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The fundamental surface chemistry of semiconductors in ambient environments is important to many 

applications of semiconductor materials, yet is poorly understood. Developing an understanding of how to 

control semiconductor surfaces using solution-based methods is critical, both as a method to rationally 

control surface structure, and as a means to study surface reactions at the molecular scale in the ambient 

conditions relevant to applications. This dissertation shows that both silicon and metal oxide 

semiconductors can be controlled and studied at the atomic scale using solution-based methods. In this 

work, scanning tunneling microscopy (STM) was used to investigate the structure of semiconductor 

surfaces, surface spectroscopy was used to study the chemical composition and orientation of adsorbed 

molecules, and computer simulations and calculations were used to verify and provide insight into 

experimental results. 

Using these methods, the solution-deposition of a nearly perfect organic monolayer of benzoate on 

atomically flat rutile (110) TiO2 was studied. The phenyl rings of benzoate molecules on rutile (110) were 

found to adopt an unexpected tetrameric structure as a result of π-π interactions, resolving a controversy 

surrounding the bonding geometry of benzoate molecules on this surface.  

In addition, the photoreactivity of TiO2 was studied using solution-deposited monolayers of benzoate and 

phenylphosphinate on anatase (001) and rutile (110). The photodecomposition kinetics of these 

monolayers in air was monitored with in-situ infrared spectroscopy, and the structures of the reacted 

surfaces were investigated with ex-situ STM. In all cases studied, the photoreaction kinetics followed 

unusual biexponential kinetics, in which the photodecomposition rate decreases by approximately two 

orders of magnitude after a fraction (typically ~25%) of the molecules have reacted. This trend in 

reactivity is proposed to result from changes in the magnitude of band bending at the surface. 
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Lastly, two solution-based methods for the functionalization of Si (111) surfaces were investigated with 

STM, surface spectroscopy, and kinetic Monte Carlo simulations. It was found that a methoxylation 

process unexpectedly etches the silicon surface, and a new direct method for the fluorination of Si (111) 

using HF(aq) was discovered. 
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Chapter 1 

 Introduction 

Semiconductor materials are used in a wide range of vital technologies. For example, silicon is essential 

to both the microelectronics and photovoltaics industries, whereas semiconducting metal oxides are used 

in dye-sensitized solar cells 1  and show promise in upcoming technologies such as carbon dioxide 

photoreduction2 or photocatalytic environmental remediation.3 A common aspect of these technologies is 

that they require precise control of the chemical composition or physical structure at the surface of the 

semiconducting material. The importance of surface control can be observed in the electronic properties 

of silicon devices, where increasing the roughness of the starting wafer from 2 to 10 Å RMS decreases 

channel mobility by a factor of four.4 It can also be seen in the photocatalytic performance of TiO2 

nanocrystals, where changing the dominant exposed crystal face results in a ~375% increase in 

reactivity.5 From both technological and scientific perspectives, it is desirable to obtain well-controlled 

surfaces using solution-phase chemistry. Despite their importance, the fundamental reactions necessary 

for the control of semiconductor surfaces from solution and the reactions that occur on their surface 

during application are poorly understood. As such, developing an understanding of how to control 

semiconductor surfaces from solution is critical, both as a method to rationally tailor chemical 

composition and structure but also as means to study fundamental surface reactions in technologically 

relevant conditions. 

Instead of in solution, the vast majority of fundamental surface research comes from samples prepared in 

ultra-high vacuum (UHV). One way of producing highly controlled surfaces in UHV is to bombard them 

with energetic ions to remove contamination, then to anneal the sample at high temperature to flatten the 

surface. A well-controlled rutile TiO2 prepared with this sputter-and-anneal method is shown in the 

scanning tunneling microscopy (STM) image of Figure 1.1(a). In this image, the surface is composed of 

atomically flat terraces, and the lines running along the surface are rows of individual undersaturated Ti 



 2

atoms. Another method employed to prepare materials for study is to directly grow them inside of an 

ultra-high vacuum chamber, such as in molecular-beam epitaxy.  

 

Figure 1.1(a) Scanning tunneling microscopy image of rutile (110) TiO2 prepared through 
sputtering and annealing in an ultra-high vacuum chamber. (b) Rutile (110) prepared 
using an aqueous etchant. White rectangle is the size of STM image in (a). 

Although these techniques are used to prepare the samples used in the vast majority of surface science 

studies and provide valuable fundamental insight, there are a number of associated drawbacks. One 

problem is that these ultra-high vacuum methods often result in the production of surface defect species. 

In the case of TiO2, these occur in the form of highly reactive sputter induced Ti3+ sites composing 5 - 

10% of the surface. These species are so reactive that they often dominate the observed reactivity of the 

material in ultra-high vacuum, yet do not survive upon exposure to air.6 As such, they have little relevance 

to the properties of TiO2 in actual applications. Another drawback is that ultra-high vacuum equipment is 

very expensive and can be cost-prohibitive as a production method in application. 

An attractive alternative method of producing highly controlled semiconductor surfaces is to prepare them 

using solution-phase chemistry, such as etching, deposition, or hydrothermal growth. This approach is 

desirable from a technological perspective, as it is often simpler and more cost-effective than UHV 

methods. From a scientific perspective, solution-based methods provide an ideal opportunity to study the 

fundamentals of surface reactivity in ambient conditions at the atomic scale. The exquisite degree of 

control that can be obtained using solution-phase etching of TiO2 is shown in Figure 1.1(b). This STM 
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image shows atomically flat terraces over large length scales separated by faceted, straight steps. In fact, 

this etched surface is even flatter over larger length scales than the surface prepared using UHV methods. 

Importantly, spectroscopic analysis of this etched surface shows that it is free of any reactive Ti3+ defect 

sites that would normally be present as a result of preparation in UHV.  

If solution-based methods are so effective, why are they not more commonly employed in surface 

studies? One barrier is that there is a general perception that solution-based methods yield surfaces that 

are too contaminated for use with surface science techniques, such as scanning tunneling microscopy. 

This dissertation shows that both metal oxide semiconductors and silicon can be precisely controlled at 

the atomic scale using solution-based methods and that these surfaces are compatible with the techniques 

of surface science. By taking this approach, the surface reactivity of semiconductors can be probed under 

technologically relevant conditions, providing rational insight into the improvement of technologies. 

One way of controlling the structure of a surface is through the formation of a self-assembled monolayer 

(SAM). Self-assembled monolayers are directly relevant to applications of metal oxides such as dye-

sensitized solar cells7 and organic field effect transistors.8 Additionally, they are of fundamental scientific 

value as a highly controllable method for studying the interaction of molecules with surfaces. Chapter 3 

describes the formation of nearly ideal SAMs of benzoate, a molecular analogue for dye molecules used 

in dye-sensitized solar cells, on atomically flat rutile TiO2 prepared entirely through solution-based 

methods. The uniformity of these solution-prepared monolayers can be seen in Figure 1.2(a), where each 

small protrusion in the image is the top of an individual benzoate molecule. A combination of STM, 

polarized spectroscopy, and computer simulation reveal an unexpected manifestation of π-π interactions, 

which results in a tetrameric arrangement of benzoate molecules on the surface. This discovery resolves a 

controversy over the favorable structure of benzoate on rutile9,10 and may have implications for the design 

of molecules used in dye-sensitized solar cells. 
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Figure 1.2 (a) Scanning tunneling microscope image of a benzoate monolayer on rutile 
(110) TiO2 prepared entirely in solution. (b) An equivalently prepared benzoate 
monolayer after 6 min of UV irradiation in an oxygen atmosphere. A fraction of the 
benzoate molecules are missing as a result of photoreaction. 

In addition to providing a method of controlling surface structure at the atomic scale, SAMs on metal 

oxides are an ideal platform for studying the photoreactivity of these materials in ambient conditions. 

Photocatalytic reactions on metal oxides show promise in several high profile applications such as carbon 

dioxide photoreduction,2 water splitting, 11  or photodegradation of pollutants.3 Unfortunately, these 

exciting technologies are not yet efficient enough for widespread use. One significant barrier to their 

improvement is that the fundamental reactions that occur on their surface in application are largely 

unknown.  

Chapter 4 describes how organic SAMs on metal oxide surfaces can be used to study the photoreactivity 

of metal oxides at the molecular scale in ambient conditions. High quality organic monolayers are 

prepared in solution on both important phases of TiO2, rutile and anatase, then exposed to UV light in 

either air or a pure oxygen environment. The above-bandgap radiation generates reactive electron-hole 

pairs, which initiate the photodecomposition of the molecules adsorbed to the surface. These reactions are 

monitored with either in-situ infrared spectroscopy or ex-situ STM and x-ray photoelectron spectroscopy 

of the reacted surface.  

In all cases studied, the photodecomposition reaction displays highly unusual kinetics, in which over the 

first few minutes of irradiation the reactivity of the surface drops by approximately two orders of 
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magnitude. This behavior is seen on both rutile and anatase TiO2 across many types of organic 

monolayers. Scanning tunneling microscopy of the reacted surface shows that this is not a result of 

heterogeneity, whereas statistical analysis of photoreacted benzoate monolayers, such as shown in Figure 

1.2(b), shows that the reaction is occurring randomly across the surface. 

This trend in reactivity is proposed to result from photoinduced changes in the magnitude of band 

bending. Upward band bending present in the initial phase of the reaction aids in charge separation and 

migration of reactive holes to the surface.12 After reaction, the magnitude of the upward band bending 

decreases, and thus the rate of reaction decreases due to the reduce hole flux to the surface. If the exact 

mechanism of this seemingly ubiquitous effect can be determined, it may be possible to prevent it and 

thus dramatically increase the reactivity of metal oxide photocatalysts. 

 

Figure 1.3 Scanning tunneling microscope image of atomically flat hydrogen-terminated 
silicon (111) after etching in NH4F(aq). 

In addition to metal oxide semiconductors, there are exciting technologies that require precise chemical 

functionalization of silicon surfaces. Approximately 30 years ago, it was discovered that silicon (111) 

etched in NH4F(aq) produced a nearly perfect surface, both from a structural13 and electronic14 point of 

view. The structural perfection of this hydrogen-terminated etched silicon surface is shown in the 

scanning tunneling microscope image of Figure 1.3, which displays atomically flat terraces separated by 
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straight steps. Despite intensive research, efforts to integrate further functionality, such as biological or 

chemical sensitivity to this desirable surface, have largely been stymied.  

The problem is that in order to maintain the electronic quality of the surface, oxidation of the silicon 

substrate must be strictly avoided both during functionalization and afterwards. As a result of this 

restriction, there are only two established methods for functionalizing hydrogen-terminated silicon,15,16 

which are prohibitively limited in their scope of surface terminations that can be produced. 

Ideally, a fraction of the hydrogen-terminated surface would be replaced with a functional group that 

allows further reactions, such as a hydroxyl group. This would allow the integration of functionalization 

reactions developed for silica or glass with the desirable properties of flat silicon (111). 

Michalak et al. recently achieved a breakthrough towards this goal,17 in which a hydrogen-terminated 

silicon (111) surface was partially hydroxylated without concomitant oxidation of the underlying silicon. 

This was accomplished through a solution-phase preparation consisting of sequential methoxylation, 

fluorination, then hydroxylation of the surface. While successful, this reaction was studied only with 

spectroscopic methods. As such, the structural evolution of the surface during these steps was unknown. 

Chapter 5 describes how during the course of investigating the mechanism of these reactions several 

unexpected discoveries were made. First, it was found that the methoxylation reaction unexpectedly 

resulted in slight etching of the surface. Even more surprisingly, the hydrogen-terminated surface can be 

directly fluorinated through an immersion in HF(aq). This provides an alternate method of producing 

hydroxylated silicon (111) free of the surface roughening induced during methoxylation. 

In summary, this thesis demonstrates that semiconductor surfaces, including metal oxides, can be 

controlled and studied at the atomic scale using solution-based methods. This represents a step forward 

towards the goal of understanding the surface reactivity of these important materials in the conditions 

where they are actually applied and the rational design of surface structure through solution-based 

methods.
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Chapter 2 

 Experimental Methods 

2.1 Tip preparation 

Tungsten wire used to make scanning tunneling microscopy (STM) tips was thermally recrystallized prior 

to etching. This process improves the shape of the resulting tip, leading to better performance in STM.1 A 

nominally 10 cm length of tungsten wire (0.125 mm, 99.95%, Goodfellow) was attached to two copper 

electrode feedthroughs by being clamped between two washers on each end as shown in Figure 2.1. The 

feedthrough flange with the wire attached was then mounted to a small vacuum chamber equipped with a 

turbo pump and ion gauge. Once the pressure in the chamber was below 10-5 mbar, the feedthrough 

terminals were attached to a power supply (TDK Lambda) operating in constant current mode, and the 

current was slowly ramped up to 3.05 A. This current was maintained for 30 min or until the wire broke 

(typically in ~25 min). Upon removal from the chamber, the two ends of the wire within 1.3 cm of the 

clamps were discarded, as they may not have reached the necessary temperature for recrystallization. 

 

Figure 2.1: Apparatus for annealing tungsten wire. Not to scale 

Recrystallized tungsten was electrochemically etched in KOH(aq) to obtain a sharp apex suitable for use 

in STM. The desired narrow structure is thought to form along the wire near the air/solution interface as a 

result of slower diffusion of OH− into the meniscus and shielding of the wire by falling etch products. 

Eventually, the narrow region became too weak to support the hanging length of wire, which broke off, 

leaving an extremely sharp tip.2 
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To etch tips, a section of wire was crimped to provide spring force within the tip collet, then securely 

inserted into a tip carrier with approximately 1.7 mm protruding from the front. This length was 

empirically determined to consistently provide high quality tips. The leg of the tip carrier in electrical 

contact with the tungsten wire was attached to an alligator clip, and then half of the tungsten wire was 

inserted into a 2 M aqueous solution of KOH containing a circular Pt electrode as shown in Figure 2.2. A 

constant voltage of +2 V was applied between the tip carrier and Pt electrode, resulting in the 

electrochemical etching of the wire.  To prevent over-etching of the tip, the differential current was 

monitored, and when it exceeded 64 mV (corresponding to tip drop-off) the bias on the tip was switched 

to -8.5 V to prevent spontaneous etching.3 

 

Figure 2.2: Setup for electrochemical etching of tungsten wire to make STM tips. 

Etched tips were inspected with an optical microscope to insure that the apex was sharper than can be 

resolved optically. Acceptably sharp tips were cleaned by immersion in H2O to remove KOH, then 

degreased by sequential immersion in trichloroethylene, acetone, and methanol, then rinsed in flowing 

H2O. 

Cleaned tips were then loaded into ultrahigh vacuum through an oil-free, turbomolecular-pumped load 

lock. To remove the native oxide and any surface contamination, tips were heated by electron 
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bombardment to a temperature >1000 °C. The tip was approached to a thoriated tungsten filament within 

a Wehnelt cone as show in Figure 2.3. Typically, the tip was biased at +1000 V and the filament current 

slowly increased until 1.2 mA of emission current was measured between the filament and tip for a period 

of 5 s. 

