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Proteolysis is crucial for the maturation, regulation and recycling of the chloroplast 

proteome. Although several dozen chloroplast proteases are known, information 

concerning their substrates and functions is limited. In particular, little is known about 

the structural features of substrates that trigger their proteolysis. Most chloroplast 

proteins are nuclear encoded and are targeted through an N-terminal chloroplast transit 

peptide (cTP) that is removed by stromal processing peptidase (SPP). To better 

understand proteolytic maturation, the soluble N-terminal proteome of the Arabidopsis 

thaliana chloroplast was characterized. A cTP cleavage motif was observed that 

suggests other peptidases, in addition to SPP, are involved in chloroplast protein 

maturation. There was a clear preference for small uncharged amino acids at the 

processed protein N-terminus suggesting the existence of a chloroplast specific ‘N-end 

rule’. The soluble chloroplast peptidases PREP and OOP have been shown to degrade 

small polypeptides in vitro and are thought to be responsible for removal of cTP 

fragments and other degradation products. The CLP protease system can degrade intact 

protein substrates with the aid of ATP dependent (AAA+) CLPC chaperones that unfold 

and feed substrates into the CLP proteolytic core. An array of proteomic tools were used 

to compare Arabidopsis mutants deficient in the above peptidases with wild type. 
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Degradation products, including cTPs, were found to accumulate in peptidase mutants 

indicative, of rate-limited or blocked degradation pathways. Incomplete or altered N-

terminal maturation for chloroplast proteins was dependent on the type and severity of 

the peptidase deficiency. These results provide molecular details to help explain dwarf, 

chlorotic mutant phenotypes and demonstrate the interplay between protein import, 

proteolytic processing and the downstream degradation of damaged or unwanted 

proteins in the chloroplast. Substrate and sequence cleavage specificity was determined 

for soluble chloroplast glutamyl-endopeptidase (CGEP) and the plastoglobule localized 

metallopeptidase PGM48. Structural models were used to predict peptidase substrate 

binding mechanisms. 

 



 

  iii 

BIOGRAPHICAL SKETCH 

 

Born in England, Elden Rowland was raised in Bonavista, Newfoundland, Canada. He 

received a B.Sc. (Hons) in Chemistry from Dalhousie University in 2002. He managed 

the Proteomics Core Facility at Dalhousie’s School of Medicine for eight years. During 

that time, he was a member of the Atlantic Research Center for Lipid Research and 

developed a widening interest biology. In 2011 he joined the lab of Klaas van Wijk at 

Cornell University, first as a technician, and then as a graduate student in the field of 

Plant Biology.  



 

  iv

 

 

 

 

 

 

The force that through the green fuse drives the flower 

Drives my green age; that blasts the roots of trees 

Is my destroyer. 

And I am dumb to tell the crooked rose 

My youth is bent by the same wintery fever. 

 

The force that drives the water through the rocks 

Drives my red blood; that dries the mouthing streams 

Turns mine to wax. 

And I am dumb to mouth unto my veins 

How at the mountain spring the same mouth sucks. 

 

Dylan Thomas (1952) 
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PREFACE 

 

Like most cellular compartments, the chloroplast has a discrete, but dynamic, collection 

of proteins (referred to as the proteome) that are required for biological function. The 

chloroplast proteome is continually shaped by proteolysis. This thesis covers the life-

cycle of chloroplast proteins from protein translocation and maturation, to their ultimate 

degradation into free amino acids. In order to study these processes I chose the model 

plant Arabidopsis thaliana due to its high quality genome sequence, its well annotated 

gene models, and the availability of extensive genetic resources. Proteomics and mass 

spectrometry techniques were used to track N-terminal protein maturation, identify 

protease substrates, as well as protein degradation products.  

The INTRODUCTION (Chapter 1) explains the importance of proteolysis in the 

chloroplast and summarizes the relevant literature. Chapter 2 describes our study of the 

chloroplast N-terminal proteome, using a specialized labeling technique combined with 

mass spectrometry, which serves as a baseline for the rest of the thesis. This 2nd chapter 

characterizes the native population of mature N-terminal proteins sequences following 

import and processing of transit peptides and facilitates discussion of proteolytic 

degradation in later chapters.  

 The study described in Chapter 3 utilizes similar techniques as described in 

Chapter 2 to study various plastid proteases mutants and the consequences for the 

chloroplast proteome. This research revealed the connectivity of the plastid protease 

system or network. Chapter 4 describes the characterization of the specialized 

plastoglobular protease PGM48 that is senescence-induced and appears to play a role in 

degradation of the plastoglobular protein CAROTENOID CLEAVAGE 

DIOXYGENASE. The thesis also contains an appendix regarding the structure and 
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function of the soluble stromal protease cGEP both in vitro and in vivo. I suggest how 

this protease might fit into the above mentioned protease network. 
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CHAPTER ONE 

INTRODUCTION  

 

1.1 THE CHLOROPLAST 

  Chloroplasts are one of the defining features of plants and are the site of 

photosynthesis. They are part of a family of organelles called plastids that play a variety 

of roles in different tissues and at various developmental stages (Jarvis and Lopez-Juez, 

2013). All plastids are derived from proplastids that are present in the shoot and root 

apical meristems. They cannot be synthesized de novo and therefore must be inherited 

from 'mother' cells via cell division. Proplastids may differentiate into amyloplasts in 

roots, etioplasts in the dark, chloroplasts in green tissue and chromoplasts in flowers 

and fruit (Liebers et al., 2017). Interestingly, most plastids can interconvert if the 

conditions are right. In addition to performing photosynthesis, plastids synthesize an 

array of essential metabolites such as purines, fatty acids, vitamins E and K, carotenoids, 

amino acids and hormones (Neuhaus and Emes, 2000; Rolland et al., 2012).  

  Chloroplasts are the result of an endosymbiotic relationship between a 

cyanobacterium and a eukaryotic heterotroph (Archibald, 2015). Throughout ~ one 

billion years of evolution most of the plastid progenitor’s genes were lost or migrated 

to the host nucleus via a process termed horizontal gene transfer (Shinozaki et al., 1986; 

Zimorski et al., 2014). Less than 100 genes remain in the plastid genome but they play 

central roles in the light and dark reactions of photosynthesis, in transcription, 

proteolysis, and perhaps import (Nakai, 2015). Signaling between the nucleus and the 
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plastid has been demonstrated but the identities and integration of these signals is not 

well understood (Jarvis and Lopez-Juez, 2013). 

 The majority of the estimated ~3000 plastid proteins are encoded by nuclear 

genes and must be imported after their translation in the cytosol (van Wijk and 

Baginsky, 2011). This requires a robust system for protein trafficking and import to the 

plastid. The nature of transit peptides (TPs) that direct proteins to organelles continues 

to be an active area of research. Some 100  proteins are dually targeted to plastids and 

mitochondria and many function in organelle gene expression (e.g. tRNA-synthetases) 

and a few are proteases (Carrie and Small, 2013). The plant cell relies on the structural 

and electrostatic nature of TPs to direct them to the desired organelle (Garg and Gould, 

2016). 

 

1.2 PROTEOLYSIS AND PROTEOSTASIS 

  A highly dynamic proteome ensures that chloroplast biogenesis and homeostasis 

is maintained throughout development and in the face of (a)biotic stresses (Jarvis and 

Lopez-Juez, 2013). Protein homeostasis (proteostasis) refers to maintenance of a 

functional proteome (Hartl et al., 2011). More specifically, an optimum population of 

properly localized, folded and active proteins must be maintained. This requires control 

of transcription and translation, as well as a network of chaperones and other quality 

control systems including proteolysis (van Wijk, 2015). The chloroplast contains many 

different peptidases and together they help ensure proteostasis, by processing incoming 

immature proteins, and removing damaged or otherwise unwanted proteins, cleaved 

cTPs, and other protein fragments (Figure 1.1). Complete degradation of proteins yields 
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amino acids that can be used for protein synthesis or directed towards other metabolic 

activities (Rolland et al., 2012). 

  Proteolysis describes the enzymatic degradation of polypeptides - one protein 

degrades another. The central question in protease research is what structural features 

cause a protein substrate to be degraded. In other words, what prevents functional 

proteins from being degraded and allows unwanted proteins or protein fragments to be 

positively selected for degradation? Indeed, cellular peptidase systems incorporate 

many layers of complexity to regulate proteolysis (Sauer et al., 2004). The chloroplast 

protease network has many similarities to bacterial systems owing to its cyanobacterial 

progenitor. However, these proteases have evolved complexities that are absent in 

bacteria and harbor many unique features as compared to other organelles such as 

mitochondria (Nishimura and van Wijk, 2015). 

 

1.2.1 Scope of this Thesis 

 A general objective of this work was to improve our understanding of proteolysis 

in the chloroplast. As will be demonstrated in the remainder of this Chapter, plastid 

proteases can be loosely broken down into two groups, namely those involved in 

maturation (trimming a protein to its final functional form) and those involved in 

degradation (deconstruction of proteins). These functional groups are discussed in detail 

below. Additionally, I discuss the M16 peptidase family (including extra-plastidic 

members) in Arabidopsis thaliana that includes peptidases involved in both maturation 
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and degradation. This thesis also provides many examples of the strengths and 

limitations of different experimental and in silico peptidase characterization strategies. 

 

The focus in Chapter 2 is proteolytic maturation and characterization of the 

Arabidopsis thaliana (Col-0) chloroplast N-terminal (Nt) proteome is described. This 

project revealed the mature Nt start sites for several hundred chloroplast proteins and 

evaluated possible scenarios to arrive at these N-termini. In Chapter 3, the focus shifts 

Figure 1.1. Model of proteolytic activity in the chloroplasts. Maturation and 

degradation pathways are shown. cTP, chloroplast transit peptide; SPP, stromal 

processing peptidase; APs, amino peptidases involved in degradation and 

potentially involved in processing of immature proteoforms; NATs, alpha-amino 

acetyltransferases; PTMs, post translational modifications; PREP, presequence 

protease; OOP, organellar oligopeptidase; CGEP, chloroplast glutamyl 

endopeptidase; DEG, CLP, FTSH and LON are the common peptidase names. 
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to degradation, but we discover that disruption of degradation machinery interferes with 

maturation; therefore these two processes are linked. The remainder of this thesis 

(Chapters 4 and the Appendix) describes the characterization of other chloroplast 

proteases unrelated to those discussed in the opening chapters.  The long-term goal of 

this research is to define the chloroplast peptidase network and establish its contribution 

to plant growth and development.  

 

1.3 THECHNOLOGY TO STUDY PROTEOLYSIS 

 
Although chloroplast proteolysis has been intensively studied over the past 

several decades, many questions remain. Substrate-peptidase relationships are 

notoriously difficult to identify and elucidating the physiological significance of 

peptidases is challenging. Here I discuss various approaches that have been used to 

decipher protease structure and function.  

 

1.3.1 Genetics approaches 

Genetics is an invaluable tool and many important peptidases have been 

discovered by mutational analysis. Using a forward genetics strategies many cellular 

processes have been linked to proteases in mitochondria and chloroplasts (Rigas et al., 

2009; Albrecht-Borth et al., 2013; Hong et al., 2016). Ling et al were searching for 

suppressors of outer chloroplast membrane TOC33 loss-of-function mutants and 

discovered an E3 ligase, SP1 that targets components of the chloroplast import 

apparatus (Ling et al., 2012). A number of chloroplast peptidases were identified in a 
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high-throughput screen for nuclear-encoded chloroplast targeted genes with potential 

roles in photosynthesis and amino acid metabolism (Savage et al., 2013).  

By crossing different loss-of-function peptidase mutants in Arabidopsis we can 

determine if these genes act in similar pathways or processes (Chapter 3; (Kmiec et al., 

2013)). As the chloroplast protease field has developed, a more complete list peptidases 

and their assisting chaperones and adaptor proteins has been established (van Wijk, 

2015). Using this list of known and putative chloroplast peptidases a reverse genetics 

approach can be used to better resolve the functional roles and interconnectedness of 

peptidases in the chloroplast.  

 

1.3.2 In vitro strategies 

Once a peptidase has been identified, a series of logical questions arise and many 

of these can be answered using biochemical techniques in vitro. Is the protein a 

functional protease? Does it require cofactors, metals or ATP to operate? What is the 

protein structure? What is the cleavage specificity and substrate selectivity? What are 

the kinetics of proteolysis for a given peptidase?  

If the peptidase can be expressed in E. coli (or other expression systems) and 

reasonable amounts of an active, recombinant protein can be purified, characterization 

can be relatively straightforward. If the peptidase is unstable or part of larger 

heteromeric multi-subunit complex, such as the plastid CLP peptidase system in higher 

plants, in vitro production of the enzyme is far more challenging. For simple peptidase 

monomers like presequence protease (PREP) and organellar oligopeptidase (OOP), 

studied extensively by the Glaser group (Teixeira and Glaser, 2013), or CGEP (Chapter 
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4) and PGM48 (Chapter 5), in vitro experiments can provide a wealth of knowledge. 

Determining a protein structure requires extensive skills and resources and is key to 

fully understanding how a peptidase interacts with its substrates. However, if the 

structure of a related peptidase is known, protein homology modeling can provide a 

rough idea of how the protease might interact with substrates and its surroundings (see 

Chapters 4 and 5 for examples).  

Once purified, a peptidase can be incubated with synthetic peptides, 

recombinant proteins or cell extracts (Agard and Wells, 2009). The products of 

proteolysis can then be resolved by gel electrophoresis (SDS-PAGE), liquid 

chromatography (LC) and/or mass spectrometry (MS). If the substrate mixture is 

relatively simple, peptide products may be directly analyzed by MS and the identified 

peptides reveal the cleavage preference or specificity of the peptidase (as shown in 

Chapter 5). Alternatively, a substrate can be incubated with total or fractionated cell 

extracts containing known or unidentified peptidases (Abad et al., 1991; Teixeira et al., 

2017). From these experiments, the necessary cofactors and energy requirements for 

optimal peptidase activity can be determined as well.  

For a higher resolution picture of sequence cleavage specificity, the Proteomic 

Identification of Cleavage Sites (PICS) procedure was developed (Schilling et al., 2011; 

Biniossek et al., 2016). This N-terminal (Nt) proteomics technique involves incubation 

of a peptidase with a peptide library so that statistically significant cleavage site 

specificity can be determined. In a recent study, human cell lysates were incubated with 

either the peptidase CASPASE 2 or 6 before enrichment of cleaved proteins (Julien et 

al., 2016). In addition to the identification of many new candidate substrates, samples 
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were taken at different time points and analyzed by targeted MS (SRM) and 

immunoblotting, allowing the authors to determine the caspase specific rates of 

degradation for hundreds of substrates. This study highlights the fact that a peptidase 

may have multiple substrates, but some will be degraded much more efficiently than 

others.   

Although these experiments are essential to fully characterize a peptidase, they 

often leave us in the dark as to the function of the protein in living cells. Therefore in 

vivo experiments that draw from the above genetic and in vitro results are key.    

 

1.3.3 In vivo approaches 

The essential function of a peptidase is to cleave single or multiple peptide bonds 

within a substrate. However, the hunt for the substrates often ends empty-handed or 

with inconclusive results. There are a variety of reasons for this but new approaches and 

technologies are continually developed to improved substrate identification.  

Relative protein abundance levels can be determined using mass spectrometry 

(MS) analysis. Label-free quantitative MS is a straightforward method to determine the 

relative abundances of thousands of proteins in different genetic backgrounds (Friso et 

al., 2011). The van Wijk lab has characterized many Arabidopsis thaliana peptidase 

mutants with this technique, revealing dramatic remodeling of the chloroplast proteome 

and identifying putative substrates (Kim et al., 2013; Kim et al., 2015).  

Since peptidases are involved in protein turnover, researchers have long sought 

to quantify protein turnover or lifetime. One strategy involves adding protein synthesis 

inhibitors to the tissue and then using immunoblotting to measure reduction in protein 
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abundance at different time points (Sjogren and Clarke, 2011). A valid criticism of this 

approach is that the translational inhibitors themselves drastically effect the proteome. 

Pulse-chase-type experiments involving stable isotope labeling in cell culture (SILAC) 

have been successfully applied to measure protein turnover in animals (Dhondt et al., 

2017), but this approach does not work well in plants because they can synthesize their 

own amino acids. Recently, stable isotope labeling of plants was achieved by 

hydroponic growth on an N15 enriched nitrogen source. MS analysis of plants harvested 

at different time points following isotopic labeling allowed the determination of half-

lives for over a thousand proteins (Li and Millar, 2017). Calculation of these rates was 

based on the assumption that protein synthesis rates are constant and a correction was 

made to account for new growth/biomass.  

Untargeted or ‘shotgun’ proteomics techniques effectively sample abundant 

proteins. However, shorter lived, low abundance protein and peptide fragments are often 

below the limit of detection (Fortelny et al., 2015; Julien and Wells, 2017). Furthermore, 

these techniques cannot typically distinguish between different post-translationally 

modified proteoforms. Targeted proteomics surpass the standard limits of detection and 

quantification by scanning only over a small mass range specific to the protein or 

peptide of interest (Bereman et al., 2012), and this technique has been used to monitor 

putative peptidase substrates in different genetic backgrounds (Majovsky et al., 2014; 

Julien et al., 2016). 

Quantitative degradomics methods including amino (N-) and carboxy (C-) 

terminal proteomics facilitate the detection of protease substrates in vivo (Demir et al., 

2017). N-terminal (Nt) proteomics allows determination of protease cleavage sites (and 
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substrates) by identifying new (sometimes called neo-) N-termini generated by 

proteolysis (Agard and Wells, 2009; Lange and Overall, 2013). These methods have 

also been used to study alternative start sites for non-organellar proteins (Van Damme 

et al., 2014). This approach really began with the advent of Edman sequencing (Edman, 

1950). For many years this was the sole method for determination of a protein's 

sequence, starting at the N-terminus. Advancements in MS eventually allowed the 

sequencing of peptides by tandem-MS and database searching against sequenced 

genomes. Due to poor ionization efficiency and limited MS based fragmentation, 

proteins are generally digested with a protease such as trypsin, to produce small peptides 

before MS analysis (Domon and Aebersold, 2006).  

So-called ‘top down’ MS approaches where whole proteins without prior 

enzymatic digestion are analyzed by MS directly are gaining popularity (Fornelli et al., 

2017). This approach has the potential to sample populations of proteins and their 

degradation fragments (Wildburger et al., 2017). However, separating intact (whole) 

proteins in solution remains challenging and MS detectors have a limited dynamic range 

that may preclude detection of less abundant proteolytic fragments.       

The Terminal Amine Isotopic Labeling of Substrates (TAILS) approach, 

outlined in Figure 1.2, allows purification of protein N-termini. The method takes 

advantage of the high reactivity of protein α-amines (primary amines) at protein N-

termini and on the side chains of Lys (Kleifeld et al., 2011). As with other N-

terminomics techniques, internal peptides produced by digestion with trypsin are 

separated from N-terminal peptides using a separate labeling step, before and after 
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digestion. The TAILS approach is compatible with various quantitative labeling 

reagents such as ITRAQ, and SILAC (Prudova et al., 2014). 

 

 

 

 

 

 

 

 

 

 

 

 

Despite these technological advances, there are relatively few examples of these 

strategies revealing bona fide protease substrates in complex samples (in vivo) 

(Tsiatsiani et al., 2013; Carrie et al., 2015). In both these referenced cases, the specificity 

and localization of the peptidases was already known, greatly narrowing the proteome 

pool of potential substrates. N-terminal proteomics was applied to elucidate chloroplast 

N-terminal maturation and degradation in Chapters 2, 3 and in the Appendix. 

  

 

Figure 1.2. N-terminal proteomic methodologies. (A) Terminal amine isotopic 

labeling of substrates (TAILS) schematic. (B) Reductive dimethylation reaction 

for labeling the primary amines of proteins in solution at neutral pH. 
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1.4 PROTEOLYTIC MATURATION IN CHLOROPLASTS 

 

1.4.1 Protein import  

  Most chloroplast (and mitochondrial) proteins are synthesized in the cytosol and 

must therefore be imported. The plastid import apparatus has been extensively studied 

(Demarsy et al., 2014; Nakai, 2015; Paila et al., 2015). Receptors on the outer membrane 

recognize proteins to be imported by a 20 to 100 residue N-terminal signal peptide called 

the chloroplast transit peptide (cTP). Import then proceeds in a GTP- and ATP-

dependent manner. Most nuclear encoded proteins enter via the TOC/TIC channel, a 

pore complex that consists of at least a dozen protein subunits, many of which have one 

or more paralogs (Shi and Theg, 2013). The TOC/TIC channels within the envelope are 

not heterogeneous and there is evidence for at least two distinct complexes that 

preferentially import different classes of proteins. This is thought to facilitate the import 

of essential but low abundance ‘housekeeping’ proteins through one channel, while 

highly abundant photosynthetic proteins translocate though an alternate channel (Inoue 

et al., 2010). Furthermore, subunits of one such complex were shown to be the target of 

an E3 ligase (SP1), which triggers their degradation via the 26S proteasome, thus 

influencing protein import efficiency and selectivity (Ling et al., 2012).  

 

1.4.2 Stromal processing peptidase and cTP cleavage 

 It is well established that the cTPs are cleaved by STROMAL PROCESSING 

PEPTIDASE (SPP) (Richter et al., 2005; Teixeira and Glaser, 2013). The cleaved cTPs 

are then rapidly degraded by SPP itself, and a combination of PREP, OOP, 
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aminopeptidases, and possibly others (Kmiec et al., 2014; Teixeira et al., 2017). See 

sections 1.5 - 1.6.  

Complete loss of the SPP protein causes embryo lethality at the 16-cell stage, 

demonstrating that Nt maturation is crucial for plant development and cell viability 

(Trosch and Jarvis, 2011). The exact mechanism for this phenotype is unknown. 

However, loss-of function alleles for many plastid-localized proteins prevent 

development past the embryo stage (Savage et al., 2013). Most components of the 

import machinery in the inner envelope are nuclear encoded and must therefore be 

processed by SPP; unprocessed proteins likely have reduced function. Indeed, many of 

the plastid protein import mutants have similar phenotypes (Paila et al., 2014). Another 

factor to consider is that overall plastid protein stability will be hindered in SPP mutants, 

due to the long unstructured cTP extension that may trigger various degradation 

pathways (Bruce, 2000; Kmiec et al., 2014). 

 The ability to predict the N-terminus of a chloroplast protein is limited due to a 

lack of experimental information. The cleavage site specificity of recombinant SPP 

from pea has been probed with just a handful of substrates from a variety of species 

(Richter et al., 2005). Using this data and a machine learning approach, the ChloroP 

algorithm was developed (Emanuelsson, 1999). As the authors point out, the program 

is designed to predict the SPP cleavage site rather than the ultimate protein N-terminus. 

The software-derived consensus cleavage motif was VR↓AAAV. Implementing this 

motif produces an N-terminus one or two residues upstream of the observed mature 

protein N-terminus for most Arabidopsis chloroplast proteins as determined in Chapter 

2 and in previous reports (Zybailov et al., 2008; Bienvenut et al., 2012). The presence 
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of numerous amino peptidases in the plastid, and the possibility that they contribute to 

N-terminal maturation has long been recognized, but no concrete evidence exists for 

their contribution to plastid protein maturation (Richter and Lamppa, 1998; 

Emanuelsson, 1999; Walling, 2006). Although the prospect of additional processing by 

a so far unidentified aminopeptidase is intriguing, it is possible that SPP does not so 

much recognize a sequence motif, but rather a structural shift from an extended beta 

strand to a more helical structure, as was pointed out in Gavel et al (1990). The authors 

note that the C-termini of the cTP are enriched in Ile, Val (both beta strand forming) 

and Arg, but lack Leu and Lys (strong alpha helix favoring) (Pace and Scholtz, 1998). 

Then the cTP leads into Ala/Cys/Met followed by Ala/Ser, having alpha helix 

promoting character (Von Heijne and Gavel, 1990; Pace and Scholtz, 1998). Therefore, 

SPP may cleave the cTP without a strictly defined sequence motif. We explore these 

possibilities as well as the necessity for chaperones to ensure SPP precision in chapter 

3. Interestingly, Rudhe et al show that SPP is slightly more tolerant of mutations near 

the cleavage site of substrates than its mitochondrial counterpart β-MPP (Rudhe et al., 

2004).   

SPP is a soluble stromal protein and does not form a stable interaction with the 

chloroplast import apparatus (Schnell and Blobel, 1993; Schnell, 2014). Temporary 

existence of unprocessed pre-proteins in the stroma has been reported (Inoue et al., 

2013). However, the general lack of observed cTPs in chloroplasts (both from in vitro 

chloroplast protein import experiments and analysis of extracted leaf chloroplast 

proteomes) indicates that cTP cleavage and degradation must be highly efficient. 
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1.4.3 Co-translational maturation of plastid encoded proteins 

 N-terminal methionine excision (NME) removes the first amino acid from newly 

synthesized proteins (Giglione et al., 2004). This reaction occurs co-translationally and 

is often coordinated with N-α acetylation (NAA) of the revealed amino acid while still 

attached to the ribosome (Starheim et al., 2012). NME is an essential process and the 

NME machinery is part of the minimal eubacterial genome (Hutchison et al., 1999). 

Indeed compete loss of cytosolic NME causes embryo lethality in Arabidopsis (Ross et 

al., 2005; Frottin et al., 2009). Both NME and NAA also occur for nuclear encoded, 

plastid targeted proteins in the cytosol (Zybailov et al., 2008; Bischof et al., 2011). Tight 

interactions with cytosolic chaperones usually ensure translocation of the intact protein 

to the TOC import receptors (Fellerer et al., 2011). However, if the import machinery is 

compromised, as is the case in the ppi1 TOC159 loss-of-function allele, then 

unprocessed NAA transit peptides accumulate in the cytosol (Bischof et al., 2011).  

 Plastid and bacterial encoded proteins are initiated with a formylated 

methionine, produced by a specialized formyl-Met-tRNA. Before NME can occur, the 

enzyme peptide deformylase must deformylate the N-terminal Met (there are two 

paralogues in Arabidopsis, PDF1A and PDF1B). These events and other cTP cleavages 

dictate the mature N-terminal sequence of plastid encoded proteins. Interestingly, not 

all proteins are deformylated and NME is limited by the penultimate amino acid. 

Generally NME only occurs for proteins with Ala, Ser, Val, Thr, Pro, Gly or Cys in the 

penultimate position. These small uncharged residues are thought to facilitate Met 
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cleavage; the same pattern is observed across the tree of life (Bonissone et al., 2013). 

Two notable exceptions detailed in Chapter 2 are 30S ribosomal protein S15 and ATP-

synthase subunit CFβ1 for which the mature proteins are Ile and Arg terminated 

immediately downstream of the N-terminal initiating Met, respectively. 

 If plastid NME efficiency is reduced, as in the pdf1b loss-of function allele in 

Arabidopsis, dwarf, albino plants result (Giglione, 2003) again illustrating the 

importance of Nt processing. Protein destabilization is thought to be responsible for the 

phenotype and lower accumulation of the Photosystem II subunits D1 and D2 was 

observed in pdf1b. Furthermore, D2 turnover was shown in the green alga 

Chlamydomonas reinhardtii to be increased in response to treatment with the PDF 

inhibitor actinonin and also by mutating the penultimate residue to block removal of 

methionine (Giglione, 2003). An overall increase in proteolytic activity is suggested in 

response to NME inhibition, with CLP and FTSH proteases being involved (Adam et 

al., 2011). 

 

1.4.4 Additional mitochondrial processing peptidases ICP55 and OCT1 

The yeast mitochondrial Nt proteome was recently shown to be regulated by the 

peptidases ICP55 and OCT1, which begs the question, does such processing also occur 

in plastids? Vogtle et al noticed that many proteins accumulate with multiple Nt protein 

sequences that differ by a one or two amino acids; a similar phenomenon was observed 

in chloroplasts (see Charters 2 and 3). Systematic knock-out of yeast mitochondrial 

proteases led to the identification of intermediate cleavage peptidase (ICP55), which 

cleaves a single Leu, Phe or Tyr from the N-terminus of proteins following processing 
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by mitochondrial processing peptidase MPP (Vogtle et al., 2009). The processing 

peptidase OCT1 is able to cleave eight amino acids from the N-terminus of select 

mitochondrial proteins, again following MPP action (Vogtle et al., 2011). OCT1 also 

recognizes N-terminal sequences with Leu and Phe at their N-terminus but not Tyr. In 

most cases, both ICP55 and OCT1 generate N-termini with 'stabilizing' (small and 

uncharged) N-terminal residues. The authors went on to show that in the absence of 

processing by these enzymes, protein stability was greatly reduced in organello and in 

vivo (Vogtle et al., 2009; Vogtle et al., 2011). Mossmann et al demonstrate that of loss 

of MPPβ (MAS1) and PREP (CYM1) in yeast results in hindered or blocked processing 

of mitochondrial proteins (Mossmann et al., 2014). They observed widespread 

maturation defects when PREP was absent, such as unprocessed mitochondrial pre-

proteins and incorrect N-terminal processing. We reveal similar feedback inhibition of 

SPP processing in the chloroplasts of Arabidopsis mutants deficient in PREP and OOP 

(Chapter 3). 

 

1.5 M16 PEPTIDASES; PROTEIN STRUCTURES AND EVOLUTIONARY 

RELATIONSHIPS 

 
Members of the M16 family of metallopeptidases are widely distributed across 

the tree of life and they have diverse functions and an interesting evolutionary history 

(Rawlings et al., 2012). They function in organelle protein processing and maturation 

(as is the case for SPP and MPP) and also in peptide degradation. This feature makes 

this family particularly interesting for important for organelle biology. Because this 
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thesis concerns several Arabidopsis M16 peptidases, their structural and evolutionary 

relationships are discussed here.  

All M16s have an ‘inverted’ zinc binding motif (HxxEH) unique to peptidases 

that is required for their proteolytic activity (Aleshin et al., 2009). Typically, four 

structurally similar domains form two clam shell-like halves that encapsulate peptide 

substrates (Johnson et al., 2006; King et al., 2014). There are three M16 subfamilies (A, 

B and C): E. coli pitrilysin (PTR), human insulin degrading enzyme (IDE) and yeast 

STE23 fall into subfamily A (Alper et al., 2009; Taskin et al., 2017), whereas the 

eukaryotic MPP/SPP and PREP fall into subfamilies B and C respectively. 

Crystal structures are available for members of each subfamily including: human 

IDE (Protein Data Bank code, 2G56) and E. coli pitrilysin PTR (1Q2L), yeast MPP 

(1HR6) as well as Arabidopsis PREP1 (2FGE), and human PREP (4L3T). Additionally, 

a structure was determined for Bacillus halodurans M16B categorized peptidase named 

BHP (3HDI) (Aleshin et al., 2009). For each peptidase, at least one crystal structure was 

determined with a bound substrate or inhibitor molecule, allowing detailed 

characterization of the substrate binding pocket.  

E. coli PTR is an M16A family member localized to the periplasm. It was shown 

in vitro to cleave a variety of small peptides including insulin (Anastasi et al., 1993). 

PTR has 28% sequence identity to human IDE, the protease primarily responsible for 

insulin degradation in the blood (Rawlings et al., 2012). 

Yeast MPP is a dimer made up of α- and β-subunits. Two structures were 

determined for the heterodimer, each with different mitochondrial transit peptides 

(mTPs) bound to the substrate cavity in an extended conformation (Taylor et al., 2001). 
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The normally unstructured mTPs were shown to hydrogen bond to β-strands in the 

proximity of the active site, with the N-terminus protruding into the cavity and the active 

site cleaving the substrate close to the C-terminus of the mTP, where the mature protein 

would normally start. There is no structure available for SPP but the existence of 4 

domains found also in PREP and α/β-MPP suggests it forms a similar structure to MPP, 

perhaps with a larger cavity to accommodate lengthy cTPs. Interestingly SPP itself has 

an extremely long 142 residue cTP (Richter et al., 2005), which begs the question, can 

it cleave its own cTP or must it rely on an already mature and processed SPP? 

MPP has a significant sequence similarity with the core 1 and 2 subunits of the 

mitochondrial cytochrome bc1 complex (also named Complex III) (Gakh et al., 2002); 

in plants both MPP alpha and beta are integrated in the cytochrome bc1 complex (Glaser 

and Dessi, 1999). It has been suggested that an M16-like protease was introduced into 

eukaryotes from the mitochondrial progenitor that eventually became associated with 

the bc1 complex. In the case of some fungi such as N. crassa, a duplication allowed one 

of the subunits to become an autonomous soluble protease subunit while the other 

remained partially integrated into the bc1 complex. In animals and yeast, two 

duplications of the proteases allowed the creation of two separate complexes, the non-

proteolytic, membrane bound core 1 and 2 subunits (bc1 complex) and a separate 

soluble α/β-MPP. Plants, for some reason, never separated these functions and MPP 

remains critical for both respiration and precursor processing. 

The structures of Arabidopsis PREP1 at 2.1Å (Johnson et al., 2006) and human 

PREP at 2.0 Å (King et al., 2014) suggest that PREP acts as a monomer with a 

dynamically formed proteolytic chamber (10000-13000 Å3), opening and closing 
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through a hinge mechanism. In vitro experiments indicated that the Arabidopsis 

PREP1,2 homologs can degrade peptides/proteins within a size range of 10 and 65 

amino acids (Stahl et al., 2005), consistent with the size of the proteolytic chamber. 

They are suggested to have a preference for positively charged peptides including cTPs 

and mTPs due to the partially negatively charged binding pocket (Glaser and Alikhani, 

2010; King et al., 2014). In addition to the canonical M16 active site residues (HXXEH), 

other conserved sites are required for PREP activity such as E94, E177, N109, and C-

terminal R848 and Y854. The existence of catalytically important residues (not part of 

the M16 domain) in SPP may explain why a C-terminal truncated form of SPP is 

inactive in vitro (Richter et al., 2005; Johnson et al., 2006).   

Several phylogenetic studies have been reported for M16 peptidases but they 

focused only on a single subfamily, or were limited in scope (Gakh et al., 2002; Stahl et 

al., 2005). I identified ten M16 peptidases in Arabidopsis thaliana containing the 

characteristic zinc binding motif. In order to better resolve their evolutionary origins, 

and to suggest functions of so far uncharacterized members, I generated a phylogenetic 

tree (Figure 1.3). Three major clades were observed corresponding to the A, B, C 

subfamilies. The Arabidopsis proteins fell into seven subclades across these three 

subfamilies. Two Arabidopsis M16s (phylogeny identifiers Ath4 and Ath8) are 

positioned in a clade with only plant and algal (green and red) proteins that is sister to a 

clade containing human IDE (clustered with Mmu3) and yeast STE23 (Sce4).  
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Figure 1.3. M16 peptidase phylogeny. Plant and algal clades are collapsed 
separately, except in cases where the algal sequences did not form a 
monophyletic clade and they were collapsed together with plants; plants, 
dark grey; green algae, light grey; red algae, pink. Prokaryotic proteins are 
marked with a red asterisk. A list of proteins and gene identifiers can be 
found in the APPENDIX of this chapter.  
 
A: Ath1 -AT1G06900; Ath4 - AT2G41790; Ath8 - AT3G57470. B: Ath2 – 
PREP2 (AT1G49630); Ath7 – PREP1 (AT3G19170). C: Ath 3 - MPP-
alpha; Ath5 - MPP-beta (AT3G02090); Ath6 - MPP-alpha (AT3G16480); 
Ath9 – SPP (AT5G42390); Ath10 - AT5G56730   
 
BLAST searches were conducted for each Arabidopsis protein against plant 
sequences (in Phytozome), and the Landmark database (at NCBI) which 
includes sequences from 27 genomes spanning a wide taxonomic range. The 
compiled sequences were clustered to remove redundancies and aligned 
using MUSCLE or MAFFT and then trimmed with Trimal (Capella-
Gutiérrez 2009). Trees were generated using the FastTree, Approximately-
Maximum-Likelihood method (Price et al., 2010). 
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This clade is sister to one that includes AT1G06900 (Ath1) and human Nardilysin 

(Hse2). Two clades containing bacterial proteins are sister those above, including E. coli 

pitrilysin (Eco2), which is likely the ancestral member of the M16A peptidases. Ath1, 

4 and 8 have no known functions but probably degrade small peptides based on their 

similarity to other characterized M16s, most likely in the cytosol since they lack 

predicted signal or transit peptides.  

 The PREP proteins form the second subfamily (M16C) and are primarily 

eukaryotic with the exception of a bacterial protein (Deinococcus radiodurans). All 

PREP proteins studied to date are targeted to the mitochondria, and also to plastids in 

photosynthetic organisms; hence this subfamily appears to be an organelle-specific 

invention. The Plasmodium falciparum (malaria parasite, species belonging the 

Apicomplexa) protein facilysin (PFA1) is sister to the major green plant PREP clade 

and was shown to be targeted to the apicoplast (a non-photosynthetic plastid) with only 

minor amounts detected in mitochondria (Eggleson et al., 1999; Ponpuak et al., 2007). 

The third subfamily (M16B) includes α-MPP (Ath3 and Ath6) and β-MPP 

(Ath5), each forming distinct subclades that are sister to a bacterial clade that includes 

Rickettsia (Rpr1), a suggested descendent of the mitochondria progenitor, and other 

bacteria. The Bacillus halodurans peptidase BHP mentioned above is a close 

homologue of the Rickettsia protein. Although there were reports of such proteins being 

able to act a monomers (Dabonne et al., 2005; Kitada et al., 2007), Aleshin et al showed 

that it forms a dimer, like α/β-MPP. However, the closed conformation bound to a 

peptide substrate suggests that functionally these MPP bacterial ancestors behave more 

like M16As and M16Cs (Aleshin et al., 2009). MPP (and SPP) are critical components 
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of their respective organelle proteomes (Yaffe and Schatz, 1984; Trosch and Jarvis, 

2011) and is therefore likely that these peptidases played a key role in the persistence 

of the organelles after endosymbiosis.  

Sister to MPP is the SPP containing clade that is made up of two subclades. One 

contains the confirmed Arabidopsis SPP (Ath9) and its plant algal homologues. The 

other clade contains the uncharacterized AT5G56730 (Ath10) and two bacterial proteins 

from E. coli (Eco1) and Agrobacterium tumefaciens (Atu2), perhaps representing 

ancient relatives. Surprisingly, all the cyanobacterial proteins form a separate clade that 

is equally distant from MPP and SPP clades.  Homologues of SPP were previously 

reported in cyanobacteria (Richter et al., 2005); however, they are more similar to MPP 

and therefore there are no clear SPP homologues in cyanobacteria. 

AT5G56730 (Ath10) has 25 % sequence identity with SPP over its N-terminal 

region but little similarity over the 600 C-terminal residues. Prediction of subcellular 

localization with TargetP (Emanuelsson et al., 2007) gives cTP and mTP scores of 0.03 

and 0.316 respectively and we have detected its un-cleaved cTP by MS, suggesting that 

it is unlikely plastidic. However the protein was primarily detected in plastid samples in 

PPDB and it is part of the plastid reference genome (Huang et al., 2013). 

 

1.6 PROTEOLYTIC DEGRADATION 

So far we have discussed peptidases involved in protein processing and 

maturation, but the majority of chloroplast peptidases are likely involved in the 

degradation of whole proteins, protein aggregates and fragments. Therefore, they are 

said to function in proteome maintenance and quality control (Jarvis and Lopez-Juez, 
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2013; Nishimura et al., 2017). We still know very little about what triggers degradation 

of a substrate by these proteolytic machines. In the cytosol, ubiquitination is a major 

trigger for degradation by the 26S proteasome (Amm et al., 2014). Although this 

modification is absent in plastids, pre-proteins in the cytosol, destined for the plastid, 

have been shown to be ubiquitinated and degraded perhaps preventing the import 

apparatus from being overloaded (Lee et al., 2009).  

In absence of ubiquitination, bacterial and organellar protease substrates must 

be marked for degradation by other post-translational modifications (PTM) and 

structural determinants (Baker and Sauer, 2006; Trentini et al., 2016). Caseinolytic 

peptidase or CLP is named after its ability to degrade the milk protein casein (Hwang et 

al., 1988; Squires and Squires, 1992). Casein is highly phosphorylated and intrinsically 

disordered in solution allowing it to be easily degraded (Naqvi et al., 2016). Even robust 

enzymes like trypsin cannot readily degrade globular proteins and require denaturation 

of substrates for complete degradation (Switzar et al., 2013). In order to degrade 

globular proteins in vivo, ATP dependent chaperones are required to unfold the substrate 

and present it to the peptidase (see section 1.6.2).    

   

1.6.1 ATP independent peptidases of the chloroplast 

  Small or unstructured polypeptides do not require unfolding for them to be 

degraded and there are many peptidases that can potentially fulfill this role. It was 

recently demonstrated that in addition to PREP peptidase (section 1.4 -1.5), OOP and 

various aminopeptidases are required to completely degrade synthetic cTPs in vitro 

(Teixeira et al., 2017). OOP can degrade peptides in the 8 – 23 residue range in 
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agreement with the size of the substrate binding cavity based on the crystal structure 

(Kmiec et al., 2014). At least three metallo-aminopeptidases (M1 and M17 family) 

cooperate with PREP and OOP to generate free amino acids (Teixeira et al., 2017).  

  There are at least six DEG proteases that are localized to the plastid, either 

residing in the stroma or in the thylakoid lumen. Interestingly, their oligomeric state and 

peptidase activity is influence by pH which fluctuates in the stroma (between 7 and 8) 

and lumen (between 3.5 and 7) depending on photosynthetic electron transport rate and 

chloroplast ATP synthesis (Kley et al., 2011; Schuhmann et al., 2012). 

  Chloroplast glutamyl endopeptidase (CGEP) was discovered in soluble protein 

extracts of leaves of pea and cucumber, and a homolog was identified in Arabidopsis. 

CGEP was partially purified from pea extracts and shown to cleave the recombinant N-

terminal domain of LHCII at C-terminal of glutamate (Forsberg et al., 2005). We 

characterize and discuss Arabidopsis CGEP in Chapter 4. 

  Plastoglobuli are lipid monolayers particles that form from the outer membrane 

leaflet of  thylakoid membranes during various abiotic stresses and during senescence 

(van Wijk and Kessler, 2017). A metallopeptidase unique to plants was identified in 

purified plastoglobuli (Bhuiyan and van Wijk, 2017); PGM48 is characterized and its 

in vivo function described in Chapter 5.  

  

1.6.2 ATP dependent peptidases of the chloroplast  

The largest group of plastid peptidases are the ATP-dependent proteases, FTSH, 

LON and CLP. Including the CLP chaperones and adaptors, there are ~20 proteins 

contributing to their combined functions in chloroplasts. There are a number recently 
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published and detailed reviews (Nishimura et al., 2015; van Wijk, 2015; Nishimura et 

al., 2017) on these peptidases, so I discuss them here only briefly. 

Each of these protein degradation machines form oligomeric complexes with 

enclosed proteolytic cores. The LON protein subunits have both peptidase and 

chaperone domains, whereas CLP has a dedicated peptidase core formed by several 

different proteins, and separate associated chaperones and adaptor proteins. Both CLP 

and LON are soluble protein complexes localized to the stroma; FTSH is membrane 

bound and has either one or two transmembrane domains that determine the orientation 

of the peptidase domain. There are dedicated thylakoid FTSH proteins and others that 

are localized to the chloroplast envelope (van Wijk, 2015). 

Our understanding of substrate recognition by ATP dependent peptidases in 

organelles is rapidly evolving. Perhaps the most well-known example in the chloroplast 

is the degradation of the photo-damaged D1 component of photosystem II by FTSH 

(and also by DEG) as part of the PSII repair cycle (Nath et al., 2013). Damaged, 

misfolded or aggregating proteins are generally thought to be targets for all of these 

ATP dependent systems (Baker and Sauer, 2006) and the chaperone components are 

thought to regulate (equilibrate and balance) the proteome to prevent excessive amounts 

of non-functional proteins, either though degradation, or re-folding and repair (Hartl et 

al., 2011). A recent study of CLP in Bacillus Subtilis revealed CLPC (the primary 

chaperone for the CLP system) dependent degradation of arginine phosphorylated 

substrates (Trentini et al., 2016). The kinase MCSB was previously shown to be required 

for degradation of various substrates in B. Subtilus, but this is the first time such a 
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phosphorylation-dependent mechanism for substrate recognition and delivery has been 

shown.             

 The chlorophyll biosynthetic enzyme glutamyl-tRNA reductase (GluTR) was 

shown to interact with the CLP adaptor proteins CLPS and CLPF in Arabidopsis 

(Nishimura et al., 2015). Degradation of GluTR was shown to be CLPS dependent in 

the night but not in the day (Apitz et al., 2016). The Nt domain of GluTR appears to be 

critical for this regulation and this may be one of first examples of an N-degron mediated 

degradation in chloroplasts (see section 1.6.3). CLPC was shown to interact with both 

the import apparatus via TIC110 and the CLP core  (Flores-Perez et al., 2016). This 

suggests that CLP may also act as chloroplast gatekeeper of sorts, providing quality 

control as new proteins arrive and are processed.  

 

 1.6.3 N-end rule and its potential role in chloroplast substrate recognition 

 A major mechanism for the regulation of protein lifetime is the N-end rule, first 

described in 1989 by Varshavsky et al based on their observation that the half-life of a 

β-galactosidase fusion protein in yeast was greatly influenced by the N-terminal amino 

acid (Gonda et al., 1989). The N-end rule has been shown to be a key determinant of 

protein stability from eubacteria to eukaryotes (Dougan et al., 2012) and may help 

explain increased turnover of proteins in chloroplasts in response to developmental 

transitions, stress  and incomplete protein maturation (Nishimura et al., 2013). The 

destabilizing N-terminal component that triggers degradation is referred to as an N-

degron (Figure 1.4). There are primary N-degrons (Arg, Lys, His, Leu, Phe, Trp, and 

Tyr) that trigger degradation of substrates by the ClpAP protease system in bacteria 
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(Humbard et al., 2013) or by i-AAA and m-AAA proteases in yeast and mammalian 

mitochondria (Glynn, 2017). Secondary N-degrons (Asp, Glu) require the post-

translational N-terminal addition of another primary N-degron amino acid, or N-alpha 

acetylation to be triggered. Lastly there are tertiary N-degrons (Cys, Asn, Gln) that must 

undergo some post translational modification before the secondary pathway above can 

be initiated - reviewed in (Graciet et al., 2010). 

