
FOUR-BAR 

COUPLER-POINT CURVES 

6-1 THE FOUR-BAR LINKAGE 

Link,vork, in its early applications, consisted mainly of revolute­
connected members and ,vas widely used for converting the con­
tinuous rotation of a ,vater wheel into a reciprocating motion 
suited to piston pumps (Fig. 6-1). The piston-cylinder com­
bination at the end of the line represents a prismatic pair, of 
course, but ahead of this there are only the revolute connections 
generally associated ,Yith linkwork. Agricola's arrangements 
show wheel and pump--power source and point of work-fairly 
close together. Such compactness did not al,vays prevail; link­
works of magnificent proportions were also part of the past. A 
linkwork is a means of power transmission as ,vell as being a 
motion transformer. Before the introduction of rope transmis­
sions and the now universal electric wire, linkwork ,vas employed 
for long-distance transmission of power. Gigantic linkages, 
principally for mine pumping operations, connected water wheels 
at the riverbank to pumps high up on the hillside. One such 
installation (1713) in Germany ,vas 3 km long. 

Such linkages consisted in the main of ,vhat ,ve call four-bar 
linkages, i.e., planar four-revolute mechanisms, and terminated 
in a slider-crank mechanism with a prismatic pair. 
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With Watt's invention of the "straight-line motion" (I 784) the 
four-bar linkage was used in a new· \\·ay, for the significant motion output 
was not that of the follower but that of the coupler: Watt had found a 
coupler point describing a curve of special usefulness. 

The first analytical investigation of a coupler curve, the curve of 
the Watt mechanism, was undertaken by Prony,1 who examined Watt's 
"straight-line motion" for deviations (I 796). Samuel Roberts showed 
(1876) that the "three-bar curve"2-today we call it the coupler curve 
of the four-bar-is an algebraic curve of the sixth order; i.e., a straight 
line will cut it in not more than six points. Cayley and others shovved 
further properties of the curve. 1'heir interest lay in exploring linkages 
hypothetically able to g�nerate specific algebraic curves of any order: 
the applications to mechanisms ,vere to be made later. 

6-2 EQUATION OF COUPLER CURVES 3 

Derivation 

The equation of the coupler-point curve for a four-bar linkage may be 
obtained by analytic geometry. 1'he derivation presented follO'\\'S that 
of Samuel Roberts, with only slight changes in notation. The equation 
will be written in cartesian coordinates, with the x axis along the line of 
centers OA.On and they axis perpendicular to that line at OA (Fig. o -2). 
Let (x', y'), (x", y"), and (x, y) be, respectively, the coordinates of points 
A, B, and coupler point M; then 

x' = x -k cos 8 y' = y - b sin 8 
and x" = x - a cos ( 8 + 'Y) y" = y - a sin (8 + -y) 

Since A and B describe circles (or arcs of circles) about centers OA and 
0a, respectively, 

x'2 + y'2 = r2 and (x" _ p)2 + y"2 = 82 

1 Gaspard Fran90is Prony (1755-1839), engineer, was an associate of the 
famou� bridge builder Perronet and became his successor as director of the Ecole des 
Ponts et Chaussees. Also professor of mathematics at the Ecole Polytechnique, 
Prony wrote textbooks on mechanics and hydraulics but is perhaps best remembered 
for the friction brake, or absorption dynamometer.

% Only the moving links were counted and called bars. In recent years, onlY 
Svoboda ("Computing Mechanisms and Linkages," Massachusetts Institute of 
Technology Radiation Laboratory Series, vol. 27, McGraw-Hill Book Company, New 
York, 1948) has used the term "three-bar." 

s This section may be omitted at first reading. 



+ y sin f3[(x - p)2 + y 2 + a2 - s2)} 2 

y cos -y](x2 + y2 + b2 

-

FOUR-BAR COUPLER-POINT CURVES 151 

FIGURE 6-2 Coordinate system 
and notations used to derive 
equation of coupler curve. 

Substituting the values of :c', y' and x", y" into the last t,vo equations 
yields 

(x - b cos 0)2 + (y - b sin 0)2 = r2 

and (x - a cos (0 + -y) - p] 2 + fy - a sin (0 + -y)]2 = s2 

,vhich, by application of trigonometric identities and ordering of terms, 
become 

. x2 + y2 + b2 _ r2 
x cos O + y Sill fJ = 2b 

and 

[ (x - p) cos 'Y + y sin -y] cos (J - [(x - p) sin 'Y - y cos -y] sin 0 
_ 82(x _ p)2 + y2 + a2 _ -

2a 

The equation of the coupler-point curve 1nay now be obtained by
elimination of O between the last two equations. Solving these equations 
for cos O and sin 8 and substituting the values obtained into the identity 
cos2 8 + sin2 8 = I yields the general four-bar coupler-curve equation 

y 

p 

M(x,y) 

�"' - -------- �:W., ----x 
0A' 

I sin a((x - p) sin 'Y - - r2) 

- r2)+ {sin a[(x p) cos 'Y + y sin -y](x2 + y 2 + b2 

- x sin f3[(x - p)2 + y2 + a2 - s2])2 

= 4k2 sin2 a sin2 fJ sin2 -y[x(x - p) - .IJ - py cot -y]2 (6-1) 
In this, k is the constant of the sine law applied to the triangle ABAf, 

k - _!!:__ - ---�-- - Csin a sin /3 sin 'Y 
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'"fhis equation is of the sixth degree and because of its properties
also bears the forn1idable title of tricircular sextic. One of its properties 
has been n1entioned: a straight line will intersect it in no n1ore than six 
points. Its further features may be .studied either geon1etrically or 
algebraically. The geo1netric exarnination begins ,vith Sec. 6-3. An 
introduction to the algebraic study of coupler curves will be given by
considering some properties deduced by Roberts and others. As a guide 
to an understanding of the 1nethods of analytic geometry, second-order 
curves (conic sections) will be exa1nined en route. 

Circle of Foci 

On setting 
L = sin a[(x - p) sin -y - y cos -y) M = y sin /3 
N = sin a[(x - p) cos -y + y sin -y] P = -x sin /3 
</, = x2 + y2 + b2 _ ,2 "1 = (x - p)2 + .1/,. + a2 - s2 

Eq. (6-1) takes the forn1 
(Lq, + My;) 2 + (N<I> + Pf) 2 - 4k2(LP - N1Jf)2 = 0 (6-la) 

Note that the equation 
LP - lvM = 0 

or :r(x - p) + y2 - PY cot 'Y = 0 

represents a circleot passing through O.,i and OB (Fig. 6-3). For reasons 
that will appear later, this circle is called the circle of singular foci. 

Multiple Points 

A n1ultiple point of a curve, as, for exan1ple, a cusp or a crunode (see
Sec. 6-3), is a point ,vhere the curve has several tangents. We propose
to show that the coupler curve has n1ultiple points at each of its inter­
sections with the circle of foci. When a curve is defined by an equation
of the fornt 

/?(.r, y) = 0 

its tangent 1nay be found by equating to zero the differential of the 
function F(x, y), 

iJF dx + iJF d y = 0 
ex cy 

1 In rectangular coordinates every equation of the form 

.r2 + yi + Dx + Ey + F = 0 
represents a circle. 
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FIGURE 6-:3 Triangle of the singular foci OAOnOc similar to coupler 
triangle ABM. 

Since dx and dy are infinitesin1al changes in the coordinates x and y along 
the curve, they also define the slope of the tangent as 

dy aF/ax 
dx = aF/ay · 

At a multiple point, where the curve has several tangents, the above 
expression niust be indetern1inate, which n1eans that both aF/ax and 

iJF/ay must be zero to satisfy the indeterminancy. 
The left n1en1ber of Eq. (6-la) is the function F(x, y) corresponding 

to the coupler curve, whence 

� = 2(L<t> + M,f) <Ja (L<t> + Af,f) + 2(Nrt, + Pf) a� (N<I> + Pf)x 

- 8k2(LP - Nll1) _!___ (LP - NA,f) 
ax 

A similar expression is forn1ed for iJF/ay on replacing :r by y. Since 
the points of intersection of two curves are found by considering their 
equations as sin1ultaneous, the intersection of the coupler curve and the 
circle of foci is given by the pair of equations 

(Lq, + M,f)2 + (N<t> + P,f)2 
- 4k2(LP - NM)= 0 LP - NM= 0 

Since the left n1e1nber of the second equation is zero, each tern1 of the 
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first equation is like"•ise zero, and 

L<J, + Mi/I = 0 N</, + Pi/I = 0 

'fhe last two quantities serve to n1ake fJ/?/fJx and fJF /fJy zero also, thus 
satisfying the requirement of an indeterminate slope at the point of 
intersection of the t,vo curves and establishing the presence of a n1ultiple
point. 

Imaginary Points 

Further properties of the curve may be deduced fron1 its equation by 
considering in addition to real points of the plane, whose coordinates 
x and y are real nun1bers, in1aginary points having co1nplex nurnbers as 
coordinates. Complex nu1nbers of the fonn z = x + iy are used in this 
text to represent real points of coordinates x and y, in which both x and y
a.re real. 1'he situation in this section is different, because x and y are 
then1selves complex: such points are called in1aginary. As re111arked, 
these points have no geon1etric or physical meaning, for they cannot, 
with their four coordinates, represent real points in a plane. They are 
useful, however, because of their analytic resemblance to real points. 
Although no imaginary point exists in a n1aterial plane (the plane is 
already con1pletely "filled" with real points), consideration of such points
is someti111es helpful in the study of curves by n1eans of their equations.
As in the consideration of n-di111ensional spaces with n larger than 3,
it often turns out to be convenient and suggestive to think in geometric
language about quantities having only analytic meaning. 

Thus, although the coupler curve is a closed curve ,vhich does not 
extend to infinity, wc shall be able to speak of its imaginary points at 
infinity and detern1ine its asyn1ptotes at those points. The asyn1ptotes,
as may be expected, turn out to be i1naginary lines, but three of their 
intersections are real and very significant points. It is fron1 a considera­
tion of these points that Roberts deduced for the first time ,vhat we call 
the Roberts-Chebyshev theoren1, that the san1e coupler curve may be 
generated by three different four-bar linkages. 

Second-order Curves 

i\.n asy111ptote of a curve is a straight line such that a point, tracing a 
curve and receding to infinity, approaches indefinitely near to the straight.
line. An asyn1ptote may also be considered as a tangent to a curve at a 
point an infinite distance f ron1 the origin. 

Before considering the sixth-order curve of primary interest, the 
matter of points at infinity and asymptotes of a curve will be reviewed 
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in terms of the more familiar second-order curves ,vhose general equa­
tion is 

Ax2 + By2 + Cxy + Dx + Ey + F = O (6-2) 
As n1ay be recalled, the above equation-depending on the values of the 
coefficients A,  B, and C-represents an ellipse, a parabola, or a hyperbola.
Such curves intersect any straight line in t'\\·o points which may be real 
or i1naginary, at finite distances or at infinity. For points at infinity on 
such curves, the coordinates x and y are infinite, whence the first three 
terms of highest power are so large that the last three terms may be 
neglected. Points at infinity then lie on the curve defined by the equation 

Ax2 + By2 + Cxy = 0 (6-3) 

The directions t of the points at infinity on a curve are defined from the 
equation of a straight line passing through the origin, y = x/t or t = x/y,
in which t = cot <J, (Fig. 6-4). Since the coordinates of the intersection 
between line and curve must satisfy the equations of both, we have the 
pair of equations 

.Ax2 + By2 + Cxy = 0 X = ty 

Elimination of x and y produces 

At2 + Ct +  B = 0 (6-4) 
from ,vhich 

-c + vc2 - 4A B -c - -1c2 - 4ABt' = t" = ____ v-=--2A--:-----
2A 

y 
t'

I
I
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FIGURE 6-4 Dircetions of points at infinity of a second­
order curve. 
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Each value of t indicates the direction of a point at infinity, i.e., the 
angles ,t,' and ,t," (Fig. 6-4). 

The species of conics n1ay be distinguished by the number of real 
directions in ,vhich lines passing through the origin n1eet the curve at 
infinity. The discri1ninant of the expression for t serves for the testing :  

1 .  If C2 - 4AB < 0, the directions t' and t" are in1aginary and 
the curve is an ellipse. Points at infinity on the curve are imaginary, 
since they lie on lines having in1aginary directions. As an example,
consider the circle (a special case of the ellipse) given by the equation 

x2 + y2 = R2 

Following the procedure produces 

t2 + 1 = 0 ,vhence t' = +1·, t" = -i 

which is to say that the circle has no real points at infinity (they would 
have to lie on real lines, i.e., be lines having a real direction). For 
analytical purposes, the presence of a direction is tantan1ount to the 
existence of so1ne kind of point at infinity. If the direction is found to 
be real, then a real point exists at infinity on the curve; if the direction 
is found to be either +i or -i, then the i,naginary point at infinity is 
called a cyclic point.1 The circle is then said to have t,vo points at 
infinity, one in each of the directions i and -i, that is, the two cyclic 
points. 

2. If C2 - 4A.B = 0, the directions are real and equal, t' = t",
and the curve is a parabola. The t,vo real points are coincident at 
infinity and are a double point. 

3. If C2 - 4AB > 0, the directions are real and distinct, t' � t",
and the curve is a hyperbola. There are tv.o real points at infinity 
because of the t,vo branches. 

Asymptotes 

An asymptote to a curve is its tangent at a point at infinity; since second­
order curves have t,vo points at infinity, there ,vill be an asyn1ptote for 
each direction. To find these asyn1ptotes, it is convenient to transform 
the x, y coordinates of a point P on the curve into coordinates related 
to the directions of the points at infinity, i.e.! into coordinates related 
to the oblique axes defined by t' and t". These new coordinates (Fig. 
6-5) ·will be called X and Y and ·will be expressed in tern1s of ratios of 
perpendicular distances measured fro1n P to the ne,v axes t', t" to per­
pendicular distances measured fro1n an invariant point Q(t 0) of the old, 
or x, y, system, viz., 

1 A cyclic point is also known as a circular point at infinity. 
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PMo PM PN ·X =o = and = PN · 
QH I sin <t,' y QK -:-- 1 sin <t," 

The change in coordinates between the systems is then 

X = x sin <J,' - y cos <t,' = x _ t' Ysin <J,' 
x sin <t," - y cos <t," and Y = . </,11 ··-- = X - t"y

SIU 

The equation of the second-order curves [Eq. (6-2)] becon1es 

- XY[2At't" + 2B + C(t' + t")] - X(t' - t")(Dt" + E) 
+ Y(t' - t") (Dt' + E) + F(t' - t") = 0 (6-5) 

where t' and t" are the familiar solutions of Eq. (6-4). 
T,vo conditions apply to the asyn1ptotes :  
1 .  They must be parallel to the directions t' and t" of the points 

at infinity.
2. They must intersect the curve at two points at infinity. (Recall

that an asymptote is a tangent at infinity and that furthermore a tangent
is the limit of a secant whose two points of intersection with the curve 
have become coincident.) 