 

Figure 2.3 Schematic of tip flashing apparatus. 

Tips were then tested for performance in STM on clean samples. If images of acceptable quality could be 

obtained, tips were then sometimes further conditioned by field-directed sputter sharpening.4 This process 

cleans and sharpens the tip by bombardment with energetic Ar+ ions normal to the apex of the tip. 

Blunting of the tip is mitigated by applying a positive bias to the tungsten tip during sputtering. The local 

electric field enhancement at the apex reduces the ion flux impacting the surface. 

To perform field-directed sputter sharpening, tips were loaded into a specially modified tip carrier that 

allows the tip to be oriented in the correct direction and be biased. This special tip carrier is shown in 

Figure 2.4. An additional base plate was machined from a spare sample plate and spot-welded to the 

bottom plate of the tip carrier. This allows the tip carrier to be transported on a manipulator with the tip 

facing outward. The asymmetric cutout of this plate was chosen to allow proper clearance of wires on the 

STM piezo. Additionally, a stainless steel wire was spot-welded to the tip carrier so that it contacts the 



 11

loaded tip holder as shown in Figure 2.4. This provides the electrical connection for biasing the tip during 

sputtering, which would otherwise be electrically isolated. 

 

Figure 2.4: Schematic of sputtering tip carrier, both with and without a tip holder loaded. 
The additional plate, which allows the tip to be loaded upright and enter the manipulator 
is shown in dark grey. 

Once loaded, tips were sputtered with a standard set of conditions. The ion pump was turned off and the 

main gate valve opened to allow turbomolecular pumping of the main chamber. A leak valve was used to 

fill the chamber to 5.5×10-5 mB of Ar, and the tip was positioned such that the tip apex was facing the 

sputter gun. Sputtering was performed with an accelerating voltage of 1.5 kV and a +150 V shielding bias 

applied to the tip for a period of 40 min, with a typical sputter current of ~2 μA.  

Sputtering of tips can result in unintentional metal deposition on insulating materials of the tip holders, 

effectively grounding the tip. When this occurs, the auto-approach process will immediately stop upon 
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startup because the setpoint current will be detected flowing to the ground fault, instead of tunneling to 

the sample as intended.  

To prevent this, tip holders were modified by the addition of Cu sputter shields as shown in Figure 2.5. 

These discs were machined from oxygen free copper, with a diameter of 5.61 mm and nominal thickness 

of 0.65 nm. Shields were attached to the stem of the tip holder with UHV-compatible solder, being careful 

to avoid the formation of any inadvertent electrical connections between the stem and body of the tip 

holder. 

 

Figure 2.5: Tip holder with copper sputter shield attached. 

The tip carrier for sputtering was aligned with the sputter gun by visually observing the removal of a 

colored tantalum oxide film attached to an equivalent tip carrier. A uniformly colored tantalum oxide film 

was electrochemically prepared by immersing two clean sheets of tantalum in a ~0.5 M aqueous solution 

of KH2PO4 and applying 25 VDC to the tantalum sheets for several seconds to yield a dark purple color at 

the anode. The oxidized sheet was then spot welded to a spare tip carrier, degreased, and loaded into 

UHV. Sputtering was performed on the tantalum oxide film at 1.5 keV until a region of the film was 

visibly removed as shown in Figure 2.6. If the ions were not incident at the correct location, positional 

adjustments were made until the sputtered region corresponded to the where the tip would be in a loaded 

tip carrier. 
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Figure 2.6: Example of a sputtered tantalum oxide film attached to a tip carrier used to 
align the sputter gun with the location of a tip. 

 
2.2 Reflection Infrared Spectroscopy 

The chemical composition and orientation of molecular adsorbates on TiO2 surfaces were probed with 

reflection infrared spectroscopy. In comparison to multiple-internal-reflection infrared spectroscopy, 

reflection has less sensitivity, but is capable of detecting modes within the full range of the detector (650 

– 4,000 cm-1). In contrast, multiple internal reflection spectroscopy of TiO2 is limited to modes above 

~2,000 cm-1 by the multiphonon absorption of the substrate below this energy. 

Reflection infrared spectroscopy samples were mounted such that the infrared beam was incident on the 

surface at an angle of 80° as shown in Figure 2.7. The infrared beam reflected off a gold mirror, the 

surface of the sample, then a final gold mirror before passing through a ZnSe wire grid polarizer and 

reaching a mercury-cadmium-telluride detector. 



 14

 

Figure 2.7: Schematic of reflection infrared spectroscopy setup. Sample crystal is shown 
in blue and the path of infrared beam shown in red. 

An essential aspect of obtaining reflection infrared spectra on metal oxide samples was the reproducible 

alignment of the sample. The crystal must be replaced in the same orientation, and as close as possible to 

the exact position between each removal for chemical processing. Additionally, the sample must be free 

of any strain, such as from clips holding it in place. On the sample mount there were three protruding 

dowel pins, which allowed highly consistent, strain-free sample placement, even on crystals that are not 

perfectly square. The dowel pin in the plane of incidence protruded from the sample mount less than the 

typical crystal height (0.5 mm) to prevent shadowing the sample. 

Additionally, it was important to minimize reflections off any surfaces of the sample mount other than the 

crystal. To reduce reflectivity of the sample mount, the surface was sandblasted and any surface area not 

occupied by sample or necessary for sample exchange was covered with black duct tape. 

The interpretation of reflection infrared spectroscopy is not always straightforward, as the relative 

orientation of the transition dipole of the mode and the electric field of incident light can result in the 

formation of both positive and negative absorbances. Absorbance here is defined as A ≡ log(R0/R)  where 

R and R0 are the reflected intensities with and without the presence of an absorbing species, respectively. 

Essentially, the molecules on the surface can act as either a reflective or anti-reflective coating.5 The 

calculated sign of absorbance for adsorbates on rutile TiO2 probed with polarized infrared light is shown 

in Figure 2.8(b). Here the adsorbates are assumed to have dynamic dipoles aligned along the x, y, or z 

directions as defined by the crystal, with z normal to the surface. At the 80° angle of incidence used in 
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experiment, modes along the z direction probed with p-polarized light yield negative absorbances, 

whereas modes parallel to the surface probed with p-polarized light (x) yield positive absorbances. Modes 

in the plane of the surface probed with s-polarized light (y) yield negative absorbances. The expected sign 

of absorbance must be carefully considered while interpreting reflection infrared spectra. 

 

Figure 2.8: (a) The normalized reflectivity of rutile TiO2 in s- and p- polarization as a 
function of incident angle. (b) The relative absorbance of infrared modes aligned along 
the x, y, or z directions probed with s- and p-polarized infrared light. 

It may appear that the sensitivity of reflection infrared spectroscopy is maximized near Brewster’s angle, 

yet this effect is balanced by the low reflectivity of the surface as shown in Figure 2.8(a).
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Chapter 3 

 Solution Deposition of Self-Assembled Benzoate Monolayers on Rutile (110): 
Effect of Interactions on Monolayer Structure* 

Erik S. Skibinski, Anqi Song, William J. I. DeBenedetti, Amnon G. Ortoll-Bloch, and Melissa A. Hines* 

Dept. of Chemistry and Chemical Biology, Cornell University, Ithaca NY 14853 USA 

3.1 Abstract 

 High-quality, self-assembled benzoate monolayers were synthesized on rutile (110) using simple aqueous 

reactions. Sputtering and annealing cycles, which create surface and subsurface defects, were not needed. 

The monolayers were hydrophobic and remained largely contaminant free during exposures to laboratory 

air for tens of minutes. During this period, infrared spectroscopy showed that the monolayers did not 

spontaneously adsorb air-born hydrocarbons or other adventitious aliphatic species. Scanning tunneling 

microscopy (STM) images, infrared and x-ray photoemission spectra, Monte Carlo simulations, and ab 

initio calculations were all consistent with benzoate molecules adopting an edge-to-face ring geometry 

with their four nearest neighbors — a tetrameric bonding geometry. This bonding is further stabilized by a 

pairing interaction between adjacent benzoate molecules, a pairing that has previously been interpreted as 

dimerization. The coexistence of paired and unpaired regions of the monolayer is consistent with the 

relatively small additional energy gained by pairing and the cooperative nature of the pairing interaction. 

Monolayer stability is driven both by the strong bidentate bonding to unsaturated Ti atoms on the surface 

as well as by - interactions between adsorbates.  

  

                                                      
* Reprinted from Skibinski, E. S.; Song, A.; DeBenedetti, W. J. I.; Ortoll-Bloch, A. G.; Hines, M. A. 
Solution Deposition of Self-Assembled Benzoate Monolayers on Rutile (110): Effect of π–π Interactions 
on Monolayer Structure. J. Phys. Chem. C 2016, 120 (21), 11581–11589. Copyright 2016 American 
Chemical Society 
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3.2 Introduction 

The spontaneous formation of self-assembled monolayers from dilute solutions is of both scientific and 

technological importance. From a technological perspective, organic and inorganic molecules are often 

used to impart new functionality to a system. For example, the attachment of dye molecules with 

isonicotinic-acid-derived binding groups to TiO2 nanoparticles enables the broadband visible absorption 

necessary for dye-sensitized solar cells. 23 – 25  Self-assembled monolayers are also widely used as 

passivating layers to block unwanted surface reactions, such as those that form electronic trap sites or 

other unwanted defects. For example, silicon surfaces terminated by a monolayer of H atoms have 

electronic properties rivaling those of state-of-the-art gate oxides.26,27 From a scientific perspective, the 

structure of self-assembled monolayers reveals information about molecular interactions and monolayer 

formation — information that is necessary for the design of new monolayers with improved performance 

and stability. 

We demonstrate the formation of near-ideal benzoate monolayers on atomically flat rutile (110) surfaces 

using an entirely wet chemical process. In addition to its simplicity and low cost, this procedure avoids 

the use of sputtering and annealing cycles, which are known to create a significant density of chemically 

active surface and subsurface defects, such as O vacancies and Ti interstitials.28 

These high-quality benzoate monolayers, in combination with Monte Carlo simulations and ab initio 

calculations, reveal the structural origin of the “benzoate dimers” reported by previous researchers. 

Multiple scanning tunneling microscopy (STM) investigations29–31 of benzoic acid adsorption on rutile 

(110) have shown the apparent pairing of benzoate monomers, whereas similar studies32,33 found no 

evidence of pairing. In agreement with the latter experiments, computational investigations of potential 

dimer structures found no stable dimers.34  

We show that intermolecular interactions — primarily - interactions that are dominated by electric 

quadrupole and dispersion forces — lead to the formation of a repeating tetramer structure that stabilizes 

the monolayer. In the lowest energy state of this structure, adjacent molecules tilt toward one another, 
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leading to a paired or “dimer” topography in STM. While this tilting further stabilizes the monolayer, the 

energetic gain from tilting is comparable to thermal energy. As a result, the solution-prepared monolayer 

contains both paired and unpaired regions as well as other characteristic packing defects. 

This repeating tetramer is a common structural motif in aromatic crystals and monolayers. Tetramers are 

observed in the benzene crystal structure, and the structurally similar edge-to-face herringbone is found in 

organic thin films, such as pentacene35 or para-sexiphenyl (6P),36,37 adsorbed on amorphous substrates. 

This packing configuration stabilizes organic monolayers and affects their performance. For example in 

the case of pentacene, subtle changes in packing between the monolayer, thin-film, and bulk phases 

significantly affect the electronic properties of the organic layer.35  

The structural insights gained from this study when coupled with ongoing studies of monolayer reactivity 

will provide the basis for rational synthesis of, for example, dual-function monolayers that provide 

necessary chemical functionality while also preventing the formation of electronic trap states. 

3.3 Experimental and Computational 

Experimental Methods. Rutile (110) samples for ultrahigh vacuum (UHV) analysis (float zone or 

Verneuil) were thermally reduced in UHV at 700ºC for 5 min before use, whereas samples for infrared 

analysis (Verneuil) were beveled at 45° for analysis in the multiple-internal-reflection geometry. 

Immediately prior to use, all glassware was cleaned in a 1:1:5 solution by volume of 28% NH4OH (aq, 

BDG, ACS grade):30% H2O2 (aq, J.T. Baker, CMOS grade):ultrapure H2O (Milli-Q) at 80ºC for 10 min 

then rinsed with H2O.  

Rutile (110) samples were first etched to produce an atomically smooth surface 38  terminated by a 

monolayer of solvated bicarbonate39 by immersion in a 1:1:2 by volume NH4OH:H2O2:H2O solution at 

80°C for 10 min followed by a H2O rinse. This hydrophilic surface was used as a reference for all infrared 

spectra. Samples were then immersed in a 16 mM solution of benzoic acid (Sigma, >99%) at either 100°C 

or room temperature for 10 min. Both procedures produced hydrophobic, benzoate-terminated surfaces 
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that would become hydrophilic after as little as 5 sec re-immersion in H2O, consistent with monolayer 

removal. 

Samples were transferred to a UHV chamber through an oil-free load-lock or to a dry-air-purged infrared 

spectrometer (Nicolet 670). STM images were obtained in UHV at room temperature using recrystallized 

tungsten tips40 prepared by field-directed sputter sharpening.41 X-ray photoelectron spectroscopy (XPS) 

was performed with unmonochromated Mg K x-rays; the photoelectrons were collected at 45° or 70 

from the surface normal. Either a Shirley or a Tougaard baseline was removed from all reported spectra.42 

Small energy corrections (~0.05 eV) were applied to the reported spectra using published reference 

energies43 to offset mild band bending.44 The C 1s and Ti 2p3/2 spectra were normalized to the maximum 

amplitude of the Ti 2p3/2 transition, whereas the O 1s spectra were normalized to the maximum amplitude 

of the O 1s spectrum. Infrared spectra were collected in the multiple-internal-reflection geometry using an 

MCT-A detector and a ZnSe grid polarizer (Molectron). 

Computational Methods. Monte Carlo simulations of monolayer structure were performed using the 

Metropolis algorithm45,46 on a 64 × 64 site lattice with periodic boundary conditions, a supercell that 

represented 4,096 unsaturated Ti atoms on rutile (110). Four “reactions” (state changes) were sampled: 

adsorption from the solution, desorption into the solution, diffusion along the Ti rows (i.e., in the [001] 

direction), and benzoate rearrangement including 90° rotation of the phenyl ring and tristate tilting (left, 

center, and right) of the molecule (vide infra). The adsorption energy of site (i, j), Ea(i, j), was assumed to 

have the form 

  
Ea i, j( ) = E0 + Eint i, j;i ', j '( )

i±1, j±1

å  

where E0 is a constant, and the nearest-neighbor interaction energies, Eint(i, j; i', j'), were assumed to be 

dominated by interactions between the phenyl groups. These distance- and orientation-dependent 

interactions were extracted from ab initio calculations of benzene dimers performed at the MP2/6-31G* 

level.47 The relative magnitudes of E0 and the adsorption attempt frequency (i.e., solution concentration) 
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were adjusted to yield a low but finite vacancy density at simulated temperatures, consistent with 

experiment. 