 Most examples of N-end rule pathways in plants are extra-plastidic and are 

linked to ubiquitylation and the proteasome (Graciet et al., 2010). An exciting 

demonstration of the plant N-end rule is the sensing of molecular oxygen and the 

response to hypoxia (low oxygen). Multiple members of the group VII ERF 

transcription factors have been shown to activate hypoxia-response genes. The N-

terminal cysteine of these proteins acts as a tertiary N-degron and under normal 

atmospheric conditions the cysteine is enzymatically oxidized by specific plant cysteine 

oxidases and the protein degraded. Upon hypoxia, (e.g. flooding) these proteins are no 

longer oxidized and are able to accumulate, generating the hypoxic response (Dissmeyer 

et al., 2017; Dong et al., 2017; White et al., 2017).  
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Figure 1.4. N-End rule, hierarchy, adaptors and proteases. (A) Prokaryotic 

system where certain protein N-terminally exposed amino acids act as primary N-

degrons (leu, Phe, Trp or Tyr), that are recognized by ClpS and targeted to CLP 

protease for degradation. Secondary N-degrons are modified by the ligation of 

primary degrons by the aminotransferases AAT and BPT. (B) In plants, tertiary 

N-degrons are modified by oxidation of Cys, or deamidation of Gln and Asn to 

become secondary N-degrons that are modified by Arg-transferases (ATEs) to 

form primary N-degons. These N-degrons are in turn ubiquitinated by the E3 

ligases PRT1 and PRT6 targeting them to the proteasome. After Graciet and 

Wellmer (2010) Trends in Plant Science. 
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 The nature of a plastid N-end rule remains unclear although a homolog of the 

bacterial N-end rule adaptor protein ClpS is present in plants; this ClpS homolog was 

named CLPS1 (Nishimura et al., 2013). Measuring the impact (stabilizing character) of 

the ultimate N-terminal residue has proven to be a complicated task. Apel and Bock et 

al generated transplastomic tobacco lines expressing a variable N-terminus-GFP fusion 

construct and then monitored protein half-life (Apel et al., 2010). A list of N-termini 

ranked based on their stability was generated for the GFP fusions in both E. coli and 

tobacco. However, incomplete NME in the case of certain N-termini (Glu and maybe 

Val) complicates these results. We cannot be sure whether these residues are actually 

stabilizing, or if the N-terminal methionine protects any potential N-degron; perhaps 

most importantly, the results of this publication mostly contradicts bacterial-like N-

degrons (Dougan et al., 2012). Interestingly, I identified two high confidence cysteine 

N-terminated proteins in Arabidopsis that appear to accumulate under normal growth 

conditions (see Chapter 2). 
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APPENDIX 

 

 

 

 

Protein Gene identifier Species Group

Acy2 WP_015214686.1 Anabaena cylindrica cyanobacteria

Acy3 WP_015216675.1 Anabaena cylindrica cyanobacteria

Ath1 AT1G06900 Arabidopsis thaliana plants

Ath10 AT5G56730 Arabidopsis thaliana plants

Ath2 AT1G49630 Arabidopsis thaliana plants

Ath3 AT1G51980 Arabidopsis thaliana plants

Ath4 AT2G41790 Arabidopsis thaliana plants

Ath5 AT3G02090 Arabidopsis thaliana plants

Ath6 AT3G16480 Arabidopsis thaliana plants

Ath7 AT3G19170 Arabidopsis thaliana plants

Ath9 AT5G42390 Arabidopsis thaliana plants

Atu2 WP_042617173.1 Agrobacterium tumefaciens bacteria

Bra1 Brara.D00283 Brassica rappa plants

Bra2 Brara.E01598 Brassica rappa plants

Bra3 Brara.E02505 Brassica rappa plants

Bra4 Brara.F00346 Brassica rappa plants

Bra5 Brara.I03967 Brassica rappa plants

Bra6 Brara.J00475 Brassica rappa plants

Bra7 Brara.J01099 Brassica rappa plants

Ccr1 XP_005715652.1 Chondrus crispus red algae

Ccr2 XP_005716261.1 Chondrus crispus red algae

Ccr3 XP_005716826.1 Chondrus crispus red algae

Ccr4 XP_005717973.1 Chondrus crispus red algae

Cdi1 YP_001087816.1 Clostridioides diff icile 630 bacteria

Cme1 XP_005537012.1 Cyanidioschyzon merolae 10D red algae

Cme2 XP_005537047.1 Cyanidioschyzon merolae 10D red algae

Cme3 XP_005537605.1 Cyanidioschyzon merolae 10D red algae

Cme4 XP_005538043.1 Cyanidioschyzon merolae 10D red algae

Cme5 XP_005538148.1 Cyanidioschyzon merolae 10D red algae

Supplemental Table 1.1. Proteins and gene identifiers used to construct M16 protease 
phylogeny (Figure 1.3)
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Protein Gene identifier Species Group

Cre1 Cre01.g020918 Chlamydomonas reinhardtii green algae

Cre2 Cre09.g386113 Chlamydomonas reinhardtii green algae

Cre4 Cre17.g723250 Chlamydomonas reinhardtii green algae

Csu1 C169e_gw 1.4.49.1 Chlamydomonas reinhardtii green algae

Csu2 20138 Chlamydomonas reinhardtii green algae

Csu3 40264 Chlamydomonas reinhardtii green algae

Csu4 150053 Chlamydomonas reinhardtii green algae

Csu5 30279 Chlamydomonas reinhardtii green algae

Csu6 pm.2_112 Chlamydomonas reinhardtii green algae

Ddi1 XP_001134518.1 Dictyostelium discoideum AX4 amoebae

Ddi2 XP_001134603.1 Dictyostelium discoideum AX4 amoebae

Ddi3 XP_637100.1 Dictyostelium discoideum AX4 amoebae

Ddi4 XP_645544.1 Dictyostelium discoideum AX4 amoebae

Dme1 NP_524182.3 Drosophila melanogaster metazoa

Dme2 NP_572757.2 Drosophila melanogaster metazoa

Dme3 NP_610156.1 Drosophila melanogaster metazoa

Dme4 NP_610333.1 Drosophila melanogaster metazoa

Dme6 NP_649271.1 Drosophila melanogaster metazoa

Dme7 NP_650401.1 Drosophila melanogaster metazoa

Dra1 NP_294340.1 Deinococcus radiodurans R1 bacteria

Dra2 NP_296235.1 Deinococcus radiodurans R1 bacteria

Dsa1 Dusal.0069s00012 Dunaliella salina green algae

Dsa2 Dusal.1182s00001 Dunaliella salina green algae

Eco1 NP_416011.1 Escherichia coli str. K12 substr. MG1655 bacteria

Eco2 NP_417298.1 Escherichia coli str. K12 substr. MG1655 bacteria

Hse1 NP_001229236.1 Homo sapiens metazoa

Hse2 NP_002516.2 Homo sapiens metazoa

Hse3 NP_003356.2 Homo sapiens metazoa

Hse5 NP_004270.2 Homo sapiens metazoa

Hse6 NP_055975.1 Homo sapiens metazoa

Ldo1 XP_003857880.1 Leishmania donovani protozoan parasite

Ldo2 XP_003858467.1 Leishmania donovani protozoan parasite

Ldo3 XP_003863405.1 Leishmania donovani protozoan parasite

Mae1 WP_012265321.1 Microcystis aeruginosa bacteria

Mmu1 NP_079683.2 Mus musculus metazoa

Mmu3 NP_112419.3 Mus musculus metazoa

Mmu4 NP_660113.1 Mus musculus metazoa

Mmu5 NP_666262.2 Mus musculus metazoa

Supplemental Table 1.1. (Continued)
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Protein Gene identifier Species Group

Mpo1 Mapoly0007s0115 Marchantia polymorpha plants

Mpo2 Mapoly0009s0206 Marchantia polymorpha plants

Mpo3 Mapoly0021s0007 Marchantia polymorpha plants

Mpo4 Mapoly0022s0090 Marchantia polymorpha plants

Mpo5 Mapoly0028s0022 Marchantia polymorpha plants

Mpo6 Mapoly0029s0118 Marchantia polymorpha plants

Mpo7 Mapoly0138s0034 Marchantia polymorpha plants

Mpu1 70045 Micromonas pusilla CCMP1545 v3 green algae

Mpu2 t10048 Micromonas pusilla CCMP1545 v3 green algae

Mpu3 t30221 Micromonas pusilla CCMP1545 v3 green algae

Mpu4 gw 1.4.30.1 Micromonas pusilla CCMP1545 v3 green algae

Mpu5 31112 Micromonas pusilla CCMP1545 v3 green algae

Mpu6 11000029 Micromonas pusilla CCMP1545 v3 green algae

Msp1 gw 2.08.32.1 Micromonas sp. RCC299 v3 green algae

Msp2 50024 Micromonas sp. RCC299 v3 green algae

Msp3 100139 Micromonas sp. RCC299 v3 green algae

Msp4 130107 Micromonas sp. RCC299 v3 green algae

Msp5 140456 Micromonas sp. RCC299 v3 green algae

Msp6 200010329 Micromonas sp. RCC299 v3 green algae

Msp7 500010336 Micromonas sp. RCC299 v3 green algae

Mtr1 Medtr3g466820 Medicago truncatula plants

Mtr2 Medtr5g004680 Medicago truncatula plants

Mtr3 Medtr5g007380 Medicago truncatula plants

Mtr4 Medtr5g095180 Medicago truncatula plants

Mtr5 Medtr7g053330 Medicago truncatula plants

Mtr6 Medtr7g091590 Medicago truncatula plants

Mtr7 Medtr8g014660 Medicago truncatula plants

Mtr8 Medtr8g101950 Medicago truncatula plants

Mtr9 Medtr8g102230 Medicago truncatula plants

Mtu1 NP_217298.1 Mycobacterium tuberculosis H37Rv bacteria

Nsp1 WP_010999251.1 Nostoc sp. PCC 7120 cyanobacteria

Oma1 gw Euk.13.11.1 Ostreococcus lucimarinus green algae

Oma2 190077 Ostreococcus lucimarinus green algae

Oma3 210120 Ostreococcus lucimarinus green algae

Oma4 40029 Ostreococcus lucimarinus green algae

Oma5 500010332 Ostreococcus lucimarinus green algae

Oma6 600010345 Ostreococcus lucimarinus green algae

Oma7 2000010241 Ostreococcus lucimarinus green algae

Supplemental Table 1.1. (Continued)
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Osa10 Os05g44916 Oryza sativa plants

Osa11 Os07g38260 Oryza sativa plants

Osa12 Os07g38270 Oryza sativa plants

Osa13 Os07g38280 Oryza sativa plants

Osa2 Os01g37825 Oryza sativa plants

Osa3 Os01g51390 Oryza sativa plants

Osa4 Os01g53700 Oryza sativa plants

Osa5 Os01g57073 Oryza sativa plants

Osa6 Os01g73550 Oryza sativa plants

Osa7 Os02g52390 Oryza sativa plants

Osa8 Os03g11410 Oryza sativa plants

Osa9 Os03g21810 Oryza sativa plants

Pae1 NP_250663.1 Pseudomonas aeruginosa PAO1 bacteria

Pfa1 XP_001350319.1 Plasmodium falciparum 3D7 protozoan parasite

Pfa2 XP_001351788.2 Plasmodium falciparum 3D7 protozoan parasite

Pfa3 XP_001352201.1 Plasmodium falciparum 3D7 protozoan parasite

Ppa1 Pp3c1_4220 Physcomitrella patens plants

Ppa10 Pp3c3_11990 Physcomitrella patens plants

Ppa11 Pp3c4_13680 Physcomitrella patens plants

Ppa12 Pp3c5_3160 Physcomitrella patens plants

Ppa13 Pp3c5_6610 Physcomitrella patens plants

ppa14 Pp3c5_8950 Physcomitrella patens plants

Ppa2 Pp3c10_5860 Physcomitrella patens plants

Ppa3 Pp3c11_12620 Physcomitrella patens plants

Ppa4 Pp3c13_21610 Physcomitrella patens plants

Ppa5 Pp3c14_4243 Physcomitrella patens plants

Ppa6 Pp3c16_17660 Physcomitrella patens plants

Ppa7 Pp3c16_2100 Physcomitrella patens plants

Ppa8 Pp3c16_8340 Physcomitrella patens plants

Ppa9 Pp3c19_10200 Physcomitrella patens plants

Ptr1 001G191100 Populus trichocarpa plants

Ptr2 002G235700 Populus trichocarpa plants

Ptr3 004G142300 Populus trichocarpa plants

Ptr4 006G050700 Populus trichocarpa plants

Ptr5 008G193200 Populus trichocarpa plants

Ptr6 010G036700 Populus trichocarpa plants

Ptr7 013G154600 Populus trichocarpa plants

Ptr8 017G092400 Populus trichocarpa plants

Rpr1 WP_004596018.1 Rickettsia prow azekii bacteria

Sce1 YDR430C Saccharomyces cerevisiae metazoa

Sce2 YHR024C Saccharomyces cerevisiae metazoa

Sce3 YLR163C Saccharomyces cerevisiae metazoa

Sce4 YLR389C Saccharomyces cerevisiae metazoa

Supplemental Table 1.1. (Continued)
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Sce5 YOL098C Saccharomyces cerevisiae metazoa

Sco1 NP_629863.1 Streptomyces coelicolor A3(2) bacteria

Sel1 WP_011378267.1 Synechococcus cyanobacteria

Sel2 WP_011430985.1 Synechococcus sp. JA33Ab cyanobacteria

Sel4 WP_017324394.1 Synechococcus sp. PCC 7336 cyanobacteria

Sly1 Solyc01g108600.2 Solanum lycopersicum plants

Sly2 Solyc02g043860.2 Solanum lycopersicum plants

Sly3 Solyc02g088700.2 Solanum lycopersicum plants

Sly4 Solyc03g118430.2 Solanum lycopersicum plants

Sly5 Solyc04g015680.2 Solanum lycopersicum plants

Sly6 Solyc04g015690.2 Solanum lycopersicum plants

Sly7 Solyc05g012480.2 Solanum lycopersicum plants

Sly8 Solyc12g008630.1 Solanum lycopersicum plants

Sly9 Solyc12g008710.1 Solanum lycopersicum plants

Smo1 146300 Selaginella moellendorf fii plants

Smo2 152047 Selaginella moellendorf fii plants

Smo3 154839 Selaginella moellendorf fii plants

Smo4 181652 Selaginella moellendorf fii plants

Smo5 183257 Selaginella moellendorf fii plants

Smo6 440740 Selaginella moellendorf fii plants

Smo7 447027 Selaginella moellendorf fii plants

Smo8 448827 Selaginella moellendorf fii plants

Son1 NP_718646.1 Shew anella oneidensis MR1 bacteria

Ssp1 WP_010873020.1 Synechocystis sp. PCC 6803 cyanobacteria

Ssp2 WP_010873523.1 Synechocystis sp. PCC 6803 cyanobacteria

Tma1 NP_229147.1 Thermotoga maritima MSB8 bacteria

Vca1 Vocar.0006s0465 Volvox carteri green algae

Vca2 Vocar.0024s0072 Volvox carteri green algae

Vca3 Vocar.0024s0073 Volvox carteri green algae

Vca4 Vocar.0032s0130 Volvox carteri green algae

Vca5 Vocar.0045s0019 Volvox carteri green algae

Vca6 Vocar.0069s0003 Volvox carteri green algae

Vvi1 GSVIVG01013468001 Vitis vinifera plants

Vvi2 GSVIVG01015250001 Vitis vinifera plants

Vvi3 GSVIVG01015273001 Vitis vinifera plants

Vvi4 GSVIVG01016955001 Vitis vinifera plants

Vvi5 GSVIVG01024571001 Vitis vinifera plants

Vvi6 GSVIVG01031766001 Vitis vinifera plants

Vvi7 GSVIVG01033283001 Vitis vinifera plants

Zma1 PH207Zm00008a000746 Zea mays plants

Zma2 PH207Zm00008a023071 Zea mays plants

Zma3 PH207Zm00008a026249 Zea mays plants

Zma4 PH207Zm00008a029136 Zea mays plants

Zma5 PH207Zm00008a032360 Zea mays plants

Zma6 PH207Zm00008a032445 Zea mays plants

Zma7 PH207Zm00008a034716 Zea mays plants

Supplemental Table 1.1. (Continued)
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CHAPTER 2 

THE ARABIDOPSIS CHLOROPLAST STROMAL N-TERMINOME; 

COMPLEXITIES OF N-TERMINAL PROTEIN MATURATION AND 

STABILITY1 

 

2.1 ABSTRACT 

Protein N-termini are prone to modifications and are major determinants of protein 

stability in bacteria, eukaryotes, and perhaps also in chloroplasts. Most chloroplast 

proteins undergo N-terminal maturation, but this is poorly understood due to insufficient 

experimental information. Consequently, N-termini of mature chloroplast proteins 

cannot be accurately predicted. This motivated an extensive characterization of 

chloroplast protein N-termini using terminal amine isotopic labeling of substrates 

(TAILS) and mass spectrometry, generating nearly 14,000 MS/MS spectra matching to 

protein N-termini. Many nuclear-encoded plastid proteins accumulated with two or 

three different N-termini; we evaluated the significance of these different proteoforms. 

Ala, Val, Thr (often in N-α acetylated form) and Ser were by far the most observed N-

terminal residues, even after normalization for their frequency in the plastid proteome, 

while other residues were absent or highly under-represented. Plastid-encoded proteins 

                                                
1 Published in Plant Physiology (2015) Elden Rowland, Jitae Kim, Nazmul Bhuiyan 
and Klaas J. van Wijk 
 
The contribution of the thesis’ author to this work consisted of all mass spectrometry 
experiments and data analysis. JK and NB prepared chloroplast stroma. ER and KJVW 
wrote the manuscript. 
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showed a comparable distribution of N-terminal residues, but with a higher frequency 

of Met. Infrequent residues (e.g. Ile, Arg, Cys, Pro, Asp, Glu) were observed for several 

abundant proteins (e.g. HSP70/90, RBCL, Fd-GOGAT) likely reflecting functional 

regulation through their N-termini. In contrast, the thylakoid lumenal proteome showed 

a wide diversity of N-terminal residues, including those typically associated with 

instability (Asp, Glu, Leu, Phe). We propose that after cleavage of the chloroplast transit 

peptide by stromal processing peptidase, additional processing by unidentified 

peptidases occurs to avoid unstable or otherwise unfavorable N-terminal residues. The 

possibility of a chloroplast N-end rule is discussed. 

 

2.2 INTRODUCTION  

 Following synthesis, most proteins undergo various N-terminal protein 

modifications, including removal of the N-terminal (Nt) methionine and signal peptide, 

Nt α-acetylation (NAA), ubiquitination and acylation. These Nt modifications play an 

important role in the regulation of cellular functions. The N-termini of a proteins have 

been shown to be a major determinant of their stability in bacteria (Varshavsky, 2011), 

eukaryotes (Graciet et al., 2009), mitochondria, and perhaps in plastids/chloroplasts 

(Apel et al., 2010; Nishimura et al., 2013; van Wijk, 2015).  The role of the N-terminus 

in protein stability is conceptualized in the ‘N-end rule’ which states that certain amino 

acids, when exposed at the N-terminus of a protein, act as trigger for degradation 

(Bachmair et al., 1986; Dougan et al., 2012; Tasaki et al., 2012; Gibbs et al., 2014).  

Most of the ~3000 plastid proteins are nuclear-encoded (n-encoded) and are 

targeted to the plastid through an Nt chloroplast transit peptide (cTP). After import, the 
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cTP is cleaved by the stromal processing peptidase (SPP) (Richter and Lamppa, 1998; 

Trosch and Jarvis, 2011). The consensus site of cTP cleavage by SPP is only loosely 

defined, and rules, mechanisms and enzymes for possible subsequent processing, 

stabilization and other post-translational modifications (PTMs) are not well 

characterized – for discussion see (van Wijk, 2015). The exact N-terminus is unknown 

for many chloroplast proteins and cannot be accurately predicted because SPP 

specificity is not sufficiently understood (Emanuelsson et al., 2000; Zybailov et al., 

2008), and probably also because additional Nt processing occurs for many chloroplast 

proteins (Figure 2.1A). The ~85 plastid-encoded (p-encoded) proteins typically undergo 

co-translational Nt deformylation, followed by methionine excision (NME) (Giglione 

et al., 2009) (Figure 2.1B); both of these PTMs are required for normal 

plastid/chloroplast development and protein stability (Dirk et al., 2001, 2002; Giglione 

et al., 2003; Meinnel et al., 2006). Both n-encoded and p-encoded proteins can undergo 

NAA inside the plastid (Zybailov et al., 2008) (Figure 2.1A,B). Postulated functions of 

NAA in eukaryotes include the mediation of protein location, assembly and stability 

(Jones and O'Connor, 2011; Starheim et al., 2012; Hoshiyasu et al., 2013; Xu et al., 

2015), thereby affecting a variety of processes, including drought tolerance in 

Arabidopsis (Linster et al., 2015). 

Typical proteomics workflows generally yield only partial coverage of protein 

sequences, and it is often difficult to know which peptides represent the true N- or C-

termini. Systematic identification of N- or C-termini requires specific labeling and 

enrichment strategies, such as COmbined FRActional DIagonal Chromatography 
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(COFRADIC) developed by Gevaert and colleagues (Staes et al., 2011) and Terminal 

Amine Isotopic Labeling of Substrates (TAILS) developed by the group of Overall  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1. Conceptual illustration of Nt maturation of nuclear- and p-encoded 
proteins. Ac, acetylated; SPP stromal processing peptidase; cTP, chloroplast transit 
peptide; NAT, N-acetyl transferase; PDF, peptide deformylase; MAP, methionine 
amino peptidase.  (A) Nt maturation of nuclear encoded plastid proteins including 
removal of cTP by SPP and potential subsequent Nt modifications. (B) Nt maturation 
of p-encoded proteins. 
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(Kleifeld et al., 2011; Lange and Overall, 2013). These strategies allow identification of 

different Nt proteoforms and were recently also applied to plants (Tsiatsiani et al., 2013; 

Carrie et al., 2015; Kohler et al., 2015; Zhang et al., 2015) and diatoms (Huesgen et al., 

2013). We previously reported on N-termini (Nti) of chloroplast proteins based on 

MS/MS analysis, but because no Nt enrichment/labeling technique was used, only those 

that underwent NAA could be considered bona fide Nti (Zybailov et al., 2008). Nt 

Edman degradation sequencing was systematically carried out for thylakoid lumen 

proteins (Peltier et al., 2000; Peltier et al., 2002), but not for stromal proteins or 

chloroplast membrane proteins with their Nti exposed to the stroma. The Nti of 

thylakoid lumen proteins are mostly generated by lumenal peptidase(s) (Hsu et al., 2011; 

Midorikawa et al., 2014) and the thylakoid lumen contains a different set of peptidases 

than the stroma; hence rules for Nt maturation and stability are likely different than for 

stroma-exposed proteins.   

 The objective of this study was to systematically determine the Nti of stroma-

exposed chloroplast proteins of Arabidopsis thaliana (the N-terminome) and to provide 

a baseline for understanding Nt protein maturation and protein stability in the 

chloroplast stroma. To that end, we applied the TAILS technique and determined the 

Nti of ~250 chloroplast proteins by mass spectrometry (MS). We observed that many 

n-encoded plastid proteins accumulated with 2 or even 3 different Nt residues, in many 

cases both with or without NAA. The extent of accumulation of different N-terminal 

proteoforms is surprising and will be discussed. P-encoded proteins generally showed 

very similar Nt residues to those of n-encoded proteins, with the exception of Met. Our 

data show that small, apolar or hydroxylated residues (Ala, Val, Ser, Thr) are the most 
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frequent Nt residues of stromal proteins, whereas other residues are strictly avoided, or 

are only present for very specific proteins likely to aid in their function. Chloroplast 

protein degradation products were also detected, with enrichment for peptides generated 

by cleavage between Arg and Thr. We present testable hypotheses for understanding Nt 

processing and maturation, stability and a possible N-end rule in chloroplast stroma.   

 

2.3 RESULTS 

2.3.1 Systematic identification of protein N-termini  

 To systematically identify the Nti of chloroplast proteins, we employed the 

TAILS method for labeling and enrichment of chloroplast protein Nti, followed by 

MS/MS-based identification (Kleifeld et al., 2011). The TAILS workflow removes the 

internal non-Nt peptides, whereas both unmodified α-amino Nti and NAA-Nti are 

retained, therefore greatly simplifying the remaining proteome. For a general 

description of the TAILS method, we refer to excellent papers from Overall (Kleifeld 

et al., 2011; Lange and Overall, 2013), the materials and methods and Supplemental 

Figure 2.1A. In brief, the TAILS method involves first the dimethyl labeling of free N-

terminal α-amines, as well ε-amines of Lys residues. Following digestion a with 

protease (trypsin or GluC), the un-modified peptides are removed by crosslinking 

internal peptides to a soluble polymer, allowing the collection of N-terminal peptides.  

As starting material, we used developed leaf rosettes of soil-grown Arabidopsis plants, 

analyzing both soluble stromal protein extracts from isolated chloroplasts (4 

independent preparations; 10 TAILS experiments), as well as total soluble leaf protein 

extracts (3 independent preparations; 9 TAILS experiments). Comparison of Nt 
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sequences from total leaf and chloroplast stromal extracts allowed us to consider 

processing of dual-targeted chloroplast proteins (i.e targeted to other subcellular 

locations, including mitochondria) and to identify chloroplast pre-proteins (i.e. with 

their cTP still attached). Protein recovery across the labeling and enrichment steps was 

verified by SDS-PAGE followed by silver staining (Supplemental Figure 2.1B). 

Dimethyl labeling efficiency and proteolytic digestion was monitored by LC/MS/MS 

analysis of each sample prior to the negative selection step. This showed that >99% of 

lysines were dimethylated, indicating near quantitative labeling, which allowed a semi-

quantitative comparison of different Nt proteoforms. 

 

2.3.2 Assessment and filtering of Nt sequences  

 All MS/MS search results were pooled and filtered to identify only Nt labeled 

peptides. Of the complete set of acquired MS/MS spectra across all experiments, 13858 

spectra matched to Nt peptides (Supplemental Table 2.1). We then pooled the Nt 

peptides with the same molecular mass and sequence (irrespective of charge state), 

resulting in 1037 non-redundant Nti matching to 577 proteins. Matched proteins were 

annotated for subcellular location to aid in identification of subcellular Nt maturation 

events (Supplemental Table 2.2). Peptides starting with the same Nt modification and 

amino acid sequence, but with different C-terminal ends or different modified side 

chains were merged into 894 Nti matching to 577 proteins (Supplemental Table 2.3). 

Importantly, these overlapping peptides strengthened Nt identifications. We did not 

condense peptide sequences with or without NAA, because these NAA sequences 

should be considered functionally distinct from their unmodified sequences. 544 of 
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these merged Nti matched to 250 plastid proteins and the remaining peptides matched 

to proteins located in other subcellular compartments or without assigned subcellular 

location (Supplemental Table 2.3).  

The two main objectives of this study were to i) develop a working hypothesis 

for cTP cleavage specificity and subsequent maturation steps and ii) determine under– 

or over-representation of specific Nt amino acids for the steady state, stromal exposed 

proteome and deduce potential Nt stability rules. Chloroplast proteins with their Nti 

exposed to the plastid stroma, lumen, intra-envelope space or facing the cytoplasm 

should be considered separately because they undergo distinct processing steps in each 

location. Hence we carefully evaluated intra-plastid location for each identified protein. 

Those encoded by the plastid genome also represent a distinct set since they undergo 

specific co- and post-translational processing (Figure 2.1B). Sixteen of the detected n-

encoded chloroplast proteins are known to be dual targeted to chloroplasts and 

mitochondria or cytosol (Carrie and Small, 2013) (Supplemental Table 2.3). For most 

of these dual-targeted proteins, we identified a single N-terminus which appeared to 

represent the chloroplast-localized form. This is not surprising because we used either 

protein extracts from photosynthetic leaves in which chloroplast proteins are far more 

abundant than mitochondrial proteins, or we used isolated chloroplasts. Three dual 

targeted plastid/cytosolic proteins (ADL1, GOX1 and GSTphi) were only identified in 

their cytosolic forms and were not further considered for chloroplast N-terminome 

analysis. In the remaining analysis we will focus on the n- or p-encoded proteins that 

have stromal exposed Nti. We note that even if these proteins have their Nti facing the 

stroma, they may actually be buried within the protein structure and thus only truly 
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exposed to the stroma during biogenesis or degradation.  

 

2.3.3 Nt AA frequency and acetylation state of n-encoded chloroplast proteins  

 For 126 plastid proteins only a single N-terminus was identified; examples are 

shown in Table 2.1- scenario A. These proteins are interesting because other Nt 

proteoforms of these proteins must be quickly degraded, or the SPP cleaves the cTPs at 

only a single location or additional peptidases trim the Nti to a single proteoform. 

Multiple Nti were detected for ~ 100 proteins representing three different scenarios: i) 

Nt peptides well upstream of the predicted or previously documented mature N-

terminus (for ~ a dozen proteins) (Table 2.1 - scenario B). These Nt peptides were 

generally found in the total leaf extracts, rather than stromal extracts. This suggests that 

these upstream Nti were from proteins not yet imported into the chloroplast. Table 2.1 

(scenario B) shows the data for four such proteins where Nti of the unprocessed protein 

was only found in the total leaf extracts but the Nti of processed proteins only in the 

stroma or in both stroma and leaf extracts, ii) Proteins with multiple closely spaced Nti 

that each could represent the mature N-terminus of the respective protein (Table 2.1 – 

scenario C). In most cases a single N-terminus had both the highest number of spectral 

counts (SPC; these are matched MS/MS spectra) and the most Nt residue, thus 

representing the most likely candidate for the N-terminus of the steady state protein, iii) 

Nti of degradation products. 129 Nti (matching to 31 n-encoded and four p-encoded 

proteins) were likely degradation products (see section ‘Accumulation of proteolytic 

products’). 
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The Nt amino acid frequency for all mature n-encoded chloroplast Nti was 

calculated (Figure 2.2A; Supplemental Table 2.4). This demonstrates that Ala and Ser 

are heavily favored as Nt residues, followed by Val and Thr, whereas the remaining 

residues are underrepresented (in particular Asp, Tyr and Trp each only once) or not 

observed at all (Pro and His) (see legend Figure 2.2A). The ratio between NAA and 

unmodified (but dimethylated in the TAILS procedure) Nti can be approximated based 

on matched MS/MS spectra, in particular if a relative high total number of MS/MS 

sequences (e.g. >50) are obtained. The NAA rates for the high frequency residues Val, 

Thr, Ala and Ser were respectively 54%, 47%, 21% and 19%. The few cases of Trp, 

Arg, Ile and Pro were mostly in NAA form, whereas NAA was not observed for Tyr, 

Leu, Phe, Asp, Cys.  

Because many proteins were present as different Nt proteoforms, we ranked Nt 

peptides for each protein such that a single representative N-terminus for each protein 

could be assigned. This ranking was based on the number of observed spectra, the 

proximity to the predicted cTP cleavage site (ChloroP) and, if available, previously 

published N-terminal sequence data (See Supplemental Table 2.4 for N-terminal ranks 

and for a description of ranking process). Importantly, selecting a single ‘best ranked’ 

Nt for each protein hardly influenced the frequency distribution of the aa at the N-

terminus (Figure 2.2B). Moreover, Ile, Leu, Try, Tyr and Asp were each found only 

once as best ranked Nt residue, whereas Pro, His and Phe were not observed at all. 

Interestingly, N-terminal Arg (3x) and Trp (1) were only found in their NAA form, 

perhaps suggesting that NAA is needed for stabilization. 
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Figure 2.2.  Nt amino acid frequency for stromal-exposed n-encoded chloroplast 
proteins. 
(A) All detected stromal Nti (341), excluding unprocessed proteins and obvious breakdown 
products (see Supplemental Table 2.4). This shows that Ala and Ser are heavily favored as 
Nt residues, followed by Val and Thr, while 14 residues were underrepresented (Gly 14x, 
Gln 14x, Glu 10x, Ile 6x, Arg 5x, Lys 5x, Met 4x, Asn 3x, Leu 3x, Cys 2x, Phe 2x,Trp 1x, 
Tyr 1x, Asp 1x) or not observed (Pro and His). A significant portion of these highly favored 
residues were acetylated (Val 54%, Thr 47%, Ala 21%, Ser 19%), whereas the acetylation 
rate for other residues was either 0% (Tyr, Leu, Phe, Asp, Cys) or 100% (Trp) (acetylation is 
indicated as ‘ac’). 
(B) Single highest ranked N-terminus per protein (165), excluding Nti with less than two 
SPC. Selecting a single ‘best’ or highest ranked N-terminus for each protein (see Methods) 
did hardly influence the Nt amino acid frequency, except that it slightly decreased the 
dominance of Ala, increased Ser and reduced acetylated Ser. Less frequent residues were Gly 
(9x), Glu (5x), Gln (4x), Lys (4x), Arg (3x), Met (3x), Asn (2x), Cys (2x), Leu (1x), Ile (1x), 
Trp (1x), Tyr (1x), Asp (1x), whereas Phe, Pro, His were not observed. 
(C) Single highest ranked Nti as in panel (B) but normalized (weighted) to the frequency of 
each amino acid in the known (from PPDB; 1575 proteins) n-encoded plastid proteome with 
predicted cTPs removed.  
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Some amino acids are far more frequent in the known chloroplast proteome than 

others (Leu is the most frequent (~9.5%), followed by Ala, Ser and Val (each ~7.7%)), 

whereas His, Cys and Trp are the least abundant (1-2%), possibly biasing the Nt aa 

frequencies. Therefore, the frequencies of these 165 best ranked Nti were normalized to 

the natural frequency of each amino acid in the known n-encoded plastid proteome 

(1575 proteins – see Material and Methods) with predicted cTPs removed (Figure 2.2C). 

This showed again that Ala, Ser, and to a lesser extent Val and Thr (in NAA and free 

form), are still strongly favored, whereas Met and Cys are more prominent than before 

weighing (compare to Figure 2.2A) and Leu is clearly avoided.   

 

2.3.4 Physiological N-terminal methylation  

 The four paralogs of RUBISCO small subunit (RBCS) were the only observed 

n-encoded mature proteins that started with an Nt Met residue. This Nt Met of RBCS 

has previously been shown to be methylated at its N-terminus through the activity of 

Rubisco methyltransferase (Houtz et al., 2008). The dimethylation reaction used in the 

TAILS method would mask this physiological (mono)methylation since it generates a 

dimethylated amino-terminus. To asses if in vivo N-terminal methylation occurs in 

chloroplasts for other proteins, TAILS experiments were also performed with 

deuteriated formaldehyde (CD2O) instead of formaldehyde (CH2O), which allowed us 

to differentiate between natural methylation and methylation by formaldehyde. Indeed, 

we observed that RBCS4 (Supplemental Figure 2.2) and RBCS1b (not shown) 

accumulated with in vivo monomethylated Nti Met. No other convincing cases for Nt-

methylation were detected, which is perhaps not surprising because we observed so few 



61 
 

mature n-encoded proteins (only RBCS family members) that start with a Met residue. 

The lack of observed Nt Met of n-encoded stromal exposed proteome suggest very 

efficient NME. The lack of NME for just RBCS is likely due the presence of a bulky 

residue (Lys) immediately after the Met in case of RBCS. It should be noted that Lys 

methylation has been observed for several Arabidopsis chloroplast proteins down-

stream of their mature Nti (Zybailov et al., 2009; Alban et al., 2014). Lys-14 of RBCL 

has been shown in pea to be (tri)methylated (Houtz et al., 2008). However, we found no 

evidence for such a modification in Arabidopsis (the detected Nt peptide of RBCL is 

long enough to include this Lys - SPQTETKASVGFKAGVKEY), in agreement with a 

recent study indicating that Arabidopsis RBCL is not naturally (tri)methylated at this 

position (Mininno et al., 2012).  

 

2.3.5 Conservation around the cTP cleavage site 

 In an effort to obtain more insight into the relationship between cTP cleavage 

and the ultimate Nt residue/sequence, we generated a sequence logo of residues 

surrounding the observed mature Nti using the ‘best ranked’ N-terminus for each protein 

(as defined above) (Figure 2.3A). This data set is much larger than the previously 

published datasets of experimental chloroplast protein Nti. Furthermore these previous 

data sets were necessarily enriched for NAA Nti since only these could be confidently 

identified as in vivo Nti (in absence of N-terminal labeling) (Zybailov et al., 2008); the 

dimethyl labeling in the TAILS workflow allowed us to avoid this bias. The sequence 

logo shows only a weak consensus around the observed N-terminus (Figure 2.3A); 

however a (still weak) consensus motif was more clearly  
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Figure 2.3. Analysis of amino acid conservation around experimentally 
determined Nti for n-encoded stromal-exposed proteins and comparison to Nti 
generated by in vitro SPP cleavage assays reported in the literature. As per 
consensus, P1’ is the observed Nt residue and P1 the residue immediate upstream of 
P1’. Solid arrows indicate the experimentally determined Nt residue. For plots A-D, 
the best ranked Nti of 165 plastid-proteins with n-encoded stromal-exposed Nti were 
used. In all plots, proteins were aligned round the experimentally determined Nt 
residue (P1’). Color coding for residues: blue – basic residues (R, K, H); red – acidic 
residues (D,E); black – apolar residues (A, V, L, I, P, F, W,G); purple -  reactive 
residues (M, C); green – uncharged, polar residues (S, T, Y, Q,N). 
(A) Sequence Logo of the 165 stromal-exposed proteins shows a weak motif around 
the mature Nt. The conservation level of aa in this sequence alignment is represented 
as vertical stacks of the aa symbols; the stack height reflects the level of conservation. 
B,C,D, IceLogo plots of the stromal-exposed proteins in which the aa frequency is 
normalized (weighted) against the total amino acid frequency of the n-encoded 
chloroplast proteome (from PPDB; 1575 proteins). AA residues significantly 
enriched are show above the x-axis, whereas those underrepresented are shown 
below the x-axis. Residue below the x-axis colored in pink were entirely absent in 
this position in the experimental sequences. (B) IceLogo of the 165 n-encoded 
stromal-exposed proteins (at p=0.05). (C) IceLogo plots (at p=0.01) for n-encoded 
stromal-exposed proteins for which the residue immediately upstream of the 
experimentally determined Nti (P1) is an Ala (58 sequences), Cys (35 sequences), or 
Met (22 sequences). (D) IceLogo plots (at p=0.01) for n-encoded stromal-exposed 
proteins for which the experimentally determined Nti (P1’) is an Ala (63 sequences), 
a Ser (53 sequences) or Val ( 26 sequences). 
(E) Sequence logo for 8 sequences shown to be cleaved in vitro by SPP (7 using P. 
sativum SPP, 1 using C. reinhardtti SPP) with SPP either purified from chloroplasts 
or recombinant SPP expressed in E. coli and immobilized on beads via a Nt biotin 
tag. Substrates are from a range of organisms (wheat, tomato, spinach, pea, C. 
reinhardtii, Arabidopsis, S. pratensis and the fungus N. crassa).  
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visualized using an iceLogo (Colaert et al., 2009) (Figure 2.3B). The IceLogo involves 

weighing against the total amino acid frequency of the chloroplast proteome, thereby 

visualizing significantly over- and under-represented amino acids (Figure 2.3B). Cys 

was highly enriched in the P1 position, but not anywhere else. Furthermore, this showed 

that acidic residues were disfavored within the cTP, whereas basic residues (in particular 

Arg) were enriched in the cTP, but that Arg was avoided within the first 10 residues of 

the mature protein (Figure 2.3B). Small uncharged and often hydrophilic residues were 

favored within the first four residues of the observed proteins (P1’ to P4’) whereas Leu 

was under-represented in these positions. Cys, Met and Ala were strongly enriched 

immediately upstream of the N-terminus (P1 position). Both Cys and Met are easily 

oxidized and oxidized cysteine has been shown to act as a degradation signal outside of 

the plastid, leading to protein degradation by the proteasome (Graciet et al., 2010; 

Graciet and Wellmer, 2010).  

The lack of a visible consensus cleavage site motif despite this large and high-

quality dataset, suggests that SPP does not have a strict consensus cleavage motif for 

imported plastid proteins. Alternatively this lack of observed motif might indicate the 

activity of subsequent maturation steps by additional peptidases, thereby masking the 

SPP cleavage site motif. Indeed, chloroplasts do possess a significant number of mostly 

uncharacterized aminopeptidases (Walling, 2006; van Wijk, 2015). For instance, the 

observation that Cys, Met and Ala were strongly enriched immediately upstream of the 

N-terminus (P1 position) may be explained by the activity of amino-peptidases that 

specifically remove these unstable residues following SPP processing.  
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To try and distinguish between the various scenarios and possibly reveal hidden 

motifs, subsets of sequences with either highly conserved residues at P1 and P1’ 

positions were analyzed separately by iceLogos (Figure 2.3C, D). Cys in the P1 position 

was preferentially flanked (in P2 and P1’) by Ser and to a lesser extent R at P2, whereas 

Met in the P1 position was flanked by Ala (Figure 2.3C). Subsets of Nti with Ala, Ser 

or Val at the N-terminus (in P1’) (Figure 2.3D) reveal that Ser and Val N-terminated 

proteins are mostly produced by cleavage after Cys or Ala, whereas Ala N-terminated 

proteins are preceded by Arg, Lys, Ala or Met. Furthermore, it can be observed that for 

both P1-Met (Figure 2.3C) and P1’-Ala (Figure 2.3D), Val/Ile conservation at P3 breaks 

down, which could be indicative of sequential processing. These comparisons suggests 

that a possible cTP cleavage motif is obscured by additional processing steps.  

 To better understand SPP cleavage and possible subsequent maturation by other 

peptidases, we collected all available direct evidence for SPP cleavage site specificity 

(Supplemental Table 2.6). Such specificity has been determined for recombinant 

proteins using either recombinant SPP from pea (Richter and Lamppa, 2002) or using 

semi-purified SPP from isolated chloroplasts of pea or C. reinhardtii (Supplemental 

Table 2.6) (Richter et al., 2005). It should be noted that these substrates are from 5 

different plant species. Some of the substrates lack a cTP and seem less relevant to test 

the specificity of a processing peptidase (See Supplemental Table 2.9). Using only the 

eight bona fide intra-plastid proteins, we then generated a sequence logo of residues 

around the observed N-terminus (Figure 2.3E). This suggests cleavage primarily after 

basic residues (in particular Lys, but also Arg, His), and upstream of Ala (Figure 2.3E), 

which matches well with the top panel in Figure 2.3D. Determination of SPP cleavage 
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specificity using a wider variety of substrates from Arabidopsis, as well as analysis of 

putative chloroplast aminopeptidases, are needed to improve our understanding of 

plastid protein maturation. 

 

2.3.6 The N-terminome of plastid-encoded proteins 

The maturation process of p-encoded proteins (Figure 2.1B) is very different from n-

encoded chloroplast proteins (Figure 2.1A). Moreover, the Nti of nascent p-encoded 

proteins are likely protected by proteins interacting with the 70S ribosome near the exit 

gate, such as trigger factor. Furthermore, N-terminal deformylation, NME and NAA are 

likely co-translational processes for p-encoded proteins (Giglione et al., 2009; Preissler 

and Deuerling, 2012; Sandikci et al., 2013; Giglione et al., 2014). Hence, the Nt 

sensitivity to proteolytic activity may differ between plastid- and n-encoded chloroplast 

proteins. P-encoded proteins are synthesized with an N-terminal methionine and a 

subset undergoes NME. In general, the penultimate position (P1′) is the major 

determinant for NME and cleavage occurs if the side chain is small (Ala, Cys, Pro, Ser, 

Thr, Gly and Val) (Giglione et al., 2004). Whereas p-encoded proteins generally follow 

this rule, there are a few outliers and several other proteins undergo additional 

maturation steps (Zybailov et al., 2008; Zybailov et al., 2009; Bienvenut et al., 2012).  

There are 88 proteins encoded by the plastid genome in Arabidopsis, 65 of these 

proteins have Nti in the stroma, whereas the other remaining proteins have their Nti 

exposed to the thylakoid lumen or their topology is currently not clear to us 

(Supplemental Table 2.7). Frequency analysis of the penultimate residues for 

Arabidopsis p-encoded proteins with stromal exposed Nti showed 16 possible residues 
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(absent are bulky His, Tyr, Trp, and Phe) (Figure 2.4A). Applying the general NME rule 

(Giglione et al., 2004) to these stromal exposed Nti results in a simpler amino acid 

distribution of chloroplast Nt residues with just 8 possible amino acids (Figure 2.4B).  

We then combined our TAILS results with previous in-house MS/MS data for 

other Arabidopsis chloroplast proteome experiments in PPDB (e.g. (Zybailov et al., 

2008; Zybailov et al., 2009; Kim et al., 2013; Lundquist et al., 2013; Nishimura et al., 

2013), as well as information from (Giglione et al., 2004) which was mostly based on 

Nt Edman sequencing data from various plant species. The Edman sequencing method 

does not yield NAA state because these Nti prevent Edman chemistry (‘blocked’ Nti). 

The information from these other plant species was ‘projected’ onto Arabidopsis 

homologs if the Nti were identical. The distribution of Nt residues is summarized in 

Figure 2.4C and Supplemental Table 2.7. We then compared the pie chart in panel 4B 

(predicted after NME) with panel 4C (experimental observations). This shows the 

presence of experimental Nti starting with Ile and Arg, which must have been due to 

unusual NME activity, namely that Met was removed to expose Ile (PsaA and RPS15) 

or Arg (CF1β); these are bulky residues that typically would prevent NME activity. It 

should be noted that in all three cases these Nt residues were acetylated, again 

suggesting that NAA is required for stabilization. NME did not occur for the three other 

observed proteins with Ile in the penultimate position (PetG, RPL14 and NDH-A), nor 

was Met removed for the only other observed case with Arg in the penultimate position 

(PsaJ). The Nti for p-encoded YCF1.2 (TIC214) (Kikuchi et al., 2013), RBCL  
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Figure 2.4. Nt amino acid frequency for stromal-exposed p-encoded proteins 
and comparison to all known lumenal-exposed Nti (both p- and n-encoded).  
(A) The penultimate residues (i.e. residues immediately down-stream of the initiating 
Met) of 65 p-encoded proteins for which the N-terminus is facing the stroma. This 
sequence information is derived from the protein sequences listed in TAIR 
(https://www.arabidopsis.org/). Within this group there are 3 sets of identical 
homologues (ribosomal proteins S7A,B, ribosomal proteins S12A,B,C and a full 
length YCF1.2 protein and a truncated form – see Supplemental Table 2.7 for details). 
Rather than including each of these homologs, we counted each set only once, thus 
resulting into 61 Nti. 
(B) The predicted Nt residues of mature proteins after application of the general NME 
rule for the p-encoded proteins in panel A. 
(C) Experimentally determined Nt residues for p-encoded proteins for which the N-
terminus is facing the stroma (total 47 proteins). Experimental evidence was obtained 
from the TAILS experiments described in this study, from semi-tryptic or NAA Nti 
detected in (Zybailov et al., 2008; Zybailov et al., 2009; Bienvenut et al., 2012) and 
additional data from in-house experiments in PPDB. Also included is information 
from (Giglione et al., 2004) which was mostly based on Nt Edman sequencing data 
from various plant species. We note that Edman sequencing cannot sequence proteins 
for which the Nt is NAA; these modified Nti are ‘blocked’ preventing Edman 
chemistry). The experimental Nt information from these other plant species was 
‘projected’ onto Arabidopsis homologs if the Nti were identical.  
(D) Experimentally determined Nt residues for 25 p-encoded proteins for which the 
N-terminus is facing the stroma as determined by TAILS and in-house experiments 
in PPDB. This is a subset of the proteins in panel C.  
(E) Experimentally determined Nt residues for 39 p- and n-encoded proteins for 
which the N-terminus is facing the thylakoid lumen. Experimental evidence was 
obtained from the TAILS experiments, previous publications (Zybailov et al., 2008; 
Zybailov et al., 2009) and additional data in PPDB (see Supplemental Table 2.5 for 
details). 
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and CP43 did not start with Met nor with the penultimate residue, indicating that these 

Nti must have been generated by additional peptidase activity; however the responsible 

peptidases are unknown. For RBCL, the N-terminus starts with the 3rd residue (Pro) 

(observed by 537 MSMS spectra) and it was always in NAA form; this is in agreement 

with previous observations (Zybailov et al., 2008). The unprocessed YCF1.2  protein is 

predicted to start with f-Met-Met, but both Met residues were removed, resulting into 

an Nt Val. In the case of CP43, 12 amino acids were removed, exposing an N-terminal 

Thr, which is known to undergo NAA and reversible phosphorylation (Vener et al., 

2001; van Wijk et al., 2014).  We did not observe this phosphorylated form because we 

did not take any precautions to prevent dephosphorylation (i.e. by addition of 

phosphatase inhibitors) and/or because we did not enrich for phosphopeptides, which is 

typically needed to observe the phosphorylated forms.    