Now, a line parallel to the t" axis has, in terms of the new coordi­
=nates, an equation of the form Y const, where the constant determines 

the distance f ron1 the axis t". Such a line ,vill intersect the curve at 
infinity as well as at a point P (Fig. 6-.5). The X coordinate of that 

y 

Line parallel to /
t" axis intersects I 

/curve at infini ty 
P(x,y), second intersection 

I 
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-
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I 

FIGURE 6-5 Relations of oblique axes t' and t", curve and asymptote. 
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second point is given by Eq. (6-5) \vhen Y is replaced by the constant 
of the line. Since property 2 above requires that the asymptote intersect 
the curve at two points at infinity, P n1ust also be at infinity and its 
coordinate X must be infinite. With X infinite, the terins independent 
of X in Eq. (6-5) are trivial and the coefficient of X n1ust be zero, giving 

- Y[2:-lt't" + 2B + C(t' + t")] - (t' - t")(Dt" + E) = 0 

On returning to the rectangular coordinates x and y 
Dt" + E 

X - t"y = 
vc2 - 4AB 

This is the equation of the asymptote in the t" direction. 
The equation of the asyn1ptote parallel to the t' direction is found 

in a similar rnanner by equating to zero the coefficient of Y in Eq. (6-5); 
this gives 

Dt' + EIX - t y = - ---;-::;===· ·-:: 
vC2 - 4AB 

As an exan1ple, consider the hyperbola 
x2 - 2y2 + 2x + 2 = 0 

The directions of its points at infinity are found fro1n t2 - 2 = 0, that is, 
t' = y2 and t" = -v2. The asy1nptotes are then given by 

X - y y2 = - 1  
and x + y v2 = 1, that is, by the real lines 

and 

As a further exan1ple, consider the circle x2 + y2 - R2 = O, for 
which we already know that its points at infinity, the cyclic points, lie 
in the directions t' = i and t" = -i. Upon rewriting the equation
of this circle in terms of X = x - iy and Y = x + iy, it becomes 
XY - R2 = 0. The coefficient of X is Y, which must be zero to satisfy
the equation with X infinite, whence the asyn1ptote parallel to the direc­
tion t" = -i is 

Y = O  or X + iy = 0 

Similarly, the asymptote parallel to the direction t' = i is found to be 
X = 0 or X - iy = 0 

Both these asymptotes are imaginary and possess one real point, the 
origin of coordinates at which they intersect. 
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Asymptotes of the Four-bar Coupler Curve 

Exarnination of the curve equation (6-1)  shows its terms of highest degree 
6to be 1: + y6• In consequence the significant equation for points at 

infinity is x6 + y6 = 0. As ,vith the second-order curves, this equation 
is taken with y = x/t, giving

l6 + 1 = 0 or (t3 - i) (t3 + i) = 0 (6-6)
as the equation the directions of the points at infinity must satisfy.

This equation of the sixth degree has six solutions-all in1aginary
-and the coupler curve the ref ore has six imaginary points at infinityin the directions 

ti 
. lit= t  and . 

each being a triple solution of Eq. (6-6). The cyclic points are therefore 
triple points of the coupler curve. The asymptotes, also imaginary, 
must be parallel to the directions i and -·i, and since each cyclic poh1.t
is triple, there will be a total of six asyn1ptotes forming two sets of three parallel irnaginary lines. The determination of the asymptotes follows 
the rnethod described for secon d -order curves. 

In order to carry out the computations more conveniently, Eq.
(6-1) is first rewritten, use being made of the identity 

(1 2 + V2 = (U + iV)(U - iV) 

with U and V as the parentheses appearing in the left-hand member of 
Eq. (6-1). 1'hus, after some algebraic n1anipulations,
{ sin a(x2 + y2 + b2 - r2) (ix - y - ip)e-i,.

2+ sin .B[(x - p) 2 + y2 + a - s2)(y - ix) }X {sin a(x2 + y2 + b2 - r2) (-ix - y + ip)e•-r
2+ sin .B[(x - p)2 + y2 + a - s2](y + ix) }

= 4k2 sin2 a sin2 fJ sin2 -y[x(x - p) + y2 - py cot -y]2 

1'he substitution of X for x + iy and Y for x - iy in this equation yields 
I - sin a(XY + b2 - r2)(X - p)e-,,.

+ sin .B[(X - p)(Y - p) + a2 - s2]X}X {sin a(XY + b2 - r2) (Y - p)e',.
- sin .B[(X - p)(Y - p) + a2 - s2] Y l

= 4ik2 sin2 a sin2 .8 sin2 'Y 

X {XY - � (X( l - i cot -y) + Y(l + i cot -y)]} 2 (6-7) 
The highest powers of X and Y in this equation are X3 and Y3 ; the 
asymptotes are therefore obtained by equating their coefficients to zero. 



160 KINEMATIC SYNTHESIS OF LINKAGES 

The coefficient of X3 is 

[- sin aYe-i-r + sin i3(Y - p)][sin aY(Y - p)eh - sin i3Y(Y - p)] 

The requirement that this coefficient be zero will be met if any one of the 
three equations 

Y = O  Y = p  sin a Ye-i-r = sin .6( Y - p) 

is satisfied. When written 1n terms of cartesian coordinates, these 
equations become 

X - iy = 0 X - p - iy = 0 

sin fJ cos a . ( . sin fJ sin a) (6-8)= x - P - i Y - p 0sin 'Y sin 'Y 

They represent a set of three parallel asyn1ptotes corresponding to the 
triple point at infinity in the direction t' = i. (Parallel lines intersect 
at infinity.) Another set of three parallel asyn1ptotes in the direction 
t" = -i is obtained by equating to zero the coefficient of Yn3 in Eq. 
(6-7), i.e., 

[ - sin a Y(X - p)e- i-r + sin i3(X - p)X][sin aXei-r - sin .6(X - p)] = 0 

This require1nent will be satisfied if one of the following equations holds: 

X = 0 X = p  sin aXei-r = sin (3(X - p) 

These transforrned into cartesian coordinates are 
X + iy = 0 X - p + iy = 0 

x _ sin�cos a + i ( _ sin � sin a) = (6-9)p y p 0sin 'Y sin "Y 

Singular Foci 

For a curve passing through the cyclic points- as the four-bar coupler 
curve does-the points of intersection of asymptotes of the curve in the 
direction of the cyclic points are called singular foci. 1 Since the coupler 
curve has two sets of three parallel asyn1ptotes of this type, it has a total 
of nine singular foci. Examination of Eqs. (6-8) and (6-9) shows that 
three of these intersections are real; i.e., there are three real singular foci. 
They are the origin OA; the point On (x = b, y = 0), and a third point 
Oc of coordinates 

sin fJ cos a sin fJ sin a 
Xoc = P Yoe = P •

SID 'Y Sill 'Y 

1 E. N. Laguerre, Sur !es courbes planes algebriques ( 1865), fron, "Oeuvres de 
Laguerre," vol. II, Gauthier-Villars, Paris, 1905. 
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which also lies on the circle of foci defined earlier in this section.- · It 
may be further observed (Fig. 6-3) that the angles at OA, 08, ·and Oc 

of the triangle OAOnOc are respectively equal to the angles at A,  B, and 
M of the triangle ABM: the triangles OAOBOc and ABM are therefore 
sin1ilar. 

In summary: Starting fro1n the coupler-curve equation, a series 
of n1anipulations identified the points OA ,  0n, and Oc with unique prop­
erties of a sixth-degree equation, viz., that they constitute what are 
called the three real singular foci of the curve. Repeat in� ahnost exactly 
the words of Roberts, we are led to ren1ark that, since the singular foci 
are sin1ilarly related to the coupler curve, we might have taken as fixed 
centers the focus OA and the third focus Oc, and by n1eans of links of 
suitable lengths we should obtain the same coupler curve. In like m.an­
ner ,ve might have taken as centers O a and Oc. We conclude, then, 
that the coupler curve can be described in three different ways by four-bar 
linkages having fixed centers at any two of the singular foci and couplers 
forming triangles that are similar to the triangle of the three foci. 

This problem of the triple generation of coupler curves will be 
reconsidered in Sec. 6-4 by geon1etric means, and a complete determina­
tion of the three four-bar linkages will be given there. 

6-3 D O U B L E  P O I N T S  A N D  S Y M M E T R Y  

Coupler curves for 10  four-bar linkages are shown in Figs. 6-31 
to 6-40 of the appendix of this chapter.n1 'fhe four-bar linkages generat­
ing these curves fulfill the Grashof condition and are of the crank-rocker 
type. The crank at the left has unit length in each figure. The lengths 
of the coupler A,  the rocker B, and the frame C are given in n1ultiples of 
the unit crank length. Coupler points are indicated by sn1all circles; 
they are spaced at unit intervals on a rectangular grid carried by the 
coupler, giving the coupler points convenient coordinates with respect 
to the coupler. The length of each dash corresponds to 10° of crank 
rotation (in the original there were twice as n1any dashes, each worth 5°) .
Fron1 the length of the dashes a fair idea of the linear velocity of a coupler 
point may be gained ; the esti1nate of the linear acceleration will be 
rougher.

Coupler curves have a variety of shapes, as inspection of the 
figures will show. These figures, selected for their possible utilization 
in problems of this text, do not show all possible features because of the 
arbitrary disposition of the points on the coupler grid and the ratios of 
link lengths. In general, coupler curves may possess double points 

1 Redrawn from "Analysis of the Four Bar Linkage" by Hrones and Nelson 
by permission of the Massachusetts Institute of Technology Press. 
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(cusps and crunodes) a�. well as syn1n1etry about an axis. The properties
of the curves, difficult to study algebraically because of the unwieldy
equation, will be examined geon1etrically. This chapter devotes itself 
to geometric features other than curvature ;  this very in1portant topic 
is the subject of Chap. 7. 

A double point is a point on a curve at ,vhich the curve has t,vo 
tangents. A double point may be of two types: a crunode, at which the 
tangents are distinct, the curve crossing itself; and a cusp, at which the 
tangents are coincident, the curve being tangent to itself. 

Cusps 

The most familiar example of the cusp is derived fro111 the curve traced 
by a point on the periphery of a rolling ,vheel (Fig. 6-6a). The curve is 
the common cycloid, one of the special cases of the trochoid. We should 
recognize, before going further, that P is a point on the n1oving centrode 
11'm and that I, a point on the fixed centrode 1r1, was the instantaneous 
center of velocity for the moment that P and I were coincident. It is 
quite evident that P came down to I, stopped, and moved off in a direc­
tion opposite to that of approach. The velocity of P, although zero at 
an instant, experienced no discontinuity. We note that a cusp is a curve 
property associated with a point on a moving centrode and with the 
relative motion of centrodes. Thus, if a coupler point happens to lie on 
the moving centrode of the coupler, a cusp will develop at the position
where point and instant center are coincident; furthermore, the tangent 

t 

p • 

I 

(a) Cycloid with a cusp 
at Iwhere the curve is 
tangent to itself 

I 

(b) Cusp at which both branches 
lie on the same side of 
the coincident tangents 

FIGURE 6-6 The cusp, a. double point with coincident tangents. 
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1r, 
4 (fixed 115 3..----'----;__ centrode) 10

9 12 

r 
6 

7 
2 11  

C1 

105 4 Di 

6 
OA 2 

7 11  

8 109 

9 
(a) Four-bar linkage OA ABOB (in position 1) and fixed centrode 1r 

1 

C 

1r"' (moving centrode) D 

E 

(b) Plane of coupler showing the moving centrode r"' 

I<'IGURE 6-7 Cusps of coupler curves. 

of the cusp will be normal to the fixed centrode. The cusp may also take 
the form shown in Fig. 6-6b, in which both branches of the curve lie on 
the same side of the common tangent ; this tangent is also normal to the 
fixed centrode. 

We may see the action in a four-bar fron1 Fig. 6-7. The linkage 
is shown in its entirety in Fig. 6-7a; the coupler link is AB, located in 
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1:--IouRE 6-8 Prolate cycloid
with a (symmetrical) crunodc 
at Q. 

position 1. Figure 6-7b shows the isolated coupler, a portion of its plane 
with the n1oving centrode sketched in, and four coupler points-C, D, E, 
and F-located on the moving centrode. The curves that these points 
trace on the fixed plane are sho,vn in Fig. 6-7 a; each coupler curve shows 
a cusp for the instant at which the point on 11",n touches 1r1. For the instant 
depicted, the 1noving and fixed centrodes are in contact at C1, whence 
the cusp there. With rotation of the crank, the centrodes roll, and cusps 
are formed by the other coupler points at appropriate positions. 

Crunode 

The crunode is a 1nore obvious fonn of double point than the cusp; as 
noted earlier, the curve crosses itself and therefore has t,vo distinct 
tangents. A si1nple exan1ple again derives fro1n a special case of the 
trochoid, specifically the prolate cycloid (Fig. 6-8). With regard to the 
four-bar, it will be seen that a crunode is related to the circle of singular 
foci corresponding to the coupler point. 

• A.. coupler curve with t,vo crunodes is shown in Fig. 6-9. For 

Q 

FIGURE 6-9 Coupler curve with 
double points Q and Q'. 
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M,Q 

FIGURE 6--10 Two positions of 

a four-bar corresponding to a 

double point at Q. 

the crunode Q (Fig. 6-10), there rnust be two positions of the coupler A B  
such as Ao1B1 and Ao2B2 for which the coupler point Jf assumes the san1e 
position1 Q on the fixed plane. Considering the quadrilateral OAA1QA2,
in which OA.4 1 = 0,1A 2 and A 1Q = A 2Q, it is clear that OAQ bisects 
the angle A 1QA2 = 2{3. Similarly, OBQ is the bisector of the angle
B1QB2 = 2-y. However, since the coupler is rigid, 2{J = 2-y, or fJ = -y;
the vertex angle of A 1QB1 is 2{J + a; for A 2QB 2 it is a +2-y. Since 
/3 = 'Y, the angle OAQOs = {3 + a + 'Y is therefore the same as the vertex 
angle of the coupler, 

OAQOs = A1QB1 = A2QB2 
Consider now a triangle OAOsOc sirnilar to ABM constructed with 

OA08 as base (Fig. 6-11); the last equalities then yield 
·oAQOs = OAOc08 

which implies that the point Q must necessarily belong to the circle 
passing through points O.� , Os, Oc. It 1nay be recalled that this point Oc 

1 This assumption is valid provided that the IC he uniquely defined and be 
distinct from Q. See Bricard, vol. II, p. 308. 

Q' 

FIGURE 6-11 The double points 
of a coupler curve, if any, lie on 
the circle of foci. 

Oc 
/ Circle of foci 

� 
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is the third singular focus of the coupler curve (Sec. 6-2) and the circle 
OAO BOc the circle of foci whence a coupler curve has crunodes at each 
of its intersections with the corresponding circle of foci. If the curve 
does not. intersect the circle of foci, then it has no double points. 

Symmetry 

Coupler curves which are sy1nn1etrical about an axis may be generated 
by a four-bar linkage with a coupler base .4B and follo,ver of equal length, 
AB = OBB (Fig. 6-12). The coupler point generating a syn1metrical 
curve must then lie anywhere on the circle centered at B and passing 
through A. 

Since BOB = BA = B!vl, the above circle also passes through On 

and the inscribed angle AOnll1 satisfies the relation 

ABA1 B
AOBM = = 2 = const

2 

Consider now the linkage in two positions OAA 1B1OB and OA.A2B2OB for 
which points A1 and .4 2 are syn1n1etrical with respect to the line of fixed 
centers OAOn (Fig. 6-13). For these positions, triangles OBAe1B1 and 
OBA2B2 are equal, since corresponding sides are equal, whence fl1 = fJ2• 

Now, the isosceles triangles OBB 1 llfI and OBB2M2 are equal, 

=() ,:JI 1 0nllf2 

M 

-��---B 

t, F 
A '- \

\'- '- ,..._ \ B 

" \
"\ 

o,. 

FIGURE 6-1 :! Sy1nn1etrical coupler curve. 
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C 
..........._ 

·' · " : ·e . _e_ ...,,_"".:' -� 8/\\ /.
M,C-'-" ,, 1'

{ c+> ; ,#�i .,-.,-)/'/ 
FIGURE 6-13 Two positions of a four-bar corresponding to 
symmetrical points ftf, and M2 on coupler curve. 

and the midnorn1al c to llf1M2 passes through OB and bisects the angle 
M10BM2, whence 

Since the angles OA OaA1 and OAOsA2  are also equal (A1 syn1n1etric to 
A2 with respect to OA.08),  

fJ ,,. + a = - + o2 

Adding the last two equations yields 
fJ')' = -2 

The n1idnorrnal c to A,f iJ.lf2 therefore n1akes a constant angle with the line of fixed centers OAOs, whence it is an axis of synunetry for the 
coupler curve generated by point 111. It 1nay further be noted that 
symmetric points on the coupler curve correspond to syn1n1etric positions 
of the crank with respect to the line of centers OAOs. 