Density functional theory (DFT) was used to model the structure of the benzoate monolayer on 4 × 2 

periodically repeating slabs consisting of 5 TiO2 trilayers separated by a 12.5 Å vacuum spacing with 

autocompensated surfaces (Supporting Information).48 This supercell contained 8 unsaturated Ti atoms 

capable of adsorbing 4 benzoate molecules at saturation. During optimization, the positions of the 

bottommost TiO2 layer and its terminating bridging O rows were held fixed. Calculations were performed 

using DFT within the generalized gradient approximation 49  (GGA) with the Perdew, Burke, and 

Ernzerhof (PBE) exchange-correlation functional,50 as implemented in the Vienna ab initio simulation 

package (VASP).51–54 The functional was corrected for long-range dispersion interactions using the zero 

damping DFT-D3 method.55 Electron-ion interactions were described using the projector augmented wave 

(PAW) method.56,57 Electronic states were expanded in plane waves with a kinetic energy cutoff of 400 eV 

and a 2 × 2 × 1 Monkhorst-Pack grid of k points. Brillouin-zone integration was performed using 

Gaussian smearing. To make efficient use of computational resources, vibrational energies were 

calculated using density-functional perturbation theory without dispersion interactions on a 2-trilayer-

thick slab held in the equilibrium geometry and terminated by pseudohydrogen (Supporting 

Information).58,59 Reported vibrational energies are adjusted by a constant scaling factor (0.983) to correct 

for systematic errors. 

3.4 Results 

The structure of the bare rutile (110) surface is displayed in Figure 3.1. The surface displays alternating 

rows of unsaturated Ti atoms and bridging O atoms, both running parallel to the [001] direction. 
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Figure 3.1: (a) Perspective view of the bare rutile (110) surface. Orthographic views of 
(b) the bare rutile (110) surface, (c) a possible benzoate dimer structure consisting of 
tilted parallel benzoate monomers, and (d) a second possible dimer structure consisting of 
vertical benzoate monomers in a T configuration. All geometries are minimum energy 
structures as determined by DFT calculations (vide infra). The Ti, O, and H atoms are 
represented by blue, red, and white balls, respectively, whereas the benzoate monomers 
are represented by stick figures. 

STM analysis: STM images of benzoate monolayers prepared from aqueous solutions display regions of 

paired molecules, regions of unpaired molecules, and a variety of defect structures as shown in Figure 3.2 

and Figure 3.3. Large regions of the surface display near-perfect pairing, as illustrated by Figure 3.3(a). In 

these regions, the bright protrusions are separated by 0.60 nm along the [001] direction, consistent with 

the expected bidentate bonding of benzoate. Along the  [110]  direction, the paired protrusions are 
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separated by 0.42 nm, which is less than the expected inter-row spacing of 0.65 nm. The larger scale 

image in Figure 3.3(b) shows regions of pairing, identified by the characteristic interstices between the 

pairs, and unpaired regions. A low density of missing molecules are also observed. STM movies 

(Supporting Information) show little motion of the paired and unpaired regions; the interstices remain 

constant over hours with no apparent lengthening or shortening. In contrast, motion is observed in the 

vicinity of defects, including near missing molecules and staggered regions. Some regions of the surface 

are more disordered than others. For example, the region in Figure 3.3(c) shows many examples of 

staggered molecules. 

 
Figure 3.2: STM image of benzoate monolayer prepared from room-temperature aqueous 
solution of benzoic acid. The tunneling conditions were +1.80 V and 400 pA. 
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Figure 3.3: High-resolution STM images of benzoate monolayer prepared from room-
temperature aqueous solutions. The tunneling conditions are given in brackets. (a) Region 
of near-perfect pairing [+1.80 V, 300 pA]. (b) Regions of paired and unpaired molecules, 
as well as defects  [+1.60 V, 300 pA]. At this scale, pairing leads to characteristic 
interstices between the pairs. (c) Disordered region of the surface, displaying a number of 
characteristic defects including staggered ordering  [+1.80 V, 300 pA].  

Infrared spectroscopy: STM images provide little information about the conformation of individual 

benzoate molecules, particularly their ring orientation. In contrast, polarization spectroscopy of the 

aromatic C–H stretch vibration provides information on phenyl geometry, as individual C–H 

displacements must lie in the plane of the phenyl ring. 
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Infrared spectra of benzoate monolayers rule out many postulated dimer structures. Figure 3.4 shows the 

C–H stretch region of infrared spectra taken with s- and p-polarized light propagating along and 

perpendicular to the Ti rows (i.e., along the [001] and  [110] directions, respectively). Only aromatic C–H 

stretch vibrations were observed; the intense asymmetric methylene stretch mode (~2920 cm–1) 

characteristic of aliphatic C–H (e.g., contamination) was notably absent. Without any further analysis, 

these spectra rule out all geometries in which the phenyl rings are face-to-face and parallel to [001] or 

 [110] , as the C–H stretch modes in these structures would not absorb s-polarized light propagating 

parallel to  [110] or [001], respectively. One example of such a structure is given in Figure 3.1(c). 

Similarly, the significant differences between spectra taken in orthogonal propagation directions argue 

against vertical structures with equal populations of phenyl rings in two orthogonal geometries (e.g., 

vertical benzoate dimers arranged in a T configuration as shown in Figure 3.1(d)).  
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Figure 3.4: Infrared spectra of benzoate monolayer obtained with light propagating along 
the [001] and  [110]  directions with s- and p-polarized radiation as indicated in the 
schematic. The lines on the top of the sketched crystal represent the Ti rows. Two 
different crystals were used, not the single crystal sketched. The energies of the C–H 
stretch modes predicted by DFT calculations of the paired tetramer geometry are 
indicated by vertical lines. 

The sole previous infrared investigation of benzoate adsorption on rutile (110) in vacuum reported very 

weak, coverage-dependent O–H stretch modes at 3622 cm–1 and 3700 cm–1. These modes were assigned 

to protons transferred from the acid moiety to a bridging O atom. 60  (No C–H stretch modes were 

reported.) We did not observe these modes. We speculate that the discrepancy may be due to the aqueous 

preparation, as residual H2O H-bonded to the protonated bridging O could significantly broaden the 
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transition and hinder detection. Intense absorption in the rutile substrate prevented observation of modes 

below ~2160 cm–1. 

XPS analysis: The chemical identity of the monolayer was confirmed using XPS analysis. High 

resolution scans of the Ti 2p region, seen in the top panel of Figure 3.5, showed two Ti4+ transitions: Ti 

2p3/2 at 459.3 eV and Ti 2p1/2 at 465.0 eV. Even after desorption of the monolayer, there was little 

evidence of Ti3+ defects (e.g., O vacancies), which have a transition ~2 eV lower in binding energy than 

Ti4+. The absence of O vacancies on aqueous-processed surfaces is not surprising, as surface Ti3+ defects 

are readily oxidized by even mild oxidants, such as O2.61–63 In contrast, when a sputter-damaged crystal 

was used, desorption of the monolayer led to the “unmasking” of Ti3+ defects, as shown in the inset. We 

attribute this unmasking to reversible charge donation from Ti interstitial defects to the monolayer.63–67 

Additional experiments exploring this phenomenon on a variety of solution-processed substrates are 

ongoing. 
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Figure 3.5: High-resolution XPS spectra of benzoate monolayers on rutile (110) detected 
at 70° from the surface normal showing the (top) Ti 2p, (middle) C 1s, and (bottom) O 1s 
regions as prepared and as a function of annealing temperature (20 min duration). The 
inset spectra in the Ti 2p graph are from a benzoate monolayer deposited on a sputter-
damaged sample detected at 45°. The inset in the C 1s graph shows the effective benzoate 
monolayer coverage calculated from the relative areas of the Ti and C transitions using 
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photoelectrons collected at 45° or 70° from the surface normal. One monolayer 
corresponds to 7 C atoms for every two unsaturated Ti sites. 

High resolution scans of the C 1s region, seen in the middle panel of Figure 3.5, initially showed two 

transitions which were assigned to carboxylate C at 289.2 eV and phenyl C at 285.5 eV. As the monolayer 

was heated, some of the C became graphitic (284.8 eV), while the rest desorbed. The absolute C coverage 

was calculated from the integrated areas of the C 1s and Ti 2p transitions as described in the Supporting 

Information and shown in the inset to the C 1s spectra. The good agreement between coverages extracted 

from spectra obtained at two different detection angles confirms the validity of the quantification model 

(Supporting Information).  

High resolution scans of the O 1s region, seen in the bottom panel of Figure 3.5, showed two transitions 

that were assigned to O in carboxylate at 531.9 eV and O in TiO2 at 530.4 eV. Consistent with the C 1s 

spectra, O associated with the carboxylate transition desorbed with heating. 

The absolute benzoate coverage measured by XPS was in good agreement with STM images showing the 

formation of a near-complete monolayer. Approximately 75% of the monolayer desorbed with heating, 

while the remaining fraction was converted to graphitic C. This behavior was somewhat different than 

that reported for incomplete monolayers of vacuum-deposited benzoic acid, which desorbed completely 

without decomposition as evidenced by C 1s XPS.33 We do not understand this difference, but note that 

the monolayers studied in Ref. 33, which were formed by electrospray deposition in UHV, were 

significantly less dense than the near-complete monolayers formed by solution deposition. We speculate 

that intermolecular interactions may influence the branching ratio between decomposition and reactive 

desorption. 

Monte Carlo simulations: Intermolecular interactions often lead to the development of long-range 

structures that strain the capability of DFT simulations. For this reason, we used Monte Carlo (MC) 

simulations to explore potential structures and guide DFT calculations.  

The assumption underlying the MC model is that interactions between adjacent phenyl groups, so-called 

- interactions, dominate interactions within the monolayer. We approximated the energetics of these 
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interactions using the benzene dimer intermolecular potentials calculated by Cacelli et al.47 and shown in 

Figure 3.6(a). The nature of - interactions is complex, containing contributions from quadrupole-

quadrupole and dispersion interactions as well as Pauli repulsion.68,69 For simplicity, only the quadrupolar 

nature of these interactions is sketched in Figure 3.6(b). 

 

Figure 3.6: (a) Intermolecular potential of benzene dimers from Ref. 47. The vertical 
lines indicate the center-to-center distances for vertical molecules bonded (left) along and 
(right) across the Ti rows. The shaded gray band represents the range of intermolecular 
distances sampled by molecules tilting across the Ti rows over the range [–7°, 7°] (b) 
Schematic illustration of four benzoate molecules, represented as electric quadrupoles 
with electron density above and below the plane of the ring, bonded to rutile (110) in a 
tetramer configuration. The Ti and O atoms are light blue and red, respectively.  
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Figure 3.6 shows that at the distances relevant for adsorption on rutile (110), the monolayer is primarily 

stabilized by interactions between molecules in a edge-to-face or “T” geometry, with interactions between 

molecules along the Ti rows being the most important. Interactions between neighbors in the face-to-face 

or “parallel” geometry are much weaker. 

If the only internal degree of freedom is the 90° rotation of the phenyl group, the MC simulations 

predicted the formation of a repeating tetramer structure in which all molecules adopt an edge-to-face 

geometry, as shown in Figure 3.7(a) and sketched in Figure 3.6(b). This structure can be rationalized in 

terms of electrostatics, as reorientable electric quadrupoles on a square or rectangular lattice adopt the 

same tetrameric ground state.70 This structure is also consistent with the infrared adsorption data showing 

that C–H bonds have little polarization within the plane of the surface; however, this structure cannot 

explain the apparent pairing of benzoate models. Something was missing from the model. 
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Figure 3.7: Regions of Monte Carlo simulations of benzoate monolayer structure. The 
long axis of each diamond represents the plane of the phenyl ring; the two colors 
represent the two allowed orientations. (a) When tilting is not allowed, the molecules 
adopt a tetramer geometry. When tilting is allowed, the molecules tend to tilt toward one 
another, leading to an apparent pairing. The extent of pairing is greatest at (b) low 
temperature, decreasing at (c) higher temperature. 

The initial model neglected an important degree of freedom: tilting of the benzoate molecule about the 

two Ti–O bonds. Because of the long moment arm of the molecule, this tilting motion leads to significant 

translation of the phenyl group along the  [110] direction (i.e., across the Ti rows). For example, if two 

adjacent molecules each tilt 7° toward one another (vide infra), the center-to-center distance of the phenyl 

groups decreases by 0.1 nm. Neglecting the small changes in relative ring orientation, the potential energy 

diagram in Figure 3.6(a) suggests that this distortion would lead to significant stabilization. 

Including benzoate tilting in the MC simulation, modeled as a tristate translation along  [110] direction, 

led to a temperature-dependent pairing interaction. At low temperatures, the monolayer adopted a paired 

tetramer configuration as shown in Figure 3.7(b). Additionally, a number of “dimer shifts” are observed, 

similar to the defects highlighted in Figure 3.3(c). We propose that this paired tetramer is the structure of 

the “dimers” observed in STM images. At higher temperatures, some regions of the surface are paired, 

while others are unpaired, as shown in Figure 3.7(c). Within the unpaired regions, some molecules are 

unpaired, whereas others are paired. The unpairing transition has long-range order. This collective 

behavior is due to the coupling of molecules along the Ti rows. When one pair of molecules in a paired 

region dissociates, the energy of the monolayer increases for two reasons: the increased distance between 

the two unpaired molecules across the Ti rows and the increased distance of the unpaired molecules to 

their four nearest neighbors along the Ti rows. After dissociation of the first pair, the dissociation of an 

adjacent pair requires less energy, as the energy gain and loss from nearest-neighbor interactions cancels 

out. 

DFT calculations: To test the validity of the very simple MC model and its predicted ground state 

structure, DFT calculations were performed on a 4 × 2 TiO2 supercell containing four benzoate molecules 

adsorbed in a variety of configurations. The relative energies of these configurations are shown in Figure 
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3.8. The lowest energy state of the system is a tetramer with adjacent benzoate molecules tilted by 7°, as 

shown in Figure 3.8 and consistent with the MC simulations. Monolayers formed from dimerized 

structures, including parallel, T, and staggered parallel configurations (Supporting Information), had 

uniformly higher energy. 

 

Figure 3.8: Relative energies estimated from DFT calculations of (blue) dimer and (red) 
tetramer monolayer configurations as a function of tilt angle from the surface normal. 
The three dimer configurations are shown in Supporting Information. The energy 
estimated from the MC simulation is shown in green for comparison. The dotted line is a 
polynomial fit. 
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Figure 3.9: The lowest energy structure of a benzoate monolayer from DFT calculations. 
The benzoate monomers are arranged in a tetramer in which every phenyl ring is oriented 
in an edge-to-face geometry with its four nearest neighbors. Adjacent pairs of benzoate 
molecules tilt toward one another by 7° along the  [110] direction, leading to a 0.49 nm 
spacing between terminal H atoms. (a) Perspective view of multiple unit cells, and (b) 
orthographic views of single unit cell. The Ti, O, and H atoms are represented by blue, 
red, and white balls, respectively, whereas the benzoate monomers are represented by 
stick figures. 

