Vineyard Notes

Grape Insect and Mite Pests-2016 Field Season

Greg Loeb Department of Entomology Cornell University New York State Agricultural Experiment Station Geneva, NY 14456

What can we expect this growing season with regards to insect pest problems? A good question. So much depends on weather conditions during the year that it is difficult to make any predictions this far in advance. There are a couple of insect pests I do want to draw your attention to that have caused significant economic damage over the past couple of years and in some cases, have not recently been of much concern. These include multicolored asian lady beetle (late season pest that can cause serious contamination issues for wine and juice grapes and for the first time in several years some late season vinifera plantings had quite a few of these insects in clusters at harvest, creating major contamination issues), grape rootworm (larval damage to roots that seems to be on the rise in Lake Erie region, but also showing up more in the Finger Lakes), and grape cane gallmaker (typically more of a nuisance pest, but in the last few years in the Keuka Lake region have reached extra high densities that appear to be causing real damage to canes). I recommend refamiliarizing yourself with these insect pests and also reviewing the latest on using the phenology model for improved management of grape berry moth. In particular, we are finding that the model is pretty good at predicting timing of egg-laying for second and third flights of grape berry moth, but in late season, its not that helpful. Numerous growers reported excessive damage at harvest from grape berry moth in 2015 and I believe much of this is from late season infestations.

My goals for this review are to 1) highlight the main arthropod pests to keep in mind as you go through the field season, 2) provide some basic background on biology and ecology that helps in understanding alternative management tactics, 3) summarize the results of recent research, and 4) update methods of control. The material I present here is based on the work of many people at Cornell and elsewhere. I want to particularly thank Ted Taft Jr., Tim Weigle, Terry Bates, Mike Vercant (congratulation Mike on your recent retirement) and the rest of the crew at Cornell Lake Erie Research and Extension Laboratory (CLEREL) and Steve Hesler (my research support specialist here at Geneva). We are very appreciative of the growers and other industry representatives for their many contributions ranging from letting us work on their farms to sharing their observations and opinions to financial support.

Update from NY and Pennsylvania Grape Guidelines and other chemical news

There are not too many changes to pesticide availability or use for grapes to report this year. We are in the process of losing an insecticide for use in grapes, Lannate (methomyl). This is a carbamate insecticide (same class as Sevin, IRAC group 1A) that is effective against a pretty broad spectrum of insect pests including leafhoppers and grape berry moth. However, the new label for Lannate LV (EPA # 352-384) and Lannate SP (352-342) no longer includes grapes. Growers may use product in storage with the old label, but going forward, Lannate is no longer available. We are no longer listing Lannate in the grape guidelines.

A similar situation exists for Diazinon, an organophosphate insecticide that no longer has grapes on the label. One addition I am aware of is there is a 2(ee) label expansion for use of Movento [spirotetramat] for suppression of erineum mite. These tiny mites cause "galls" on the underside of leaves of grapes (see <u>http://www.ipm.ucdavis.edu/PMG/GARDEN/FRUIT/PESTS/grerineummte.html</u>). They are primarily an issue for vinifera. The galls are indentations on the bottom of the leaf that are filled with a dense mat of hairs or erineum and numerous tiny mites. The erineum look like blisters on the top-side of the leaf. Sulfur used for powdery mildew often provides reasonable control of this pest and Movento is an additional option.

A new miticide called Nealta [cyflumetofen, EPA No. 7969-336, REI is 12 hours, DTH is 14 days] has just been approved by NY DEC for use against spider mites in grapes. It's new chemistry (IRAC group 25) that hinders all stages of mites (eggs, nymphs, and adults). Its labeled for several different species of Tetranychid mites including both species of spider mites found on grapes in the Northeast: two-spotted spider mite and European red mite. It's reported to be compatible with many different natural enemies including predatory mites. I have not had a chance to test its efficacy. The label requires the use of a miticide with a different mode of action after one application of Nealta. There must be at least14 days between Nealta applications and there is a limit of two applications per season per crop.

Review of key arthropod pests

Unlike the situation with grape diseases, where there is a clear big 4 or 5 diseases, for arthropods there is one key pest (grape berry moth) that is wide spread and causes serious damage most years and then a dozen or more pests that can create major problems but typically vary in abundance and pest potential from season to season and place to place (steely beetle, plant bugs, grape leafhoppers, potato leafhopper, grape phylloxera, grape rootworm, Japanese beetle, European red mite, and grape mealybug to name some). It's clearly a challenge to be able to recognize all of these potential pests and/or their symptoms and be familiar with different management options. Hopefully this review will be of use in this regard. I will focus on the grape pests that have a moderate to large potential to cause economic injury as we progress through the field season. More details on control measures can be found in the New York and Pennsylvania Pest Management Guidelines for Grapes: 2016. For greater focus on organic options, refer to the online organic grape guide [http://www.nysipm.cornell.edu/organic_guide/default.asp].

