Eqs. 4.15-4.19

relate the wind-load spectral densities with the spectral densities if turbulence

fluctuations and wake excitations and wake excitations for which models are

provided in the following section.

4.3.3 Turbulence and wake excitation modeling

Two models for Sη(v) , η = u, v and SWξ
(v), ξ = y, z are discussed. Model

1 is referred to as the empirical model that follows from an extensive series

of experiment observations and some information regarding the physics of the

turbulence. Model 2 represents the turbulence fluctuation and wake excitation

terms by filtered Gaussian processes of which the functional forms are selected

such that the resulting spectral densities match the empirical model as closely

as possible.

Model 1: Empirical model

The generalized empirical model for Sη(v), denoted by S(1)
η (v), has the expres-

sion [53]
vS

(1)
η (v)

U2
∗

=
nS

(1)
η (n)

U2
∗

=
Aηf

aη

(Cη +Bηf bη)Dη
, (4.20)

where n = frequency measured in hertz; U∗ = friction velocity; f = nH3/U are

the Monin coordinates; and Aη, Bη, Cη, Dη, aη and bη = parameters to be de-

termined. Denote by fm,η the f value in correspondence of the peak value of
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nS
(1)
η̃ (n). Because the spectral densities in the inertial subrange are governed by

the Kolmogorov hypotheses, i.e., nS(1)
η̃ (n)/U2

∗ ∝ f−2/3, Eq.4.20 can be simplified

to
vS

(1)
η (v)

σ2
η

=
nS

(1)
η (n)

σ2
η

=
Cηf/f

γη
mη

[1 + 1.5γη(f/fmη)βη ](2/3+γη)/βη
, (4.21)

where σ = standard deviation of the turbulence; βη and γη = parameters defin-

ing the peakedness of the spectral densities; and cη = 1/
∫∞

0
[f/f

γη
mη]/[v +

1.5vγη(f/fmη)
βη ](2/3+γη)/βηdv guarantees that

∫∞
0
S

(1)
η̃ (v)dv = σ2

η .

The spectral density S(1)
Wξ

(v) based on the empirical model takes the form

S
(1)
Wξ

(v) = σ2
Wξ
gWξ

, (4.22)

where σWξ
= standard deviation of the force coefficients due to wake excitations;

and gWσ is assumed to have the form [55]

gwξ =
1√

πdξvwξ
exp

−(1− v
vwξ

dξ

)2
 , (4.23)

where dξ = bandwidth parameter; and vWσ denotes the vortex shedding fre-

quency.

Eqs. 4.21 and 4.22 generally provide satisfactory agreements with experi-

mental observations. However, the he empirical model has one limitation. Few

methods can be utilized to estimate the properties of the responses. Classical

Monte Carlo simulation is one of the candidate methods that infers the statistics

of the responses from response samples that are obtained by solving determinis-

tic versions of equation of motion corresponding to samples of ũ(t), ṽ(t),Wy(t),

and Wz(t). The required sample size is large if, e.g., mean outcrossing rate is

examined, so the computational time can be significant.
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Wind load Mean Variance Skewness Kurtosis
Cx(t) 1.1250 0.0920 0.6305 3.7304
Cy(t) -0.0322 0.2148 -0.0262 3.0330
Cz(t) -0.0083 0.0051 -0.0272 3.5969

Table 4.1: Statistics of Nondimensional Wind Loads

Model 2: Mathematical model

The turbulence fluctuation and wake excitation terms are modeled by fil-

tered Gaussian processes that have similar spectral densities as the empirical

model. Turbulence fluctuations ũ(t) and ṽ(t) can be described by the Ornstein-

Uhlenbeck processes [26]

dη̃(t) = −αηη̃(t)dt+ σ2
η

√
2αηdBη(t), (4.24)

and Wy(t) and Wz(t) are modeled by the responses of linear systems driven by

Gaussian noise, i.e.

dWξ(t) = DξWξ(t)dt+ gξdBξ(t), (4.25)

where Wξ(t) = [Wξ(t),Wξ(t)]
T ; gξ = [0, βξ]

T ;Dξ = matrix with components

Dξ(1, 1) = 0, Dξ(1, 2) = 1, Dξ(2, 1) = −θ2
ξ , and Dξ(2, 2) = −2γ − ξθξ; and

Bη(t), Bξ(t) = independent standard Brownian motions. The spectral densities

corresponding to the models in Eqs. 4.24 and 4.25 are

S
(2)
η̃ (v) = F{E[η̃(t)η̃(t+ γ)]} =

2αησ
2
η

[π(v2 + α2
η)]
, (4.26)

S
(2)

ũ2 (v) = F{E[ũ2(t)ũ2(t+ γ)]} =
8αuσ

4
u

[π(v2 + 4α2
u)]
, (4.27)

S
(2)
Wξ

(v) = F{E[Wξ(t)Wξ(t+ γ)]} =
β2
ξ

[(v2 − θ2
ξ)

2 + 4γ2
ξv

2θ2
ξ ]
, (4.28)

where the parameters αη, ση, θξ, γξ, and βξ are selected by minimizing the norms∥∥∥S(2)
η̃ (v)− S(1)

η̃ (v)
∥∥∥ and

∥∥∥S(2)
Wξ

(v)− S(1)
Wξ

(v)
∥∥∥. Unlike the unfavorable feature of
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Model 1, Model 2 provides an alternative method to estimate the response prop-

erties. This method is more efficient than Monte Carlo simulation.

The structural responses are approximated by translation processes that re-

quire knowledge of the marginal distributions as well as the second-moment

properties of the marginal distributions an well as the second-moment proper-

ties of the responses. The second-moment properties, i.e., the mean and cor-

relation functions of responses, are calculated from those of the wind loads.