The intermolecular energies predicted by the MC and DFT simulations were in surprisingly good 

agreement, particularly given the simplicity of the MC model and the different levels of theory underlying 

the simulations (i.e., MP2/6-31G* vs. PBE-D3). Taking the energy of the staggered dimer structure as that 

of a non-interacting monolayer, the DFT calculations yielded an intermolecular energy in the paired 

tetramer structure of –17.9 kJ/mol per benzoate molecule, whereas the MC simulations yielded –20.9 

kJ/mol — a 15% difference. This good agreement suggests that interactions within the monolayer are 

dominated by  interactions between the phenyl rings. 

The infrared spectrum of the benzoate monolayer was calculated using the paired tetramer geometry, as 

shown in Figure 3.4. The energies of the C–H stretch modes obtained from experiment and simulation are 
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in reasonable agreement. The absolute intensities of the experimental and simulated spectra cannot be 

directly compared due to uncertainties in the effective dielectric constant of the adsorbate layer, which 

screens transition dipoles oriented perpendicular to the surface. 71 , 72  The polarization dependence is 

analyzed in the Supporting Information. 

3.5 Discussion 

These experiments show that high-quality, self-assembled benzoate monolayers can be synthesized on 

rutile (110) surfaces using simple aqueous reactions. Sputtering and annealing cycles, which create 

surface and subsurface defects, are not needed. The monolayers are hydrophobic and remain largely 

contaminant free during exposures to laboratory air for tens of minutes. During this period, infrared 

spectroscopy shows that the monolayers do not spontaneously adsorb air-born hydrocarbons or other 

adventitious aliphatic species. Monolayer stability is driven both by the strong bidentate bonding to 

unsaturated Ti atoms on the surface as well as by - interactions between adsorbates.  

Benzoate deposition is reversible. The hydrophobicity of the treated crystals can be reversed by a brief 

immersion in H2O, suggesting that monolayer formation and annealing in the solution is a dynamic 

process with constant exchange of molecules between surface and solution. In contrast, time-dependent 

STM showed no indication of monolayer annealing over hour-long observations; the regions of pairing 

and unpairing were essentially static. Experiments on benzoate diffusion in vacuo are ongoing; however, 

we hypothesize that monolayer annealing occurs predominantly through adsorption/desorption events in 

solution, not surface diffusion. 

The STM images, infrared spectra, MC simulations, and DFT calculations are all consistent with benzoate 

molecules adopting an edge-to-face ring geometry with their four nearest neighbors — a tetrameric 

bonding geometry. This bonding is further stabilized by a pairing interaction between adjacent benzoate 

molecules, a pairing that has previously been interpreted as “dimerization.” This pair formation is also 

consistent with previous studies of the absorption of polarized x-rays.73 The coexistence of paired and 
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unpaired regions of the monolayer is consistent with the relatively small additional energy gained by 

pairing and the cooperative nature of the pairing interaction. 

Higher order multiplets, such as triplets, are occasionally seen in STM images, as noted by previous 

researchers.29 In agreement with this, the MC simulations transition from pair to triplet formation if larger 

tilt angles are allowed. The preference for pair formation in benzoate monolayers represents a balance 

between the energy gain from increased  interactions at higher tilt angles and the energy loss from 

reduced orbital overlap in the Ti-O bonds. We speculate that monolayers formed from longer aromatic 

molecules, such as phenyl benzoic acid, may form more interesting, higher order structures. 

Benzoate monolayers on rutile (110) bear many structural similarities to organic monolayers on 

amorphous substrates, such as SiO2, particularly the tendency for edge-to-face ring packing 

geometries.35-37 The principal difference between the two is that the rutile substrate enforces a particular 

packing density. The most surprising finding of this study is that the monolayer structure and stabilization 

energy could be predicted by a very simple MC model that included little more than the surface geometry 

and intermolecular potential of a small-molecule analogue of the monolayer head group. This finding 

suggests that similarly simple models may be useful in designing new monolayers with specific 

functionality. 

3.6 Conclusions 

High-quality, self-assembled benzoate monolayers can be synthesized on rutile (110) surfaces using 

simple aqueous reactions. The monolayers are stable and remain contaminant free in air for tens of 

minutes. This stability is driven both by the strong bidentate bonding to unsaturated Ti atoms on the 

surface as well as by - interactions between adsorbates. The benzoate molecules form tetramers in 

which each molecule adopts an edge-to-face ring geometry with its four nearest neighbors. This 

arrangement is further stabilized by tilting adjacent benzoate molecules toward one another, a pairing that 

has previously been interpreted as dimerization. The monolayer structure and stabilization energy could 

be predicted by a very simple model that included the surface geometry and intermolecular potential of a 



 37

small-molecule analogue of the monolayer head group. This finding suggests that similarly simple models 

may be useful in designing new monolayers with specific functionality. 
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Chapter 4 

 Molecular Insight into TiO2 Photocatalysis in Ambient Conditions 

4.1 Introduction 

Titanium dioxide shows promise in a wide array of photocatalytic applications, such as carbon dioxide 

photoreduction,1 water splitting2 and degradation of pollutants.3 Despite widespread effort, these reactions 

are not efficient enough for widespread adoption. Rational improvement of the photocatalytic 

performance of the materials used in these applications is stymied by a general lack of fundamental 

understanding of the reactions that occur on their surfaces, especially in technologically relevant 

environments such as air or aqueous solutions. 

An ideal platform to study photocatalytic reactions between organic molecules and metal oxides is a self-

assembled monolayer on an atomically flat surface. This provides a highly uniform system, in which 

essentially all molecules are bound in the same manner to the same type of surface site, greatly 

simplifying the interpretation of data. Figure 4.1 displays a highly homogeneous monolayer of 

phenylphosphinate on rutile TiO2 that was prepared entirely in solution, where each individual protrusion 

is an adsorbed phenylphosphinate molecule. In fact, organic monolayers (and submonolayers) on single 

crystal TiO2 have been used in many studies of metal oxide photoreactivity;4-8 however, previous studies 

were all performed in ultrahigh vacuum or high vacuum conditions. These studies provided valuable 

information, yet fell short of representing the atmospheric pressure conditions where TiO2 is typically 

applied. 
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Figure 4.1: STM image of a solution-prepared monolayer of phenylphosphinate on rutile 
(110). 

Here, we demonstrate a new approach to studying metal oxide photocatalysis: photoreactions of organic 

monolayers on well-controlled TiO2 surfaces that are prepared and reacted in ambient environments. This 

provides atomic-scale insight into photoreactions under conditions that are directly applicable to those in 

which TiO2 is applied. We combine in-situ infrared spectroscopy of the photodecomposition of organic 

monolayers in air, which provides quantitative and kinetic chemical information, with ex-situ scanning 

tunneling microscopy (STM), which provides atomic-scale information. Additionally, x-ray photoelectron 

spectroscopy (XPS) provides complementary chemical information. 

In application, TiO2 is often used as a mixture of highly faceted nanocrystals composed of both rutile and 

anatase TiO2. The reactions that enable these applications occur on the surface of the nanocrystals. As 

such, it is important to understand the reactivity at surfaces of both phases of TiO2. While high-quality 

single crystals of rutile are readily available, anatase is only thermodynamically stable at the nanoscale, 

making it difficult to obtain large, high-purity single crystals. To provide anatase substrates large enough 

for spectroscopic study, we developed a hydrothermal heteroepitaxial growth method, which produces 

high-quality epitaxial anatase (001) films on strontium titanate (100) substrates. 

Using this approach we show that the photodecomposition of two different organic monolayers on both 

anatase and rutile shows unexpected biexponential reaction kinetics, where the photodecompostion rate 

decreases by approximately two orders of magnitudes after a fraction (typically ~1/4) of the molecules 
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have reacted. We propose that this behavior results from changes in band bending as a result of the 

photoreaction occurring on the surface.  

4.3 Experimental Methods 

All solution-phase preparations were performed using labware that had been cleaned with a modified 

RCA process.9 Prior to each use, labware was immersed in a bath of 1:1:5 28% NH4OH (aq, BDH, ACS 

grade): 30% H2O2 (aq, J.T. Baker, CMOS grade): H2O (Milli-Q) for 10 min at 80°C. The labware was 

additionally cleaned in an acidic peroxide bath of 1:1:5 37% HCl (aq, BDH, ACS grade): H2O2 (aq, J.T. 

Baker, CMOS grade): H2O (Milli-Q) if used to prepare a sample for analysis in UHV. Labware was 

thoroughly rinsed in flowing water before cleaning, in between each step, and as a final step. 

Rutile TiO2 samples were single crystals of rutile (110) (MTI, undoped). Fresh samples for use in STM 

were thermally reduced by heating them to ~700°C for 5 min in UHV to provide the conductivity 

necessary for STM, resulting in a light blue color of the crystal. 

Heteroepitaxial anatase (001) TiO2 films were hydrothermally grown on single-crystal SrTiO3 (100) 

(MTI) substrates using two different sets of conditions. Prior to growth, SrTiO3 samples were either 

annealed in air at 1000°C for 12 hr or etched in 1:1:5 H2O2:NH4OH:H2O for 40 min at 40°C, both of 

which provide an atomically smooth surface. If the anatase films were used for XPS and STM, they were 

grown on 0.05% Nb-doped crystals. These films were grown by immersing a Nb-doped SrTiO3 crystal 

face down in an aqueous solution of 9 mM TiF4, 2 mM HCl, and 0.1 M NaCl for 4 hr in a PTFE-lined 

acid digestion vessel (Parr) placed in a preheated 120°C oven. Anatase films for infrared spectroscopy 

were grown on undoped SrTiO3 by immersing the substrate vertically in an aqueous solution of 0.70 mM 

TiF4 for 5 hr in a PTFE-lined acid digestion vessel placed in a preheated 120°C oven. After growth, 

samples were heated at 350°C for 12 hr in air to remove trapped H2O.  Anatase films for use in STM were 

thermally reduced to provide conductivity, typically for 30 min at 650°C and sometimes sputtered at 

500 eV with Ar+ (5 min, 2 μA sputter current). If sputtered, the sample was annealed again to 650°C for 

30 min. 
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Self-assembled monolayers of benzoate or phenylphosphinate were prepared on TiO2 surfaces by 

immersion in aqueous solutions containing the respective organic acids.10,11 Rutile samples were first 

etched and cleaned in a basic peroxide solution of 1:1:5 H2O2:NH4OH:H2O for 10 min at 80°C resulting 

in an atomically flat bicarbonate-terminated surface. 12  Anatase films were cleaned by rinsing in 

28%NH4OH, rinsing in H2O, then heating to 350°C for 30 min in air. Benzoate or phenylphosphinate 

monolayers were prepared by immersing samples for 2 min in a 16 mM aqueous solution of benzoic acid 

(Sigma, >99%) or a 13 mM aqueous solution of phenylphosphinic acid (Sigma, >99%), respectively.  

Infrared spectra were collected in the multiple-internal-reflection (MIR) geometry with a mercury-

cadmium-telluride detector in a dry-air-purged spectrometer (Nicolet 670). Rutile samples for infrared 

spectroscopy were beveled at 45° along parallel edges from 10 × 10 × 0.5 mm die to allow infrared light 

to make ~19 internal reflections along the [110]direction. Anatase films for infrared spectroscopy were 

hydrothermally grown on undoped 10 × 10 × 0.5mm SrTiO3 crystals, which were similarly beveled at 45° 

along parallel edges. 

Photoreactions were studied in the dry-air-purged infrared spectrometer. Monolayers were prepared in 

solution on beveled samples, and then the monolayer was rinsed off from the bottom face. Rinsing was 

performed by pressing just the bottom of the crystal against an aliquot of water for ~5 sec. This was 

repeated 3 times each with 3 separate aliquots. This procedure was necessary because the MIR geometry 

probes both the upper and lower surfaces. Selectively rinsing the monolayer off the bottom surface 

ensured that all molecules received the same UV flux during top-down illumination. Spectra were 

collected from the cleaned sample before deposition, after deposition of the monolayer, after the bottom 

face was rinsed, and then after increasing doses of UV irradiation. During collection of each spectrum, the 

UV light was turned off. The UV light was generated by a 365 nm light emitting diode flashlight (Tektite) 

suspended 7 cm above the top of the sample at normal incidence to the TiO2 surface. Flux at the sample 

was 1 mW/cm2. All absorbance spectra were referenced to the either the cleaned sample or the initial 

solution-prepared monolayer. 
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Some photoreactions were performed in the infrared spectrometer with a controlled O2 atmosphere 

instead of dry air. These experiments were performed with the same method as in dry air, except that the 

bottom side of the crystal was not rinsed and spectra were collected in s-polarization with a ZnSe wire 

grid polarizer (Molectron).  Before the first exposure of UV light, the spectrometer was purged with O2 

(industrial) for a minimum of 2 hr. 

Photoreactions were also studied ex-situ with scanning tunneling microscopy and x-ray photoelectron 

spectroscopy. Organic monolayers were prepared in solution on TiO2 substrates and then loaded into 

UHV through an oil-free loadlock to be analyzed with STM and XPS. After a sample was loaded into 

UHV, the load lock was baked to attain UHV conditions, preventing contamination from adsorbed water 

or other species present after atmospheric exposure. The sample was then returned to the load lock, which 

was then filled to 1 bar O2 (ultrahigh purity) and illuminated with UV light through a viewport at normal 

incidence for variable durations. 

STM was performed with tips electrochemically etched from recrystallized tungsten.13 Tips were cleaned 

and sharpened with electron bombardment and field-directed sputter sharpening.14 X-ray photoelectron 

spectra were collected at variable takeoff angles with a non-monochromatic Mg Kα source. A Tourgaard 

baseline was subtracted from each spectrum, and a small energy offset (~0.05 eV) was applied to 

counteract small variations in band bending.15 X-ray diffraction was performed on a Rigaku Smartlab. 

4.5 Results 

Rutile Photoreactions. Photoreactions of organic monolayers on rutile TiO2 were analyzed with infrared 

spectroscopy. In addition to providing detailed insight into bonding geometry,10,11,16 infrared spectroscopy 

can be used to quantify the coverage of molecules on a surface. Figure 4.2(a) shows absorbance spectra of 

the aromatic C−H stretch region of a benzoate monolayer on rutile TiO2, where each spectrum has been 

referenced to the basic-peroxide-cleaned surface. In this region there were a number of vibrations 

resulting from C−H stretching modes of the phenyl ring of benzoate.11,16 Absorbance in this case is 

defined as A º log(I0/I), where I and I0 are the intensity of infrared radiation with and without the 
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absorbing species, respectively. The absorbance in the aromatic C−H stretch region decreased with 

increasing UV irradiation time indicating a loss of this species from the surface. By normalizing the 

integrated absorbance in the aromatic C−H stretch region to that of the initial monolayer, the surface 

coverage in monolayers of benzoate as a function of UV illumination time was obtained, as shown in 

Figure 4.2(b). 