Before applying any chemical control measure make sure to read the label, taking into account things like mode of action (IRAC code), potential for phytotoxicity, labeled pests, re-entry and days to harvest intervals, effects of pH, and compatibility with other pesticides. Arthropods are generally detectable in the field before they cause economic injury. Moreover, most insecticides and miticides work as eradicants as opposed to preventative agents. They can be quite expensive and some are harsh on beneficial insects and mites. Because of all these factors, it is advisable to monitor pest densities and only apply control measures when economically justified. To aid in correct identification of pests in the field, consider purchasing a handy pocket-sized guidebook

put out by Michigan State University that covers many of the arthropod pests (and diseases as well) that can be problematic here in NY and Pennsylvania. Find out more at <u>http://bookstore.msue.msu.edu/product/a-pocket-guide-for-grape-ipm-scouting-in-north-central-eastern-us-657.cfm</u>. There are also a number of fact sheets on grape insect pests available through NYS IPM at <u>http://nysipm.cornell.edu/factsheets/grapes/default.asp</u>.

Budswell to Bloom

Steely Beetle (grape flea beetle) and Climbing Cutworm. The steely beetle (small, shiny black or dark blue in color) overwinters as adults and become active as temperatures increase in the spring. A fact sheet on steely beetle can be found at http://nysipm.cornell.edu/factsheets/grapes/pests/gfb/gfb.asp. They feed on swollen buds prior to budbreak with the potential of causing considerable damage under the right conditions; specifically when we get a prolonged swollen bud stage. Look for damage from steely beetle along the edges of the vineyard. Climbing cutworm (fact sheet at http://nysipm.cornell.edu/factsheets/grapes/pests/cc/cc.asp) refers to larvae of several species of Noctuid moths that cause a similar type of damage as steely beetle. Larvae hide during the day in the leaf litter or grass below the vine and then climb up into the vine to feed on buds and very young shoots on warm evenings. Grass under the vine may increase problems from cutworms. Use about 2% bud damage from either species as a threshold for treatment. Some hybrids with fruitful secondary buds that tend to overcrop can probably handle higher damage levels. Later in the season steely beetles lay eggs that hatch into larvae that do feed on grape leaves but this damage is not economically important. There are several effective, broad-spectrum, insecticides labeled for steely beetle and in grapes including Sevin, Baythroid, Leverage and Danitol. Sevin, Danitol, Baythroid, Brigade, Mustang Maxx, Leverage, and Brigadier are labeled for use against cutworms along with several more selective materials such as Altacor, Belt, Delegate and Dipel

Soft Scales and Mealybugs. Soft scales and mealybugs are sucking insects that spend part of their life-cycle on the canes or the trunk and part on leaves or fruit. At high densities they can reduce vine vigor or contaminate grape clusters with their sugary excrement, which supports the development of sooty mold. However, the major concern with soft scales and mealybugs in our area relates to their potential to vector viruses that cause grape leafroll diseas. This is a serious disease of *V. vinifera* grapevines (a fact sheet on leafroll is available at

http://nysipm.cornell.edu/factsheets/grapes/diseases/grape_leafroll.pdf). Soft scales and mealybugs are able to vector grape leafroll disease even at low densities. Indeed, the more we look, the more vineyard sites we find that have either soft scales or grape mealybug or both types at low densities. Soft scales in our area overwinter on canes as large immatures or young adults. At this stage they vary in shape and color but are typically brown or gray and look like bumps or large scales on the canes. They have limited ability to move at this stage. As the spring progresses they complete development, mate and begin laying eggs (mid-May to early-June), often many hundreds to over a thousand per female. The eggs hatch into mobile crawlers that disperse out on to the foliage to feed. The significant species of soft scales in our area that are found on

grapes have just one generation per year. As they mature during the season they move back to the canes to overwinter.

Grape mealybug overwinters on canes or trunks as crawlers (first immature stage after hatching from eggs), moving out from trunk wood to first or second year wood in spring (at budswell, see Fig 1). These crawlers like to hide under loose or cracked bark; look where one-year canes have been bent over trellis wire. As they become adults they move back to the trunk region to lay eggs (around mid-June). The first instar crawlers (summer generation) are observed around the beginning of July. These crawlers go on to mature,

being found on various tissue including clusters. As they become adults they migrate back to the trunk regions to lay eggs (mid-August), which mostly hatch and then spend the winter as first instar crawlers.

Working with Dr. Marc Fuchs, virologist at NYSAES, we have documented that grape leafroll disease has increased within a vineyard over time in several different vineyard blocks in the Finger Lakes indicating that insect vectors are likely responsible. Moreover, the causal viruses have been detected in both grape mealybug and soft scale collected from Finger Lakes vineyards. The insects feed on plant phloem and in the process acquires the virus. For this virus-insect relationship, the virus needs to be re-acquired after each molt (shedding of the insect exoskeleton as it grows). Research indicates the crawler stage is the most efficient at transmitting the virus, but other stages likely have the capacity to transmit as well. Note that the virus is not passed on to the eggs from the female. The newly hatched crawler must acquire the virus when it feeds to be able to transmit to virus. Once acquired from an infected plant, if the insect moves on to an uninfected vine before it molts, it can spread the disease. Since crawlers are the most active stage of both mealybugs and soft scale, they are the most likely stage to spread the disease.

