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ABSTRACT

In order to maximize throughput in end-system mul-
ticast, it is necessary to have fine-grained control over
the transmit load of each participating member. This
both avoids bottlenecks where members are overloaded,
and allows heterogeneous members to contribute as much
transmit capacity as they are able or willing to. In this
paper, we describe and simulate an unstructured end-
system multicast protocol called Chunkyspread that pro-
vides members with fine-grained control over their transmit
load, scales well, has relatively low latencies, and can
tolerate high membership churn. Chunkyspread is designed
as a flexible framework that easily incorporates different
constraints and optimizations. For instance, it is straight-
forward to add tit-for-tat or path disjointness as constraints
to the system. This paper demonstrates the performance
of Chunkyspread through extensive simulations, and pro-
vides partial validation of these simulations on Emulab.
It also provides detailed comparisons with Splitstream, a
structured heterogeneous end-system multicast protocol.
The simulations show that Chunkyspread provides far
better control over transmit load than Splitstream, while
exhibiting comparable or better latency and responsiveness
to churn.

I. I NTRODUCTION

In 1997 and 1998, Francis and Zhang independently
argued that IP multicast was going nowhere, and that
some form of end-system (P2P) multicast is needed to
bring multicast to the masses ([3], [4]). Nearly a decade
and a plethora of multicast protocols later, P2P multicast
has itself gone nowhere, this in spite of the success of
other P2P technologies such as file sharing and swarming.
Part of the reason for this is surely that multicast is

This work is supported in part by National Science Foundation
grant ANI-0338750, and DARPA project FA8750-04-2-0011.

something of a niche application. It is only really needed
for live or near-live streaming, whereas most content
distribution is non-live. Nevertheless, there are some
multicast applications out there, which today are largely
handled by infrastructure-based overlays (i.e. Akamai)
or IP multicast (in enterprise settings [25]). We believe,
however, that there are still substantial improvements that
can be made to P2P multicast algorithms, and that these
improvements may yet lead to widespread use of this
technology.

In this paper, we focus on non-interactive multicast
applications that can grow to a very large scale (many
thousands of recipients), can tolerate high-churn, and can
handle a wide range of volumes. A canonical application
for us is the broadcast of a sports event, where the
content may be a simple text description of the score
and important events (low volume), an audio play-by-
play (medium volume), or video (high volume). To be
honest, we focus on non-interactive applications because
the delay tolerance required by interactive applications
such as video conferencing, a few hundred milliseconds,
seems extremely difficult to achieve at arbitrarily large
scale and with high membership churn, without using IP
multicast. In essence, we are sacrificing interactivity for
scale and membership churn.

Once we accept that we can’t achieve extreme low
latencies, a few seconds of delay becomes tolerable.
Indeed in the case of streaming media applications, a few
seconds of delay is necessary in the form of a receiver
play-out buffer to smooth over short-term disruptions in
network or OS performance [18]. Allowing this much
delay buys us considerable flexibility in the design, and in
particular, allows us to exploit randomness in the overall
structure of the protocol. Like other unstructured P2P
applications, this allows us to work with relatively simple
approaches. Having said that, all other things being equal,
a low latency is still preferable, and we do provide
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mechanisms to reduce latency.
In addition to large scale and robustness to churn, a

critical requirement is to have fine-grained control over
member transmit load. The need for this stems from
fairness, utility, and performance arguments. Fairness
suggests that each member node should transmit the same
volume that it receives. Where utility is valued over
fairness, control over load allows the system to exploit the
heterogeneous capacities of members, thus maximizing
the throughput of the system. Good performance requires
that there be no bottlenecks: no node should be called on
to transmit more than it can.

It is widely accepted that onlymulti-path approaches
can lead to high utilization, since they allow all nodes to
participate in transmission of the data stream (as opposed
to single-tree approaches, which necessarily require that
a large fraction of nodes be leaves and therefore con-
tribute nothing) [7], [8]. By multi-path, we mean where
each node receives portions of the multicast stream via
different routes. A multi-path may be achieved through
multiple trees, as in SplitStream [7], or through a so-
calledtreelessapproach, as in Bullet [5] or Chainsaw [8].
We say “so-called” treeless, because the goal of Bullet
or Chainsaw is nevertheless that each individual packet
or block of packets traverses a tree. This gives rise to
the question of which approach to adopt:per-block (or
packet) orper-slice.

In the case of protocols that build trees with per-block
granularity, each node explicitly informs its neighbors of
which blocks it has, and requests from each neighbor
which blocks it would like to receive. This kind of a push-
pull swarming strategy represents a substantial overhead:
with an average node degree of 20 (as used in [8]), this
means an additional 20 packets (10 sent and 10 received
on average), for every data block received. If the stream is
low volume, this overhead can be many times the stream
volume. For higher volume applications, which Bullet
and Chainsaw target, the overhead is more acceptable,
but is nevertheless worth trying to avoid. Swarming also
results in added delay to execute the push-pull, requiring
that packets be buffered long enough to accomodate the
delay and avoid packet loss.

With a per-slice granularity, nodes maintain a long-
term parent-child relationship with respect to each slice
(where a slice is defined as everyM th packet of a data
stream,M being the number of slices). As a result,
once the trees are established, there is virtually no per-
packet overhead. On the other hand, if a node crashes or

otherwise stops performing adequately, all of its offspring
in the tree will suddenly stop receiving some packets until
the tree can be re-built. In an environment with constant
churn, trees are continuously being destroyed and rebuilt,
resulting in a considerable control message overhead. In
order to avoid packet loss due to disruptions in the trees,
nodes must buffer packets for the period of time it takes
to repair a tree.

What all this means is that both swarming and tree-
building approaches exhibit the same types of trade-
offs. Both have control message overheads (though for
different reasons), both suffer from substantial delays
in packet reception (though for different reasons) and
require some amount of buffering to prevent packet loss.
To succeed, tree-building approaches must have simple
tree creation and repair algorithms that converge very
fast. Swarming approaches, on the other hand, must adopt
strategies that minimize the overhead and delay of the
push-pull. It is not at all clear which approach might
emerge as the best by these measures. Ultimately some
kind of hybrid strategy may be appropriate.

An important consideration is simplicity. In spite of
the fact that we, the research community do not have
good measures for ”simplicity”, it seems clear to us that
swarming strategies are simpler than tree-building strate-
gies. We believe that this simplicity makes swarming
approaches easier to build and deploy, and ultimately
results in more robust systems.

Despite the above arguments, we have chosen to
place a stake in the ground, and that stake is a tree-
building approach. Our reasoning for this boils down
to two arguments. First, we believe that tree-building
approaches can in fact be made quite simple, even if not
as simple as swarming. For instance, we have chosen an
unstructured approach that exploits bloom filters in the
data path [17]. Second, as already discussed we believe
that fine-grained control over transmission load is critical.
We also believe that the multicast system should be
able to easily incorporate other performance criteria and
constraints such as tit-for-tat. Our intuition, as well as
our experience so far, suggests that a certain amount of
fine-tuning is required to consistently achieve a desired
load balance, and that this fine-tuning inevitably takes a
certain amount of time and overhead. Enforcing tit-for-
tat constrains this fine-tuning even further. The long-term
parent-child relationships inherent in trees allows us to
amortize the cost of this fine-tuning over a relatively long
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period of time.
By contrast, swarming, in its purest form, constantly

reformulates what is exchanged between neighbors. Fine-
tuning load balance or establishing enforceable tit-for-tat
in this environment seems problematic. This may seem an
odd thing to say given BitTorrent, whose success arguably
derives from its tit-for-tat capability. The difference,
however, is that BitTorrent is a file sharing protocol, not
a real-time multicast protocol. The issues of delay and
sustainable load don’t come into play with file sharing,
thus giving BitTorrent a form of flexibility that multicast
doesn’t have.