Finally, Figure 2.4D shows the extent of NAA for experimental observed Nti of 

the stromal-faced p-encoded proteins determined only by TAILS or from previous in-

house experiments listed in PPDB (25 proteins in total). This shows that Arg, Ile, Ala 

and Val are always observed in their NAA form, but in case of RPS15, Ile was also 

observed unmodified.  

 

2.3.7 The thylakoid-lumen exposed Nti show a wide distribution of amino acids 

 The thylakoid lumen has its own (limited) set of proteases. We assembled all 

available information for p- and n-encoded lumenal exposed Nti (Figure 2.4E; 

Supplemental Table 2.5). In addition to the abundant Ala, Ser, Val and Met, this shows 

the presence of residues essentially absent at the Nti of stromal-exposed proteins. 
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Examples are Tyr (Y), Asp (D), Glu (E), Leu (L), indicating a far greater Nt flexibility, 

likely reflecting a lack of Nt-driven instability. 

   

2.3.8 Accumulation of proteolytic products  

 129 Nti are likely breakdown products of chloroplast proteins (Supplemental 

Table 2.8). Interestingly, none are NAA, suggesting a short half-life and/or generation 

of these proteolytic products after stromal isolation and assuming that N-α acetylases 

are not very active at that point. About 60% of these Nti were from the very abundant 

RBCL, RBCS and RCA, which is not surprising given that these are among the most 

abundant proteins. However, only few degradation products were detected for several 

other highly abundant enzymes, such as transketolase, glutamate-ammonia ligase, 

CPN21. Perhaps this indicates that the RBCS/L and RCA have a shorter life-time than 

other abundant stromal proteins (see also (Recuenco-Munoz et al., 2015)). Importantly, 

we do note that the Nti of mature proteins are always far more frequent than the Nti of 

the fragments; an example is shown for abundant stromal proteins isomerase ROC4, 

transketolase 1 (TLK1), phosphoribulose kinase (PRK2) and Sedoheptulose Fructose 

biphosphatase (SFBA) (Supplemental Figure 2.3). Analysis of the breakdown products 

revealed a strong preference for cleavage after Arg and to a lesser extent before Thr.  

 

2.3.9 Correlation with other large scale N-terminome studies   

In the last few months, Arabidopsis studies were published that employed TAILS or (a 

variant of) COFRADIC to study protein N-termini in roots (Zhang et al., 2015), 

mitochondria (Carrie et al., 2015) and leaves of wild-type and a chloroplast import 
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mutant (Kohler et al., 2015). Additionally there was a large scale study of NAA leaf 

proteins (Bienvenut 2012) and an assessment of mitochondrial protein N-termini based 

on ‘classical’ proteomics (Huang 2009). None of these studies shared the objectives of 

the current study; nevertheless these studies are a good opportunity to probe the 

consistency with the data presented here. To that end we systematically cross-checked 

the observed Nti for stroma-exposed Nti, as well as Nti of mitochondrial proteins 

(Supplemental Table 2.9). Of the Nti of the 206 stromal-exposed mature proteins 

identified in our study, 104 matched exactly with those found by others. The observed 

start position for 16 other proteins observed in our dataset was within 5 residues of that 

found by others. Other chloroplast proteins in our dataset were either not observed by 

other studies or they were detected with an N-terminus too far down-stream to represent 

the bona fide mature N-terminus; examples are RBCS and related proteins RCA and 

CP12, the Calvin cycle enzymes GAP-A/B, and SFBA, and several enzymes in the 

methylerythritol 4-phosphate pathway.  

We also detected 19 mitochondrial and 17 peroxisomal proteins (Supplemental 

Table 2.3). More than half of the mitochondrial Nti started with Ser and the Nti were 

typically preceded by Met, Ser, Leu, Phe, and Tyr, in good agreement with previously 

described mitochondrial presequence cleavage motifs (Huang et al., 2009; Carrie et al., 

2015) (Supplemental Table 2.9). Peroxisomal proteins are targeted to the matrix by a 

non-cleavable tripeptide at the extreme C-terminus (PTS1) or a cleavable nanopeptide 

at the N-terminus (PTS2) (Hu et al., 2012). Of the 17 detected peroxisomal proteins all 

except four were NAA and started either at the initiating Met or Ala in the 2nd position, 

presumably because they are targeted through a PTS2 signal. 
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2.4 DISCUSSION  

 
The objectives of this study were to determine the Nti of the stromal-exposed 

chloroplast proteome and develop a testable model for Nt processing, maturation and 

stability.  Through systematic TAILS analysis of soluble proteins from total leaf extracts 

and isolated chloroplasts, we obtained nearly 14.000 MS/MS spectra matching to 

protein Nti. Following condensation and curation of this data set, as well as annotation 

of subcellular localization, we then obtained a comprehensive set of chloroplast Nti. 

Comparison of this dataset to previously published information for individually studied 

proteins and other N-terminome studies (see below) showed that our TAILS workflow 

provided reliable and physiologically relevant information. The parallel acquisition of 

N-terminomes of total leaf extract and stromal extracts from isolated chloroplasts was 

important for recognition of extra-plastidic proteins and chloroplast precursor proteins. 

This also confirmed that accumulation of unprocessed chloroplast proteins (or cleaved 

cTPs) within the chloroplast is exceedingly rare, indicating a high efficiency of cTP 

cleavage and subsequent degradation of cleaved cTPs within the chloroplast, in 

agreement with (Richter and Lamppa, 1999) and others. 

 

2.4.1 Working hypotheses for Nt maturation of n-encoded proteins  

 Based on the analysis of Nt amino acid frequency, sequence logos and iceLogos, 

as well as published information (e.g. (Richter and Lamppa, 1998; Richter et al., 2005; 

Zybailov et al., 2008; Bienvenut et al., 2012)), we formulated a working model for Nt 

maturation of n-encoded proteins (Figure 2.5A) (for a broader discussion and many 
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cited references see (van Wijk, 2015)). Upon import into the chloroplast, the cTP is 

cleaved by SPP. This cleavage could either be very precise at a single position (a specific 

peptidyl bond) (Figure 2.5A – upper left portion), or less precise with cleavages 

occurring at closely spaced, multiple positions, depending on the residues neighboring 

the cleavage site. Additional peptidases will subsequently perhaps remove one, or in 

some cases two or three, residue(s) from the N-terminus; this likely depends on the Nt 

residue and the immediate down-stream sequence, as well as protein fold (accessibility 

of the N-terminus). Seven stromal amino peptidases (APs) were identified with high 

confidence and their relative abundance quantified in chloroplasts of Arabidopsis 

(Zybailov et al., 2008). These include the higher abundance Leu-AP, Glu-AP and 

Amino peptidase - P, as well as four lower abundance peptidases (Met-AP1B, Gly-AP, 

Pro-AP, Ser-AP). Whereas the substrate specificity of these peptidases has generally 

not been characterized, they are strong candidates for performing the proposed role in 

Nt maturation (Figure 2.5A). The combination of single and multiple SPP cleavages and 

activity of multiple amino-peptidases provides the most flexible scenario to arrive at the 

highly restricted N-terminome (i.e. high prevalence of Ala, Val, Thr, Ser) and best 

accommodates all observations. Finally, a limited number of proteins likely undergo an 

additional down-stream cleavage, as exemplified by p-encoded CP43 which 

accumulates with an NAA (and reversibly phosphorylated) Thr13; we suggest that a 

specific peptidase (as yet unidentified) generates the N-terminus of this abundant (and 

essential for photosynthesis) PSII core protein. 
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2.4.2 Classification of chloroplast stroma-exposed Nt residues and examples  

 Figure 2.5B summarizes the observed frequencies of each amino acid in the 

stromal-exposed Nt position for the n- and p-encoded proteome. The most frequent, and 

perhaps the most stable Nti, start with the small polar (Ser, Thr) or apolar (Ala, Val, 

Gly) residues; together these represent ~75-80% of all Nti. Except for Gly, a significant 

percentage of these residues are NAA; however, the general function of NAA is poorly 

understood (Jones and O'Connor, 2011; Hollebeke et al., 2012; Starheim et al., 2012), 

but can influence protein stability as for example shown in Arabidopsis for a nod-like 

receptor (Xu et al., 2015). It was recently shown that reduced NAA rates trigger a 

drought response in Arabidopsis (Linster et al., 2015). In the case of p-encoded proteins, 

Met has a high frequency in the Nt position, dictated by the penultimate residue and the 

NME. In selected cases, such as the three PSII core proteins D1, D2 and CP43, the N-

terminus plays an active regulatory role through reversible phosphorylation of the 

(stable) NAA Thr (Figure 2.5B) (see e.g. (Vener, 2007; Rokka et al., 2011)). 



77 
 

 

, Y 

Figure 2.5. Working model for Nt maturation of n-encoded proteins and the 
classification of different types of Nti.  
(A) Model for generation of mature and stable Nti of n-encoded chloroplast proteins. Upon 
chloroplast import, the cTP of precursor proteins are either cleaved at a specific single site 
or cleaved at closely spaced multiple positions. Proteins with unwanted and/or unstable 
Nti are further processed by one or more stromal amino peptidases to stabilize the proteins. 
(B) Classification of different types of chloroplast stroma-exposed Nti and examples. We 
distinguish three types of amino acids: i) Amino acids that are very frequent in the Nt 
position and that are presumable very stable in the chloroplast stroma. ii) Nti with 
reversible PTM and that play a functional role, iii) Amino acids that are not or rarely 
observed, and likely result in destabilization of proteins in the chloroplast when these Nti 
are exposed to the stroma.  Group iv shows examples of proteins that were observed with 
rare amino acids at the Nt position; these are discussed in the text 
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Whereas just six residues occupied most of the stromal-exposed Nti, other amino 

acids were never observed in the Nt position (His, Phe) or observed in just one or a few 

cases (and sometimes only in NAA form, e.g. Trp) (Figure 2.5B). We discuss a number 

of such cases: 

 

Redox active Cys – Cysteines are redox active and the thiol often forms inter- or intra-

molecular disulfide bonds, participates in enzymatic reactions, and undergo many post-

translational modifications. We observed two cases of Nt Cys residues; these are for Fd-

GOGAT (AT5G04140) and GLN PHOSPHORIBOSYL PYROPHOSPHATE 

AMIDOTRANSFERASE 2 (AT4G34740). Surprisingly, both mature Nti start with 

‘CGV’, as well as unusual acidic stretches upstream of the cTP cleavage site, even if 

these proteins are otherwise completely unrelated and have distinct functions. In both 

cases, these ‘CGV’ Nt sequences are conserved in plants, algae and even cyanobacteria, 

suggesting that these play a specific, but as yet unknown function.  Furthermore, for 

both cases these proteins were only detected with these specific Cys Nt-proteoform 

further suggesting that these Nt Cys residues play a functional role.  

 

Aromatic amino acids Tyr, Trp, His and Phe. These residues are destabilizing N-

terminal residues in prokaryotes (Tyr, Trp and Phe) where they are likely targets of the 

ClpAPS protease system, and in the cytosol of eukaryotes (Tyr, Trp, His and Phe) where 

they are targets of the proteasome (Dougan et al., 2012; Tasaki et al., 2012; Gibbs et al., 

2014). His and Phe are absent as Nt residues in chloroplast stroma, whereas Tyr and Trp 

were each only observed once. This Trp is the N-terminus of GDC1 (AT1G50900) and 
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was observed in 33 out of 35 times (always NAA); manual inspection of several of the 

underlying spectra confirmed the assignment. GDC1 (also named LTD) is a mostly 

stroma-localized protein involved in the sorting of members of the LHC protein family 

and interacts with the SRP particle in the stroma (Cui et al., 2011; Ouyang et al., 2011). 

The Trp is largely conserved across land plants and is typically preceded by a Cys 

residue. The significance of this NAA Trp remains to be determined. It is not known if 

these aromatic residues confer instability to proteins in the chloroplast. 

 

Acidic residues Glu and Asp. The two abundant stromal chaperones cpHSP70-1 

(AT4G24280) and HSP90 (AT2G04030) both start with acidic residues (Glu and Asp, 

respectively). The N-terminus of HSP90 is generated by cleavage after Cys. In case of 

HSP90 there was one other Nt-proteoform, starting with an Ala one residue downstream 

of the Asp; however, it was only observed twice compare to 29 times for the acidic Nt-

proteoform. In case of HSP70, the acidic Nt-proteoform was observed 71 out of 87 

times. These essential chaperones perhaps require these unusual acidic Nti to interact 

with their targets or partners. Another Nt Glu was found for ribosomal protein RPL13, 

also generated by cleavage after Cys. It seems quite logical that a stromal amino 

peptidase might exist that removes these Cys residues. 

 

Proline We observed Nt Pro (an unreactive amino acid) with high number of MS/MS 

spectra for the abundant RBCL (the Pro was always NAA), in agreement with a previous 

study in spinach (Mulligan et al., 1988). Because Pro is the 3rd residue of this p-encoded 

protein after Met-Ser, it was likely generated by NME, followed by cleavage of the Ser 
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by a different peptidase. We predict that a specific, as yet unknown, peptidase evolved 

to carry out this specific cleavage of RBCL.  

 

2.4.3 Functional significance of Nt maturation and Nt proteoforms  

 The N-terminome analysis presented in this study clearly established that many 

chloroplast proteins are represented by more than one Nt proteoform. Based on the 

number of matched MS/MS spectra presented in Supplemental Table 2.4, it is possible 

to calculate tentative abundance ratios between Nt proteoforms for these proteins. For 

example, in case of inorganic phosphatase (AT5G09650.1), observed by 185 MS/MS 

spectra, 5% started with Ser-Ala-Iso, 27% started with Ala-Iso and 68% started with the 

downstream Iso. In case of Enoyl-ACP reductase (AT2G05990.1) observed with 134 

MS/MS spectra, two Nt-proteoforms were observed starting with Ala-Met-Ser (13%) or 

the downstream Ser (87%), but interestingly no Nt-proteoform starting with this Met 

was observed. Whereas the asymmetric distribution of Nt-proteoforms may relate to 

functional differences, very few studies exist that have looked at the significance of Nt 

proteoforms. One example of such studies is for thylakoid-associated FNR-1 

(AT5G66190) and FNR-2 (AT1G20020) (Lehtimaki et al., 2014) that each have two Nt 

variants, with Nt sequences AQVT and AQIT being observed with and without the Ala 

for FNR1 and FNR2 respectively (Lehtimaki et al., 2014), in agreement with our TAILS 

data. However in this case, our TAILS data did not allow determination of the ratio 

between the two proteoforms for each FNR protein. Furthermore, NAA forms of each 

N-termini were observed and this modification appeared to be induced by light 

(Lehtimaki et al 2014). However, these Nt variations did not influence their association 
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with the thylakoid membrane and the exact physiological relevance remained unclear 

(Lehtimaki et al., 2014). A systematic analysis to investigate the functional significance 

of the phenomenon of multiple proteoforms is warranted.  

 

2.4.4 Differences between plastid and n-encoded proteins  

 The maturation processes of nuclear- and p-encoded proteins differ from each 

other; it is strictly post-translational in case of n-encoded proteins but co-translational 

for many p-encoded proteins. Furthermore, following import and cTP cleavage, most n-

encoded chloroplast proteins do not start with a Met, whereas p-encoded proteins do. 

Except for the much higher frequency of observed Nt Met (~30%), the p-encoded 

protein Nti are dominated by small, uncharged residues Ala, Ser, Thr, Val and Gly, 

similar as observed for n-encoded proteins. NAA rates appeared higher for p-encoded 

proteins than for n-encoded proteins perhaps because this occurs co-translationally, 

rather than post-translationally. Additionally, observation of a wide range of NAA 

amino acids (Ile, Pro, Arg, Trp, Gln) (but not Gly) suggest that more than one Nt 

acetylase (NAT) operates in the chloroplast (see (Starheim et al., 2012; Giglione et al., 

2014)).  

 

2.4.5 Comparison with protein maturation in mitochondria  

 Chloroplasts and mitochondria have many similarities with respect to protein 

biogenesis and more than 100 proteins are dually targeted to both organelles (Carrie and 

Small, 2013), including several proteases such as LON1 (Daras et al., 2014), PREP1 

(Kmiec et al., 2014), FTSH11 (Urantowka et al., 2005) and OOP (Kmiec et al., 2013). 
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It is therefore likely that they also show similarities in protein maturation and in 

mechanisms of protease substrate recognition. Recent observations for plant 

mitochondrial N-terminal peptidase ICP55 (Carrie et al., 2015; Huang et al., 2015) and 

OCT1 (Carrie et al., 2015) support a similar model for maturation and stabilization of 

n-encoded as the proposed model for chloroplasts (Figure 2.5A). After cleavage of the 

N-terminal mTP by the general mitochondrial processing peptidase (MPP; the 

functional equivalent of chloroplast SPP), one (or sometimes 2) amino acid residue (in 

particular F, Y, L, I) is cleaved by ICP55 for high portion of mitochondrial proteins. 

The specificity of OCT1 was not very clear and it was suggested that OCT1 might act 

after assembly of proteins, rather than immediately following mTP cleavage (Carrie et 

al., 2015). Based on these observations for ICP55, it was suggested that removal of 

specific N-terminal residues (in particular F, Y and L) is needed to confer protein 

stability (Carrie et al., 2015; Huang et al., 2015). The Arabidopsis genome contains a 

homolog (AT4G29490) of mitochondrial ICP55, which is a candidate to play a similar 

function in chloroplasts.   

 

2.4.6 Nt residues, N-degron and the N-end rule  

 The N-terminus of proteins has shown to be a major determinant of protein 

stability/half-life in many organisms. Early observations in yeast led to the formulation 

of the ‘N-end rule’ which states that certain amino acids, when exposed at the N-

terminus of a protein, act as triggers for degradation (Bachmair et al., 1986). The N-end 

rule in prokaryotes is different than in eukaryotes in part because most prokaryotes do 

not have a proteasome and also lack ubiquitination (Tobias et al., 1991). In bacteria, 
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such N-end rule proteins are recognized by the adaptor ClpS, which delivers such 

proteins for unfolding and degradation to the Clp chaperone and protease system. 

Recent reviews summarize the history of these discoveries and the current 

understanding of the N-end rule pathway for prokaryotes and eukaryotes (Dougan et al., 

2012; Tasaki et al., 2012; Gibbs et al., 2014). Whereas an N-end rule for 

chloroplasts/plastids in plants is not known, over-expression studies for plastid-encoded 

proteins have shown that the amino-acids at the N-terminus can greatly affect protein 

stability (Apel et al., 2010), and see (Gao et al., 2012) for discussion. Moreover, a plant 

homolog of ClpS was recently identified and characterized in chloroplasts of 

Arabidopsis thaliana (Nishimura et al., 2013). Recent data of the N-terminome of an 

Arabidopsis mitochondrial ICP55 null mutant indicated that ICP55 removes in 

particular the N-terminal residues Phe, Tyr and Leu. These residues are generally 

considered unstable residues and it was therefore suggested that plant mitochondria also 

utilize an N-end rule pathway (Carrie et al., 2015; Huang et al., 2015). Our study was 

in part motivated by the search for a possible N-end rule in the chloroplast stroma. From 

the observed amino acid frequencies in the stromal-exposed Nti, there appears indeed a 

strong overlap between residues avoided in chloroplast stromal-exposed Nti and the 

bacterial and mitochondrial primary N-end rules residues (Trp, Tyr, Phe, Leu). 

Secondary destabilizing residues Asp, Glu, Arg, Lys in prokaryotes also are among the 

low frequency amino acids in the Nt position. In contrast, Met, a secondary destabilizing 

residue in E. coli (but nevertheless quite frequent in prokaryotes (Bonissone et al., 

2013)), is clearly a very frequent and likely stable residue for p-encoded proteins in 

chloroplast stroma. Secondary destabilizing residues only become destabilizing upon 
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transfer of an amino acid to the N-terminus (Dougan et al., 2012; Tasaki et al., 2012; 

Gibbs et al., 2014); such aminotransferase remains to be identified (or recognized) in 

chloroplasts. Measurements of chloroplast protein stability in dependence of their Nt 

residues in different peptidase, protease and protease adaptor (e.g. ClpS1) mutant 

backgrounds will be needed to determine to what extent chloroplast proteostasis is 

governed by an N-end rule.  

 

2.5 MATERIAL AND METHODS 

2.5.1 Plant Growth and generation of protein samples  

 A. thaliana (Col-0) was grown on soil in a temperature controlled chamber at 

150 µmol photons.m-2.s in a 12 h light period and harvested at developmental stage 1-

12. Total leaf was frozen in liquid nitrogen and ground to a powder in cooled mortar 

and pestle. Proteins were then extracted in 50mM HEPES-KOH, pH 8.0, 1mM EDTA, 

1mM Pefabloc and 10µg/µl E64, using 1 ml volume/g fresh weight; cell debris was 

removed by spin columns (Friso et al., 2011). Protein concentrations were determined 

by the BCA protein assay (ThermoScienctific). Chloroplast stroma was obtained from 

isolated chloroplasts  as described in (Olinares et al., 2010).  

 

2.5.2 TAILS experiments  

 A TAILS strategy was employed as described in (Kleifeld et al., 2011) and 

(Guryca et al., 2012) with minor modifications. Briefly, 100 to 200 μg protein in 

extraction buffer (above) was mixed 1:1 with 8M GuHCl in a single 1.6 or 2 ml tube. 

DTT was added at a final concentration of 5 mM and the solution incubated at 65°C for 
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1 h. Cysteines were alkylated with iodoacetamide, 15 mM final concentration, for 20 

minutes in darkness at room temperature and the residual iodoacetamide quenched by 

addition of DTT, at a final concentration of 15mM. For dimethylation of amines, 2M 

formaldehyde (CH2O) or CD2O (heavy isotope) (made fresh in ddH2O) and 1M 

NaCNBH3 was added to give 40 mM and 20 mM respectively. The pH was lowered to 

7.0 with 1M HCl and the solution incubated at 37°C for between 8 and 16 h. The 

reaction was quenched with 1M ammonium bicarbonate (NH4HCO3) at final 

concentration of 100mM for 2 h at 37°C. Proteins were precipitated with between 4 and 

8 volumes of ice-cold acetone, 1 volume methanol and the solution kept at -80°C for 3 

h. Proteins were pelleted at 14k xg for 20 min, the supernatant removed and the pellet 

washed twice with ice-cold methanol. The pellet was resuspended in 10 to 20 μl 8M 

GuHCl or DMSO followed by stepwise dilution with 50mM HEPES, pH 8.0 while 

vortexing to give a GuHCl concentration of < 0.8 M and a protein concentration of 1 

mg/ml. Some precipitate typically remained after resuspension.  

Sequencing grade trypsin (V5111 Promega) at a 1:100 or Glu-C (Promega 

V165A) at a ratio of 1:20, enzyme to protein ratio was added and the solution incubated 

overnight at 37°C. One aliquot (80 ug) of Glu-C digested sample was further digested 

(1:20, enzyme to protein ratio) with trypsin overnight (20 hr). Alternatively, 200 μg of 

labelled protein, precipitated protein was re-suspended in 1x Laemmli buffer and the 

resolved by SDS PAGE, 12% T Laemmli. The whole gel lane was then cut into 4 bands 

and in gel trypsin digest was performed as described in (Friso et al., 2011) except that 

no reduction and alkylation was performed and the digestion was performed in 50mM 

HEPES-KOH, pH 8.0. The resulting peptide extracts were dried and then resuspended 
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in 50mM HEPES-KOH, pH 8.0. Following each digest a 5% aliquot of the digested 

protein was reserved for testing labeling efficiency (before negative selection step). 

These aliquots were desalted using C-18 solid phase extraction spin columns (Pierce 

89870) using the manufacturers guidelines and subjected to MS analysis. The remaining 

protein digest was added to 600 μg (15 to 20 µl aliquots) of dendritic high molecular 

weight polyglycerol-aldehyde polymer (HPG-ALD) (Flintbox Innovation Network) 

followed immediately by 1M NaCNBH3 to give a 40mM final concentration. The pH 

was adjusted to 7.0 with 1M HCl and the sample incubated overnight at 37°C. The 

reaction was quenched as above with 100 mM NH4HCO3 and the solution filtered 

through a pre-washed (3 x 0.5 mL water, 2 x 100mM NH4HCO3) Amicon 30-kDa-

molecular mass ultrafiltration device (Millipore). The filtrate was acidified with formic 

acid and the peptides desalted as described above. The peptides were then dried in a 

vacuum centrifuge and resuspended in 20 μl of 2% formic acid. SDS PAGE was 

performed to ensure recovery of protein across the labeling and precipitation steps and 

to ensure digestion went to completion. Please note that the GuHCl concentration in the 

SDS sample buffer must be less than 0.04 M GuHCl to avoid precipitate and spoiled gel 

separation.  

 

2.5.3 LC-MS/MS analysis  

 All samples were analyzed by nanoLC-MS/MS using a LTQ Orbitrap mass 

spectrometer (ThermoFisher) run at 100.000 resolution in MS (Orbitrap portion) at least 

once prior to the negative selection step, to confirm label efficiency, and at least twice 

following the negative selection step.  The LC and MS tuning and acquisition conditions 



87 
 

were as previously described (Friso et al., 2011) with some minor variations. In some 

cases a reject list for the most abundant, persisting, highly concentrated RBCS and 

RBCL peptides was added.           

 

2.5.4 Database search/peptide identification  

 Peak lists (mgf files) were generated from Thermo raw data files using DTA 

Supercharge. The peak lists were searched using MASCOT 2.4 (Matrix Science) against 

TAIR10, appended with all reverse sequences (Decoy) and common contaminants 

(71,149 sequences and 29,099,754 residues). Following an initial database search 

performed at 30 ppm MS tolerance, 0.8 Da MSMS tolerance, the peak list was then 

recalibrated as previously described (Friso et al., 2010). A semi-specific enzyme search 

was then conducted - semiArgC, semiGluC (V8), or semi(ArgC and GluC) - allowing 

for two missed cleavages, 4 ppm MS tolerance and 0.8 Da MSMS tolerance. Fixed 

modifications were carboxamidomethyl Cys and dimethyl Lys; variable modifications 

were oxidized Met, pyroGlu N-term Gln, acetyl N-term and dimethyl N-term (light, +28 

Da or heavy, +32 Da). Another search including singly methylated N-term was 

conducted for select files in order to detect methylated Nt Pro. For samples labeled with 

heavy formaldehyde, a search was conducted with intermediate - light and heavy (+30 

Da) dimethylation to account for proteins that underwent physiological 

(mono)methylated at the N-terminus.  

 

2.5.5 Additional database searches  
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 To test labeling efficiency, samples taken prior to negative selection were 

subjected to semitryptic or semiGluC searches with only fixed caboxamidomethyl Cys 

and variable dimethyl Lys, dimethyl Nt, acetyl Nt and oxidized Met. These search 

parameters enabled detection of unlabeled Lys side chains and semitryptic peptides that 

should not be present if dimethyl labelling was complete. To detect mono-methylated 

Pro, mono-methylated Nt was added to the list of variable modifications. To detect 

physiological Nt mono-methylation in samples labeled with heavy formaldehyde, a 

search was conducted with intermediate dimethylation – light/heavy (+30 Da). To 

monitor dimethyl labeling efficiency, pre-negative selection database search results 

were exported and the number of Lys per peptide calculated. The number of assigned 

dimethylated Lys was then compared to the Lys number for each peptide as well as the 

number of missed cleavages (which should equal the number of Lys unless they are 

followed by Pro).  

 

2.5.6 Filtering of MS Data  

 Each MASCOT result (MS/MS ion search) was filtered, P < 0.01, minimum ion 

score 30. The spectra were then exported and sorted to remove any contaminant peaks 

such as trypsin and keratin and to ensure the number of reverse hits gave an FDR of < 

1% with FDR =  2* FP/(FP + TP). Identified peptides from all db searches were 

combined and all peptides without an Nt label removed leaving only those with either 

dimethyl, acetyl or pyroGlu Q Nti. Peptides were then sorted by criteria in the following 

order: peptide sequence, modification 1, modification 2, and peptide score (highest to 

lowest). All identical peptide species were collapsed and the number summed to give 
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the number of spectral counts (SPC) for that peptide. In total 13858 spectra were 

matched using the above criteria (Supplemental Table 2.1), representing 1087 Nt 

peptides. All pyroGluQ Nti, downstream of K, R or E (resulting from artificial trypsin 

or GluC cleavage) were deemed artifacts and were removed (50 peptides). Certain 

groups of peptides were found that matched to the same N-terminus due to ragged ends 

at the C-terminus, or alternate enzyme cleavage sites (e.g. GluC) and SPC for these 

peptides were grouped such that the SPC for all peptides matching the same N-terminus 

were combined (peptide with most SPC is the parent of that group). If for example a 

missed cleavage led to the same NAA N-terminus being found twice, each with distinct 

a mass, both spectra are counted towards that N-terminus. Therefore, all redundant Nti 

that cannot be distinguished by Nt modification (148 peptides) were collapsed and their 

Nti added to the parent group leaving 894 unique Nt sequences (Supplemental Table 

2.2) matching to 577 proteins.  

 

2.5.7 Validation of Nti, terminology and subcellular localization  

 TAILS identified chloroplast Nti  was compared with Nt information from the 

scattered Edman sequencing information available in the literature (e.g. (Richter and 

Lamppa, 1998; Peltier et al., 2002; Candat et al., 2013)) and with semi-tryptic peptides 

identified in PPDB. A unique Nt sequence refers to a single sequence that could be 

identified from different charge states of the same peptide or from separate overlapping 

peptides with the same modified/labeled amino-terminus. If the same sequence was 

identified with alternate modifications of the NAA amino group, these are considered 

unique Nti. As such, the same exact sequence can be found in three unique forms, 
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dimethylated (free N-term in original sample), NAA or pyroGlu. Proteins were 

annotated for subcellular location based on manually curated experimental information 

from PPDB - http://ppdb.tc.cornell.edu/ (Sun et al., 2009). 

 

2.5.8 Generation of sequence Logos and iceLogos  

 Sequence and iceLogos were generated with IceLogo v 1.2 

(http://www.proteomics.be). The sequence logos generated are identical to those made 

with Weblogo (http://weblogo.berkeley.edu/). For nuclear-encoded proteins, we aligned 

sequences starting ten residues upstream of the N-terminus (P10 position) and ending 

ten residues downstream (P10’). Sets of sequences were loaded into iceLogo along with 

the 1663 known chloroplast proteins (PPDB), minus their predicted cTPs, as a reference 

(background) proteome. The iceLogo results were filtered to show only residues that 

were significantly different from the reference proteome with P<0.05 for Figure 2.4B 

and P<0.01 for Figure 2.4C and D. Amino acid colors were chosen to accentuate basic 

(blue), acidic (red), hydrophilic or polar (green) and sulfur containing (purple) residues. 

All other, generally hydrophobic, residues are in black. 

 

2.5.9 Annotation of protein subcellular localization  

 Proteins were annotated for subcellular localization based on curated 

information as listed in PPDB (http://ppdb.tc.cornell.edu/) updated with the most recent 

data from the literature and other public resources. The subcellular localization in PPDB 

is based on available information from the literature, as well as information from 

specific data bases, such as those by the Rolland lab (AtChloro), but also SUBA (from 
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the Millar lab), TAIR and the new Arabidopsis Information Portal (AIP), etc. For 

annotation in PPDB, all this public information is considered together with extensive 

in-house information to then manually assign a subcellular localization, in particular for 

plastids/chloroplasts. Furthermore, it also considers information from orthologs in 

maize, as was recently described in (Huang et al., 2013). Annotation of the orientation 

of Nti of chloroplast proteins (facing the stroma, lumen or envelope intra-membrane 

space) was based on literature.  
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SUPPORTING INFORMATION 

 

Supplemental Figure 2.1. TAILS experimental workflow, using a method adapted from 

(Kleifeld et al., 2011).  

Supplemental Figure 2.2. RBCS-4 Nt peptide MS spectrum labeled light and heavy to 

distinguish physiological mono-methylation status.  

Supplemental Figure 2.3. TAILS identified Nti of intact stromal proteins and their 

degradation products.  

Supplemental Table 2.1. 13858 matched MS/MS spectra that provide the basis for this 

N-terminome analysis matching to 606 non-redundant proteins.  

Supplemental Table 2.2. Nt peptides after merging redundant Nt peptides (i.e. with the 

same mass), resulting in 1037 Nt sequences matching to 577 proteins and including 

degradation products. 

Supplemental Table 2.3. Nt peptides after merging redundant and/or overlapping Nt 

sequences irrespective of PTMs (exception for NAA, treated as distinct) and C-terminal 

ends (‘ragged ends’) resulting in 894 Nt sequences, matching to 577 proteins.  

Supplemental Table 2.4. 344 stromal exposed Nti of 205 n-encoded proteins used for 

figures 2 and 3 and associated analysis; degradation products are removed.  

Supplemental Table 2.5. 39 Nti exposed to the thylakoid lumen.  

Supplemental Table 2.6. Experimentally determined SPP cleavage sites described in 

the literature. 

Supplemental Table 2.7. Nti of all 88 p-encoded proteins, their topology, predicted 

mature Nti based on the general NME rule and experimental Nt information from this 
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study, PPDB and published literature.  

Supplemental Table 2.8. 129 degradation Nti of 498 stromal exposed Nti.  

Supplemental Table 2.9 Comparison of identified chloroplast and mitochondrial 

protein Nti to other published TAILS and N-terminome studies.  
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APPENDIX 

 

Supplemental Figure 2.1. TAILS experimental workflow, using a method adapted 
from (Kleifeld, et al. 2011) and protein recovery. 
(A) 100-200 μg of proteins were labeled overnight in a single tube (2). Following 
quenching and acetone precipitation (3), proteins were resuspended (4) and subjected to 
overnight in-solution digestion (5) or resolved by SDS-PAGE and subjected to in-gel 
digest (7). Crosslinking of internal peptides was performed by adding the digested proteins 
directly to pre-aliquoted polyglycerol-aldehyde polymer along with NaCNBH3, pH 
adjusted to 7, and reacted overnight (8). The polymer and attached internal peptides were 
then removed by ultrafiltration (9) and the flow-through with dimethyl labeled peptide (N-
terminal and internal Lys peptides), mono-methylated Pro, other modified N-termini 
(NAA; PyroGluQ) collected (10).  Peptides were then desalted over C18 resin (11) 
followed by MS/MS analysis on a LTQ-Orbitrap and database searching (12).  
(B) The silver-stained SDS-PAGE gel demonstrates the tracking of protein recovery 
throughout a TAILS experiment. This representative gels (total soluble leaf preparation) 
shows good recovery of protein post-labeling and post-precipitate; and confirmation of 
digestion with trypsin. Please note fine band around 200 kDa in starting material that is no 
longer visible following labeling and precipitation.  
 
Abbreviations: DM, dimethyl; PPT, precipitate. In total, we analyzed 4 independent 
stromal preparations (10 TAILS experiments) and 3 independent soluble leaf protein 
extracts (9 TAILS experiments).  
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Supplemental Figure 2.2. RBCS-4 Nt peptide MS spectrum labeled light and 
heavy to distinguish physiological mono-methylation status. Identical stromal 
extracts were labeled either light (formaldehyde) or heavy (deuteriated 
formaldehyde) and then mixed at 5:1 (not shown) or 1:5 ratio and then subjected to 
TAILS. Observed heavy m/z values indicate RBCS-4 is naturally mono-methylated, 
m/z within 4 ppm of the expected values for both the light and heavy forms of the 
peptide.  For RBCS-4 the Nt peptide typically eluted between 58 and 60 minutes, ESI 
producing 4+ and 5+ charge states. The peptide contains 4 lysines, which, in addition 
to the N-terminus, should all be dimethylated by TAILS, the light labeled form 
having a m/z of 853.4736 (at 5+), heavy m/z of 857.4987 (at 5+). However, if the 
native N-terminus was already monomethylated, the heavy labeling should produce 
a product 2 amu lighter than predicted for full labeling. Indeed, the heavy labeled 
peptide has an m/z of 857.1047 (5+) corresponding to a naturally monomethylated 
form. 
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Supplemental Figure 2.3. TAILS identified Nti of intact stromal proteins and 
their degradation products. Distribution of detected Nti for abundant stromal 
proteins: isomerase ROC4, transketolase 1 (TLK1), phosphoribulose kinase 
(PRK2) and sedoheptulose fructose biphosphatase (SFBA). The x-axis shows the 
Nt residue position and the y-axis shows the number of matched spectra in stromal 
samples. The data point circled in red are the Nti of the intact, mature proteins. 
The other data points are the Nti of degradation products. The Nt peptide 
sequences of the degradation products are listed in Supplemental Table 2.8.  
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CHAPTER 3  

GENETIC AND FUNCTIONAL INTERACTIONS OF THE ORGANELLAR 

PEPTIDASES CLP, PREP AND OOP IN ARABIDOPSIS THALIANA1 

 

3.1  ABSTRACT  

Proteolysis is essential for proteome dynamics and homeostasis (proteostasis) in 

all living organisms. A network of different types of peptidases and chaperones ensure 

proteostasis within plant chloroplasts and mitochondria. This study describes the genetic 

and functional interactions between the chloroplast stromal CLP protease system and 

the PREP1, PREP2 and OOP peptidases dually localized in chloroplast stroma and 

mitochondria. A strong synergistic interaction was observed between mutants in 

CLPRT protease core components (clpr1 and clpr2) and both PREP homologs but, 

surprisingly, with the most pronounced effect for the lower abundant PREP2. Mutants 

with very low CLP core capacity (clpt1 clpt2) in the PREP1,2 double mutant (prep1 

prep2) background resulted in embryo lethality. Synergistic effects were also observed 

between a CLPC1 chaperone null mutant (clpc1) and prep1 prep2. Using label-free 

                                                 
1Manuscript in preparation for submission to Plant Physiology (2017) Jitae Kim, 
Elden Rowland, Giulia Friso, Anton Poliakov, Lalit Ponnala, Qi Sun, and Klaas 
J. van Wijk 
 
The contribution of the thesis’ author to this work consisted of N-terminal proteomics 
and peptidomics experiments and label free spectral counting for prep1 prep2 
chloroplast experiments. JK performed all genetic analyses and characterization of 
peptidase mutants. GF and AP performed additional proteomics experiments. ER and 
KJVW wrote the manuscript.  
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mass spectrometry, terminal amine stable isotopic labeling of substrates (TAILS) and 

peptidomics for identification and quantification of protein N-termini and protein 

degradation products, we determined the proteome phenotypes of single and higher 

order mutants in these three proteolytic systems. We conclude that there is: i) 

interference with in vivo cTP processing in prep and clp mutant alleles, ii) accumulation 

of protein degradation products in prep and prep oop backgrounds, iii) pronounced 

protein folding stress in the CLP mutants, that is only minor in prep1 prep2 and lacking 

in oop. Functional models are proposed that explain mechanisms of stromal N-terminal 

protein maturation disruption, and how these peptidases are part of a proteolysis 

network and degradation cascade. 

 

3.2 INTRODUCTION 

Plastids are essential organelles of prokaryotic origin present in all plant cells. 

Except for outer envelope proteins, most nuclear-encoded plastid proteins are imported 

using an N-terminal (Nt) chloroplast transit peptide (cTP) that is cleaved by STROMAL 

PROCESSING PEPTIDASE (SPP) recognizing the C-terminal region of the cTP 

(Richter and Lamppa, 1998, 1999; Trosch and Jarvis, 2011). SPP cleaves the cTP from 

the mature protein followed by its immediate release, whereas the cleaved cTP is 

released as two fragments through cleavage by SPP. These cTP fragments are then 

degraded by ATP- and metallo-dependent, non-serine type, stromal degradation activity 

(Richter and Lamppa, 1999, 2002). This activity, coined ‘transit peptide subfragment-

degrading enzyme’ (TP-DE) could be inhibited by oligopeptides (25-65 aa) but not 

whole proteins, thus predicting the presence of a non-serine type oligopeptidase that 
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degrades cTP fragments, but that can also degrade other protein fragments (Richter and 

Lamppa, 2002). Cleaved cTPs and fragments thereof (in particular the C-terminal 

portion) interfere with SPP preprocessing activity in vitro by direct competition for the 

SPP substrate binding domain (reviewed in Richter et al., 2005). Loss of SPP negatively 

regulates protein import in vivo resulting in accumulation of precursor proteins in the 

cytosol (Zhong et al., 2003).  

Different proteases, processing peptidases and aminopeptidases (from here on 

referred to as ‘peptidases’) are present in the plastid to remove and recycle cleaved cTPs 

and lumenal transit peptides (lTPs), damaged, miss-folded proteins, or unwanted 

proteins, reviewed in (Kmiec et al., 2014; van Wijk, 2015; Nishimura et al., 2016). 

Collectively, these peptidases must form a peptidase network, with built-in 

redundancies, hierarchies and complementary activities. The challenge is to determine 

the contributions of each peptidase (system) to the network. The current study aims to 

understand the functional interactions and in vivo contributions of three soluble stromal 

proteolytic systems to this peptidase network in Arabidopsis, namely the CLP peptidase 

system (Nishimura and van Wijk, 2015) and the PRESEQUENCE PROTEASE 1 and 2 

(PREP1,2) and the ORGANELLAR OLIGOPEPTIDASE (OOP) metallo-

oligopeptidases (Teixeira and Glaser, 2013; Kmiec et al., 2014).  

ATP-dependent CLP peptidase systems are present in bacteria, mitochondria 

and plastids, where they likely regulate a broad range of substrates (Sauer and Baker, 

2011; Alexopoulos et al., 2012; Liu et al., 2014; Nishimura and van Wijk, 2015). CLP 

peptidase consist of ATP-dependent chaperones that form 600 kDa hexameric rings and 

associate with a barrel-shaped tetradecameric peptidase core complex (~350 kDa). 
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Substrates are unfolded by these chaperones and delivered into the CLP core. Bacterial 

CLP peptidases use adaptor proteins such as CLPS and destabilizing signals in the N-, 

C-terminal or internal regions of proteins (known as degrons) for substrate recognition 

and delivery (Kirstein et al., 2009; Battesti and Gottesman, 2013). Plant chloroplasts 

harbor a highly diversified CLP system, consisting of a hetero-oligomeric peptidase 

core comprising five proteolytically-active subunits (CLPP1, CLPP3–6) and four 

proteolytically-inactive proteins (CLPR1–4), as well as two stabilizing/activating 

factors (CLPT1/2), three chaperones (CLPC1, CLPC2, and CLPD), the adaptor CLPS1 

(Nishimura et al., 2013) and its co-adaptor CLPF (Nishimura and van Wijk, 2015). 

CLPS1 directs selected substrates to the CLPC chaperone complex for degradation and 

we recently identified a small set of likely candidate substrates (Nishimura et al., 2013), 

including GLUTR (Apitz et al., 2016). CLPF is proposed to be a co-adaptor of CLPS1 

but this binary adaptor model needs further investigation (Nishimura et al., 2015). 

Interestingly, the mitochondrial CLP system in plants is more similar to bacterial 

systems, requiring fewer genes and having less heterogeneity (Nishimura and van Wijk, 

2015). The CLP peptidases in bacteria typically generate short peptide products up to 

25 residues in length, with the majority being ~5-15 amino acid fragments (Choi and 

Licht, 2005).  

PREP1, PREP2 and OOP in Arabidopsis have been extensively studied by the 

Glaser lab, reviewed in (Teixeira and Glaser, 2013; Kmiec et al., 2014) and see (Teixeira 

et al., 2017). All three peptidases are dual-targeted to chloroplasts and mitochondria, 

and it was proposed that these three peptidases together degrade cleaved cTPs and 

mitochondrial transit peptides (mTPs) in the chloroplast stroma and the mitochondrial 
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matrix, respectively. PREP1,2 are members of the M16 family of metallo-peptidases, 

similar to the stromal and mitochondrial M16 processing peptidases, SPP and MPP, 

respectively. These peptidases have no ATP/GTP binding domains or known protein 

binding partners and therefore they cannot unfold proteins. Crystal structures of 

Arabidopsis PREP1 at 2.1Å (Johnson et al., 2006) and human PREP at 2.0 Å (King et 

al., 2014) suggested that PREP acts as a monomer with a dynamically formed 

proteolytic chamber (10000-13000 Å3) that opens and closes through a hinge 

mechanism. In vitro experiments indicated that the Arabidopsis PREP1,2 homologs can 

degrade peptides/proteins within a size range of 10 and 65 amino acids (Stahl et al., 

2005), consistent with the size of the proteolytic chamber. They are suggested to have 

a preference for positively charged peptides because of a partially negatively charged 

binding pocket (Glaser and Alikhani, 2010; King et al., 2014). OOP is a member of the 

M3 metallo-peptidase family which also includes plant mitochondrial OCT1 that 

cleaves octapeptides from selected protein N-termini (Carrie et al., 2015). The crystal 

structure of OOP suggested a monomer with two major domains enclosing a smaller 

substrate binding cavity of 3000 Å3 (Kmiec et al., 2013). In vitro experiments with 

recombinant OOP indicates that it degrades only short peptides ranging between 8 and 

23 amino acids (Kmiec et al., 2013). The upper substrate size limit of OOP and PREP 

distinguishes them from the CLP system, which can degrade larger and folded proteins 

due to the unfolding capacity of the CLP chaperones. 

It was proposed that the primary functions of dual-localized PREP and OOP are 

to degrade cleaved cTPs and mTPs with OOP operating down-stream of PREP1,2 

and/or CLP (Kmiec et al., 2013). Similarly, an earlier study of the OOP homolog in E. 
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coli (OPDA) suggested it to function down-stream of CLP and LON peptidases (Jain 

and Chan, 2007). Recently it was shown that PREP and OOP peptidases together can 

indeed degrade recombinant or synthetic cTPs and other peptides but that 

aminopeptidases, in particular M1, M17 and M18 metallo-exopeptidases, are required 

to completely degrade these fragments into individual amino acids (Teixeira et al., 

2017).  

Single and double Arabidopsis T-DNA insertion mutants for PREP1 (prep1) and 

PREP2 (prep2) (Cederholm et al., 2009) and single OOP (oop-1 and oop-2) and triple 

PREP1,2 OOP mutants (prep1 prep2 oop-2) (Kmiec et al., 2013) have been published 

by the Glaser lab. The single prep2 and oop-1,2 mutants showed no obvious growth or 

developmental phenotypes, whereas prep1 showed a slightly pale-green phenotype but 

without obvious growth penalty. prep1 prep2 showed visibly reduced growth and 

slightly delayed development, which was more pronounced in prep1 prep2 oop-2. All 

mutants were viable and fertile on soil and appeared healthy and green without changes 

in leaf shape, but prep1 prep2 and prep1 prep2 oop2 showed delayed greening of the 

very young leaves. Complementation of prep1-1 prep2-1 with a form of PREP1 that 

only targets to the mitochondria showed that the growth rosette phenotype was mostly 

due to loss of PREP1 activity in chloroplasts, rather than mitochondria (Kmiec et al., 

2014).  

