Index for tables

Table 1	Definitions
Tables 2—6	Engagement principles or methods
Charts 7—10	Classification charts
Tables 11—26	Model sheets
Table 27	Visual comparison
Glossary

Definitions of reciprocating-engagement (R), arctuate-engagement (A), cam-engagement (C), slip-engagement (SI), counter engagement of internal (Co) and external-axis ROPIMA.

I. **Reciprocating-engagement (R):** exclusively linear motion of engaging components.

II. **Arctuate-engagement (A):** engaging components move in parallel circular arcs. The engaging parts have equal/unequal diameters but possess equal r.p.m.\(^1\) and equal number\(^2\) of teeth.

III. **Cam-engagement (C):** rotation in same direction — in manner of engaging gears.
 a) Internal-axis machines:
 The engaging component with the small diameter and higher r.p.m.\(^1\) has fewer teeth\(^2\).
 The engaging part with larger diameter and lower r.p.m.\(^1\) has a greater number of teeth\(^2\).
 Engaging components possessing equal diameters and equal r.p.m. have equal numbers of teeth; they belong to category II; arctuate-engagement M/C.
 b) External-axis machines:
 The engaging-component with equal/smaller diameter and higher r.p.m.\(^1\) has fewer\(^2\) teeth.
 The engaging-component with equal/unequal diameter and lower r.p.m.\(^1\) possesses a larger number\(^2\) of teeth.
 The engaging-component with equal/unequal diameters and equal r.p.m.\(^1\) possess equal numbers\(^2\) of teeth.

IV. **Slip-engagement (SI) or (S\&E):** direction of rotation at contact point in same direction i.e. like rolling parts.
 a) Internal-axis machines:
 Engaging components with larger diameter and higher r.p.m.\(^1\) possesses fewer\(^2\) teeth.
 Engaging component with smaller diameter and lower r.p.m.\(^1\) possesses more\(^2\) teeth.
 b) External-axis machines:
 Slip-engagement cannot be separated from cam engagement.

V. **Counter-engagement (Co) or (C\&E):** direction of rotation at engaging point in opposite direction.

\(^1\) When an engaging component is at rest its notation is transferred to the crank-pin.
\(^2\) The term teeth is used in a broad sense and means lobes, projections etc. of components performing an engagement function.