This paper makes the following contributions:

1) We give a detailed description of Chunkyspread1, a
new end-system multicast protocol that gives fine-
grained control over each member’s transmit load,
reacts quickly to membership changes, exhibits
relatively low latencies, scales well, and has low
overhead. Furthermore, Chunkyspread is designed
such that it provides a framework for adding new
performance optimizations and constraints, such as
tit-for-tat.

2) We present a thorough simulation analysis of
Chunkyspread’s load control, latency optimization,
responsiveness, and overhead.

3) Using the MSPastry simulation of Splitstream, we
present an analysis of Splitstream for the same met-
rics, and compare Splitstream with Chunkyspread.

4) Again through simulation, we present preliminary
and limited analysis of Chunkyspread for tit-for-
tat, and for the basic trade-off of buffer size, data
redundancy, and packet loss in the face of churn.

5) We present limited results of a complete implemen-
tation of Chunkyspread running on Emulab. These
results validate our simulation results.

This paper is organized as follows. Section II describes
our approach in detail. Section III gives an overview
of the existing multi-tree approach, namely Splitstream.
Section IV presents evaluations of both Chunkyspread
and Splitstream, V discusses related work in our area
while VI concludes the paper and presents future direc-
tions to our work.

II. PROTOCOL DESCRIPTION

We start with a high-level overview of Chunkyspread,
followed by detailed descriptions of its various compo-

1Chunkyspread is a pseudonym required for blind submission.

nents.
Chunkyspread constructs a single-source multicast

group among a set of member end-systems. In other
words, there is one sender, (which we call thetrue
source), and multiple receivers. If the application requires
multiple senders, then either multiple groups must be
formed, or the multiple senders must first send to a
designated single sender acting as the true source, which
then transmits to the multicast group. Our implementation
does not currently provide this latter capability nor does
it provide a capability to change the true source in
the middle of a multicast, although doing so would be
relatively straightforward.

Like Splitstream, the true source transmits the multi-
cast stream asM distinct slices, where the0th packet
is the first slice, the1st packet is the second slice, and
so on until theM th packet which is the first slice, the
M + 1th packet the second slice, and so on. Each set
of M slices constitutes ablock of stream. Each slice
is transmitted over a separate multicast tree. The trees
are not node-disjoint. Failure recovery is fast enough
that node-disjointness doesn’t help much. Note that the
true source transmits each packet from each slice exactly
once. It does not need to send greater than the stream
volume (though it can if it wishes).

Applications can access Chunkyspread through an API
that providesjoin(), quit(), send(), andreceive() prim-
itives. The quit() primitive provides functionality for
both abrupt and graceful quits, where in the latter case,
the member may briefly continue to transmit packets
to its neighbors while they find alternates. (Note that
the term member refers to receiving members only, not
the true source. We use the terms member and node
interchangeably.) Thejoin() primitive takes the follow-
ing parameters: the group name, the member type (true
source or receiver), the target load, and the maximum
load. The two load parameters refer to the transmit load
of a member, and may be expressed by the application
as absolute throughput values (e.g. 100Kbps), or as a
percentage of the stream volume (e.g. 75% or 250%). The
maximum load is the absolute maximum volume that the
member will transmit at any time while the target load
is the volume that the member would like to be sending
at steady state. The expectation is that the steady state
volume sent by the application will be near the target
load: in fact, it may be slightly above or below.

Clearly, it is possible for members to set their max-
imum loads such that there is not enough capacity in
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the system to transmit the stream. For instance, if each
member sets its maximum load to 50%, no member could
receive the complete stream, and the system would fail to
operate. It is up to the application to insure that this does
not happen. One way to do this might be to ”hardwire”
the application to always set the maximum load at 150%
and target load at 100%. This, of course requires that
the member host actually have the capacity to transmit at
this rate. Alternatively, the application could measure the
capacity of its host, and set the maximum and target loads
accordingly. Nevertheless there must be enough capacity
overall to transmit all streams to all members. No P2P
multicast system can operate otherwise.

While the application (and therefore the application
developer or user) operates in terms of a target load,
the Chunkyspread protocol itself does not. What’s more,
Chunkyspread internally expresses load in units of the
number of slices, not bandwidth or percentage of stream
volume. Internally, Chunkyspread uses the following pa-
rameters: the number of slicesM , the latency thresh-
old, minimum node degreeMND, and minimum load
MinL. These might be set by the true source and
communicated to all members. We will postpone the
discussion on the last two parameters to later in this
section.

The default value for the number of slices that the
stream is split, is 16. We experimented with more and
less and found that performance is not very sensitive to
this number, as we shall see later. The latency threshold is
a value that determines how the system should weigh the
trade-off between achieving target load and minimizing
latency. It is expressed as a percentage of the target
load. For instance, assume that a given Chunkyspread
application requests a target load of 100%, and that
M = 16 and the latency threshold=10%. 10% above and
below 16 slices is 18 and 14 slices respectively (after
rounding to the nearest slice). The lower edge of the
range (14 slices in this case) is called theLower Latency
Threshold LLT. The upper edge of the range is called the
Upper Latency Threshold ULT.

Given theLLT and theULT , load balancing and
latency reduction work as follows. As long as a given
member node’s load is outside this range, the system
adjusts to move the load within the range. If a node X’s
load is below itsLLT , other nodes will try to become a
child of X, thus increasing X’s load. If X’s load is above
its LLT , existing children of X will try to find other

parents, thus decreasing X’s load. Once nodes’ loads
are within theLLT − ULT range, they will no longer
try to improve load, but rather try to optimize latency.
Whenever a change of parent for a given slice improves
latency by a certain margin without causing the load to
fall outside this range, that change is made.

From this, we can see that a largerLLT −ULT range
will improve latency at the expense of nodes not getting
as close to their target load, while a smaller range has
the opposite effect.

To join an Chunkyspread multicast group, nodes must
first contact a rendezvous node at a well-known location
(DNS name or IP address). This rendezvous node must
know of at least one existing member of the multicast
group. This style of joining a P2P group is a fairly
standard practice, and not further discussed here.

Once a joining member node or the true source finds at
least one existing node, it participates in a continuously
running distributed algorithm called Swaplinks [1] that
produces a random graph among all nodes using simple
weighted random walks. This random neighbor graph is
the underpinning of Chunkyspread in much the same way
as RanSub [14] is the underpinning of Bullet. Swaplinks
is able to statistically control the node degree of each
node, and Chunkyspread exploits this to give nodes with
higher target loads proportionally higher node degrees.
The idea here is that nodes with higher load should have
more neighbors to transmit slices, and nodes with lower
load should have proportionally fewer neighbors. With
network churn, the neighbor set of each node changes,
but the number of neighbors stays roughly the same. In
addition to these random neighbors, nodes may discover
other nodes that are nearby with respect to latency. These
nodes may be added to the neighbor set to improve
latency.