The current study aims to understand the functional interactions and in vivo 

contributions of CLP, PREP and OOP, through the generation of higher order mutants 

and in vivo proteomics techniques that monitor chloroplast protein Nt maturation, 

accumulation of degradation products and protein abundance levels. This demonstrated 
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strong synergistic genetic interactions between the CLP and PREP peptidase systems 

resulting in embryo lethality, partial inhibition of Nt protein processing in absence of 

PREP and CLP activity, and differential accumulation of cTPs and protein degradation 

products. Strikingly, whereas loss of CLP capacity resulted in strong over-accumulation 

of all chloroplast stromal chaperone systems (e.g. CPN60/10/20, HSP90 and CLPB3) 

indicative of a significant folding and aggregation stress, the abundance of these 

chaperones systems were not or only marginally changed in single or higher order 

PREP1,2 and OOP mutants. We present models describing the positions of CLP, PREP 

and OOP peptidases within the chloroplast peptidase network, and the in vivo feedback 

inhibition of pre-protein maturation when peptide fragments accumulate and chaperones 

are limited.  

 

3.3 RESULTS 

3.3.1 Genetic interactions between PREP1, PREP2 and OOP  

In an independent and long term effort towards unravelling the functional 

chloroplast peptidase network, we isolated four OOP alleles (oop-1,2,3,4) and one allele 

for each PREP1 (prep1-1; from hereon named prep1) and PREP2 (prep2-1; from hereon 

named prep2) (Figure 3.1A,B; Supplemental Figure 3.1A,B). RT-PCR showed that oop-

2 was the only true null allele at the transcript level (insertion near the 6th exon) 

(Supplemental Figure 3.1A), whereas prep1 and prep2 were essentially null alleles with 

< 1% of mRNA compared to wild type (wt) (Supplemental Figure 3.1B; Figure 3.1A,B). 

We generated double and triple mutants between prep1, prep2 and oop-2 (from hereon 

named oop). Consistent with previous observations by the Glaser lab, the prep1 prep2 
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double mutant showed a ~20-30% reduced size in plant size, but without any other 

obvious visible phenotypes, whereas oop did not show a visible phenotype (Figure 3.1A, 

Supplemental Figure 3.1A,B). RT-PCR analysis of oop, prep1 and prep2 did not show 

any changes in the level of the other peptidase genes (e.g. in oop, mRNA levels for 

PREP1 and PREP2 were unaffected, etc.).  However, mRNA levels for OOP in the 

prep1 prep2 double mutant increased by ~50% (Figure 3.1B) suggesting some feedback 

regulation and genetic interactions between these two peptidase systems. Double 

mutants oop prep1 and oop prep2 did not show visible phenotypes (Figure 3.1A). In 

contrast, the triple mutant showed delayed rosette development and flowering, and in 

particular the youngest, emerging leaves of the triple prep1 prep2 oop mutant were pale 

green and the mutant rosette was dramatically smaller than the prep1 prep2 double 

mutant, indicative of a strong genetic interaction (synergistic effect) (Figure 3.1A). At 

later stages of development the triple mutant largely recovered especially after the 

transition to flowering (Supplemental Figure 3.2A,B). Mature plants were subjected to 

brighter light (500 µmol photons.m-2.s-1) for 11 days and the mutants showed no 

additional phenotypes when compared to wt (Supplemental Figure 3.2C). Seeds from 

the triple mutant had slightly collapsed (shriveled) structure, but the germination rate 

was normal (Supplemental Figure 3.2D,E).  

Extensive tandem mass spectrometry (MS/MS) analysis of leaf or chloroplast 

proteomes of the single, double and triple mutants did not detect PREP1, PREP2 or 
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Figure 3.1. Genetic interaction between PREP and OOP peptidases. 

(A) Comparison of wt, oop, prep1 prep2 and prep1 prep2 oop. Plants were grown 

on soil for 20 days under a 10-h/14-h light/dark cycle at 120 µmol photons.m-2.s-1. 

Comparison of prep1, prep1 oop, prep2 and prep2 oop. Plants were grown on soil 

for 23 days under a 10-h/14-h light/dark cycle at 120 µmol photons.m-2.s-1. 

(B) Transcript accumulation levels in the leaves of wt, oop, prep1, prep1 oop, prep2, 

prep2 oop, prep1 prep2 and prep1 prep2 oop. Transcript levels were determined by 

RT-PCR using gene-specific primer pairs; ACTIN2 was used as internal control.  

(C) Relative protein mass in envelope, plastoglobules (PG), ribosomes, stroma, 

thylakoid and lumen in wt and prep1 prep2 as determined by MS/MS. NadjSPC – 

normalized adjusted spectral count. Standard deviations are shown. N = 3. 

(D) Comparison of relative chloroplast protein accumulation levels in wt and prep1 

prep2 averaged across three biological replicates. Several proteins are marked: 

PREP1,2, RUBISCO ACTIVATE (RCA), PHOSPHOGLYCERATE KINASE 

(PGK), ATP-SYNTHASE 1 (CF1) α,β, RUBISCO LARGE SUBUNIT (RBCL) and 

CHLOROPLAST PROTEIN 29 kDa (CP29). 
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OOP in the corresponding homozygous mutant allele backgrounds, but did identify 

them in wt and other mutants (see proteomics sections below). This genetic material 

was then used to systematically investigate in vivo relative protein abundance and the 

relative accumulation different Nt proteoforms and protein/peptide degradation 

fragments. 

 

3.3.2 Molecular proteome phenotypes of oop, prep1 prep2, and prep1 prep2 oop  

To determine the consequences of the loss of PREP and/or OOP peptidase 

capacity on the chloroplast and leaf proteomes that may explain the growth phenotypes, 

we carried out comparative proteome analyses of oop, prep1 prep2, the triple mutant 

and wt, organized in two separate experiments each in biological triplicate. For all 

experiments, wt and mutants were in the same developmental stage (1.11) as measured 

by the number of leaves per rosette (see for discussion on developmental effects on plant 

and chloroplast proteomes, (Rutschow et al., 2008)).  

In the first experiment, we compared proteomes of isolated leaf chloroplasts of 

wt and the prep1 prep2 to focus on chloroplast-specific proteome phenotypes. In the 

second experiment we compared total leaf proteomes of wt, prep1 prep2, oop, and the 

triple mutant. For all experiments, protein extracts were resolved by SDS-PAGE and 

complete gel lanes were sliced into sections (12 per gel lane) and proteins in-gel digested 

by trypsin and analyzed by LC-MS/MS. After database searching, processing and 

protein annotation, the data were analyzed statistically and through hierarchical 

clustering to determine genotypic effects. Across these experiments, 288 LC-MS/MS 

runs were carried out, resulting in half a million MS/MS spectra that could be 
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confidently matched to ~2500 non-redundant proteins after application of several 

stringent cut-offs and filters. Supplemental Figures 3.3 and 3.4 summarize the complete 

proteomics workflows, whereas Supplemental Table 3.1B and 3.2B summarize the 

identified proteins, their annotations, quantification and fold changes with the statistical 

significance levels (p-values and false-discovery rates) of differences between 

genotypes. Mass spectral data are available through ProteomeXchange 

(http://www.proteomexchange.org/) and matched peptides in PPDB. Protein 

annotations for name, function and subcellular location are from PPDB at 

http://ppdb.tc.cornell.edu/ (updated May 2017).  

 

3.3.3 The chloroplast proteome of prep1 prep2  

We identified 913 proteins and sets of protein homologs (85 proteins assembled 

into 35 groups of homologs) of which 87% were confirmed plastid proteins representing 

97% of the protein biomass in both wt and mutant (Supplemental Table 3.1A). 

Comparison of protein biomass per chloroplast sub-compartment did show a small (7%) 

reduction in thylakoid proteome and 9% increase in stromal proteome (Figure 3.1C). 

However, principle component analysis (PCA) based on adjusted spectral counts 

(adjSPC) or normalized adjusted spectral counts (NadjSPC) did not separate the wt from 

prep1 prep2, and pairwise correlation coefficients between the six samples were 

between 0.96 and 0.99 indicative of their general similarity (Supplemental Figure 3.3). 

The similarity between the chloroplast proteomes was also visible from an abundance 

cross-correlation for individual proteins in the two genotypes, with the exception of 

PREP1,2, absent in prep1 prep2 (Figure 3.1D). When evaluated per process or pathway 
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(e.g. Calvin cycle), there were only relatively small differences (mostly within 10%). 

Differential genotypic accumulation of individual proteins (or groups of close 

homologs) was determined using the combined results of two different types of 

statistical analysis methods (QSPEC 5% FDR and GLEE <p<0.01); this identified four 

down-regulated proteins in the double mutant, namely PREP1,2, GRANULE BOUND 

STARCH SYNTHASE (GBSS; AT1G32900), PG-localized unknown protein 2 

(AT3G43540), and Mg-protoporphyrin IX chelatase (AT5G13630; CHLH or GUN5) 

(Supplemental Table 3.1B). Applying only the QSPEC 5% FDR threshold, identified 

another 15 down-regulated thylakoid proteins (subunits of Photosystems I and II, the 

ATP-synthase and the cytochrome b6f complex, as well as FTSH2/8), six upregulated 

stromal proteins (within the Calvin cycle, a carbonic anhydrase, FD-GOGAT, and a 

subunit of the PEP RNA polymerase) and one down-regulated stromal protein (haloacid 

dehalogenase-like hydrolase-1) (Supplemental Table 3.1B); some of these are pointed 

out in Figure 3.1D. This is consistent with the general decrease of thylakoid- and 

increase of the stromal proteome mass.  

The identified chloroplast peptidases and chaperones were evaluated for the 

potential impact of loss of PREP1,2 activity on the proteostasis network (Supplemental 

Table 3.1A). Surprisingly, none of the chloroplast peptidases or stromal chaperones 

(CPN10/20/60; HSP70, HSP90), the unfoldase CLPB3 nor the CLPC/D chaperones 

were significantly affected. This strongly contrasts our observations for several CLP 

core mutants in which all chloroplast chaperone systems increased many fold (Kim et 

al., 2009; Zybailov et al., 2009; Kim et al., 2013; Kim et al., 2015), reviewed in 

(Nishimura and van Wijk, 2015) (see below and DISCUSSION).  
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3.3.4 Direct comparison of total leaf proteomes of wt, prep1 prep2, oop, and prep1 

prep2 oop  

All four genotypes were in developmental stage 1.11 and were grown for 20 

days (wt and oop), 22 days (prep1 prep2) or 28 days (prep1 prep2 oop) (Figure 3.2A) 

and total leaf proteomes analyzed by MS/MS using the workflow as summarized in 

Supplemental Figure 3.3A. In total 2548 proteins and protein groups were identified 

matching to nearly 330 thousand MS/MS spectra (Supplemental Table 3.2A). The total 

quantitative proteomes (based on NadjSPC) of the four genotypes were weakly 

distinguishable by PCA, and pairwise correlation coefficients between the six samples 

were between 0.91 and 0.97 (Supplemental Figure 3.4B,C). We identified more than 

900 plastid proteins, 130 mitochondrial proteins and 50 peroxisomal proteins, as well 

as 37 proteins dual-localized in plastids and mitochondria, many of which were tRNA-

synthases. Given that OOP and PREP1,2 are dually targeted to chloroplasts and 

mitochondria, we first evaluated the relative protein mass distribution (from NadjSPC) 

across plastids and mitochondria across the genotypes. Chloroplasts, mitochondria and 

peroxisomes represented 61%, 4.1% and 1.8% of the total protein mass, respectively, 

whereas dual-targeted plastid-mitochondrial proteins represented 1.1% (Figure 3.2B). 

Plastid proteomes in the prep1 prep2 and the triple mutant were reduced by 3-4%, 

mostly due to reduced thylakoid proteins (lumen, integral and peripheral), whereas 

mitochondrial proteomes were increased by 6-9%; in contrast oop was similar to wt 

(Figure 3.2B). We then evaluated various plastid and mitochondrial functions (Figure 

3.2C; Supplemental Figure 3.4). Investments in the photosynthetic electron transport  
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Figure 3.2.  Quantitative comparison of total leaf proteomes of 

proteomics wt, prep1 prep2, oop and the triple mutant in developmental 

stage 1.11. 

(A)  Representative 1.11 stage plants of the four genotypes selected for the 

comparative leaf proteome analysis. The close-up shows the pale-green 

phenotype of the youngest emerging leaves of the triple mutant. 

(B)  Relative protein mass distribution of chloroplasts, mitochondria and 

peroxisomes, as well as dual-targeted plastid-mitochondrial proteins across 

the four genotypes. Standard deviations are indicated.  

(C) Differential investments in specific chloroplast functions across the four 

genotypes as determined by relative protein abundance. Color coding as in 

panel B and standard deviations are indicated. 
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chain and the Calvin-Benson cycle were reduced in the prep1prep2 and triple mutants 

by 14% and 6-10%, respectively. Several metabolic pathways, including for fatty 

acids/lipids, the MEP pathway and carotenoids (Figure 3.2C), relatively increased in the 

triple mutant, by 20%, 26% and 97%, respectively, but were essentially unaffected in 

pep1 prep2 and oop. Evaluation of different plastid protein biogenesis and proteostasis 

functions showed no significant changes on ribosome content, translation 

initiation/elongation (not shown) or proteolysis (Figure 3.2C), but showed a 27% 

increase in stromal chaperone and protein isomerase protein mass in the triple mutant 

(Figure 3.2C). Most of these responses were also visible in the prep1 prep2 mutant but 

were less pronounced than in the triple mutant. 

Finally, we tested pair-wise significance for each protein or protein group 

between all genotypes. Fifty proteins showed one or more pairwise genotypic effects 

and these included PREP (significant loss in prep1 prep2 and triple) and OOP 

(significant loss in oop and triple) (Supplemental Table 3.2B). The highest number of 

differentially accumulated proteins was between triple/wt and triple/oop, consistent with 

the visible leaf phenotypes. Nineteen were plastid proteins, two (PREP1/2 and OOP) 

were dual-localized across plastid and mitochondria, one was mitochondrial and the 

remainder were mostly cytosolic and/or nuclear-localized. Among the plastid proteins 

were six members of photosynthetic thylakoid complexes, reflecting their down-

regulation in particular in prep1prep2 and the triple mutant. The unfoldase CLPB3 was 

significantly upregulated in the triple mutant when compare to oop. Among the non-

plastid/mitochondrial proteins, REDUCED CHLOROPLAST COVERAGE 1 (REC1) 

and REC2 are of particular interest in that they are involved in chloroplast biogenesis 
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and control of total chloroplast volume per cell (Larkin et al., 2016); REC1,2 were 

down-regulated in the triple mutant. 

 

3.3.5 Comparison of Nt proteomes of wt, prep1 prep2 and prep1 prep2 oop using 

TAILS  

To specifically recognize the ultimate N-termini (Nti) of mature chloroplast 

proteins or protein degradation products, we employed the TAILS technique in which 

protein Nti are chemically labeled by reductive dimethylation, either light or heavy  

(using different stable isotopes) to distinguish the sample from the control. Following 

trypsin digestion of proteins, Nti are enriched by removal of internal (trypsin generated) 

non-labeled peptides (Kleifeld et al., 2010). We compared the soluble Nt proteomes of 

total leaf extracts or isolated chloroplasts from wt with prep1 prep2 or prep1 prep2 oop 

(the ‘triple mutant’). Each TAILS experiment consisted of three biological replicates 

and a stable isotope label switch; see Supplemental Figure 4.5 and Supplemental Table 

3.3A for details. Average mutant to wt peptide ratios (log 2 scale) for each TAILS 

experiment are compiled in Supplemental Table 3.4 and 3.5. A summary of proteins 

with differentially regulated Nti is presented in Table 3.1. In addition to the relative 

peptide abundance (mutant/wt) ratios, we have included the total number of spectral 

counts matching to each peptide for each experimental comparison to provide a rough 

estimation of the total proteoform mass represented by each Nt peptide (Table 3.1). We 

did not include a total protein abundance ratio (determined in previous section) here 

since overall protein levels were hardly changed in the respective mutants.  
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Table 3.1. Differentially regulated protein Nti identified in prep1 prep2 and 

prep1 prep2 oop TAILS experiments. Peptides were quantified by MS1 

filtering using Skyline software (MacLean et al., 2010). Average ratios for three 

replicates are displayed with standard deviations. Mutant to wild type ratios for 

three independent experiments (see Supplemental Table 3.5) are displayed: 

prep1 prep2 (stroma), prep1 prep2 oop (stroma) and prep1 prep2 oop (total 

leaf). (a) Predicted Nt residue position after cTP removal (ChloroP), (b) 

experimental observed Nt position, (c) acetylated Nt, (d) P1 residue 

immediately upstream protease cleavage site based on Schechter and Berger 

nomenclature, (e) mutant/wt ratio, Log 2 scale (f) total spectral counts matching 

to this peptide for both wt and mutant. 
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To illustrate the different biological scenarios leading to various Nt sequences, 

and for the purpose of discussion, we have classified protein N-termini (Nti) as either 

(1) unprocessed pre-proteins with cTP attached, (2) cleaved and or fragmented cTPs, 

(3a) intermediate or aberrant proteoforms, (3b) primary, mature proteoforms, or (4) far 

downstream degradation products (Figure 3.3A). Experiments, tables and figures where 

these phenomena were observed are summarized in Figure 3.3B. 

3.3.6 Unprocessed pre-proteins are detected in triple mutant total leaf extracts but 

not in stromal extracts 

Nt peptides matching to the cTPs of the abundant stromal proteins fructose-

bisphosphase aldolase 2 (SFBA-2), rubisco small subunit 3 and 4 (RBCS-3, 4) and 

thiazole biosynthetic enzyme (THI1) were clearly detected in total leaf proteomes of the 

triple mutant but were at or below the limit of detection in wt (Table 3.1; Supplemental 

Table 3.5). The other major Nt peptides matching to these proteins are displayed for 

comparison; the peptide matching to the primary Nt proteoform for each protein can be 

distinguished by the high number of spectral counts (SPC). cTPs were not readily 

detected in chloroplast stromal extracts (only the cTPs from RBCS-4 detected in the 

triple mutant) indicating that these cTPs were part of pre-proteins en route to the plastid 

(Class 1 Nti – Figure 3.3) and that cTPs in the stroma continue to be efficiently degraded 

by peptidases other than PREP1,2 and OOP (see DISCUSSION). We performed a 

number of follow-up experiments to determine if cTPs do accumulate inside the plastid 

(see below sections 3.3.9 - 3.3.12). The mature N-terminus (with cTP removed) of 

RBCS3 and 4 was slightly decreased in triple mutant stroma and total leaf experiments 
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Genotype Method Table Figure

1*
cTP as part of 
preprotein

prep1 prep; triple
TAILS, LMW-TAILS, 
label free SPC

1,2, 
S2C

2 cTP fragments
prep1 prep2; 
quadruple

peptidomics 4 4

3a
intermediate or 
aberrent proteoform

all genotypes
TAILS, LMW-TAILS, 
label free SPC

1,2,5 
S2C

3b mature proteoform all genotypes TAILS, LMW-TAILS
 1,2,5 
S2C

4
degradation 
products

prep1 prep2; triple
LMW-TAILS, 
peptidomics

2,4 4

Nt peptide class

* Only detected in total leaf extracts and not in chloroplast (stromal) extracts

A 

B 

Figure 3.3. Pathways to proteolytic protein maturation and degradation. 

Classification of N-terminal (Nt) peptides detected in TAILS and or peptidome 

experiments. 1, cTP as part of pre-protein; 2, cTP fragments cleaved from protein; 3a, 

intermediate or aberrant Nt proteoforms; 3b, fully mature stable Nt proteoforms; 4, 

degradation products downstream of mature Nt. SPP, stromal processing peptidase; APs, 

amino peptidase potentially involved in processing of immature proteoforms.  
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relative to wt, in line with little to no change observed in our comparative proteomics 

experiments above. 

A number degradation products (Class 4 Nti – Figure 3.3) for RBCS-4 were also 

observed and their relative abundances were similar to that of the mature N-terminus 

for this protein, indicating that these fragments do not accumulate in the triple mutant 

background.  

 

3.3.7 Altered maturation or processing of n-encoded plastid proteins in prep1 prep2 

and the triple mutant   

 The most striking feature of the mutant Nt proteomes was the occurrence of 

altered protein processing or maturation (Peptide Class 3a, Figure 3.3). Alternate Nti 

(different from the primary Nt proteoform) with exposed Nt Ala made up the majority 

of over-accumulating peptides in the mutants followed closely by Nt Val (Table 3.1). 

For the protein THI1, unchanged at the protein level, the most abundant and presumably 

native N-terminus (TTAGY….) was reduced in the mutant to 70% of wt level, whereas 

the form with an additional alanine (ATTAGY…) was at least 8-fold up regulated. A 

very similar scenario was observed for chloroplast glutamine synthetase (GS2; 

AT5G35630), inorganic phosphatase like (AT5G09650) and arginosuccinate synthase 

(AT4G24830) (Table 3.1). Interestingly, the residues exposed when Ala is removed are 

different for these three proteins (Leu, Ile and Val) indicating that it is indeed the Ala 

that is disfavored at the N-terminus of these proteins in wt. However, we know that 

many highly abundant stromal proteins start with Ala, for example SFBA-2, 

phosphoglycerate kinase-1 (PGK-1) and transketolase-1 (TKL-1) (Table 3.1). Indeed 
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Ala is the most common start residue for chloroplast proteins (Rowland et al., 2015), so 

the removal, or not, of Ala from the N-terminus of proteins is context dependent (see 

DISCUSSION). In the case of chloroplast heat shock protein 70-1 (cpHSP70-1), a 

proteoform with an additional three residues (VVNEKV…) was 4-fold and 16-fold up 

in the double and triple mutants respectively, although the normal mature N-terminus 

(EKVVGI…) was unchanged (Table 3.1). Glyceraldehyde-3-phosphate dehydrogenase 

B (GAPB) had an N-terminus with an additional 14 residues upstream of the mature N-

terminus (KLKVAI…) (Rowland et al., 2015), that was elevated in the prep1 prep2 

mutant. Please note that these aberrant Nti generally represent only a fraction of the 

overall proteoforms accumulating in these mutants. Only 3 and 7% of the total spectral 

counts in stroma for cpHSP70-1 Nti were from the aberrant form in prep1 prep2 and 

the triple mutant respectively (Table 3.1). 

Proteins with truncated N-termini (shorter that the major form) were also 

elevated in the mutant (Peptide Class 3a, Figure 3.3). The major Nt form of 

coporphrynogen III oxidase (AT1G03475) starts with the residues SVSIEK… and was 

reduced by 20% in the mutant, whereas the proteoform lacking the Nt Ser (VSIEK…) 

was at least four fold elevated in both mutants. A similar scenario was observed for 

dihydroxyacid dehydratase (AT3G23940) and AT4G17300. 2C-methyl-D-erythritol 

2,4-cyclodiphosphate synthase (MDS) had seven unique Nti observed in similar 

proportions (based on SPC across this experiment) forming a ladder of alternate 

proteoforms with both longer and shorter forms being elevated (Table 3.1) in prep1 

prep2 stoma.   
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3.3.8 Mitochondrial proteins processed by ICP55 are not in influenced by lack of 

PREP and OOP 

The aminopeptidase ICP55 was previously shown in the mitochondria of yeast 

and plants to aid in Nt maturation of proteins following removal of their mTP by MPP 

(Vogtle et al., 2009; Carrie et al., 2015). ICP55 primarily cleaves the peptidyl bond C-

terminal of Tyr, Phe, Leu or Ile (and sometimes two residues in a row). We wondered 

whether the absence of PREP and OOP in mitochondria may influence these processing 

events, and therefore evaluated the total leaf TAILS dataset for mitochondrial peptides. 

We identified Nt peptides for 11 out of the ~70 previously observed ICP55 substrates. 

Two were dually localized to plastids and mitochondria; AT4G32915 had an Nt two 

residue upstream of the mature mitochondrial processed form (SYSSD… where 

cleavage C-terminal of Y normally occurs by ICP55); Phe-tRNA synthetase 

(AT3G58140) had a distinct plastid processed Nt that is different from the mitochondrial 

form. The other mitochondrial proteins all had Nti matching the expected mature, ICP55 

processed form. Additionally, we found the partial immature Nt of CLPP2 with an 

additional Tyr (YSLPM…). The relative accumulation for eight Nt peptides from these 

proteins was not significantly changed in the triple mutant, including the immature form 

of CLPP2 (Supplemental Table 3.6).   

 

3.3.9 Accumulation of protein degradation products in prep1prep2 and triple 

mutants. Low molecular weight TAILS reveals degradation products accumulate in 

the triple mutant  
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There was little evidence for differential accumulation of degradation products 

or cleaved cTPs in the above TAILS experiments (see Figure 3.3B), perhaps due to 

inadequate sensitivity and low dynamic range in the presence of highly abundant RBCL 

(53 kDa) and other large proteins. Therefore, we removed proteins larger than 10 kDa 

or 30 kDa using filtration devices, followed by Nt peptide enrichment (this section) or 

direct MS analysis (section 3.3.11). Additionally, for the triple mutant, we labeled 

protein Nti, resolved the low molecular weight proteome by SDS-PAGE and performed 

in gel digestion and MS analysis (section 3.3.10). We discuss these experiments and 

their main findings briefly with more detailed information in Supplemental Tables 3.5, 

3.7, 3.8 and summarized in Tables 3.2 and 3.3.  

Total soluble leaf proteomes from the triple mutant or wt were compared using 

a low molecular weight (LMW)-TAILS variant (<30 kDa) (Supplemental Figure 3.5A). 

The Nt fragments corresponding to cTPs identified in Table 3.1 were again found to 

accumulate in the triple mutant relative to wt (Table 3.2). The unprocessed molecular 

weights for these proteins are 20, 37 and 43 kDa for RBCS, THI1 and SFBA-2 

respectively, so it is feasible that at least the first three and perhaps some of the fourth 

of these highly abundant proteins passed through the filtration device. Therefore, we 

suggest these are again Peptide Class 1 (Figure 3.3). No other cTP fragments were 

detected.  

Importantly, a number of identified Nt peptide fragments corresponding to 

degradation fragments (Peptide Class 4, Figure 3.3) were strongly upregulated in the 

triple mutant. Fragments of GUN5 (AT5G13630), RH3 (AT5G26742), ketol-acid 

reductoisomerase (AT3G58610) and various ribosomal subunits accumulated in the 
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Table 3.2. Differentially regulated protein N-termini identified in prep1 prep2 oop 

low molecular weight TAILS experiments. Peptides were quantified by MS1 filtering 

in Skyline (MacLean et al., 2010). Average ratios, log2 (mutant/wt), for three replicates 

are displayed with standard deviations and total spectral counts for that peptide (sum of 

wt and mutant). (a) localization: s, stroma; t, thylakoid (b) Predicted Nt residue position 

after cTP removal (ChloroP), (c) experimentally observed Nt position, (d) number of 

residues from Nt of peptide to C-terminus of protein (e) acetylated Nt, (f) P1 residue 

immediately upstream protease cleavage site based on Schechter and Berger 

nomenclature, (#) degradation product with Nt position far downstream of mature 

protein N-terminus. 
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Accession Protein Description 
Loc. 
(a)

Pred. 
Nt (b)

Exp. 
Nt (c)

Res. 
from C-

term. (d)

Ac 
Nt 
(e)

P1 
(f)

N-Terminal Peptide
log 2 

(Mu/WT)
STDEV

total 
SPC 

AT4G38970 SFBA-2 s 47 2 396 1 M ASTSLLKASPVLDKSEWVKGQSVLFR 2.9 (1.3) 9

47 351 R AASSYADELVKTAKTIASPGR 2.1 (0.2) 30

AT5G38410 RBCS-3B s 55 2 179 1 M ASSMLSSAAVVTSPAQATMVAPFTGLKSSAAFPVTR 4.3 (2.6) 2

19 162 A TMVAPFTGLKSSAAFPVTR 3.4 (0.9) 22

AT1G67090 RBCS-4 s 55 2 178 1 S ASSMLSSATMVASPAQATMVAPFNGLKSSAAFPATR 3.2 (2.5) 10

AT5G38430 RBCS-1b s 55 56 125 C MKVWPPIGKKKFETLSYLPDLTDVELAKEVDYLLR 0.2 (0.6) 34

AT5G54770 THI1 s 46 2 347 1 M AAIASTLSLSSTKPQR 1.4 (0.7) 2

46 303 R ATTAGYDLNAFTFDPIKESIVSR 3.0 (0.1) 20

ATCG00490 RBCL 65 414 G TWTTVWTDGLTSLDR -0.5 (0.1) 44

232 247 E TGEIKGHYLNATAGTCEEMIKR 0.2 (1.0) 14

406 73 G TLGHPWGNAPGAVANR -0.5 (0.2) 18

s 9 34 445 D TDILAAFR -0.4 (0.1) 29

AT3G60750 TKL-1 s 66 66 675 R AAAVETVEPTTDSSIVDKSVNSIR 4.0 (0.3) 24

67 674 A AAVETVEPTTDSSIVDKSVNSIR -0.2 (0.1) 38

68 673 A AVETVEPTTDSSIVDKSVNSIR 0.9 (0.2) 38

AT5G51110 unknown protein s 51 52 168 S NLAQDFLGDFGAR -0.5 (0.1) 32

AT1G54580 ACP s 52 53 83 C AAKPETVDKVCAVVR -0.6 (0.1) 24

AT5G26742
DEAD box RNA 
helicase (RH3)

s 61 426 322 Y ELPNDPETFVHR # 5.8 (0.7) 16

AT4G04020 fibrillin 1a (FBN1a) s 56 56 262 R ATDIDDEWGQDGVER 0.8 (0.1) 22

AT5G13630 CHLH; GUN5 s 87 1111 270 E LDEPVEQNFVR # 4.2 (0.7) 18

1112 269 L DEPVEQNFVR # 2.3 (1.3) 7

1227 154 D SDPTNLVQSLR # 1.8 (1.4) 15

AT4G10300 DUF861 38 39 95 A ESTEKLGITIEKNPPESKLTQLGVR -0.6 (0.1) 64

AT3G13120 30S RPS10 s 79 57 134 FAVPDTLDPTPEILDEPASEVPSSSSISVDADKMAPKQKIR 0.6 (0.1) 3

ATCG01120 30S RPS15 s 18 2 86 M IKNIVISFEEQKEESR 0.2 (0.3) 81

AT3G27160 30S RPS21 s 48 82 101 F SSGYNVQVFVEDNESEER # 0.9 (0.2) 22

ATCG00770 30S RPS8 s 16 2 132 M GKDTIADIITSIR 0.9 (0.4) 16

AT2G43030 50S RPL3 s 50 97 174 A TDGYDAVQIGYRR # 4.4 (1.2) 9

97 174 A TDGYDAVQIGYR # 5.4 (0.9) 28

AT1G05190 50S RPL6 s 59 179 44 G YDKSEIGQFAATVR # 2.9 (0.8) 10

AT4G24830
argininosuccinate 

synthase
s 74 74 420 R AVLSGDGTALTTDSKEAGLR 2.7 (1.1) 10

total leaf

prep1 prep2 oop 
Table 3.2
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Accession Protein Description 
Loc. 
(a)

Pred. 
Nt (b)

Exp. 
Nt (c)

Res. 
from C-

term. (d)

Ac 
Nt 
(e)

P1 
(f)

N-Terminal Peptide
log 2 

(Mu/WT)
STDEV

total 
SPC 

AT5G45390 ClpP4 s 61 244 48 Y GLIDGVIDGDSIIPLEPVPDR # 6.1 (2.3) 14

AT1G03475
coproporphyrinogen III 

oxidase
s 49 49 337 S VSIEKEVPETERPFTFLR 2.4 (0.1) 7

AT4G24280 cpHSP70-1 s 93 75 643 R VVNEKVVGIDLGTTNSAVAAMEGGKPTIVTNAEGQR 3.6 (1.0) 6

78 640 N EKVVGIDLGTTNSAVAAMEGGKPTIVTNAEGQR 0.2 (0.1) 84

AT2G04030 cpHSP90 s 61 62 718 C DAAVAEKETTEEGSGEKFEYQAEVSR n/a (1.2) n/a

AT5G20720 Cpn21 s 51 51 202 K AASVVAPKYTSIKPLGDR 4.6 (0.2) 19

AT4G20360 EF-Tu-1 s 68 100 376 L TMALASIGSSVAKKYDEIDAAPEER # 1.1 (0.6) 37

AT5G35630 GS2 s 46 51 379 L ALQSDNSTVNRVETLLNLDTKPYSDR 3.4 (0.3) 17

152 278 D TWTPAGEPIPTNKR 3.3 (1.1) 14

AT4G02520
glutathione transferase 

ATGSTF2
s 34 2 210 M AGIKVFGHPASIATR 0.8 (0.5) 8

AT1G42970 GAPB s 46 427 20 S GDPLEDFCKTNPADEECKVYD # 1.2 (0.8) 8

432 15 E DFCKTNPADEECKVYD # 1.6 (0.4) 12

AT5G09650
Inorganic phosphatase 

like
s 67 59 241 S AIYNPQVKVQEEGPAESLDYR 3.4 (0.3) 8

60 240 A IYNPQVKVQEEGPAESLDYR -0.5 (0.1) 66

AT3G58610
ketol-acid 

reductoisomerase 
s 71 566 25 A QLRPTVDISVPADADFVRPELR # 3.6 (1.5) 14

AT1G11430 MORF9; DAG-related s 59 182 50 N GEIIPCTYPTYQPKQR # 3.2 (0.9) 15

183 49 G EIIPCTYPTYQPKQR # 4.0 (0.6) 11

AT4G21210
phosphatase/ protein 

kinase
s 87 19 384 S NLNPNSKPAGSDSVSLNASEPGSER 2.4 (0.3) 8

AT1G68590 PSRP-3A s 57 59 107 E TVTGIDTSDNTPQQTIKVVKPDEKSR # 5.0 (0.8) 9

AT2G39730 Rubisco activase s 59 71 403 R WRGLAYDTSDDQQDITR 1.9 (0.3) 22

AT2G39730 Rubisco activase 190 284 M SAGELESGNAGEPAKLIR 1.2 (0.4) 22

ATCG00480 CF1b - atpB t 14 113 385 N VLGEPVDNLGPVDTR # 6.2 (0.9) 30

115 383 L GEPVDNLGPVDTR # 4.8 (1.2) 8

AT5G23120 HCF136 Tat ltp t 61 79 324 A DEQLSEWER 0.3 (0.2) 32

AT4G31560
HCF153 - biogenesis 

cytb6
t 49 113 24 E GDISLDDVIQEPVLQR # 4.3 (2.3) 12

AT3G61470 LHCI-2.1 t 45 189 68 W FDPLGWGSGSPAKLKELR # 4.5 (1.0) 20

AT5G01530 LHCII-4.1-CP29 t 41 92 198 Q FDIDSLDQNLAKNLAGDVIGTR # 5.5 (1.0) 24

t 41 94 196 D IDSLDQNLAKNLAGDVIGTR # 3.2 (2.8) 18

ATCG00350 psaA - subunit Ia t 22 2 748 M IIRSPEPEVKILVDRDP 3.5 (1.1) 7

51 699 H ADAHDFDSHTSDLEEISR # 3.1 (0.6) 20

AT4G12800 psaL - subunit XI t 51 161 58 E GEPSIAPSLTLTGR # 3.4 (1.0) 6

ATCG00270 psbD D2 t 83 332 21 A AQDQPHENLIFPEEVLPR # 2.2 (1.0) 10

AT5G66570 psbO OEC33 t 30 248 84 R GGSTGYDNAVALPAGGRGDE # 6.0 (1.6) 10

AT4G05180
psbQ OEC16-like Tat 

lTP
t 49 84 146 E AIPIKVGGPPLPSGGLPGTDNSDQAR 4.4 (0.7) 12

90 140 V GGPPLPSGGLPGTDNSDQAR # 2.1 (0.3) 30

AT4G28660 psbW -like t 65 84 114 M MVKPALQFIQGTDEMTIPDVKLTR -0.4 (0.1) 98

total leaf

prep1 prep2 oop 
Table 3.2 (continued)
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mutant samples but were absent or below the limit of detection for wt (Table 3.2; 

Supplemental Table 3.6). This is quite different from the pattern observed in the whole 

proteome TAILS experiments above where Class 4 peptides were not generally found 

to be upregulated; see RBCS-4 and TKL-1 examples in Table 3.1. It should be noted 

that Nti representing degradation products detected for these proteins were many (10 to 

100) times less abundant than the major mature proteoforms, explaining why these went 

undetected in the TAILS experiments without enrichment of LMW species. Thus, 

removal of primary Nt proteoforms by filtration, greatly enhanced our ability to detect 

and quantify degradation products. Interestingly, fragments of RBCL were not elevated 

in the mutant (Table 3.2) suggesting that not all degradation products are sensitive to 

the absence of PREP and OOP.  

Eleven of the upregulated Nt were less than 70 residues from the C-terminus 

putting them in the range of substrate lengths accessible to PREP (Teixeira et al., 2017). 

Exact substrate/protein fragment lengths in the original sample cannot be determined by 

Nt proteomics because proteins are digested with trypsin. We discuss this in relation to 

the wider chloroplast peptidase network below (see DISCUSSION).  

In summary, the triple mutant does over-accumulate a variety of protein 

degradation products in vivo as compared to wt and many of these peptides may be 

direct substrates of PREP (or OOP).  

 

3.3.10 Low molecular weight tricine gels reveal subtle changes in accumulation of 

degradation products and confirms maturation defects  
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In a separate effort to detect protein fragments accumulating in triple mutant 

plants, a gel-based approach was taken, whereby the dimethyl labeled low molecular 

weight stromal proteome was resolved by tris-tricine SDS-PAGE, followed by trypsin 

in-gel digestion and MS/MS analysis. 66 unique Nt peptides were identified, primarily 

in the upper gel bands (Supplemental Table 3.7). Any peptides present in the lower 

bands, near the dye front of the gel were likely washed away during the in-gel digest 

procedure. (A second gel comparing wt and mutant stroma extracts was fixed with 5% 

glutaraldehyde before silver staining but this did not visualize any obvious LMW 

fragments (Supplemental Figure 3.5A).  One dimethyl labeled Nt fragment from RBCS1 

and RBCS-2 (YLPDLTDSELAKEVDYLIR and YLPDLSDVELAKEVDYLLR) was 

2-fold elevated in the triple mutant while other fragments from these proteins were 

unchanged (Supplemental Figure 3.5B). If RBCS was cleaved once before Tyr 72, that 

would leave a 109 residue C-terminal fragment. Perhaps PREP normally contributes to 

the removal of this fragment. We also confirmed that the Ala extended Nt of CPN10 

was elevated in the mutant (Supplemental Figure 3.5C).  

 

3.3.11 Peptidomics demonstrate that cTPs and degradation products accumulate for 

the prep1 prep2 double mutant 

Having shown that degradation products accumulate in the triple mutant and 

because much of the molecular phenotype seems to be due to PREP, we focused on the 

prep1 prep2 double mutant. We used a peptidome approach to purify endogenous 

peptide fragments from total soluble leaf or chloroplast extracts (Fricker et al., 2012; 

Wu et al., 2015). In brief, we heated and or acidified protein extracts resulting in protein 
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aggregation, followed by filtration through 10 or 30 kDa filtration devices to collect 

peptides that were subjected to LC-MS/MS analysis without digestion (see 

MATERIALS and METHODS and Supplemental Methods). We compiled results from 

four independent experiments, identifying 1677 unique peptides corresponding to 467 

proteins (Supplemental Table 3.8). This experiment is technically challenging because 

of many other small molecules that are co-purified with small peptides, limiting 

chromatographic separations, consuming much of the ion current and limiting the time 

spent fragmenting peptides. 

Two thirds of the matched spectra were from chloroplast proteins. Peptide 

distributions between wt and mutant tissues are shown in Figure 3.4A. On average, a 

greater number of peptides were identified in mutant tissue than in wt. Interestingly, 

25% of matched spectra were from thylakoid lumenal proteins, especially plastocyanin 

(PC-1 and 2). This may be due to higher stability of peptides derived from these proteins 

in the acidic extraction buffer. There were similar numbers of spectra matching to 

lumenal proteins from wt and mutant plants (1364 and 1228 respectively), indicating 

that these peptide fragments are not genotype specific. We compared the number of 

spectra matching to proteins from different sub-chloroplast compartments and protein 

functional classes (Figure 3.4 B). While there were similar counts for peptides from 

thylakoid proteins exposed to the lumen and stroma, integral thylakoid proteins were 

far more abundant in mutant tissue, primarily due to elevated LHC fragments (also 

enriched in the mutant for the LMW TAILS experiment above). Proteins localized to 

the stroma and ribosome were increased by 40% in the mutant 
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Figure 3.4. Comparison of wt and prep1 prep2 peptidome.  

(A) Peptide and protein genotype distributions across pooled peptidome experiments; 

Supplemental Table 3.8.  Sum of all observed unique peptides and proteins across all 

peptidome experiments. Counts from single quadrupole mutant experiment pooled with 

those from prep1 prep2 mutant. 

(B) Normalized average spectral counts (SPC) for across different cellular 

compartments for wt and prep1 prep2 from three independent experiments utilizing 

total soluble leaf extracts. Experiments 1, 2 and 3 in Supplemental Table 3.8. 

(C) Sum SPC for select plastid proteins and protein groups across all peptidome 

experiments. 

(D) Nt position of identified peptides, binned in groups of 10 or 50, vs. summed SPC in 

wt and PREP mutants.  
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relative to the wt. These results can be explained in part by the presence of protein 

fragments from a few abundant proteins. Peptides matching to D1, THI1, CHLI-1 and 

CHLH were all found exclusively in mutant samples (Figure 3.4C, Supplemental Table 

3.8). These proteins were recently shown to have high turnover rates (Li and Millar 

2017) and our results suggest that PREP1,2  are involved in their turnover. 

Peptides from LHCs were primarily detected in mutant samples, as were 

fragments of RBCS and these fragments generally match to the cTP region of these 

proteins (Table 3.3). Additionally we detected cTPs from THI1, SFBA-2 and PC-1 and 

RCA. Because the majority of experiments utilized total leaf tissue we cannot be certain 

that these peptides are inside the chloroplast or if they were part of pre-proteins en route 

to the plastid (as discussed above). However for certain cases such as for peptides from 

RBCS (Table 3.3), the peptides all have C-termini immediately upstream of the known 

cTP cleavage site, indicating that these peptides are accumulating inside the plastid 

(Class 2 peptides, Figure 3.3). The starting position of each chloroplast targeted peptide 

was mapped across each protein and the counts for both mutant and wt plant was plotted 

against the starting position (Figure 3.4D). A clear preference was observed for peptide 

fragments falling within the first 30 residues of plastid proteins in prep1 prep2.  

In order to confirm that these peptide fragments are indeed inside the plastid and 

are directly related to absence of PREP and or OOP, we analyzed whole chloroplast 

extracts (see MATERIALS and METHODS and Supplemental Methods). These 

extracts yielded low numbers of identified peptides, presumably because of extremely 

low free peptide concentrations in chloroplasts. We were able to identify  
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cTP fragments from LHCII-2.2, LHCII-3 and PC1 exclusively in the mutant chloroplast 

extracts, although with few spectral counts (Table 3.3). Because we analyzed these 

samples directly with any chemical modification or digestion, this demonstrates that 

peptide fragments accumulate in prep1 prep2 mutants in vivo.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.3. cTPs detected in peptidome in prep1 prep2  and prep1 prep2 
clpt1 clpt2 (aabbccDd) total leaf and chloroplast extracts. See 
Supplemental Table 3.3B for experimental details and Supplemental Table 3.8 
for complete peptidome data set. 
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Accession
Protein 

Description

Exp. 

Ntb

Ac 

Ntc

Nt 

P1d Peptide

Ct 
P1' 

e

Tryp. 

Exp. f
1 2 3 4 1 2 3a

3b 
# 4

AT3G56940 CHL27 2 1 M AAEMALVKPISK F 1

AT1G60950 Fd2-leaf 2 1 M ASTALSSAIVGTSFIR R 1 2

AT3G54050
FBPA, 

highCEF1
2 1 M AATAATTTSSHLLLSSSR H 1 3

AT4G38970 SFBA-2 2 1 M ASTSLLKASPVLDKSEWVKGQ S 1

AT4G25100 FSD1 2 1 M AASSAVTANYVLKPPPFALDALEPHMSK Q 1 1

AT2G05100 LHCII-2.1 2 1 M ATSAIQQSSFAGQTALKPSN E 2

2 1 M ATSAIQQSSFAGQTALKPSNELLR K 1 1

2 1 M ATSAIQQSSFAGQTALKPSNELLRK V 1 1

AT2G05070 LHCII-2.2 2 1 M ATSAIQQSSFAGQTALKPSSDLIQKVGVLGGGRVTM R 3

2 1 M ATSAIQQSSFAGQTALKPSSDLIQK V 1 1

AT3G27690 LHCII-2.3 2 1 M ATSAIQHSSFAGQTTLKPSN D 3

AT5G54270 LHCII-3 2 1 M ASTFTSSSSVLTPTTFLGQTKASSFNPLRDVVSLGSPKYTM G 2

AT5G01530
LHCII-4.1-

CP29
2 1 M AATSAAAAAASSIMGTRVAPGIHPGSGRFTA V 2 5 5

2 1 M AATSAAAAAASSIMGTR V 1 2

AT3G08940
LHCII-4.2 - 

CP29 
2 1 M AATSTAAAASSIMGTR V 1 1

AT1G15820
LHCII-6 - 

CP24
2 1 M AMAVSGAVLSGLGSSFLTGGKRGATA L 1

AT1G20340 PC-1 2 1 M ASVTSATVAIPSFTGLK A 1 1

45 S SLKNFGVAAVAAAASIALAGNAM A 2

AT4G27440 PORB 2 1 M ALQAASLVSSAFSVR K 1 1

AT4G02770 psaD-2 2 1 M ATQAAGIFNSAITTAATSGVK K 1 2 1 4

AT4G28750 psaE-1 2 1 M AMTTASTVFVLPANVTSVAGASSSR S 1 1

AT1G31330 psaF 2 1 M SLTIPANLVLNPRSNKSLTQSVPKS S 2

2 1 M SLTIPANLVLNPRSNKSLTQ S 1

AT5G66570
psbO 

OEC33
2 1 M AASLQSTATFLQSAK I 1 1 1

AT5G38420 RBCS-2b 32 A SFPVTRKANNDITSITSNGGRVSC M 6 4

40 A NNDITSITSNGGRVSC M 9

41 N NDITSITSNGGRVSC M 4

AT5G38410 RBCS-3b 2 1 M ASSMLSSAAVVTSPAQATMVAPFTGLK S 1 2 3

AT1G67090 RBCS-4 2 1 M ASSMLSSATMVASPAQATMVAPFNGLK S 1 1 1

2 1 M ASSMLSSATMVASPA Q 1

26 N GLKSSAAFPATRKANNDITSITSNGGRVNC M 1

29 K SSAAFPATRKANNDITSITSNGGRVNC M 2

30 S SAAFPATRKANNDITSITSNGGRVNC M 2

32 A AFPATRKANNDITSITSNGGRVNC M 6 1

40 A NNDITSITSNGGRVNC M 2

41 N NDITSITSNGGRVNC M 5

AT5G54770 THI1 2 1 M AAIASTLSLSSTKPQR L 1 6

Table 3.3. cTPs detected in peptidome wt a prep1 prep2 a
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3.3.13 Mining spectral counting datasets for peptide phenotypes  

Our initial proteome analysis of prep1 prep2, oop and the triple mutant focused 

on changes at the protein level (section 3.3.4). We wondered if any peptide level 

observations above could be further confirmed in this dataset. For each peptide, we 

compared the total number of observations per genotype. Peptides were also evaluated 

for their relative position to the start of the protein and to the predicted or experimentally 

determined mature N-terminus (ChloroP; Emanuelsson 2007). We then looked for 

peptides from chloroplast proteins that fell upstream of the cTP cleavage site. Peptides 

within the cTPs of RBCS, THI1, RPL12-A and PrxII E were detected only in prep1 

prep2 and triple mutants (Supplemental Table 3.2C). Interestingly, three of those 

peptides bridged the normal cTP cleavage site, again showing that pre-proteins 

Accession
Protein 

Description

Exp. 