Our research has shown that overwintering crawlers in November were generally not infected with grape leafroll associated viruses (GLRaV) even though they were on infected vines. This confirms our suspicion that after hatching, the crawlers do not move much or feed. However, we discovered that in April/early May the now overwintered crawlers were infected at high levels (>70%) suggesting they had fed on the vine and acquired the virus sometime between late fall and late April prior to budbreak. We went on to show that these crawlers are capable of transmitting the virus to uninfected vines in the greenhouse. We hypothesize that the crawlers may be particularly important in spreading the virus within a vineyard during the spring since there is little or no foliage to impede movement from vine to vine.

Can insecticide be used to slow the spread of leafroll disease within a vineyard? Experiments conducted over the past several years suggest that using an effective insecticide against grape mealybug, such as Movento [spirotetramat], can slow, but not stop, the spread to some degree. The results were not overwhelming, however, and disappeared the year after we stopped applying Movento. It's possible, though, that combining an effective insecticide control with roguing (removing of infected vines) when infection levels in the vineyard are relatively low (less than 25%) may be cost effective. This spring we are starting an experiment to test this idea and if all goes well, we will have results to share in two or three years.

There are two windows of opportunity for controlling soft scale and mealybugs with non systemic insecticides (e.g. pyrethroids, foliar applied neonicotinoids). The first window is during the spring just before budbreak where the target is the overwintering stage. Dormant oil is often recommended at this time. The idea is the oil will smother the scale or mealybug. We have not tested oil against soft scale, although I suspect it would be effective since soft scale overwinters out on the canes where they are more exposed. Our research examining the impact of late dormant oil against grape mealybug indicates it is not very effective. Some of the other contact insecticides may be more effective at this time than oil against mealybugs, but we still need to conduct the experiments. The second window is the crawler stage of the first generation. This occurs in mid or late June for soft scale and late June to early July for grape mealybug. The crawler stage is the most mobile stage and hence, you have the best chance of contacting them with insecticides. To make certain of timing, you can check underneath soft scales on canes in June or examine mealybug egg masses under loose bark on the trunk in later June with a hand lens and look for crawlers. We have started an experiment this spring to examine the effectiveness of treating the crawler stage early in the season with a contact insecticide in combination with Movento during the growing season.

During the growing season carbaryl is labeled for European fruit lecanium, a species of soft scale on grapes known to transmit grape leafroll, and an insect growth regulator called Applaud [buprofezin] is labeled for both soft scale and mealybugs. *Note that Applaud is not legal to use on Long Island*. A number of other insecticides are labeled for mealybugs but not soft scales including Movento, Admire Pro, Assail, Brigadier [bifenthin, imidacloprid and other active ingredients], Leverage 360, Portal [fenpyroximate], Baythroid [cyfluthrin] and Imidan.

Plant bugs

There are at least two species of plant bugs that have the potential to cause significant damage to grapes prior to bloom: banded grape bug and *Lygocoris* bug. These insects are only a threat up to bloom. Both species overwinter as eggs, presumably on grape canes, emerging as nymphs shortly after budbreak to 5 inch shoot growth. The banded grape bug (BGB) nymph is greenish to brown in color with black and white banded antennae (see Fig. 2). Nymphs of

Lygocoris are pale green with thin antennae (Fig. 3) and about half the size of BGB.

Nymphs of both species **can** cause serious economic damage by feeding on young clusters (buds, pedicel and rachis) prior to flowering. Adults, which appear close to bloom, do not cause economic damage and for at least one of the species (BGB), become predaceous on small arthropods. There is only one generation per season. Monitor for nymphs by examining flower buds on approximately 100 shoots along the edge and

interior of vineyard blocks. These plant bugs are sporadic from year to year and from vineyard to vineyard; most vineyards will not require treatment. If present at relatively low numbers (1 nymph per 10 shoots), they can cause significant yield reductions and hence it is worth the time to check. Pay particular attention to vineyard edges. Remember, though, by the time you reach bloom, it is too late to treat. There are several insecticides labeled for use against plant bugs (Imidan [phosmet], Danitol 2.4 EC, and Assail 30 SG [acetamiprid]).