This is where the system-wide parametersminimum
node degree MND, and minimum load MinLcome into
play. MND is the smallest node degree in the random
graph that any nodes may have. It’s default value is
8, and as far as we know, this value is universally
appropriate. Since node degree is set proportionally to
target load, the node degree of any nodes is set to be
ND = (TL/MinL) ∗ MND, whereTL is the target
load. The system may choose to allow nodes’ target load
to be less thanMinL. In this case,ND is set toMND

(8). As with ensuring that a given Chunkyspread group
has enough capacity, the application must also ensure that
MinL is set to an appropriate value: i.e., the expected
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Fig. 1. The load-latency thresholds

smallest capacity of a host in the system. It may also
be possible to setMinL dynamically, for instance by
having nodes remember the lowestTL they’ve seen in
the network, and settingMinL accordingly. We have not
explored this possibility.

Unlike the receiving nodes, the true source discovers
exactly M (the number of slices) neighbors. The true
source transmits one slice to each of these neighbors.
These neighbors become the roots ofM multicast trees,
and are called theslice sources. If a slice source quits,
then the true source discovers this and selects a new
random node as the slice source. Note that a node may
be a slice source for more than one slice.

Once a node is in the random graph, its job is to
find a parent for each slice without forming a loop. We
avoid and detect loops using bloom filters in the data
packets. In selecting parents, each node tries to maintain
a set of constraints, as well as its performance goals and
those of its neighbors. The performance goals we have
implemented and studied in this paper are target and
maximum load, and latency, as described above. Other
constraints may include tit-for-tat.

The basic process is straightforward. Each node lets
its neighbors know initially about itsLLT −ULT range
and its maximum load (ML). Further, each node peri-
odically advertises to all of its neighbors the following:
its per-slice bloom filters, information about the arrival
time of each slice, its current load (i.e. the number of
children it has). Additional performance constraints may
be added to this list. Each node takes this information into
consideration to determine which neighbors would make
appropriate parents for each slice. As conditions change,
for example, due to neighborhood alterations, load or
latency changes, nodes may select different neighbors as
parents for each slice. Note that as a result of this process,
a neighbor may be the child for some slices, and the

parent for others. Figure 1 shows the thresholds used by
Chunkyspread in fine tuning the load and latencies in the
trees.

Given this overview, the following subsections provide
additional detail.

A. Loop avoidance and detection

Bloom filters offer a spatially efficient method to detect
and avoid loops, with a tunable rate of false positives[17].
Each node selects a bloom mask with an appropriate
number of bits. A node, before forwarding a data packet,
adds its bloom mask to the bloom filter that is tagged
along with the data packet. Loops are avoided by having
nodes advertise the bloom filters they receive for every
slice to their neighbors. A given node does not select a
neighbor as a slice parent if the node itself appears in the
neighbor’s received bloom filter.

Loops are detected immediately by the first packet that
traverses the loop2. This packet can either be a data
packet sent by the application, or, in the absence of
such packets, a probe packet transmitted by a node to
its children. The first node to detect the looping packet
drops it and immediately selects a new parent.

B. Fine-tuning Load

As described above, each node periodically checks to
see if it has an overloaded parent (above the parent’s
ULT ), and an underloaded neighbor (whose load is
below LLT and satisfies the loop-free condition), and
if so attempts toswitchparents. Since multiple nodes are
doing this at the same time, multiple potential switches
may be possible. To encourage that the best such switch
takes place, each node with a potential switch informs its
overloaded parent of the loads of all (or a subset of the
most) underloaded potential parents. The parent, which
may receive similar information from multiple children,
picks the best candidate (the child’s neighbor with the
least load), and instructs the selected child to make the
switch.

The child then sends a switch message to the potential
parent which accepts or rejects the request depending on
its load and its bloom filter for that slice (these parameters
may have changed from the time since the child had made

2A loop can happen in spite of maintaining a bloom filter. A node
that is not yet aware of a bloom filter change in its ancestors, can
accept one of the ancestors as its child.
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the request). If the switch request is accepted, the child
informs the previous parent of the switch completion.

The switch messages that the child sends to its future
and the current parent, identify the sequence number
of a future data packet at which the current parent
should stop transmitting, and the new parent should start.
This minimizes packet loss or duplication during the
switch itself. The switch message also contains the load
parameters that were in force when the decision to switch
was made. If these parameters have changed significantly
in the interim, the switch is aborted.

It is important to note that, in the absence of churn
and switches due to fine-tuning latency, the algorithm
for balancing load will converge. Every load balancing
switch results in a node aboveULT reducing its load and
a node belowLLT increasing its load. Once within the
LLT −ULT range, there are no load-balancing switches
that can push a node out of that range, and no load-
balancing switches take place between nodes already
in the LLT − ULT range. The period when the load-
balancing switches take place predominantly in a node is
called the load-phase of the algorithm

C. Fine-tuning Latency

Once all of a node’s parents are within theirLLT −
ULT range, the node looks for parent switches that
can improve the latency with which it receives packets
while keeping loads within theLLT −ULT range. This
constitutes the latency phase of our algorithm. We use a
novel trick that allows us to measure the relative latency
with which each neighbor receives each slice without
requiring synchronized clocks. Specifically, each node
measures the delay at which it receives packets from
each slicerelative to other slices. The idea is simple:
a node close to a slice source in a tree will receive
packets for that slice relativelysoonerthan it will receive
comparable packets of other slices. If a node has a
parent that is receiving a given slicelate (relative to its
other slices), and a potential parent that is receiving the
same slice relativelyearly, then it should switch parents
(as long as both neighbors’ loads remain within range).
Note that nodes only make such switches if the expected
improvement in latency is beyond a certain threshold.

We have not used the overlay path length as a measure
for latency reduction for obvious reasons: small path
lengths do not necessarily yield low latencies, especially
if the underlying graph is locality-aware. A smaller path

length does, however, mean that the packet has to traverse
fewer nodes which reduces the chances of disconnections
in the path. If this is desired, path length can be used as
a metric for parent selection (in addition to or instead of
latency).

Finally, requesting the best parent (either in terms of
latency or load) to supply a slice can lead to an implosion
of switch requests at such nodes. This implosion will
not just increase the control overhead at such potential
parents but will also lead to many of the switches
to fail. To prevent this from happening, nodes choose
one amongst a set of good potential parents instead of
choosing the best parent.

D. Initial Tree Construction and Forced Parent Selection

In Chunkyspread, new trees must be ”kick-started”
when the true source first starts the multicast stream or
when a slice source quits and the true source chooses
a new one. Initial tree construction involves a simple
controlled flooding mechanism similar to the one used in
Chainsaw. Shortly after a node starts receiving flooded
packets for a given slice, it selects a parent from among
the neighbors from which it received the flooded packet.
The selected parent may reject the request if not doing
so would push its load above its maximum loadML, but
otherwise must accept the child.