Ntb

Ac 

Ntc

Nt 

P1d Peptide

Ct 
P1' 

e

Tryp. 

Exp. f
1 2 3 4 1 2 3a

3b 
# 4

AT2G39730 RCA 10 AINRAPLSLNGSGSGAVSAPASTFLGKKVVTVS R 4 2

13 RAPLSLNGSGSGAVSAPASTFLGKKVVTVS R 5

19 NGSGSGAVSAPASTFLGKKVVTVS R 1 3

66 TDGDRWRGLAYDTSDDQQDITRG K 3 6 2

73 GLAYDTSDDQQDITRG K 1 5

76 YDTSDDQQDITRGKGMVDS V 4

190 SAGELESGNAGEPAKLIRQ R 2

227 INDLDAGAGRMGGTTQYTVNN Q 3

Table 3.3 (Continued) wt a prep1 prep2 a

a Sum SPC for independent experiments, each having multiple replicates.
b Experimentally observed position of peptide Nt within parent protein
c Acetylated Nt
d,e P1 residue upstream of N-terminal protease cleavage or P1’ residue downstream of C-terminal cleavage site, based on Schechter and Berger 
nomenclature
f Peptide identified in experiment with trypsin digest
# Single experiment with prep1 prep2 clpt1 clpt2 (aabbccDd)  total leaf tissue.
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accumulate in PREP mutants. Two peptides upstream of the major mature N-terminus 

of GAPB, perhaps representing an immature proteoform were also enriched in the 

mutants. Peptides from LHCI-1-1, LHCII-1.4 and LHCII-1.1 close to or within the cTP 

were found exclusively in the double and triple mutants. Finally, a number of cases of 

Nt maturation defects as observed in our TAILS experiments were again shown to over-

accumulate in the mutants. As such, we were able to confirm the results from our Nt 

proteomics experiments in this label free spectral counting dataset.  

 

3.3.14 Synergistic interactions between the CLP peptidase system and PREP 

peptidases  

To test the genetic and functional interactions between the chloroplast CLP 

peptidase core and the PREP peptidases, we crossed the clpr1-2 null mutant (with ~30-

50% CLP core capacity) (Kim et al., 2009), the clpr2-1 mutant (with ~ 20% of CLPPR 

capacity) (Rudella et al., 2006) and the clpt1 clpt2 double mutant with ~10-15% CLPR 

capacity (Kim et al., 2015) to prep1 and prep2 single mutants and the prep1 prep2 

double mutant (Figures 3.5 and 3.6). Additionally, we crossed the clpc1-1 chaperone 

null mutant (Constan et al., 2004; Nishimura et al., 2013) to these single and double 

prep mutants (Figure 3.6D). clpc1-1 has ~20-30% total CLPC chaperone capacity with 

the remainder of CLP chaperone capacity contributed by the lower abundant homolog 

CLPC2 and perhaps CLPD (it is not clear to what extent CLPC1,2 have an overlapping 

substrate pool with CLPD). For simplicity we left out the allele numbers for these 

mutants in the figures and the remainder of the text. 
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Figure 3.5. Genetic interaction between the CLP core subunits and PREP 
peptidases. Plants were either directly grown on soil under a 10-h/14-h 
light/dark cycle at 120 µmol photons.m

-2
.s

-1
, or first grown on agar plates with 

half-strength Murashige and Skoog medium and 2% sucrose, as indicated. 
Transcript accumulation levels in the leaves were determined by RT-PCR using 
gene-specific primer pairs and ACTIN2 as internal control. 
(A) Comparison of plant growth and transcripts of wt, clpr1 and prep1 clpr1 
of plants grown on soil for 26 days. 
(B) Comparison of plant growth and transcripts of wt, clpr2 and prep1 clpr2 of 
plant grown on soil for 33 days.  
(D) Comparison of plant growth and transcripts of wt, clpr2, prep1 clpr2, and 
prep2 clpr2. All plants were first grown on agar plates for 45 days under a 10/14 
h light/dark cycle at 80 µmol photons. m

-2
.s

-1
.  

Comparison of plant growth and transcripts of prep2, clpr2, prep2 clpr2 (Aabb) 
and prep2 clpr2 (aabb). All plants were first grown on agar plates under a 10/14 
h light/dark cycle at 40 µmol photons.m

-2
.s

-1
 for 12 weeks and then transferred 

to soil and grown for 10 days.  
(E) Opened developing (top images), less mature (middle images) and mature 
(bottom images) siliques of prep1 prep2 and prep1 prep2 clpr2 (+/-). Seeds in 
developing siliques of the prep1 prep2 are all green, while the siliques of prep1 
prep2 clpr2 (+/-) allele show green and white seeds on average in a 3:1 ratio. 
In the mature silique stage, triple homozygous mutant seeds are recognizable 
as smaller, very dark-brown and wrinkled seeds as indicated by the asterisk. 
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Both the clpr1 prep1 (Figure 3.5A) and clpr2 prep1 (Figurer 3.5B) rosette plants 

are >50% smaller than the parents, indicating a strong negative synergistic interaction. 

However both double mutants are viable, produce viable seed, and can grow on soil 

despite their very small stature and virescent phenotype. Transcript levels of the PREP2 

homolog were unchanged in the single and double mutants, indicating lack of 

transcriptional compensation for loss of PREP2 or CLP peptidase capacity (Figures 

3.5A,B).  

 To our surprise, the negative synergistic effect between clpr2 and prep2 was 

much stronger than between clpr2 and prep1 (Figures 3.5C). The stronger growth 

retardation effect for the PREP2 allele is surprising given that PREP2 is far less 

abundant than PREP1, and suggests at least partially specific functions for each PREP 

homolog, in agreement with suggested differences in cleavage specificities between the 

homologs (Stahl et al., 2005). Comparison between homozygous clpr2-1 prep2 and a 

clpr2 prep2 line heterozygous for the PREP2 T-DNA insertion showed a clear gene 

dosage effect on the growth phenotype (Figure 3.5D). The prep1 prep2 clpr2 triple 

homozygous mutant is embryo lethal and consistently the ratio of green: white seeds in 

the developing silique is 2.9:1 (χ2= 0.118), with the white seed being triple homozygous 

(Figure 3.5E). These white seeds turn brown when the seeds of other segregating 

genotypes are still pale green, and then turn into dark brown, wrinkled seeds in mature 

siliques (Figure 3.5E). This synergistic genetic interaction between PREP1,2 and 

CLPR1,2 suggests that PREP and the CLP peptidase systems have a functional overlap 

(see DISCUSSION). 
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 Previous studies indicated that CLPT1 and CLPT2 are largely redundant since 

the clpt1 clpt2 double null mutant has a dwarf phenotype, and the single mutants have 

no obvious visible or molecular phenotypes (Kim et al., 2015). The double mutant 

heterozygous for one of the alleles is more robust (albeit with reduced growth) than the 

dwarf double mutant, and it is therefore more suitable for the generation of higher order 

mutants (Figure 3.6A). We crossed this clpt1clpt2 double mutant (aaBb) with 

homozygous prep1 prep2, to generate triple and quadruple mutants (Figure 3.6B). prep1 

prep2 clpt1 is smaller and paler green than prep1 prep2 indicative of a negative 

synergistic effect. In contrast, prep1 prep2 clpt2-1 is similar to prep1 prep2. The 

quadrupole prep1 prep2 clpt1 clpt2 heterozygous for the clpt2 allele (aabbccDd) is 

smaller and paler green than prep1 prep2 clpt1 (Figure 3.6B), whereas the prep1 prep2 

clpt1 clpt2 quadruple homozygous mutant is embryo lethal (Figure 3.6C). The progeny 

in the developing silique of prep1 prep2 clpt1 clpt2 (aabbccDd) shows a ratio of 

green:white seeds of 3.1:1 (χ2= 0.028), with the white seeds turning into dark brown 

wrinkled seeds when the silique is mature (Figure 3.6C). These white seeds and 

wrinkled seeds are the quadrupole homozygous mutant. Considering the involvement 

of CLPT in CLPPR core stabilization and activity (Kim et al., 2015), the strong genetic 

interaction between CLPT1,2 and PREP peptidase is consistent with the observed 

genetic interaction between CLPR1,2 and PREP. Analysis of the CLPPR core assembly 

state by native gels and immunoblotting (using antibodies for the P and R rings) showed 

that the CLPPR core assembly state in prep1 prep2 is similar to wt, and the assembly 

state in prep1 prep2 clpt1 clpt2 (aabbccDd) is comparable to the assembly state in 

homozygous clpt1 cpt2 (Supplemental Figure 3.8A).  
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Figure 3.6.  Genetic interaction between CLPT, CLPC and PREP peptidases. 
Plants were either directly grown on soil under a 10-h/14-h light/dark cycle at 
120 µmol photons.m-2.s-1 for 21 days (panel A,B) or 28 days (panel D). 
Transcript accumulation levels in the leaves were determined by RT-PCR 
using gene-specific primer pairs and ACTIN2 as internal control. 
(A) Comparison of clpt1, clpt1 clpt2 (aaBb), and clpt1 clpt2.  
(B) Comparison of wt, prep1 prep2, clpt1 clpt2, prep1 prep2 clpt1, prep1 
prep2 clpt2, and prep1 prep2 clpt1 clpt2 (aabbccDd).  
(C) Opened developing (top images) and mature (bottom images) siliques of 
prep1 prep2 clpt1 and prep1 prep2 clpt1 clpt2 (aabbccDd). Seeds in 
developing siliques of the prep1 prep2 clpt1-2 are all green, while the siliques 
of prep1 prep2 clpt1 clpt2 (+/-) allele show green and white seeds on average 
in a 3:1 ratio. In the mature silique stage, quadruple homozygous mutant 
seeds are recognizable as smaller, dark-brown and wrinkled seeds as indicated 
by the asterisks  
(D) Comparison of wt, prep1 prep2, prep1 prep2 clpc1, clpc1, prep1 clpc1, 
and prep2 clpc1.   
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The double mutants prep1 clpc1 and prep2 clpc1 are very similar to the clpc1, 

whereas the triple homozygous prep1 prep2 clpc1 is much smaller than either prep1 

prep2 or clpc1 (Figure 3.6D). However, the triple mutant can be grown on soil and 

maintained as homozygous line. Similar to the crosses between prep1 prep2 and clpr1, 

clpr2 and clpt1 clpt2, this confirms a strong genetic interaction between the CLP and 

PREP system. Some of this genetic material was then used to investigate the molecular 

proteomes of these mutants, as described in the next sections. 

 

3.3.15 The molecular proteomics phenotype of the prep1 prep2 clpt1 clpt2 quadruple 

mutant  

Previously we studied the proteome phenotype of the clpt1-2 clpt2-1 

homozygous mutant as compared to wt (Kim et al., 2015). This showed a proteostasis 

phenotype similar as other CPPR core mutants, with 51 significantly changed proteins 

that were over-represented by chloroplast-localized proteins. To determine the 

molecular proteome phenotype of the combined loss of both PREP1,2 and strong loss 

of CLP peptidase core capacity, we compared total leaf proteomes of wt and the 

quadruple mutant of prep1-2 prep2-1 clpt1-2 clpt2-1* both at developmental stage 1.11 

(Figure 3.7A for an example of  the plants); (* heterozygous for the clpt2 allele to avoid 

seedling lethality). We use a similar workflow (SDS-PAGE gels, 12 gel bands/lane, etc; 

see Supplemental Figure 3.8B) as for proteome analysis of the PREP and OOP mutants 

discussed above and as our previous clpt1 clpt2 proteome analysis (Kim et al., 2015). 

The workflow identified 1653 proteins and 80 protein groups (193 proteins) matched to 

120 thousand non-redundant MS/MS spectra (Supplemental  
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Table 3.9A). This identified 664 plastid proteins, 87 mitochondrial proteins, as well as 

34 proteins dual-localized in plastids and mitochondria. There were no significant 

overall differences in chloroplast and mitochondrial protein mass (respectively ~60% 

and 5%) in the mutant compared to wt, but the plastoglobular (PG) proteome increased 

by 90% (135% in clpt1 clpt2 (Kim et al., 2015)), the thylakoid proteome decreased by 

21% (23% in clpt1 clpt2 (Kim et al., 2015)), and the stromal proteome increased by 

20% (Figure 3.7B).  

The total quantitative proteomes (based on NadjSPC) of wt and the quadruple 

mutant were highly distinguishable by PCA, with the biological replicates for each 

genotype tightly clustered and the two genotypes well separated (Supplemental Figure 

3.8C). In total 55 (39 plastid, 3 mitochondrial and 1 dual-localized to 

plastid/mitochondria) and 10 proteins (4 plastid and 1 dual-localized to 

plastid/mitochondria) were respectively significantly up- and down-regulated in the 

quadruple mutant (Supplemental Table 3.9B). Hence plastid proteins were strongly 

overrepresented in this proteome phenotype. Table 3.4 shows the significantly changed 

plastid and mitochondrial proteins and includes the results for these proteins for the 

clpt1 clpt2 mutant and wt from (Kim et al., 2015) for comparison.  

The most up-regulated plastid proteins were the ATP/ADP translocase NTT2 

involved in ATP import into the chloroplast and indicative of shortage of ATP 

generating activity within the chloroplasts (15x up), DPT1 involved in psaA/B transcript 

accumulation (6x up), THI1 involved in thiamin biosynthesis (5x up), metallo-

chaperone CCS (4.5x), two DEADbox RNA helicases, including RH3 (4x up), PG-

localized FIBRILLINS 1a,b (~3x up) and also the general stromal processing  
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Figure 3.7. Comparative quantitative leaf proteomics of wt and 
prep1 prep2 clpt1 clpt2 (aabbccDd) 
(A) wt and mutants at growth stage 1.11, grown for 24 days for wt and 
29 days for the mutant on soil under a 10-h/14-h light/dark cycle at 100 
µmol photons m

-2
.s

-1
  

(B-E) Protein mass investments in subcellular compartments, functions 
and sets of proteins as determined by relative protein abundance. 
Standard deviations across the three biological replicates are indicated.  
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peptidase SPP (2.9x up). Other significantly upregulated plastid proteins include several 

elongation factors, stromal chaperones (CPN60, 70 and 90 family members). Most of 

these showed very similar upregulation in other CLP core mutants, including the clpt1 

clpt2 (see Table 1). The two most upregulated mitochondrial proteins were HSCA-

2/HSC70-2) (5x up) and HSCA-1/HSC70-1 (1.7 up) both involved in Fe-S sulfur cluster 

assembly (Leaden et al., 2014). The significantly down-regulated plastid/mitochondrial 

proteins (Table 3.4) were of course PREP1,2 (undetectable in the mutant), 

carboxyltransferase α subunit - part of ACCase complex (5x down), inner plastid 

envelop transporter MEP3/RER4 with unassigned function (4x down), thylakoid NDH 

subunit A (4x down) and lumenal psbQ OEC16-like (2.5x down).  

Among the 17 non-organellar significantly upregulated proteins, are the 

cytosolic chaperones HSP90 and HSP70 members, two S-adenosyl-L-homocysteine 

hydrolases whereas the ubiquitin-protein ligase (BIG; DARK OVER-EXPRESSION 

OF CAB 1) was 2x decreased in the quadruple mutant.  

The significant effects on plastid proteins are also reflected in general plastid 

functions (Figure 3.7C-E); for instance investment thylakoid-bound photosynthetic 

electron transport is decreased by 27% (Figure 3.7C), whereas total plastid stromal 

(un)folding protein mass is increased by 75% (Figure 3.7D). Within mitochondria, 

investment in the electron transport chain/OXPHOS pathway and TCA cycle proteome 

are unchanged, but mitochondrial (un)folding investments are up by 31%, mostly 

attributed by the statistical significant increase in HSCA701,2 (Figure 3.7E). The total 

plastid peptidase investment did not change in the triple mutant (Figure 3.7D) consistent 

with the lack of statistically significant changes individual peptidases; this is similar to 
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our observations for other CLP core mutants, including clpt1 clpt2 (Kim et al., 2015). 

Figure 3.7E also shows the two major plastid peptidases, the thylakoid-bound 

FTSH1,2,5,8 complex and the stromal CLPRT core.  In contrast to investment in plastid 

proteolysis, investments in stromal (un)folding capacity strongly increased (65%), 

mostly due to the strong increase in both the CPN60 and HSP70 systems (Figure3.7E), 

again in agreements with the significance analysis of the individual proteins (CPN60, 

cpHSP70 and cpHSP90 are up in the quadruple mutant) (Table 3.4). Finally, total 

protein investments in chloroplast translation factors and ribosomes, as well as proteins 

involved in RNA metabolism are increased in the quadruple mutant (Figure 3.7E).  

In conclusion, it appears that the quadruple mutant has a very similar phenotype 

as the clpt1 clpt2 double mutant, suggesting that the proteome phenotypes of the 

quadrupole mutant is mostly driven by the loss of Clp core capacity. This is also 

consistent with the very weak prep1 prep2 proteome phenotype, as shown above. Hence 

the strong genetic interaction between the CLP and PREP system is not easily explained 

by the general proteome profiles. Possible explanation for this are, i) changes to 

(undetected) lower abundant proteins, ii) the accumulation of peptidase degradation 

products, or iii) feedback inhibition, blocking plastid proteins import and maturation 

that interfere with growth and development.  
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Accession Protein Description location simple functional bin
Total 

adjSPC

quadruple
/wt 

(NadjSPC) 
a

clpt1 

clpt2 /wt b

 
significant 

in clpt1 

clpt2 b

AT5G38410.1
Rubisco small subunit 3b   
(RBCS-3B)

p-stroma Photosynthesis-dark 232 2.2 0.5 x

AT5G61410.1
ribulose-5-phosphate-3-
epimerase (RPE)

p-stroma Photosynthesis-dark 142 2.4 1.5

ATCG01100.1 NDH A (NDH-1) p-thy Photosynthesis-light 55 0.3 0.9

AT4G05180.1 OEC16-like p-thy-lumen Photosynthesis-light 113 0.4 0.5 x

AT3G01500.3
beta-carbonic anhydrase-1     
(beta CA1)

p-stroma carbonicanhydrases 583 1.5 0.9

AT1G53240.1
mitochondrial malate 
dehydrogenase [NAD] mMDH1

mito respiration 187 1.5 1.1

AT2G38040.1
α-carboxyltransferase       
(ACCase complex)

p-env-inner lipid-FA 50 0.2 0.5

AT1G36180.1 acetyl-CoA carboxylase - ACC2 p-str/env lipid-FA 29
absent in 

wt
nd

AT3G22960.1
pyruvate kinase-1 (typically 
homotetramer)

p-stroma lipid-FA 88 1.9 1.1

AT5G53460.1
NADH-GOGAT or NADH- 
glutamate synthase (GLT1)

p-stroma N-metabolism 293 1.5 5.6 x

AT3G58610.1 ketol-acid reductoisomerase p-stroma AA-metabolism 327 1.6 1.3

AT3G48560.1 acetolactate synthase p-stroma AA-metabolism 35 3.9 2.2

AT1G12520.1 Cu-metallo chaperone  (AtCCS) p-stroma Metals 32 4.5 nd

AT5G60600.1
4-hydroxy-3-methylbutyl 
diphosphate synthase (HDS)

p-stroma isoprenoids 258 1.6 3.2 x

AT3G45140.1 lipoxygenase LOX2 p-stroma JA 404 1.3 1.0

AT5G54770.1 THI1 (ARA6) dual cofactor&vitamin 403 4.8 1.4

AT5G13630.1
Mg-protoporphyrin IX chelatase 
(CHLH) (GUN5) 

p-stroma tetrapyrroles 566 1.5 1.0

AT3G11630.1
2-Cys Peroxiredoxin A (Prx A or 
BAS1)

p-stroma redox 128 1.8 2.0 x

AT1G76080.1 thioredoxin (CDSP32) p-stroma redox 62 3.1 3.7 x

AT4G04020.1 fibrillin 1a (FBN1a) p-PG miscellaneous 136 2.8 2.6 x

AT4G22240.1 fibrillin 1b (FBN1b) p-PG miscellaneous 76 3.5 5.3 x

AT5G26742.2 DEAD box RNA helicase (RH3) p-nucleoid RNA 333 3.5 2.7 x

AT1G70070.1 DEAD/DEAH box helicase p-stroma RNA 52 3.9 28.5 x

AT3G53460.1
RNA binding protein CP29 A' 
(RNP29A')

p-stroma RNA 128 1.8 1.9

AT3G18680.1
Defect in pasA/B transcript 
accumulation  (DPT1)

p-stroma RNA 33 6.4 2.9

AT3G03710.1 3'-5' exoribonuclease (RIF10) p-stroma RNA 110 1.7 3.0

AT3G62030.1
peptidylprolyl isomerase ROC4 
(CYP20-3)

p-stroma (un)folding 363 1.7 1.4 x

Table 3.4. Differentially accumulating chloroplast and mitochondrial proteins in prep1 prep2 clpt1 clpt2  and 
clpt1 clpt2  as compared to wt. Statistical significance  was based on combined results of two statistical 
analysis methods (QSPEC 5% FDR and GLEE <p<0.01).
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Accession Protein Description location simple functional bin
Total 

adjSPC

quadruple
/wt 

(NadjSPC) 
a

clpt1 

clpt2 /wt b

 
significant 

in clpt1 

clpt2 b

AT2G28000.1 Cpn60-alpha-1 p-stroma (un)folding 1268 1.8 1.8 x

AT2G04030.1 cpHSP90 (Hsp90-5) p-stroma (un)folding 444 2.0 1.9 x

AT5G49910.1 cpHSP70-2 p-stroma (un)folding 194 1.6 2.0 x

AT3G13470.1 
AT1G55490.1 
AT5G56500.1

Cpn60-beta-1/2/3 p-stroma (un)folding 1442 2.1 1.9

AT5G09590.1 mtHSCA-2  (mtHSC70-2) mito assembly 53 5.0 35.3 x

AT4G37910.1
mtHscA1 - Fe-S assembly 
(mtHSC70-1)

mito assembly 102 1.7 0.8

AT3G19170.1 
AT1G49630.1

PREP1 and PREP2 dual proteolysis 192
absent in 
mutant

1.6 x

AT5G42390.1
stromal processing peptidase 
(SPP)

p-stroma proteolysis 153 2.9 2.4 x

AT5G45390.1 ClpP4  (P-ring) p-stroma proteolysis 146 1.8 1.5

AT2G43030.1 50S ribosomal protein L3 p-ribosome ribosome 135 1.6 0.9

AT2G33800.1 30S ribosomal protein S5 p-ribosome ribosome 49 3.3 1.0

ATCG00800.1 30S ribosomal protein S3 p-ribosome ribosome 245 1.6 1.7

AT1G06950.1 Tic110 p-env-inner sorting 639 1.3 1.6 x

AT4G01800.1 cpSecA p-stroma sorting 245 1.4 1.5

AT4G29060.1 PSRP-7 p-ribosome translation 501 1.5 1.3

AT1G62750.1
elongation factor Tu-G (EF-G) 
(sco1)

p-stroma translation 479 1.3 1.4 x

AT4G20360.1 elongation factor Tu (EF-Tu-1) p-stroma translation 1071 1.3 1.7 x

AT5G13650.1
elongation factor protein, 
typeA/bipA like (SVR3)

p-stroma translation 191 2.2 3.1 x

AT5G12470.1 transporter MEP3  p-env-inner transport 47 0.2 0.6

AT1G15500.1
transporter NTT2 - adenine 
nucleotide translocase

p-env-inner transport 107 14.9 11.4

AT2G37660.1
3-beta-hydroxy-delta5-steroid 
dehydrogenase

p-stroma unknown 98 1.9 1.5

Table 3.4 (Continued)

a
 All values are significant (P = 0.01)

b Relative protein abunace based on NadjSPC (Kim et al 2015)
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3.3.16 Comparative Nt proteomics for clpt1 clpt2 and prep1 prep2 clpt1 clpt2 reveals 

extensive an extensive maturation deficit.   

To better understand the synergistic genetic interaction between the PREP and 

CLP system, we compared the stromal Nt proteomes of clpt1 clpt2, prep1 prep2 clpt1 

clpt2 (aabbccDd) and wt in two independent TAILS experiments. This identified many 

N-terminal differences between genotypes, see summary Table 3.5. Relative protein 

accumulation levels are included for the double mutant. Additional details on 

identification and quantification of these peptides can be found in Supplemental Tables 

3.4 and 3.5.  

The vast majority of detected Nt peptides start within a few residues of the 

previously identified Nt start site (Rowland 2015) or the cTP cleavage sites predicted 

by ChloroP (Emanuelsson et al., 2007). Many of the alternate proteoforms (Class 3a 

peptides, Figure 3.3) accumulating in prep1 prep2 oop were also observed in these CLP 

mutants (Table 3.5). In contrast, Nt peptides falling within the cTP of nuclear encoded 

proteins (Class 1 or 2 peptides, Figure 3.3) were not detected. Some obvious breakdown 

products were detected (Class 4 peptides, Figure 3.3); however, these peptides were not 

generally elevated or reduced in these CLP mutants (Table 3.5, Supplemental Table 3.4, 

3.5). 

The maturation defects observed in clpt1 clpt2 were far more dramatic than those 

observed in other genotypes with the quadrupole mutant being intermediate between 

clpt1 clpt2 and prep1 prep2 oop. The same aberrant Nti were identified, but the fraction 

of total protein Nti represented by these alternate forms was much greater in clpt1 clpt2. 

That is, aberrant proteoforms that are up in PREP higher order mutants represent only 
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a small fraction of the total Nti detected for those proteins. In clpt1 clpt2 on the other 

hand, these Nti often represent up to 50% of the total Nti for those proteins (See THI1, 

GS2, Inorganic phosphatase like, and cpHSP70-1, Table 3.5). Accordingly, the major 

Nti, normally observed in wt plants was often reduced in clpt1 clpt2. Alanine terminated 

peptides again were very prominent in the list of Nt peptides accumulating in CLP 

peptidase mutants. Long protein extensions were observed for GAPB, NDPK2 and 

sedoheptulose-bisphosphatase (SBPase) indicating again that protein maturation is 

hindered when proteolysis is limited in the chloroplast.  

PEP carboxylase family protein (AT4G10750.1) is an interesting case where a 

Tyr extended N-terminus accumulates eight fold in clpt1 clpt2 and four fold in the 

quadrupole mutant (Table 3.5). Tyrosine has been shown in bacteria to act as an N-

degron, triggering ClpS dependent degradation (Varshavsky, 2011). Furthermore, Nt 

Tyr was shown in yeast and Arabidopsis mitochondria to be removed by ICP55 and to 

be a destaibilizing residue (Vogtle et al., 2011; Carrie et al., 2015; Huang et al., 2015). 

This protein is therefore a good candidate to test for CLPS dependent degradation in 

chloroplasts via the N-end rule.  
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Table 3.5. Differentially regulated protein N-termini identified by 
TAILS in clpt1 clpt2 and prep1 prep2 clpt1 clpt2. Peptides were 
quantified by MS1 filtering using Skyline software (MacLean et al., 
2010). Average ratios for three replicates are displayed with standard 
deviations. Ratios for two independent experiments (see Supplemental 
Table 3.5) are shown for comparison: clpt1 clpt2 (stroma) and prep1 
prep2 clpt1clpt2 (stroma). (a) Localization: s, stroma; t, thylakoid. (b) 
Predicted Nt residue position after cTP removal (ChloroP). (c) 
Experimental observed Nt position. 
(d) Acetylated Nt. (e) P1 residue immediately upstream protease 
cleavage site based on Schechter and Berger nomenclature. (f) 
Relative protein abundance based on NadjSPC, Kim et al 2015. 
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Because clpt1 clpt2 has the most pronounced maturation defects, we compiled 

all Nt peptides that were elevated or reduced in this genetic background, and aligned the 

protein sequences four residues up and down stream of the cTP cleavage site that 

generated each N-terminus (Figure 3.8; Supplemental Table 3.10). We then generated 

Icelogos (Colaert et al., 2009) to display over and underrepresented amino acids. This 

showed that Nt peptides accumulating in the mutant do not have a distinctive Nt motif 

that is significantly different from that observed for all mature chloroplast proteins, 

Figure 3.8C (Rowland et al., 2015). Rather is seems that Nti elevated in the mutant tend 

to result from cleavage following Arg/Lys/Ser (in the P1 position) whereas Nti that are 

down or unchanged in the mutant are generally formed by cleavage after Ala/Cys/Met, 

as is the case for the majority of plastid targeted proteins. Therefore, proteoforms that 

accumulate in peptidase mutants are generally formed by the cleavage motif, V/I - 

R/S/K ↓ A whereas proteoforms reduced are generated by V/I - X - A/C/M ↓ S/A (Figure 

3.8). Furthermore, the relative populations of each proteoform is influenced by the 

severity of the peptidase deficiency.  
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Figure 3.8. Icelogo plots for differentially regulated Nt processing 
events in the clpt1 clpt2 mutant. The protein sequences surrounding 
the ultimate Nt cleavage were compared, peptide nomenclature 
positions P4 through P4’ were plotted using Icelogo; chloroplast 
proteome with cTPs removed used a reference, P = 0.05. (A) Nt 
proteoforms at least two fold up in clpt1 clpt2 (n = 62); (B) Nt 
proteoforms unchanged or down in clpt1 clpt2 (n = 50); (C) Arabidopsis 
N-terminome consensus cTP cleavage site for soluble nuclear encoded 
chloroplast proteins (n = 165) (Rowland et al 2015). 
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3.3.17 Genetic interactions between CLPR2 and OOP  

To investigate the genetic interactions between the OOP and the CLP system, 

we crossed virescent clpr2-1 with oop (oop has no obvious phenotype – see Figure 

3.1A). The double mutant was more virescent than clpr2-1, and chlorophyll and 

carotenoid extraction and analysis showed significantly (P < 0.01) reduced chlorophyll 

and carotenoid content on a fresh weight basis (Figure 3.9). In contrast, we did not 

observe measurable and significant differences in pigment content between wt and oop 

(Figure 3.9B,C). The observed weak synergistic interaction suggests that OOP and CLP 

core have some functional overlap. We did not analyze the molecular proteome 

phenotype of the double mutant as this is likely to be dominated by the strong clpr2-1 

phenotype, which we analyzed in detail previously (Rudella et al., 2006; Zybailov et al., 

2009). The oop proteome phenotype was discussed in previous sections. 

 

 

 

 

 

 

 

 

 

 

 



170 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9. Genetic interaction between the CLPR2 and OOP.  
(A) Comparison of clpr2 and clpr2 oop. Plants were grown on soil for 32 days 
under a 10-h/14-h light/dark cycle at 120 µmol photons.m

-2
.s

-1
. Comparison of 

clpr2 and clpr2 oop. Plants were grown on soil for 64 days under a 10-h/14-h 
light/dark cycle at 120 µmol photons.m

-2
.s

-1
. Transcript accumulation levels in 

the leaves of wt, oop, clpr2 and clpr2 oop. Transcript levels were determined 
by RT-PCR using gene-specific primer pairs; ACTIN2 was used as internal 
control.  
(B, C). Pigment levels in wt, oop, clpr2 and clpr2 oop mutants. Chlorophyll 
(B) and Carotenoid (C) contents were measured after 20 days (wt and oop, 1.11 
stage), 32 days (clpr2 and clpr2 oop, 1.11 stage), and 64 days (clpr2 and clpr2 
oop) of sowing. Standard deviations are indicated. N=5 for 1.11 stage plants 
and N=3 for 64 days old plants. 
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3.4 DISCUSSION  

2.4.1 Proteolysis in the chloroplast  

Cellular peptidase systems incorporate many layers of complexity to control 

when proteins get degraded. These enzymes not only degrade damaged or unwanted 

proteins, they also play crucial roles in the processing and maturation of protein 

(Poveda-Huertes et al., 2017). The chloroplast protease network has many similarities 

to bacterial systems owing to its cyanobacterial origin. However, proteases of the 

chloroplast have evolved complexities that are absent in bacteria or even in other 

organelles such as mitochondria (van Wijk, 2015).  

Here we have combined a rigorous genetic analysis of the interactions between 

three chloroplast peptidase systems with high resolution MS techniques that probe the 

in vivo molecular proteome phenotypes (proteolytic signature) of an array or peptidase 

mutants. We set out to determine the effects of loss or reduction of PREP, OOP and 

CLP peptidases on the proteome and their relative contributions to the peptidase 

network in chloroplasts. We evaluated whether peptidase substrates, including cleaved 

cTPs and peptide fragments, accumulate in peptidase mutants. Secondly, we determined 

if and how other cellular processes, including protein maturation and proteostasis, were 

affected by a reduction of peptidase activity. 

 

2.4.2 Genetic and functional interactions between three stromal peptidase systems  

In this study we probed the genetic and functional interactions between the 

abundant multi-component CLP protease system and the simpler dual-localized 

mitochondrial/chloroplast soluble PREP and OOP peptidase systems. Specifically, we 
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crossed mutants with decreased CLP protease core activity or CLP chaperone capacity 

with PREP and OOP null mutant. The combined loss of CLP protease or chaperone 

capacity with complete loss of PREP capacity resulted in strong leaf and rosette growth 

phenotypes that correlated with the reduction in CLP core capacity. CLP core capacity 

of less than 10-20% (clpt1 clpt2) resulted in embryo lethality when combined with loss 

of PREP activity. Comparative, quantitative proteomics of the quadruple prep1 prep2 

clpt1 clpt2 (aabbccDd) showed a strong proteome phenotype that strongly resembled 

the clpt1 clpt2 proteome phenotype (Kim et al., 2015). The OOP and CLP core mutants 

also showed a weak synergism indicative of functional interactions.  

From these genetic interactions, a picture emerges of the relationships and 

hierarchical positions of PREP, OOP and CLP in the peptidase network: There is clearly 

significant overlap in the functions of PREP and CLP and to a lesser extent between 

OOP and CLP. This implies that PREP and OOP do not act strictly downstream of CLP 

but rather they act somewhat in parallel, and can compensate for loss of the other as was 

previously shown for PREP and OOP (Kmiec et al., 2013). 

 

3.4.3 The differential response of the chloroplast and mitochondrial proteoastasis 

machineries and networks to loss of protease capacity 

 When proteolysis is compromised, proteostasis is unbalanced (Jarvis and Lopez-

Juez, 2013). Accumulation of partially degraded proteins and/or signal peptides may 

destabilize membranes (Kmiec et al., 2014) and interfere with enzymes normally 

involved in protein processing – e.g. other proteases (Poveda-Huertes et al., 2017). 

Additionally, accumulation of inactive enzymes may clog metabolic pathways or the 
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formation of protein aggregates may physically interfere with general cellular processes. 

A robust proteolytic machinery normally removes these potentially toxic products 

(Jarvis and Lopez-Juez, 2013). It is well established that unbalanced proteostasis leads 

to over-accumulation of chaperones and other proteases (Hartl et al., 2011; Kim et al., 

2015). Our comparative proteomics analysis revealed that in the absence of both PREP 

and OOP, chaperone levels only modestly increased abundance and proteostasis is 

largely stable. In sharp contrast, the CLP peptidase mutants show strong proteostasis 

defects that persists throughout the life of the plant. 

 

3.4.4 Maturation is compromised in PREP, PREP/OOP and CLP peptidase mutants 

Nt proteomics (TAILS) allowed us to measure the relative abundance of 

different Nt peptides between wt and the various peptidase mutants. These Nti are 

proportional to differently processed isoforms of each protein (proteoforms). We 

previously characterized the Nt proteome of the Arabidopsis chloroplast. For a given 

protein, there is generally a primary proteoform that corresponds to the mature function 

protein, see Rowland et al for a discussion (Rowland et al., 2015). Therefore, we refer 

to minor, atypical proteoforms as aberrant or as being improperly processed. 

 Processing defects (Class 3a peptides, Figure 3.3) were clearly observed in 

soluble protein extracts from total leaf and chloroplast stroma for both prep1 prep2 and 

prep1 prep2 oop mutants. Extended or truncated proteoforms with an exposed Nt Ala 

or Val made up the majority of mutant accumulating peptides. Please note that many of 

these aberrant proteoforms are present in wt tissue, but typically represent only ~5 – 

10% of the total protein mass for a given gene. The same selection of Nt peptides 
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accumulate in PREP mutants but these aberrant forms are many times more abundant 

than in wt (see spectral count numbers and relative abundance ratios in Table 3.1). 

Interestingly, the relative over- or under-accumulation of Nt proteoforms was almost 

identical in the double and triple mutants demonstrating that loss of PREP (and not loss 

of OOP) is the primary cause of this phenotype. 

Maturation defects were also observed in clpt1 clpt2 and prep1 prep2 clpt1 

clpt2. The magnitude of up or down regulated Nt proteoforms was far greater than those 

observed for the PREP/OOP mutants, and the aberrant forms represented a much larger 

portion of the overall protein – up to 50% of the total Nti for that protein. The quadrupole 

mutant, that is heterozygous for clpt2, had defects intermediate between prep1 prep2 

oop and clpt1 clpt2. Interestingly four of the substantially altered proteins were 

chloroplast chaperones (HSP70-1, cpHSP90, CPN21 and CPN10-1) and it is possible 

that some of these aberrant proteoforms have reduced chaperone efficiency compared 

to the properly processed forms, perhaps contributing to the imbalance in proteostasis. 

Both chloroplast HSP70 and cpHSP90 normally start with the relatively rare (for plastid 

localized proteins) amino acids, Asp and Glu, indicating that their exposure may be 

important for functional integration. In the aberrant forms of these proteins these 

residues are masked or removed, perhaps contributing to the severe growth phenotype 

of clpt1 clpt2.    

The significance of different N-terminal amino acid extensions is unknown. We 

present various scenarios/models for their formation (Figure 3.10A,B). It is clear that 

Ala (and also Val) N-terminated proteins accumulate in all of the peptidase mutants 

analyzed, 
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Figure 3.10. Model for proteolytic maturation and degradation.  
(A) Nuclear encoded undergo a series for proteolytic processing steps and other 
modifications after import into the chloroplast. Charerones contribute to these 
steps and protein folding. cTP, chloroplast transit peptide; SPP, stromal 
processing peptidase; APs, amino peptidase potentially involved in processing 
of immature proteoforms; NATs, alpha amino acetyltransferases; PTMs, post 
translational modifications. 
(B) SPP normally cleaves the unstructured cTP from the folded or semi-folded 
pre-protein (crystal structure of Arabidopsis THI1 shown; PDB: 1RP0). Under 
conditions of folding stress and limited chaperone availability, the precision of 
cTP cleavage is reduce; the line between unstructured cTP and structured 
protein is blurred. 
(C) Model of chloroplast peptidase network and hierarchy of CLP, PREP and 
OOP. Different substrate classes are selected by CLP, PREP and OOP, or by 
combinations thereof. Additional known and unknown peptidases cleave 
substrates and produce proteolytic products that enter into this network 
laterally.        
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either representing a shorter or longer form than the primary protein N-terminus. 

Furthermore, tri- or di-Ala N-terminated proteins tend to accumulate more so than 

proteins that start with a single Ala. Except in the case of TKL-1 where the major 

proteoform sequence begins with di-Ala, and the mono- and tri-Ala forms accumulate 

at much lower levels (Tables 3.1, 3.2 and 3.5). This suggests that processing is context 

dependent, i.e. different for each protein undergoing maturation. Three possible 

explanations for these maturation defects are as follows: (i) Aminopeptidase mediated 

trimming of protein N-termini by other aminopeptideases is hindered in certain protease 

mutants (e.g. ICP55-like activity (Carrie et al., 2015)). This seems unlikely because the 

Nt residues removed and exposed by these cleavage events are highly variable whereas 

aminopeptidases tend to have some amino acid specificity. As previously mentioned, 

many proteins with and without Nt Ala were observed, perhaps suggesting an Ala-

aminopeptidase. However, the most common mature N-terminus for nuclear encoded 

plastid proteins is Ala, thus ruling out any universal Nt Ala cleavage event. (ii) 

Improperly processed Nt proteoforms are normally removed by the protease network, 

in a quality control-like mechanism, and this pathway is blocked in peptidase mutants. 

This seems feasible, however none of the aberrant proteoforms appear to contain 

residues or motifs like those of bacterial, mitochondrial or proposed plastid N-degrons 

(Apel et al., 2010; Carrie et al., 2015; Rampello and Glynn, 2017). (iii) Limited 

precision of SPP under conditions of imbalanced proteostasis, folding stress and peptide 

fragment accumulation causing interference between substrates and SPP (Figure 3.10 

A,B). We favor this explanation for accumulation of aberrant proteoforms. Feedback 

inhibition has been clearly demonstrated in yeast mitochondria in PREP (Cym1) 
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mutants and also in human cells overexpressing a β-amyloid peptide (Mossmann et al., 

2014). Mossmann et al present a model whereby accumulating peptides, caused by lack 

of PREP or flooded capacity, bind to and inhibit cleavage or pre-proteins by MPP. We 

do not observe intact pre-proteins in stroma but we do find evidence for proteins with 

extended Nti up 16 residues longer (Table 3.1) in TAILS experiments.  

Therefore, we suggest that SPP cannot properly cleave cTPs because of 

accumulating peptide substrates and because chaperone capacity is limited due to 

increased folding stress. In the clpt1 clpt2 and quadrupole mutants, SPP abundance is 

increased at least two-fold, suggesting a bottleneck in SPP capacity likely due to 

decreased SPP cleavage efficiency. More than 20 years ago Gavel and von Heijne 

proposed that SPP does not recognize a strict sequence motif during cTPs cleavage, but 

rather it reads a transition from an unstructured to a structured region surrounding the 

cTP cleavage site (von Heijne 1990). This theory fits well with our results that show 

that cTP cleavage is somewhat flexible and is context dependent. 

 

3.4.5 Accumulation of protein degradation products in absence of PREP and OOP 

oligopeptides  

PREP and OOP can degrade small to medium sized peptides in vitro (see 

INTRODUCTION) and are proposed to have a preference for cTPs and mTPs because 

of their intrinsically disordered nature and positive charge (Johnson et al., 2006; 

Teixeira and Glaser, 2013; Teixeira et al., 2017). We conducted a series of experiments 

designed to monitor endogenous peptides in leaf tissue and chloroplasts extracts. Our 

LMW TAILS experiment revealed that peptide degradation products indeed accumulate 
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in the prep1 prep2 oop mutant (Table 3.2). Fragments from various stromal proteins 

including GUN5, RH3, CLPP4, GAPB and various ribosomal subunits were found to 

accumulate. Additionally, a number of fragments from thylakoid proteins were highly 

enriched in the mutant. We do not know the physiological significance of these 

degradation fragments. It is reasonable to assume that these fragments contributed to 

the maturation defects described above, this phenomenon also being observed in yeast 

mitochondria (Poveda-Huertes et al., 2017).  

Our peptidome experiments on prep1 prep2, as well as prep1 prep2 clpt1 clpt2 

mutants, demonstrate that cTP fragments and degradation products (Class 2 and 4 

Peptides, Fig.3; Fig. 4; Table 3) accumulate in PREP mutants, and that OOP perhaps 

plays only a minor role in cTP removal (Figure 3.10 C). Importantly, a number of the 

cTPs fragments observed were produced by cleavage at the known cTP cleavage site 

(Table 3.3, see C-terminal end of detected peptides). For RBCS-2b and RBCS-4, we 

identified nine unique peptides, ranging in size from 15 to 30 residues, all ending with 

a C-terminal Cys, which is the well-established end of the cTP (Houtz et al., 2008; 

Atkinson et al., 2017). Also, the cTPs of LHCII 2.1, LHCII 3 and PC1, exclusively 

found in prep1 prep2 chloroplast extracts, all end at the known cTP cleavage site, 

suggesting again that cTP fragments did indeed accumulate. These cTP fragments were 

likely directly produced and release by SPP and not efficiently degraded when there was 

no PREP1,2 activity. Furthermore, a number of fragments from proteins known to have 

short half-lives in chloroplasts (Li and Millar, 2017) were found to accumulate in PREP 

mutants, including D1, THI1 and several tetrapyrroles biosynthetic enzymes(Figure 

3.4C and Table 3.2).   
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3.4.6 Models for functional interactions between CLP, PREP and OOP peptidase 

systems  

Based on genetic interactions, our proteome analysis, and results from 

previously published studies on the upper substrate size limitations for PREP and OOP, 

we propose a functional peptidase network model within the chloroplast (Figure 3.10C). 

Different substrate classes are accepted by CLP, PREP, OOP (Nishimura and van Wijk, 

2015; Teixeira et al., 2017). However, the strong genetic interactions between CLP and 

PREP, and PREP and OOP (black arrows) suggest that they have substrates in common 

(Figure 3.10C). The weak interaction between CLP and OOP (blue arrow) suggests only 

minor overlap of substrates. 

Given the substrate size limitation of OPP and PREP, and the ATP-driven 

unfolding capacity of the CLP system, CLP must has its own pool of substrates 

(Nishimura and van Wijk, 2015) that are inaccessible to PREP and OOP (Kmiec et al., 

2014). In contrast, PREP is tailored to degrade cTPs and mTPs, in line with its 

evolutionary relationship to SPP and MPP (Mach et al., 2013). Degradation products 

generated by either PREP or the CLP systems could potentially be further degraded by 

OOP. We showed that cTPs and unprocessed pre-proteins do accumulate in PREP 

mutants in vivo where CLP is fully functional, but not in mutants where only the Clp 

system is (partially) inactivated (Figure 3.3). These results support previous evidence 

suggesting that PREP is a dedicated cTP degrader. However, the fact that CLP interacts 

(genetically) with PREP (especially PREP2) and OOP suggests some interdependence 

and that they have partial overlap of substrates. It is also possible that the pool of 
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recycled amino acids is compromised in these CLP-PREP-OOP higher order mutants 

due to blocked proteolytic pathways. This may explain the reduced vigor of the triple 

and quadrupole mutants, especially in the young emerging leaves (Figure 3.2 and 3.7). 

Although not discussed in detail here, aminopeptidases are certainly part of this 

peptidase network (Teixeira et al., 2017). 