Grape Plume Moth. This is another potential pest of grapes that overwinters as eggs in canes and emerges shortly after budbreak. Larvae typically web together young leaves or shoot tips and leaves to form a protective chamber from which they feed (Fig. 4). Sometimes the flower buds get caught up in the webbing and get fed on and this is where the potential for damage occurs. Research indicates 1) that damage tends to be concentrated on the vineyard edge near woods and 2) that it takes quite a few plume moth larvae to

cause economic damage. For Niagara grapes we were unable to detect a statistical effect on vines with 20% infested shoots compared to control vines. Nevertheless, the trend was for reduced yield associated with high plume moth infestations (>20%). For higher value cultivars a somewhat lower threshold would be appropriate. Treatment of plume moth can be tricky for several reasons. First, the larvae develop very quickly and often have reached the pupal stage before you even recognize there is a problem. Second, larvae inside their leaf shelters are protected from insecticides. For these reasons, it's important to monitor and treat for plume moth early in the season (before 10 inch shoot stage) using sufficient water to achieve good coverage. Danitol is the only insecticide labeled for use against grape plume moth in NY (2(ee) recommendation). Dipel can be used in PA, as well as, some other insecticides labeled for use on grapes.

Bloom to Mid-season

Grape Cane Gallmaker. The grape cane gallmaker is a beetle in the weevil family. The adult is quite small (3 mm long) and reddish brown in color (Fig. 5). Adults overwinter in debris on the ground and become active in Spring. Egg-laying occurs in May and June when shoots are between 25 to 50 cm in length. The female

weevil hollows out a small cavity along the shoot just

above a node and places a single egg. She fills the cavity with frass and then goes on to create additional cavities along the shoot (up to 14). Only the first has an egg, although other adults may join in such that you can find more than one gall with a larva per shoot. In response to the adult weevil feeding damage, the vine forms a gall (swelling) around each of the cavities (Fig 6). The egg

hatches and the larvae feeds on grape tissue that forms around the cavity, emerging as an adult later in the summer. The galls typically do not kill the shoot, but can create areas of mechanical weakness that can lead to breakage (Fig 7). And if numerous enough, galls can truncate shoot growth.

Grape cane gallmaker is considered a minor pest, generally not requiring control. However, there have been increasing reports of extensive galling on grapevines of several different cultivars in the Finger Lakes region to the extent that chemical control may be warranted. Insecticides should target the adult stage during May and June. There are a limited number of products labeled for grape cane gallmaker including Danitol, Baythroid, and Leverage.

Fig 7. Grape cane gallmaker gall, dormant season.

Grape Berry Moth

Grape berry moth (GBM) is familiar to most grape growers in our region. Despite this familiarity, managing this pest is still challenging, especially late in the growing season. I believe the key to successful management of GBM is having a good understanding of its phenology (timing of the different stages of its life-cycle), combined with scouting, so that management actions are properly timed. Of course, getting good spray coverage on fruit is also critical, which can be a challenge in itself, especially later in the season for cultivars like Concord.

In our area we see 2 to 4 generations of GBM per season, with the first flight of adult moths occurring around bloom time. Female moths from this first flight lay their eggs on very young grape clusters and the resultant larvae feed within the cluster (the berries are too small for them to get inside). Except in very high pressure, high-risk situations, there is negligible impact of this first generation of larvae. They complete development and pupate and emerge as adults sometime in mid-summer (second flight) and initiate the next generation. At this time, the female moth lays her eggs on green berries. Within a relatively short time after the egg hatches, the larva must burrow its way into the berry where it is well protected from insecticides. **Hence, this is why timing insecticide treatment of GBM to the egg and young larval stage is critical.** Fortunately, we have a simple, temperature-driven model to help forecast the timing of GBM flights and egg-laying available via a web-based system (Network for Environment and Weather Applications) found at the following web site (<u>http://newa.cornell.edu/</u> and look under pest forecasts, grapes, grape berry moth).

To use the model, you need to provide a starting point to begin accumulating degreedays. We have found bloom date of the wild grape V. riparia is a pretty good indicator or biofix. The program asks that you provide a date for 50% bloom time of V. riparia. For my area around Geneva, NY, we observe bloom of wild grape from late May (it was 26 May in 2015) to early June. The model actually does a pretty good job of estimating bloom date of wild grape. Last year it estimated it as May 28 for Geneva. Based on the biofix, the model accumulates degree days using the nearest NEWA weather station (you choose the weather station on the web site; several new weather stations in New York and surrounding states have been added to the system recently). At any given date, the model will provide the degree-day accumulations from the biofix, a forecast of accumulation over the next several days, and pest management advice based on current accumulations. For example, as accumulation gets close to 810 degree days (the estimated degree days required to develop from an egg to an egg-laying female moth), the program notes that this is approaching the peak of the second GBM flight and you are advised to apply an insecticide at near 810 for a high risk site and to scout for damage for low or intermediate risk sites. The NEWA forecast makes a distinction between insecticides that need to be consumed (e.g. Altacor [chlorantraniliprole], Belt [flubendiamide], Intrepid [methoxyfenozide] (not allowed in NY on grapes)) where the timing should be close to 810 degree days and those that work mostly through contact (e.g. Brigade, Danitol, Baythroid, Sevin) where timing should be between 810 and 850. In 2015 we reached 810 degree days in the Geneva area on around July 8.