The observed reaction kinetics deviated significantly from the expected first-order behavior, as seen in 

Figure 4.2(c), which would result from a constant probability of photoreaction over the course of the 

reaction, Instead, the rate constant decreased by approximately two orders of magnitude after ~25% of the 

molecules had reacted. The reaction could be approximately described by a biexponential decay of the 

form 

 q = Ae k1t + (1 A)e k2t

 , (Eqn. 4.1) 

where q  is surface coverage in monolayers, k1 and k2 are the initial and terminal reaction rates, A is the 

fraction of the species that reacted at rate k1, and t is the UV illumination time. Increasing the complexity 

of the fit, such as with a multi-exponential could increase the agreement of the fit, yet we refrained from 

over-fitting our data without a physical basis for the additional parameters. The best fit of the surface 

coverage of benzoate on rutile as a function of UV dose to Eqn. 4.1 is shown in Figure 4.2(b). Best fit 

parameters are shown in Table 4.1. A comparison of the initial to terminal reaction rates shows that the 

reaction decreased in rate by a factor of 64 after approximately 25% of the monolayer was removed. 
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Figure 4.2: (a) Infrared spectrum of the aromatic C−H stretch region of initial benzoate 
monolayer on rutile (110) in black and as a function of increasing UV illumination time 
in green. The photoreaction was performed in dry air. (b) The normalized integrated 
absorbance of the aromatic C−H stretch region as a function of UV illumination time. 
The fit to a biexponential decay is shown with the solid line. (c) Natural logarithm of 
normalized integrated absorbance as a function of UV illumination time. 

Substrate Monolayer Species A (monolayers) k1 (hr-1) k2 (hr-1) k1/k2 
Rutile Benzoate C−H 0.28 4.6 0.072 64 
Rutile PhPH C−H 0.34 34 0.10 340 
Rutile PhPH P−H 0.59 25 0.39 64 

Anatase Benzoate C−H 0.15 12 0.046 261 
Anatase PhPH C−H 0.16 8.0 0.048 167 
Anatase PhPH P−H 0.42 12 0.13 92 

Table 4.1 A summary of reaction kinetics measured by in-situ infrared spectroscopy in 
dry air and fit to a biexponential (Eqn. 4.1). PhPH stands for phenylphosphinate. 

There are number of possible explanations for the observed biexponential decay of benzoate on rutile. 

One possibility could be that this behavior results from a specific property of benzoate. Alternatively, this 

behavior could be explained by variations in the reactivity of molecules bound to different surface sites, 

for example, if molecules near step edges were more reactive than molecules in the middle of terraces. 

Another possibility could be that the biexponential reaction kinetics derive from a property of rutile or of 

TiO2 in general. 

To investigate if this biexponential reaction rate is unique to benzoate, the photodecompsition of a 

solution-deposited monolayer of phenylphosphinate on rutile was studied in the dry-air-purged infrared 

spectrometer. Figure 4.3(a,b) shows infrared spectra the of P–H and C–H stretching regions in black of 
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the solution-deposited monolayer of phenylphosphinate on rutile, where each spectrum has been 

referenced to the basic-peroxide-cleaned surface. The P–H region showed a single broad peak centered at 

2376 cm-1 and the C–H regions showed several vibrations of H atoms bound to the phenyl ring of 

phenylphosphinate. Assignments were made based on previous experiments.11 Both the P–H and C–H 

stretching vibrations decreased in size as a function of UV irradiation time, representing a loss of these 

moieties from the surface. Figure 4.3(c) shows the decay of the normalized integrated absorbance of these 

species, which, similar to benzoate, followed a biexponential trend. Fitting these data to Eqn. 4.1 yielded 

the rates shown in Table 4.1.  A comparison of the initial to terminal rates for C–H and P–H showed that 

their reaction rates decrease by a factor of 340 and 64 respectively over the course of the reaction. Figure 

4.3(c) shows the natural logarithm of the surface coverage of both C–H and P–H as a function of UV 

dose, where the deviation from linear behavior can be clearly seen. The P−H species reacted more quickly 

than C−H, with approximately 95% loss after 9.7 hours of UV illumination versus 70% for C−H. 

 

Figure 4.3: (a) Infrared spectrum of the P−H stretch region of initial phenylphosphinate 
monolayer on rutile (110) in black and as a function of increasing UV dose in blue. (b) 
Infrared spectrum of the aromatic C−H stretch region of initial phenylphosphinate 
monolayer on rutile (110) in black and as a function of increasing UV dose in red. (c) The 
normalized integrated absorbance of both regions as a function of UV illumination time 
with fits to a biexponential decay shown. (d) Natural logarithm of normalized integrated 
absorbance for both regions as a function of UV illumination time. 

The chemical composition of a phenylphosphinate monolayer on rutile before and after UV illumination 

in air was characterized with XPS. Figure 4.4(b) shows a comparison of the P 2p region of the solution-
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prepared monolayer before and after photoreaction in air. The transition at 133.6 eV was assigned to P in 

solution-deposited phenylphosphinate. After 12 hr UV in dry air the surface showed a P 2p transition of 

comparable area, that was shifted 0.89 eV to higher binding energy, consistent most of the P remaining 

surface-bound and being oxidized to a species with four P–O bonds.17 Figure 4.4(c) shows a similar 

comparison of the O 1s region, in which the strong transition at 530.4 eV was assigned to O in rutile,18 

and the shoulder that appeared after photoreaction was consistent with O in P–OH,11 such as in 

phenylphosphonate or dihydrogen phosphate. The apparent change in size of the rutile O transition is 

unexpected. This may have resulted from inherent errors in the normalization of the spectra. The XPS 

spectra were normalized to the integrated intensity of the Ti 2p transition as an internal standard; however, 

the intensity of this transition is affected by the density of surface adsorbates. Different densities of 

surface adsorbates before and after photoreaction may have caused this apparent increase in the rutile O 

transition. Finally, Figure 4.4(a) shows a comparison of the C 1s region of the solution-prepared 

monolayer before and after photoreaction in air. The transition at 285.6 eV was assigned to C atoms in 

phenyl rings, and the satellite at 292.3 eV was assigned to a π-π* transition. 19  The spectrum after 

photoreaction showed a significantly smaller phenyl C peak and no π-π* transition, consistent with the 

photodecomposition of the phenyl rings. Additionally a new transition was observed at 289.2 eV, which 

was assigned to carboxylate or carbonyl C. This transition could be assigned to either bicarbonate 

formation at empty surface sites12 – which was difficult to reconcile with lack of loss of P – or the 

formation of a carbonyl species by oxidation of the phenyl rings.20 The asymmetry of the transition at 

285.6 eV after photoreaction may indicate the formation of C–OH,20 yet this could not be said 

conclusively. 
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Figure 4.4: XPS spectra of the (a) C 1s, (b) P 2p, and (c) O 1s region for a solution-
deposited monolayer of phenylphosphinate on rutile and an equivalently prepared 
monolayer after 12 hr of UV in air. 

Additionally, the chemical composition of benzoate monolayers on rutile (110) before and after 

photoreaction in 1 bar O2 was studied with XPS. Figure 4.5(a) shows a comparison the C 1s region of a 

solution-deposited monolayer of benzoate on rutile (110) and after increasing doses of UV irradiation. 

Based on our prior studies,10 the transition at 285.5 eV was assigned to C in the phenyl rings, and the 

transitional at 298.2 eV was assigned to carboxylate C. After UV irradiation in 1 bar O2 the phenyl C 

transition decreased in size, indicating the photodecomposition of the phenyl rings. The carboxylate C 

transition remained largely unchanged, indicating that a monolayer of a carboxylate species remained 

surface-bound. The small increase in intensity near 298 eV could indicate the formation of a carbonyl 

species from oxidation of the phenyl rings.20 Figure 4.5(a) shows a similar comparison for the O 1s 

region. The large transition at 530.4 eV was assigned to O in rutile and the shoulder at 531.9 eV was 

assigned to carboxylate O. The increase in intensity around 535 eV after 2 hr UV was consistent with the 

formation of an aromatic C–OH from oxidation of the phenyl rings.20 
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Figure 4.5: XPS spectra of the (a) C 1s and (b) O 1s region of a solution-deposited 
monolayer of benzoate on rutile (110) and after 2 and 120 min of UV irradiation in 1 bar 
O2. 

Anatase Growth. To test whether the biexponential reaction kinetics resulted from a property of rutile, 

the photoreactivity of organic monolayers on anatase (001) was also studied. Anatase TiO2 is typically 

considered to be more reactive than rutile,21 yet it is only thermodynamically stable at the nanoscale.22 To 

provide high quality films of anatase that are both large enough for infrared spectroscopy (~1×1 cm2) and 

compatible with surface science techniques such as STM, a hydrothermal heteroepitaxial growth method 

was developed.  

X-ray diffraction (XRD) of the hydrothermally grown film proved that the material grown was anatase 

(001) and that it was crystallographically aligned with the SrTiO3(100) substrate. The wide 2θ survey in 

Figure 4.6(a) showed only a peak from anatase (004) and peaks from SrTiO3, where assignments were 

made by comparison to XRD data of the corresponding powder.23,24 The absence of other peaks from 

anatase indicated that the [001] direction of the film was aligned with SrTiO3 [100]. The SrTiO3 substrate 

showed significantly narrower peaks than the film, indicating that the film is less ordered and aligned than 

the single crystal substrate. A high-resolution spectrum of SrTiO3 (200) in Figure 4.6(b) showed that this 

peak occurred at 46.479° with a full width at half maximum (FWHM) of 0.090°. A rocking curve of 

SrTiO3 (200) shown in Figure 4.6(c) had a FWHM of 0.063°. A high-resolution spectrum of anatase (004) 
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in Figure 4.6(d) showed that this peak was centered at 38.01° with a FWHM of 0.27°. A rocking curve of 

anatase (004) shown in Figure 4.6(e) had a FHWM of 0.96°. The FWHM of these peaks were 

representative of the crystallinity and alignment of the materials. The c lattice parameter of the 

hydrothermally grown anatase was contracted by 0.52% compared to the lattice parameter of anatase 

powder. This matched expectations based on the Poisson effect, where the larger unit cell of SrTiO3 

forced the anatase film to expand within the plane of the surface and contract normal to the surface. 

 A rotational ϕ scan of the (101) peaks for both anatase and SrTiO3 is shown in Figure 4.7. The alignment 

of these peaks from the film and substrate shows that the film is epitaxial and that the {100} and {010} 

directions of anatase are aligned with SrTiO3 {010}.  

 

Figure 4.6: (a) Wide 2θ scan of hydrothermally grown anatase film on SrTiO3 (100) 
substrate. (b) High resolution 2θ scan of substrate SrTiO3 (200) peak and (c) 
corresponding rocking curve. (d) High resolution 2θ scan of anatase (004) peak and (e) 
corresponding rocking curve. 
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Figure 4.7: Rotational ϕ scan of the (101) peaks for a hydrothermally grown anatase film 
on a SrTiO3 (100) substrate. 

Hydrothermally grown anatase films were smooth and uniform over large length scales. This is 

demonstrated by the STM images of Figure 4.8, which show the atomically smooth surface of the etched 

SrTiO3 before growth and an anatase film after solution-deposition of a benzoate monolayer. A high 

resolution STM of a benzoate monolayer on anatase (001) in Figure 4.9 shows that individual molecules 

could be resolved. 

 

Figure 4.8: (a) STM image of SrTiO3 (100) substrate after etching in basic peroxide. (b) 
Large scale STM image of anatase (001) film that was hydrothermally grown on SrTiO3 
(100) after sputter-and-annealing followed by solution deposition of a benzoate 
monolayer.  
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Figure 4.9: High resolution STM image of a solution-deposited monolayer of benzoate on 
hydrothermally grown anatase (001) film.  

Anatase Photoreactions. The photodecomposition kinetics of both benzoate and phenylphosphinate 

monolayers on anatase in dry air showed biexponential behavior. Infrared spectra of the aromatic C–H 

and P–H stretch regions are shown for both monolayers referenced to the cleaned anatase surface in 

Figure 4.10(a-c). The peaks in the aromatic C–H stretch region resulted from H bound to phenyl rings in 

both monolayers, and the broad peak at 2380 cm-1 resulted from H bound to P in phenylphosphinate. The 

infrared peaks from all three of these species decreased in size as a function of UV irradiation, indicating 

their loss from the surface following photodecomposition of molecules in the monolayer. The surface 

coverage of all three species as a function of UV dose was well described by a biexponential decay, and 

the fits to Eqn. 5.1 are shown in Figure 4.10(d, e) for each case. The best fit parameters are shown in 

Table 4.1. A comparison of k1 to k2 as determined by the fit showed that the reaction rate for C–H in 

benzoate, C–H in phenylphosphinate, and P–H in phenylphosphinate decreased by a factor of 261, 167, 

and 92 respectively over the course of the reaction. 
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Figure 4.10: (a, b) Infrared spectrum of the aromatic C−H stretch region of initial 
benzoate (phenylphosphinate) monolayer on anatase (001) in black and as a function of 
increasing UV irradiation in green (red). (c) Infrared spectrum of the P−H stretch region 
of initial phenylphosphinate monolayer on anatase (001) in black and as a function of UV 
irradiation in blue. (d, e) The normalized integrated absorbance of benzoate C−H, 
phenylphosphinate C–H, and phenylphosphinate P–H as a function of UV illumination 
time with fits to a biexponential decay. (f) Natural logarithm of normalized integrated 
absorbance for all three species as a function of UV illumination time. 

Controlled Atmosphere Photoreactions. No photodecomposition of benzoate on rutile or anatase was 

observed in UHV. This is demonstrated in Figure 4.11(a,b), which shows the C 1s region in XPS of 

benzoate monolayers on rutile (110) and anatase (001) before and after 60 and 42 min of UV illumination 

in UHV, respectively. The transition at 285.5 eV was assigned to phenyl carbon, the peak at 289.2 eV 

corresponded to carboxylate carbon, and the broad satellite at 292.3 eV was assigned to a π-π* shakeup 

transition.19 Both XPS spectra remained largely unchanged after UV illumination, indicating a lack of 

reactivity in UHV conditions.  

Additionally, XPS analysis of phenylphosphinate on rutile showed no detectable reaction after 43 min of 

UV irradiation in 5 × 10-6 mbar O2. 
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Figure 4.11: High-resolution XPS spectra of the C 1s region for a benzoate monolayer on 
(a) rutile (110) and (b) anatase (001) after increasing doses of UV illumination in UHV.  