Protein substrates for CLP are generally thought to be recognized and unfolded 

by the CLPC chaperone (Sauer and Baker, 2011). Certain substrates may be specifically 

selected by the CLPS1-F adaptors (Nishimura et al 2015), perhaps through recognition 

of specific N-degrons (Dissmeyer et al., 2017). The products of CLP proteolysis were 

shown in E. coli to be 5 - 12 residue peptides (Choi and Licht, 2005), placing some of 

these in the PREP and OOP substrate range. Other substrate classes likely enter this 

peptidase network laterally, following cleavage by known and so far uncharacterized 

peptidase systems; (van Wijk, 2015) provides a comprehensive list of candidate 

peptidases. 

In conclusion, we provide details on a major proteolytic pathway in chloroplasts. 

The results presented here offers insight into the relative contributions of PREP, OOP 

and CLP to maintaining proteostasis. 

 

3.5 MATERIALS AND METHODS 

3.5.1 Plant Growth, Mutant Isolation and RT-PCR analysis  

T-DNA insertion lines in Columbia-0 for PREP1 (AT3g19170), PREP2 

(AT1g49630) and OOP (AT5g65620) are SALK_048944 (prep1-1), SALK_133220 

(prep2-1), SALK_058439 (oop-1), SALK_061339 (oop), SAIL_150_D06 (oop-3), and 
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SAIL_1238_D07 (oop-4), respectively. The location of the T-DNA insertions was 

confirmed by DNA sequencing. Other mutants from the van Wijk lab have been 

described previously, i.e., clpr1-2 and clpr2-1 (Kim et al., 2009), clpt1-2 and clpt2-1 

(Kim et al., 2015), and clpc1-1 (Olinares et al., 2011). Genotyping and RNA extraction 

were carried out as described previously (Rudella et al., 2006). Various growth 

conditions are detailed in the Figure legends. For RT-PCR, total RNA was isolated with 

an RNeasy plant mini kit (Qiagen). First strand was synthesized from equal amounts of 

total RNA with Superscript III Reverse Transcriptase (Invitrogen).  

 

3.5.2 Chloroplast stroma and total leaf proteome isolation for analysis of CLP 

assembly states  

For chloroplast stroma isolations, leaves of the wt (Col-0) and various mutant 

alleles were briefly homogenized in grinding medium (50 mM HEPES-KOH, pH 8.0, 

330 mM sorbitol, 2mM EDTA, 5mM ascorbic acid, 5mM cysteine and 0.03% BSA) 

and filtered through a nylon mesh. The crude chloroplasts were then collected by a 2-

min spin at 1100 × g and further purified on 35-85% Percoll cushions (Percoll in 0.6% 

Ficoll, 1.8% polyethylene glycol) by a 10-min spin at 3750 × g and one additional wash 

in the grinding medium without ascorbic acid, cysteine and BSA. Chloroplasts were 

subsequently lysed in 10 mM HEPES-KOH, pH 8.0, 5 mM MgCl2, and 15% glycerol 

with a mixture of protease inhibitors under mild mechanical disruption. The lysate was 

then subjected to ultracentrifugation (100,000 x g) to collect membranes as pellet and 

the stroma as supernatant. For total leaf proteome isolation under non-denaturing 

conditions, total leaf material was ground in liquid nitrogen and solubilized in 50 mM 
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HEPES-KOH, pH 8.0, 15% glycerol and 10 mM MgCl2 with protease inhibitor cocktail. 

The suspension was then filtered in miracloth and spun at 100,000xg.  The protease 

cocktail contained 1mM Pefabloc-SC, 50 µg/mL antipain, 40 µg/mL bestatin, 20 µg/mL 

chymostatin, 10 µg/mL E64, 10 µg/mL phosphoramidon, 1 µg/mL aprotinin. 

 

3.5.3 Pigment, Native PAGE, Immunoblot and Protein concentrations  

Chlorophyll and carotenoid contents on a fresh weight basis were measured in 

80% acetone as described (Lichtenthaler, 1987). Light blue native PAGE was performed 

for separation of stromal and total leaf extracts under non-denaturing conditions using 

the Native PAGE Novex gel system (Invitrogen) with pre-cast 4-16% acrylamide Bis-

Tris gels (Invitrogen). For immunoblots, proteins were blotted onto nitrocellulose or 

PVDF membranes and probed with antibodies using chemiluminescence for detection, 

following standard procedures. Antisera were generated in rabbits as described 

previously (Kim et al., 2013; Nishimura et al., 2013). Protein concentrations were 

determined using the BCA Protein Assay Kit (ThermoFisher). 

 

3.5.4 Comparative Proteomics and Mass spectrometry  

Three biological replicates per genotype were analyzed within each of the three 

sets of comparative proteomics experiments.  

Experiment one: wt and the prep1-1 prep2-1 double were grown for 20 days (wt) and 

29 days (mutants) under a 10-h/14-h light/dark cycle at 100 µmol photons.m
-2

.s
-1

.  
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Experiment two: wt and quadrupole prep1-1 prep2-1 clpt1-2 clpt2-1 (aabbccDd) plants 

were grown for 21 days (wt) and 29 days (mutants) under a 10-h/14-h light/dark cycle 

at 100 µmol photons.m
-2

.s
-1

.  

Experiment three: wt and homozygous oop, prep1-1 prep2-1 and prep1-1 prep2-1 oop-

2 plants were grown for 20 days (wt and oop-2), 22 days (prep1-1 prep2-1), and 28 days 

(prep1-1 prep2-1 oop-2) under a 10-h/14-h light/dark cycle at 120 µmol photons.m
-2

.s
-

1
. Intact chloroplasts were isolated and total chloroplast proteomes used for analysis, 

whereas for experiments 2 and 3, total leaf proteomes were extracted in presence of SDS 

after grinding 250-350 mg fresh leaves in liquid N2 into a fine powder, followed by 

removal of cell debris on frit spin columns (pore size 30 μm), as in (Friso et al., 2011). 

For all experiments, 50 g total leaf protein of mutants and wt samples were each run 

out on a Biorad Criterion Tris-HCl precast gels (10.5-14% acrylamide gradient). Each 

gel lanes were cut into 12 bands followed by reduction, alkylation, and in-gel digestion 

with trypsin as described in (Friso et al., 2011). 

 

3.5.5 Mass spectrometry, data processing and significance testing  

The re-suspended peptide extracts were analyzed by data-dependent MS/MS 

using an on-line LC-LTQ-Orbitrap (ThermoFisher) as described in (Kim et al., 2015). 

Mass spectrometry data processing, data searching against TAIR10 using Mascot v2.4 

and subsequent filtering and quantification based on normalized and adjusted spectral 

counts was carried out as in (Nishimura et al., 2013). Mass spectrometry-derived 

information, as well as annotation of protein name, location and function for the 

identified proteins can be found in the PPDB (http://ppdb.tc.cornell.edu/). Protein 
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functions were assigned using the MapMan bin system (Thimm et al., 2004) that we 

further curated and incorporated into the Plant Proteome Database (PPDB) at 

http://ppdb.tc.cornell.edu.  

Pairwise significance analyses for genotypic differences within each experiment 

was carried out based on the combined outcome of two statistical packages, QSPEC and 

GLEE, specifically developed for spectral counting analysis, as described in (Kim et al., 

2015). Proteins were deemed significantly different between genotypes at p<0.01 using 

GLEE (using NadjSPC) and with < 5% False Discovery Rate using QSPEC (using 

AdjSPC).  

The MS and proteomics data was submitted to the ProteomeXchange 

Consortium (Vizcaino et al., 2014) via the PRIDE partner repository 

(http://www.ebi.ac.uk/pride).  

 

3.5.6 Plant growth for and protein extraction for TAILS experiments 

Total leaf extracts for TAILS experiments were identical to those used for 

comparative proteomics (Experiment 3 above). Chloroplast stroma was prepared from 

Arabidopsis grown for between 6 and 9 weeks such that the plants were at a similar 

developmental stage but not yet flowering under a 10-h/14-h light/dark cycle at 100 or 

150 µmol photons.m-2.s-1. The light conditions were identical for each experiment 

comparing wt and mutant Arabidopsis tissue. Chloroplast stroma for TAILS comparison 

of wt and prep1 prep2 was extracted from the same plants used for comparative 

proteomics above.  
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3.5.7 TAILS methodology 

Each TAILS experiment was performed in biological triplicate and for each 

sample, two technical replicates were performed with the isotopic dimethyl label 

switched (e.g. wt ‘light’ vs. mutant ‘heavy’ and wt ‘heavy’ vs. mutant ‘light’). Each 

sample was injected onto the LC/MS system twice (Supplemental Figure 3.5). 

Exceptions were made for prep1 prep2 TAILS and prep1 prep2 oop LMW-TAILS 

experiments where three biological replicates were used but no label switch (technical 

replicate) was performed. See Supplemental Table 3.3A for details of samples analyzed. 

Total soluble leaf extracts and chloroplast stroma were prepared as previously 

described (Friso 2011; Olinares, 2010). The extraction buffer with protease inhibitors 

was as follows, 50 mM HEPES, pH 8, 1mM Pefabloc-SC, 50 µg/mL antipain, 40 µg/mL 

bestatin, 20 µg/mL chymostatin, 10 µg/mL E64, 10 µg/mL phosphoramidon, 1 µg/mL 

aprotinin. We followed the method TAILS method (Kleifeld, 2011) described 

previously with minor modifications (Rowland 2015). The dimethyl labeling reaction 

was quenched with 0.1 M glycine. All incubations were performed at 37ºC in an 

Eppendorf ThermoMixer with light shaking. Between 600 and 800 µg of HPG-ALD 

resin was used for each 100 µg of digested peptides. Following overnight reaction of 

peptides with HPG-ALD resin and quenching with 0.1 M ammonium bicarbonate, 

samples were acidified with formic acid prior to removal of polymer bound internal 

peptides by ultrafiltration using Amicon 30-kD molecular mass filters (Millipore). The 

flow through was then immediately desalted using C18 SPE spin columns 

(ThermoFisher 89870).  
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3.5.8 TAILS database searching, filtering and curation. Quantification with 

Proteome Discoverer 2.1 and Skyline 

Analysis of mass spectrometry data from TAILS experiments including peptide 

identification and relative peptide quantification, was performed with Proteome 

Discoverer™ 2.1 (ThermoFisher). Two database searches were conducted with 

MASCOT v2.4 (Matrix Science) and Sequest HT (ThermoFisher). Two separate 

database searches (MASCOT v2.4) were performed for each sample to identify light 

and heavy labeled peptides using parameters outlined for trypsin digested samples in 

(Rowland et al., 2015). The results of the database search were pooled and filtered using 

Percolator; the max Delta Cn was 0.05, target decoy false discovery rate was 0.01, 

validation was based on q-value. The peptide quantification mode was set to 

dimethylation duplex using the light and medium labels. Exported peptide group lists 

were filtered to remove unlabeled (not Nt peptides) and peaks areas for wt and mutant 

peaks were used to calculate mutant to wt ratios. The average ratio from two LC-MS 

injections was used for each sample. Average values and standard deviations were 

calculated for each triplicate experiment for mutant (light) versus wt (heavy) and for the 

reciprocal labeling experiment (Supplemental Table 3.4). Differentially accumulating 

peptides (at least two fold up or down in the mutant) were selected for verification along 

with other peptides matching to those proteins, regardless of their wt to mutant ratio. 

These peptide lists were imported in Skyline (MacLean et al., 2010) and the MS1 

filtering feature was used to (i) manually confirm that the peptide identification was 

correct and (ii) to generate a second set of peak area ratios and inspect for reproducibility 

across replicates (Supplemental Table 3.5). 
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Low molecular weight TAILS experiments were conducted as above except 1 

mg dimethyl labeled protein per replicate was filtered through 30-kDa molecular mass 

filters and the filtrate carried forward before the negative selection step to remove large 

and intact proteins.  

 

3.5.9 Gel based Nti determination. Nt profiling without enrichment Nt peptides. 

Proteins were reduced and alkylated and dimethyl labeled in 4M GuHCl, 50mM 

HEPES, pH 8 as for TAILS experiments. Wt (light) and prep1 prep2 oop (heavy) 

samples were then mixed and acetone precipitated. The pellet was suspended in SDS 

sample buffer and the proteins resolved by Tris-Tricine SDS PAGE on 16.5 % 

acrylamide precast gels (Biorad, Criterion). Gel bands were cut and digested as 

described previously (Friso et al., 2011), with water washes in place of DTT and 

iodoacetamide incubations. Peptide extracts were analyzed by data-dependent LC-

MS/MS (see section 3.5.5). Two separate database searches (MASCOT v2.4) were 

performed for each sample to identify light and heavy labeled peptides using parameters 

outlined for trypsin digested samples in (Rowland et al., 2015). Database search results 

were filtered in MS Excel to include only N-terminally labeled peptides. Un-adjusted 

spectral counts (SPC) for wt and mutant were summed for unique peptides from each 

replicate. 

 

3.5.10 Peptidome analysis  

Two different strategies were used to purify either total leaf or chloroplast 

peptidomes. The first technique was loosely based on that described by (Lyons and 
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Fricker, 2011). Soluble protein extracts containing 1 - 2 mg total protein were rapidly 

heated to 90˚C, incubated for 3 min then cooled on ice before acidification with 0.01 M 

HCl (final concentration). The protein precipitate was pelleted by centrifuge at 14,000 

x g, 4˚C, for 10 min and the supernatant transferred to an Amicon, 30-kD ultrafiltration 

device (Millipore). Half of each peptide extract was neutralized with ammonium 

bicarbonate (200 mM final concentration) and digested with 0.5 µg trypsin for 16 hr. 

The second technique loosely followed the protocol described by (Xu et al., 2015). Total 

leaf tissue ( ~1 g fresh weight) was ground under liquid nitrogen, or purified chloroplasts 

(see section 3.5.2) were extracted with 0.5% formic acid with protease inhibitors (0.5 

mM EDTA, 0.5 mM pefabloc SC, 5 µM E64) on ice. Chloroplasts were lysed in a glass 

potter in extraction solution. Extracts were then clarified by centrifuge at 20k x g at 4˚C 

for and filtered using either 10- or 30-kD ultrafiltration devices. The above filtrates were 

desalted by C-18 SPE spin columns (Pierce 89870) using the manufacturer’s guidelines. 

Extracts were brought to dryness in a Speed Vac (ThermoFisher) and then re-suspended 

in 2% formic acid, 3% acetonitrile for LC-MS/MS analysis. Mass spectrometry was 

performed on an LTQ Orbitrap as previously described with the following adjustments 

(section 3.5.5). The LC gradients were 120 or 140 min in length and the normalized CE 

was set to 35 to facilitate fragmentation of large peptides. See Supplemental Table 3.3B 

for a list of peptidome experiments conducted. No enzyme data base searches were 

conducted with MASCOT v2.4 with the following variable modifications: Acetyl (N-

term), Deamidated (N,Q), Formyl (N-term) and oxidized (M). The precursor mass 

tolerance was 6 ppm; fragment ion mass tolerance 0.8 Da, Two missed cleavages were 

allowed. For samples digested with typsin, a semitryptic data base search was conducted 
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with variable modifications: Acetyl (N-term) and oxidized (M); precursor mass 

tolerance 20 ppm; fragment ion mass tolerance 0.8 Da. 
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Supplemental Figure 3.1. Characterization of OOP and PREP mutants  

(A) Comparison of wt, oop-1, oop-2, oop-3 and oop-4. Plants were grown on soil for 
23 days under a 10-h/14-h light/dark cycle at 120 µmol photons.m

-2
.s

-1
. Gene model 

structures and position of T-DNA inserts in the OOP mutants used in this study. Exons 
(black boxes for coding sequence; open boxes for 5’ and 3’ untranslated regions 
[UTRs]) T-DNA insertions (triangles), and RT-PCR primers (arrows) are indicated. 
Transcript accumulation levels in the leaves of wt, oop-1, oop-2, oop-3 and oop-4. 
Transcript levels were determined by RT-PCR using gene-specific primer pairs; 
ACTIN2 was used as internal control.  

(B) Comparison of wt, prep1-1 prep2-1, prep1-1 and prep2-1. Plants were grown on 
soil for 25 days under a 10-h/14-h light/dark cycle at 120 µmol photons.m

-2
.s

-

1
.Transcript accumulation levels in the leaves of wt, prep1-1 prep2-1, prep1-1 and 

prep2-1. Transcript levels were determined by RT-PCR using gene-specific primer 
pairs; ACTIN2 was used as internal control.  
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Supplemental Figure 3.2. Characterization of prep1 prep2 oop at later stages 
of development; seed phenotype and germination rate. 

(A) prep1 prep2 oop and wt plants grown on soil under a 10-h/14-h light/dark cycle 

at 150 µmol photons.m
-2

.s
-1

 for 58 days then transferred to a 10-h/14-h light/dark 

cycle at 500 µmol photons.m
-2

.s
-1

 for 11 days. 

(B) prep1 prep2 oop and wt plants grown on soil under a 10-h/14-h light/dark 

cycle at 150 µmol photons.m
-2

.s
-1

 for 67 days 

(C) prep1 prep2 oop and wt plants grown on soil under a 10-h/14-h light/dark 

cycle at 150 µmol photons.m
-2

.s
-1

 for 78 days 

(D) Seeds harvested from above prep1 prep2 oop and wt plants 

(E) prep1 prep2 oop and wt plants grown on ½ MS medium, 2% sucrose under a 

10-h/14-h light/dark cycle at 150 µmol photons.m
-2

.s
-1

 for 16 days for 
determination of germination rate. 

 



201 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



202 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplemental Figure 3.3. Quantitative comparison of chloroplast proteomes of 
proteomics wt and prep1 prep2 with triple biological replicates of soil grown 
plants in developmental stage 1.11 using label-free spectral counting. The prep1-
1 prep2-1 and wt plants used for chloroplast proteome analysis.  Plants were grown 
for 6 weeks on soil under a 10-h/14-h light/dark cycle at 120 µmol photons.m

-2
.s

-1
. 

(A) Coomassie blue-stained SDS-PAGE gel with four biological replicates of 
stromal proteomes for each genotype. Three replicates were used for the MSMS 
analysis. Complete gel lanes were sliced into 12 sections per gel lane. 

(B) Complete experimental and bioinformatics proteomics workflow. Proteins were 
in-gel digested by trypsin and analyzed by LC-MS/MS. After database searching, 
processing and protein annotation, the data were analyzed statistically to determine 
genotypic effects. Supplemental Table S1A,B summarizes the identified proteins, 
their annotations, quantification and fold changes with the statistical significance 
levels (p-values and false-discovery rates) of differences between genotypes. 

(C) Principle component analysis (PCA) based on NadSPC of both genotypes.  

(D) Correlation coefficients between genotypes and replicates based on NadjSPC. 
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Supplemental Figure 3.4. Quantitative comparison of total leaf proteomes of 
proteomics wt, prep1 prep2, oop and the triple mutant. Three biological replicates 
of soil grown plants under a 10-h/14-h light/dark cycle at 120 µmol photons.m

-2
.s

-1
 

and leaves harvested at developmental stage 1.11. Plant were grown for 20 days for 
oop-2 and the wt, 22 days for prep1 prep2 and 28 days for prep1 prep2 oop-2.  
(A) Protein extracts were run on a SDS-PAGE gel, stained by Coomassie blue, and 
complete gel lanes were sliced into sections (12 per gel lane) for protein in-gel 
digested by trypsin and analysis by LC-MS/MS. 
(B) Complete experimental and bioinformatics proteomics workflow. Supplemental 
Table S2A,B summarizes the identified proteins, their annotations, quantification 
and fold changes with the statistical significance levels (p-values and false-discovery 
rates) of differences between genotypes.  
(C) Principle component analysis (PCA) based on NadSPC of both genotypes.  
(D) Correlation coefficients between genotypes and replicates based on NadjSPC. 
(E) Differential investments in specific chloroplast functions across the four 
genotypes as determined by relative protein abundance. Standard deviations are 
indicated. 
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Supplemental Figure 3.5. Terminal amine isotopic labeling of substrates 
(TAILS) workflow for comparative Nt proteomics. 
(A) Flow chart detailing TAILS method and variation thereof for enrichment of N-
terminal protein sequences. 
(B) Data analysis workflow for TAILS experiments. 
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Supplemental Figure 3.6. Gel based N-terminal proteomics for prep1 prep2 
oop  stroma. Verification of relative Nt peptide abundance for select proteins. 

(A) Stromal extracts dimethyled in 8M GuHCl followed by acetone precipitation, 
then resolved by SDS tris-tricine (16.5%). 90 ug protein per lane (mix of both 
genotypes labeled ‘light’ or ‘heavy. Gel slices cut, in gel digested and analyzed by 
LC-MS. Second gel fixed with glutaraldehyde and stained with silver nitrate. 40 ug 
protein per lanes Col-0 and p1p2oop (lanes 1 – 6). 

(B) Representative mass spectra for N-terminal peptides matching RBCS-4.  

(C) Representative mass spectra for N-terminal peptides matching CPN10. 
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Supplemental Figure 3.7. Peptidome experimental workflow. Flow chart 
detailing peptidome methods used to analyze prep1 prep2 and prep1 prep2 clpt1 
clpt2 (aabbccDd) total leaf and chloroplast extracts. 
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Supplemental Figure 3.8. The functional interaction between PREP1,2 and 
CLPT. 

(A) Assembly state of the chloroplast CLPPR core in wt, prep and clpt mutants. 
Assembly state of the CLPPRT proteins determined by immunoblot analysis after 
native gel electrophoresis.  Stromal proteins obtained from isolated chloroplasts 
from the wt, prep1 prep2 clpt1 clpt2 (aabbccDd), prep1 prep2, and clpt1 x clpt2 
were separated on native gels, transferred to blots, and probed with antisera against 
CLPP6 and CLPR2. The larger arrows indicate CLPPRT core complexes (350–400 
kD), while the smaller arrows indicate CLP complexes between 180 and 240 kD, 
corresponding to heptameric CLPPR rings. Thirty micrograms of stromal protein 
was loaded in each lane.   

(B) Complete experimental and bioinformatics proteomics workflow for prep1 
prep2 clpt1 clpt2 (aabbccDd) and wt plants.  Total leaves were harvested at growth 
stage 1.11, 24 days for the wt and 29 days for the mutant. Plants were grown on soil 
under a 10-h/14-h light/dark cycle at 100 µmol photons.m

-2
.s

-1
. Supplemental Table 

3.9A,B summarizes the identified proteins, their annotations, quantification and fold 
changes with the statistical significance levels (p-values and false-discovery rates) 
of differences between genotypes. 

(C) Principle component analysis (PCA) based on NadSPC of both genotypes.  

(D) Correlation coefficients between genotypes and replicates based on NadjSPC 

 



213 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C D 



214 
 

 

 

Supplemental Table 3.2 Comparative total leaf proteome analysis of wt, prep1 
prep2, oop and prep1 prep2 oop. 

(A) Comparative proteomics of wt and mutants. All identified proteins, their 
annotation, spectral count data and significance analysis. 

(B) Significant differentially regulated proteins between wt and mutants. 

(C) Identified peptides unique to prep prep2 and the triple mutant that verify 
altered N-terminal processing observed in TAILS experiments. 

Accession Protein Description
Pred
. Nt

Exp. 
Nt

P1 Peptide wt oop
prep

1 
prep

triple
Peptide 
Class, 

(Fig.3.3)

AT3G27830.1 RPL12-A 59 51 R ATHLRPIAAVEAPEKIEK 6 6 1

AT1G55490.1 Cpn60-beta-2 54 426 K LSGGVAVIQVGAQTETELK 2 3 24 4

AT1G42970.1 GAPB 46 46 R MSSIGGEASFFDAVAAQIIPK 1 1 3

47 M SSIGGEASFFDAVAAQIIPK 2 5 3

AT3G45140.1 lipoxygenase LOX2 57 55 A SRANIEQEGNTVKEPIQNIK 4 1 3

AT3G62030.1 ROC4 78 78 K SM(ox)AAEEEEVIEPQAK 1 8 6 3

78 K SMAAEEEEVIEPQAK 4 4 3

AT3G52960.1 PrxII E 71 63 R SFATTPVTASISVGDKLPDSTLSYLDPSTGDVK 8 8 1

AT4G21210.1 phosphatase/kinase 87 19 S NLNPNSKPAGSDSVSLNASEPGSER 2 5 1 or 2

26 K PAGSDSVSLNASEPGSER 3 1 or 2

AT5G38430.1 RBCS-1b, RBCS-2b 55 39 K ANNDITSITSNGGR 1 2 1

AT5G38410.1 RBCS-3B 55 42 K DITSIASNGGR 1 1 1

AT1G67090.1 RBCS-4 55 29 K SSAAFPATR 2 1

53 R VNCM(ox)QVWPPIGK 4 7 1

53 R VNCMQVWPPIGK 1 1

AT3G60750.1 TKL-1 66 66 R AAAVETVEPTTDSSIVDK 6 6 22 15 3

66 R AAAVETVEPTTDSSIVDKSVNSIR 1 3 2 3

AT5G54770.1 THI1 46 46 R ATTAGYDLNAFTFDPIKESIVSR 13 14 3

AT3G54890.1 LHCI-1-1 - LHCI-730 36 26 K FVSAGVPLPNAGNVGR 2 3

AT1G29910.1 LHCII-1.1 24 17 K AVNLSPAASEVLGSGR 11 7 3

20 N LSPAASEVLGSGR 8 7 3

AT2G34430.1 LHCII-1.4 24 20 K LSPAASEVFGTGR 4 5 1

AT2G05100.1 LHCII-2.1 31 219 R LAMFSMFGFFVQAIVTGK 4 9 4

AT5G54270.1 LHCII-3 23 23 K ASSFNPLRDVVSLGSPK 3 3

40 K YTM(ox)GNDLWYGPDR 6 7 3

AT1G15820.1 LHCII-6 - CP24 47 43 K TLIVAAAAAQPK 2 3

AT5G02120.1 Ohp1 or Lil2/Hlip/Scp 41 42 A AKLPEGVIVPK 2 3

AT1G79040.1 psbR 41 7 M LSSVTLKPAGFTVEK 1 1 or 2

AT4G04640.1 CF1y - atpC 43 10 M WVSSKPSLSADSSSLSFR 2 1 1 or 2

AT1G20020.1 FNR-2 56 56 K AQITTETDTPTPAK 5 3 3

AT3G04790.1 PRI 38 38 K AQSVALSQDDLKK 2 3 3

38 K AQSVALSQDDLK 2 1 3

Supplemental Figure 3.2 C. SUM SPC
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Supplemental Table 3.3 List of TAILS and peptidome experiments conducted. 
Table display genotypes compared to wt, type and age of tissue at harvest and 
method variations. (A) TAILS. (B) Peptidome 

 

Peptideome 
Experiment

Sample 
No. 

biological 
replicates

Plant age 
at harvest

Peptidome 
method

1 wt 3 26 Days 3
prep1 prep2 3 26 Days 3

2 wt 2 26 Days 3
prep1 prep2 2 26 Days 3

3a wt 3 3 weeks 1, 2
3a prep1 prep2 1 3 weeks 1, 2

3b
prep1 prep2 clpt1 clpt2 

(aabbccDd) 
3 4 weeks 1, 2

4* wt 2 7 weeks 3
prep1 prep2 2 7 weeks 3

* Experiment using purified chloroplast extracts. (1) Based on Lyons 
and Fricker, 30 kDa molecular weight (MW) cutoff filter. (2) As per 
method 1 except with trypsin digest. (3) Based on Xu et al. 10 or 30 
kDa MW cutoff filters. 

Supplemental Table 3.3 B

TAILS 
Experiment

Genotype compared     
to wild type

No. 
biological 
replicates

Method variation Tissue used
Plant age at harvest for 
wild type and mutant 

respectively

1 prep1  prep2  oop-2 3
Total soluble 

leaf
20 and 28 days

2 prep1  prep2  oop-2 3*
Low molecular weight TAILS 

variant 
Total soluble 

leaf
20 and 28 days

3A prep1  prep2  oop-2 3 Stroma 6, 7 and 8 weeks

3B prep1  prep2  oop-2 1 Stroma 4 and 6 weeks

4 prep1  prep2 3 Stroma 7 weeks

5A prep1  prep2 3*
High molecular weight TAILS 
variant digested with trypsin 

Stroma 7 weeks

5B prep1  prep2 3*
High molecular weight TAILS 

variant digested with GluC
Stroma 7 weeks

6
prep1  prep2 clpt1  clpt2 

(aabbccDd)
3 Stroma 7 and 9 weeks

7 clpt1  clpt2 3 Stroma 7 and 8 weeks

8 prep1  prep2  oop-2 3*
Low molecular weight gel, 

whole protein dimethyl labeling
Stroma 6, 7 and 8 weeks

Supplemental Table 3.3 A

* no label swap
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Supplemental Table 3.6. Mitochondrial protein N-termini, processed by ICP55. 
N-terminal sequences identified in wt and prep1 prep2 oop total leaf extracts, 
relative abundances determined by TAILS. Peptide peak areas were calculated in 
Skyline. 

Acession N-terminal peptide
AVG 6 reps 

(MU/WT)
STDEV

AT4G32915.1 SYSSDSDSSVLQPPDVAR 0.8 0.1
AT1G48030.1 ASSGSDENDVVIIGGGPGGYVAAIKASQLGLKTTCIEKR 0.8 0.1
AT3G06050.1 SKLAEGTDITSAAPGVSLQKAR 1.1 0.1
AT3G13930.1 SSSSDLPPHQEIGMPSLSPTMTEGNIAR 1.1 0.3
AT5G08670.1 ATSSPASSAAPSSAPAKDEGKKTYDYGGKGAIGR 1.6 0.6
AT5G55070.1 SSDSGDVVEAVVPHMGESITDGTLAAFLKKPGDR 1.0 0.1
AT5G23140.1 YSLIPMVIEHSSR 0.9 0.1
AT5G23140.1 SLIPMVIEHSSR 1.0 0.4

Supplemental Table 3.6
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CHAPTER 4 

PLASTOGLOBULE LOCALIZED METALLOPEPTIDASE PGM48 IS A 

POSITIVE REGULATOR OF SENESCENCE IN ARABIDOPSIS THALIANA1 

4.1 ABSTRACT  

 Plastoglobuli (PG) are thylakoid-associated monolayer lipid particles with a 

specific proteome of ~30 PG core proteins and isoprenoid- and neutral lipids. During 

senescence, PG increase in size, reflecting their role in dismantling the thylakoid 

membrane. Here we show that the only PG-localized peptidase, PGM48, acts as a 

positive regulator of leaf senescence. We discovered that PGM48 is a member of the 

M48 peptidase family with PGM48 homologs forming a novel clade (M48D) only 

found in photosynthetic organisms. Unlike the M48A, B, C clades, members of M48D 

have no transmembrane domains, consistent with the unique subcellular location, the 

PG. In vitro assays showed Zn-dependent proteolytic activity and substrate cleavage 

upstream of hydrophobic residues. Overexpression of PGM48 accelerated natural leaf 

senescence, whereas suppression delayed senescence. Quantitative proteomics of PG 

from senescing rosettes of PGM48 overexpression lines showed a dramatically 

reduced level of CAROTENOID CLEAVAGE ENZYME 4 (CCD4), and significantly 

increased levels of senescence-induced ABC1 kinase 7 (ABC1K7) and PHYTYL 

ESTER SYNTHASE 1 (PES1). Yeast-2-hybrid experiments identified PG core 

proteins ABC1 KINASE 3, PES1 and CCD4 as PGM48 interactors, whereas several 

other PG-localized proteins and chlorophyll degradation enzymes did not interact. We 

                                                           
1 AUTHOR CONTRIBUTIONS NHB, GF, ER designed and performed the 

experimental analysis, KM carried out co-expression analyses. GF and ER carried out 

the mass spectrometry analyses. KJVW provided oversight over the project, helped 

design the various and wrote the paper together with NHB. 
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discuss mechanisms through which PGM48 could possibly accelerate the senescence 

process.  

 

4.2 INTRODUCTION  

 Plastoglobuli (PG) are lipoprotein particles found in plastids of most plant 

tissues. In chloroplasts, PG are contiguous with the outer lipid leaflet of the thylakoid 

membrane which is compatible with channeling of hydrophobic metabolites between 

the thylakoid membrane and the PG (Austin et al, 2006).  Chloroplast-localized PG 

size typically ranges from 45 to 60 nm, but increase dramatically in size in senescing 

or stressed chloroplasts (e.g. light stress, nitrogen deprivation) of wild-type (wt) plants 

and in various chloroplast mutants (Austin et al., 2006; Lundquist et al., 2013).The 

dynamic response of PG suggest that they play a functional role in chloroplast 

biogenesis, senescence and stress response (Rottet et al., 2015). 

PG contain various prenyl-lipids, in particular tocopherol, various quinones 

(plastochromonal 8, phylloquinone, plastoquinone), carotenoids and fatty-acid 

phytylesters, as well as triacylglycerols (TAGs) (Gaude et al., 2007; Zbierzak et al., 

2009; Eugeni-Piller et al., 2011; Lippold et al., 2012). Mass spectrometry (MS) 

analysis of isolated PG proteins and quantitative comparison to the thylakoid, stromal 

and total leaf proteomes showed that PG contain a small but specific proteome of a 

~30 proteins, assigned the PG core proteome, (Vidi et al., 2006; Ytterberg et al., 2006; 

Lundquist et al., 2012) and several additional proteins that are recruited to PG under 

stress conditions and in mutant backgrounds (Lundquist et al., 2013). The most 

abundant PG proteins are several members of the plastid-specific FIBRILLIN family 

(FBN) (Singh and McNellis, 2011) and members of the ACTIVITY OF BC1 

COMPLEX KINASE (ABC1K) family (Lundquist et al., 2012). Other PG core 

proteins include a well-studied tocopherol (vitamin E) cyclase (VTE1) (Porfirova et 

al., 2002), a key enzyme in tocopherol and plastochromanol biosynthesis, and 

PHYTYL ESTER SYNTHASE 1 and 2 (PES1,2) involved in the formation of 

phytylesters following cleavage of chlorophyll and thylakoid lipids (Lippold et al., 



219 
 

2012). PG-localized NADP(H) dehydrogenase C1 (NDC1) is involved in vitamin K 

biosynthesis (phyllo-quinone) (Fatihi et al., 2015) and in reduction of oxidized 

plastochromanols within PG (Eugeni-Piller et al., 2011). PG core protein CCD4 and 

its homologs in various plant species (Martinez et al., 2008)are involved in carotenoid 

cleavage, in particular 9,10 and  9’, 10’ positions, resulting in one or more 

apocarotenoids, especially β-ionone (Rubio et al., 2008; Huang et al., 2009). An 

Arabidopsis thaliana (further referred to as Arabidopsis) genome-wide association 

study identified CCD4 as a major negative regulator of seed carotenoid content 

(Gonzalez-Jorge et al., 2013); ccd4 loss-of-function mutants exhibited increased -

carotene content upon seed desiccation and much higher carotenoid levels than the 

wild-type after dark-induced leaf senescence. Arabidopsis CCD4 is also implicated in 

an apocarotenoid signaling cascade leading to inhibition of chloroplast and leaf 

development in Arabidopsis (Avendano-Vazquez et al., 2014; Hou et al., 2016). White 

color petals of Chrysanthemum were converted into yellow color petals by RNAi-

mediated suppression of the CCD4 homolog CCD4a, indicating its cleavage of 

carotenoids into colorless compounds (Zhu et al., 2010). In mandarin fruit, a CCD4 

homolog was reported to be involved in cleavage of β-cryptoxanthin and zeaxanthin to 

yield a red pigment, β-citraurin (Rubio et al., 2008). Collectively this shows that the 

CCD4 clade cleaves a variety of carotenoids into various apocarotenoids and that 

CCD4 in leaves plays a role in leaf development and retrograde signaling; however the 

signaling molecules and pathway are not known (Hou et al., 2016). Other PG core 

proteins have various predicted functional domains, such as two UBI-E methyl-

transferases (UBIE-MT1,2) (related to E. coli UbiE involved in methylation of 

reactions in both ubiquinone and menaquinone biosynthesis (Lee et al., 1997)), but 

their functions have not yet been studied. We also identified a low abundant putative 

peptidase of the M48 family, here assigned PGM48. The functions and targets of 

PGM48 are unknown and PGM48 is the focus of this paper. 

Based on publicly available Arabidopsis genome-wide mRNA data, we 

previously generated a co-expression network using the PG core proteins as nodes 

(Lundquist et al., 2012). This suggested four major co-expression modules, each 
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showing functional enrichment, including senescence, chloroplast proteolysis, 

carotenoid metabolism, chloroplast redox regulation, the Calvin cycle and chloroplast 

biogenesis. The senescence module was formed around PG-localized ABC1K7, PES1, 

PGM48, PG-ASSOCIATED SENESCENCE GENE (PGSAG; AT1G73750) and 

included the co-expressors PHEOPHYTENASE (PPH) and PHEIDE a OXYGENASE 

(PaO) both involved in chlorophyll degradation. Leaf senescence is a highly regulated 

process, involving expression of thousands of genes, and resulting in chlorophyll 

degradation, loss of photosynthetic activity and remobilization of the chloroplast 

constituents for seed development or other tissues (Breeze et al., 2011; Schippers, 

2015; Schippers et al., 2015). During senescence, internal structures within 

chloroplasts are dismantled and the PG increase in size during this process, suggesting 

their direct involvement in senescence.  Comparative, quantitative metabolite analysis 

of leaf PG isolated from four stages of natural senescence in beach leaves (Fagus 

sylvaticus) showed that in particular, prenylquinones and free fatty acids, but not 

glycolipids or proteins, accumulated in PG during the senescence process (Tevini and 

Steinmuller, 1985). Whereas only very small amounts of chlorophylls and carotenoids 

or lipids were observed in PG prior to senescence, during natural senescence, the TAG 

content dramatically declined in PG, whereas carotenoids (mostly in esterified form) 

and free FA levels strongly increased (Tevini and Steinmuller, 1985). However, the 

removal of protein complexes must also involve protein degradation, but despite major 

efforts by labs around the world, no intra-plastid peptidase has been shown to be 

involved in leaf senescence (Martinez et al., 2008; van Wijk, 2015)). 

Here we studied the function of PGM48 both in vitro and in vivo in 

Arabidopsis. This shows that PGM48 is a M48-type metallopeptidase with a 

conserved HExxH metal binding site. Phylogeny indicates that PGM48 forms a 

specific clade of peptidases only found in photosynthetic organisms; we named this 

subfamily M48D. We discuss the likely evolutionary origin of this subfamily and 

compare it to M48A, M48C, M48B subfamilies. Importantly, we discovered that 

overexpression of PGM48 accelerated natural leaf senescence whereas suppression of 

PGM48 by RNAi delayed senescence. Quantitative proteomics of PG from senescing 
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rosettes of overexpression lines showed a dramatically reduced level of carotenoid 

cleavage enzyme 4 (CCD4), and significantly increased levels of ABC1 kinase 7 

(ABC1K7) and PHYTYL ESTER SYNTHASE 1 (PES1). Furthermore, we show that 

PGM48 physically interacts with PES1, CCD4 and ABC1K3 but not with chlorophyll 

catabolic enzymes. We discuss how PG-localized PG48 can possibly contribute to leaf 

senescence. This is the first intra-plastid protease directly linked to the leaf senescence 

process.  

 

4.3 RESULTS 

 

4.3.1 PGM48 is a low abundant PG-localized protein in Arabidopsis 

 PGM48 was identified by tandem mass spectrometry (MS/MS) in purified PG 

from leaves using a LTQ-Orbitrap mass spectrometer in Arabidopsis (Lundquist et al., 

2012; Lundquist et al., 2013), as well as maize (Huang et al., 2013). PGM48 was 

never observed in any other samples than purified PG, despite hundreds of MS/MS 

analyses of Arabidopsis or maize leaf, chloroplast or thylakoid fractions carried out in 

our lab over the last decade (see PPDB) or by others for isolated chloroplast envelope 

membranes of Arabidopsis (Ferro et al., 2010) or other plant species such as Pisum 

sativum, Medicago sativa or Zea mays (Manandhar-Shrestha et al., 2013; Simm et al., 

2013; Gutierrez-Carbonell et al., 2014). Furthermore, MS/MS analysis of many PG 

preparations (Lundquist et al., 2012; Lundquist et al., 2013) and this paper, resulted in 

high sequence coverage of the mature portion of PGM48. No peptides were detected 

matching against the predicted chloroplast transit peptide (cTP) (Supplemental Figure 

4.1), which is consistent with a plastid location of PGM48; the most N-terminal 

residue was R61, immediately down-stream of a cysteine, as frequently observed for 

chloroplast proteins (Rowland et al., 2015). To further verify localization across 

chloroplast compartments, we purified thylakoid, stroma and PG proteomes from 

isolated chloroplasts and probed distribution with specific antisera for stroma 

(CPN60), thylakoids (LHCB1) and PG core proteins ABC1K1 and ABC1K3. 



222 
 

Consistent with our proteomics data, PGM48 signal was highly enriched in PG similar 

as ABC1K1, ABC1K3 and VTE1 and unlike CPN60 or LHCB1 (Figure 2.1A). We 

conclude that PGM48 is highly enriched in PG and likely carries out its peptidase 

function in this specialized compartment.  

  

4.3.2 PGM48 is a functional metallo Zn-endopeptidase 

 To test if PGM48 is a functional peptidase, we expressed mature (i.e. starting 

from R61; excluding the cTP) Arabidopsis PGM48 with a histidine tag in E. coli and 

the recombinant protein was affinity purified. PGM48 was incubated with β-casein as 

substrate and degradation was visualized by Coomassie staining after separation by 

SDS-PAGE (Figure 2.1B). β-casein was degraded by PGM48 and this activity was 

completely inhibited by addition of the metal chelator EDTA (Figure 2.1B). Other 

peptidase inhibitors including the cysteine peptidase inhibitor E64 and metallo-

aminopeptidase inhibitor bestatin partially inhibited degradation, whereas chymostatin 

(an inhibitor of various types of peptidases) did not inhibit PGM48 activity. Through 

site-directed mutagenesis of the conserved metal binding HEXXH in PGM48 (see 

Figure 2.1C - lower panel with the sequence logo based on angiosperm PGM48 

homologs), we replaced H191 or E192 into A191 or D192, respectively. Recombinant 

mutated PGM48 (PGM48-H191A and PGM48-E192D) completely lacked peptidase 

activity (Figure 2.1C – upper panel), clearly showing that PGM48 is a functional 

metallo-endopeptidase.  

To determine cleavage site specificity, recombinant active PGM48 and 

inactive PGM48-H191A were each incubated with β-casein, and following desalting, 

peptide products were analyzed by high resolution MS through direct infusion. Figure 

1D shows an MS spectrum from extracts of the active PGM48. The dominant peaks 

matched to eight peptides as determined by MS/MS ranging from 1.7 to 5.0 kDa 

(Figure 2.1D); these peptides were absent in PGM48-H191A (Supplemental Figure 

2.2). The methionine containing peptides were also observed with oxidized 

methionine residues and/or in different charge states (due to the ionization process in 

the MS source) allowing us to account for almost all ions in the mass spectrum (see  



223 
 

 

 

Figure 4.1. PG-M48 is localized in PG and has Zn-metallo-dependent 
endopeptidase activity cleaving upstream of hydrophobic residues. 

(A) Proteomes from isolated chloroplasts, thylakoid membranes, stroma and 
PG were separated by SDS-PAGE, transferred to membranes and blotted with 
specific antisera against PG core proteins PGM48, ABC1K1, ABC1K3, VTE1, 
as well as LHCB1 (marker for thylakoid membrane) and CPN60 (marker for 
stroma). 15 µgram protein was loaded for chloroplast, stroma and thylakoid 
fractions and ~5 µgram protein was loaded for PG – due to the extremely high 
lipid/protein content, protein concentrations are difficult to measure accurately. 
The Ponceau stained membrane (lower panel) serves as loaded control. RBCL 
– Rubisco Large Subunit (also marker for stromal proteome); LHCII - family of 
major LHCII proteins. 

(B) Recombinant PGM48 (1µg) was incubated for 3 hrs at 37°C with β-casein 
(4 µg) to determine the peptidase activity and the effects of peptidase inhibitors 
E64 (1 mM), Bestatin (1 mM), Chymostatin (1 mM) and the metal chelator 
EDTA (5 mM). EDTA inhibited PGM48 peptidase activity completely. 

(C) Metal dependency of PGM48. Upper panel shows in vitro proteolytic 
activity of recombinant PGM48 and PGM48-H191A and PGM48-E192D 
mutated in their predicted metal binding site (HExxH). PGM48, but not 
mutated PGM48, shows peptidase activity. The lower panel shows a sequence 
logo for the conserved metal binding motif of eleven PGM48 homologs in 
angiosperms (for a complete list of homologs see Supplemental Table 1). Color 
coding: Green: T, G, S, Y, C – uncharged, polar; Pink: N,Q –uncharged polar 
amine; Red: D,E – Acidic; Blue: K, R, H – basic; Black: A, V, L, I, P, F, W, M 
– apolar.  

(D) PGM48 cleavage sites of β-casein as determined by mass spectrometry. 
The lower panel shows a high resolution MS spectrum (from the Orbitrap 
portion of the LTQ-Orbitrap) of a casein digest by PGM48. Positive charged 
peptides matching to casein peptide fragments are marked; m/z values and 
charge states are indicated. The upper portion shows the C-terminal portion of 
β-casein and the identified peptides as indicated by horizontal lines with the 
respective m/z value and associated charge states. The boxed inset shows the 
inferred cleavage sites with the β-casein sequence. Collectively, this shows that 
PGM48 prefers cleavage upstream of hydrophobic residues (methionine (M), 
phenylalanine (F), leucine (L), isoleucine (I) (in black) or Tyrosine (Y) (in 
grey). Other colors: Green: Q,S – uncharged, polar; D,E – acidic in red; K,R,H 
– basic in blue; remaining residues in black. 
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Supplemental Table 2.1). The detected fragments correspond to cleavage sites 

depicted in the sequence of PGM48, and displayed in the Figure 2.1D insert, with a 

clear preference for cleavage immediately upstream of hydrophobic residues (L, I, M, 

F or Y) and downstream of hydrophobic (L, W, P) or polar residues (A,S).  

 

4.3.3 PGM48 homologs form a new clade in the M48 family 

 PGM48 belongs to the M48 family of ATP-independent metallo (Zn)-

endopeptidases as defined in the MEROPS peptidase database (Rawlings et al., 2016). 

According to MEROPS, the M48 family has 3 clades, M48A, M48B and M48C, each 

represented by a prototypic enzyme named STE24 or CAAX peptidase, bacterial 

HTPX and mitochondrial OMA1, respectively (see INTRODUCTION for references). 

However, sequence analysis of M48 proteins in 42 species across the tree-of-life, 

suggests that there are four clades (Figure 4.2; Supplemental Table 4.2; Supplemental 

Dataset 4.1 for alignments), with PGM48 and its homologs forming a separate clade 

that we assigned M48D. We briefly discuss the distribution of these M48 clades across 

phylogenetic groups and comment on known functions, followed by a hypothesis for 

the origin of PGM48 proteins in plants. 