Once degree-day accumulations get much beyond 900 most of the larvae are protected from insecticides and the next opportunity will be during the third flight. The model can be used to predict the timing of this third flight, estimated at 810 degree-days after the predicted second flight (1620 degree-days after the biofix). In 2015 in Geneva this occurred around August 12. Grape berry moth often has additional flights, especially in the last 10 years. The phenology model becomes less useful as a tool to time insecticide sprays for these later generations because the flight period becomes increasingly extended. Therefore, for late season control for high risk vineyards in warm growing seasons with high populations, we recommend applying insecticide control on a 10 day interval between mid-August and mid-September, after which egglaying should be mostly over. I wanted to briefly mention scouting for GBM damage. It's important for both intermediate and high risk vineyards for the second and third generations to scout for damage. The timing of scouting should be just prior to predicted peak flight and initiation of egg-laying (810 degree-days after biofix and 1620 degree-days after biofix). If it were easy to see GBM eggs, then the scouting could be helpful for timing insecticide treatments. However, it is very difficult to scout for eggs. Therefore, the purpose of the scouting is to get a handle on potential damage levels and whether you are exceeding economic thresholds. For Concord grapes, if the percent of clusters that show some GBM damage to berries is <6% at second flight and <15% at third flight, then a treatment is not recommended. These levels can be used as a guide for wine grapes. However, for high value vinifera cultivars, especially cultivars with tight clusters prone to fruit rots, the thresholds probably should be lower.

There are several options available for chemical control of GBM. See the guidelines for a full listing. The most commonly used products are the pyrethroids (Danitol, Brigade (including several generic products with same active ingredient), Baythroid, Mustang Maxx). Pyrethroids are broad-spectrum and will kill a number of other insect pests, as well as, beneficial insects. Leverage and Brigadier both include a pyrethroid that provides control of GBM and a neonicotinoid that provides good control of sucking insects like leafhoppers (see below). Imidan is also an effective broad-spectrum material but it is not quite as effective against leafhoppers as the pyrethroids. Moreover, the label for Imidan has a 14 day REI, which makes its use problematic. Another broad-spectrum insecticide, Sevin (carbaryl), is labeled for GBM and in the past, was commonly used. However, there has been some evidence of control failures with Sevin in the Lake Erie area due to resistance.

There are some additional, more narrow-spectrum, materials registered for use against GBM. Dipel and Biobit are organic options that have been around for a number of years. The toxin produced by the *Bacillis thuringiensis* (Bt) bacteria is specific to Lepidoptera. We have found that 2 applications of Bt per GBM generation improves efficacy. Use sufficient water to achieve good coverage of fruit since the larvae must consume the Bt as they enter the berry for it to be effective. Good coverage is an issue for all the GBM materials. Another selective material from Dow AgroSciences, Delegate, has been effective in our trials. The insect growth regulator Intrepid, also from Dow, has an EPA label for use on grapes and is available in Pennsylvania and most other states and has proven quite effective in trials in NY, Michigan and Pennsylvania. Intrepid is a selective material active against the larvae and eggs of many species of Lepidoptera including GBM. Intrepid has fairly long residual activity and is an excellent choice for the second generation treatment in July as it may provide some control of the overlapping third generation as well. Intrepid is not allowed for use on grapes in NY. Finally, several new anthranilic diamide insecticides have been labeled for use on grapes (but not allowed on Long Island) in the last several years (Belt SC, Altacor WG, Voliam Flexi WG [chlorantraniliprole + thiamethoxam], Tourismo SC [flubendiamide + buporfezin]). These materials are pretty selective for Lepidoptera such as grape berry moth and are reported to have pretty good residual activity. Altacor is also labeled for use against Japanese beetle. Similar to Intrepid, Delegate, and Bt, they work best when ingested by

the first instar (recently hatched) larvae as they try to move into the fruit.

Grape Leafhoppers. There is actually a suite of leafhoppers that feed on grapes. The Eastern grape leafhopper *Erythroneura comes* (pale white in summer) mainly feeds on native cultivars like Concord (see fact sheet at

http://nysipm.cornell.edu/factsheets/grapes/pests/glh/glh.asp) while several additional species feed on *V. vinifera* and hybrids including *E. bistrata/vitifex*, *E. vitis*, *E. vulnerata*, and *E. tricinta*. All these Erythroneura leafhoppers have similar life-cycles. They overwinter as adults and become active as temperatures warm up in the spring. They

move on to grapes after budbreak, mate and begin laying eggs around bloom. There is one full generation during the summer and a partial second. In warm years there is a potential for a nearly full second generation of nymphs and adults. Both nymphs and adults cause similar damage; removal of leaf cell contents using sucking mouthparts causing white stippling (Fig 8). Hence, moderate densities can reduce

photosynthesis, ripening and yields. Severity of damage is increased in dry years, assuming irrigation is not available.