The foregoing situation was a sufficient condition for syn1n1etry, but not a necessary one. For exan1ple, the Watt straight-line mecha-
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nism, in which the coupler point lies on the coupler line AB, traces a 
coupler curve symmetrical with respect to the line of centers OAOB.* 
Note that the line of centers is also the circle of foci and that the curve 
has a crunode at its intersection ,vith the line of centers. 

1 16-4 T H E  R O B E R T S - C H E B Y S H E V  T H E O R E l\-

A ren1arkable property of the planar four-bar linkage is found in 
the Roberts-Chebyshev theoren1n: Three different planar four-bar linkages 
will trace identical coupler curves. The develop1nent of this theoren1 is 
presented in modern forn1, and extensions related to six-bar and slider­
crank mechanisms are given. 

Coupler Curves and Cognate Linkages 

Kinematically equivalent four-bar linkages-usually called equivalent 
linkages- are comn1only used for velocity and acceleration analyses of 
planar direct-contact mechanisms such as cams and noncircular gears. 
The equivalent linkage is really an analog of the direct-contact mecha­
nis1n, and it "·ill be reme1nbered that the dimensions of the linkage change 
with time, i.e., ,vith the position of the n1echanisrn: the equivalent linkage 
might ,vell be called an instantaneous linkage.

When the designer's concern is only with the curve traced by a 
coupler point of a planar four-bar, then other planar linkages tracing an 
identical coupler-point curve may be found by the application of the 
Roberts-Chebyshev theoren1. For want of a na1ne, these linkages­
related through their conunon coupler curve-will be called cognate
linkages. It is emphasized here that these linkages do not look alike: 
their relation stems only from the identical coupler curves they trace. 
However, in contrast to the equivalent linkages, the dimensions of the 
cognate linkages do not change with time, and a cognate linkage may 
therefore be substituted for the entire cycle of the 1notion of its related 
linkage : this provides a linkage whose space requiren1ents n1ay be 1nore 
favorable than that of the (original) linkage being replaced. The 
velocity and acceleration characteristics of the cognate linkages will not 
in general be identical link for link. 

• See Prob. 6-4. 
1 1\,1 uch of the 1naterial of this and the following section appeared in Machine 

Design, Apr. J 6, 1959, and is reprinted by courtesy of the Penton Publishing Company, 
Cleveland. 



169 l<'OUR-BAR COUPLERC-POINT CURVES 

The Roberts-Chebyshev Theorem 

Roberts1 and Chebyshev were n1athe1naticians of considerable stature 
during the latter part of the nineteenth century. Both were members 
of the Royal Society, and both studied, an1ong many other things, coupler 
curves of four-bar linkages. 

The French and Gern1an literature speak of the "Roberts' theo­
ren1," while the dual name appears in the Russian. It seen1s proper to 
use both names: Roberts announced his discovery in 1875, Chebyshev
in 1878. Except for the final result, there is no resemblance between the 
two developments, for the approaches are as different as they can be. 

To explore the theore1n, three different planar four-bar linkages 

will trace identical coupler curves, we shall consider a four-bar linkage and 
see ,vhat can happen to it (Fig. 6-14). The given four-bar is OAABOn, 
shown in Fig. 6-14a (drawn in solid lines) and carrying the coupler point
M, which traces a planar curve (not illustrated). On the left., the dash­
line parallelogra1n involving O..tAn1 and .i\1 A1 is added, and the triangle
A1MC1 is constructed si1nilar to triangle ABM-note where the angles 
are. On the right, a sin1ilar construction of a parallelogran1 brings us 
to the point C2. A third parallelogra1n is then constructed to bring us 
to the point Oc, which ,ve shall assume for the ti1ne being to be a fran1e 
point. 

We can distinguish a total of three four-bar linkages mutually 
connected at their coupler points M:  

OAABOn (solid) the given linkage 
o....4 1C10c link OAOc not shown 
OBB2C20c link OBOc not shown 
We also recognize, intuitively because of the parallelograins, that 

the entire complex of 10 links is movable. (The IO-bar linkage is, in 
fact, overclosed-there are 2 n1ore links than necessary; thus, 2 links 
such as 0,1 A 1 and 08B2 could be ren1oved, to leave the 8 re1naining links 
as a constrained n1echanism.) 

It is thus clear that each of the three four-bar linkages traces, 
through the identical coupler point ilf, identical coupler curves. This 
allows the replacen1ent of the given linkage by either of the other t,vo, 
whose space require1nents are different because of link lengths and one 
frame-joint location, Oc. These are then cognate linkages, the relation 
stemming f rorn the comn1011 coupler-point curve. 

For the theore1n to be true, it is necessary that the fran1e joint Oc 
be truly fixed, as are o ... and 08 : we 1nust justify our earlier assun1ption. 

1 San1uel Roberts (1827-1913). Another Roberts, Richard (1789-1864), has 
given his name to the Roberts ''straight-line'' motion, which he described prior to 1841. 
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(a) Given linkage and curve of coupler-point M (b) Construction for cognate linkages 
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(c) Lefthand cognate linkage and

curve of coupler-point M 

I 

(d) Righthandcognate linkage and 
curve of coupler-point M 

FIG1;RE 6-14 Three cognate four-bars and their identical coupler curves-the 
Roberts-Chebyshev theorem. 

To show this by purely geon1etric construction is tedious, but it engaged 
the attention of mathematicians such as Cayley, Clifford, and Kleiber, 
among others. The simplest demonstration seen1s to be that of Ja. B. 
Schor (1941) 1naking use of complex nun1bers: it is given by Bloch and 
is somewhat as follows. 1  In Fig. 6-15a the point Oc will be fixed if 

z = OAOce'6 = const (6-10) 
1 The complex-number proof goes back to Hart in the "Messenger of Mathe­

matics," p. 32, 1883 (quaternion proof of the triple generation of three-bar motion). 
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This n1eans that OAOc and the angle � ,vill have to be expressed in terms of the invariant dimensions of the first linkage OAABOa and must be 
independent of the angular displacements t/>1, f/>2, and q,3 of this linkage. 
These angles are measured counterclockwise f ro1n the x axis, for con­venience laid through the line 0.1.0s ; t/>1 and t/>a also appear in the cognatelinkages. 

D.�--� (x)\ 
\ \\ ·  

--�\�
l �o 

:.-

�s---� x 

(a) Sketch for showing that 
joint Oc is a frame-point 

1 

7 

(b) The over-closed ten-bar linkage 

FIGURE 6-15 Cognate four-bar linkages. 
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(a) 

(6-13) 

KINEMATIC SYNTHESIS OF LINKAGES 

Starting fron1 0A, and taking advantage of the parallelogran1s,
we may write 

z = O,tA 1eH .. t�a) + A1 C1ei(<1>,+a) + C1 Ocei<<1>,+a) (6-11) 

Fron1 t.he parallelogran1s and similar triangles, the first factors of the 
above equation may be found in terms of the link lengths of the given 
linkage, 

A 1C1 = 

AM 
AB 

;::M OA AAB (b) 

MC2 AM=},f B2 AB 

or since 1l1C2 = C1 Oc and MB2 = BOB, 
AMC1Oc = AB BOB (c) 

With a hint fron1 Eqs. (b) and (c), Eq. (a) may be put into a more con­
venient forn1, 

AMOAA t  = - AB (a')AB 
Substituting Eqs. (a'), (b), and (c) in Eq. (6-11), ordering the terms, and 
factoring, ,ve get 

(6-12) 

The terrns in the parentheses are recognized as a vector sun1 equivalent 
to OAOB, or 

AM O O Z = - - A ne•aAB 
On comparing Eq. (6-10) with Eq. (6-13), it is seen that (1) OAOc = 
(A1"1if IAB)O AO B = const and (2) o = a = const. 

This shows not only that Oc is a fixed point but also that the 
triangle OA OcOB is sin1ilar to the original triangle of the coupler, AME. 
From this last information, we may in1mediately locate the point Oc: 
it is merely necessary to construct on the fran1e link 0 _ a triangle408 

similar to AMB; the upper vertex is Oc. 
The location of 00 was part of Roberts' demonstration. Cayley

suggested the plan of Fig. 6-16; it is a simple way of determining the link 
lengths of the cognate mechanisn1s. In this construction the given 
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linkage is pulled out straight, as it ,vere, and the parallel lines are drawn 
to define the cognate linkages. 

The four-bar linkage invoked so far for den1onstration purposes
had the coupler point M lying to one side of the line AB. The theorem 
still applies when the coupler point lies on the line AB, either between 
A and B or beyond A or B. The deter1nination of the cognate linkages
requires a bit more care now, for all the links of Fig. 6-16 will lie on top
of each other, the cognate couplers having becon1e "lines." 

As Jf moves closer to the line AB, it is apparent that the general
geon1etry is preserved as the links approach collinearity with each other 
and the line OAOB ; OAOs will be divided in the same ratio as M divides 
AB. Note that C1 and C2 will divide A1M and MB2 sirnilarly.

As an example of the case where M lies between A and B, consider 
the linkage of Fig. 6-17, which would be a Watt linkage if the coupler
point M lay at the midpoint of AB. Referring to Fig. 6-17b, ,ve then 
note the following:  

1. The frame point Oc lies on the line OAOs and divides it in the 
same ratio as J.lf divides the line AB. 

2. 0AA 1 is parallel to AM, and llf A 1 is parallel to OA ,4. ,  thus 
defining A1 .  

3. 08B2 is parallel to MB, and 1lf B2 1s parallel to 088, thus 
defining B2-

4. C1 will divide the line A 1M in the sa1ne ratio as 1°111 divided AB,
allowing the link C10c to be drawn to complete the left-hand linkage.

5. C2 will divide the line 1lf B2 in the san1e ratio as M divided AB,
allowing the link C20c to be drawn to con1plete the right-hand linkage. 

FIGURE6-16 Planfor determining the 
lengths of cognate links. 
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B B 

(a) Given four-bar fb) Cognate construction 

(c) First cognate (d) Second cognate 

FIGURE 6-17 Cognate four-bars, M between A and B. 

For the case in ,vhich M lies on an extension of AB, the method 
is the san1e as before, except that the line division is now external, follow­
ing the position of M. 

Cayley sho,ved that the coupler point M and the instantaneous 
centers of coupler and f rarne of each of the three linkages are collinear 
at all times and that this line is the norn\al to the coupler curve (see
Fig. 6-18). 

Velocity Relations in Cognate Linkages 

Returning to Fig. 6-15b, assu1ne that the angular velocity of link o .. A 
of the given linkage OAABOJJ is w2• The angular velocities of the other 
n1oving links AB and ORB, deter1nined in so1ne convenient ,vay, would 
be wa and w4. Since OAA is parallel to .41M, OcC2 parallel to C1M, and 
the angle A ill:f CI fixed, the angular velocity of link OcC2 of the right-hand
cognate linkage is also w2. Si1nilar considerations are applicable to other 
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links of the cognate linkages, and the following table of velocity equiva­
lences results : 

LEFT COGNATE GIVEN RIGHT COGNATE 

These velocity relations 1nust be taken into account ,vhen the 
point JI;/ is to be driven along the coupler curve C ,vith prescribed veloci­
ties. For example, if the desired motion M is obtained fron1 the linkage 
OAAB08, with OAA driven at a constant angular velocity w2, the same 
motion of M (curve and velocities) will be obtained by using the right­
hand cognate linkage OsB1C20c and driving the link OcC2 at the same 
constant angular velocity w2• If the left-hand cognate linkage OAA 1C10c 
must be used, then it will have to be driven at a variable angular velocity
corresponding to the angular velocity of either AB or 08B when OA,4.
of the given linkage is driven at the constant angular velocity w2• 

Historical Note 

There is a salient contrast between the developn1ent and staten1ent of 
the theoren1 as given here and the original works of Roberts and Cheby­
shev. Pararnetric equations for the coordinates of the coupler point of 
the Watt linkage had been derived by the French engineer Prony (1755-

FIGURE 6-18 Collinearity of 
�he three coupler-and-frame
instantaneous centers and 
Point M. 
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1839). · · Eighty years later, Roberts' analytical investigation showed the 
curve to be of the sixth order and demonstrated the presence of the third 
singular focus of the coupler curve, i.e., the point Oc which had with 
respect to the coupler curve all the properties of the fixed centers OA 

and O8. He deduced that the san1e curve could therefore be generated 
by three different four-bars. 

Chebyshev had studied four-bar linkages to generate approximate 
straight-line segments, arriving at the particular form kno,vn as the 
Chebyshev straight-line n1otion. By geon1etric perception, and reasoning 
f ron1 similar triangles, he derived the theorem for this sin1ple case, before 
generalizing it to all coupler-point situations. 

6-5 EXT E N S I O N S  O F  T H E  
ROBERTS-C HEBYS H EV T H E O R EM 

a. Cognate Slider-crank Mechanisms 

A. 1nodification of the Roberts-Chebyshev theore1n applies to the slider­
crank n1echanisn1n: two different planar slider-crank mechanisms will trace 
identical coupler curves. 

If a sliding pair replaces one of the turning pairs of a four-bar 
linkage, a slider-crank mechanisn1 results (Fig. 6-19a). The center On 
is at infinity, with the link B08 now infinitely long. On "straightening"
this linkage (Fig. 6-19b), we can draw only a portion of the schematic, 
for B08 now extends to infinity to the right (arguing by analogy). Under 
these circumstances the linkage "above" OB vanishes, for practical pur­
poses, and Oc finds itself at infinity. Beyond what n1ight have been C2 
lies Oc-at infinity-whence C1 n1ust also be a slider. However, the 
cognate linkage, the slider-crank OAA 1C1, sharing the coupler point M 
with the given linkage, has been defined. 

The construction of the cognate slider crank may be followed from 
Fig. 6-l 9c; a parallelogram and a sin1ilar triangle are added as shown. 
The point 13 is the instantaneous center of the given coupler and frame, 
35 is the transfer center, and 15 applies to the cognate coupler. The 
course of the ne,v slider is then along the perpendicular to 15-.-'>7 drawn 
through t-,7. 

It is still necessary to justify that OACi is a straight line of constant 
inclination. Considering Fig. 6-19c, we note that the triangles C 10AA 1 

and OABA are si1nilar, whence a1 = a. Now �1 = o + a1, and 

but /j1 = {:J or o + a1 = () + a, ,vhich with a1 = a means that 

o = () = const 
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B l 
, \

(a) Given slider-crank mechanism 
and curve of coupler-point M (d)The cognate slider­

crank mechanism 

A B 08 , oo  fl(b) Plan 
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(c) Construction for cognate slider-crank mechanism wuur#HH. 
FIGURE 6-19 Cognate slider-crank mechanisms. 

Hence the point C1 (the cognate slider) follows a straight line of constant 
slope. The point C1 could thus be used to trace a straight line-no 
cognate slider is needed for this. 

As with the four-bar linkage, the instantaneous centers of the 
coupler and frame of each of the slider-crank 1nechanisn1s are collinear 
with coupler point 1.lf at all times; this line is also the nonnal to the 
coupler curve. 

The velocity relations are the following: 

. 

W2 = W5 W3 = W6 

vc, _ O.-iA1 _ AM 
VB AB AB 
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F'IOURE 6-20 Four- and six-bar cognate linkages, }\[ off the line AB. 
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b. Six-bar Linkage Cognate to a Four-bar Linkage 

An extension of the Roberts-Chehyshev theore,n is as follows : The 
coupler-point curve of a planar four-bar linkage is also described by the joint 
of the dyad of a proper six-bar linkage. 

The course of this extension ,nay be seen fron1 Fig. 6-20b. Here 
OAABO8 is the given four-bar linkage carrying a coupler point ill. The 
procedure for finding the six-bar linkage n1ay be seen to be as follows : 

1. Fron1 0A and J.lf construct a parallelogran1 locating C. 
2. Fro1n O8 and .Al construct a parallelogra1n locating B1• 

a. 'fhe links },r/C and .Af Bi are the dyad whose joint is at M. 
4. Construct the triangle A 1OBB1 sin1ilar to Ailf B :  it is reversed 

and upside do,vn ,vith respect to A 'fl;/B. 
5. Connect C and A 1, for1ning a third parallelogra1n OAO8A1C. 

An identical dyad is f onned when the other frame point O8 is used 
(Fig. 6-20c). 