Apart from this, a node that joins a multicast session
whose trees have already been constructed through the
flooding mechanism described above, may have to peri-
odically request its neighbors to be parents for each of
its slices until it finds them. As a result of these cases,
the parent’s load may exceed the upper latency threshold
ULT . Normally, the ongoing load balancing process will
bring the load back to or belowULT , though on the rare
occasion a node’s load may stay aboveULT for a period
of time due to the lack of availability of potential parents
for its children (though there may be underloaded nodes
elsewhere in the system).

There are three other cases where a node may request
a parent even though doing so pushes the parent’s load
above itsULT . All three are cases where the node is
forced to change its parent. This may happen when a
loop is detected, when the parent quits the group, and
when the Swaplinks algorithm changes the neighbor set
as part of its normal operation[1]. While the first two is
effectively a temporary disconnection from the tree, the
third is usually similar in effect of any normal switch.
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Note that a node may only reject a request to become
a parent if doing so pushes its load aboveML, or it
does not satisfy the looping constraint (and any other if
needed).

III. OVERVIEW OF SPLITSTREAM

Since we make simulation comparisons of
Chunkyspread and Splitstream, a brief overview of
Splitstream is provided here. Splitstream is a DHT-based
multicast protocol that splits the stream into slices
and transmits them over multiple trees. Splitstream is
built on top of Scribe, a single-tree multicast protocol
that constructs its tree using the overlay routes of the
underlying DHT (Pastry). However, a node may not
have enough capacity to serve all its in-neighbors that
want to join the multicast group. In order to avoid nodes
getting loaded beyond their capacities, Scribe resorts to
two other mechanisms, namely pushdown and anycast
operations.

When a fully loaded node C gets a request from a
potential child A, it can choose to either drop one of
its current children B based on whether A overlaps with
C’s ID more than B. The orphaned or preempted node
(A or B) then contacts one of C’s children and the pro-
cess continues recursively. This is called the pushdown
operation. If there still remains an orphaned node after
the pushdown operation, it contacts a group maintained
by Scribe comprising of nodes that have excess capacity
left. A depth-first traversal is made on this group to find a
node that can provide the stream to the orphaned node[6].
This is the anycast operation.

Splitstream works well in homogeneous cases with
usually the Pastry neighbors serving the nodes. However,
in heterogeneous environments, the pushdown and any-
cast operations happen more often and this leads to fre-
quent disconnections of nodes: not only is the preempted
node disconnected, but so are its descendants in the
tree. The two operations lead to the formation of parent-
child links that are apart from the underlying Pastry
neighbors. Hence, Splitstream starts losing the benefits
of cycle-free and route-convergence guarantees offered
by the underlying DHT [13] as the number of non-
Pastry neighbors increases. In short, Splitstream prefers
ID-based constraints over load constraints when initially
creating the tree and this leads to further complications
in the tree-building protocol.

IV. RESULTS

We have performed a series of experiments on a
packet-level, event-driven simulator coded in C++. We
have also implemented the system and made some simple
deployment experiments on Emulab. The default num-
ber of member nodes in each simulation is 5000. The
Chunkyspread simulation could operate with more, but
the Splitstream simulator could not, so we limit our
simulations to 5000 members. To calculate the latencies
between members, we placed member nodes at random
edge locations on GT-ITM network topologies having
5050 routers [10], and set delays proportional to the
distance metric of the resulting topology. We chose to
select a very pessimistic value for network latencies: the
median latency is around 400ms, and the maximum is
roughly 650ms. As a result, the convergence times shown
are worse than one might expect over the commercial
Internet (for both Chunkyspread and Splitstream). We
assume that control messages are sent over TCP, and so
ignore message loss in our simulations.

The random overlay is constructed using a packet-level
trace file generated offline by a Swaplinks simulator. The
trace-file allows us to determine the delays associated
with the neighbor selection in Swaplinks. To scale the
simulation, the simulator does not explicitly generate data
packets. We do, however, calculate the amount of time it
would have taken for a packet to travel node to node. This
calculation is needed both in determining when bloom
filter information arrives at each node, and for calculating
the relative slice arrival time used to improve latency.

Member nodes in the simulation receive all slices.
In principle, it would be possible for nodes to receive
some fraction of the slices and still be able to reproduce
the stream, for instance, by using Multiple Description
Codes[20]. We neither implemented nor simulated this.
The default number of slices in our simulations isM =
16. To model heterogeneity, each node is assigned a
random node degree within a specified range. By default,
the range is from 8 to 50 inclusive, thus producing a
roughly 6x range of loads. This represents a moderate
level of heterogeneity, representing say a population of
users behind dial-up modems and broadband, or behind
broadband and T1.

The target loadTL for each node is derived from
its node degree in such a way that the sum of target
loads across all nodes is approximately equal to the
total volume needed to transmit the stream to all nodes.
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This results in default values forTL being distributed
uniformly between 4 and 28 slices (the median of 4 and
28 is 16, the number of slices). The default setting for
maximum load isML = (1.5)TL. In other words, the
total capacity of the system is 50% more than what is
needed to transmit the stream to all nodes. This represents
a well-provisioned system: something required in any
event to get good performance[11].

We experiment with two settings forLLT andULT .
In one, both are set to 0 slices fromTL (ULT = LLT =
TL), resulting in no latency optimizations whatsoever.
This is denotedLat0. In the other, they are set to
2(TL)/16 slices fromTL (rounded up forULT , and
down for LLT ). In other words, ifTL = 16, then
LLT = 14 andULT = 18. If TL = 28, thenLLT = 24
andULT = 32. This is denotedLat2.

We chose a bloom filter size of 128 bits and a bloom
mask size of 6. This yields a false positive rate of 0.25%
after insertion of 10 keys. The heartbeat period is set to
1 second and the timeout period to detect a node failure
is set to 4 seconds. Parent switching decisions are made
every second.

We compared Chunkyspread simulations with those of
Splitstream, which uses a simulator coded in C# that was
provided to us by Miguel Castro. Wherever possible, we
provide apples-to-apples comparisons of Chunkyspread
and Splitstream. For instance, the Splitstream simulations
are run over the same GT-ITM synthetic routing topology
and have 16 slices. Splitstream does not, however, have
parameters analogous to target loadTL and upper and
lower thresholdsULT and LLT . Rather, Splitstream
provides a single parameter, maximum load (SML).
SML is analogous to Chunkyspread’sML in that the
load never exceedsSML. It is unlike Chunkyspread’s
ML, however, in that a Splitstream node may easily settle
on a sustained transmission rate ofSML, whereas an
Chunkyspread node may temporarily trasmit atML, but
will quickly move towards theLLT −ULT range. As a
result, we need to interpretSML differently fromML,
and an apples-to-apples comparison is not really possible.
Specifically,SML means ”a transmission rate at which
I would be perfectly happy to operate,” whereasML

means ”a transmission rate that I am capable of achieving
for brief periods, but would rather not”.

Because of this difference, in one case we treatSML

as though it were equivalent toML. That is, we set it
to be 50% above the number of slices (SML = 1.5TL)
whereTL is the target loads for the corresponding nodes

in Chunkyspread. This is denoted asSS(1.5). In the other
case, however, we try to treatSML as though it were
equivalent toULT . As such, we setSML = 1.2TL to
compare withLat2 (denotedSS(1.2)). To compare with
Lat0, we tried settingSML = TL, but Splitstream does
not converge in this case, so instead we useSML =
1.1TL, denotedSS(1.1).