Marginal distributions are fitted to the marginal moments that can be obtained

from moment equations derived from Itô’s formula. The resulting translation

processes can then be utilized to assess the structural performances.

4.4 Experimental data and model calibration

The experimental records used in this analysis are described, several assump-

tions are validated, and the algorithm for model calibration is illustrated by one

example.

4.4.1 Experimental data

The wind tunnel records from Shimizu Corporation Laboratories for zero wind

direction are used in this analysis. The mean wind velocity profile corresponds

to the urban terrain. The model is a 25-story building with square cross sec-

tion and has 500 wind pres-sure taps uniformly distributed on its sides. The

length scale used for the model is 1:400. A total of 32,768 measurements of

nondimensional pressure coefficients are recorded continuously with 1,000-Hz
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measurement frequency. Further details can be found in [37].

Under the assumption that the pressure field is stationary and ergodic, statis-

tics of non-dimensional wind loads Cx(t), Cy(t), and s can be estimated by av-

eraging the time records. Table 1 shows the first four marginal moments of

the wind loads at the 12th floor. The mean and standard deviation of Ck(t)

are denoted by µk and σk, and C̃k(t) = [Ck(t) − µk]/σk is set as the normal-

ized wind load. Fig. 4.2(a) shows the marginal densities of Ck(t) and stan-

dard normal distribution. C̃x(t) presents more non-Gaussian features than C̃y(t)

and C̃z(t). This observation supports the formulation of the wind-load model.

Fig. 4.2(b) shows the correlation functions E[C̃x(t + γ)C̃y(t)], E[C̃x(t + γ)C̃z(t)],

and E[C̃y(t + γ)C̃z(t)], which can be viewed as the corresponding correlation-

coefficient functions between [Cx(t), Cy(t)], [Cx(t), Cz(t)], and [C − y(t), Cz(t)].

Cx(t) is almost uncorrelated with Cy(t) and Cz(t), i.e., E[Cx(t + γ)Cy(t)] =

E[Cx(t+γ)Cz(t)] = 0. From Eqs. 4.12-4.14,E[Cx(t+γ)Cy(t)] andE[Cx(t+γ)Cz(t)]

are proportional to E[ũ(t+ γ)ṽ(t)]. This implies the independence between ũ(t)

and ṽ(t) because it is assumed that ũ(t) and ṽ(t) are Gaussian.

4.4.2 Model calibrations

The parameters of both models defined are fitted to the experimental obser-

vations. Let Skk(ν; Θ), k = x, y, z, be the functional forms of spectral densities

with a vector Θ of parameters, e.g., Θ = [αu, σu] for the spectral density of the

along-wind force based on Model 2. The algorithm for model calibration has

two steps. First, spectral densities of the wind loads are estimated from experi-

mental records. Denote by Skk(ν), k = x, y, z the corresponding estimates of the
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Figure 4.2: Statistics of C̃x(t), C̃y(t), and C̃z(t) : (a) marginal densities; (b) corre-
lation functions

,

Figure 4.3: Example of model calibration for (a) along-wind force Cx(t); (b)
across-wind force Cy(t); (c)torque Cz(t)

,

spectral densities. Second, parameters Θ are selected by minimizing the error∫
[Skk(ν; θ)− Ŝkk(ν)]

2
dv.

Fig. 4.3 shows one example for model calibration. The lighter solid lines

are the estimates Ŝkk(ν) obtained from experimental records. The dashed and

darker solid lines are the spectral densities Skk(ν,Θ) based on Models 1 and 2

fitted to Ŝkk(ν) by the preceding algorithm. Both models match satisfactorily

with the experimental observations.
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4.5 Response analysis

The detailed procedure to construct translation models for the responses

based on Model 2 is shown. Let X(t) = [X1(t), X2(t), X3(t)]T be the three-

dimensional response vector process for the linear system. The components

of X(t), X1(t), X2(t), and X3(t) are along-wind and across-wind displacements

and rotation, respectively. The vector process X(t) satisfies the equation of mo-

tion for a three-degrees-of-freedom system

MX(t) +DX(t) +KX(t) = C(t), (4.29)

where M, D, and K = mass, damping, and stiffness matrices; and C(t) =

[Cx(t), Cy(t), Cz(t)]
T is the wind-load vector process, where Cx(t), Cy(t), and

Cz(t) are given by Eqs. 4.12-4.14. Let Ψ = [ψ1, ψ2, ψ3] be a 3 × 3 matrix whose

columns are modal shapes and

Y (t) = Ψ−1X, (4.30)

be the modal responses. Writing Eq. 4.29 in terms of Y (t) gives

Ÿk(t) + 2ζkωkẎk(t) + ω2
kYk(t) =

Ĉk(t)

Mk

, k = 1, 2, 3, (4.31)

where Yk(t) = components of Y (t); and ζk, ωk, and Mk = modal damping ratios,

natural frequencies, and masses. The modal forcing functions have the expres-

sions Ĉk(t) = [ΨTC(t)]k. Without loss of generality, Mk = 1 is set.

4.5.1 Second-moment properties

The mean ofX(t) is defined byE[X(t)] =
∑3

k=1 ψkE[Yk(t)] =
∑3

k=1 ψkE[Ĉk(t)]/ω
2
k.