1'he situation in which the coupler point !IJ lies on the line AB, 
either between A and B or beyond A. or B, follows the san1e pattern.

If the fran1e parallelograrns go into the antiparallelogran1 con­
figuration at the change points, then con1pletely different coupler-point 
curves will be traced. 

It is apparent that the Roberts-Chebyshev theore1n is useful in 
those proble1ns of synthesis involving the coupler-point curve, for the 
linkages that are related through the curve are identified. l'he choice 
of the cognate 1nechanisn1 is dependent on space require1nents (link
din1ensions and fran1e-point locations), velocity and acceleration con­
siderations, and the value of the transrnission angle during certain phases 
of the 1notion. 

6-6 S T R A I GHT- L I N E  1\:1 E C  H A N  I S l\-1 S-A P PROX ll\,J A'rE 
A N D  E XACT 

The Watt linkage and "great bean1" gave engines of the early
nineteenth century vast bulk, and other, n1ore con1pact "parallel n1otions" 
of only pin-connected men1bers ,vere sought. Of course, the Watt link­
age was studied for optimun1 proportions, but different four-bar linkages 
Were devised, an1ong then1 the Evans (United States), or grasshopper 
(Fig. 6-21a); the Roberts1 (Fig. 6-21b)a; and the Chebyshev (Fig. 6-21c).

Nun1erous sin1ple planar linkages possessing the geometric rela­
tions necessary for generating true straight lines followed. We shall 
discuss two, the Peaucellier and the Hart. 

1 This Richard Roberts, engineer, is not to be confused with the 1nathen1a­
tician Samuel Roberts; see Sec. 6-4. 
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(a) Evans, or "grasshopper" 

B 

A 

(b) Roberts (c) Chebyshev 

nGURE 6-21 The hest-known "straight-line" motions other than ,vatt's. :

The true straight-line pin-connected linkages involve a geo1netric 
relation kno,vn as inversion (not the kine1natic inversion, i.e., the succes­
sive fixing of links of a chain to create a variety of 1nechanisn1s). If 
two points P and Q, restrained to move along a straight line passing 
through a fixed point 0, n1aintain the relation 

0P X OQ = k = const of inversion 
then: 

1.  The points P and Q are said to be inversely related. 
2. When the straight line rotates about 0, the curves traced by 

P and Q are said to be the inverse of each other. In particular: 
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a. If one point, either P or Q, traces a circle not passing through0, the other point will also describe a circle ; i.e., the inverse 
of a circle is a circle .. 

b. If one point traces a circle passing through 0, the otherpoint's circle will have an infinitely great radius; i.e., it 
"·ill describe a straight line. Mechanical devices realizing these conditions are kno,vn as 

inversors, of ,vhich the earliest and best kno,vn, although not quite the 
simplest, is that of Peaucellier (1864). 

Let us first establish point 2b. In Fig. 6-22, 0 and Op are fixed :points, with OpP = OOP, so that P describes a circle passing through 0. Let Q be a point on OP satisfying the relation 
OP X OQ = k 

and consider the perpendicular Q1' to 00p passing through the point Q.
We shall sho,v that the distance OT depends only on the constant k and 
the diameter of the circle so that, as P describes the circle, Q ,vill describe the fixed straight line TQ. On drawing the line PS ,ve realize that the triangles OPS and OTQ are sirnilar, whence 

OP OT= or OP X OQ = OS X OT = kOS OQ 
and OT = !!:_  OS 

Consider now the Peaucellier cell, the six-bar chain of Fig. 6-23a.It is forn1ed by connecting a rhon1bus of equal sides s with t,vo bars of equal length l; the figure is syn1n1etrical about the 1nedian m. Three 
Points, seen to be ahvays collinear regardless of the configuration, have been labeled 0, P, and Q. In Fig. 6-2:3b we now add t,vo n1ore links (theframe and OPP, with OpP = 00p), displace m, and draw the line BDC, 

Q 

I 
I

I 

0 T 

FIGURE 6-22 Proof of proposition 2b. 
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(a) Peaucellier cell (b) Peaucellier inversor in which Q draws 

the straight line QT perpendicular 
to the base link OOp 

FIGURE 6-23 Peaucellier straight-line mechanisnt. 

which ,vill always be perpendicular toem. Then 

OP X OQ = (OD - PD)(OD + PD)
= OD2 - PD2 = (OB2 - BD2) - (PB2 - BD2) 

l2 s2= OB2 - PB2 = - = const 

The Peaucellier mechanism, since it satisfies the condition 

OP X OQ = const 

is thus an inversor. 
Next we shall consider point 2a. In Fig. 6-24 0 and Op are again 

fixed points, with OOP = d and OPP = r, so that P describes a circle 
(which this time does not pass through 0, since r � d). Let P' be the 
other intersection of OP with the circle and Q be a point on OP satisfying 
the relation of inversion 

OP X OQ = k 

Draw PS and P'S', and consider the triangles OPS and 0S'P'. These 
triangles are similar: their angles at O are equal; their angles at P and S' 
are also equal, since they are inscribed in the sa1ne circle and subtend 
the same chord P'S; the sa1ne holds for their angles at P' and S. Then 

OP OS= OS' OP' 
d2 2or OP X OP' = OS X OS' = (d + r)(d - r) = - r = const 

On dividing the relation of inversion by the above, we find the ratio 

OQ k 
- d2 r2OP' -
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When P describes the circle centered at Op, P' describes the same circleand, because of the last relation, Q n1ust describe a curve similar to thiscircle, with center of similitude at O :  this curve is also a circle, and its radius is 
kR = r dz - r2 

In the Peaucellier cell, k = l2 - s2 , whence 
z2 - s2R = r d2 - r2 

The cent.er OQ of the circle traced by Q corresponds to the center Op in the same similitude, whence 
s2OOQ l2 -

bop - d2 - r2 

With the proportions sho,vn in Fig. 6-25, d < r and l > s, thee· ratioof similitude is negative, and 0Q is the ref ore to the left of 0, that is, in the opposite direction f ro1n Op. 
Peaucellier, captain of engineers in the French Arn1y at the time of his invention (he rose to general), was n1otivated in his search by theapproxin1ate straight-line n1otions of his ti1ne and their use in engines.

However, the day of the big-beamed engines was drawing to a close, thecon1pact direct-connected or slider-crank engines supplanting their bulkyancestors. In consequence, engine applications dwindled. The Peaucel­lier straight-line mechanisn1 is, nevertheless, of n1ore than passing interest,for it was the first device able to generate-create-a straight line in the 

s· d r 

. \ 

' \ '' \' 
\
\ 

Q 
I

\
\
I
I

I 

' OQ 0 O s 
P' 

p 

I 

I 
I 

FIGURE 6-24 Proof of proposition 2a, 
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FIGURE 6-25 Peaucellier in­
versor for drawing circular 
arcs of large radii. 

sa1ne sense that a compass generates a circle ; using a straight-edge, one 
merely copies an existing line. 

The instrument's ability to generate circular arcs, especially flat 
arcs beyond the practical range of a tran1mel bar, gave it some applica­
tion in manufacturing machinery and in the drafting roorn. As a co1n­
pass, the pivot point OP is made adjustable, allowing the distance d to 
be selected for a desired radius. 

A n1odern application of the Peaucellier linkage is the autof ocusing 
mechanism of a photographic enlarger. The optical problem involves 
the proper spacing of negative, lens, and paper to maintain a continuously 
sharp image over the range of magnification; the problem is summariied 
by the equation xx' = I' (x and x' are the distances, f the focal length of 
the lens). This equation can be n1echanized by an inversor, since it is 
of the form OP X OQ = k. 

Figure 6-26a, showing the optical syste1n, assumes that both 
Gauss points are at the center of the lens, justifiable with a normal 
photographic objective (but not a telephoto lens). Focal points are 
indicated by F, with f the focal length. The film must be n1oved a dis­
tance x' while the paper moves the distance x, both relative to the lens. 
l\fagnification is given by m = h/h' = u/v = x/.f. The Newton equa­
tion for the conjugate distances x and x' has already been noted as 
x'x = r. 

The rearrangen1ent of Fig. 6-26b groups the variables x and x' 
about the lens and leads directly to the hard,vare sche1natic (Fig. 6-26c).
Here the f a1niliar points of a 1nodified Peaucellier cell are indicated; 
P, Q, and 0' are constrained to n1ove along the san1e straight line by
sliders. We may no,v write Of> X OQ = k = l2 - s2• Physically, P 
is at the wrong spot, but OP = QO' = x', and OQ = x. ConsequentlY 
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FIGURE 6-26 Autofocus enlarger employing Peaucellier mechanism. 

the mechanization of the inversion relation is a direct analog of the 
s2optical requirement, and l2 - = /2. 

Another mathematically correct straight-line mechanisn1, but of 
only six links, n1ay be derived from the contraparallelogram chain of 
four pin-connected links (Fig. 6-27), in which EB = CD and BD = EC. 

Four points such as 0, P, Q, and 0', lying on a line m parallel 
to BC (and hence also to ED), will divide the distances between the pin 
connections in the san1e proportion. Furthern1ore, the points will con­
tinue to remain in line when the chain is deformed. These points are 
also related by inversion; thus, OP X OQ = const = O'Q X 0' P. 

The inversion relation may be established after constructing CC 

B C--

I 

/ I-------------•-I ----I ---
E �------- Y D' C' �ID 

FIGURE 6-27 Contraparallelogram chain of Ha.rt. 
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D 

FIGURE 6-28 Hart•� 1n-
versor. 

perpendicular to ED and CD' parallel to BE. Fro1n si1nilar triangles 
OP OE OQ OB= and ..e. r - BE y - = BE; 

!
'fhen OJ> X OQ = QJ X (?B 

xy = xy X constBE BE · 

Now x = J.,;C' - C'D', and y = EC' + C' D', whence 

xy = EC'2 - C'D'2 

= (EC2 - CC'2) - (CD2 - CC'2) 

= EC2 - CD2 = 12 - s2 = const 

and therefore OP X OQ = const for all configurations. 
We recognize that, ,vhen O is n1ade a fixed point and P is guided 

along a circle passing through 0, Q will trace a straight line (Fig. 6-28). 
Point Op 1nay be chosen at will, subject to the above restriction. ,fhe.e
path of Q will be perpendicular to the base line 00p. This is the six­
bar mechanism of H. Hart (1875). 

APPENDIX: ATLAS OF FOUR-BAR COUPLER CURVES 

The curves sho,vn in this appendix are a selection f ro1n the atlas 
of Hrones and Xelson, as 1nentioned in Sec. 6-3. This atlas contains 

B Follower 

FIGURE 6-29 Notations used in 
Hrones and Nelson's four-bar 

---C - - ,-....i� - -- coupler curve atlas. 
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C C c· 

4 

• • 
A = 3  A = 4  

3 3 '.i� "' • 
2 • 2 
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• 
:t .�L

1 2 3 4 B 2 3 4 B 1 2 3 4 B 
FIGURE 6-30 Determination of the linkages to be considered in this appendix. 

approxin1ately 7,300 curves dra,vn to large scale (730 pages, 1 1  by 17 in.)
and constitutes a very practical tool for the designer, who, by pag­
ing through, may find a shape and configuration suitable for a given
application.

The four-bar linkages considered here (as well as in the original) 
are of the crank-rocker type, i.e., having continuous rotation of the crank, 
,vith oscillation of the follower. With the notation shown in Fig. 6-29 
the link lengths n1ust therefore satisfy the conditions 

C < A + B - 1  
C > IA - Bi + 1 

A, B, C > 1 
In order to detern1ine what co1nbination<., of values of A, B, and C 

are con1patible ,vith these conditions, consider the diagra1ns of Fig. 6-30, 
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FIGl'RE 6-34 A = 3, B = 3, C = 2. 

FIGURE 6-35 A = 3, B = 3, C = 3. 
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FIGURE 6-36 A = 3, B - 3, C = 4. 

•·1ouRE 6-ai ,-1 = 4, B = 2, c = 4. 
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where B and C are plotted on the horizontal and vertical axes and A is at 
a 45° angle. The three diagrams correspond to A = 2, 3, and 4 ;  larger
values of A are not considered. Each point in the plane of the diagrams 
corresponds to a four-bar linkage, and values satisfying the above condi­
tions are located in the "rectangles." Limiting B to values no larger
than 3 (a follower no longer than three times the crank length) and taking
unit incre1nents for B and C gives a total of 10 linkages, shown as dots, 
for which coupler curves are drawn in Figs. 6-31 to 6-40. The curves of 
a nun1ber of coupler points are shown for each linkage, and each dash 
corresponds to 10° of crank rotation, thus giving a representation of the 
coupler-point velocity. l\1uch more detailed inforn1ation is given in the 
original atlas of Hrones and Nelson, but only at the expense of a rather 
overwhelming effect. The curves presented here will be sufficient for 
preliminary designs, which may later be refined by the geon1etric or 
analytical methods of synthesis presented in later chapters. 
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	Link,vork, in its early applications, consisted mainly of revolute­connected members and ,vas widely used for converting the con­tinuous rotation of a ,vater wheel into a reciprocating motion suited to piston pumps (Fig. 6-1). The piston-cylinder com­bination at the end of the line represents a prismatic pair, of course, but ahead of this there are only the revolute connections generally associated ,Yith linkwork. Agricola's arrangements show wheel and pump--power source and point of work-fairly close toget
	Such linkages consisted in the main of ,vhat ,ve call four-bar linkages, i.e., planar four-revolute mechanisms, and terminated in a slider-crank mechanism with a prismatic pair. 
	Figure
	KINEMATIC SYNTHESIS OF LINKAGES 
	With Watt's invention of the "straight-line motion" (I 784) the four-bar linkage was used in a new· \\·ay, for the significant motion output was not that of the follower but that of the coupler: Watt had found a coupler point describing a curve of special usefulness. 
	The first analytical investigation of a coupler curve, the curve of the Watt mechanism, was undertaken by Prony,who examined Watt's "straight-line motion" for deviations (I 796). Samuel Roberts showed (1876) that the "three-bar curve"-today we call it the coupler curve of the four-bar-is an algebraic curve of the sixth order; i.e., a straight line will cut it in not more than six points. Cayley and others shovved further properties of the curve. 1'heir interest lay in exploring linkages hypothetically able 
	1 
	2

	6-2 EQUATION OF COUPLER CURVES 
	3 

	Derivation 
	Derivation 
	The equation of the coupler-point curve for a four-bar linkage may be obtained by analytic geometry. 1'he derivation presented follO'\\'S that of Samuel Roberts, with only slight changes in notation. The equation will be written in cartesian coordinates, with the x axis along the line of OA.On and they axis perpendicular to that line at OA (Fig. o-2). Let (x, y'), (x", y), and (x, y) be, respectively, the coordinates of points A, B, and coupler point M; then 
	centers 
	'
	"

	x' = x -k cos 8 y' = y -b sin 8 and x" = x -a cos ( 8 + 'Y) y" = y -a sin (8 + -y) 
	Since A and B describe circles (or arcs of circles) about centers OA and 0a, respectively, 
	x'2 + '2 r2 (x" _ p2 "2 2 
	y
	= 
	and 
	)
	+ 
	y
	= 
	8

	Gaspard Fran90is Prony (1755-1839), engineer, was an associate of the famouŁ bridge builder Perronet and became his successor as director of the Ecole des Ponts et Chaussees. Also professor of mathematics at the Ecole PolytechniqueProny wrote textbooks on mechanics and hydraulics but is perhaps best remembered for the friction brake, or absorption dynamometer.
	1 
	, 

	%Only the moving links were counted and called bars. In recent years, onlY Svoboda ("Computing Mechanisms and Linkages," Massachusetts Institute Technology Radiation Laboratory Series, vol. 27, McGraw-Hill Book Company, New York, 1948) has used the term "three-bar." 
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	s This section may be omitted at first reading. 
	y cos -y](x+ y+ b
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	Substituting the values of :c', yand x", y" into the last t,vo equations yields 
	' 

	(x -b cos 0)+ (y -b sin 0)= r
	(x -b cos 0)+ (y -b sin 0)= r
	2 
	2 
	2 


	and (x -a cos (0 + -y) -p]+ fy -a sin (0 + -y)]2 = s
	2 
	2 

	,vhich, by application of trigonometric identities and ordering of terms, become 
	. 2 2 + b2 _ r2 
	. 2 2 + b2 _ r2 
	. 2 2 + b2 _ r2 
	. 2 2 + b2 _ r2 
	x
	+ y

	x cos O + y Sill fJ = 

	2b 
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	and 
	[-p) cos 'Y + sin -y] cos (J -[(x -p) sin 'Y -y cos -y] sin 0 
	[-p) cos 'Y + sin -y] cos (J -[(x -p) sin 'Y -y cos -y] sin 0 
	[-p) cos 'Y + sin -y] cos (J -[(x -p) sin 'Y -y cos -y] sin 0 
	[-p) cos 'Y + sin -y] cos (J -[(x -p) sin 'Y -y cos -y] sin 0 
	(x 
	y 

	_ 2
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	(x p)+ y2 + 
	_ 
	2 
	a2 


	_ 

	-
	-
	-
	2a 


	The equation of the coupler-point curve 1nay now be obtained byelimination of O between the last two equations. Solving these equations cos O and sin 8 and substituting the values obtained into the identity cos8 + sin8 = I yields the general four-bar coupler-curve equation 
	for 
	2 
	2 

	y p M(x,y) Ł"' ---------Ł:W., ----x 0A' 
	FIGURE 6-2 Coordinate system and notations used to derive equation of coupler curve. 
	FIGURE 6-2 Coordinate system and notations used to derive equation of coupler curve. 