Performing photoreactions in the infrared spectrometer while purging with O2 showed that the reaction 

rate increased with increasing O2 concentration. Figure 4.12(a) shows the infrared spectra of benzoate on 

rutile referenced to the initial solution-prepared monolayer as a function of UV dose in either an air or O2 

purge. In these difference spectra, negative aromatic C–H peaks were observed to increase in size with 

increasing UV illumination time representing a loss of these species from the surface. Figure 4.12(b) 

shows that the reaction proceeded more quickly in O2 than in air, with 41% of a monolayer reacted after 

50 min UV in O2 versus 6% after 50 min UV in air. The apparent lower reactivity in these controlled 

atmosphere experiments may have resulted from the benzoate molecules not being rinsed from the bottom 

side of the crystal. MIR is sensitive to both the top and bottom of the crystal, but only the molecules on 

the top were directly exposed to UV. The signal to noise ratio is lower in these spectra due to the data 

being collected at high resolution and in s-polarization. 
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Figure 4.12: (a) Difference infrared spectra of a monolayer of benzoate on rutile 
referenced to the initial solution-prepared monolayer as a function of increasing UV dose 
over 50 min UV. Upper and lower spectra were reacted while purging with air or O2, 
respectively. (b) Surface coverage of benzoate on rutile as a function of UV time in air or 
O2. Single exponential fits are shown as a visual guide. 

 

STM Analysis. In addition to in-situ analysis of photoreactivity in the infrared spectrometer, the reacted 

surface was studied at the molecular scale using STM. Figure 4.13(a) shows a molecular-resolution STM 

image of a nearly ideal solution-deposited benzoate monolayer as described in Chapter 3. Figure 4.13(b) 

shows an equivalently prepared benzoate monolayer on rutile, which was illuminated with UV light for 

6 min in 1 bar of O2 before being returned to UHV for imaging in STM. The surface after photoreaction 

in O2 showed a number of sites that imaged ~0.3 nm lower in STM, indicating that the molecules in these 

sites have been either been removed or have photodecomposed to a product that appeared shorter in STM. 

As the UV dose was increased, the density of regions of lower height increased as seen in Figure 

4.13(c, d). 
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Figure 4.13 Scanning tunneling microscopy images of the photodecomposition of a 
benzoate monolayer on rutile (110). (a) The initial solution-deposited monolayer. (b-d). 
Equivalently prepared monolayers of benzoate after 6, 18, 60 min of UV illumination in 
1 bar oxygen. 

Statistical analysis of the distribution of photoreacted sites was consistent with the photoreaction 

occurring at random sites on the surface. Figure 4.14(a) shows a Poissonness plot25 of the distribution of 

photoreacted benzoate sites after 6 minutes of UV illumination as obtained from Figure 4.14(b). This plot 

was generated by dividing the STM image of Figure 4.14(b) into 256 equal-sized regions and counting 

the number of photoreacted molecules in each region, m. The number of times regions were found to have 

m missing molecules, xm, was totaled and used to generate the plot. This plotting method was developed 

by Hoaglin25 as a way to visually analyze whether data are consistent with a Poisson distribution, which 

would be expected for an event occurring at random sites on a surface. Data that follow a Poisson 

distribution yield linear trends, whereas non-random data do not. The highly linear trend observed in 

Figure 4.14(a) is consistent with the photoreaction occurring at random sites on the surface. 
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Figure 4.14 (a) Poissoness plot of the distribution of photoreacted sites generated by 
counting the number of missing molecules in 256 subregions of the STM image shown in 
(b). Data points shown in red and linear fit in black. (b) An STM image of a benzoate 
monolayer on rutile after 6 min of UV illumination in 1 bar O2. 

4.5 Discussion 

These experiments show that the photodecomposition of organic monolayers on TiO2 in air follow 

biexponential kinetics. Freshly deposited monolayers of benzoate or phenylphosphinate on rutile (110) or 

anatase (001) react quickly under UV illumination in air, but the rate decreases by approximately two 

orders of magnitude after a fraction of the molecules have reacted.   

This phenomenon may represent an important obstacle to the performance of TiO2 in photocatalytic 

applications. Many promising applications of TiO2, such as carbon dioxide photoreduction, are currently 

too inefficient for widespread adoption. These experiments show that TiO2 is an effective photocatalyst in 

the initial stages of a reaction, yet the reactivity of the material significantly decreases in the later stages. 

If the mechanism of this rate reduction is identified, it may be possible to mitigate or prevent it, in 

principle increasing the photoreactivity of TiO2 by up to two orders of magnitude. 

Multi-exponential reaction kinetics has been observed for photoreactions on TiO2 in prior studies; 

however, previous experiments were performed on TiO2 particles. 26 , 27  The variety of exposed 

crystallographic faces, phases of TiO2, and surface conditions made it difficult to determine if the multi-

exponential kinetics resulted from multiple first-order reactions occurring simultaneously. 

These experiments on well-controlled TiO2 surfaces indicate that the observed biexponential kinetics 

likely result from a property of TiO2 itself. The same biexponential behavior was seen on both benzoate 
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and phenylphosphinate monolayers reacted on both rutile (110) and antase (001) surfaces of TiO2, which 

suggests that this is a ubiquitous property of photoreactions on TiO2. Statistical analysis of the distribution 

of photoreacted sites seen in the STM data of benzoate on rutile (110) is consistent with the reaction 

occurring randomly across the surface. This implies that the cause of the biexponential kinetics is not 

specific sites on the surface that are inherently more reactive than others. Additionally, in the case of 

phenylphosphinate monolayers the change in reactivity of both P–H and C–H switches from the initial 

fast rate to the terminal slow rate concurrently, despite these species having very different initial 

reactivities. This suggests that the change in reactivity results from a concurrent change in the substrate. 

We propose that changes in the magnitude of band bending at the surface of TiO2 as a result of the 

photodecomposition of the organic monolayer are responsible for the observed biexponential kinetics. 

Band bending is a commonly observed phenomenon on semiconductor surfaces, which plays an 

important role in photoreactions at the surface.28 The band bending occurs as a result of charge transfer to 

the surface, either to surface traps or adsorbates. TiO2 is an n-type semiconductor,29,30 which implies 

upward band bending at the surface. The accumulation of negative charge on the surface of TiO2 

generates an electric field, which bends the valence and conduction band upward in energy in the near-

surface region. There are many previous studies of band bending on TiO2,28 and it has been shown that the 

magnitude of band bending is strongly dependent on the chemical identify of adsorbates.31 Following 

absorption of a photon with energy greater than the bandgap, an electron-hole pair is generated. If 

absorption occurs in the near-surface region where the bands are bent, the electric field will drive the 

electron toward the bulk and the hole toward the surface as shown in Figure 4.15. Higher magnitudes of 

band bending indicate stronger electric fields, which increase the photoreactivity of the surface by 

bringing more holes towards the surface. Holes are believed to initiate oxidation reactions at the surface.32 

We propose that as a result of the partial photodecomposition of the monolayer, the magnitude of band 

bending decreases with a concomitant decrease in the photoreactivity of the surface. This could result 
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from photoreaction-induced changes in the energy levels of adsorbates, which allow less charge transfer 

to surface, decreasing the magnitude of band bending. 

 

Figure 4.15: A representation of the bending of the valence band (VB) and conduction 
band (CB) in TiO2 near the surface. The initial magnitude of the band bending is shown 
in blue and in orange after partial photoreaction. Photogenerated holes (electrons) are 
pushed towards the surface (bulk) by the electric field near the surface. The Fermi level is 
labeled by EF. 

Studies are currently underway to directly measure the magnitude of band bending as a function of 

photoreaction using scanning tunneling spectroscopy. This measurement is complicated by the fact that 

the electric field from the STM tip results in significant band bending,33 making it nontrivial to determine 

the magnitude of unperturbed band bending. 

Our data of benzoate photodecomposition are consistent with hole-induced oxidation, in which the final 

surface-bound product is possibly bicarbonate. The XPS data show that the phenyl rings are 

photodecomposed, yet a monolayer of carboxylate remains surface-bound. These species are shown in 

Figure 4.16, which shows the initial structure of benzoate on rutile (110)10 and the possible surface-bound 

product of bicarbonate, which bonds to rutile (110) in the same geometry.12 The role of photogenerated 

holes in the photodecomposition of organic molecules on TiO2 has been established in previous 

studies.32,34,35 The infrared spectroscopy data show that the absorbance in the aromatic C–H stretch region 

decreases with UV irradiation time, consistent with the photodecomposition of the phenyl rings. The 

decrease in height of the photoreacted regions observed on rutile is also suggestive of the partial or 
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complete removal of the phenyl moieties. Decomposition of the phenyl ring is consistent with previous 

studies of the photodecomposition of benzoate on particles of TiO2 in an aqueous slurry.36-38 The final 

carbonaceous product in these studies was identified by mass spectrometry to be CO2, with intermediates 

of hydroxylated benzoic acid. If the benzoate molecules in our study fully decompose to CO2, this product 

will not remain surface-bound at room temperature.39 The resulting exposed surface sites will likely 

catalyze the formation of surface-bound bicarbonate molecules from CO2 and H2O in the air, as we 

recently demonstrated on rutile (110) surfaces exposed to ambient conditions.12 Thus, the final surface-

bound molecule following the photodecomposition of benzoate on rutile (110) in ambient conditions may 

be bicarbonate. 

The lack of reactivity of benzoate in UHV is consistent with previous studies of the photoreactivity of 

benzoate on rutile (110) in UHV.40 

 

Figure 4.16 Representation of adsorbed benzoate or phenylphosphinate (PhPH) 
molecules as solution-deposited and the proposed products after UV irradiation in O2, 
respectively. 

Less is known about the photoreactivity of phosphinates. Our data are consistent with most phosphorous 

atoms remaining surface-bound and becoming more oxidized, consistent with the possible formation of 

surface-bound dihydrogen phosphate. Photoreacted phenylphosphinate monolayers on rutile show a P 2p 

transition of comparable integrated intensity to the solution-deposited monolayer, with a binding energy 

increase of 0.89 eV. This is consistent with most of P remaining on the surface, and becoming oxidized to 

a surface-bound species with four bonds to O.17 XPS of the O 1s region after photoreaction show the 

formation of a species containing P–OH. Additionally, our previous studies of STM images of solution-
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deposited phenylphosphinate monolayers show that phenylphosphonate (P–OH) species are an oxidative 

product of phenylphosphinate.11 This can be seen in the STM image of a solution-deposited monolayer of 

phenylphosphinate in Figure 4.17, which shows molecules of two different heights. The taller molecules 

were assigned to phenylphosphonate on the basis of spectroscopic evidence and DFT simulations. On the 

basis of this data and the loss of both aromatic C–H and P–H seen in infrared spectroscopy, a possible 

final surface-bound product is dihydrogen phosphate. This possible product is shown in Figure 4.16, as 

well as the binding geometry of the solution-deposited phenylphosphinate.11 

 

Figure 4.17 STM image of a solution-deposited monolayer of phenylphosphinate on 
rutile (110) in which some of the molecules were oxidized to phenylphosphonate during 
aqueous deposition. Phenylphosphonate (PhPOH) appears ~0.05 nm taller than 
phenylphosphinate (PhPH) in STM. 

 

X-ray diffraction data of our hydrothermally grown anatase films show comparable quality to previous 

reported films of molecular-beam-epitaxy-grown anatase (001) on SrTiO3 (100), yet we are the first to 

demonstrate a hydrothermal growth method that provides surfaces smooth enough for use with STM. 

Previous reports of anatase growth have used a variety of methods, such as molecular-beam epitaxy,41,42 

chemical vapor deposition,43,44 or hydrothermal growth.45,46 Our measured FWHM of the anatase (004) 

rocking curve at 0.96° falls within the range of previously reported values for anatase (001) films on 

SrTiO3 (0.07 - 1.47°), indicating that the crystallinity and alignment of our films are comparable to other 

methods. Until now, the only prior reports of STM of anatase grown on SrTiO3 were for films grown with 

molecular beam epitaxy inside of a UHV chamber.42 Our demonstration of a hydrothermally grown 

anatase film that is compatible with STM provides an inexpensive and simple method for studying 

surface reactions on this material at the molecular scale in the ambient conditions relevant to application. 
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4.6 Conclusion 

Solution-prepared organic monolayers provide an ideal platform for studying the reactivity of metal 

oxides in technologically relevant, ambient environments. The photodecomposition of benzoate and 

phenylphosphinate monolayers on rutile (110) and anatase (001) display unusual biexponential reaction 

kinetics, in which the reaction rates decrease by approximately two orders of magnitude after a fraction of 

the molecules react. Statistical analysis of the photoreacted benzoate monolayer on rutile (110) are 

consistent with the reaction occur randomly across the surface, suggesting that the biexponential kinetics 

does not result from variations in the reactivity of different surface sites. A model involving a decrease in 

the magnitude of band bending as a result of the photodecomposition of the monolayer is proposed to 

explain this phenomenon.  
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Chapter 5 

 Frustrated Etching during H/Si(111) Methoxylation produces Fissured Fluorinated 
Surfaces, whereas Direct Fluorination Preserves the Atomically Flat Morphology† 
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5.1 Abstract 

Two solution-based strategies for the preparation of partially fluorinated Si(111) surfaces from H/Si(111) 

were investigated using a combination of scanning tunneling microscopy, x-ray photoemission 

spectroscopy, infrared spectroscopy, and kinetic Monte Carlo simulations. Direct fluorination of 

H/Si(111) with HF (aq) produced atomically flat surfaces with 11% fluorination. A two-step reaction that 

first methoxylated the surface by reaction in methanol then converted the methoxy-termination to F-

termination by reaction in HF (aq) produced atomically rough, fissured surfaces with 24% fluorination. 

The atomic-scale roughness was induced by the methoxylation reaction. Methanol was shown to react 

with H/Si(111) surfaces through two parallel mechanisms: an etching reaction and a methoxylation 

reaction. The methoxylation reaction locally inhibited or “frustrated” the etching reaction, leading to the 

development of a characteristic fissured morphology. The H and F atoms on the fluorinated surface were 

imaged with atomic resolution, and no evidence of the previously proposed nanopatterning mechanism 

was observed. 
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scanning tunneling microscopy, methanol, silicon, etching, functionalization 

5.2 Introduction 

Silicon functionalization — the covalent attachment of a high density of organic molecules to a silicon 

surface — is a prerequisite for many envisioned and emerging technologies, including chemical and 

biological sensors and next-generation photovoltaics. Many of these applications require high electronic 

performance of the silicon/organic interface, which means that silicon oxidation must be scrupulously 

avoided during functionalization. As a result, an ideal functionalization reaction cannot oxidize even a 

small percentage of the surface. 

The two most established techniques for the formation of robust, high quality monolayers start with an 

atomically flat, hydrogen-terminated Si(111) surface prepared by anisotropic etching in an aqueous 

solution.1–3 The flat H/Si(111) surface is then functionalized by either direct reaction with a 1-alkene4–10 or 

by a two-step reaction that uses a Grignard reagent to functionalize a pre-chlorinated surface.11–17 While 

both approaches produce flat Si(111) surfaces terminated by high quality alkyl monolayers, the reactions 

have a limited scope and cannot be used to produce all desired organic terminations on unoxidized 

silicon.  