This equation results from Eqs. 4.30 and 4.31.
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Similarly, the spectral density of X(t), denoted by SX(ν), is

SX(ν) = F{E[X(t+ γ)XT (t)]} =
3∑

k=1

3∑
q=1

ψ
k
ψTq SYkYq(ν), (4.32)

where SYkYq(ν) = cross-spectral density of arbitrary modal displacement pairs

Yk(t), Yq(t), k, q = 1, 2, 3.SYkYq(ν) can be calculated in two steps. First, Yk(t), Yq(t)

follows the equation [21](p. 189)

d

dt
Ỹ (t) = AỸ (t) + gC(t) =

 Ak 0

0 Aq

 Ỹ (t) + gC(t), (4.33)

where Ỹ (t) = [Yk(t), Ẏk(t), Yq(t), Ẏq(t)]
T ; Ĉ(t) = [Ĉk(t), Ĉq(t)]

T ; g = 4 ∗ 2 ma-

trix with the first column [0, 1, 0, 0]T and the second column [0, 0, 0, 1]T ; and

Ak = 2 ∗ 2 matrix with components Ak(1, 1) = 0, Ak(1, 2) = 1, Ak(2, 1) = −ω2
k,

and Ak(2, 2) = −2ζkωk. Second, let SỸ (ν) = FE[Ỹ (t+ γ)Ỹ T (t)] and SC(ν) =

E[C(t+ γ)CT (t)] be the spectral densities of Y (t) and C(t), respectively. SY (ν)

relates SC(ν) through the equation [21](p. 195)

SỸ (ν) = H∗(ν)SC(ν)HT (ν), (4.34)

where ∗ indicates the complex conjugate; andH(ν) = (
√
−1νI−A)−1g, in which

I is a 4× 4 identity matrix. SYkYq(ν) is the component (1,3) or (3,1) of SY (ν)

Fig. 4.4 shows one example for the spectral densities of modal responses. The

solid line is the estimate from experimental records and dashed line is calculated

from Eq. 4.34.

4.5.2 Marginal moments and distributions

Moment equations developed from Itô’s formula are used to calculate exactly

the marginal moments of X(t), then its marginal distributions are inferred.
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LetXi(t), i = 1, 2, 3, be the ith component ofX(t). The nth marginal moments

E[Xn
i (t)] of Xi(t) have the expression

E[Xn
i (t)] = E{[ψi,1Y1(t) + ψi,2Y2(t) + ψi,3Y3(t)]n}

=
∑
α,β,γ

n!

α!β!γ!
ψαi,1ψ

β
i,2ψ

γ
i,3E[Y α

1 (t)Y β
2 (t)Y γ

3 (t)], (4.35)

in which α+β+γ = n; and ψi,1, ψi,2, and ψi,3 = first, second, and third component

of mode ψi, respectively. The values of Yk(t), k = 1, 2, 3, are governed by Eq. 4.31

and the Ĉk(t) = ψk,1Cx(t) + ψk,2Cy(t) + ψk,3Cz(t). Substituting the preceding

expression in Eq. 4.31 gives.

Ÿk(t) + 2ζkωkẎk(t) + ω2
kYk(t) = ψk,1Cx(t) + ψk,2Cy(t) + ψk,3Cz(t), (4.36)

Because Eq. 4.36 is linear, Yk(t) is decomposed by Yk(t) = ψk,1Yk,x(t) +

ψk,2Yk,y(t) + ψk,3Yk,z(t), where Yk,x(t), Yk,y(t) and Yk,z(t) are the responses

corresponding to wind loads Cx(t), Cy(t), and Cz(t), respectively. Then

E[Y1(t)αY2(t)βY3(t)γ] are calculated from the moments of Yk,x(t), Yk,y(t) and

Yk,z(t) by

E[Y α
1 (t)Y β

2 (t)Y γ
3 (t)]

=
∑

α1α2α3

∑
β1β2β3

∑
γ1γ2γ3

α!

α1!α2!α3!

β!

β1!β2!β3!

γ!

γ1!γ2!γ3!
=

3∏
i=1

ψαi1,i

3∏
j=1

ψ
βj
2,j

3∏
k=1

ψγk3,k

E[Y α1
1,x(t)Y β1

2,x(t)Y
γ1

3,x(t)]E[Y α2
1,y (t)Y β2

2,y(t)Y
γ2

3,y(t)Y
α3

1,z (t)Y β3
2,z (t)Y

γ3
3,z(t)]

(4.37)

where α1 + α2 + α3 = α; β1 + β2 + β3 = β; and γ1 + γ2 + γ3 = γ.

The preceding equation follows from the fact that Yk,x(t) are independent

of Yk,y(t) and Yk,z(t). Because Cy(t) and C(t) are correlated Gaussian pro-

cesses, so are the responses Yk,y(t) and Yk,z(t), and higher-order moments

of Yk,y(t) and Yk,z(t) in Eq. 4.37 result from their second-moment proper-

ties. Let µ(α1, α
′
1, α2, α

′
2, α3, α

′
3, r) = E[Y α1

1,x(t)Ẏ
α′1

1,x(t)Y β1
2,x(t)Ẏ

β′1
2,x(t)Y

γ1
3,x(t)Ẏ

γ′1
3,x(t)ũ(t)]
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be the moments of vector [Y1,x(t), Ẏ1,x(t), Y2,x(t), Ẏ2,x(t), Y3,x(t), Ẏ3,x(t), ũ(t)].

µ(α1, α
′
1, α2, α

′
2, α3, α

′
3, r) satisfy the moment equations derived from Itô’s for-

mula [25], i.e.

0 = α1µ(α1 − 1, α′1 + 1, ...) + α2µ(..., α2 − 1, α′2 + 1, ...) + α3µ(..., α3 − 1, α′3 + 1, r)

− α′1ω2
1µ(α1 + 1, α′1 − 1, ...)− β′1ω2

2µ(..., β1 + 1, β′1 − 1, ...)

− γ′1ω2
3µ(..., γ1 + 1, γ′1 − 1, r)− (2α′1ζ1ω1 + 2β′1ζ2ω2 + 2γ′1ζ3ω3 + rαu)µ(...)