	Isin a((x 
	-p) sin 'Y 
	-

	-
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	r) 
	2

	-
	r)
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	+ {sin a[(x p) cos 'Y + y sin -y](x+ y+ b
	2 
	2 
	2 

	-x sin f3[(x -p)+ y+ a-s])= 4ksina sinfJ sin-y[x(x 
	2 
	2 
	2 
	2
	2 
	2 
	2 
	2 
	2 

	-p) -.IJ -
	-p) -.IJ -
	py cot -y]
	2 

	(6-1) 

	this, k is the constant of the sine law applied to the triangle ABAf, 
	In 

	k -_!!:__ ---Ł---C
	k -_!!:__ ---Ł---C
	-

	sin a sin /3 sin 'Y 

	KINEMATIC SYNTHESIS OF LINKAGES 
	'"fhis equation is of the sixth degree and because of its propertiesalso bears the forn1idable title of tricircular sextic. One of its properties has been n1entioned: a straight line will intersect it in no n1ore than six points. Its further features may be .studied either geon1etrically or algebraically. The geo1netric exarnination begins ,vith Sec. 6-3. An introduction to the algebraic study of coupler curves will be given byconsidering some properties deduced by Roberts and others. As a guide to an under

	Circle of Foci 
	Circle of Foci 
	On setting 
	L sin a[(x -p) sin -y -y cos -y) M = y sin /3 
	= 

	N sin a[(x -p) cos -y + y sin -y] P = -x sin /3 
	= 

	</, + y+ b"1 = (x -p)2 + .1/,. + a-s
	= 
	x
	2 
	2 
	2 
	_ 
	,2 
	2 
	2 

	Eq. (6-1) takes the forn1 
	(Lq, My;) + (N<I> + Pf) -4k(LP -N1Jf)= 0 (6-la) 
	+ 
	2 
	2 
	2
	2 

	Note that the equation 
	LP -lvM = 0 or :r(x -p) + y-PY cot 'Y = 0 
	2 

	represents a circleopassing through O.,i and OB (Fig. 6-3). For reasons that will appear later, this circle is called the circle of singular foci. 
	t 


	Multiple Points 
	Multiple Points 
	A n1ultiple point of a curve, as, for exan1ple, a cusp or a crunode (seeSec. 6-3), is a point ,vhere the curve has several tangents. We proposeto show that the coupler curve has n1ultiple points at each of its inter­sections with the circle of foci. When a curve is defined by an equationof the fornt 
	/?(.r, y) = 0 
	/?(.r, y) = 0 

	its tangent 1nay be found by equating to zero the differential of the function F(x, y), 
	iJF dx + iJF d y = 0 
	iJF dx + iJF d y = 0 
	ex cy 

	In rectangular coordinates every equation of the form 
	1 

	r2 
	r2 
	.


	+ Dx + Ey + F = 0 represents a circle. 
	y
	i + 
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	p sin /3 sin a 
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	,,-Ł-Circle of foci 
	,,-Ł-Circle of foci 
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	psin/Jcosa 
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	psin/Jcosa 
	sin'Y 
	Figure

	FIGURE 6-:3 Triangle of the singular foci OAOnOc similar to coupler triangle ABM. 
	Since dx and dy are infinitesin1al changes in the coordinates x and y along the curve, they also define the slope of the tangent as 
	dy aF/ax = · 
	dy aF/ax = · 
	dx 
	aF/ay 


	At a multiple point, where the curve has several tangents, the above expression niust be indetern1inate, which n1eans that both aF/ax and iJF/ay must be zero to satisfy the indeterminancy. 
	The left n1en1ber of Eq. (6-la) is the function F(x, y) corresponding the coupler curve, whence 
	to 

	2(L<t> + M,f) a(L<t> + Af,f) + 2(Nrt, + Pf) aŁ (N<I> + Pf)
	Ł = 
	<J

	x 
	x 
	x 
	-8k(LP -Nll1) _!___ (LP -NA,f) 
	2


	ax 

	A similar expression is forn1ed for iJF/ay on replacing :r by y. Since the points of intersection of two curves are found by considering their ations as sin1ultaneous, the intersection of the coupler curve and the e of foci is given by the pair of equations 
	equ
	circl

	Lq, + M,f)+ (N<t> + P,f)-4k(LP -NM)= 0 LP -NM= 0 
	(
	2 
	2 
	2

	ce the left n1e1nber of the second equation is zero, each tern1 of the 
	Sin
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	first equation is like"•ise zero, and 
	L<J, + Mi/I = 0 N</, + Pi/I = 0 
	L<J, + Mi/I = 0 N</, + Pi/I = 0 

	'fhe last two quantities serve to n1ake fJ/?/fJx and fJF /fJy zero also, thus satisfying the requirement of an indeterminate slope at the point of intersection of the t,vo curves and establishing the presence of a n1ultiplepoint. 
	Imaginary Points 
	Further properties of the curve may be deduced fron1 its equation by considering in addition to real points of the plane, whose coordinates x and y are real nun1bers, in1aginary points having co1nplex nurnbers as coordinates. Complex nu1nbers of the fonn z = x + iy are used in this text to represent real points of coordinates x and y, in which both x and ya.re real. 1'he situation in this section is different, because x and y are then1selves complex: such points are called in1aginary. As re111arked, these p
	Thus, although the coupler curve is a closed curve ,vhich does not extend to infinity, wc shall be able to speak of its imaginary points at infinity and detern1ine its asyn1ptotes at those points. The asyn1ptotes,as may be expected, turn out to be i1naginary lines, but three of their intersections are real and very significant points. It is fron1 a considera­tion of these points that Roberts deduced for the first time ,vhat we call the Roberts-Chebyshev theoren1, that the san1e coupler curve may be generate
	Second-order Curves 
	i\.n asy111ptote of a curve is a straight line such that a point, tracing a curve and receding to infinity, approaches indefinitely near to the straight.line. An asyn1ptote may also be considered as a tangent to a curve at a point an infinite distance f ron1 the origin. 
	Before considering the sixth-order curve of primary interest, the matter of points at infinity and asymptotes of a curve will be reviewed 
	FOUR-BAR COUPCLER-POINT CURVES 
	in terms of the more familiar second-order curves ,vhose general equa­tion is 
	Ax+ B+ Cxy + Dx + Ey + F = O 
	2 
	y
	2 
	(6-2) 

	As n1ay be recalled, the above equation-depending on the values of the coefficients A, B, and C-represents an ellipse, a parabola, or a hyperbola.Such curves intersect any straight line in t'\\·o points which may be real or i1naginary, at finite distances or at infinity. For points at infinity on such curves, the coordinates x and y are infinite, whence the first three terms of highest power are so large that the last three terms may be neglected. Points at infinity then lie on the curve defined by the equa
	Ax+ B+ Cxy = 0 (6-3) 
	Ax+ B+ Cxy = 0 (6-3) 
	2 
	y
	2 


	The directions t of the points at infinity on a curve are defined from the equation of a straight line passing through the origin, y = x/t or t = x/y,in which t = cot <J, (Fig. 6-4). Since the coordinates of the intersection between line and curve must satisfy the equations of both, we have the pair of equations 
	.Ax+ By+ Cxy = 0 X = ty 
	2 
	2 

	Elimination of x and y produces 
	At+Ct+ B = 0 (6-4) 
	At+Ct+ B = 0 (6-4) 
	2 


	from ,vhich 
	from ,vhich 
	-c + vc-4A B -c --c-4AB
	2 
	1
	2 


	t
	= 
	= 
	-
	2A 
	2A 
	y 
	t'
	t'
	t'
	I

	I

	Directions of /
	points at /
	infinity r
	. 
	I

	t"-) I 
	Figure
	--------------j---.{_ ,J," ,J,' "' 
	Figure

	Io --._ 
	---

	--. --.C
	/....-I
	--.. 
	--






	--
	--
	/ 
	I 
	-

	I
	I
	I
	I

	II 
	FIGURE 6-4 Dircetions of points at infinity of a second­order curve. 
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	Each value of t indicates the direction of a point at infinity, i.e., the angles ,t,' and ,t," (Fig. 6-4). 
	The species of conics n1ay be distinguished by the number of real directions in ,vhich lines passing through the origin n1eet the curve at infinity. The discri1ninant of the expression for t serves for the testing: 
	1. If C-4AB < 0, the directions t' and t" are in1aginary and the curve is an ellipse. Points at infinity on the curve are imaginary, since they lie on lines having in1aginary directions. As an example,consider the circle (a special case of the ellipse) given by the equation 
	2 

	x2 2 R2 
	+ 
	y
	= 

	Following the procedure produces 
	t+ 1 = 0 ,vhence t' = +1·, t" = -i 
	2 

	which is to say that the circle has no real points at infinity (they would have to lie on real lines, i.e., be lines having a real direction). For analytical purposes, the presence of a direction is tantan1ount to the existence of so1ne kind of point at infinity. If the direction is found to be real, then a real point exists at infinity on the curve; if the direction is found to be either +i or -i, then the i,naginary point at infinity is called a cyclic point.The circle is then said to have t,vo points at 
	1 

	A cyclic point is also known as a circular point at infinity. 
	1 

	2. 
	2. 
	2. 
	If C-4A.B = 0, the directions are real and equal, t' = t",and the curve is a parabola. The t,vo real points are coincident at infinity and are a double point. 
	2 


	3. 
	3. 
	If C-4AB > 0, the directions are real and distinct, t' Ł t",and the curve is a hyperbola. There are tv.o real points at infinity because of the t,vo branches. 
	2 



	Amptotes 
	Amptotes 
	sy

	An asymptote to a curve is its tangent at a point at infinity; since second­order curves have t,vo points at infinity, there ,vill be an asyn1ptote for each direction. To find these asyn1ptotes, it is convenient to transform the x, y coordinates of a point P on the curve into coordinates related to the directions of the points at infinity, i.e.! into coordinates related to the oblique axes defined by t' and t". These new coordinates (Fig. 6-5) ·will be called X and Y and ·will be expressed in tern1s of rati
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	PMoPM PN 
	·
	and 
	X 
	=o
	= 
	= 
	PN
	· 

	QH I sin <t,' y QK -:--1 sin <t," 
	The change in coordinates between the systems is then 
	x sin <J,' -y cos <t,' x _ ' 
	X 
	= 
	= 
	t

	Y
	sin <J,' 
	x sin <t," -y cos <t," 
	··--= X -t"y
	and Y = . 
	</,11 

	SIU 
	The equation of the second-order curves [Eq. (6-2)] becon1es 
	-Y[2At't" + 2B + C(t' + t")] -X(t' -t")(Dt" + E) 
	X

	+ Y(t' -t")(Dt' E) + F(t' -t") = 0 (6-5) 
	+ 

	where t' and t" are the familiar solutions of Eq. (6-4). 
	T,vo conditions apply to the asyn1ptotes: 
	1. 
	1. 
	1. 
	They must be parallel to the directions ' and t" of the points at infinity.
	t


	2. 
	2. 
	They must intersect the curve at two points at infinity. (Recallthat an asymptote is a tangent at infinity and that furthermore a tangentis the limit of a secant whose two points of intersection with the curve have become coincident.) 


	Now, a line parallel to the t" axis has, in terms of the new coordi­=
	nates, an equation of the form Y const, where the constant determines the distance f ron1 the axis t". Such a line ,vill intersect the curve at infinity as well as at a point P (Fig. 6-.5). The coordinate of that 
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	FIGURE 6-5 Relations of oblique axes t' and t", curve and asymptote. 
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	second point is given by Eq. (6-5) \vhen Y is replaced by the constant of the line. Since property 2 above requires that the asymptote intersect the curve at two points at infinity, P n1ust also be at infinity and its coordinate X must be infinite. With X infinite, the terins independent of X in Eq. (6-5) are trivial and the coefficient of X n1ust be zero, giving 
	-Y[2:-lt't" + 2B + C(t' + t")] -(t' -t")(Dt" E) = 0 
	+ 

	On returning to the rectangular coordinates x and y 
	Dt" + E 


	X -t"y = 
	X -t"y = 
	vc-
	2 
	4AB 

	This is the equation of the asymptote in the t" direction. 
	The equation of the asyn1ptote parallel to the t' direction is found in a similar rnanner by equating to zero the coefficient of Y in Eq. (6-5); this gives 
	Dt' + E
	I
	X -t y = ---;-::;===··-:: 
	-

	vC-4AB 
	2 

	As an exan1ple, consider the hyperbola 
	2 
	x

	-2y+ 2x + 2 = 0 
	2 

	The directions of its points at infinity are found fro1n t-2 = 0, that is, t' = y2 and t" = -v2. The asy1nptotes are then given by 
	2 

	X -y y2 = -1 
	and x + y v2 = 1, that is, by the real lines 
	Figure
	and 
	Figure
	As a further exan1ple, consider the circle x+ y-R= O, for which we already know that its points at infinity, the cyclic points, lie in the directions t' = i and t" = -i. Upon rewriting the equationof this circle in terms of X = x -iy and Y = x + iy, it becomes XY -R= 0. The coefficient of X is Y, which must be zero to satisfythe equation with X infinite, whence the asyn1ptote parallel to the direc­tion t" = -i is 
	2 
	2 
	2 
	2 

	Y=O or X + iy = 0 
	Similarly, the asymptote parallel to the direction t' = i is found to be 
	X = 0 or X -iy = 0 
	Both these asymptotes are imaginary and possess one real point, the origin of coordinates at which they intersect. 
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	Asymptotes of the Four-bar Coupler Curve 
	Exarnination of the curve equation (6-1) shows its terms of highest degree 
	6
	1:+ In consequence the significant equation for points at infinity is x+ y= 0. As ,vith the second-order curves, this equation is taken with y = x/t, giving
	to be 
	y
	6
	• 
	6 
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	l+ 1 = 0 or (t-i) (t+ i) = 0 (6-6)
	6 
	3 
	3 

	as the equation the directions of the points at infinity must satisfy.
	This equation of the sixth degree has six solutions-all in1aginary-and the coupler curve the ref ore has six imaginary points at infinity
	in the directions 
	i 
	t

	. 
	lt
	i

	=t and 
	. 
	each being a triple solution of Eq. (6-6). The cyclic points are therefore triple points of the coupler curve. The asymptotes, also imaginary, must be parallel to the directions i and -·i, and since each cyclic poh1.tis triple, there will be a total of six asyn1ptotes forming two sets of three parallel irnaginary lines. The determination of the asymptotes follows the rnethod described for second-order curves. 
	In order to carry out the computations more conveniently, Eq.(6-1) is first rewritten, use being made of the identity 
	(1 + V= (U + iV)(U -iV) 
	2 
	2 

	with U and Vas the parentheses appearing in the left-hand member of Eq. (6-1). 1'hus, after some algebraic n1anipulations,
	+ y+ b-r)(ix e-i,.
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	2 
	2