Splitstream has a time-out parameter that determines
how long a node should wait for the result of an anycast
operation before trying again. This parameter is set to 4
seconds. A value less than this tended to result in too
many unnecessary anycast operations.

We have considered the following scenarios to evaluate
our protocol.

Static scenario: This corresponds to the case when
all overlay nodes are present in the network right from
the beginning of the simulation. This means that the
random graph is constructed completely, even before the
true sourcestarts building trees to kick-start the multicast
session. This scenario is not a very realistic one but is
useful in analyzing just the performance of our load-
latency algorithm without the influence of any churn. The
Swaplinks simulator did not have functionality provided
for locality-awareness. To determine the effect of adding
locality to the random graph, we have run static simula-
tions where, in addition to the random neighbors selected
by Swaplinks, some number of nearest neighbors were
added to the neighbor set of each node. For all the other
scenarios which involve churn, we did not incorporate
locality since the nearest neighborhood set alters with
churn, and we did not want these changes to affect the
degree invariant guarantees offered by Swaplinks.

Join scenario: There are 3750 overlay nodes in the
network (similar to the static case) and the rest (1250
nodes) join at a rate of 50 joins per second from the
20th second by which time most of the originally present
nodes had reached a steady state. This scenario depicts
a more realistic picture than the previous one; it can
possibly be a live event that attracts a large audience
within a short span of time.

Bursty failures: There are 5000 nodes in the network
and a percentage of the nodes fail at thesame time
instant. We consider two cases: One when 10% of the
nodes fail (small burst) and the other when 50% of the
nodes fail (large burst). These pathological cases may
not be very close to realistic scenarios, but do help in
analyzing the robustness of the protocol against node
failures. Such a high failure rate could potentially lead to
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network partitions, but Swaplinks was resilient enough to
prevent them from happening.

Churn scenario: To understand the effect of more
realistic scenarios on our protocol, we simulated
Chunkyspread under continuous churn in which nodes
join and leave at the same time. The scenario that we have
studied is similar to the one tested in [13]. We consider
Poisson arrivals at 10 joins per second, and pareto stay
times with a minimum duration of 90 seconds and a
mean of 300 seconds (which implies the pareto parameter
α = 10

7 ). Pareto is a heavy-tailed distribution which is
typical of the behavior of users in such environments[11].
The churn happens for the first 1000 seconds after which
the remaining live nodes are allowed to settle down for
the next 200 seconds.

A. The static and the join scenarios

We first present a comparison study between Split-
stream and Chunkyspread followed by an evalua-
tion on the convergence and the control overhead of
Chunkyspread.

1) Comparisons with Splitstream:In the first set of
experiments, we analyze the tradeoff between load bal-
ance and latency in Chunkyspread and compare them
with Splitstream. We introduce the termexcess load
percentageto quantify load in the protocols. It is defined
for every node as follows.

Excess Load Percentage =
Node′s Load − TL

TL
%

(1)
This parameter quantifies how close nodes reach their
target load and hence the degree of fairness provided by
the protocol. A value of 0% implies that the node has
perfectly reached itsTL, while a value of -100% means
that the node has zero load. The maximum value of this
parameter is bound by100.(ML−TL)

TL % which is 50% in
our Chunkyspread simulations.

To evaluate the latencies, we first observe two param-
eters: the maximum and the average overlay latencies
over the slices obtained at each node. The latencies
are normalized with respect to the median value of the
network latencies between overlay nodes. We chose not
to use the network stretch parameter to evaluate our
latencies. Network stretch is defined as the ratio of the
measured overlay latency to the network latency between
the true source and the node. Network stretch may not
give a true picture of what the latencies are: for example,

a high network stretch could actually be due to high
latency or could be due to a low network latency with
the true source.

Figure 2(a) shows the cumulative distribution func-
tion (cdf) of the excess load percentage of nodes in
Chunkyspread after steady state was reached. We observe
that Lat0 performs quite well in both the static and
the join scenarios: more than 80% of the nodes reach
exactly theirTL in the static scenario while around 90%
of the nodes reach theirTL in the join scenario. With
the latency phase added, Chunkyspread still performs
well: almost 90% of the nodes are within 25% of their
TL values in theLat2 case in both the join and static
scenarios. The maximum fraction of excess load that any
node reaches is about 20%. Apart from the good load
balance, we observe comparable performances of the join
and the static cases which indicates that the protocol can
function at high join rates as good as in cases without any
churn at all. The heavy tails observed on the negative side
of the x axis in these curves are because of the imperfect
configurations that we had mentioned earlier.

Figure 2(b) shows the cdf of the maximum and average
overlay latencies normalized with the median of the
network latencies between nodes in the network. The x-
axis is shown in log scale. The cdfs have been plotted for
theLat0 and theLat2 cases. We first observe thatLat0
yields very high latencies in both the static and the join
scenarios, which is expected sinceLat0 is completely
’latency-blind’; this can be seen from the maximum
latencies ofLat0 in both the static and the join cases. We
observe significant improvements in latencies withLat2.
The 90th percentile values of the maximum latencies in
both the static and the join cases are around 7 and 9
respectively while the same for the average latencies are
around 4 and 6 respectively. The difference between the
maximum and the minimum latency values gives us an
idea of how long it takes to receive all the slices for
the same block of the stream and hence the size of
the application buffer required to counter losses while
waiting for the full block. We note that the latency for
any slice experienced by a node is bounded below by its
network latency to the true source. Then, for example, if
we assume the median network latency were around 50
milliseconds, then a 500 millisecond buffer is necessary
to successfully play out the streamin the steady state
even if losses due to factors such as churn or congestion
are not considered.
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The overlay stretch of a node is defined as the ratio
of the average latency observed over its slices to its
minimum latency in the overlay graph with the true
source. It is a measure of the quality of the latency
algorithm just with respect to the underlying random
graph constructed. We see that over 90% of the nodes
have overlay stretches between 1 and 2 forLat2 in
the static scenario; the join scenario also incurs similar
values. This shows the good performance of the latency
phase of our algorithm.

Let us now see how Splitstream fares with respect
to load and latency. Figure 2(c) shows the cdfs of the
excess load percentage values for SS(1.1), SS(1.2) and
SS(1.5) for each of the join and static cases. As expected,
a considerable number of nodes get saturated to their
ML values and the percentage of such saturated nodes
increases asML

TL values decrease. For example, the per-
centage is 35% for SS(1.5), 60% for SS(1.2) and 85% for
SS(1.1) in the join cases. This is in stark contrast to the
excess load percentage distribution that Chunkyspread’s

Lat2 andLat0 yielded. We also find that the join case
has a worse load balance than the static case, since the
newly joined nodes are not provided enough opportunities
to supply the slice unless an orphaned node or another
newly joined node requests for a slice. In Chunkyspread,
the load balance algorithm ensures the newly joined
nodes also participate in supplying the slices.