+ α′1Cd

2∑
p=0

alµ(α1, α
′
1 − 1, ..., r + l) + β′1Cd

2∑
p=0

alµ(..., β1, β
′
1 − 1, ..., r + l)

+ γ′1Cd

2∑
p=0

alµ(..., γ1, γ
′
1 − 1, ..., r + l) + r(r − 1)αuσ

2
uµ(..., r − 2), (4.38)

with the notations a0 = 1, a1 = 2/U
2
, and a2 = 1/U

2
. The set of these mo-

ment equations is expressed in closed form so that µ(α1, α
′
1, α2, α

′
2, α3, α

′
3, r)

can be exactly calculated. The moments of Yk,x(t) are obtained by setting

E[Y α1
1,x(t)Y β1

2,x(t)Y
γ1

3,x(t)] = µ(α1, 0, β1, 0, γ1, 0, 0).

Denote by µi(n) the nth marginal moment E[Xn
i (T )].The marginal distribu-

tion if Xi(t) is approximated by F̂i(x) =
∑N

j=1 pijF̂ij(x), whereF̂ij(x) are the

preselected distributions with mean µi(1) and variance µi(2) − µi(1)2, pij ≥ 0,

are the parameters that minimize the error
∑4

n=1 [µi(n)− µ̂i(n)]2 under the con-

straint
∑N

j=1 pij = 1 in which [µ̂i(n), n = 1, ...., 4] are the marginal moments of

F̂i(x). Note that F̂i(x) are non-Gaussian because the along-wind forces are non-

Gaussian

Response Translation Models The previous sections have shown that (1)

structural responses are non-Gaussian, and (2) the marginal distributions and

the second moment properties of the responses can be estimated. In order

to model these responses, so-called translation models that constitute one-to-
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one mappings between Gaussian processes and non-Gaussian processes that

have the target marginal distributions and similar second-moment properties

are used. The components XT,i(t) of the translation model XT (t) are defined by

XT,i(t) = F̂−1
i Φ[Zi(t)] (4.39)

where Φ denotes standard Gaussian distribution; and [Zi(t)] = components of

Z(t), which is a Gaussian vector process with zero mean, unit variance, and

spectral density SZ(ν) ≥ 0 that minimizes the difference between the spectral

density of XT (t), SXT (ν), and SX(ν). The properties of this translation model

can be found in, e.g., [17](Section 3.1.1). Based on the observation that the dis-

crepancy between these two spectral densities is generally small irrespective of

the choice of SZ(ν). The probability law of the translation model XT (t) is fully

characterized.

4.5.3 Mean outcrossing rates

Suppose the system in Eq. 4.29 is safe if its responses approximated by XT (x)

do not leave the rectangular safe set Dx = ×3
i=1[−ζxi, ζxi], where xi > 0 is

constant and ζ > 0 is the scale factor controlling the size of the safe set. The

average number crossings of XT (t) out of Dx per unit of time, referred to an

mean Dx-outcrossing rate, are of interest. Denote the image of the safe set

Dx in the Gaussian space by Dz = ×3
i=1[z−i , z

+
i ], where z+

i = Φ−1[F̂i(ξxi)] and

z−i = Φ−1[F̂i(−ξxi)]. Because XT (t) crosses safe set Dx if and only if its mapped

Gaussian image Z(t) crosses Dz, the mean Dx-outcrossing rate coincides with

the mean Dz-outcrossing rate of Z(t), denoted by λDz . For arbitrary safe set, λDz
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Figure 4.4: Example for the spectral densities of modal responses:(a)
Y1(t); (b)Y2(t); (c)Y3(t)

,

Figure 4.5: Mean Dx-outcrossing rates:(a) linear scales; (b) logarithmic scales

has the form [21](p.300)

λDZ =

∫
∂Dz

u(z)f(z)dσ(z), (4.40)

where ∂Dz denotes the boundaries of the safe set Dz;∈ ∂Dz; f(z) = probability

density function of Z(t); σ(z) = surface area measured on ∂Dz; and

u(z) = E[Żn(t)+ | Z(t) = z] (4.41)

where Żn(t) + denotes the positive projection of the velocity Ż(t) on the outer

normal n(z) to ∂Dz.

For a rectangular safe set Dz with six planar boundaries, Eq. 4.40 yields

λDz =
3∑
i=1

[λ∂D
z+
i

+ λ∂D
z−
i

], (4.42)
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where λ∂D
z+
i

= mean rate at which Zi(t) crosses boundary ∂Dz+i
at distance Z+

i

from the origin and with outer normal n+
i along with the axis corresponding to

Zi(t); and λ∂D
z−
i

is defined similarly. The value of λ∂D
z+
i

can be calculated by

λ∂D
z+
i

= ui(Z
+
i )P (Z 6=i(t) ∈ ∂Dzi+ | Zi(t) = z+

i )f(z+
i ), (4.43)

where Z6=i(t) denotes Z(t) excluding Zi(t); and ui(z
+
i ) = E[Żi(t)+ | Z(t) = Z+

i ]

is the corresponding u(z) value on the boundary ∂Dz+i
, in which Żi(t) denotes

the ith component of Ż(t) and Z+
i ∈ ∂Dz+i

. Żi(t) is independent of Z(t) under

some conditions (Appendix D), and it is a Gaussian variable with mean zero and

variance ΓŻiŻi ,where ΓŻiŻi =
∫∞

0
ν2SŻiŻi(ν)dv and SŻiŻi(ν) is the spectral density

of Zi(t). Accordingly, ui(Z+
i ) becomes a constant u+

i , i.e., u
+
i = (ΓŻiŻi/2π)12. The

same procedure can be used to calculate λ∂D
z−
i

with threshold value z−i .