Sampling for leafhoppers corresponds to sampling for grape berry moth. At the immediate post bloom period sucker shoots should be examined for evidence of stippling (white dots on leaves caused by leafhopper feeding). If you see stippling throughout the vineyard block an insecticide treatment is recommended. Note that for vineyards at high risk of GBM damage, you may already be applying an insecticide at this time (10 day postbloom). If you use a broad-spectrum material such as Danitol you will also control leafhoppers. The next sampling period for leafhoppers is mid July and focuses on abundance of first generation nymphs. Check leaves at the basal part of shoots (leaves 3 through 7) for leafhopper nymphs or damage, on multiple shoots and multiple vines located in the exterior and interior of the vineyard. Use a threshold of 5 nymphs per leaf. The third time for sampling for leafhoppers should occur in late August. This focuses on nymphs of the second generation. Follow a similar sampling protocol as used at the end of July, using a threshold of 10 nymphs per leaf. Note if you have made previous applications of insecticides for leafhopper (or broad-spectrum insecticide for GBM) it is very unlikely that it will be necessary to treat for leafhoppers in late August. If you do not observe much stippling it is not necessary to more carefully sample for leafhopper nymphs.

Dr. Tim Martinson developed a modified approach to monitoring grape leafhopper based on the presence or absence of a certain amount of stippling of leaves (as depicted in a photograph on the scouting form) as the key to determining whether a leaf was "damaged" by leafhopper. His work showed that if you did the scouting in July while scouting for GBM you would head off any problems. At least in Concord we have not seen where it has been a problem late in the season if it was not above threshold in July.

The link to the scouting form is

<u>http://nysipm.cornell.edu/publications/grapeman/files/hpprform.pdf</u>. This could be used for those growers who do not want to count nymphs.

There are several choices of pesticides to use against leafhoppers. Sevin, or other carbaryl products, has been a standard for many years and is still effective except in isolated pockets of Concord and other native grapes around the Finger Lakes where we have observed control failures suggesting emergence of resistance. There are many effective alternatives to Sevin (see guidelines).

Potato Leafhopper. The potato leafhopper is quite distinct from grape leafhoppers

discussed above. One big difference is that potato leafhopper originates each year from the southeastern US (it can not successfully overwinter in upstate NY or PA) while grape leafhoppers are year round residents to our area. The overwintered, winged adults ride north on warm fronts and usually arrive in our area sometime after bloom. When and where they arrive is not very predictable and some years are worse than others. Generally, though, we begin seeing signs of damage in early part of June. Potato

leafhopper tends to arrive on Long Island before the Finger Lakes or Lake Erie regions. Vineyards adjacent to alfalfa sometimes get an infestation of potato leafhopper right after the alfalfa is mowed. The adult potato leafhopper is iridescent green and wedge-shaped while the nymph is usually green and moves sideways in a unique crab-like manner when disturbed. Instead of feeding on cell contents of leaves like grape leafhoppers, potato leafhopper adults and nymphs use their sucking mouthparts to tap into the phloem vessels (the tubes used by plants to transport products of photosynthesis) of a number of different species of plants including grapes. In the process of feeding, they introduce saliva into the plant that causes, to varying degrees, distorted leaf and shoot development (Fig. 9). Some cultivars of vinifera grapes seem particularly sensitive as does the French-American hybrid Cayuga White, but Labrusca cultivars also show symptoms. Feeding symptoms in grapes include leaves with yellow margins (more reddish for red Vinifera grapes) that cup downward. Often these symptoms are noticed before the leafhoppers themselves.

Potato leafhopper is a sporadic pest, although it can be serious in some places and some years. We currently do not have good estimates for an economic threshold. We do know that shoots will recover from feeding damage once the leafhoppers are removed. Several insecticides are registered for its control in grapes including Sevin, Danitol, Leverage, Assail, Admire Pro, Actara (not for use on Long Island), and Applaud (not for use on Long Island). *Note that products containing imidacloprid are considered restricted use pesticides in NY (not PA)*. Potato leafhopper is fairly mobile and it may require several

treatments over the season as new infestations occur.

Grape Phylloxera. Grape phylloxera is an aphid-like insect with a complex lifecycle that causes galls on either roots or leaves. Leaf galls are in the shape of pouches or invaginations and can contain several adults and hundreds of eggs or immature stages (Fig. 10). Root galls are swellings on the root, sometimes showing a hook shape where the phylloxera feed at the elbow of the hook. At high densities, leaf galls can cause reduced photosynthesis. Root galls likely reduce root growth, the uptake of nutrients and water, and can create sites for invasion of pathogenic fungi. There is a wide range in susceptibility of grape varieties to both gall types. Labrusca-type grapes and vinifera grapes tend not to get leaf galls. Some hybrid grapes, such as Baco Noir,

Fig 10. A single grape phylloxera leaf gall, with the side of the gall opened to show adult female and many yellowish eggs. Photo by J. Ogrodnick.