	2
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	= 4ksina sinfJ sin-y[x(x -p) + y-py cot -y
	2 
	2 
	2 
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	2 
	]
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	1'he substitution of X for x + iy and Y for x -iy in this equation yields 
	I-sin a(XY + b-r)(X -p)e-,,.
	2 
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	+ sin .B[(X -p)(Y -+ as]X}X {sin a(XY + b-r)(Y -p)e',.
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	X XY -Ł (Xl -i cot -y) + Y(l + i cot -y)](6-7) 
	{
	(
	}
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	The highest powers of X and Y in this equation are and Y; the asymptotes are therefore obtained by equating their coefficients to zero. 
	X
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	The coefficient of Xis 
	3 

	[-sin aYe-i-r + sin i3(Y -p)][sin aY(Y -p)e-sin i3Y(Y -p)] 
	h 

	The requirement that this coefficient be zero will be met if any one of the three equations 
	Y=O Y=p sin a Ye-i-r = sin .6( Y -p) 
	is satisfied. When written 1n terms of cartesian coordinates, these equations become 
	X -iy = 0 X -p -iy = 0 
	X -iy = 0 X -p -iy = 0 
	sin fJ cos a . ( . sin fJ sin a) (6-8)
	= 
	x -P i Y 
	-
	-p 
	0

	sin 'Y 
	sin 'Y 

	They represent a set of three parallel asyn1ptotes corresponding to the triple point at infinity in the direction t' = i. (Parallel lines intersect at infinity.) Another set of three parallel asyn1ptotes in the direction t" = -i is obtained by equating to zero the coefficient of Ynin Eq. (6-7), i.e., 
	3 

	[-sin a Y(X -p)e-i-r + sin i3(X -p)X][sin aXe-r -sin .6(X -p)] = 0 This require1nent will be satisfied if one of the following equations holds: X = 0 X=p sin aXe-r = sin (3(X -p) 
	i
	i

	These transforrned into cartesian coordinates are 
	X + iy = 0 X -p + iy = 0 
	_ sincos a + _ sin sin a) = 
	x 
	Ł
	i 
	( 
	Ł 
	(6-9)
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	sin 'Y 
	sin "Y 

	Singular Foci 
	Singular Foci 
	For a curve passing through the cyclic points-as the four-bar coupler curve does-the points of intersection of asymptotes of the curve in the direction of the cyclic points are called singular foci. Since the coupler curve has two sets of three parallel asyn1ptotes of this type, it has a total of nine singular foci. Examination of Eqs. (6-8) and (6-9) shows that three of these intersections are real; i.e., there are three real singular foci. They are the origin OA; the point On (x = b, y = 0), and a third p
	1 
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	E. N. Laguerre, Sur !es courbes planes algebriques (1865), fron, "Oeuvres de Laguerre," vol. II, Gauthier-Villars, Paris, 1905. 
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	which also lies on the circle of foci defined earlier in this section.-· It may be further observed (Fig. 6-3) that the angles at OA, 08, ·and Oc AOnOc are respectively equal to the angles at A, B, and M of the triangle ABM: the triangles OAOBOc and ABM are therefore sin1ilar. 
	of the triangle O

	In summary: Starting fro1n the coupler-curve equation, a series of n1anipulations identified the points OA, 0n, and Oc with unique prop­erties of a sixth-degree equation, viz., that they constitute what are called the three real singular foci of the curve. Repeat in� ahnost exactly the words of Roberts, we are led to ren1ark that, since the singular foci are sin1ilarly related to the coupler curve, we might have taken as fixed centers the focus OA and the third focus O, and by n1eans of links of suitable le
	c

	This problem of the triple generation of coupler curves will be reconsidered in Sec. 6-4 by geon1etric means, and a complete determina­tion of the three four-bar linkages will be given there. 
	6-3 DOUBLE POINTS AND SYMMETRY 
	6-3 DOUBLE POINTS AND SYMMETRY 
	Coupler curves for 10 four-bar linkages are shown in Figs. 6-31 to 6-40 of the appendix of this chapter.n'fhe four-bar linkages generat­ing these curves fulfill the Grashof condition and are of the crank-rocker type. The crank at the left has unit length in each figure. The lengths of the coupler A, the rocker B, and the frame Care given in n1ultiples of the unit crank length. Coupler points are indicated by sn1all circles; they are spaced at unit intervals on a rectangular grid carried by the coupler, givi
	1 
	° 
	°

	Coupler curves have a variety of shapes, as inspection of the figures will show. These figures, selected for their possible utilization in problems of this text, do not show all possible features because of the arbitrary disposition of the points on the coupler grid and the ratios of link lengths. In general, coupler curves may possess double points 
	Redrawn from "Analysis of the Four Bar Linkage" by Hrones and Nelson bpermission of the Massachusetts Institute of Technology Press. 
	1 
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	(cusps and crunodes) aŁwell as syn1n1etry about an axis. The propertiesof the curves, difficult to study algebraically because of the unwieldyequation, will be examined geon1etrically. This chapter devotes itself to geometric features other than curvature; this very in1portant topic is the subject of Chap. 7. 
	. 

	A double point is a point on a curve at ,vhich the curve has t,vo tangents. A double point may be of two types: a crunode, at which the tangents are distinct, the curve crossing itself; and a cusp, at which the tangents are coincident, the curve being tangent to itself. 

	Cusps 
	Cusps 
	The most familiar example of the cusp is derived fro111 the curve traced by a point on the periphery of a rolling ,vheel (Fig. 6-6a). The curve is the common cycloid, one of the special cases of the trochoid. We should recognize, before going further, that P is a point on the n1oving centrode m and that I, a point on the fixed centrode 1r1, was the instantaneous center of velocity for the moment that P and I were coincident. It is quite evident that P came down to I, stopped, and moved off in a direc­tion o
	11'

	t p • I 
	(a) Cycloid with a cusp at Iwhere the curve is tangent to itself 
	I 
	(b) Cusp at which both branches lie on the same side of 
	FIGURE 6-6 The cusp, a. double point with coincident tangents. 
	FIGURE 6-6 The cusp, a. double point with coincident tangents. 
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	(a) Four-bar linkage OA ABOB (in position 1) and fixed centrode 1r 
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	C 
	Figure
	1r"' (moving centrode) 
	D 

	E 
	Figure
	Figure
	Figure
	(b) Plane of coupler showing the moving centrode r"' 
	I<'IGURE 6-7 Cusps of coupler curves. 
	of the cusp will be normal to the fixed centrode. The cusp may also take the form shown in Fig. 6-6b, in which both branches of the curve lie on the same side of the common tangent; this tangent is also normal to the fixed centrode. 
	We may see the action in a four-bar fron1 Fig. 6-7. The linkage is shown in its entirety in Fig. 6-7a; the coupler link is AB, located in 
	KINEMATIC SYNTHESIS OF LINKAGES 
	Figure
	1:--IouRE 6-8 Prolate cycloidwith a (symmetrical) crunodc at Q. 
	position 1. Figure 6-7b shows the isolated coupler, a portion of its plane with the n1oving centrode sketched in, and four coupler points-C, D, E, and F-located on the moving centrode. The curves that these points trace on the fixed plane are sho,vn in Fig. 6-7 a; each coupler curve shows 11"touches 1r. For the instant depicted, the 1noving and fixed centrodes are in contact at C1, whence the cusp there. With rotation of the crank, the centrodes roll, and cusps are formed by the other coupler points at appr
	a cusp for the instant at which the point on 
	,n 
	1

	Crunode 
	Crunode 
	The crunode is a 1nore obvious fonn of double point than the cusp; as noted earlier, the curve crosses itself and therefore has t,vo distinct tangents. A si1nple exan1ple again derives fro1n a special case of the trochoid, specifically the prolate cycloid (Fig. 6-8). With regard to the four-bar, it will be seen that a crunode is related to the circle of singular foci corresponding to the coupler point. 
	• A.. coupler curve with t,vo crunodes is shown in Fig. 6-9. For 
	Q 
	Figure
	FIGURE 6-9 Coupler curve with double points Q and Q'. 
	FIGURE 6-9 Coupler curve with double points Q and Q'. 
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	M,Q 
	FIGURE 6--10 Two positions of a four-bar corresponding to a 
	double point at Q. 
	the crunode Q (Fig. 6-10), there rnust be two positions of the coupler AB 1B1 and Ao2B2 for which the coupler point Jf assumes the san1e positionQ on the fixed plane. Considering the quadrilateral OAA1QA2,in which OA.41 = 0,1A2 and A1Q = A2Q, it is clear that OAQ bisects the angle A1QA2 = 2{3. Similarly, OBQ is the bisector of the angleBQB2 = 2-y. However, since the coupler is rigid, 2{J = 2, or fJ = -y;1 is 2{J + a; for A 2QB 2 it is a +2. Since /3 = 'Y, the angle OAQOs = {3 + a + 'Y is therefore the same 
	such as Ao
	1 
	1
	-y
	the vertex angle of A 
	1
	QB
	-y

	OAQOs = A1QB1 = A2QB2 
	AOsOc sirnilar to ABM constructed with A08 as base (Fig. 6-11); the last equalities then yield 
	Consider now a triangle O
	O

	·oAQOs = OAOc08 
	which implies that the point Q must necessarily belong to the circle s, Oc. It 1nay be recalled that this point Oc 
	passing through points O.Ł, O

	This assumption is valid provided that the IC he uniquely defined and be distinct from Q. See Bricard, vol. II, p. 308. 
	1 

	Q' 
	Oc / Circle of foci Ł 
	FIGURE 6-11 The double points of a coupler curve, if any, lie on the circle of foci. 
	FIGURE 6-11 The double points of a coupler curve, if any, lie on the circle of foci. 
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	is the third singular focus of the coupler curve (Sec. 6-2) and the circle AO BOc the circle of foci whence a coupler curve has crunodes at each of its intersections with the corresponding circle of foci. If the curve does not. intersect the circle of foci, then it has no double points. 
	O

	Symmetry 
	Symmetry 
	Coupler curves which are sy1nn1etrical about an axis may be generated by a four-bar linkage with a coupler base .4B and follo,ver of equal length, AB = OB (Fig. 6-12). The coupler point generating a syn1metrical curve must then lie anywhere on the circle centered at B and passing through A. 
	B

	B = BA = B!vl, the above circle also passes through On and the inscribed angle AOnll1 satisfies the relation 
	Since BO

	ABA1 B
	M = = const
	AO
	B
	= 
	2 

	2 
	AABOand OABOfor which points A1 and .4 2 are syn1n1etrical with respect to the line of fixed centers OOn (Fig. 6-13). For these positions, triangles OBAe1B1 and BA2B2 are equal, since corresponding sides are equal, whence fl1 = fJ2• BB1 llfI and OBBM2 are equal, 
	Consider now the linkage in two positions O
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	FIGURE 6-13 Two positions of a four-bar corresponding to 2 on coupler curve. 
	symmetrical points ftf, and M

	and the midnorn1al c to llf1M2 passes through OB and bisects the angle 2, whence 
	M10BM

	Figure
	A OaA1 and OAOsA2 are also equal (A1 syn1n1etric to 2 with respect to OA.08), 
	Since the angles O
	A

	fJ 
	,,.+a-+o
	= 

	2 
	Adding the last two equations yields 
	fJ
	')' -
	= 
	2 

	The n1idnorrnal c to A,f iJ.lf2 therefore n1akes a constant angle with the AOs, whence it is an axis of synunetry for the coupler curve generated by point 111. It 1nay further be noted that symmetric points on the coupler curve correspond to syn1n1etric positions s. 
	line of fixed centers O
	of the crank with respect to the line of centers OAO

	The foregoing situation was a sufficient condition for syn1n1etry, but not a necessary one. For exan1ple, the Watt straight-line mecha
	-
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	nism, in which the coupler point lies on the coupler line AB, traces a coupler curve symmetrical with respect to the line of centers OAOB.* Note that the line of centers is also the circle of foci and that the curve has a crunode at its intersection ,vith the line of centers. 
	1
	1
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	THE ROBERTS-CHEBYSHEV THEORE
	6-4 
	l\-


	A ren1arkable property of the planar four-bar linkage is found in the Roberts-Chebyshev theoren1n: Three different planar four-bar linkes will trace identical coupler curves. The develop1nent of this theoren1 is presented in modern forn1, and extensions related to six-bar and slider­crank mechanisms are given. 
	A ren1arkable property of the planar four-bar linkage is found in the Roberts-Chebyshev theoren1n: Three different planar four-bar linkes will trace identical coupler curves. The develop1nent of this theoren1 is presented in modern forn1, and extensions related to six-bar and slider­crank mechanisms are given. 
	ag

	Coupler Curves and Cognate Linkages 
	Kinematically equivalent four-bar linkages-usually called equivalent linkages-are comn1only used for velocity and acceleration analyses of planar direct-contact mechanisms such as cams and noncircular gears. The equivalent linkage is really an analog of the direct-contact mecha­nis1n, and it "·ill be reme1nbered that the dimensions of the linkage change with time, i.e., ,vith the position of the n1echanisrn: the equivalent linkage might ,vell be called an instantaneous linkage.
	When the designer's concern is only with the curve traced by a coupler point of a planar four-bar, then other planar linkages tracing an identical coupler-point curve may be found by the application of the Roberts-Chebyshev theoren1. For want of a na1ne, these linkages­related through their conunon coupler curve-will be called cognatelinkages. It is emphasized here that these linkages do not look alike: their relation stems only from the identical coupler curves they trace. However, in contrast to the equiv
	• See Prob. 6-4. 
	1\,1 uch of the 1naterial of this and the following section appeared in Machine Design, Apr. J 6, 1959, and is reprinted by courtesy of the Penton Publishing Company, Cleveland. 
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	The Roberts-Chebyshev Theorem 
	The Roberts-Chebyshev Theorem 
	Robertsand Chebyshev were n1athe1naticians of considerable stature during the latter part of the nineteenth century. Both were members of the Royal Society, and both studied, an1ong many other things, coupler curves of four-bar linkages. 
	1 

	The French and Gern1an literature speak of the "Roberts' theo­ren1," while the dual name appears in the Russian. It seen1s proper to use both names: Roberts announced his discovery in 1875, Chebyshevin 1878. Except for the final result, there is no resemblance between the two developments, for the approaches are as different as they can be. 
	To explore the theore1n, three different planar four-bar linkages will trace identical coupler curves, we shall consider a four-bar linkage and AABOn, shown in Fig. 6-14a (drawn in solid lines) and carrying the coupler pointM, which traces a planar curve (not illustrated). On the left., the dash­1 and .i\1 A1 is added, and the triangleA1MC1 is constructed si1nilar to triangle ABM-note where the angles are. On the right, a sin1ilar construction of a parallelogran1 brings us . A third parallelogra1n is then c
	see ,vhat can happen to it (Fig. 6-14). The given four-bar is O
	line parallelogra1n involving O..tAn
	to the point C
	2
	to the point O

	We can distinguish a total of three four-bar linkages mutually connected at their coupler points M: n (solid) the given linkage 
	OAABO

	olink OAOc not shown 
	....41C10c 

	link OOnot shown 
	OBB
	2
	C
	2
	0
	c 
	B
	c 

	We also recognize, intuitively because of the parallelograins, that the entire complex of 10 links is movable. (The IO-bar linkage is, in fact, overclosed-there are 2 n1ore links than necessary; thus, 2 links such as 0,1 A 1 and 0Bcould be ren1oved, to leave the 8 re1naining links as a constrained n1echanism.) 
	8
	2 