However, Eq. 4.43 may be computationally demanding because of the prob-

ability P (Z6=i(t) ∈ ∂DZi+ | Zi(t) = z+
i ). This paper proposes to estimate this

term from samples of Z(t) for relatively smallz+
i and set P (Z6=i(t) ∈ ∂DZi+ |

Zi(t) = z+
i ) ' 1 for relatively large values of z+

i . Then, λ∂D
z+
i

' u+
i f(z+

i ) for

relatively large z+
i .

Fig. 4.5 shows the mean Dx-outcrossing rate of X(t). The solid line is esti-

mated from the response samples that are obtained from the Monte Carlo sim-

ulation based on samples of the empirical model, the lighter dashed line is the

proposed approximation of Eq. 4.42. They are almost indistinguishable at the

figure scale in the tail region.
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4.6 Chapter summary

Probabilistic models have been constructed for wind loads based on (1) the ex-

isting wind-load model proposed in [52], and (2) the empirical or mathemat-

ical models for the second-moment properties of turbulence fluctuations and

wake excitations. The empirical model follows from the experimental observa-

tions and knowledge of the physics, while the mathematical model represents

the turbulence fluctuations and wake excitations by the filtered Gaussian pro-

cesses with similar second-moment properties as the empirical model. It has

been shown that both models agree with the experimental observations.

The mathematical model provides an efficient method to estimate the re-

sponse properties of linear systems relative to the classical Monte Carlo sim-

ulation. The responses are modeled by the translation processes calibrated to

the second-moment properties and the marginal distributions of the responses.

Linear random vibration theory is applied to find the target second-moment

properties, and the marginal distributions match the exact marginal moments

that are obtained by the moment equations developed from Itô’s formula. Then,

response properties are approximated by the corresponding properties of the re-

sulting translation processes. For example, crossing theory for translation pro-

cesses is used to assess the structural reliability. The accuracy of this approxi-

mation is satisfactory as shown in the numerical example.
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CHAPTER 5

CONCLUSIONS

5.1 Conclusions

This dissertation is concerned with the assessment of structural performance

during catastrophic wind events. The assessment involves two steps: (1) proba-

bilistic characterization of wind loads, and (2) statistical evaluation of structural

responses to wind loads.

For step 1, we demonstrated that Gaussian models are not adequate to rep-

resent wind loads obtained from experimental tests. The limitations of existing

non-Gaussian models, i.e., independent component analysis (ICA), third-order

SRM, polynomial chaos, and translation model, have been discussed and are

outlined as follows:

• ICA can represent exactly or asymptotically in tails the non-Gaussian ran-

dom vectors if (1) their characteristic functions satisfy special conditions,

or (2) their tails are independent. Nevertheless, the representation based

on ICA fails for a broad range of non-Gaussian vectors and is approxi-

mately Gaussian for high dimensional vectors.

• Third-order SRM cannot distinguish between processes which have the

same third-moment properties.

• Polynomial chaos approximation converges in L2 and in finite-

dimensional distribution to the target process. However, the convergence

rate is slow for estimating the distribution of extreme and the construction

of the approximation requires high truncation level for accuracy.
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• Translation model has been illustrated using a test case that it provides

better approximation on the distribution of extreme in comparison to the

third-order SRM and polynomial chaos. Its performance is superior if the

tail dependence of the target process is weak, but deteriorates as such de-

pendence increases.

In order to overcome the limitations of existing non-Gaussian models,

we proposed the use of copula-based Markov model. The model is capa-

ble of matching the marginal distribution and approximating satisfactorily the

second-moment and third-moment properties. The estimate on the distribution

of extreme based on this model is remarkable irrespective of the tail dependence

of the target process.

For step 2, an accurate and efficient method has been developed to esti-

mate the statistical properties of structural responses to wind loads. The struc-

tural responses have been approximated by the translation model calibrated to

the second-moment properties and the marginal distributions of the responses.

These two quantities have been obtained by linear random vibration theory and

moment equations, respectively. We showed that the reliability estimate based

on this method is accurate through numerical examples. In addition, the pro-

posed method is more efficient than the classical Monte Carlo simulation.

5.2 Future work

We identify two future directions of our work:
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• The copula-based Markov model shown in chapter 3 is developed for stochas-

tic processes which only represent the wind-load time series at one location on

the structure. Extension of this model will be required to incorporate the spatial

variation of wind loads in the analysis.

• Surrogate models will be considered as an alternative to the approach pre-

sented in chapter 4 to bypass the Monte Carlo simulation. They are more com-

putationally efficient, and have the potential to be more accurate in comparison

to the approach in chapter 4.
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APPENDIX A

PROOF OF THE THIRD-MOMENT CONVERGENCE OF THIRD-ORDER

SRM

First, note that c(τ1, τ2) =
∫∫
R2 B(ω1, ω2) exp[i(ω1τ1 + ω2τ2)]dω1dω2 =∫∫

A1+A2
B(ω1, ω2) exp[i(ω1τ1 + ω2τ2)]dω1dω2 +

∫∫
A3+A4

B(ω1, ω2) exp[i(ω1τ1 +

ω2τ2)]dω1dω2 +
∫∫

A5+A6
B(ω1, ω2) exp[i(ω1τ1 + ω2τ2)]dω1dω2, where A1, . . . , A6 are

areas labeled in Fig. A.1. By the symmetry properties of B(ω1, ω2) and integra-

Figure A.1: Partition ofR2
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tion by substitution, it can be shown that∫∫
A1+A2