Seyval, and Aurora, can become heavily infested with leaf galls. Labrusca grapes will get root galls but these tend to be on smaller diameter, non-woody roots that may reduce vine vigor in some cases, but are not lethal. The roots of vinifera grapes are very susceptible to the root-form of phylloxera, including galls on larger, woody roots that can cause significant injury and even vine death. Indeed, most vinifera grapes grown in the eastern US are grown on phylloxera-resistant rootstock and this is the primary method for managing the root-form of phylloxera.

Motivated by the difficulties associated with needing to hill up around grafted vines each winter to protect some buds of the scion in the case of a severe winter, there has been some recent interest in growing vinifera vines on their own roots. Root-form phylloxera throws a potential monkey wrench to this strategy. We have been asking, therefore, whether we can manage root-form phylloxera well enough with insecticides to allow the use of own rooted vinifera vines in some circumstances. We have been looking at this issue in two ways. One is conducting insecticide efficacy trials. To date we have found that both Movento applied to foliage and the insecticide Admire Pro applied through a drip system or as a drench have been fairly effective in reducing galling on the roots of V. *vinfera* and Concord (only Movento tested) vines. Our second approach has been to study the potential of growing own-rooted vinifera (hence, not necessary to hill up) by using insecticides (Admire Pro) to mitigate negative effects of root form phylloxera. We now have several years' worth of data. Own-rooted vines when treated with insecticide had at least as much live periderm at the end of the five-year study as grafted vines while untreated own-rooted vines had significantly less periderm. Yield was slightly larger for vines treated with Admire Pro regardless of whether they were grafted or not. Lowest yields were found on control vines. Our results should be interpreted with caution. It does appear, however, that at least some of the negative effects associated with growing ownrooted vines can be mitigated over the short-term through the use of Admire Pro insecticide, at least at one site in New York. Although we did not test it in this study, I expect we would get similar results using Movento instead of Admire Pro. There are a number of good reasons to use rootstock with vinifera and some hybrid grapes, resistance to grape phylloxera being one of them. And the rootstocks we have been using in New York have worked very well and maintained resistance to grape phylloxera.

There are a couple of insecticides labeled for the control of leaf-form phylloxera, although we do not have a well-defined treatment threshold at this time. The neonicotinoid Assail (acetamiprid) and the pyrethroid Danitol (fenpropathrin) are labeled for the leaf-form of grape phylloxera as is the systemic insecticide Movento. Soil applied Admire Pro is also systemic to the foliage and therefore will provide control of leaf-form phylloxera as well as some other sucking insects such as leafhoppers. Similarly, the neonicotinoid Platinum (cannot use on Long Island) is also labeled against grape phylloxera. Leaf-galls first appear at low densities on the third or fourth leaf, probably originating from overwintered eggs on canes. The crawlers from these first generation galls disperse out to shoot tips and initiate more galls around the end of June or beginning of July. These second generation galls tend to be more noticeable to growers.

As noted above, imidacloprid applied through the soil (e.g. Admire Pro) is labeled for the grape phylloxera as is Platinum and can provide some control, especially when applied through a drip system. Movento, applied as a foliar spray, has also shown some reasonably good efficacy on root-form phylloxera in our trials both with V. vinifera vines, but also with Concord. Recall that Concord and other native grapes are moderately susceptible to root galling phylloxera. In a study conducted at CLEREL over the past several years, mature Concord vines at CLEREL were either treated twice with Movento (plus the adjuvant LI 700) or only with LI 700. In each of the years we found more phylloxera galls on control vines than vines treated with Movento. We also found a significant 18% increase in yield in the third year for vines treated with Movento. We assume that the growth and yield increases are due to the reduced number of phylloxera galls on roots, but other factors could be involved. For example, Movento is also known to negatively affect nematodes. Overall, our data indicate some benefit to using Movento on native grapes. There are a number of questions remaining. How often does Movento need to be applied to maintain benefits? Can rates or number of applications be reduced while maintaining benefits? Will young vines benefit more or less from Movento compared to mature vines? What are the economics involved? To what extent will some of our hybrid grapes grown on their own roots benefit from Movento?

Grape Rootworm

Grape rootworm was a key pest of grapes in NY and surrounding areas in the early 1900s. Since the sixties, broad-spectrum insecticides targeting grape berry moth greatly reduced the impact of grape rootworm. However, with the use of more selective materials and less use of insecticide

overall in recent years, growers are observing more evidence of this pest, especially in the Lake Erie Region, but also in the Finger Lakes. Grape rootworm is a beetle in the Family Chrysomelidae (flea beetle family). The adult (Fig 11) feeds on leaf material, creating

characteristic chain like feeding damage (Fig 12). This damage is not economically significant. The adults emerge over the middle part of the season, starting around bloom time. After an initial bout of leaf feeding, they mate and the females lay clusters of eggs on older canes, often under loose bark. The eggs hatch and the larvae drop to the ground where they work their way into the soil to find fine grape roots to feed on. Feeding damage by

Fig 12. Leaf feeding damage by adult larger larvae cause reduced vine growth grape rootworm. and vigor, increased vulnerability to stress, and reduced yields.