The graph in Figure 2(d) shows cdfs of the average
and maximum latencies in the static and the join cases.
We note that both the average and the maximum laten-
cies showed very marginal improvements asML

TL was
increased with both the static and the join scenarios
performing comparably3. Hence we have presented only
SS(1.5) here for clarity. The90th percentile values of the
average latencies for both the static and the join scenarios
are close to 8; this is greater than Chunkyspread’sLat2
values but still quite comparable. However, the maximum

3The comparable performances show that curbing the spare capac-
ities do not have a significant effect on the latencies.
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latencies show really high values. SS(1.5) yields90th

percentile values of around 20 in both the static and
the join scenarios; it also displays a heavy tail, almost
reaching 30. These are in fact comparable with (static)
Chunkyspread’sLat0 values. The reason for the high
maximum latencies is that with heterogeneity, more (ran-
dom) non-DHT parent-child links are formed which are
not necessarily latency-optimized unlike their DHT coun-
terparts. The huge difference between the average and
the maximum latencies requires an application buffer of
considerable size and this buffer is to just counter losses
due to delays in the slice arrivals for the same stream.
In the example that we had considered for Chunkyspread
above, Splitstream nodes may require a 1.5-second buffer
in the steady state just to counter losses due to late arrival
of slices.

We observe a similar trend with the cdfs of maximum
hop length (from the true source) across all slices re-
ceived by each overlay node as shown in Figure 3. As
we had already mentioned, higher hop lengths relate to
a lower tree resilience, since nodes are more prone to
disruptions from the trees due to the failure of one or
more ancestors in the path to the true source. From the
graph, we see thatLat0 yields very high hop lengths.
We also see that there is a good improvement with
Lat2 which yields90th percentile hop lengths of around
8 in both the static and the join scenarios. We note
that the static scenario performs comparably with the
join scenario, though it had outperformed the latter in
the latency figures, as we had discussed above. This is
because the static case builds locality-aware graphs which
usually yield lower latencies at the cost of greater hop
lengths. Again, Splitstream performs much worse than
Chunkyspread’sLat2: with 90th percentile values as high
as 30. The reason why this happens has been discussed
above.

We define theinitial startup time of a node as the
time taken since its joining the multicast session, for it
to start receiving the entire stream. In Chunkyspread, a
newly joined node initially gets its stream by periodically
pinging its neighbors (as described in Section II-D) and
this mechanism is independent of the choice of load-
latency parameters used. In Splitstream, this quantity is
not useful enough since a node that has started to receive
its stream from all its trees can potentially get orphaned
from one or more trees. Hence, we include all the time

durations during which nodes are disconnected4 from the
tree due to such preemptions, into the initial startup time.

Figure 4 shows the cdf of the initial startup time for
Chunkyspread. We find that the90th percentile value in
the join scenario is about 8 seconds while it is 7 seconds
in the static scenario. The reason for the difference is the
fact that the static scenario is run with locality which
enables faster tree construction. In the graph,Red 3
denotes the case where the stream is encoded with 3
redundant slices, hence it is enough if the node gets any
13 out of the 16 slices to obtain the full stream. We find
that in the static case, the90th percentile value forRed
3 is less than 6 seconds.

Figure 5 shows the initial startup times of Splitstream.
As claimed in [7], the system performs well in the
static case with even SS(1.1) yielding a90th percentile
value of around 8 seconds which is comparable with
Chunkyspread’s values. We see that as the spare ca-
pacities in the system decrease, the initial startup time
increases as seen by the curves for the join scenario. This
is expected, since, with lesser spare capacity, more time
has to be spent during the pushdown and the anycast oper-
ations. SS(1.5) performs comparable to Chunkyspread in
the join scenario, with a90th percentile value of around
9 seconds. But with decreasingML

TL values, the startup
time shoots up to 17 and 26 seconds for SS(1.2) and
SS(1.1) respectively. Such a difference is not observed
in the static case, since all nodes start with zero load
and many nodes, for many of the slices, obtain their
parents without even resorting to pushdown or anycast
operations. This is not the case in the join scenario, since
many of the nodes may have been already saturated to
their ML values and the newly joined nodes result in
more anycast and pushdown operations. We note that
with Chunkyspread, the load balance algorithm ensures
that the spare capacities are distributed across nodes even
when nodes are joining at a high rate, as we will show
below.

2) Time to convergence:We now assess the conver-
gence properties of our algorithm. A system is said to
have converged if it has reached a steady state. We noted
for every node the last time instant that it had completed a
switch in the system. We observed thatLat0 converged
quite well in both the static (18 seconds) and the join
(70 seconds) scenarios. We also saw that whileLat2

4Disconnection due to orphaning a node will lead to disconnections
of its descendants in that tree, if any.
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converged within 60 seconds in the static scenario, it
took around 120 seconds to converge in the join scenario,
which was 75 seconds after the last join took place. It is
important to note that Splitstream reaches a steady state
as soon as the last orphan node gets a parent. Hence the
convergence time is actually the startup time that we had
discussed previously.

Figures 6 and 7 show the excess load percentage per
node as the simulation proceeds in the case ofLat2 for the
static and the join scenarios respectively. The maximum
and the95th percentile curves in the static case peak to
ML during the first 10 seconds of the simulation after
which the load phase of the algorithm brings both the
curves down to within the target upload interval. This
shows that our algorithm can distribute the loads fairly
across nodes quite fast, so that if more nodes were to join,
there is a good chance that there is spare capacity within
their neighborhoods. This is in fact depicted in Figure
7. In the join scenario, we can observe a peak during
the first ten seconds; the second peak arises after nodes
start joining and stays till 10 seconds after the last node
had joined the network. Though there are nodes saturated
to their ML values (50%) during this time period, the
95th percentile curve stays roughly at 30% while the
median hovers around 10% during this time which show
that there are a considerable number of nodes with spare
capacity that can serve a newly joined node quite fast.

Figure 8 shows the normalized average latency over
the slices of nodes as the simulation proceeds in the
static scenario. We observe that the load phase shoots
the latency up initially, but then, the latency phase of the
algorithm steadily brings the it down. The peaks in the
95th percentile curves of the average and the maximum
latency values show that Chunkyspread may need to
maintain an application buffer of a considerable size for
the temporary period of time when the load phase of the
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algorithm is more dominant than the latency phase; such
cases happen after there is churn or after the true source
kickstarts the multicast session.

3) Control Overhead:Next, we evaluate the the con-
trol overhead incurred by nodes in the network due to
switch messages. Figure 9 shows the number of switch
messages sent per node per second over the simulation
time of 200 seconds whenLat2 is run on the join sce-
nario. The peaks correspond to the time when nodes are
joining the system and also after the true source kickstarts
the multicast session. Though the dominant peak value
of the maximum number of switch messages sent by any
node is 60, the peak values of the95th percentile and the
median values of the switch messages are about 20 and 8
messages per second per node respectively. This indicates
a modest overhead amongst Chunkyspread nodes even at
the time when there is a high join rate.

We observe that a switch is usually a three-party
negotiation but is asymmetric in the number of switch
messages sent at each node: A load-based switch origi-
nates from the original parent and ends at it; this involves
a total of 4 messages. A latency-based switch involves 5
messages since it starts from the child seeking the current
parent to let it switch. Other kinds of parent selections
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(the forced ones) involve two or three switch messages
depending on whether the old parent is also involved in
the switch or not.