	It is thus clear that each of the three four-bar linkages traces, through the identical coupler point ilf, identical coupler curves. This allows the replacen1ent of the given linkage by either of the other t,vo, whose space require1nents are different because of link lengths and one me-joint location, O. These are then cognate linkages, the relation stemming f rorn the comn1011 coupler-point curve. 
	fra
	c

	c be truly fixed, as are o ... and 08 : we 1nust justify our earlier assun1ption. 
	For the theore1n to be true, it is necessary that the fran1e joint O
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	San1uel Roberts (1827-1913). Another Roberts, Richard (1789-1864), has n his name to the Roberts ''straight-line'' motion, which he described prior to 1841. 
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	(a) Given linkage and curve of coupler-point M (b) Construction for cognate linkages 
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	(c) Lefthand cognate linkage andcurve of coupler-point M 
	I 
	(d) Righthandcognate linkage and curve of coupler-point M 
	FIG1;RE 6-14 Three cognate four-bars and their identical coupler curves-the Roberts-Chebyshev theorem. 
	To show this by purely geon1etric construction is tedious, but it engaged the attention of mathematicians such as Cayley, Clifford, and Kleiber, among others. The simplest demonstration seen1s to be that of Ja. B. Schor (1941) 1naking use of complex nun1bers: it is given by Bloch and is somewhat as follows.1 In Fig. 6-15a the point Oc will be fixed if 
	z = OAOce'= const (6-10) 
	6 

	The complex-number proof goes back to Hart in the "Messenger of Mathe­matics," p. 32, 1883 (quaternion proof of the triple generation of three-bar motion). 
	1 
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	Oand the angle� ,vill have to be expressed in terms a and must be 3 of this linkage. These angles are measured counterclockwise f ro1n the x axis, for con­s ; t/>1 and t/>a also appear in the cognatelinkages. 
	This n1eans that O
	A
	c 
	of the invariant dimensions of the first linkage OAABO
	independent of the angular displacements t/>1, f/>2, and q,
	venience laid through the line 0.1.0

	D.Ł--Ł (x)\ \\\· --Ł\Łl Ło :.-Łs---Ł x (a) Sketch for showing that joint Oc is a frame-point 
	1 7 (b) The over-closed ten-bar linkage 
	FIGURE 6-15 Cognate four-bar linkages. 
	FIGURE 6-15 Cognate four-bar linkages. 
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	0A, and taking advantage of the parallelogran1s,we may write 
	Starting fron1 

	z = O,tA 1eH .. tŁa) + ACei(<1>,+a) + COcei<<1>,) (6-11) 
	1 
	1
	1 
	+a

	Fron1 t.he parallelogran1s and similar triangles, the first factors of the above equation may be found in terms of the link lengths of the given 
	linkage, 
	Figure
	A 1C1 
	A 1C1 
	= 

	AM AB 
	Figure

	;::OA A
	M 

	AB 
	(b) 
	MC2 
	AM

	=
	or since 1l1C2 = C1 Oc and MB2 = BOB, 
	},f B
	2 
	AB 

	AM
	C1Oc = BOB (c) 
	AB 

	With a hint fron1 Eqs. (b) and (c), Eq. (a) may be put into a more con­venient forn1, 
	AM
	OAAt = -AB (a')
	AB 
	Substituting Eqs. (a'), (b), and (c) in Eq. (6-11), ordering the terms, and factoring, ,ve get 
	(6-12) 
	The terrns in the parentheses are recognized as a vector sun1 equivalent to OAOB, or 
	O O 
	AM

	Z = --A ne•a
	AB 
	On comparing Eq. (6-10) with Eq. (6-13), it is seen that (1) OAOc = (A1"1if IAB)O AO B = const and (2) o = a = const. 
	This shows not only that Oc is a fixed point but also that the triangle OA OcOB is sin1ilar to the original triangle of the coupler, AME. From this last information, we may in1mediately locate the point Oc: it is merely necessary to construct on the fran1e link 0_a triangl
	e

	408 
	similar to AMB; the upper vertex is Oc. 
	The location of 00 was part of Roberts' demonstration. Cayleysuggested the plan of Fig. 6-16; it is a simple way of determining the link lengths of the cognate mechanisn1s. In this construction the given 
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	linkage is pulled out straight, as it ,vere, and the parallel lines are drawn to define the cognate linkages. 
	The four-bar linkage invoked so far for den1onstration purposeshad the coupler point M lying to one side of the line AB. The theorem still applies when the coupler point lies on the line AB, either between A and B or beyond A or B. The deter1nination of the cognate linkagesrequires a bit more care now, for all the links of Fig. 6-16 will lie on topof each other, the cognate couplers having becon1e "lines." 
	As Jf moves closer to the line AB, it is apparent that the generalgeon1etry is preserved as the links approach collinearity with each other and the line OAOB ; OAOs will be divided in the same ratio as M divides AB. Note that Cand C2 will divide A1M and MB2 sirnilarly.
	1 

	As an example of the case where M lies between A and B, consider the linkage of Fig. 6-17, which would be a Watt linkage if the couplerpoint M lay at the midpoint of AB. Referring to Fig. 6-17b, ,ve then note the following: 
	1. 
	1. 
	1. 
	The frame point Oc lies on the line OAOs and divides it in the same ratio as J.lf divides the line AB. 

	2. 
	2. 
	0AA 1 is parallel to AM, and llf A 1 is parallel to OA ,4., thus defining A1. 

	3. 
	3. 
	is parallel to MB, and 1lf B2 1s parallel to 088, thus defining B2
	0
	8
	B
	2 
	-


	4. 
	4. 
	will divide the line A1M in the sa1ne ratio as 1°111 allowing the link C0c to be drawn to complete the left-hand linkage.
	C
	1 
	divided 
	AB,
	1


	5. 
	5. 
	Cwill divide the line 1lf B2 in the san1e ratio as allowing the link C20c to be drawn to con1plete the right-hand linkage. 
	2 
	M divided 
	AB,



	Figure
	FIGURE6-16 Planfor determining the lengths of cognate links. 
	FIGURE6-16 Planfor determining the lengths of cognate links. 
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	B B 
	Figure
	(a) 
	(a) 
	(a) 
	Given four-bar fb) Cognate construction 

	(c) 
	(c) 
	First cognate (d) Second cognate 


	Figure
	FIGURE 6-17 Cognate four-bars, M between A and B. 
	FIGURE 6-17 Cognate four-bars, M between A and B. 


	For the case in ,vhich Mlies on an extension of AB, the method is the san1e as before, except that the line division is now external, follow­ing the position of M. 
	Cayley sho,ved that the coupler point Mand the instantaneous centers of coupler and f rarne of each of the three linkages are collinear at all times and that this line is the norn\al to the coupler curve (seeFig. 6-18). 
	Velocity Relations in Cognate Linkages 
	Velocity Relations in Cognate Linkages 
	Returning to Fig. 6-15b, assu1ne that the angular velocity of link o .. A of the given linkage OAABOJJ is w2• The angular velocities of the other n1oving links AB and OB, deter1nined in so1ne convenient ,vay, would be wa and w4. Since OAA is parallel to .4M, OcC2 parallel to C1M, and I fixed, the angular velocity of link OcC2 of the right-handcognate linkage is also w2. Si1nilar considerations are applicable to other 
	R
	1
	the angle A ill:f C

	l<'O UR-BAR CO U PLEH.-POINT CURVES 
	links of the cognate linkages, and the following table of velocity equiva­lences results: 
	LEFT COGNATE GIVEN RIGHT COGNATE 
	LEFT COGNATE GIVEN RIGHT COGNATE 
	Figure
	These velocity relations 1nust be taken into account ,vhen the point JI;/ is to be driven along the coupler curve C ,vith prescribed veloci­ties. For example, if the desired motion Mis obtained fron1 the linkage OAAB08, with OAA driven at a constant angular velocity w2, the same motion of M (curve and velocities) will be obtained by using the right­hand cognate linkage OsB1C20c and driving the link OcC2 at the same constant angular velocity w2• If the left-hand cognate linkage OAA1C10c must be used, then it
	Historical Note 
	There is a salient contrast between the developn1ent and staten1ent of the theoren1 as given here and the original works of Roberts and Cheby­shev. Pararnetric equations for the coordinates of the coupler point of the Watt linkage had been derived by the French engineer Prony (1755
	-

	he three coupler-and-frameinstantaneous centers and Point M. 
	Ł

	Figure
	FIGURE 6-18 Collinearity of 
	FIGURE 6-18 Collinearity of 
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	1839). · · Eighty years later, Roberts' analytical investigation showed the curve to be of the sixth order and demonstrated the presence of the third c which had with respect to the coupler curve all the properties of the fixed centers OA and O8. He deduced that the san1e curve could therefore be generated by three different four-bars. 
	singular focus of the coupler curve, i.e., the point O

	Chebyshev had studied four-bar linkages to generate approximate straight-line segments, arriving at the particular form kno,vn as the Chebyshev straight-line n1otion. By geon1etric perception, and reasoning f ron1 similar triangles, he derived the theorem for this sin1ple case, before generalizing it to all coupler-point situations. 
	6-5 EXTENSIONS OF THE ROBERTS-CHEBYSHEV THEOREM 
	a. Cognate Slider-crank Mechanisms 
	A. 1nodification of the Roberts-Chebyshev theore1n applies to the slider­crank n1echanisn1n: two different planar slider-crank mechanisms will trace identical coupler curves. 
	If a sliding pair replaces one of the turning pairs of a four-bar linkage, a slider-crank mechanisn1 results (Fig. 6-19a). The center On is at infinity, with the link B08 now infinitely long. On "straightening"this linkage (Fig. 6-19b), we can draw only a portion of the schematic, for B0now extends to infinity to the right (arguing by analogy). Under these circumstances the linkage "above" OB vanishes, for practical pur­c finds itself at infinity. Beyond what n1ight have been C2 cat infinity-whence C1 n1ust
	8 
	poses, and O
	lies O
	-

	The construction of the cognate slider crank may be followed from Fig. 6-l 9c; a parallelogram and a sin1ilar triangle are added as shown. The point 13 is the instantaneous center of the given coupler and frame, 35 is the transfer center, and 15 applies to the cognate coupler. The course of the ne,v slider is then along the perpendicular to 15-.-'>7 drawn through t-,7. 
	ACi is a straight line of constant 10AA 1 and OABA are si1nilar, whence a1 = a. Now Ł1 = o + a1, and 
	It is still necessary to justify that O
	inclination. Considering Fig. 6-19c, we note that the triangles C 

	Figure
	but /j1 = {:J or o + a1 = () + a, ,vhich with a1 = a means that 
	o = () = const 
	Figure
	35Ł 15 X 0Ł 
	FIGURE 6-19 Cognate slider-crank mechanisms. 
	FIGURE 6-19 Cognate slider-crank mechanisms. 
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	(a) Given slider-crank mechanism and curve of coupler-point M 
	(d)
	The cognate slider­

	Figure
	crank mechanism 
	A B 0,oo 
	Figure
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	(b) Plan 
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	4 
	(the cognate slider) follows a straight line of constant could thus be used to trace a straight line-no cognate slider is needed for this. 
	Hence the point C
	1 
	slope. The point C
	1 

	As with the four-bar linkage, the instantaneous centers of the coupler and frame of each of the slider-crank 1nechanisn1s are collinear with coupler point 1.lf at all times; this line is also the nonnal to the coupler curve. 
	The velocity relations are the following: 
	. 
	Figure
	W2 = W5 W3 = W6 _ O.-iA1 _ AM 
	vc, 
	Figure
	Figure
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	F'IOURE 6-20 Four-and six-bar cognate linkages, }\[ off the line AB. 
	F'IOURE 6-20 Four-and six-bar cognate linkages, }\[ off the line AB. 
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	(b) First cognate six-bar 
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	(c) Second cognate six-bar 
	1''0UR-BAR COUPLER-POINT CURVES 
	b. Six-bar Linkage Cognate to a Four-bar Linkage 
	An extension of the Roberts-Chehyshev theore,n is as follows: The coupler-point curve of a planar four-bar linkage is also described by the joint of the dyad of a proper six-bar linkage. 
	The course of this extension ,nay be seen fron1 Fig. 6-20b. 8 is the given four-bar linkage carrying a coupler point ill. procedure for finding the six-bar linkage n1ay be seen to be as follows: 
	Here 
	OAABO
	The 

	1. 
	1. 
	1. 
	Fron1 A and J.lf construct a parallelogran1 locating C. 
	0


	2. 
	2. 
	8 and .Al construct a parallelogra1n locating B• 
	Fro1n O
	1



	a. 'fhe links },r/C and .Af Bi are the dyad whose joint is at M. 
	4. 
	4. 
	4. 
	Construct the triangle A1OBB1 sin1ilar to Ailf B: it is reversed and upside do,vn ,vith respect to A'fl;/B. 

	5. 
	5. 
	1, for1ning a third parallelogra1n OAO8A1C. An identical dyad is f onned when the other frame point O8 is used (Fig. 6-20c). 
	Connect C and A 



	1'he situation in which the coupler point !IJ lies on the line AB, either between A and B or beyond A. or B, follows the san1e pattern.
	If the fran1e parallelograrns go into the antiparallelogran1 con­figuration at the change points, then con1pletely different coupler-point curves will be traced. 
	It is apparent that the Roberts-Chebyshev theore1n is useful in those proble1ns of synthesis involving the coupler-point curve, for the linkages that are related through the curve are identified. l'he choice of the cognate 1nechanisn1 is dependent on space require1nents (linkdin1ensions and fran1e-point locations), velocity and acceleration con­siderations, and the value of the transrnission angle during certain phases of the 1notion. 
	6-6 STRAIGHT-LINE 1\:1 EC HAN ISl\-1S-A PPROXll\,J A'rE 
	AND EXACT 
	The Watt linkage and "great bean1" gave engines of the earlynineteenth century vast bulk, and other, n1ore con1pact "parallel n1otions" only pin-connected men1bers ,vere sought. Of course, the Watt link­was studied for optimun1 proportions, but different four-bar linkages devised, an1ong then1 the Evans (United States), or grasshopper (Fig. 6-21a); the Roberts(Fig. 6-21b)a; and the Chebyshev (Fig. 6-21c).
	of 
	age 
	Were 
	1 

	Nun1erous sin1ple planar linkages possessing the geometric rela­s necessary for generating true straight lines followed. We shall uss two, the Peaucellier and the Hart. 
	tion
	disc

	This Richard Roberts, engineer, is not to be confused with the 1nathen1a­tician Samuel Roberts; see Sec. 6-4. 
	1 
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	Figure
	(a) Evans, or "grasshopper" 
	B A (b) Roberts (c) Chebyshev 
	nGURE 6-21 The hest-known "straight-line" motions other than ,vatt's. 
	nGURE 6-21 The hest-known "straight-line" motions other than ,vatt's. 


	:
	The true straight-line pin-connected linkages involve a geo1netric relation kno,vn as inversion (not the kine1natic inversion, i.e., the succes­sive fixing of links of a chain to create a variety of 1nechanisn1s). If two points P and Q, restrained to move along a straight line passing through a fixed point 0, n1aintain the relation 
	0P X OQ = k = const of inversion then: 
	1. 
	1. 
	1. 
	The points P and Q are said to be inversely related. 

	2. 
	2. 
	When the straight line rotates about 0, the curves traced by P and Qare said to be the inverse of each other. In particular: 


	FOUR-BAR COUPLER-POINT CURVES 
	a. 
	a. 
	a. 
	If one point, either P or Q, traces a circle not passing through0, the other point will also describe a circle; i.e., the inverse of a circle is a circle .. 

	b. 
	b. 
	If one point traces a circle passing through 0, the otherpoint's circle will have an infinitely great radius; i.e., it "·ill describe a straight line. 