Clade M48A consists of well-studied peptidases localized to the endoplasmic 

reticulum (ER) or inner nuclear membrane in photosynthetic and non-photosynthetic 

eukaryotes, and STE24 homologs in non-photosynthetic bacteria, but absent in 

Archaea and photosynthetic bacteria. Eukaryotic STE24 are membrane proteins 

(multiple transmembrane domains) with a large hollow barrel-shaped chamber 

enclosing the catalytic site. They function to cleave C-termini of proteins with a 

CAAX motif carrying a cysteine linked prenyl group. Recently, STE24 has also been 

shown to clear clogged SEC protein translocons, in addition to its function in CAAX 

processing (Ast et al., 2016). Angiosperms, gymnosperms, lycopod, moss and most 

red/green algae each have a single STE24 homolog (Figure 4.2, Supplemental Table 

4.2). Arabidopsis STE24 is ER-localized and cleaves prenylated CAAX proteins 

(Bracha et al., 2002; Bracha-Drori et al., 2008). 
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Figure 4.2.  M48 proteins are conserved in non-photosynthetic and 
photosynthetic organisms. 

Phylogenetic tree of the M48 family based on alignment of amino acid 
sequences of 92 M48 homologs from diverse archaea, prokaryotes and 
eukaryotes. Four clades are assigned and are M48A, M48B, M48C and the new 
clade M48D and bootstrap values are indicated at the nodes of the tree. The 
sequence alignment is shown in the Supplemental Data File and Supplemental 
Table 1 provides a complete listing of species and number of M48 members. 
Abbreviations: Vitis vinifera (Vvi); Populus trichocarpa (Ptr); Medicago 
truncatula (Mtr); Brassica rapa (Bra); Arabidopsis thaliana (Ath); Glycine max 
(Gma); Zea mays (Zma); Brachypodium distachyon (Bdi); Hordeum vulgare 
(Hvu); Oryza sativa (Osa); Sorghum bicolor (Sbi); Picea sitchensis (Psi); 
Selaginella moellendorffii (Smo); Physcomitrella patens (Ppa); 
Cyanidioschyzon merolae (Cme); Chondrus crispus (Ccr); Volvox carteri 
(Vca); Chlamydomonas reinhardtii (Cre); Chlorella variabilis (Cva); 
Micromonas pusilla (Mpu); Synechocystis sp. PCC6803 (Syne); Anabaena 
cylindrica (Acy); Nostoc sp. PCC7120 (Nos); Synechococcus sp. PCC 7942 
(Syn); Homo sapiens (Hsa); Penicillium marneffei (Pma); Saccharomyces 
cerevisiae (Sce); Agrobacterium tumefaciens (Atu); Nitrosomonas europaea 
(Neu); Escherichia coli (Eco); Sulfuricurvum kujiens (Sku); Streptomyces 
griseus (Sgr); Bacillus subtilis (Bsu); Leptospira interrogans (Lin); Leptospira 
biflexa (Lbi); Sulfolobus islandicus (Sis); Metallosphaera 
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Clade M48B is represented by bacterial HTPX Zn-endopeptidase. Members of 

this clade are present in Archaea and in non-photosynthetic and photosynthetic 

bacteria, but not in eukaryotes (Figure 4.2). Most prokaryotes have one HTPX 

homolog (Supplemental Table 4.2). HTPX homologs have been studied in e.g. B. 

subtilis and E. coli and have shown to be integral plasma membrane metallopeptidases 

with their active side facing the cytosol. HTPX in E. coli complements the ATP-

dependent FTSH peptidase in quality control of the plasma membrane proteome 

(Akiyama, 2009).  

Clade M48C is represented by inner membrane mitochondrial OMA1. This 

clade is found in both photosynthetic and non-photosynthetic eukaryotes and non-

photosynthetic prokaryotes, but not in photosynthetic bacteria (Figure 4.2). OMA1 

homologs in eukaryotes are (most likely) localized in mitochondria; they have been 

studied in mammals, zebrafish and yeast, in particular in proteolysis of OPTIC 

ATROPHY 1 (OPA1/MGM1), a key conserved inner membrane dynamin-like 

GTPase involved on mitochondrial fusion (Bohovych et al., 2015; Korwitz et al., 

2016). OMA1 is present in angiosperms, most green and red algae, lycopods, moss 

and angiosperms, but not in the gymnosperm Picea sitchensis, either due to 

independent gene loss or perhaps incomplete genome sequence annotation (Figure 4.2; 

Supplemental Table 4.2). The OMA1 homolog in Arabidopsis has been observed in 

several mitochondrial proteomics studies (Finkemeier et al., 2011; Klodmann et al., 

2011) and homologs in maize, rice, tobacco and other plant species have predicted 

mitochondrial transit peptides. However, it appears that OMA1 function has not been 

studied in any photosynthetic eukaryotes, nor in prokaryotes. 

 Based on the cladogram (Figure 4.2), it is clear that PG-localized M48 

homologs form a separate clade; we assigned this as a new clade M48D. Proteins in 

this clade are only found in photosynthetic organisms, including cyanobacteria, green 

algae, red algae, gymnosperms (conifers) and angiosperms (Figure 4.2 and 

Supplemental Figure 4.3 for the M48D clade alone), but absent in the moss 

Physcomitrella patens and  the lycophyte Selaginella moellendorffii. None of the 

members of this new M48 clade have been studied so far, but in addition to 
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Arabidopsis PGM48, we did identify the maize PGM48 protein (GRMZM2G111200) 

in isolated PG from leaves (Huang et al., 2013). We also identified the rice PGM48 

(Os01g73910) in isolated chloroplasts with good sequence coverage (in three 

independent replicates) but not in total leaf extracts (see PPDB). PGM48 in maize, rice 

and most other angiosperms have a TargetP predicted cTP (Supplemental Figure 4.1).  

 It should be noted that Arabidopsis and other photosynthetic organism, have 

another peptidase family of CAAX proteases, named M79, that typically cleave a C-

terminal tripeptide from an isoprenylated protein; there are five Arabidopsis proteins 

in this M79 family. One M79 family member in Arabidopsis is plastid-localized 

SNOWY COTYLEDON 4 (SCO4; AT5G60750), but there is no evidence that it has 

CAAX activity (Albrecht-Borth et al., 2013).  

 

4.3.4 Structural model of PG48 and interaction with the monolayer PG 

 It is unknown how PGM48 interacts with PG, how substrates are recognized 

and interact with PGM48, or how substrates obtain access to the catalytic site. 

Fortunately, high resolution X-ray crystallography-based structures for M48 homologs 

in clade M48A from human (PDB 4AW6) (Quigley et al., 2013) and Saccharomyces 

mikatae (PDB 4IL3) (Pryor et al., 2013) (37% identity between these two STE24 

homologs), clade M48B for Vibrio parahaemolyticus (PDB 3CQB) and from clade 

M48C for Geobacter sulfurreducens (PDB 3C37) are available in the Protein Data 

Bank (http://www.rcsb.org/pdb/). Based on these available structures we built a 

homology model for mature Arabidopsis PGM48 (Figure 4.3) with the objective to 

begin answering the key questions stated above. The various scoring parameters of the 

top scoring i-TASSER model for PGM48 (see legend Figure 4.3) suggested a 

meaningful model that is suitable and sufficient to address general folding, formation 

of the active site, internal cavity and interaction with the PG. Lower scoring models 

were not further considered. The PGM48 model was most similar to the 3.8Å structure 

of human STE24. Structural analysis showed that STE24 has a seven transmembrane 

(TM) α-helical barrel structure surrounding a large, water-filled chamber, capped by 

the Zn metallopeptidase domain with the catalytic site facing into the chamber  
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Figure 4.3. 3D protein structural model for PGM48 and predicted interface 
with the PG monolayer. 

The 3D protein structural model of PGM48 was generated with i-TASSER 
(Yang, 2015) using the predicted mature PGM48 sequence (residues 48 - 344). 
The top scoring i-TASSER model for PGM48 had a C-score of -0.98 (C-scores 
range from -5 (poorest) to 2(best)), and estimated TM-score of 0.59±0.14. 
Analysis of PGM48 protein model using ProSA (Wiederstein, 2007) gave a Z-
score of -3.73, which is well within the range of scores found for protein 
structures of this molecular weight generated by crystallography and NMR. The 
protein model matched most closely to the 3.8Å structure PDB 4AW6 of the 
M48 protein STE24 from humans (Quigley, 2013). Images were generated with 
PyMol Version 1.7.4 software (Schrödinger, LLC). 

(A) Front view of STE24 structure (4AW6) in grey overlaid with the colored 
modelled PGM48.  PGM48 is colored in rainbow from blue N-terminus to red 
C-terminus. The Zn metal ion is marked in pink (not to scale). The STE24 
helices 1-7, lumenal helices (L1-3) and cytoplasmic helices (MH1, 3, 4) are 
marked using the naming from (Quigley, 2013) Helices 1, 2, 3, 7A, LH1 and 
LH2 are absent in the PGM48 model. 

(B) Front view of the PGM48 model. Helices are numbered according to 4AW6 
and the N- and C-termini are indicated; the position of the Zn ion is indicated in 
dashed pink. 

(C, D) Side-by-side comparison of the structure 4AW6 of STE24 and the 
PGM48 model using a surface representation. Amino acid side chains are 
colored in black for hydrophobic residues (Leu, Ile, Val, Phe, Trp, Ala), red for 
acidic residues (Glu, Asp) and blue for basic residues (Lys, Arg, His). 
Dimensions (in Å) and approximate location of the ER/nuclear membrane lipid 
bilayer (STE24) and postulated PG lipid surface (PGM48) (dashed lines) are 
indicated 
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(Quigley et al., 2013). Figure 4.3A shows this structure overlaid with the PGM48 

model, Figure 4.3B shows PGM48 model alone, and Figures 4.3C, D show it as a 

space filling model side-by-side with PGM48. The model quality is highest in the 

central portion of PGM48, which contains the catalytic site (residues 180 through 

265). PGM48 completely lacks the sequence corresponding to TM1, 2, 3 present in 

STE24 (Figures 4.3A, B). The PGM48 model shows no transmembrane domains, but 

it has shorter hydrophobic helices that partially overlay to TM3-7 (Figure 4.3A, B); 

this is consistent with PGM48 being associated with a monolayer particle. The 

PGM48 active site residues (H191, E192, H195 and E240) are located in the short α-

helices 7 and MH3, in close proximity to a 6 x 10Å diameter cavity, similar to that 

observed for STE24. Substrates are proposed to enter the STE24 cavity through a pore 

located close to the lipid surface. These substrates are prenylated at their C-termini 

(through the CAAX motif) and this (hydrophobic) prenyl group helps guide the 

substrate along the surface of the lipid bilayer into the central pore (Quigley et al., 

2013). After two cleavages, the C-terminally truncated substrate is released. 

Interestingly, the STE24 homolog in yeast was recently shown to clear the ER Sec 

protein translocon from proteins clogging the translocation pore (Ast et al., 2016); 

these substrates are probably not prenylated. Similarly, despite older reports of protein 

prenylation (e.g. palmityolation) in chloroplasts (Mattoo and Edelman, 1987; Parmryd 

et al., 1997) but see (Parmryd et al., 1999), no genetic or further biochemical support 

for intra-plastid prenylation have been found. Hence PGM48 is unlikely to have 

CAAX peptidase activity and it is most likely that PGM48 can cleave proteins without 

(C-terminal) lipid modifications. The model for PGM48 shows a pore situated at the 

postulated lipid interface (dashed lines) (Figure 4.3C, D) that could provide substrate 

access to the central cavity with the active site (Figure 4.3C, yellow asterisks). 

 

4.3.5 Generation of under- and over-expression lines of PGM48 

 To determine the physiological function and (candidate) substrates of PGM48, 

we obtained, confirmed and characterized Arabidopsis T-DNA insertion lines for 
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PGM48 that we named pgm48-1 (insertion in exon) and pgm48-2 (insertion in intron) 

(Supplemental Figure 4.4A). As expected, RT-PCR was not able to amplify full length 

mRNA for either line due to the relatively large size of the T-DNA, and RT-PCR 

analysis showed >2 fold reduced mRNA accumulation of the region upstream of the 

T-DNA insertion for both lines (Supplemental Figure 4.4B). MS/MS proteome 

analysis was carried out on isolated PG of pgm48-1, which identified PGM48 at 2-5 

fold reduced levels compared to wt (Supplemental Figure 4.4C). We concluded that 

neither line is a true loss-of function (null) mutant. No visible phenotype was observed 

in developing rosettes under a variety of abiotic conditions, but natural senescence was 

delayed in both alleles by about 1 week (Supplemental Figure 4.4D). 

Because both T-DNA alleles were leaky, likely weakening the phenotypes, we 

generated more complete loss-of-function mutants using silencing PGM48 by RNAi 

(driven by a 2x35S promotor). Additionally, we generated transgenic plants 

overexpressing full length PGM48 with a C-terminal StrepII tag driven by the 

constitutive 35S promotor. RT-PCR for several independent transformants (18 day old 

plants a few days prior to bolting) showed that PGM48 mRNA was several fold 

increased in overexpression (OE) lines, and reduced to nearly undetectable levels in 

RNAi plants (even when using a higher cycle number) compared to wt plants 

(Supplemental Figure 4.5A). Immunoblotting with anti-strepII antiserum confirmed 

accumulation of intact PGM48-StrepII in the OE lines (Figure 4.4A). Immunoblotting 

of purified PG from wt, OE and RNAi lines showed that PGM48 was 2-3 fold higher 

in PG from the OE-1 line but virtually undetectable in the RNAi-1 line (Figure 4.4B). 

Semi-quantitative RT-PCR mRNA analysis (low cycle number) for rosettes of 21-28-

35-42 day old plants  (grown under long day length – 18 h light) showed that PGM48 

mRNA levels were many fold higher in the OE-1 and 2 lines than wt plants, and that 

PGM48 mRNA was undetectable in the RNAi-1 and 2 lines throughout these 

developmental stages (Figure 4.4C; Supplemental Figure 4.5A). Extensive MS/MS 

protein analysis of isolated PG of wt and transgenic lines further confirmed the lack of 

PGM48 accumulation in the RNAi lines (RNAi-1 and 2) and increased levels in the 
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OE line (OE-1 and 2) (see below). Thus we successfully generated Arabidopsis lines 

with high constitutive levels of PGM48 or very low (undetectable) levels of PGM48.  

 

Figure 4.4. Overexpression and suppression of PGM48 in Arabidopsis and effect on 
mRNA levels during plant development and senescence. (A) Accumulation of 
transgenic StrepII-tagged PGM48 proteins in PG isolated from wt, OE and RNAi 
rosettes as determined by immunoblotting using specific anti-StrepII serum. (B) 
Accumulation level of endogenous and transgenic PGM48 and ABC1K1 proteins in 
PG isolated from wt, OE-1 and RNAi-1 rosettes as determined by immunoblotting. 
The ponceau stained blot is shown for loading control. 1x and 3x correspond to ~ 4 
and 12 µgram of loaded isolated PG proteins. (C) mRNA levels of PGM48, SAG12, 
SAG13, PES1, CCD4, in rosettes of wt, OE-2 and RNAi-2 lines after 21, 28, 35 and 
42 days growth under 18h light/6h dark, 130 µmol photons m-2 s-1 light intensity 
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4.3.6 PGM48 activates leaf senescence 

 During the vegetative stages of seedling development (i.e. prior to bolting), the 

under- and over-expression lines did not show a visible phenotype (not shown). 

Bolting (the switch to reproductive phase and first appearance of inflorescence) started 

between 18-21 days in all three genotypes and was completed by day 21 

(Supplemental Figure 4.5B) with the first flowers to appear at 22-25 days (under long 

day – 18 h light period). There was little change in bolting time between the three 

genotypes (Supplemental Figure 4.5B). Arabidopsis is a monocarpic plant and in 

absence of external (stress) factors, the onset of leaf senescence is driven by the 

developmental switch from vegetative to reproductive (Schippers et al., 2015). During 

these early flowering stages, the first visible signs of leaf senescence can be observed 

in the oldest leaves of the OE line, as well as wt plants (at 21-22 days), whereas the 

onset of senescence in RNAi lines was delayed by 2 days (Figure 4.5A; Supplemental 

Figure 4.5C). These differences became more pronounced in older rosettes (Figure 

4.5A; Supplemental Figure 4.5D for additional transgenic lines). Quantification of 

senescence (categorized as green, green-yellow, yellow and brown/necrotic) for the 

individual leaves shows the progression of senescence from 28 to 35 days in all three 

genotypes, clearly demonstrating the accelerated senescence in the OE line and the 

delay in the RNAi line (Figure 4.5B). Consistently, leaf chlorophyll concentrations 

were significantly lower in the OE lines and higher in the RNAi lines as compared to 

wt at 28 days (Figure 4.5C) and 35 days (Supplemental Figure 4.5E). Interestingly, the 

total carotenoid to chlorophyll ratio was significantly higher in the OE line compared 

to wt and the RNAi line (Figure 4.5C), but there were no significant differences in leaf 

5 and 6 at 35 days (Supplemental Figure 4.5E), likely because these leaves were now 

in a very advanced stage of senescence (Figure 4.5A,B; Supplemental Figure 4.5D).   

The acceleration and delay in senescence in respectively the OE and RNAi 

lines was also reflected at the mRNA level of the well-known senescence markers 

SAG12 (encoding for the papain-like cysteine peptidase located in senescence-

associated vacuoles (SAV) (Otegui et al., 2005; Carrion et al., 2013) and SAG13, a 

dehydrogenase with unknown function (Miller et al., 1999) (Figure 4.4C; see 
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Figure 4.5. Overexpression and suppression of PGM48 in Arabidopsis shows that 
PGM48 protein accelerates natural leaf senescence. 

(A) Examples of progression of natural leaf senescence of wt, OE and RNAi lines 
under 18h light / 6h dark, 130 µmol photons m-2 s-1 light intensity. Ten individual 
leaves, numbered from old to young, were separated from a plant rosette for each of 
the three genotypes at day 28 and 35.  

(B) Percentage of leaf color measured from leaf 1 to 10 for each genotype; the average 
values of for three rosette plants per genotype are presented. Dark green – healthy 
looking green tissue; light green - light green tissue undergoing degreening; yellow – 
yellow leaf section mostly devoid of visible chlorophyll; brown color - dead leaf. 

(C) Chlorophyll a + b content on fresh weight bases and total carotenoid/total 
chlorophyll ratios for leaf 5 and 6 in the 3 genotypes at 28 days, for plants as shown in 
panels A, B.  Significance levels are indicated - * p<0.05; ** p<0.01. 
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Supplemental Figure 4.5F for additional replicate). SAG12 expression was visible in 

35 days in the OE lines, but only detected at 42 days in wt and, at a much lower level 

in the RNAi-1 line. Similarly, SAG13 was visible at 28 days in the OE lines, but at 35 

days in wt, and at very low level in RNAi lines (Figure 4.4C; Supplemental Figure 

4.5F). Thus mRNA accumulation patterns confirm accelerated senescence in the 

PGM48 OE lines and delayed senescence in the RNAi lines. Thus PGM48 is an 

activator of leaf senescence. 

 

4.3.7 Effects of natural leaf senescence on the PG transcriptome and proteome 

 It is well established that the amount and size of PG increases during leaf 

senescence in many plant species (Besagni and Kessler, 2013). However, it is 

unknown if the proteome changes. To determine if the PG proteome in wt plants is 

affected by natural leaf senescence, we isolated PG from whole rosettes of plants in 

the bolting and advanced natural senescence stages. The PG proteomes were identified 

and quantified by label-free spectral counting using MS/MS after SDS-PAGE and 

tryptic digestion (Figure 4.6A; Supplemental Dataset 4.2). Whereas most PG core 

proteins did not change in relative abundance within the isolated PG, the relative 

abundance of PGM48 increased four-fold (Figure 4.6A). Furthermore, CCD4 stood 
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out for its strong, five-fold decrease during senescence.  ABC1K7 (part of the 

senescence mRNA expression module, together with PGM48 and PES1) was not 

detected in the bolting stage, but was clearly detected in the senescence stage (with 18 

MS/MS spectra) (Figure 4.6A). To understand if the proteome patterns are also 

observed at the mRNA level, we extracted the most relevant leaf mRNA expression 

data from the public domain for all genes encoding for PG proteins. A developmental 

leaf series of ten individual leaves from 17 day old rosette plants (continuous light), 

with leaf 2 being the oldest and leaf 12 the youngest, and senescent rosettes is most 

relevant here. Figure 4.6B, compares mRNA levels between senescing leaves and 

mature leaf #2 (best representing the bolting stage) for all available PG genes. This 

shows that in particular PES1, 2, PGM48 and ABC1K7 are induced during senescence, 

whereas several others, in particular CCD4, FLAVIN REDUCTASE-RELATED 1,2 

(FVR1,2), FBN8, VTE1 and UBIE-MT1 decreased. Figure 4.6C shows mRNA 

abundance levels for PGM48, CCD4, ABC1K7 and PES1 in individual leaves from 

rosettes of 17 day old (continuous light), with leaf 2 being the oldest and leaf 12 the 

youngest. mRNA for ALDO/KETO REDUCTASE (AKR) is shown for comparison as 

an example of a gene not induced by senescence. CCD4 mRNA very prominently 

increases with leaf age (upto ~ the bolting stage), but is than clearly declining in 

senescent leaves. This contrasts to PGM48 which also increases with increasing leaf 

age but continues to increase in senescing leaves. Indeed, plotting the leaf mRNA 

expression level for all PG genes shows that CCD4 and PGM48 really stand out in 

their upregulation during leaf aging (Supplemental Figure 4.6A).  

The micro-array data are consistent with the mRNA expression patterns 

observed experimentally by RT-PCR (Figure 4.4C), in that CCD4 mRNA level of the 

rosette peaks around 28 days (when only a few of the oldest leaves on the rosette show 

some senescence – Figure 4.5A,B), but is dramatically decreased in advanced 

senescing plants (35 days) (Figure 4.4C; see also Supplemental Figure 4.5F for 

independent series). In contrast, mRNA levels of PGM48, PES1 and ABC1K7 peak in 

later stages of senescence (Figure 4.4D; Supplemental Figure 4.5F). 
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Figure 4.6. PG proteome composition in wt plants during natural leaf senescence and 
mRNA levels for PG genes 

(A) PGM48 relative protein accumulation levels determined by label-free spectral 
counting quantitative proteomics of isolated PG at bolting stage and advanced 
senescence stage in wt Results from two replicates of independent PG preparations 
were analyzed; relative abundance was normalized to the total amount of PG core 
protein. Plants were grown under short day conditions (10 h light/14h dark). For the 
complete abundance data of all PG core proteins, see Supplemental Dataset 2. CCD4 
and PGM48 showed >4 to 5 fold difference between the bolting and advanced 
senescence stage. 

(B, C) mRNA expression data from publicly available microarray data for leaves from 
wt (col-0); data downloaded from http://bar.utoronto.ca/. Panel B shows the relative 
abundance ratio between mRNA from mature leaf 2 and senescent leaves for all genes 
encoding for the PG core proteome, except for FBN1B, HBP3 and ESTERASE1 for 
which no data are available. Panel C shows mRNA abundance levels of individual 
leaves from rosettes of 17 day old (continuous light), with leaf 2 being the oldest and 
leaf 12 the youngest. This genes selected are PGM48 and CCD4, and showing 
ABC1K7 and PES1 as senescence-induced genes for comparison and AKR as a gene 
not induced by senescence. CCD4 mRNA very prominently increases with leaf age, 
but is clearly declining in senescent leaves; This contrasts to PGM48 which also 
increases with increasing leaf age but continues to increase in senescing leaves.    
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4.3.8 PG proteome from OE, RNAi and wt lines during senescence 

 We then determined and compared the proteomes of PG isolated from wt, OE 

and RNAi lines from 35 days old senescing rosettes (as in Figure 5 and Supplemental 

Figure 4.5)  with three biological replicates (using OE-1, 2 and RNAi-1, 2) to provide 

insight in possible targets of PGM48 peptidase activity. This identified 29 proteins out 

of the 30 known PG core proteins (low abundant At1G73750 with unknown function 

was missing) (Supplemental Dataset 4.3). Generally, the PG proteomes of the three 

genotypes were similar with 53-59% of protein mass invested in the FBN family and 

13-20% to the ABC1K family (Figure 4.7A). However four PG core proteins 

(PGM48, CCD4, ABC1K7 and PES1) significantly (p<0.05 or <0.01) under- or over 

accumulated in the OE or RNAi lines (Figure 4.7B and Supplemental Dataset 4.3). 

PGM48 was 2.5 fold higher compared to wt and undetected in the RNAi lines, 

consistent with mRNA levels (Figure 4.7B). CCD4 decreased ~20 fold in the OE line 

(undetected in two replicates and just a few MS/MS spectra in the  3rd replicate) but 

was unchanged in the RNAi line compared to wt. ABC1K7 was 3-fold lower in the 

RNAi line compared to wt, whereas PES1 increased two-fold in the OE line and 

decreased 25% in the RNAi line.  
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Figure 4.7. PG proteome composition in wt, OE and RNAi plants during natural leaf 
senescence determined by MS/MS-based label-free spectral counting of isolated PG. 

(A) Relative mass abundance of PG core proteins and protein families normalized to 
the abundance of the sum of all observed PG proteins. 28 PG core proteins were 
observed. Proteomics data are listed in Supplemental Dataset 3 and spectral data are 
available at ProteomeXchange (see METHODS). PGs were isolated from 35 days old 
rosettes of wt, OE-1,2 and RNAi-1,2 (plants were grown under long day conditions at 
18h light/6h dark) and analyzed by MS. PG proteins were determined by label-free 
quantitative comparative proteomics. PGM48 was not identified in the RNAi lines. 
The analysis was carried out with three sets of independent biological replicates with 
two replicates for OE-1 and RNAi-1 and one replicate for each OE-2 and RNAi-2 (see 
Supplemental Dataset 3). 

(B) Statistically significant pair-wise differences of normalized abundance levels 
(using NadjSPC) for PG core proteins across the three genotypes was determined by 
student t-test. PES1, CCD4, ABC1K7 and PGM48 showed significant pair-wise 
differences (p<0.05 or p<0.01) as indicated in the bar diagram. Protein abundances 
were quantified based on the number of matched adjusted MS/MS spectra (NadjSPC). 
Data shown here are average of three independent replicate and bars indicate standard 
deviations (n=3). Abundance ratios between OE/wt and RNAi/wt of PES1, CCD4, 
ABC1K7 and PGM48 are shown in the upper panel.       
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4.3.9 PGM48 interacts with PES1, CCD4 and ABC1K3 in vitro 

 Since PGM48 shows a role in senescence, we tested if PGM48 can interact 

with chloroplast chlorophyll catabolic enzymes NYC1, RCCR, HCAR, PAO and PPH 

proteins (Sakuraba et al., 2015) in mating-based split ubiquitin yeast two hybrid 

assays. This did not identify interactions between these proteins and PGM48 (Figure 
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4.8A). However, testing interaction of PGM48 with nine PG core proteins showed that 

PGM48 interacted with PES1, CCD4, ABC1K3 and a weak interaction was also 

observed with UBIE-MET, but no interaction was found for ABC1K1, PES2, 

ABC1K7, ABC1K9 or PGSAG (Figure 4.8A). Finally, thylakoid peptidase FTSH2, 

chloroplast membrane SAG protein (AT2G20920), and senescence-induced stay-green 

protein 1 (NYE1/SGR1) did not interact with PGM48 either (Figure 4.8A).   

We then tested PGM48 interactions with PES1 and CCD4 using in vitro pull-

down assays with purified recombinant proteins expressed in E. coli. Recombinant 

PGM48 was generated with a His6 tag at the C terminus, whereas recombinant CCD4 

and PES1 were N-terminally fused with GST. Recombinant PGM48-His6 was 

incubated with recombinant GST-CCD4, GST-PES1, or GST (as negative control), 

followed by affinity purification using Ni-NTA resin. After extensive washing, bait 

protein (PGM48-His) eluted with GST-CCD4 and GST-PES1, but not with GST 

(Figure 4.8B), confirming the observation by the yeast 2H system. Subsequently, we 

probed for interactions for the same set of proteins, but this time using the GST-

fusions as bait, employing glutathione resin to capture GST-CCD4, GST-PES1, GST 

(as negative control) and testing if PGM48 is pulled down with these baits (Figure 

4.8C). We included GST-PGSAG as an additional bait. As shown in Figure 4.8C, PG-

M48 eluted with GST-CCD4 and GST-PES1 indicating a positive interaction with 

PGM48, whereas PGM48 did not elute with GST-PGSAG nor GST alone (Figure 

4.8C). Thus these reciprocal pull-down experiments further supported interactions of 

PGM48 with CCD4 and PES1. Co-immunoprecipitations of endogenous PGM48 in 

PG isolated from naturally senescing leaves using our anti-PGM48 antiserum followed 

by MS/MS, did successfully enrich for PGM48, but did not detect specific protein 

interactors. Whereas we did apply cross-linkers prior to these co-IP, it is likely that 

PGM48 interactions to target substrates are highly transient and therefore difficult to 

capture. 
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Figure 4.8. Interaction of PGM48 with other PG proteins. 

(A) Yeast two-hybrid assays for interactions between PGM48 and selected proteins. 
PGM48 was used as a bait and selected candidate proteins were used as prey. Bait 
plasmid contains Cub-PLV and prey plasmid contains NubG. NubG moiety was fused 
to the N terminus of prey proteins. The resulting plasmids were transferred into the 
different yeast strains for bait and prey. The transformed yeasts harboring bait and 
prey constructs were mated and resulting transformants were analyzed on selective 
medium lacking Ade, His, Try, Leu, Ura and Met (upper lane) and for β-galactosidase 
(β-Gal) activity (lower lane). Soluble NubG and Nub-WT were used as negative and 
positive control, respectively.  UBIE-MT1 – UbiE-methyltransferase related 1 
(AT1G78140). 

 (B) Ni-NTA resin mediated pull down of PGM48-His with GST-CCD4. Purified GST 
alone (10 µg) or GST fused CCD4 (2 µg) was incubated with purified PGM48 fused 
with His6 (2.0 µg), together with Ni-NTA resin. Input (50% of the reaction) and eluted 
samples (80%) were loaded into a SDS-PAGE gel and analyzed by silver staining.  i = 
input; pd = pull-down eluate. 

(C) Ni-NTA resin mediated pull down of PGM48-His with GST-PES1. Purified GST 
alone (10 µg) or GST fused PES1 (3 µg) was incubated with purified PGM48 fused 
with His6 (2.0 µg), together with Ni-NTA resin. Input (50%) and eluted samples 
(80%) were loaded into a SDS-PAGE gel and analyzed by silver staining.  i = input; 
pd = pull-down eluate. 

(D) Glutathione resin mediated pull down of GST-PES1 and GST-CCD4 with 
PGM48-His. Purified GST-PES1 (2 µg), GST-CCD4 (2 µg), GST-PGSAG (2 µg) and 
GST alone (10 µg) was incubated with purified PGM48-His (3 µg) recombinant 
protein, together with glutathione resin. Input (50% of the reaction) and eluted samples 
(80%) were loaded into a SDS-PAGE gel and analyzed by silver staining.   i = input; 
pd = pull-down eluate. 
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4.4 DISCUSSION 

 

4.4.1 PGM48 represent a specific adaptation of photosynthetic organisms 

 PG are plastid micro-compartments with multiple functions integrated in 

plastid metabolism, developmental transitions and environmental adaptation (van 

Wijk, 2016). The challenge is to unravel how PG and its molecular components 

contribute to plastid homeostasis. This study concerns the role of the PG-localized 

metallo-peptidase PGM48 in leaf chloroplasts. Through in vitro assays, we showed 

that PGM48 is a relatively low abundant Zn-dependent metallopeptidase and belong to 

the peptidase clan MA containing a variety of metallopeptidases. The families in clan 

MA are united by the presence of an HEXXH motif in which the two His residues are 

Zn ligands and the Glu has a catalytic function (Rawlings et al., 2016). Importantly, 

phylogenetics showed that PGM48 is part of a previously unknown clade within the 

M48 family, here assigned M48D, with proteins only present in photosynthetic 

organisms, including cyanobacteria, algae and higher plants. Moreover, unlike M48 

homologs in the other three clades, members of the M48D clade have no predicted 

transmembrane domain, further indicating that this subfamily represents a specific 

adaptation (invention) of photosynthetic organisms. The lack of TMDs is consistent 

with the complete lack of TMDs in other PG localized proteins (Lundquist et al., 

2012) and is logic given that PG are monolayer particles. In addition to PGM48 in 

Arabidopsis PG, we also identified the maize PGM48 homolog in isolated maize PG 

(Huang et al., 2013); we predict that PGM48 homologs in other plant species, as well 

as algae, are also located in PG. The phylogeny suggests that plastid PGM48 

homologs originate from the cyanobacterial endosymbiont. Most cyanobacteria have 

both PGM48 (clade M48D) and HTPX homologs (clade M48B), suggesting that the 

PGM48 members originated from gene duplication of HTPX and obtained a 

specialized function in photosynthetic organisms. The primitive lycopod Selaginella 

moellendorffii and moss Physcomitrella patens lack PGM48, but each do possess a 

member of the M48A and C clades, indicating independent gene loss in these species, 

either because these species don’t have PG or because they developed alternative 
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strategies to carry out PGM48 functions. P. patens chloroplasts can accumulate lipid-

droplets under stress conditions, but it is not clear if these are indeed PG (Wang et al., 

2009). There are several reports of PG in cyanobacteria (often named lipid particles or 

lipid droplets in the cyanobacterial literature) (van de Meene et al., 2006; Peramuna 

and Summers, 2014), but their proteome composition is not known. High-resolution 

three-dimensional reconstruction of the cyanobacterium Synechocystis sp. PCC 6803 

showed that lipid particles were abundant and that their distribution was restricted to 

thylakoids (van de Meene et al., 2006), similar as in Synechococcus sp. PCC 7002 

(Nierzwicki-Bauer et al., 1983). Their intracellular location suggests a role in 

thylakoid maintenance or thylakoid biogenesis, similar as for plastid PG. The PGM48 

homolog in Synechocystis sp. PCC 6803 (sll1280) was identified by mass 

spectrometry (Wegener et al., 2010; Liberton et al., 2016). Experimental studies on 

PGM48 in cyanobacteria may help further determine why the M48D clade evolved in 

photosynthetic organisms.   

 

4.4.2 PGM48 substrate selection, interaction and cleavage 

 The PGM48 homology model suggests that the protein in its native state has a 

hydrophobic surface suitable to interact with the PG monolayer. The pore providing 

access to the active site in the cavity is facing the aqueous phase but is not far from the 

presumed lipid surface. This would make proteins that are part of the PG the most 

likely substrate candidates. It is so far unclear how a substrate(s) is recognized by 

PGM48, similar as it is unknown how substrates for members of the other M48 clades 

are selected (see below). In case of the in vitro substrate β-casein, cleavage by PGM48 

occurred at (or from) the C-terminal end. Beta casein has very little native structure (it 

is classified as an intrinsically disorganized protein) and is highly sensitive to 

peptidase digestion. (Oldfield and Dunker, 2014). The observation that in vitro 

cleavage of beta-casein by recombinant PGM48 occurred at/from the C-terminal end 

suggest that this is the preferred confirmation of substrate presentation and cleavage. 

PG48 and its homologs in the M48D clade likely have unique properties and 
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substrates compared to the other clades, and its location in PG seems to exclude a 

general role in chloroplast proteostasis. 

 

4.4.3 PGM48 is associated with senescence and control of senescence and stay-

green mutants 

 Senescence induction depends on the developmental window. Following cell 

proliferation and expansion (Phase I), the leaf matures and become competent for 

external signals that induce senescence (Phase II). That competence increases with 

leaf age and in phase III, this will result in the initiation of developmental senescence, 

independent of external factors (Schippers, 2015; Schippers et al., 2015). A 

transcriptional network drives senescence in stage III and also involves several plant 

hormones as positive regulators (ethylene, abscisic acid - ABA, jasmonic acid -JA, 

salicylic acid - SA), or negative regulators (brassinosteroid – BR and cytokinin - CK). 

The impact of these hormones on senescence has been demonstrated though 

manipulation of TFs, signaling/receptor components or hormone biosynthetic 

pathways. For example overexpression of the TF EIN3 causes early senescence (Chen 

and Bleecker, 1995), whereas ethylene insensitive mutants ein1 and ein2 show delayed 

senescence (Li et al., 2013). Similarly, manipulation of CK biosynthesis can delay the 

onset of senescence (Gan and Amasino, 1995) because CK increases sink strength of 

the tissue (Schippers et al., 2015). During leaf senescence, thylakoid membranes and 

their protein complexes together with associated co-factors are dismantled in a 

controlled fashion (Hortensteiner, 2009; Hortensteiner and Krautler, 2011; Besagni 

and Kessler, 2013; Kusaba et al., 2013; Avila-Ospina et al., 2014; Ishida et al., 2014). 

Transmission and scanning electron microscopy, documenting dramatic increase of 

PG volume during this natural senescence process (Lichtenthaler, 1968; Tuquet and 

Newman, 1980; Tevini and Steinmuller, 1985; Ghosh et al., 1994; Guiamet et al., 

1999; van Wijk, 2016).The experimental data presented in this study, clearly show that 

over- or under-expression of PGM48 result in respectively an acceleration or delay of 

natural leaf senescence. One can therefore postulate that PGM48 i) removes a negative 

regulator (e.g. associated with BR or CK pathways), or ii) results in activation (or 
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increased levels) of positive senescence regulators or signals (e.g. associated with 

ethylene, ABA, JA or SA). However, PGM48 is exclusively accumulating in PG, 

which narrows the immediate substrate pool to the PG proteome or proteins that 

transiently interact with the PG, and eliminates direct effects on nuclear TF or extra-

plastidic enzymes.  

 

4.4.4 Hypothetical functional models for PGM48 action and role in senescence 

 The early PGM48 over-expression and late under-expression senescence 

phenotypes, indicates that M48 degrades or inactivates a protein that is either an 

(indirect) repressor of senescence or activates a protein (indirectly) required for 

senescence by partial cleavage. The metabolite composition of leaf PG isolated from 

four stages of natural senescence in beach leaves (Fagus sylvaticus) were 

quantitatively (on weight basis) compared (Tevini and Steinmuller, 1985). In 

particular, prenylquinones and free fatty acids, but not glycolipids or proteins, 

accumulated in PG during the senescence process ((Tevini and Steinmuller, 1985) and 

references therein). Interestingly, the PG content of carotenoids and carotenoid esters 

was very low in green leaves, but increased in early stages of senescence (while total 

leaf carotenoid content decreases), and then decreased to low levels in more advanced 

stages of senescence (Tevini and Steinmuller, 1985). Thus the PG participates in the 

controlled removal of carotenoids from the thylakoid membrane during the senescence 

process. The mechanism by which the carotenoid content decreases in PG is unknown.  

Based on our current observations and information from published literature, 

we propose a functional model that explain how PGM48 affects leaf senescence 

(Figure 4.9A). The model proposes that PGM48 degrades or partially cleaves one or 

more PG-localized or transiently associated PG proteins, resulting in modified 

metabolism and/or metabolite content, thereby accelerating leaf senescence through an 

unknown retrograde signaling pathway. Possible signals for induction or acceleration 

of senescence are ABA or JA. Currently, there is no direct evidence for PGM48 

substrates, but based on the data presented in the current study and insight from the 

literature, we suggest that CCD4 is a good candidate.  
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Figure 4.9. Functional models for PGM48 function in senescing chloroplasts and 
phenotype of the CCD4 null mutant during dark-induced senescence.  

(A) This model proposes that PGM48 degrades or partially cleaves one of more 
PG-localized proteins, resulting in modified metabolism and/or metabolite 
content, thereby accelerating leaf senescence through an unknown retrograde 
signaling pathway. Possible signals for induction or acceleration of senescence are 
ABA or JA. So far, no direct substrates for PGM48 have not been identified but 
we suggest CCD4 as a strong candidate (see DISCUSSION).  

(B)  The Arabidopsis ccd4 T-DNA insertion null mutant (SALK_097984) shows 
accelerated dark-induced leaf senescence after 4 days darkness as compared to wt 
as evidenced by accelerated chlorophyll degradation, whereas degradation of 
carotenoids is delayed (lower panels). Throughout dark-induced senescence, but 
not prior to darkness, carotenoid to chlorophyll ratios are higher in the ccd4 
mutant, consistent with its role in carotenoid degradation (Gonzalez-Jorge et al., 
2013). Student t-test (* p<0.1, ** p<0.05). 
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Degradation of CCD4 by PGM48 is supported by the fact that i) both PGM48 

and CCD4 locate exclusively to PG, ii) yeast-2-hybrid and in vitro protein interaction 

data suggest physical interaction between PGM48 and CCD4. The comparison of 

mRNA accumulation patterns for all genes encoding for PG proteins shows a 

strikingly similar high induction of CCD4 and PGM48, in particular as compared to 

all other PG genes (Figure 4.6 and Supplemental Figure 4.6); whereas the latter 

observation constitutes no direct proof that PGM48 degrades CCD4, it does fit the 

pattern. The very clear observations of the loss of CCD4 protein within the PG during 

senescence will require proteolytic activity and PGM48 is an excellent candidate, also 

because it is the only protease in PG. Recombinant PGM48 did not degrade 

recombinant GST-CCD4 in vitro (data not shown) but this does not exclude in vivo 

degradation, perhaps because degradation would require a monolayer lipid interface 

and/or ABC1K3 dependent activation of PGM48 or phosphorylation of CCD4.  

CCD4 as a target for PGM48 is consistent with the observed phenotype for the 

PGM48 OE and RNAi lines. The Arabidopsis ccd4 T-DNA insertion null mutant 

(SALK_097984) shows accelerated dark-induced leaf senescence after 4 days 

darkness as compared to wt, as evidenced by accelerated chlorophyll degradation and 

delayed degradation of carotenoids (Figure 4.9B). Throughout dark-induced 

senescence, but not prior to darkness, carotenoid to chlorophyll ratios are higher in the 

ccd4 mutant, consistent with its role in carotenoid degradation (Gonzalez-Jorge et al., 

2013). Consistently, carotenoid to chlorophyll ratios are also increased in the PGM48 

overexpression line during senescence compatible with reduced CCD4 activity. CCD4 

is known to function in degradation of carotenoids resulting in production of various 

volatile apocarotenoids and not only reducing carotenoid content (Gonzalez-Jorge et 

al., 2013) but also affecting leaf development though as yet uncharacterized signal 

transduction pathways (Avendano-Vazquez et al., 2014; Hou et al., 2016). PGM48 

driven degradation of CCD4 would reduce production of these apocarotenoid signals, 

and may also result in increased flux into the downstream ABA biosynthetic pathway; 

an increase in ABA levels would stimulate leaf senescence. It remains to be 

determined if PGM48 driven degradation of CCD4 is indeed the primary cause of the 
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senescence phenotypes observed. Future research is needed to obtain direct proof for 

PGM48 substrates, but identifying such direct substrate-protease relationships is 

notoriously challenging for many proteases.  

 

4.5 METHODS 

 

4.5.1 Phylogenetic analysis and mRNA expression analysis 

 To generate a phylogenetic cladogram, 88 M48 proteins from 39 species across 

the tree-of-life were aligned by using MUSCLE 

(http://www.ebi.ac.uk/Tools/msa/muscle/). The alignment is available as 

Supplemental Data text 4.1. The aligned sequences were exported in Clustal format 

and viewed in Jalview (www.jalview.org/). Sequences were then converted in 

PHYLIP format, and phylogenetic trees were generated (1000 iterations) using the 

CIPRES Web portal (http://www.phylo.org/) selecting the tool “RAxMLHPC 

blackbox”. The resulting phylogenetic tree was annotated in FigTree 

(http://tree.bio.ed.ac.uk/software/figtree/). RAxML bootstrap support values are shown 

at the nodes of the tree. In silico mRNA expression Arabidopsis tissue specific 

expression profile was derived from the e-FP browser 

http://bar.utoronto.ca/ExpressionAngler/.  

 

4.5.2 Generation of anti-PGM48 anti-serum  

 The nucleotide sequence encoding amino acids 72 to 325 of PGM48 were 

amplified by PCR. The resulting DNA fragment was ligated into restriction sites 

(BamHI and XhoI) of the C-terminal His affinity tag of the pET21a expression vector. 

BL21 E. coli cells were transformed by pET21a vector harboring this truncated 

PGM48 gene and cells were harvested from liquid culture after addition of 1mM IPTG 

for 3 h incubation at 220C. The over-expressed proteins were solubilized in 200 mM 

NaCl, 50 mM Tris, and 8M Urea at pH 8 and purified on a nickel-nitrotriacetic acid 

agarose (NTA) resin matrix. A polyclonal antibody against this truncated PGM48 
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protein was raised in rabbits by injecting purified antigen (Alfa Diagnostic 

International, Texas). Antisera were affinity purified against the same antigen coupled 

to a HiTrap N-hydroxysuccinimide (NHS) ester-activated column (GE Healthcare Life 

Science). 

 

4.5.3 T-DNA insertion mutants, genotyping and RT-PCR  

 T-DNA insertions lines pgm48-1 (SALK_082409) and pgm48-2 

(GABI_324A06) were obtained from the Arabidopsis Biological Resource Center 

(ABRC) and European Arabidopsis stock center (NASC), respectively. TDNA 

inserted plant was identified by genotyping and insertion was confirmed by DNA 

sequencing. Details on genotyping primers were listed in a table (Supplemental Table 

4.3). RNA was collected from homozygous plants and performed RT-PCR by using 

two different primers set. For transcript analysis, total RNA was extracted from 

Arabidopsis leaves using the RNeasy plant mini kit (QIAGEN). RNA was reverse 

transcribed with random hexamer primers by using Superscript III reverse 

transcriptase from Invitrogen. mRNA was normalized by ACTIN2 and the PCR 

condition was 28 cycles at 940C for 2 min, 550C for 30S and 720C for 1 min. A 

complete list of primers can be found in Supplemental Data (Supplemental Table 3). 

  

4.5.4 Generation of constitutive overexpression and RNAi lines 

 To generate transgenic plants overexpressing PGM48 (OE lines), full length of 

PGM48 cDNA was cloned by using forward and reverse primers. For a complete list 

of primers see Supplemental Table 4.3. A nucleotide sequence encoding the StrepII 

tag was added in the reverse primer before the stop codon. PCR products were cloned 

into pCR8 topo vector (in vitrogen) and verified by DNA sequencing. This clone was 

ligated into gateway pEARLYGATE100 vector (ABRC stock center) by using LR 

enzymes (in vitrogen). To suppress PGM48 gene expression through RNAi (RNAi 

lines), a partial cDNA (Nucleotide 1 to 304) was cloned into pCR8 topo vector, 

verified by DNA sequencing, and cloned into the pRNAi-GG vector containing the 

2X35S promoter (from ABRC stock center-Yan et al, 2012). These vectors were 
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transformed in to Agrobacterium and subsequently transformed into wt Arabidopsis 

by floral dip method.  

  

4.5.5 Plant Material, growth, light regimes, antibiotic selection, genotyping and 

RT-PCR  

 Transgenic plants were selected by using BASTA (for pEARLYGATE100 

vector) and kanamycin (pRNAi-GG vector) containing plates. Plants surviving on 

selective medium were genotyped and confirmed presence of the transgene and were 

transferred to soil for seed production. Plants were grown in a growth chamber with 

long day conditions (18h light/6h dark) and temperature at 220C with 130 µmol 

photons m-2 s-1 light intensity. For transcript analysis, total RNA was extracted from 

Arabidopsis leaves using the RNeasy plant mini kit (QIAGEN). RNA was reverse 

transcribed with random hexamer primers by using Superscript III reverse 

transcriptase from Invitrogen. mRNA was normalized by ACTIN2 and the PCR 

condition was 20 or 22 cycles at 940C for 2 min, 550C for 30S and 720C for 1 min. A 

complete list of primers can be found in Supplemental Table 3. 