Activating an atomically flat H/Si(111) surface by replacing all or most of the terminating H atoms with 

hydroxyl (–OH) groups would dramatically expand our repertoire of silicon functionalization reactions by 

enabling the use of a wide variety of condensation (dehydration) reactions developed for the 

functionalization of glass and silica surfaces. Despite many attempts, the preparation of an unoxidized, 

hydroxylated silicon surface outside of an ultrahigh vacuum chamber has proven elusive. For example, 

the reaction of (deoxygenated) H2O with silicon simply etches the surface, regenerating the H-termination 

in the process.18–21 Although more aggressive reagents, such as aqueous bases22,23 or H2O2,24 produce 

surface silanol groups, they also react with silicon backbonds and partially oxidize the underlying 

substrate.  
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Michalak et al.25  recently filled this synthetic void with a three-step synthesis of a “nanopatterned” 

Si(111) surface in which 1/3 of the H atoms on an atomically flat H/Si(111) surface are replaced by –OH 

groups with no interfacial oxidation. The key to this reaction is the first step: the methoxylation of 

H/Si(111) by direct reaction with anhydrous methanol.26,27 Michalak et al. proposed that the steric bulk of 

the adsorbed methoxy group (–OCH3) prevents methoxylation of adjacent sites and favors the formation 

of a periodic “nanopattern” as shown in Figure 5.1. In the remaining two steps of the synthesis, the 

methoxy groups are first replaced with F by immersion in concentrated HF (aq), then the F atoms are 

replaced with OH by immersion in H2O. 

 

Figure 5.1: Nanopatterned arrangement of methoxy groups on H/Si(111) proposed by 
Michalak et al.25 The steric bulk and near-free rotation of the methoxy groups around the 
vertical axis prevents the adsorption of methoxy groups at adjacent sites. In their model, 
each CH3O/H group is surrounded by 6 nearest neighbor H/CH3O groups, respectively. 
Si, H, C, and O atoms are represented by blue, gray, black, and red spheres, respectively. 

Michalak et al. inferred the existence of a hexagonal nanopattern on their fluorinated surface from its 

infrared absorption spectrum, which reportedly showed “quantized” increases in the energy of the Si–H 

stretch vibration with increasing F coverage.25,28 The energy of the Si–H stretch vibration is known to be 

sensitive to inductive effects.29 Because of this, nearby electronegative atoms, such as O, Cl, or F, lead to 

readily detectable increases (or “blue shifts”) in the energy of the Si–H stretch vibration. 30 – 32  DFT 
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calculations25 suggest a linear relationship between the energy of the Si–H stretch vibration and the 

number of nearest-neighbor F atoms, with the calculated mode energy increasing by 15 cm–1 as the 

number of nearest neighbor F atoms increases from 0 to 3. Consistent with this prediction, the energy of 

the Si–H stretch mode increased from 2079.4 cm–1 on the initial H/Si(111) surface to 2092.4 cm–1 on the 

nanopatterned F/Si(111) surface.25 

In this manuscript, we first show that silicon methoxylation is more complicated than initially realized, 

consisting of parallel etching and functionalization reactions. The functionalization reaction locally 

inhibits or “frustrates” the etching reaction. As a result, methoxylation transforms an initially flat 

H/Si(111) surface into a nanostructured surface characterized by relatively straight vicinal steps and 

fissured terraces. Fluorination of this surface by immersion in HF produces a surface with 24% F 

termination, somewhat less than the 33% reported by Michalak et al.;25 however, the F atoms show no 

evidence of the proposed hexagonal nanopattern.  

Second, we demonstrate a much faster and simpler means of fluorinating a H/Si(111) surface: immersion 

in concentrated HF at room temperature. This reaction leads to direct replacement of H by F with no 

surface etching or oxidation. The reaction occurs randomly across the surface and also does not form a 

nanopattern. The partially fluorinated surface is atomically flat and fluorination densities as high as 11% 

are demonstrated. Although this reaction produces somewhat less fluorination than the methanol pathway, 

the superior surface morphology may be advantageous for some applications. Further optimization of the 

reaction conditions (e.g., temperature, concentration) may increase the fluorination density.  

Once fluorinated by either strategy, Michalak, et al.25 have shown that the F atoms can be replaced with 

hydroxyl groups by a H2O immersion, producing an unoxidized, hydroxyl-terminated Si(111) surface that 

is an ideal starting point for a wide variety of functionalization reactions. 

Like most silicon functionalization reactions, the reactions studied here do not functionalize every site on 

the surface, and the degree of functionalization is a point under study. In the following, we will follow 



 71

convention and refer to “methoxylated” or “fluorinated” surfaces, which will be abbreviated as 

CH3O/Si(111) and F/Si(111); however, many of the surface sites will remain H-terminated. 

5.3 Experimental and Computational 

Experimental Methods. STM samples were diced from B-doped 0.5 – 5.0 Ω cm Si(111) miscut by 0.45° 

towards . Samples for infrared analysis were diced from float-zone Si(111) wafers miscut by 9° 

towards . 

Immediately prior to use, all labware underwent a modified RCA clean. 33  To remove organic 

contamination, the labware was immersed in an SC-1 bath consisting of 1:1:5 by volume of 30% H2O2 

(aq, J.T. Baker, CMOS grade): 28% NH3 (aq, BDH, ACS grade): ultrapure H2O (Milli-Q) for 10 min at 

80°C. The labware was thoroughly rinsed with ultrapure H2O, then immersed in an SC-2 bath consisting 

of 1:1:5 by volume of 30% H2O2 (aq): 37% HCl (aq, BDH, ACS grade): ultrapure H2O for 10 min at 80°C 

to remove metallic contamination.   

Hydrogen-terminated samples were prepared in air using the following procedure. Silicon samples were 

cleaned with a fresh SC-1 solution for 10 min at 80°C, rinsed with ultrapure H2O, then cleaned with 

another fresh SC-1 solution for 10 min at 80°C. To remove the oxide, silicon samples were immersed for 

30 s in 5:1 buffered oxide etch (a solution of HF and NH4F, J.T. Baker, CMOS grade) at room 

temperature. Following oxide removal, samples were rinsed in H2O, then etched in 40% NH4F (aq, J.T. 

Baker, CMOS grade) for 15 min to produce an atomically smooth H-terminated surface. Samples were 

rinsed twice in separate aliquots of H2O for 3 s each. For the surfaces with a 9° miscut towards the  

direction, samples were cleaned in the same manner as above, but the etching process was modified. The 

samples were immersed in 25% HF for 30 s, immediately followed by a 20 s immersion in 40% NH4F. 

Samples were rinsed twice in separate aliquots of H2O for 3 s each. 

Methoxylated samples were prepared in an oxygen-free glovebox by immersing a smooth H-terminated 

surface in anhydrous methanol (99.8%, Sigma Aldrich) contained in a sealed Teflon vial heated to 65°C in 
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112

 
112
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a dry heat bath. For studies of short reaction times (≤ 30 min), silicon samples were transferred into 

preheated vials of methanol, whereas longer reactions started with room temperature methanol. After 

methoxylation, samples were removed from solution and allowed to dry in air before further use. To test 

for possible side reactions with dissolved O2,34,35 some experiments were performed with methanol that 

was pre-sparged with ultrahigh purity N2; however, no effect was observed.  

Fluorination was performed by immersing H-terminated or methoxylated samples into 49% HF (aq, J.T. 

Baker, CMOS grade) for varying times. Dissolved oxygen in the HF (aq) was removed by storing the HF 

(aq) in ultrahigh purity N2 without agitation for 7 hr immediately prior to use. 

Once prepared, samples were quickly transferred (within approximately 5 min) to an oil-free load lock on 

an ultrahigh vacuum chamber for characterization with scanning tunneling microscopy (STM) and X-ray 

photoemission spectroscopy (XPS, Supporting Information). The STM tips were electrochemically etched 

from recrystallized tungsten36 and prepared with field-directed sputter sharpening. 37 Alternatively, the 

samples were transferred to a dry-air-purged infrared spectrometer where unpolarized radiation incident at 

74° from the surface normal was used to obtain a transmission spectrum at 4 cm–1 resolution. The 

reported spectra are either referenced to an oxidized sample prepared by an SC-1 clean or presented as 

differential spectra. 

Kinetic Monte Carlo Model. The simultaneous etching and methoxylation reactions were modeled using 

the atomistic, chemically realistic kinetic Monte Carlo (KMC) model described in Refs. 38 and 39. To 

match STM experiments, the initial surface was assumed to be entirely H-terminated with equally spaced, 

atomically straight vicinal steps corresponding to a miscut of 0.5° in the  direction, a miscut that 

yields monohydride-terminated vicinal steps. Simulated surfaces were typically ~200 nm × 200 nm in 

extent, containing ~106 Si atoms. Screw bounds were used to simulate an infinite surface. 

The model reported here allowed for two site-specific reactions of H-terminated silicon atoms: etching 

(removal of the Si atom) and methoxylation. Any “dangling bonds” created by the etching reaction were 
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assumed to be immediately terminated by hydrogen. Once methoxylated, a surface site became 

unreactive; it would not etch or de-methoxylate. (This assumption could be relaxed to enable testing of 

alternate mechanisms.) Diffusion of silicon atoms and methoxylate adsorbates, redeposition of etched 

silicon from solution, and undercutting reactions were forbidden. The latter three assumptions are well 

justified for aqueous etching in the presence of alcohol as discussed in Refs. 38–40. 

The rates of the site-specific reactions were user-controlled parameters that were determined by 

comparison to experimental morphologies.3,39,41 On the basis of previous investigations of the reactivity of 

H/Si(111) in a variety of solutions,3,38,40 five different reactive sites were included in the simulation: kinks, 

points, dihydride-terminated steps, monohydride-terminated steps, and terrace sites. Two additional 

reactive sites which must exist at least transiently during etching, trihydrides and strained horizontal 

dihydrides, have never been observed experimentally and were assumed to etch immediately upon 

formation. 

During the simulation, random sites were either etched or methoxylated in accordance with the user-

specified, site-specific reaction rates using the previously described algorithm.38 Because the 

methoxylation reaction was irreversible, and methoxylated sites could not etch, the reaction continued 

until all sites on the surface were methoxylated then stopped. The final morphologies are reported. 

Simulations of STM Images. STM images of isolated F and CH3O adsorbates on otherwise H-

terminated Si(111) surfaces were modeled using 2 × 2 periodically repeating slabs consisting of 4 silicon 

bilayers terminated by H on the backside and separated by a 13 Å vacuum spacing (Supporting 

Information). During geometric optimization, the positions of the bottommost Si bilayer and its 

terminating H atoms were fixed. 

Calculations were performed using density functional theory (DFT) within the generalized-gradient-

approximation42 (GGA) with the Perdew, Burke, and Ernzerhof (PBE) exchange-correlation functional,43 

as implemented in the Vienna ab initio simulation package (VASP).44–47 The electron-ion interaction was 

described using the projector augmented wave (PAW) method of Blöchl. 48 , 49  Electronic states were 
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expanded in plane waves with a kinetic energy cutoff of 400 eV and a 7 × 7 × 1 Monkhorst-Pack grid of 

k points. Brillouin-zone integration was performed using the tetrahedron method with Blöchl 

corrections.50 

STM images were modeled within the Tersoff-Hamann approximation51 as isosurfaces of constant local 

density of states at an energy equal to the tip-surface bias measured with respect to the surface Fermi 

energy as implemented in bSkan.52,53 

5.4 Results 

Methoxylation of H/Si(111) with CH3OH. Comparison of STM images before and after reaction with 

methanol showed that the methoxylation reaction etched the surface. The initial H-terminated surfaces 

were characterized by atomically smooth terraces separated by atomically straight steps, as shown in 

Figure 5.2(a). Two changes were observed after reaction in methanol for 30 min as shown in Figure 

5.2(b). (Complete methoxylation requires a ~12 hr immersion.27) First, the atomically straight steps 

became ragged with numerous indentations. Second, the initially flat terraces became pockmarked with 

both shallow “depressions” and monolayer-deep etch pits with irregular edges. We attributed the shallow 

depressions to individual methoxy groups due to the insulating nature of the methoxy group (vide infra). 
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Figure 5.2: (a) STM image of H/Si(111) surface displaying atomically smooth terraces 
with atomically straight, single-atom-high steps. The inset shows a high-resolution view 
of the step edge. Images of H/Si(111) surfaces after immersion in methanol at 65°C for 
(b) 30 min and (c) 21 hr.  

Most of the step etching was observed in the first 30 min of reaction with methanol, as can be seen by 

comparing the surfaces in Figure 5.2(b) and Figure 5.2(c), which were reacted for 30 min and to nominal 

completion (21 hr), respectively. Few morphological changes were observed after 30 min of reaction. 

Detailed morphological comparisons were not possible; however, as fully methoxylated surfaces were 
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difficult to image, and atomic resolution was never obtained. This difficulty is consistent with our DFT 

simulations (vide infra), the expected rapid rotation of the methoxy group at room temperature,25 and the 

intuitive expectation that tunneling is hindered by the methoxy group. 

Further evidence of methanol-induced etching was obtained from an analysis of the Si–H stretch region of 

the infrared absorption spectrum of the initial and methoxylated surfaces as shown in Figure 5.3. On 

surfaces miscut by 9° towards the  direction, the NH4F etch used to prepare the H-terminated 

Si(111) surfaces produces near-atomically straight steps with the dihydride termination sketched in Figure 

5.3.2 As a result, the infrared spectrum displays one transition at 2084 cm–1 that is assigned to the terrace 

mode and three intense step modes at 2094 cm–1, 2101 cm–1, and 2135 cm–1 that correspond to the C1, C2, 

and C3 step vibrations, respectively, which are also sketched in Figure 5.3.2,54 These four modes were 

clearly resolved in the initial spectrum. A small shoulder at 2071 cm–1 corresponding to the B1 

monohydride step mode2 was also observed, which was consistent with the etch-induced formation of a 

low density of monohydride steps on two-dimensional hillocks.55 
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Figure 5.3: The Si–H stretch region of transmission infrared spectra of functionalized, 
highly miscut surfaces taken with the light incident in the “upstairs” and “downstairs” 
orientations as sketched at top. The 9° miscut on these surfaces resulted in a high density 
of initially dihydride-terminated steps. The spectra are presented in pairs representing 
(a, b) the initial H-terminated surface, (c, d) the surface after reaction in 65°C methanol 
for 30 min, and (e, f) the difference spectrum where positive intensity indicates a net 
increase after methoxylation and negative a net decrease. Vertical lines denote the step 
and terrace modes listed in Table 5.1. 

Name 
Energy 
(cm–1) 

Description 

B1 2071 Monohydride step vibration 

A 2084 Terrace vibration 

C1 2094 Dihydride step vibrationa 

C2 2101 Dihydride step vibrationa 

C3 2135 Dihydride step vibrationa 

aThe dihydride modes are sketched in Figure 3. 
 

Table 5.1: Assignments of the Si–H stretch modes2 observed on H/Si(111) and denoted by 
vertical lines in Figure 5.3. 