	Mechanical devices realizing these conditions are kno,vn as inversors, of ,vhich the earliest and best kno,vn, although not quite the simplest, is that of Peaucellier (1864). 
	Let us first establish point 2b. In Fig. 6-22, 0 and Op are fixed 
	:
	points, with OpP = OOP, so that P describes a circle passing through 0. Let Q be a point on OP satisfying the relation 

	OP X OQ = k 
	OP X OQ = k 
	and consider the perpendicular Q1' to 00p passing through the point Q.We shall sho,v that the distance OT depends only on the constant k and the diameter of the circle so that, as P describes the circle, Q ,vill describe the fixed straight line TQ. On drawing the line PS ,ve realize that the triangles OPS and OTQ are sirnilar, whence 

	OP OT
	OP OT
	or OP X OQ = OS X OT = k
	= 

	OS OQ 
	and OT =!!:_ 
	and OT =!!:_ 
	OS 
	Consider now the Peaucellier cell, the six-bar chain of Fig. 6-23a.It is forn1ed by connecting a rhon1bus of equal sides s with t,vo bars of equal length l; the figure is syn1n1etrical about the 1nedian m. Three Points, seen to be ahvays collinear regardless of the configuration, have n labeled 0, P, and Q. In Fig. 6-2:3b we now add t,vo n1ore links (theame and OPP, with OpP = 00p), displace m, and draw the line BDC, 
	bee
	fr

	Q 
	I II 
	0 
	T 
	Figure

	FIGURE 6-22 Proof of proposition 2b. 
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	(a) Peaucellier cell (b) Peaucellier inversor in which Q draws the straight line QT perpendicular 
	to the base link OO
	p 

	FIGURE 6-23 Peaucellier straight-line mechanisnt. 
	which ,vill always be perpendicular toem. Then 
	OP X OQ = (OD -PD)(OD + PD)
	= OD-PD= (OB-BD) -(PB-BD) 2 2
	2 
	2 
	2 
	2
	2 
	2
	l
	s

	OB-PB= -= const 
	= 
	2 
	2 

	The Peaucellier mechanism, since it satisfies the condition 
	OP X OQ = const 
	is thus an inversor. 
	Next we shall consider point 2a. In Fig. 6-24 0 and Op are again fixed points, with OOP = d and OPP = r, so that P describes a circle (which this time does not pass through 0, since r Ł d). Let P' be the other intersection of OP with the circle and Q be a point on OP satisfying the relation of inversion 
	OP X OQ = k 
	Draw PS and P'S', and consider the triangles OPS and 0S'P'. Thestriangles are similar: their angles at O are equal; their angles at P and S' are also equal, since they are inscribed in the sa1ne circle and subtend the same chord P'S; the sa1ne holds for their angles at P' and S. Then 
	e 

	OP OS
	= 
	OS' OP' 
	2 2
	d

	or OP X OP' = OS X OS' = (d + r)(d -r) = -r= const 
	On dividing the relation of inversion by the above, we find the ratio 
	OQ k 
	-
	2 2
	d
	r

	OP' 
	OP' 
	-

	FO_UR-BAR COUPLER-POINT CURVES 
	, 
	When P describes the circle centered at Op, P' describes the same circleand, because of the last relation, Q n1ust describe a curve similar to circle, with center of similitude at O: this curve is also a circle, and its radius is 
	this

	k
	Figure

	R = r 
	R = r 
	dz -r2 
	Figure

	Figure
	In the Peaucellier cell, k= l2 -s, whence 
	2 

	z2 -s2
	z2 -s2
	R = 
	d2 -r2 
	r 
	Figure

	Figure
	The cent.er Oof the circle traced by Q corresponds to the center Oin the same similitude, whence 
	Q 
	p 

	2
	s

	OOl2 -d-r
	Q 
	-
	bo
	p 
	2 
	2 

	With the proportions sho,vn in Fig. 6-25, d < r and l > s, thee· ratioof similitude is negative, and 0is the ref ore to the left of 0, that is, in opposite direction f ro1n Op. 
	Q 
	the 

	Peaucellier, captain of engineers in the French Arn1y at the time his invention (he rose to general), was n1otivated in his search by theapproxin1ate straight-line n1otions of his ti1ne and their use in However, the day of the big-beamed engines was drawing to a close, thecon1pact direct-connected or slider-crank engines supplanting their bulkyancestors. In consequence, engine applications dwindled. The Peaucel­straight-line mechanisn1 is, nevertheless, of n1ore than passing interest,it was the first device
	of 
	engines.
	lier 
	for 

	s· d r . \ ' \ '' \' \\ Q I\\III ' 
	OQ 0 Os 

	P' 
	P' 
	p 
	I 

	I 
	I 
	FIGURE 6-24 Proof of proposition 2a, 
	KINEMATIC SYNTHESIS OF LINKAGES 
	Figure
	FIGURE 6-25 Peaucellier in­versor for drawing circular arcs of large radii. 
	FIGURE 6-25 Peaucellier in­versor for drawing circular arcs of large radii. 


	sa1ne sense that a compass generates a circle; using a straight-edge, one merely copies an existing line. 
	The instrument's ability to generate circular arcs, especially flat arcs beyond the practical range of a tran1mel bar, gave it some applica­tion in manufacturing machinery and in the drafting roorn. As a co1n­P is made adjustable, allowing the distance d to be selected for a desired radius. 
	pass, the pivot point O

	A n1odern application of the Peaucellier linkage is the autof ocusing mechanism of a photographic enlarger. The optical problem involves the proper spacing of negative, lens, and paper to maintain a continuously sharp image over the range of magnification; the problem is summariied by the equation xx' = I' (x and x' are the distances, f the focal length of the lens). This equation can be n1echanized by an inversor, since it is of the form OP X OQ = k. 
	Figure 6-26a, showing the optical syste1n, assumes that both Gauss points are at the center of the lens, justifiable with a normal photographic objective (but not a telephoto lens). Focal points are indicated by F, with f the focal length. The film must be n1oved a dis­tance x' while the paper moves the distance x, both relative to the lens. l\fagnification is given by m = h/h' = u/v = x/.f. The Newton equa­tion for the conjugate distances x and x' has already been noted x'x = r. 
	as 

	The rearrangen1ent of Fig. 6-26b groups the variables x and x' about the lens and leads directly to the hard,vare sche1natic (Fig6-26c).Here the f a1niliar points of a 1nodified Peaucellier cell are indicatedP, Q, and 0' are constrained to n1ove along the san1e straight line bysliders. We may no,v write OfX OQ = k = l-s• Physically, is at the wrong spot, but OP = QO' = x', and OQ = x. ConsequentlY 
	. 
	; 
	> 
	2 
	2
	P 

	Figure
	Figure
	FIGURE 6-26 Autofocus enlarger employing Peaucellier mechanism. 
	FIGURE 6-26 Autofocus enlarger employing Peaucellier mechanism. 
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	(a) (b) (c) 
	mechanization of the inversion relation is a direct analog of the 2
	the 
	s

	ical requirement, and l-= /2. 
	opt
	2 

	Another mathematically correct straight-line mechanisn1, but of only six links, n1ay be derived from the contraparallelogram chain of pin-connected links (Fig. 6-27), in which EB = CD and BD = EC. 
	four 

	Four points such as 0, P, Q, and 0', lying on a line m parallel to BC (and hence also to ED), will divide the distances between connections in the san1e proportion. Furthern1ore, the points will con­e to remain in line when the chain is deformed. These points are also related by inversion; thus, OP X OQ = const = O'Q X 
	the pin 
	tinu
	0' P. 

	The inversion relation may be established after constructing CC 
	B C
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	FIGURE 6-27 Contraparallelogram chain of Ha.rt. 
	FIGURE 6-27 Contraparallelogram chain of Ha.rt. 
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	Figure
	FIGURE 6-28 Hart•Ł 1nversor. 
	FIGURE 6-28 Hart•Ł 1nversor. 
	-



	D 
	perpendicular to ED and CD' parallel to BE. Fro1n si1nilar triangles 

	OP OE OQ OB
	OP OE OQ OB
	= and .
	. r -BE y-= BE; 
	.e

	!
	'fhen OJ> X OQ = QX (?xy = xy X const
	J 
	B 

	BE · 
	BE 

	Now x = J.,;C' -C'D', and y = EC' + C' D', whence 
	xy = EC'-C'D'
	2 
	2 

	= (EC-CC') -(CD-CC') = EC-CD= 1-s= const 
	2 
	2
	2 
	2
	2 
	2 
	2 
	2 

	and therefore OP X OQ = const for all configurations. 
	We recognize that, ,vhen O is n1ade a fixed point and Pis guided along a circle passing through 0, Q will trace a straight line (Fig. 6-28). p 1nay be chosen at will, subject to the above restriction. ,fhepath of Q will be perpendicular to the base line 00p. This is the six­bar mechanism of H. Hart (1875). 
	Point O
	.e

	APPENDIX: ATLAS OF FOUR-BAR COUPLER CURVES 
	APPENDIX: ATLAS OF FOUR-BAR COUPLER CURVES 
	The curves sho,vn in this appendix are a selection f ro1n the atlas of Hrones and Xelson, as 1nentioned in Sec. 6-3. This atlas contains 
	Figure
	B Follower 
	B Follower 
	FIGURE 6-29 Notations used in Hrones and Nelson's four-bar 
	---C--,-....i
	coupler curve atlas. 
	Ł---
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	FIGURE 6-30 Determination of the linkages to be considered in this appendix. 
	approxin1ately 7,300 curves dra,vn to large scale (730 pages, 11 by 17 in.)and constitutes a very practical tool for the designer, who, by pag­ing through, may find a shape and configuration suitable for a givenapplication.
	The four-bar linkages considered here (as well as in the original) are of the crank-rocker type, i.e., having continuous rotation of the crank, ,vith oscillation of the follower. With the notation shown in Fig. 6-29 the link lengths n1ust therefore satisfy the conditions 
	C<A+B-1 
	C > IA-Bi+1 





	A, B, C > 1 
	A, B, C > 1 
	In order to detern1ine what co1nbination<., of values of A, B, and C are con1patible ,vith these conditions, consider the diagra1ns of Fig. 6-30, 
	c.---
	/ 

	/ /' \ -.., ----
	).,.-
	--
	---
	-----
	----

	,,..-r ---\ -...__ -
	-

	/ /' \ I ,-":"------'-.._ -
	/ 
	.
	Ł

	\
	/ 
	/ 
	'-
	Ł
	I{ ____,-\-r---
	I 
	I 
	I
	' 
	Ł -..... 
	. 

	' / 
	......_ ,
	-.
	-

	-
	-
	" 
	-
	-

	'
	"-

	\ 
	I 
	" 
	"
	\\ 

	;___
	--r 
	.,,

	,, I 
	I 
	I
	{
	/

	\ 
	' I/
	-1..

	/'. 
	I
	\

	:
	' 

	" 
	I 
	/
	-




	----r /
	----r /
	-
	t-/ --:::. 
	i\/ f "" 
	1 
	\

	\ 
	I
	I 
	r 
	-i'
	-
	/ ,
	/ ,
	\ 

	\ 
	\ 
	: 
	---

	I
	r:
	/
	-
	-

	\
	\ 

	, 
	-,\ 
	-._ 
	I
	I 
	I

	I 
	I 
	'-... 

	' 
	\', ', ,.,
	/' \ ,_j
	,., 
	---,
	...._... 
	\
	•.
	\ 
	\

	\ 
	1 
	'
	\ 
	\"-
	'-
	'-


	/" 
	/, 

	\ 
	..,_--.: 
	I
	\ 
	........ ___
	.___\
	',
	\

	--_:) 
	\ 
	..
	..
	.

	"\ ____'-.... //
	"\ ____'-.... //
	'-... 
	\



	----
	----
	-
	, 

	= 
	\ 
	FIGURE 6-31 A = 2, B = 2, C 
	2. 
	KINEMATIC SYNTHESIS OF LINKAGES 
	KINEMATIC SYNTHESIS OF LINKAGES 
	,,,,,-r ►--\
	.
	::
	::
	--

	.
	:

	✓ \ '\ ----"?r-----
	--
	--


	·\ 
	I
	-/

	,/
	,/
	,

	-
	►-
	-

	---I 
	-
	-


	__.--r 
	/
	/

	/ / \ 
	,.,.f_.-r-..-
	.._ 

	/ 
	/
	/ 
	/ 
	I 
	,,,. 
	/ 
	"
	-

	r
	I 
	'\
	\

	✓ 
	'-
	-

	I 
	I
	I
	I
	\ 
	',/
	'=
	'-
	/

	l----. 
	I
	,,,., ...... 

	/ I 1'
	I ( \ 'k 
	I ( \ 'k 
	I 


	'\ --1--------.:.\
	'\ --1--------.:.\
	,
	"' 

	) I 
	/ I \
	-

	/ Ł./
	0-1

	1
	\

	I
	\ 
	-
	I 
	' 
	-......_,},
	,,.,,
	-/

	,, /L>,
	' 
	I
	I
	I
	\ 
	,----...... 
	✓ 
	\ 
	-
	.
	✓-,.,. 
	"" Ł:'P -......,
	"
	" 
	/ 
	\ :;,,
	f 
	\ .. 
	•/ 
	J 
	\ 
	/
	I 
	-,,-.::.
	-

	,-r
	1/ 
	__..
	.

	.
	Figure
	\_)\.
	I' .
	.
	.

	I\ 
	_
	__=_ -•s;\
	\
	_
	'\I 
	>-.

	-l / ' 
	\
	\---
	--
	-

	\
	' ......_ 
	\"'"

	" 
	✓ 
	j
	", J
	ŁI
	/
	"' 
	\
	\
	I 

	..,,,, 
	____

	'-.._ 
	/ 
	FIGURE 6-32 A = 2, B = 3, C = 3. 
	--..... 
	/ 
	-
	-
	-
	" 

	/ , -'<( ...... ...._ __
	/ 
	/
	✓
	' 
	Ł--
	-

	-
	' 
	.,.v 
	/,,. I 
	/ 
	/ 
	'.
	f 
	if 
	' ..._

	/ 
	\ -',-....i
	...L--II ,, ) I 
	/ 
	_,,../ 
	I 
	,

	",, ----h.--------✓
	L 

	I 
	' 
	'-
	'-

	/ _ ,---...... ,
	:..-

	1\ 
	..._
	// 
	I
	I 
	,,, 
	I
	\ 

	,,.,,,. 
	II
	II

	\ 
	'\
	'
	,
	\ 

	I 
	' 
	\
	-
	-
	--
	\
	L

	I
	.,..-\-.._ 
	-

	,,.{7' 
	,,.{7' 
	I
	\ti"-
	/ 

	,,
	/
	. 

	\
	I 
	\ 
	" I 
	--

	,,_ 
	"--...-✓L----
	-

	-
	Ł--r 
	_
	" 
	" 
	aŁ
	-
	-


	\ 
	\-, 
	\ 
	--...._ 
	...._ 
	\ 
	I 
	', 
	'\
	"-
	"-

	\.
	If
	l
	' 
	' 
	\
	/\. 
	\

	'=
	\
	\
	\ 
	-_ .::;__ -
	-
	-

	\ 
	--2',
	""

	\ ,,_ 
	\
	-----i-------·
	' 
	\
	\
	\ 
	\. /
	-----'><' 
	" 

	_
	,
	.
	.

	\ 
	_.,
	•.
	/'

	" 
	\
	' 
	___/
	" 
	",...1.. 


	,.--
	,.--
	"-
	I 
	-

	'-
	I 

	....._ __ ---✓ 
	f'JGURE 6-33 ,{ = :3, B = 2, C -3. 
	FOUU-BAR COUPLER POINT CURVES 
	Figure
	FIGl'RE 6-34 A = 3, B = 3, C = 2. 
	Figure
	FIGURE 6-35 A = 3, B = 3, C = 3. 
	FIGURE 6-35 A = 3, B = 3, C = 3. 
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	Figure
	FIGURE 6-36 A = 3, B -3, C = 4. 
	FIGURE 6-36 A = 3, B -3, C = 4. 
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	FIGURE 6-40 A. = 4, B = :3, C = 5. 
	where B and C are plotted on the horizontal and vertical axes and A is at a 45angle. The three diagrams correspond to A = 2, 3, and 4; largervalues of A are not considered. Each point in the plane of the diagrams corresponds to a four-bar linkage, and values satisfying the above condi­tions are located in the "rectangles." Limiting B to values no largerthan 3 (a follower no longer than three times the crank length) and takingunit incre1nents for B and C gives a total of 10 linkages, shown as dots, for which
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