 

4.5.6 Pigment concentrations  

 Chlorophyll and carotenoid concentrations were determined by absorbance 

spectrometry after extraction in 80% acetone (Porra, 1989). For chlorophyll and 

carotenoid determination, we collected specific leaves (leaves 5 and 6) from OE, 

RNAi and wt plants. In case of ccd4-1 mutant we have collected the leaves which turn 

to yellow after 4 and 6 day dark treatment and same leaf number was also collected 

from wt. 

 

4.5.7 PG isolation  

 The PG isolation method was from (Ytterberg et al., 2006; Lundquist et al., 

2012). For PG preparations from senescing leaves, plants were grown on soil under 

120 µmol photons m-2 s-1 with 18 hour photoperiod for 35 days. Rosettes were 

harvested and homogenized in grinding buffer (50 mM Hepes-KOH pH 8.0, 5 mM 
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MgCl2, 100 mM sorbitol, 5 mM ascorbic acid, 5 mM reduced cysteine, 0.05 % (w/v) 

BSA). Homogenate was filtered through four layers of 20-μm miracloth and thylakoid 

membranes were pelleted by centrifugation for 6 minutes at 1800xg. Thylakoid pellets 

were washed once in 4 volumes of grinding buffer and resuspended in Medium R (50 

mM Hepes-KOH pH 8.0, 5 mM MgCl2, and cocktail of peptidase inhibitors) 

containing 0.2 M sucrose. Resuspended thylakoids were sonicated 4x 5s at output 

power 23 Watts (Fischer Scientific, sonic dismembrator Model 100), returning the 

samples to ice between each sonication event. Sonicated samples were centrifuged for 

30 minutes at 150,000 xg and PG released from the thylakoid floated to the surface of 

the solution. PG were removed and combined with Medium R with 0.7M sucrose to 

achieve a sucrose concentration of 0.5M, which was then overlayed with Medium R 

with 0.2M sucrose and Medium R with no sucrose. The gradient was centrifuged 90 

minutes, 150,000 xg. The resulting floating pad of PG was removed, flash frozen in 

liquid N2, and stored at -80o C. 

 

4.5.8 Yeast two hybrid assay  

 Y2H was carried out as previously described (Bhuiyan et al., 2015). The 

coding sequence of mature PGM48 (amino acid 48 to 344) was cloned in pMetYC-

DEST vector (Grefen et al., 2007) and used as bait for interaction studies. Different 

PG localized proteins, chlorophyll catabolite enzymes, and other candidate proteins 

were cloned into pXN22-DEST or pNX32-DEST (Grefen et al., 2007) vector and used 

as prey for the interaction with bait proteins. Haploid yeast strains THY.AP4 and 

THY.AP5 were transformed by bait constructs and prey constructs, respectively. Bait 

plasmid contains Cub-PLV and prey plasmid contains NubG. NubG moiety was fused 

to the N terminus of prey proteins. Yeast strains were purchased from the ABRC stock 

center. After mating THY.AP4 and THY.AP5, diploid cells were selected growing on 

synthetic medium lacking Try and Leu. Positive colonies were subjected for testing 

interaction. Interactions between bait and prey proteins were performed according to 

the protocol described (Grefen et al., 2007). Interaction were verified by growing yeast 

colonies on synthetic minimal medium lacking Ade, His, Try, Leu, Ura and Met and 



260 
 

also by β-galactosidase (β-Gal) activity. Soluble NubG and Nub-WT was used as 

negative and positive control, respectively.  

 

4.5.9 PGM48 site-directed mutagenesis and in vitro proteolytic activity assays 

 Mature PGM48 (without cTP) was cloned by using forward (PGM48-M-FW) 

and reverse (PGM48-M-RV) primers. The forward primer contains BamHI and the 

reverse primer contains SalI sites. The resulting PCR fragment was ligated into pCR8 

topo vector and confirmed by DNA sequencing. pCR8 vector harboring PGM48 gene 

was digested by BamHI and SalI restriction enzymes. The resulting DNA fragment 

was ligated into restriction sites (BamHI and SalI) of the C-terminal His affinity tag of 

the pET21a expression vector.  

Two mutants H191A and E192D of PGM48 were constructed by using a PCR 

method. For the mutant H191A, the C terminal part of mature protein was amplified 

from pCR8 plasmid harboring PGM48 gene by using forward primer (PGM48H191A-

FW) and reverse primers (PGM48-M-RV). Forward primer M48H191AFW contains 

the mutation site CAT (His) to GCT (Ala). N terminal part of mature protein was 

amplified by using forward (PGM48-M-FW-) and reverse (PGM48H191A-RV) 

primers. Reverse primer PGM48H191A-RV contains the introduced site CAT (His) to 

GCT (Ala). The amplified two fragments were gel purified and mixed and used as 

template (1:1) for second round PCR to amplify mature protein by using the forward 

and reverse primer sets, PGM48-M-FW and PGM48-M-RV, respectively. Second 

mutant E192D was amplified the same way as H191A except for the different primer 

sets to introduce the mutation from GAA (Glu) to GAT (Asp). The PCR fragments 

were ligated into pCR8 topo vector and the mutations were confirmed by DNA 

sequencing. BL21 E. coli cells were transformed by pET21a vector harboring the 

various PGM48 constructs and cells were harvested from liquid culture after addition 

of 1mM IPTG for 3 h incubation at 220C. 

Overexpressed wt and mutants PGM48 were solubilized in 300 mM NaCl, 50 

mM Tris, 10% glycerol, at pH 8 and purified on a nickel-nitrotriacetic acid agarose 

(Ni-NTA) resin matrix. The purified protein was dialyzed by using dialysis cassette 
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(slide-A-Lyzer, Thermo Scientific) against buffer 100 mM NaCl and 50 mM Tris and 

10% glycerol. After dialysis the protein was concentrated by using microcon 

centrifugal filter units (Millipore). In vitro proteolytic activity was performed by 

incubating recombinant proteins with β-casein at 370C for 3 hrs with or without 

various peptidase inhibitors. The reaction was stopped by adding 3% SDS and then 

followed by separation of the protein products by SDS-PAGE followed by staining 

with Coomassie or silver nitrate.   

To determine cleavage site specificity, recombinant active PGM48 and 

inactive PGM48-H191A were incubated with β-casein for 3 hrs at 370 C, followed by 

desalting using C4 Ziptip (Millipore) using the manufactorers guidelines. The peptide 

mixture was directly infused into a LTQ-Orbitrap MS instrument at a flow rate of 0.3 

µL per minute through a 15 µm fussed silica emitter tip (New Objective). Samples 

were first analyzed using the orbitrap detector (FT-MS scan) at 7.5k or 15k resolution 

over a 600 to 2000 m/z range. The AGC target was set to 1 e 6, tube lens and capillary 

voltages were 200 and 60 Volts respectively. The needle voltage was 2000 Volts. 

MS/MS spectra were acquired either manually in Tune mode or by running a Data 

Dependent Acquisition (DDA) method identical to that used for proteomics (see 

below) except without LC separation. As such, MS/MS spectra were acquired for 

peptides visible in the FT-MS spectra. These MS/MS spectra were searched against 

the Swiss-Prot proteome (Jan, 2014 version, 542258 sequences) using MASCOT v 

2.4.1 (Matrix Science). For the database search the MS and MS/MS tolerance was 

3ppm and 0.5 Da respectively, no enzyme was specified and oxidized Met and 

phosphorylated Ser/Thr were chosen as variable modifications.  

 

4.5.10 In vitro protein-protein interactions  

 Mature PES1 and CCD4 were cloned into pCR8 topo vector and ligated into 

the pGEX5-1 expression vector using EcoR1 and XhoI sites. Recombinant proteins 

were expressed in E. coli BL21 cells by incubation at 220C with IPTG for 5 hours; 

solubilized proteins were purified by using glutathione resin at 40C. The purified 

proteins were dialyzed by using dialysis cassette (slide-A-Lyzer, Thermo scientific) 
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against 100 mM NaCl and 50 mM Tris-HCl (pH8) and 10% glycerol. After dialysis, 

proteins were concentrated using microcon centrifugal filter units (Millipore). To 

analyze interactions between PGM48 and PES1 or CCD4, bait and prey proteins were 

incubated at room temperature for 2-3 hours and then resin was added to the mixture 

and incubated for another 1 hour. Resin was washed by washing buffer for 5 times and 

finally resin bound protein/s was eluted by elution buffer (1.5% SDS, 50 mM Tris-

HCl (pH 8), glycerol 15%) by heating at 750C for 5 min. Interaction was visualized by 

SDS-PAGE gel and staining with silver nitrate.     

 

4.5.11 Proteomics, MS and display in PPDB and submission to public data 

repository  

 For protein identification and quantification, each gel lane was cut in 

consecutive gel slices, followed by in-gel digestion using trypsin and subsequent 

peptide extraction as described previously (Friso et al., 2011). Peptide extracts for 

each gel band were then analyzed by on-line nanoLC-MS/MS using an LTQ-Orbitrap 

(Thermo). Resulting spectral data were searched against the predicted Arabidopsis 

proteome (TAIR10), including a small set of typical contaminants and the decoy, as 

described in (Nishimura et al., 2013). Only proteins with 2 or more matched spectra 

were considered. Protein abundances were quantified according to the number of 

matched adjusted MS/MS spectra (AdjSPC) as explained in (Friso et al., 2011). MS-

derived information, as well as annotation of protein name, location and function for 

the identified proteins, can be found in the Plant Proteome Database 

(http://ppdb.tc.cornell.edu). MS-derived information, as well as annotation of protein 

name, location and function for the identified proteins can be found in the PPDB 

(http://ppdb.tc.cornell.edu/). The MS proteomics data have been deposited to the 

ProteomeXchange Consortium (Vizcaino et al., 2014) via the PRIDE partner 

repository (http://www.ebi.ac.uk/pride) with the dataset identifier PXD003684 and 

10.6019/PXD003684. 
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APPENDIX  

 

ARABIDOPSIS CHLOROPLAST LOCALIZED GLUTAMYL-

ENDOPEPTIDASE CGEP1 

5.1  ABSTRACT 

Chloroplast localized glutamyl-endopeptidase (CGEP) is an abundant plant protease of 

unknown function localized to the chloroplast stroma. CGEP has been purified from a 

variety of angiosperms and was shown to cleave small peptides C-terminal to 

glutamate (Glu) in vitro. Here I report the characterization of Arabidopsis thaliana 

CGEP with an emphasis on in vivo function. Recombinant CGEP was shown to be an 

active serine endo-protease, degrading the protein β-casein. Additionally, CGEP has 

autocatalytic activity that allows a 15 residue C-terminal peptide to be cleaved. Three 

dimensional structural modeling allowed us to make predictions about substrate 

recognition and showed that the unprocessed CGEP C-terminus is in close proximity 

of the active site. We compared the soluble chloroplast proteomes of wild type (wt) 

with that of a CGEP loss-of-function mutant (cgep-5) to determine the molecular 

phenotype and identify putative substrates. Ribosomal subunits strongly over-

                                                 
1Manuscript in preparation for submission to Plant Physiology (2017) Nazmul 
Bhuiyan, Elden Rowland, Giulia Friso and Klaas J. van Wijk 
 
The contribution of the thesis’ author to this work consisted of proteomic 
identification of cleavage sites (PICS), 3D structural modeling and N-terminal 
proteomics. Label free spectral counting was performed by GF. All other experiments 
and analysis by NB. ER wrote this first draft of the Manuscript.    
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accumulated in the mutant. N-terminal proteomics identified the C-terminal domain of 

TIC110 and a CP12 degradation product as potential substrates for CGEP.   

 

5.2 INTRODUCTION  

The alpha/beta-hydrolase fold is present in a large group (Clan SC in 

MEROPS protease database) of enzymes with diverse biological functions. These 

enzymes possess an Asp-His-Ser catalytic triad that catalyzes the hydrolysis of esters, 

lipids and proteins (Rea and Fulop, 2006). Within this group is a family of serine 

proteases named prolyl oligopeptidases (POPs) that perform a range of proteolytic 

functions. The POP family (S9 in MEROPS) is widely distributed across the tree of 

life (Venalainen et al., 2004) and its members are distinct from other well-known 

serine class proteases such as trypsin. POPs are generally ~100 kDa in molecular mass 

and are limited to the cleavage of small peptides and peptide hormones up to about 

~30 residues in length (Rea and Fulop, 2011; Van Elzen and Lambeir, 2011). 

Interestingly, its members include exopeptidases limited to the cleavage of amino, di 

or tri-peptides from the ends of peptides, and endopeptidase that are able to cleave 

internal polypeptide bonds of proteins. Furthermore, they have broad substrate 

cleavage specify being able to cleave between acidic, basic or hydrophobic amino 

acids including proline, as the name suggests (Rea and Fulop, 2006).   

Crystal structures have been solved for a number of POPs (S9 peptidase family 

members). Typically they contain an α/β-hydrolase domain, that contains the catalytic 

triad and an adjacent β-propeller domain. The two domains form bowl-like structures 

that close together to form a large central cavity, restricting access to the catalytic site 
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(Rea and Fulop, 2006). Little is known about the dynamics of substrate binding such 

as how the peptidase opens to receive peptide substrates, or if closing is a requirement 

for peptidase activity. Porcine POP has an internal cavity of ~8500 Å3 suggesting an 

upper peptide size limit of ~30 residues. Open and closed structures were solved for 

two bacterial POPs (Shan et al., 2005) indicating that the peptidase may open to 

receive substrates. Hydrogen-deuterium exchange mass spectrometry (MS) was used 

to probe structural dynamics of a human S9A. The authors suggest various modes of 

substrate gating. Interestingly, they point out that there is 4 Å pore going through the 

center of the beta propeller domain, said to be too small for substrates without a big 

shift in structure. Their results support a loop side opening model  (Tsirigotaki et al., 

2017).  

Plants and algae contain a unique subfamily of POPs, classified in the 

MEROPS as S9D, termed chloroplast glutamyl-endopeptidase (CGEP) (Rawlings et 

al., 2012). Bacterial homologues suggest this subfamily is of bacterial origin. Bacterial 

POP analysis shows some sequences with an active site motif identical to that of 

Arabidopsis CGEP (Kaushik and Sowdhamini, 2014). CGEP proteases have been 

purified from the leaves of spinach, cucumber and pea by consecutive rounds of 

orthogonal chromatography and each purified peptidase was shown to cleave synthetic 

peptides or recombinant protein substrates C-terminal to Glu (P1 position as per 

(Schechter and Berger, 1967)) (Laing and Christeller, 1997; Yamauchi et al., 2001; 

Forsberg et al., 2005). Short stretches of the protein sequences from cucumber and pea 

were identified by MS that had high similarity with the Arabidopsis protein, 

At2G46390. Laing et al showed the protease purified from spinach chloroplasts, 



275 
 

efficiently cleaved the synthetic peptide Z-Leu-Leu-Glu-βNA, but none of the other 

nine synthetic peptides tested containing a range of other amino acids including Asp, 

that has similar acidic character to Glu. Oxidized insulin β chain was digested after 

overnight incubation and the fragments corresponded to cleavage after Glu (P1 

position). Neither RUBICO, RNase nor the protein casein was digested. The ~100 kDa 

protease had an optimum pH of 8.0, was only inhibited by serine peptidase inhibitors 

and formed a homo-tetramer in solution (Laing and Christeller, 1997). Yamauchi et al 

showed that cucumber CGEP had the same cleavage specificity (using synthetic 

peptides) and oligomeric state. Additionally, they suggest that the peptidase is 

normally inhibited in vivo because they could not detect the activity in crude extracts. 

Three unidentified low molecular weight proteins were purified and shown to be 

specific inhibitors to CGEP, not inhibiting other commercial peptidases (Yamauchi et 

al., 2001). The pea CGEP studied by Forsberg et al showed similar biochemical 

properties except it was reported as a 130 kDa monomer in solution. CGEP’s ability to 

degrade the recombinant N-terminal domain (69 residues) of pea LHCII 1.1 was 

tested. Six proteolytic products were identified by MS and Edman sequencing ranging 

in length from 13 to 38 residues; for only one of the five Glu residues was no cleavage 

observed2, likely because the fragment was too small for detection by MS (Forsberg et 

al., 2005).    

                                                 
2 N-terminal domain of pea LHCII 1.1. All but the last Glu was cleaved in vitro 
(Forsberg et al., 2005). 
KSATTKKVASSGSPWYGPDRVKYLGPFSGESPSYLTGEFPGDYGWDTAGLSA
DPETFSKNRELEVIHSR 
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Our lab identified a homologue of Arabidopsis CGEP in maize that was highly 

enriched in bundle-sheath cells (surrounding the vasculature) as compared to 

mesophyll cells (Majeran and van Wijk, 2009). Quantitative label-free MS analysis 

showed that CGEP is abundant in the chloroplasts of rice, maize and Arabidopsis (van 

Wijk, 2015; Nishimura et al., 2017). Here we report a detailed structural and 

functional analysis of Arabidopsis CGEP with emphasis on its in vivo activities. The 

substrate cleavage specificity was determined at high resolution using proteomic 

identification of cleavage sites (PICS) (Schilling et al., 2011) with a peptide library 

derived from the soluble Arabidopsis proteome. We revealed that CGEP has 

autocatalytic activity in vitro and in vivo that allows a 15 residue C-terminal extension 

to be removed. Three dimensional structural modeling facilitated predictions about 

substrate recognition and showed that the protein C-terminus is in close proximity of 

the active site. We compared the soluble chloroplast proteomes of wild type (wt) with 

that of a CGEP loss-of-function mutant (cgep-5) to determine the molecular phenotype 

and identify putative substrates. N-terminal proteomics for the same material 

identified the C-terminal domain of TIC110 and a CP12 degradation product as 

potential substrates for CGEP.    

 

5.3 RESULTS 

5.3.1 Arabidopsis CGEP is an active peptidase localized to the chloroplast stroma 

Recombinant CGEP with an N-terminal GST tag (GST-CGEP) was expressed 

in E. coli and purified over glutathione-agarose beads. The protease was shown to 

almost completely digest the 25 kDa protein β-casein in contrast to previous 
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suggestions that CGEP could not degrade whole proteins (Figure 5.1 A). Inhibitor 

studies confirmed that CGEP is a serine protease. Mutation of the catalytic Ser to Arg 

(S781R, GST-SDM1) abolished its proteolytic activity towards β-casein (Figure 5.1 

B). Interestingly there was a slight increase in the molecular weight of CGEP upon 

mutation of the catalytic site that seemed too large to be caused by a single point 

mutation. Therefore we performed in-gel digestion and MS analysis of wt GST-CGEP 

and GST-SDM1. This revealed a C-terminal truncation in wt that was absent in SDM-

1 (Figure 5.2 A).  

CGEP is an abundant chloroplast protein and therefore has been therefore been 

detected many times in our comparative proteomic studies of the Arabidopsis 

chloroplast, compiled in the Plant Proteome Database (PPDB). When proteins are 

digested with trypsin, as part of the proteomic workflow, information concerning in 

vivo N- and C-terminal protein processing is often obscured (See Chapters 1 and 2). 

However, semitryptic database searches can identify non-tryptic cleavage events that 

result from endogenous protease activity. As such we were able to identify the mature 

N-terminus that results from cleavage of the chloroplast transit peptide (cTP) and a C-

terminal peptide that corresponds exactly to the C-terminal processing we observed in 

in vitro (Figure 5.2A,B).  

Mutation of C-terminal Glu residues in CGEP (SDM2 and SDM3) showed that 

CGEP was only sensitive to the E946; AE949A; E951A mutations, but not E928A and 

D931A, suggesting that only these latter glutamate residues are accessible to the active 

site (Figure 5.2A). Addition of DTT (5mM) and different salt concentrations (100-

500mM) did not affect CGEP activity (data not shown). 
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Figure 5.1. Proteolytic activity of recombinant CGEP.  
(A) Degradation of β-casein by GST-AtCGEP. (B) Mutation of active site 
serine 781 inhibits degradation of casein.  In vitro proteolytic activity was 
performed by incubating recombinant protein CGEP with β-casein at 37°C. 
The reaction was stopped by addition of  3% SDS; separation of digestion 
products by SDS-PAGE.  
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Figure 5.2. N- and C-terminal processing of CGEP. (A) Wild type and 
mutant forms of recombinant CGEP were digested and analyzed by MS 
confirming autocatalytic C-terminal processing. C-terminal cleavage/ 
processing was not observed in SDM1 and SDM2 mutants. When CGEP null 
mutants (Figure 5.7) plants were transformed with the various mutant forms of 
rCGEP, the C-terminal StrepII tag was cleaved in wild type and SDM2, but not 
in SDM1 and SDM3 that lack the active site serine and the protease recognized 
glutamate respectively. Peptides identified by MS/MS are colored red. (B) 
Complete coding sequence for Arabidopsis CGEP. Tryptic peptides (red) and 
semitryptic peptides (blue) identified in PPDB demonstrate in vivo cTP 
cleavage (mature N-terminus) and C-terminal proteolytic processing. 
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5.3.2 3D structural model of CGEP 

In order to better understand CGEP peptidase substrate interactions, a 3D 

structural model was constructed using the Iterative Threading Assembly Refinement 

server (I-TASSER) (Zhang, 2008). The model was based on the mature GCEP 

primary sequence residues 63 – 961 (predicted cTP removed). The best scoring 

threading template was the crystal structure of Stenotrophomonas maltophilia 

Dipeptidyl Aminopeptidase IV (PDB 2ECFA), which is member of POP subfamily 

S9B (See section 4.1). The model shows a typical β-propeller domain (upper) and α/β-

hydrolase domain (lower) containing the catalytic triad (S781, D855 and H889) 

displayed in ball and stick representation (Figure 5.3 A). The active site is partially 

accessible through a shallow cavity ~15 Å wide by at most 10 Å high, visible from the 

front view. A very narrow cavity (< 4 Å) can also be seen from the top view, 

extending through the center of the β propeller domain (Figure 5.3A). This feature was 

noted in other POPs and is thought to be too narrow for a substrate to pass through, 

without substantial rearrangement of tertiary structure (Tsirigotaki et al., 2017). The 

structures of CGEP (rainbow from blue, N-terminus to red, C-terminus) and 

Dipeptidyl Aminopeptidase IV (gray) were overlaid for comparison (Figure 5.3 B) 

showing close alignment of alpha helices and beta sheets throughout but little to no 

alignment around the mouth of the central cavity at the N- and C-terminal regions. The 

C-score of -2.29, associated with this model is relatively low, over a range of -5 

[poorest] to 2 [best], largely due to uncertainty in the model over the N-terminal 

region (Supplemental Figure 5.1) resulting in a large proportion of random coils in the  
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Figure 5.3. CGEP 3D structural model generated with iTASSER. (A) 
Cartoon representation of CGEP with active site residues S718, D792, H826 
displayed in ball and stick representation, Colored rainbow from blue, N-
terminus to red, C-terminus. C-score=-2.29; estimated TM-score = 0.45±0.14; 
estimated RMSD = 14.4±3.7Å. (B) CGEP model colored rainbow, overlaid  
(PDB code: 2ECFA) crystal structure of Dipeptidyl Aminopeptidase IV 
Stenotrophomonas maltophilia (grey). (C) Front and top view of model for 
CGEP lacking N-terminal domain (residues 378 - 962), colored rainbow from 
blue, N-terminus to red, C-terminus. C-score=-0.93; estimated TM-score = 
0.60±0.14; estimated RMSD = 9.8±4.6Å. (D) Space filling model of structure in 
C with active site residues in pink and cleaved C-terminal extension in grey. (E) 
Space filling model of structure in D with 15 residue C-terminal extension cut, 
exposing active site residues. 
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model (Figure 5.3 A). Therefore, we generated a second model for CGEP with an N-

terminal truncation (residues 387 to 961) that provided a better C-score of -0.93, and 

left most of the structure intact including the proteolytic domain (Figure 5.3 C). This 

structure for truncated CGEP sowed that the C-terminal stretch of 15 residues that is 

auto-catalytically removed is in close proximity to the active site and its removal may 

increase accessibility to the active site (Figure 5.3 E).   

 

5.3.3 CGEP substrate and sequence cleavage specificity 

Protease cleavage nomenclature designates the residues up and down stream of 

the substrate cleavage site as Pn … P2, P1, P1’, P2’ … Pn’ (Schechter and Berger, 

1967). Based on previous reports and the C-terminal auto-catalysis event we were 

confident that cGEP was capable of cleaving substrates with Glu in the P1 position. 

However, we wished to know if Arabidopsis CGEP could cleave after other residues 

or if there were additional cleavage determinants, beyond the P1 position, sometimes 

referred to as sub-site cooperativity (Ng et al., 2009). We also wanted to better resolve 

the upper and lower substrate size limits because the results of our casein cleavage 

assay conflict with the low maximum substrate size threshold in a previous report 

(Laing and Christeller, 1997). We applied the PICS method or variations thereof 

(Schilling et al., 2011; Biniossek et al., 2016) utilizing both peptide and protein 

libraries. For each experiment we reacted the fusion proteins GST-CGEP and GST-

SDM1 as a control, with the libraries and compared the fragments by MS analysis. 

Peptide libraries were made by digesting either total soluble leaf extracts or 

chloroplast stroma with trypsin, LysC or GluC (V8) such that the generated peptides 
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contained the full range of amino acids throughout. Aliquots of these libraries were 

analyzed by LC-MS to determine the extent of protein digestion and the relative 

peptide lengths and sequences to be reacted with recombinant CGEP (Figure 5.6). The 

two different methods conducted are described below. 

In the first experiment peptide libraries were first dimethylated to block all 

primary α-amino groups (lysine side chains and amino termini) and these libraries 

were reacted with CGEP (or SDM1 as anegative, inactive protease control). Following 

digestion, the newly generated amino termini (cleaved by CGEP) were reacted with a 

cleavable biotin crosslinker that was used to enrich these peptides for analysis by LC-

MS (See MATERIALS and METHODS). For the second experiment we reacted 

unmodified peptide libraries with CGEP or SDM1 and then dimethyl labeled all 

peptides either with light or heavy stable isotope reagents (to distinguish the sample 

from the control) before mixing in equal proportions. Samples were analyzed by nano-

LC-MS/MS and peptides identified by MS/MS ion searching with MASCOT (Matrix 

Science). Across each sample the number of matched spectral counts (SPC) per unique 

peptide was summed and the list collapsed to identify cleavage events that were 

unique to the CGEP treated samples (Supplemental Table 5.1 A - E). 

We observed 351, 248 and 93 CGEP specific cleavage events (observed by at 

least two SPC and absent in control) in libraries made with trypsin, LysC and GluC 

respectively (Experiment 1). 90% of these peptides resulted from cleavage after Glu 

(Glu in P1 position).  The protein sequences 10 residues up- and 10 residues down-

stream of the cleavage sites were plotted as iceLogos (Colaert et al., 2009) in order to 

visualize the substrate cleavage preference of CGEP (Figure 5.4 A-C, right panels). 
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Figure 5.4. Icelogo plots for CGEP specific cleavage of peptide libraries 
from total soluble leaf extracts reacted with rCGEP or rSDM1; PICS 
Experiment 1. Peptides absent in control (SDM1 – active site abolished) with 
at least 2 spectral counts in CGEP samples (left panels) and peptides enriched in 
control (right panels), used to generate IceLogo. P10 through P10’, mature 
plastid proteome (cTPs removed) used as background proteome, % difference 
shown, P=0.01 (A) trypsin generated peptide library (351 and peptides 199 for 
CGEP and control respectively). (B) LysC generated peptide library (248 and 
177 peptides). (C) GluC generated peptide library (93 and 73 peptides). Please 
note that the GluC generated library contained many missed cleavages, un-
cleaved Glu residues that were subsequently cleaved by CGEP and not by 
SDM1. 
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Beyond the strong enrichment for Glu in the P1 position there was very little sequence 

preference or avoidance found in either sample apart from a 10% enrichment (P= 

0.01) for Gly in the P1’ position (Figure 5.4 A, B). We also generated iceLogos for the 

peptides unique to the inactive SDM1 control and observed a trypsin-like activity that 

was also found for peptides shared between the sample and control. Only Arg is 

observed in the P1 position because the dimethylation of Lys blocks cleavage with P1 

Lys. This likely results from some proteolytic activity carried over from the E. coli 

used to express the recombinant proteins. We blocked trypsin activity used to generate 

the library by addition of the irreversible inhibitor Pefabloc SC, and then purified the 

peptides by solid phase extraction (SPE) so we doubt this is the source of trypsin-like 

activity. This activity is also observed in controls that did not use trypsin. The second 

PICS experiment produced very similar results producing 102 and 59 CGEP specific 

peptides (present in two replicates) in trypsin and GluC libraries respectively (Figure 

5.5), showing a slight preference Thr and Gly in the P1’ position.  

We investigated whether there were any residues that prevented cleavage after 

Glu, e.g. Pro in the P1’ position that prevents cleavage by trypsin and GluC. All amino 

acids were observed at the P1’ position except for Pro (Experiment 1). However, 

proline does not favorably react with the crosslinking reagent used in this method, 

which may explain its absence. The second experiment did identify two high scoring 

peptides (with multiple SPC) with Pro in the P1’ position demonstrating that 

Arabidopsis GluC can cleave between Glu and any other amino acid (Figure 5.5).   
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Figure 5.5. Icelogo plots for CGEP specific cleavage of peptide libraries; PICS 
Experiment 2. Peptides absent in control (SDM1 – active site abolished) and 
present in both 5 ug and 10 ug CGEP samples used to generate IceLogo. P10 
through P10’, mature plastid proteome (cTPs removed) used as background 
proteome, % difference shown, P=0.02 (A) trypsin generated peptide library (102 
peptide). (B) GluC generated peptide library (58 peptide). Please note that the GluC 
generated library contained many missed cleavages, uncleaved Glu residues that 
were subsequently cleaved by CGEP and not by SDM1. (C) Peptides identified 
with N-terminal Pro identified in separate database search for mono-methylated 
peptides absent in primary database search. (D) Amino acid frequency in the P1 and 
P1’ positions) for unique, CGEP specific, peptidyl cleavages. Schechter and Berger, 
1967 protease substrate nomenclature 



290 
 

 To assess whether CGEP has a maximum or minimum size limit we compared 

the lengths of peptides in the library before and after digestion with CGEP. The largest 

peptide generated by CGEP was 29 residues in length and corresponded to a 41  

residue substrate that was identified in the library before digestion. The most common 

peptide lengths after digestion with CGEP were 12, 13 and 14 residues for libraries 

generated with trypsin, LysC and GluC respectively (Figure 5.6).  

 

Figure 5.6. Peptide library length distribution before and after reaction with 
cGEP in PICS experiments. Peptide lengths for all peptides identified in PICS 
Experiment 1 (Figure 5.4) plotted against total number of spectral counts for GluC, 
LysC and trypsin generated libraries. See MATERIALS AND METHODS for 
experimental details.   
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Additionally we performed a similar experiment using whole protein standards 

instead of peptides. Just a few protein fragments were unique to the cGEP treated 

sample including two from myoglobin that both resulted from the same cleavage site 

on the periphery of the protein (Figure 5.7). This again suggests that CGEP can cleave 

midsize proteins if the cleavage site is accessible (i.e. on the surface). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7. Proteins cleaved preferentially by CGEP in PICS type experiment 
with intact protein standards. Cleavage events unique to CGEP treated proteins 
(absent in SDM1 control) and location of cleaved sequence in 3D protein structures 
available in the Protein Data Bank.  
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5.3.5 CGEP mull mutants have no visible phenotype 

 Although CGEP is an abundant stromal protease, tDNA insertion lines that 

completely prevent accumulation of CGEP transcript or CGEP protein had no visible 

phenotype (Figure 5.8 A-D). Immunoblotting of membrane and soluble chloroplast 

fractions demonstrated that CGEP is present in the stroma and is not associated with 

thylakoids (Figure 5.8 E). The mutants were grown under various abiotic stress 

regimes including high-light, drought, cold and heat stress and again, no visible 

phenotype was observed (data not shown).   
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Figure 5.8. CGEP T-DNA insertion lines and sub-cellular localization. (A) 
Location of T-DNA insertions for established loss-of-function mutant lines. (B) 
RT-PCR with CGEP specific primers for cgep mutant lines. (C) Immunoblot 
demonstrating that CGEP protein does not accumulate in cgep mutant lines. (D) 
Representative images of wt and cgep mutant plants. (E) Immunoblot for CGEP in 
whole chloroplasts, purified stroma and thylakoid fractions. Poinceau stained blot is 
shown as a loading control. 
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5.3.6 N-terminal proteomics   

 In order to detect the proteolytic signature resulting from a loss of CGEP 

function we conducted N-terminal (Nt) proteomic analysis using the TAILS method 

(Kleifeld et al., 2011). Chloroplast stroma from cgep-5 and wild type (wt) was 

compared with five biological replicates. Two chloroplast protein fragments from 

(TIC110 and CP12) were highly enriched in cgep-5 suggesting that these fragments 

are normally degraded in the presence of CGEP, or that loss of CGEP causes up-

regulation of other proteases that act upon these protein substrates. Previously we have 

observed that the loss of chloroplast proteases results in significant restriction of 

proteolytic maturation for imported nuclear encoded proteins (Chapter 3). 

Interestingly, we observed no such effect in cgep-5 suggesting that CGEP forms a 

separate branch of the chloroplast protease network that is distinct from the central 

degrading peptidases (e.g. CLP, PREP and OOP).  

 An Nt peptide matching to Translocon at the inner envelope membrane of 

chloroplasts 110 (TIC110; AT1G06950) over- accumulated in cgep-5 (in all five 

replicates). The 27 aa, N-terminal peptide KAPEEDPVQEKEEDDEDEEWGSLESLR 

starts 660 residues downstream of the translated protein start site. There is some 

debate over the structure of the C-terminal domain of TIC110. It was suggested to 

contain four transmembrane domains spanning the inner envelope (Balsera et al., 

2009). However, the crystal structure of the C-terminal domain of TIC10 from the red 

alga Cyanidioschyzon merolae indicates that C-terminus forms a rod-shaped helix 

repeat that is exposed to the stroma (Tsai et al., 2013). The observed 27 residue 

peptide contains nine Glu so it would be a prime target for CGEP if interactions allow.  
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   The other N-terminal peptide accumulating in cgep-5 was a fragment of the 

Calvin cycle regulatory protein CP12 (AT2G47400). This protein is a redox regulated, 

intrinsically disordered protein that under low light conditions (when the protein is 

oxidized) forms a complex with GAPDH and PRK, lowering their activity and 

reducing the flux through the Calvin cycle (Lopez-Calcagno et al., 2014). When CP12 

is reduced, under conditions of high photosynthetic activity, the complex dissociates 

allowing the Calvin cycle to accelerate. A variety of Nt peptides from CP12 were 

detected, most of them unchanged in the mutant. However the Nt peptide 

ADDPVSGECVAAWDEVEELSAAASHAR, just downstream of the first redox 

regulated cysteine, strongly over-accumulated in the mutant stroma. Again this peptide 

contains multiple Glu residues that GCEP may cleave, lowering the concentration of 

this peptide in wild type. Interestingly, the overall protein abundance of CP12 (as well 

as its homologue CP12-like AT3G62410), was ~5 fold reduced in the mutant. It 

remains to be determined why the CP12 abundance is reduced and through which 

mechanisms this occurs. 
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5.5  MATERIALS AND METHODS 

 

5.5.1 CGEP site-directed mutagenesis and in vitro proteolytic activity assays  

Mature CGEP (without cTP) was cloned by using forward (AtCGEP-M-FW-

BamHI) and reverse (AtCGEP-M-RV-XhoI) primers. The forward primer contains 

BamHI and the reverse primer contains XhoI sites. The resulting PCR fragment was 

ligated into the pCR8 topo vector and confirmed by DNA sequencing. The pCR8 

vector harboring CGEP gene was digested by BamHI and XhoI restriction enzymes. 

The resulting DNA fragment was ligated into restriction sites (BamHI and XhoI) of 

pGEX vector which has an N terminal GST tag. Three mutants SDM1 (CGEP 

S781R), SDM2 (CGEP E928A D931A) and SDM3 (CGEP E946A E949A E951A) of 

Figure 5.9. N-terminal peptides from CP12 identified in TAILS experiment 
comparing wt and cgep-5 chloroplast stroma. Spectral counts are approximately 
equally distributed between wt and mutant stroma for most CP12 N-terminal 
peptides and for HSP70 and HSP90 (normalization control) except for the peptide 
ADDPVS… (high-lighted in green) found exclusively in mutant samples with 12 
matched MS/MS spectra.  
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AtCGEP were constructed by using a PCR method as described by Bhuiyan et al., 

2016. For the mutant SDM1, the C terminal part of mature protein was amplified from 

pCR8 plasmid harboring CGEP gene by using forward primer (AtCGEPS781R-FW) 

and reverse primers (AtcGEP-M-RV-XhoI). Forward primer AtCGEPS781R-FW 

contains the mutation site TCC (Ser) to CGC (Arg). The N-terminal part of mature 

protein was amplified by using forward (AtCGEP-M-FW-BamHI) and reverse 

(AtCGEP S781R-RV) primers. Reverse primer AtCGEPS781R-RV contains the 

introduced site TCC (Ser) to CGC (Arg). The amplified two fragments were gel 

purified, mixed and used as template (1:1) for second round PCR to amplify mature 

protein by using the forward and reverse primer sets, AtCGEP-M-FW and AtCGEP-

M-RV, respectively.  SDM2 was amplified the same way as SDM1 except for the 

different primer sets to introduce two mutations from GAA (Glu) to GCA (Ala) and 

GAT (Asp) to GCT (Ala). SDM3 was amplified by using AtCGEP-M-FW-BamHI as 

a forward primer and -XhoI-E946A E949A E951A-RV as reverse primer. This reverse 

primer contains three mutation sites E946A (AGT to ACT), E949A (AGC to ACC) 

and E951A (AAG to ACG). The PCR fragments were ligated into pCR8 topo vector 

and the mutations were confirmed by DNA sequencing. pCR8 vectors harboring 

different CGEP mutants were digested by BamHI and XhoI sites and resulting 

fragments were ligated into the same sites of pGEX-5 vector to fuse with GST at the N 

term of genes of interest. BL21 E. coli cells were transformed by pGEX vectors 

harboring various CGEP constructs and cells were harvested from liquid culture after 

addition of 1mM IPTG for 3 h incubation at 22ºC. Over-expressed wt and mutants 

CGEP in E.coli were solubilized in 500 mM NaCl, 50 mM Tris, 10% glycerol, at pH 8 
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and purified on a glutathione resin matrix. The purified protein was dialyzed using a 

dialysis cassette (slide-A-Lyzer, Thermo Scientific) against buffer 100 mM NaCl and 

50 mM Tris and 10% glycerol. After dialysis the protein was concentrated by using 

microcon centrifugal filter units (Millipore). In vitro proteolytic activity was assayed 

by incubating recombinant CGEP and inactive CGEP-S781R (SDM1) with β-casein 

for 6 hrs at 37°C. The reaction was stopped by addition of 3% SDS, followed by 

separation of the protein products by SDS-PAGE and visualization with Coomassie 

staining.  

T-DNA insertion mutants, genotyping and RT-PCR T-DNA insertions lines 

cgep-4 (SAIL_574_D03), cgep-5 (SALK_066117) and cgep-6 (SAIL_589_G08) were 

obtained from the Arabidopsis Biological Resource Center (ABRC) and European 

Arabidopsis stock center (NASC), respectively. Plants containing T-DNA insertions 

were identified by genotyping, and insertion was confirmed by DNA sequencing. For 

transcript analysis, total RNA was extracted from Arabidopsis leaves using the 

RNeasy plant mini kit (QIAGEN). RNA was reverse transcribed with random 

hexamer primers by using Superscript III reverse transcriptase from Invitrogen. 

mRNA was normalized by ACTIN2 and the PCR condition was 25 cycles at 94°C for 

2 min, 55°C for 30 s and 72°C for 1 min.  

 

5.5.2 Structural model 

3D protein structural models for CGEP were generated with i-TASSER (Yang 

and Zhang, 2015) using the mature CGEP sequence (residues 63 to 961) or CGEP 

with a truncated N-terminal domain (residues 387-961). The top scoring i-TASSER 
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model for CGEP (mature) had a C-score of -2.29 (C-scores range from -5 [poorest] to 

2 [best]); estimated TM-score = 0.45±0.14; estimated RMSD = 14.4±3.7Å. The top 

scoring i-TASSER model for CGEP (Nt truncation) had a C-score of -0.93; estimated 

TM-score = 0.60±0.14; estimated RMSD = 9.8±4.6Å. Images were generated with 

PyMol Version 1.7.4 software (Schrödinger). 

 

5.5.3 PICS for determination of protease cleavage specificity 

The PICS procedure was based on the methods described by Biniossek and 

Schilling (Schilling et al., 2011; Biniossek et al., 2016). To generate peptide libraries, 

1 mg protein extract (in 50 mM HEPES, 40 µg/ml bestatin, 10 µg/ml phosphoamidon) 

was mixed with an equal volume of 8M GuHCl to denature proteins. DTT was added 

to a final concentration 5 mM and the sample incubated at 65°C for 1 hr. After cooling 

to room temperature, cysteines were alkylated by addition of 15 mM iodoacetamide 

and incubation for 20 min in darkness. Excess iodoacetamide was quenched with 

10mM DTT and the sample was gradually 8-fold diluted with 200 mM HEPES, pH8. 

Samples were digested with 20 µg trypsin or GluC or 15 µg LysC per one mg protein 

at 37°C for 16 hrs in 1M GuHCl, 200 mM HEPES, pH8. Any precipitate was removed 

by centrifugation and an aliquot of the sample (1 mg) resolved by SDS-PAGE and 

silver staining to ensure the protein digestion was complete. Pefabloc-SC was added to 

a final concentration of 5 mM to inactivate the digestion protease. The peptide library 

was then acidified with formic acid and desalted using 1mL Resprep C18 columns 

(Restek Corp.). The acetonitrile in the elution buffer was removed by Speed Vac and 

the peptides suspended in 50 mM HEPES, 100 mM NaCl, pH 8 for PICS experiment 
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2. Alternatively, peptides were dimethylated prior to desalting and carried forward for 

PICS Experiment 1 (see below). 

PICS experiment 1: After digestion of the proteome (with trypsin or GluC or 

LysC), peptides were dimethylated with CD2O as per PICS experiment 2 and then 

desalted with 1mL Resprep C18 columns as described above. Purified dimethylated 

peptide libraries (120 to 170 µg) were reacted with 6.5 µg of either wild type CGEP or 

the inactive S781R mutant and incubated for 16 hrs at 37ºC. CGEP activity was 

abolished by heating at 70ºC for 10 min. To remove small molecules containing 

primary amines, samples were again desalted with 1mL Resprep C18 columns as 

described above and each sample was suspended in 100 µl 200mM HEPES, pH 8. 

Samples/peptides were then reacted with 5 µl, 10 mM Sulfo-NHS-SS-Biotin 

(Pierce/Thermo), 0.5 mM final concentration for 2 hrs at 25 C. 1 ml of Streptactin 

resin was washed 5 times with 50 mM HEPES, 150 mM NaCl, pH 8 and the resin split 

between six tubes. Above samples were then added to the resin and incubated 2 hrs at 

25ºC with shaking. Each sample was then transferred to a 0.5 ml spin filter (Pierce). 

Resin was washed 10 x with 500 µl of wash buffer with a light spin in desktop 

centrifuge to avoid drying of resin. 300 µl of 50 mM HEPES, 20 mM DTT, pH 8 was 

added and incubated for 10 minutes at 25ºC. Peptides were eluted by centrifugation 

into a clean tube followed by an additional 200 µl of the above buffer. Samples were 

desalted using Resprep C18 columns as described above and suspended in 30µl, 2% 

acetonitrile, 2% formic acid for LC/MS analysis.     

PICS experiment 2: 50 µl of peptide library (1 µg/µl in 50 mM HEPES, 100 

mM NaCl, pH 8) was mixed with 5 or 10 µl of recombinant CGEP (1 µg/µl in 50mM 
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TrisHCl, 100 mM NaCl, pH 8, 30% glycerol) or the inactive S781R mutant and 

incubated for 15 hr at 37˚C. Following reaction with CGEP, peptides were 

dimethylated with either light (control –S781R) or heavy (sample - CGEP) 

formaldehyde. 2M CH2O (‘light’ formaldehyde) or CD2O (‘heavy’ formaldehyde) was 

added to give a final concentration of 40 mM, followed immediately by addition of 1 

M NaCNBH3 to give final concentration of 30 mM. The samples were incubate for 2 

hr in thermocycler at 25ºC and then a second aliquot of CH2O and NaCNBH3 was 

added, as above, to give 80 and 60 mM final concentrations respectively and the 

samples were incubated overnight at 25˚C. The dimethylation reaction was quenched 

with 0.1 M glycine, final concentration. The sample (CGEP digested - Heavy label) 

and control (S781R digested - light label) reactions were then mixed in a fresh tube. A 

5 µg aliquot was desalted by C18 ziptip (Millipore) using the manufacturer’s 

guidelines and the peptide eluant brought to dryness by Speed Vac. Samples were 

suspended in 20µl, 2% acetonitrile, 2% formic acid for LC/MS analysis.     

For LC-MS/MS analysis 6.4 µl of each sample was loaded onto a C18 trapping 

column and then eluted onto a 15 cm x 75 µm I.D. C18 PepMap column 

(ThermoFisher) interfaced to an LTQ Orbitrap (ThermoFisher). A 90 min linear 

gradient from 3% to 40% solvent B was used to separate the peptides. A data 

dependent acquisition method was used whereby MS spectra were acquired in the 

Orbitrap at 100K resolution followed by 5 data dependent MS/MS scans were 

conducted in the ion trap. Peak lists (mgf files) for database searching were generated 

from Thermo raw data files using DTA Supercharge. The peak lists were searched 

using MASCOT 2.4 (Matrix Science) against TAIR10, appended with all reverse 
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sequences (Decoy) and common contaminants (71,149 sequences and 29,099,754 

residues). Following an initial database search performed at 30 ppm MS tolerance, 0.8 

Da MSMS tolerance, the peak lists were recalibrated as previously described (Friso et 

al., 2010), a semi-specific enzyme search was then conducted - semiArgC, semiGluC 

(V8) - allowing for 3 missed cleavages, 6 ppm MS tolerance and 0.8 Da MSMS 

tolerance. For PICS Experiment 1, fixed modifications were carboxamidomethyl Cys 

and dimethyl Lys (heavy, +32 Da), variable modifications were oxidized Met, 

pyroGlu N-term Gln, dimethyl N-term (heavy, +32 Da) and Thioacyl N-term. For 

PICS experiment 2, fixed modifications were carboxamidomethyl Cys and dimethyl 

Lys, variable modifications were oxidized Met, pyroGlu N-term Gln, acetyl N-term 

and dimethyl N-term (light, +28 Da or heavy, +32 Da). Another search including 

singly methylated N-term was conducted for select files in order to detect methylated 

Nt Pro. The database search results were parsed and sorted in Excel. 

Sequence logo and Icelogo plots were generated with Icelogo version 1.2 

(http://www.proteomics.be). The mature plastid proteome (cTPs removed) was used as 

a background to normalize for natural amino acid abundance in the library (PPDB).   
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