Moreover, there can be switches which are rejected
either at the child or at the potential parent. Hence the
number of switch messages may not exactly correspond
to the number of successful switches. We examined the
number of successful switches at each node over the
course of the simulation time. We observed that in the
join scenario, the dominant peak value of the maximum
number of switches is around 12 per second per node
and happens during the time nodes join, while the95th

percentile value is around 3 switches. We found during
this period that almost 50% of the switch requests fail
due to conditions that we had already discussed.

B. Bursty failures

To quantify data losses due to node failures, we mea-
sure the time during which nodes are disconnected from
one or more trees. We measure therecovery duration
for each node in both the cases, which is defined as the
time duration calculated from the instant nodesdetect
failures of their neighbors till they get connected back
to the trees. It is to be noted that during the recovery
period, nodes are disconnected from the tree and so are
its descendants. Hence, while a node is trying to recover
from a parent’s failure, this duration that its descendants
are disconnected also get accounted to their recovery
duration (since an ancestor is trying to recover on their
behalf). We note that, with no redundancy in the 16
slices, if a node is disconnected from even one slice
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tree it gets accounted in the recovery duration. Figure
10 shows the cdf of the recovery duration when 10% of
the 5000 nodes fail at the30th instant, at various levels of
slice redundancy. We find that both the protocols recover
quite fast with90th percentile values of about 5 seconds
and 8 seconds inLat2, and SS(1.2) respectively.Lat2
performs better thanLat0 primarily because the former
yields lesser hop lengths which, as mentioned before,
leads to better resilience. On adding redundant slices, we
find a drastic improvement in the recovery times. For
example, with a redundancy of 3 slices, more than 50%
of the Chunkyspread nodes are not disconnected at all and
the maximum recovery duration is around 2.5 seconds.
We also find that Splitstream nodes are disconnected for
longer durations asML

TL values decrease.
Splitstream performs worse than Chunkyspread when

50% of the nodes fail at the same instant. Figure 11 shows
the recovery duration in such a scenario. WithLat2, the
90th percentile recovery time is 10 seconds while it is
at least 15 seconds for Splitstream. When redundancy
is added, there is a good improvement in the recovery
duration: the95th percentile value for Chunkyspread is
just 5 seconds in the case when 3 redundant slices are
added. This just goes to show Splitstream’s inability to
handle a huge failure burst. The problem, we suspect, is
the high hop lengths that Splitstream incur (as we had
seen in Figure 5), which affects its robustness to node
failures.

Figure 12 shows the number of switch messages over
the course of the simulation in the 10% burst case with
Lat2. We see that the maximum control overhead peaks
at 42 messages per second per node just after failures are
detected while the median value peaks to 12 messages per
second per node. This represents a moderate amount of
overhead.

C. Effect of other parameters

We tried to see the effect of altering parameters such
as the number of slices, degree of heterogeneity and
the number of neighbors on the protocol. We largely
observed that these parametric changes do not result in
significant changes to the protocol performance.

We studied the performance of our protocol on varying
the number of slices that the stream is split. We found
that on increasing the number of slices from 8 to 32,
there was an improvement in the load balance: in the
static case ofLat0, around 90% of the nodes reached

theirTL values when multicast with 32 slices while 90%
of the nodes were within 20% of theirTL values when
multicast with 8 slices. The more striking feature between
the two cases was the tail; the least loaded node had an
excess load percentage of -25% for 32 slices and -60%
for 8 slices. The better performance with increased slices
can be explained by the fact that more slices offer a finer
granularity in controlling load. But this is at the cost of
proportionally more number of switch messages, hence
more control overhead. Increasing the number of slices
does not have any bearing on the latencies though.

Another set of experiments was conducted to study
how neighborhood sizes affect our algorithms. To sim-
plify our study, we considered a static homogeneous
scenario with all nodes having a target upload of 16
slices. We tested our protocol with graphs having constant
degrees of 12, 24 and 36 for theLat2 case. We observed
that as the number of neighbors was increased, more
nodes were closer to their target loads, though the im-
provement was not significant. In the 10% burst case, we
found that when the number of neighbors was increased
from 12 to 24, the recovery duration improved the90th

percentile values from 4 seconds to just 2 seconds. This is
because with more neighbors, a node disconnected from
the tree has a greater chance of picking up a parent from
its neighbors that can supply the slice.

We also experimented with varying levels of hetero-
geneity in the network. We tested the simulator with
three scenarios: (a) the homogeneous scenario (in which
number of neighbors is assigned to 32 for all nodes), (b)
moderate heterogeneity (similar to our default case), and
(c) high heterogeneity (in which the number of neighbors
is distributed between 8 and 200 neighbors). As expected,
we observed that (a) did better than (b) and (c) with
respect to load balance, but the improvement was not
significant. In scenario (a) all the nodes were within
12.5% (or 2

16

th
) of the TL value which is 16 for all

the nodes. Scenario (b) is the curve obtained in 2(a)
for the StaticLat2 case. Scenario (c) performed very
close to (b); from these numbers, we can infer that our
protocol performance is independent of the degree of
heterogeneity in the system.

D. Churn scenario

We have so far considered isolated node joins and
failures in our simulations. As we had already noted, a
more realistic churn scenario would be to consider one
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in which nodes join and leave at the same time. We had
already discussed in the beginning of this section, the join
and stay time parameters used in simulating the churn.

The disconnection time intervals are noted at every
node for every slice; these are the time intervals when
the node is disconnected from the slice tree due to
an ancestor’s failure. After obtaining the disconnection
durations at every slice, we simulated an application
playback buffer offline for each slice at every node to
calculate the duration when there is no playback. This
parameter is called the playback disruption duration.
Figure 13 shows the cdf of the total playback disruption
duration at every slice of all nodes for various buffer
sizes. With no buffer at all (which corresponds to the
0 second buffer size), we find that the90th percentile
value is 20 seconds5 and this value decreases steadily as
the buffer size is increased. For example, with a 5 second
buffer size 85% of the slices are not disrupted at all and
the90th percentile disruption duration is 1 second. From
this graph, we infer that most of the disruptions are of
short duration and can be recovered using a buffer of
modest sizes.

To better show this fact, we observe the cdfs of the
percentage of disruption duration over the lifetime of
nodes in the system, for various levels of redundancy
in Figures 14 and 15. For example, at a redundancy of 1
slice, a node is said to be disrupted if its playback buffers
are disrupted for at least two slices. With no buffer at all,
almost 60% of the nodes are disrupted at the first slice
for more than 60% of the time. But as more redundant
slices are added, we find that the disruption percentage
decreases. In particular, with a redundancy of 4 slices,
90% of the nodes are not disconnected at all. Further,
with a 5-second buffer, we find that no node (barring the
heavy tail) is disrupted for more than 10% of its lifetime,
as observed in Figure 15. From these graphs, we observe
the tradeoff between the buffer size, redundancy and the
playback disruption duration, which is fundamental to
any streaming protocol.