B(ω1, ω2) exp[i(ω1τ1 + ω2τ2)]dω1dω2

=2

∫ ∞
0

∫ ∞
0

<(B(ω1, ω2)) cos(ω1τ1 + ω2τ2)

−=(B(ω1, ω2)) sin(ω1τ1 + ω2τ2)dω1dω2; (A.1)∫∫
A3+A4

B(ω1, ω2) exp[i(ω1τ1 + ω2τ2)]dω1dω2

=2

∫ ∞
0

∫ ∞
0

<(B(ω1, ω2)) cos(ω1(τ2 − τ1) + ω2τ2)

+ =(B(ω1, ω2)) sin(ω1(τ2 − τ1) + ω2τ2)dω1dω2; (A.2)∫∫
A5+A6

B(ω1, ω2) exp[i(ω1τ1 + ω2τ2)]dω1dω2

=2

∫ ∞
0

∫ ∞
0

<(B(ω1, ω2)) cos(−ω1τ1 + ω2(τ2 − τ1))

−=(B(ω1, ω2)) sin(−ω1τ1 + ω2(τ2 − τ1))dω1dω2. (A.3)

We derive Eq. A.2 for illustration. From the observation in Fig. A.1,∫∫
A3

B(ω1, ω2) exp[i(ω1τ1 + ω2τ2)]dω1dω2

=

∫ 0

−∞

∫ ∞
−ω1

B(ω1, ω2) exp[i(ω1τ1 + ω2τ2)]dω2dω1 (A.4)

Set ω1 = −ω′1 and ω2 = ω′1 + ω′2. By integration by substitution, Eq. A.4 yields∫∫
A3

B(ω1, ω2) exp[i(ω1τ1 + ω2τ2)]dω1dω2

=

∫ ∞
0

∫ ∞
0

B(−ω′1, ω′1 + ω′2) exp[i(−ω′1τ1 + (ω′1 + ω′2)τ2)]dω′2dω
′
1

=

∫ ∞
0

∫ ∞
0

B∗(ω′1, ω
′
2) exp[i(ω′1(τ2 − τ1) + ω′2τ2]dω′2dω

′
1, (A.5)

where B∗(ω′1, ω′2) denotes the complex conjugate of B(ω′1, ω
′
2) and the last equal-

ity follows from the symmetry properties of B(ω′1, ω
′
2). Similarly, we have∫∫

A4

B(ω1, ω2) exp[i(ω1τ1 + ω2τ2)]dω1dω2

=

∫ ∞
0

∫ ∞
0

B(ω′1, ω
′
2) exp[i(ω′1(τ1 − τ2)− ω′2τ2]dω′2dω

′
1. (A.6)
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The summation of Eqs. A.5 and A.6 yields Eq. A.2.

Second, we derive the expression of E[X̃SR
m (t)X̃SR

m (t + τ1)X̃SR
m (t + τ2)]. The

three non-zero terms in the expansion of E[X̃SR
m (t)X̃SR

m (t+ τ1)X̃SR
m (t+ τ2)] are

8
N∑
s=1

∑
ωk+ωl=ωs

√
Sp(ωk)Sp(ωl)S(ωs)∆ωk∆ωl∆ωsb2

p(ωl, ωk)

E[cos(ωkt− φk) cos(ωl(t+ τ1)− φl) cos((ωk + ωl)(t+ τ2)− (φk + φl + β(ωl, ωk)))];

(A.7)

8
N∑
k=1

∑
ωl+ωs=ωk

√
Sp(ωl)Sp(ωs)S(ωk)∆ωk∆ωl∆ωsb2

p(ωl, ωs)

E[cos((ωl + ωs)t− (φl + φs + β(ωl, ωs))) cos(ωl(t+ τ1)− φl) cos(ωs(t+ τ2)− φs)];

(A.8)

8
N∑
l=1

∑
ωk+ωs=ωl

√
Sp(ωk)Sp(ωs)S(ωl)∆ωk∆ωl∆ωsb2

p(ωk, ωs)

E[cos(ωkt− φk) cos((ωk + ωs)(t+ τ1)− (φk + φs + β(ωk, ωs))) cos(ωs(t+ τ2)− φs)].

(A.9)

The expectations in the above three expressions are

E[cos(ωkt− φk) cos(ωl(t+ τ1)− φl) cos((ωk + ωl)(t+ τ2)− (φk + φl + β(ωl, ωk)))]

=
1

4
cos(β(ωk, ωl)− [ωk(τ2 − τ1) + ωlτ2]); (A.10)

E[cos((ωl + ωs)t− (φl + φs + β(ωl, ωs))) cos(ωl(t+ τ1)− φl) cos(ωs(t+ τ2)− φs)]

=
1

4
cos(β(ωs, ωl) + [ωlτ1 + ωsτ2]); (A.11)

E[cos(ωkt− φk) cos((ωk + ωs)(t+ τ1)− (φk + φs + β(ωk, ωs))) cos(ωs(t+ τ2)− φs)]

=
1

4
cos(β(ωk, ωs) + [ωk(−τ1) + ωs(τ2 − τ1)]). (A.12)

By substituting Eqs. A.10, A.11, and A.12 into expressions A.7, A.8, and A.9,
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expressions A.7, A.8, and A.9 become

2
N∑
s=1

∑
ωk+ωl=ωs

|B(ωk, ωl)|∆ωk∆ωl cos(β(ωk, ωl)− [ωk(τ2 − τ1) + ωlτ2])

=2
N∑
s=1

∑
ωk+ωl=ωs

{<(B(ωk, ωl)) cos[ωk(τ2 − τ1) + ωlτ2]

+ =(B(ωk, ωl)) sin[ωk(τ2 − τ1) + ωlτ2]}∆ωk∆ωl; (A.13)