The infrared spectrum was significantly different after 30 min in 65°C methanol, with all modes showing 

broadening, a small red shift in energy, and a decrease in intensity. The first two effects, line broadening 

and red shifting, have been studied extensively on flat56,57 and stepped58 H/Si(111) and are well known 

consequences of reduced coverage. The net decrease of intensity across all modes indicates that a reaction 

has taken place, and is consistent with etching-induced loss of H from both terrace and step sites. 

Quantification of the relative rates of H loss from step and terrace modes is not possible from these data. 

XPS analysis of the chemical state of the methoxylated surfaces was consistent with previous reports. The 

methoxylation reaction proceeded without concomitant oxidation, as confirmed by high resolution scans 

of the Si 2p3/2 transition. Silicon oxidation leads to the appearance of characteristic transitions at binding 

energies 1-3 eV above the Si0 transition,59 so the near-indistinguishability of the Si 2p3/2 spectra before 

and after methoxylation, as seen in Figure 5.4, confirmed the absence of oxidation. Methoxylation was 

confirmed using the C 1s transition (Supporting Information).  
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Figure 5.4: The Si 2p3/2 region of XPS spectra of the H/Si(111) surface before and after 
21 hr reaction in 65°C methanol. The Si 2p1/2 component was removed computationally59 
for clarity. 

Direct Fluorination of H/Si(111) with HF. Directly immersing H-terminated Si(111) in deoxygenated 

HF (aq) led to significant surface fluorination, as confirmed both spectroscopically and microscopically. 

Fluorine was undetectable on the initial H/Si(111) surface, as shown by XPS analysis of the F 1s 

transition in Figure 5.5. Quantitative analysis of the F 1s transition (Supporting Information) showed that 

a 3 min immersion in HF produced a 6.8% monolayer (ML) fluorine coverage, whereas a 15 min 

immersion produced a 11% ML coverage.  

 



 80

Figure 5.5: The F 1s region of XPS spectra of the H/Si(111) surface (black) before 
reaction, (red) after immersion in HF for 3 min, and (green) after 22 hr methoxylation 
and subsequent immersion in HF for 3 min. The intensities are normalized to the 
integrated intensity of the Si 2p transition. 

STM images of H/Si(111) surfaces after immersion in HF show that F atoms directly replaced H atoms 

with no concomitant etching, as shown by Figure 5.6. After fluorination, the surface was decorated by an 

apparently random distribution of “dark” or “depressed” sites. These sites typically imaged as depressions 

in both empty- and filled-state images, but occasionally imaged as protrusions in filled-state images 

depending on the tip condition. To confirm that these sites corresponded to individual F atoms, a directly 

fluorinated surface was analyzed with both STM and XPS. The STM analysis found that 5.8% of the sites 

were dark, in good agreement with XPS analysis of the F 1s transition which yielded a F density of 

6.8% ML. The good agreement between the two strongly suggested that the dark sites were individual F 

atoms.  
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Figure 5.6: STM images of a H/Si(111) surface after immersion in HF (aq) for 3 min. The 
bright sites are individual H atoms, whereas the dark sites are individual F atoms.   

Fluorination of CH3O/Si(111) with HF. Immersing a methoxy-terminated Si(111) surface in 

deoxygenated HF (aq) for 3 min removed all traces of the methoxy-termination while partially 

fluorinating the surface.  After methoxylation and HF immersion, XPS analysis of the F 1s transition, 

shown in Figure 5.5, yielded a 24% ML F coverage (Supporting Information). This coverage is 

approximately 70% of that expected for the nanopattern in Figure 5.1. Analysis of the C 1s and O 1s 

regions (Supporting Information) confirmed complete removal of the methoxy groups. 

STM images of methoxylated surfaces after fluorination in HF, such as those in Figure 5.7, showed no 

evidence of the proposed nanopattern,25 but instead bore similarities to images of the methoxylated 

surface. The images were characterized by three distinct terrace features. First, the majority of the sites 
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were “bright,” which we attributed to H termination in analogy to Figure 5.6. Second, many deep, fissure-

like regions were observed. Tip convolution effects prevented definitive depth measurements on the 

narrowest fissures; however, wider fissures were confirmed to be 1 ML in depth. The fissures were 

therefore attributed to meandering etch pits. Finally, Figure 5.7(b) shows that some terrace sites imaged 

darker than the majority species but significantly lighter than the monolayer-deep etch pits. These features 

were assigned to individual F atoms in analogy to Figure 5.6. Importantly, both isolated and adjacent F 

atoms were observed, as seen in Figure 5.7(b), which did not support the proposed nanopatterning 

mechanism. A nanopatterned surface would display isolated functionalized sites surrounded by six H 

atoms as shown in Figure 5.1. In addition to the terrace features, the step edges showed clear evidence of 

etching and were similar to those observed after methoxylation, as seen in Figure 5.2(b) and Figure 5.2(c). 
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Figure 5.7: STM images of methoxylated Si(111) surfaces after immersion in HF (aq) for 
3 min. Three features are observed: bright H-terminated sites, darker F-terminated sites, 
and irregular monolayer deep etch pits.  

KMC Model of H/Si(111) Methoxylation. STM images of the methoxylated H/Si(111) surface before 

and after fluorination displayed two characteristic but puzzling morphological features: unstructured 

meandering pits and step edges that were relatively straight on the tens-of-nm length scale but jagged at 

the atomic length scale. These features are not characteristic of simple etching reactions. Within a step-

terrace-kink model, atomically straight steps are the hallmark of highly site-specific surface etching (i.e., 

high kink site reactivity), whereas compact (not meandering!) unstructured pits are characteristic of 

isotropic step-kink reactivity.40, 60  However, two additional effects complicate this reaction. First, the 

initial H/Si(111) surface had atomically straight steps, so the final morphology may have been influenced 

by  the starting morphology. Second, the morphological effects of the etching reaction may have been 

influenced by the methoxylation reaction. 

To understand the origins of these morphological features and their mechanistic implications, we 

performed kinetic Monte Carlo simulations. These simulations were based on three observations. First, 

the experimental data could only be explained by parallel etching and methoxylation reactions, so both 

were included in the simulation. Second, the most dramatic morphological changes, particularly at the 

step edges, occurred in the early stages of the reaction (~first 30 min). Little evolution was observed after 

a few hours of reaction, and etching appeared to stop. Third, a wide variety of etchants, including NH4F,3 

KOH,61 , 62  H2O,18,19 and isopropanol,39 have been shown to attack H/Si(111) surfaces anisotropically 

following the general pattern of kink sites being orders of magnitude more reactive than step sites which 

are in turn orders of magnitude more reactive than terrace sites. 

The KMC simulations were based on three assumptions that are consistent with these observations. First, 

the etching reaction was assumed to be highly anisotropic. For concreteness, we used the site-specific 

etch rates appropriate for the best studied H/Si(111) etching reaction, NH4F etching in air.3 Second, the 

methoxylation reaction was assumed to attack random sites on the surface, not a particular type of site. 

This assumption is consistent with the randomly distributed dark sites in Figure 5.2(b). Finally, a 
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methoxylated site was assumed to be unreactive; it would neither etch nor de-methoxylate. This 

assumption stopped morphological evolution once all sites were methoxylated. 

The KMC simulations had a single adjustable parameter, the relative rate of methoxylation, which 

determined the final morphology. If the rate of methoxylation was zero (see Supporting Information), the 

simulation would etch forever, yielding a morphology characterized by straight steps and triangular etch 

pits. If the rate of methoxylation was finite, the surface would etch until all sites were methoxylated, then 

the reaction would stop. Depending on the relative rates of etching and methoxylation, a range of 

morphologies were observed as shown by Figure 5.8. When the rate of methoxylation was much faster 

than the etch rate — the fast methoxylation limit — the surface would become fully methoxylated with 

little to no etching. As a result, the final morphology was quite similar to the initial morphology. When 

the rate of methoxylation was slow compared to the etch rate — the slow methoxylation limit — the 

surface would etch extensively before the reaction would stop. Importantly, the randomly distributed 

methoxylated sites blocked the highly anisotropic etching reaction. In doing so, the random blocking 

prevented the highly anisotropic etching reaction from producing straight steps and triangular etch pits. 

Instead, etching produced a very rough morphology as seen in Figure 5.8.  
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Figure 5.8: The range of final morphologies produced by KMC simulations of parallel 
etching and methoxylation reactions. The ratio of the rates of methoxylation to kink site 
etching ranged from 10–6 (slow methoxylation) to 10–2 (fast methoxylation) as indicated 
in the upper left of each image. All of the surfaces are fully methoxylated. 

The best match between the experimentally observed morphologies, such as Figure 5.7, and this simple 

model is shown in Figure 5.9. In this intermediate regime, the overall rate of methoxylation was 

comparable to the overall rate of etching, and the morphology shows clear evidence of both reactions. The 

atomically straight steps on the initial morphology resulted in steps that were nominally straight on the 

tens-of-nm length scale, but rough on the atomic scale. Similarly, the meandering, unstructured nature of 

the etch pits was a result of site blocking by the methoxylation reaction. 
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Figure 5.9: Best match KMC simulation to experimental images of methoxylated surface 
after fluorination. See Supporting Information for details. 

DFT Simulations of STM Images. The high degree of correlation between the density of atomic-scale 

“depressions” in images of fluorinated H/Si(111) and the F coverage calculated from x-ray photoemission 

spectra suggested that the dark features were individual fluorine atoms. To confirm this assignment, we 

simulated STM images of isolated fluorine atoms on H/Si(111), such as the one shown in Figure 5.10. 

The good agreement between simulation and experiment confirmed this assignment. 
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Figure 5.10: Comparison of experimental and simulated empty- and filled-state STM 
images of isolated F atoms on a H/Si(111) surface. The F sites typically imaged as 
depressions in both empty- and filled-state images, but occasionally (as shown here) 
imaged as protrusions in filled-state images depending on the tip condition. 

In contrast to the case of adsorbed F, simulations of isolated methoxy groups on H/Si(111) predicted much 

lower tunneling currents at comparable tip-surface distances. This low conductance explained our 

inability to obtain high resolution images of the methoxylated surface. 

5.5 Discussion 

Implications for Si Functionalization. These experiments investigated two promising strategies for the 

fluorination of Si(111): a 15 min single-step reaction that produced atomically flat surfaces with 11% 

fluorination and a ~20 hr, two-step reaction that produced rougher surfaces with 24% fluorination. The 

experimental results are summarized in Figure 5.11. As demonstrated by Michalak et al.,25 replacement of 

the F atoms by hydroxyl groups without concomitant oxidation can be achieved through a brief 

immersion in H2O. 

 

Figure 5.11: The F atom density produced by different fluorination strategies. 

From the standpoint of Si functionalization, the direct fluorination reaction bears further investigation. 

Although this approach will produce fewer attachment points for subsequent functionalization reactions, 

the atomically smooth morphology may offset this disadvantage by improving the homogeneity of any 

grown films and suppressing the formation of electronic defects.63 
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Reaction of CH3OH with Si(111). These experiments and simulations, taken together, show that 

methanol reacts with H/Si(111) surfaces through two parallel mechanisms: an etching reaction and a 

methoxylation reaction. STM images of the methoxylated surface before and after fluorination provide 

incontrovertible evidence of etching. Two additional pieces of evidence suggest that the etching reaction 

is highly anisotropic, occurring much more rapidly at step sites than at terrace sites. First, STM images 

show a dramatic roughening of the surface steps after only 30 min of reaction. Second, kinetic Monte 

Carlo simulations of parallel etching and methoxylation produce morphologies that are in good agreement 

with STM experiments.  

The fissured morphologies produced by the methanol reaction suggest that methoxylation of a silicon site 

blocks (or drastically slows) subsequent etching of that site. In other words, methoxylation frustrates 

etching. This hypothesis is supported by three pieces of evidence. First, step edge morphologies undergo 

significant changes during the first 30 min of reaction but then show little further evolution, suggesting 

that the step edges are rapidly passivated. Second, the “fissured” appearance of the etch pits is not 

consistent with a simple etching reaction; site blocking reactions are needed to produce these 

morphologies. Finally, a continuous etching reaction would lead to very rough surfaces after extended 

reaction, which was not observed. 

In hindsight, slow etching of silicon by warm methanol is not surprising. Warm H2O is a slow but highly 

anisotropic Si(111) etchant that produces flat H/Si(111) much like NH4F (aq).18–21 The initial step in this 

reaction is thought to be attack by OH– produced by the autodissociation of H2O. Methanol and H2O are 

both weak acids with similar dissociation constants, so etching may be initiated by the methoxide ion, 

OCH3
–, which is produced by autodissociation of CH3OH. A similar reaction scheme has previously been 

proposed for the reaction of isopropoxide with H/Si(111) in isopropanol solutions.39 

Despite intensive effort over a period of one year and a demonstrated ability to image H and F atoms with 

atomic resolution, we observed no evidence of the proposed hexagonal nanopattern.25 The original 

evidence for nanopatterning was the apparent preponderance of H atoms with three nearest neighbors as 
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estimated from blue shifts in the Si–H stretch vibration; however, this argument assumed that the initial 

atomically flat morphology was preserved during subsequent reactions. These experiments show that this 

is not the case, and the actual morphology is much more complicated. 

Direct Fluorination of H/Si(111) with HF. The mechanism of the direct fluorination of H/Si(111) by HF 

is not known. STM images suggest the reaction does not proceed through an etching mechanism, as the 

fluorinated surfaces display atomically straight steps and an apparently random distribution of F atoms. If 

HF were etching H/Si(111) and producing a mixture of H- and F-terminated sites, then STM images of 

the fluorinated surface taken before complete reaction (i.e., before one monolayer of etching) would show 

no fluorination at the upper step edge but full fluorination at the lower edge. (This effect is clearly seen in 

the production of “denuded zones” in Br2 (g) etching of Si(111).64) This was not observed. 

The protons on H/Si(111) are not labile, so direct fluorination is unlikely to proceed by an autoionization 

mechanism. For example, deuterium exchange is not observed when H/Si(111) surfaces are immersed in 

D2O. Instead, deuteration proceeds through an etching mechanism.65 

Based on these data, we cannot rule out a photoinduced reaction. The mechanism of direct fluorination 

deserves further study.    

5.6 Conclusions 

Two promising strategies for the fluorination of H/Si(111) were examined: a 15 min single-step reaction 

that produced atomically flat surfaces with 11% fluorination and a ~20 hr, two-step reaction that produced 

atomically rough, fissured surfaces with 24% fluorination. The atomic-scale roughness observed after the 

two-step strategy was attributed to the initial methoxylation reaction. Methanol was shown to react with 

H/Si(111) surfaces through two parallel mechanisms: an etching reaction and a methoxylation reaction. 

The methoxylation reaction locally inhibited or “frustrated” the etching reaction, leading to the 

development of a characteristic fissured morphology. No evidence of the previously proposed 

nanopatterning mechanism was observed. 
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