E. Emulation

We have also made small deployment experiments in
Emulab and have tested our protocol on a cluster of

5The heavy tail in the graph was due to one particular slice of a node
for which it was not able to find a parent as the bloom filter condition
yielded false positives for the parents which could have supplied the
slice. An obvious solution to prevent this from happening is to either
request for more neighbors or join all over again.

machines. The system was tested on 200 nodes emulated
on a set of 50 machines, with the delays obtained from
a 100-router transit-stub graph. A 100 Kbps stream
was split into eight 12.5 Kbps streams and sent across
multiple trees. The stream was multicast by the true
source after it received its first set of 8 neighbors. As
a first step, we have used hop length as the latency
reduction parameter6. The system was run for 20 minutes
and a snapshot of the data was taken at the10th minute.
we chose a moderate level of heterogeneity with the
degree distributed uniformly between 8 and 40 neighbors.
Figures 16(a) and 16(b) show the load distributions and
hop lengths for theLat0, Lat1 and theLat2 cases. The
trends in the graphs are quite similar to the ones that we
had obtained in our simulations.

F. Intuition on tit-for-tat

Till now, we have assumed that nodes do not lie about
their loads to each other. In some environments, however,
there may be free-loaders. Chunkyspread provides a nat-
ural framework for applying incentive-based constraints.
To build an intuition as to how tit-for-tat may affect
load and latency, we simulated a simple ”weak” tit-
for-tat model whereby the volume received from each
neighbor must be at least within some percentage of the
volume sent to that neighbor7. For instance, with 25%
tolerance, a node that supplies 4 slices to its neighbor
requires that it serves at least 3 slices back. 3-2 or 2-1
ratios are not allowed. In addition, nodes assign an initial
small credit to new neighbors, to allow the parent-child
relationships to get started, and give additional credits
over time if a neighbor sends more than is received. Tit-
for-tat constraints are enforced only when the credits are
used up.

We tested how this simple tit-for-tat scheme works
with the Lat2 parameters. We used a 10000-nodestatic,
homogeneoussetting in which each node has a target load
of 16 slices. Each node periodically checks whether any
of its neighbors is violating tit-for-tat, and withdraws up-
loaded slices as necessary. Only parent switches that fall
within tit-for-tat constraints are allowed. We compared
tit-for-tat ratios of 50%, 33% and 25% (corresponding
to 1:2, 2:3 and 3:4 relationships respectively). We find

6Swaplinks does not retrieve locality-aware neighbors, hence hop
length can still be a reasonable parameter.

7[12] and [19] argue that strict tit-for-tat is impractical, and our
simulations corroborate this.
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that decreasing the ratio improves load balance, but at
the expense of latency. For instance, the90th percentile
average overlay stretch for 50% tit-for-tat is 2, while for
33% it is 2.7. There are also longer and more frequent
disconnections in the 25% case than in the 50% case.
These experiments are encouraging in that they show that
tit-for-tat constraints can be incorporated to an extent,
though at the expense of other performance measures.

V. RELATED WORK

There has been considerable work in the past on single-
tree multicast protocols[4], [3], [21], [6], [22]. Since none
of these effectively support heterogeneity, we restrict
our discussion of related work to multi-path multicast
protocols.

Bullet [5] splits the stream into multiple blocks and
uses a single tree on top of a mesh. Nodes receive
only a subset of the blocks from their parents in the
tree, the remaining blocks retrieved from other nodes
randomly chosen using a distributed algorithm called
RanSub. Bullet however incurs a high control overhead
due to this scheme of orthogonally retrieving packets.

Chainsaw [8] is a multicast protocol that does away
with trees to improve node resilience in the presence of
churn. Each Chainsaw node employs a simple controlled
flooding mechanism to notify neighbors of data arrivals
and a pull-based approach to retrieve blocks. However,
Chainsaw can potentially incur high network and CPU
overheads due to per-packet notifications. A protocol that
has a similar approach to Chainsaw has been deployed in
the real world and has met with some success. However,
the real-world deployment depended on a considerable
number of dedicated servers, hence it did not still show
enough evidence on a true decentralized deployment.

[11] assessed the feasibility of overlay multicast pro-
tocols supporting large-scale live streaming applications
by analyzing real-world Akamai traces; using these traces
along with online and offline bandwidth measurements,
they concluded that real-world hosts indeed have enough
bandwidth to support themselves in most cases.

Incentive-based p2p protocols try to enforce end-hosts
to contribute resources. There have been many proposals
in the literature that apply to file-sharing and stream-
ing applications. Bittorrent [9] is a popular file-sharing
protocol in widespread use that divides the file into
multiple pieces and lets the peers download the pieces
from one another. Peers employ a tit-for-tat mechanism

to limit free-ridings the system. [12] adopts a taxation
model on peer-to-peer streaming multicast applications
to encourage resourceful peers to contribute bandwidth to
the system and subsidize for the poor peers. [16] employs
a credit-based technique on Splitstream to detect free-
riders. According to this scheme, trees are reconstructed
periodically so that each pair of neighbors gets oppor-
tunities to donate and receive between each other on
successive reconstructions. The protocol does not fully
answer how to tackle heterogeneity in the system.

VI. CONCLUSION AND FUTURE WORK

Chunkyspread represents a new point in the P2P
multicast design space: one that has the efficiencies
associated with trees and the simplicity and scalability
associated with unstructured networks. At the foundation
of Chunkyspread is the ability to build random sparse
overlay graphs with tight statistical control over hetero-
geneous node degrees. This foundation, combined with
a simple loop-detection mechanism based on bloom fil-
ters, provides a framework whereby different constraints
and optimizations can be emphasized, depending on the
application.

To date, we have focused on large-scale, non-
interactive applications like the broadcast of a sporting
event, at a range of volumes (text, audio, or video
formats). Here, control over load is more important
than latency, though in this paper we show nevertheless
that significant improvements in latency can be made if
load control is relaxed slightly. We also show apples-
to-apples comparisons with Splitstream, and find that
Chunkyspread performs better across the board, and
significantly better with respect to control over load.

While preliminary results with severe churn are
promising, more work needs to be done to understand the
trade-offs between packet loss, packet delay (buffering),
and stream volume (packet coding schemes). This under-
standing needs to be developed for both tree-based and
for treeless approaches such as Chainsaw. Our intuition is
that neither approach in its pure form will perform really
well, and that some form of hybrid approach is called
for.

Preliminary results with tit-for-tat also show promise,
though once again there is much work still to be done.
We hope to explore a range of tit-for-tat mechanisms,
including both social and irrational behavior. Tit-for-tat
also needs to be examined for both tree-based and treeless
approaches.
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While we believe that gaining a better understanding
of severe churn and tit-for-tat represent the most fruit-
ful areas of research, we still need to consider ways
to improve Chunkyspread. For instance, we feel that
Chunkyspread as designed, has too many parameters that
need to be set. Is it possible for Chunkyspread nodes
to self-tune based on observations within the overlay,
possibly achieving parameter-less operation? Also, while
the Chunkyspread framework does provide something
of a generic constraints-and-optimizations framework,
we still find ourselves selecting specific parameters for
specific optimizations. Can we generalize the framework
further, for instance allowing application developers to
simply supply high-level policies about various criteria
of interest?

Beyond this, we would like to explore different types
of applications and environments. These include low-
latency applications, reliable delivery, and pub-sub appli-
cations where nodes may join a large number of groups.
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