2
N∑
k=1

∑
ωl+ωs=ωk

|B(ωl, ωs)|∆ωl∆ωs cos(β(ωs, ωl) + [ωlτ1 + ωsτ2])

=2
N∑
k=1

∑
ωl+ωs=ωk

{<(B(ωl, ωs)) cos[ωlτ1 + ωsτ2]

−=(B(ωl, ωs)) sin[ωlτ1 + ωsτ2]}∆ωl∆ωs; (A.14)

2
N∑
l=1

∑
ωk+ωs=ωl

|B(ωk, ωs)|∆ωk∆ωs cos(β(ωk, ωs) + [ωk(−τ1) + ωs(τ2 − τ1)])

=2
N∑
l=1

∑
ωk+ωs=ωl

{<(B(ωk, ωs)) cos[ωk(−τ1) + ωs(τ2 − τ1)]

−=(B(ωk, ωs)) sin[ωk(−τ1) + ωs(τ2 − τ1)]}∆ωk∆ωs. (A.15)

Note that Eqs. A.13, A.14, and A.15 are the Riemann sums of Eqs. A.2, A.1, and

A.3, respectively. This implies that E[X̃SR
m (t)X̃SR

m (t + τ1)X̃SR
m (t + τ2)] converges

to c(τ1, τ2) as m→∞which completes the proof.
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APPENDIX B

EXAMPLES OF M -COPULAS

m = 2

Archimedean Copulas: C(u) = ϕ−1(ϕ(u1) + ϕ(u2)), where ϕ = continuous, strictly de-
creasing functions from [0, 1] to [0,∞) s.t. ϕ(0) = ∞, ϕ(1) = 0, and its inverse is com-
pletely monotonic, i.e., (−1)kdkϕ−1(x)/dxk ≥ 0.
Examples Parameters Properties Ref.
C(u) = (u−θ1 + u−θ2 − 1)−1/θ θ ≥ 0

symmetric [45]C(u) = exp
(
− [(− log u1)θ + (− log u2)θ]1/θ

)
θ ≥ 1

C(u) = u1u2/[1− θ(1− u1)(1− u2)] −1 ≤ θ < 1

Generalized Archimedean Copulas: C(u) = ψ
[∑2

j=1 hj1(ψ−1(u1))hj2(ψ−1(u2))/2
]
, where

ψ = continuous functions s.t. ψ(0) = 0, ψ(1) = 1, ψ′(x) > 0, ψ′′(x) ≥ 0, ∀x ∈ [0, 1],
and hjk(x), j, k = 1, 2,= differentiable and strictly increasing functions with hjk(0) = 0,
hjk(1) = 1, and

∑2
j=1 hjk(x)/2 = x.

Examples Parameters Properties Ref.
ψ(x) = − log(1− (1− e−θ)x)/θ θ ≥ 0

asymmetric [42]ψ(x) = (eθx − 1)/(eθ − 1) θ ≥ 0
h1k(x) = (ea1kx−1)/(ea1k−1), h2k(x) = 2x−h1k(x) 0 < a1k < 1.594
h1k(x) = (a1k+1)x/(1+a1kx), h2k(x) = 2x−h1k(x) −0.5 < a1k ≤ 1

Table B.1: Examples of m-copulas
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m = 3

Archimedean Copulas with Concordance: C(u) = ϕθ1(ϕ
−1
θ1
◦ϕθ2(ϕ−1

θ2
(u1)+ϕ−1

θ2
(u3))+ϕ−1

θ1
(u2)),

where ϕθ1 , ϕθ2 = functions ϕ defined in Archimedean Copulas with parameters θ1 and θ2.
Examples Parameters Properties Ref.
C(u) =

(
(u−θ21 + u−θ23 − 1)θ1/θ2 + u−θ12 − 1

)−1/θ1 θ1 > θ2 > 0 Partially
symm.∗, [34]

C(u) = exp
{
−
(
[zθ21 +zθ23 ]θ1/θ2 +zθ12

)1/θ1}, zk = − log uk θ1 > θ2 ≥ 1 concordant∗∗

m ≥ 3

Other Copulas with General Dependence:
Examples Parameters Properties Ref.

C(u) = exp
{
−
[m−1∑
l=1

m−l∑
k=1

((pkz
θ
k)
δk,k+l + (pk+lz

θ
k+l)

δk,k+l)1/δk,k+l +

m∑
k=1

νkpkz
θ
k

]1/θ}, zk = − log uk, pk = (νk +m− 1)−1

θ ≥ 1,
δk,k+l ≥ 1,
νk ≥ 1 Partially

symm.∗ [34]

C(u) = exp
{
−
[ m∑
k=1

zθk −
m−1∑
l=1

m−l∑
k=1

(
p
−δk,k+l
k+l z

−θδk,k+l
k+l +

p
−δk,k+l
k z

−θδk,k+l
k

)−1/δk,k+l
]1/θ}, zk = − log uk, pk = (νk +m− 1)−1

θ > 0,
δk,k+l > 0,
νk ≥ 0

Notes: ∗ If m ≥ 3, m-copulas is partially symmetric if their marginals of order 2 to m− 1 with consecutive arguments are equal. For
example, a 3-copula is partially symmetric if bivariate marginals C12(u1, u2) = C23(u1, u2),∀u1, u2. We require the partial symmetry
for m-copulas because of the stationarity of the Markov model Q̃m(t).

∗∗ Let C and C ′ be two 2-copulas. C ′ is more concordant than C, written C ≺c C ′, if C(u1, u2) ≤ C ′(u1, u2), ∀u1, u2. In this
example, we have C12 = C23 ≺c C13, where C12, C13, C23 are the bivariate marginals of the 3-copula whose subscripts correspond to
the reference subsets of collections of random variables.

Table B.2: Examples of m-copulas (Continue)
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APPENDIX C

PROPERTY FROM FLOW SYMMETRY

This section proves that E[ũ(t)ṽ(t)] = 0 if the flow geometry is symmetric

about the x1 − x3 plane. Denote by f(v1, v2;x, t) = ∂2F(v1, v2;x, t)/∂v1∂v2 the

probability density function of wind-velocity vector[u(X, t), v(X, t)]T , in which

x = [x1, x2, x3] and F(V1, V2;x, t) = P (u(X, t) ≤ v1, v(X, t) ≤ v2). Because of the

flow symmetry, the statistics is invariant under the reflection of the x2 coordi-

nate axis so that

f(v1, v2; [x1, x2, x3], t) = f(v1,−v2; [x1,−x2, x3], t), (C.1)

Then

E[v(0, 0, H3), t] =

∫ +∞

−∞

∫ +∞

−∞
v2f(v1, v2; [0, 0, H3], t)dv1dv2

=

∫ +∞

−∞

∫ +∞

−∞
(−v2)f(v1,−v2; [0, 0, H3], t)dv1dv2

= −E[v([0, 0, H3], t)] = 0

and

E[ũ(t)ṽ(t)] = E[u([0, 0, H3], t)ṽ([0, 0, H3], t)]

= E[u([0, 0, H3], t)v([0, 0, H3], t)]

=

∫ +∞

−∞

∫ +∞

−∞
v1v2f(v1, v2; [0, 0, H3], t)dv1dv2

=

∫ +∞

−∞

∫ +∞

−∞
(−v1v2)f(v1,−v2; [0, 0, H3], t)dv1dv2

= −E[u([0, 0, H3], t)v([0, 0, H3], t)]− E[ũ([0, 0, H3], t)ṽ([0, 0, H3], t)]

Hence, the desired property is obtained.
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APPENDIX D

PROOF OF THE INDEPENDENCE BETWEEN ŻI(T ) AND Z(T )

It is proven that Żi(t) is independent of Z(t) under some conditions. Without

loss of generality, set i = 1.

The proof has two steps. First, let ϕ(ν1, ν2, ν3)

= E(exp{[∑3
j=1 νjZj(t) + νYn(t)]i}) be the characteristic function of vector

[Z1(t), Z2(t), Z3(t), Yn(t)], where Yn(t) = [Z1(t + hn)− Z1(t)]/hn. It is shown that

limhn→0 ϕ(ν1, ν2, ν3, ν) = E(exp{[∑3
j=1 νjZj(t) + νŻ1(t)]i}), which is the charac-

teristic function of vector [Z1(t), Z2(t), Z3(t), Ż1(t)]. Under the assumption that

Z1(t) is mean square differentiable, Yn(t) → Ż1(t) in L2 so that Yn(t)
p−→ Ż1(t)

by Chebyshev’s inequality [23](p.143). Set Ẏn(t) =
∑3

j=1 νjZj + νYn(t) and

Ż(t) =
∑3

j=1 νjZj(t) + νŻ1(t), giving Ỹn(t)
p−→ Z̃1(t), then each subsequence

Ỹnk(t) of Ỹn(t) contain a subsequence Ỹnkq (t) such that Ỹnkq (t)
a.s.−−→ Z(t) [23](p.72).

Hence, the desired results are obtained by the continuity of characteristic func-

tion and bounded convergence theorem.

Second, the expression for limhn→0 ϕ(ν1, ν2, ν3, ν) is derived. The value of

limhn→0 ϕ(ν1, ν2, ν3, ν) can be expressed by

lim
hn→0

φ(ν1, ν2, ν3, ν)

=E

(
exp

{[(
ν1 −

ν

hn

)
Z1(t) +

ν

hn
Z1(t+ hn) + ν2Z2(t) + ν3Z3(t)

]
i

})
, (D.1)

Because Z1(t), Z2(t), and Z3(t) are standard Gaussian processes, Eq. D.1
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yields

lim
hn→0

φ(ν1, ν2, ν3, ν)

= lim
hn→0

exp

(
− 1

2

{
[2− 2ρ11(hn)]

ν2

h2
n

+ [2ρ11(hn)− 2]
νν1

hn
+ [2ρ12(hn)− 2ρ12(0)]

νν2

hn

+ [2ρ13(hn)− 2ρ13(0)]
νν3

hn
+ νTΣν

})
, (D.2)

where ρpq(hn) = E[Zp(t + hn)Zq(t)], p, q = 1, 2, 3; ν = [ν1, ν2, ν3]T ;

and Σ = 3 × 3 matrix whose first, second, and third columns are

[1, ρ12(0), ρ13(0)]T , [ρ12(0), 1, ρ23(0)]T , and [ρ13(0), ρ23(0), 1]T , respectively. Be-

cause Z1(t) is stationary and mean square differentiable, −∂2ρ11(hn)/∂h2
n|hn=0

exists and ∂ρ11(hn)/∂hn|hn=0 = 0. Under the hypotheses that ρ12(hn) = ρ12(−hn)

and ρ13(hn) = ρ13(−hn), ∂ρ12(hn)/∂hn|hn=0 = 0 and ∂ρ13(hn)/∂hn|hn=0 = 0.

Therefore

lim
hn→∞

φ(ν1, ν2, ν3, ν) = exp

{
−ν

2

2

[
−∂

2ρ11(hn)

∂h2
n

]
|hn=0

}
exp

(
−1

2
νTΣν

)
, (D.3)

in which the first term on the right-hand side is the characteristic function of

Ż1(t) and the second one is the characteristic function of Z(t). Hence, Ż(t) is

independent of Z(t).
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