There are five different insecticides labeled to control grape rootworm: Sevin, Sniper (2ee), Danitol 2.4 EC (2ee), Leverage 360 (2ee), and Admire Pro (2ee). Even though the adult stage does not cause significant damage to vines, it is the target of the insecticides to prevent egg laying and larval infestation. Adult female grape rootworm require a week or two of leaf feeding (pre-oviposition period) before they start to lay eggs. Hence, knowing when adults have emerged from the ground is critical to successful chemical control.

Tim Weigle, NYS IPM Program, and I have initiated a new project to better characterize the timing of emergence, determine degree-day estimates for first and peak abundance, and compare the efficacy of different timings for insecticide treatments. Specifically, we want to determine if use of back to back sprays, starting at first detection of adults, provides significantly better control of damage than spraying once either at the start or in the middle time period of adult emergence. In 2015 we started seeing adults in the Lake Erie region around or shortly after bloom (about 600 degree days). In terms of adult counts, it appears one, well-timed insecticide was sufficient to greatly reduce adult populations, although we need to repeat this. Also, in 2016 we will start getting data on the impact of insecticide treatment on vine vigor, working with Dr. Terry Bates. In our study we also began looking at the use of entomopathogenic nematodes against grape rootworm larvae using potted vines to see if this is a viable biological control option. We have run into a couple of problems with the experiment so it's still an open question. As we wait for more results, in general, we recommend scouting for adult feeding damage around bloom for evidence of adult activity. Also, continue to follow email alerts from the regional grape programs.

Spider Mites. There are two species of spider mites that attack grapes in the Eastern US; two-spotted spider mite (TSSM) and European red mite (ERM), but ERM typically is the more common. It is important to know the difference between the two species since some

miticides are more effective against one than the other. Problems with spider mites tend to be more serious in hot and dry years.

Fig. 13. Highly magnified. Photo by J. Ogrodnick.

An important difference between the two spider mite species is that ERM overwinters on grapes as eggs in bark crevices of older wood while TSSM overwinters as adult females, probably in ground cover. As the name indicates, ERM is reddish in color and lays red eggs (Fig. 13). Adult female TSSM tend to have large black spots on the top of the abdomen but this is pretty variable. TSSM eggs are clear to opaque. TSSM tends to stay on the bottom side of leaves and produces obvious webbing while ERM can be found on either side of the leaf and does not produce much webbing. Both

species have the capacity to go through a number of generations during the season. However, we typically do not see significant populations and damage until mid to late summer. This is especially true of TSSM since they do not start off on the vine.

Because of their small size, it is often difficult to know if you have mites. Foliar symptoms (bronzing of leaves, see Fig 14) are one clue, although if you have wide spread, obvious symptoms then economic damage may already be occurring. The working threshold for spider mites (TSSM and ERM combined) in our area is 7 to 10 mites per leaf, although this will vary depending on health of the vineyard, crop load, value of the grape, etc. In summer, I suggest sampling at least 50 mid-shoot leaves from both the edge and the interior (25 leaves each) of a vineyard block, examining both sides of the leaf. A hand lens

Fig. 14. Riesling leaves with and without ERM feeding damage.

will be necessary to see the mites for most people. Even with a hand lens, it is challenging to count the mites. Thus, we recommend estimating the proportion of leaves infested with mites and use something like 50% infested as a treatment threshold. A leaf is considered infested if it has one or more spider mites. Remember to keep rough track of which species is most common.

There are several chemical options available for mite control in New York and Pennsylvania: Vendex [fenbutatin-oxide], Agri-Mek and several generics [abamectin], Nexter [pyridaben] (not on Long Island), Acramite [bifenazate], JMS Stylet Oil [aliphatic petroleum distillate], Zeal Miticide1 [etoxazole], Onager or Savey [hexythiazox], Danitol, Portal and the newly labeled miticide called Nealta noted at the start of this newsletter article. Read labels carefully. JMS Stylet Oil is not compatible with a number of other products including Captan, Vendex, and sulfur. Also, although Stylet Oil can help with mite problems, it is not likely to provide complete control in problem vineyards. Nexter is very effective against ERM but higher rates should be used for TSSM. It also provides some partial control of leafhoppers. Agri-Mek currently has TSSM on the label but not ERM, although in apples both species are on the label. Acramite includes both TSSM and ERM, although it calls for higher rates for ERM. The new label for Zeal miticide 1 includes both ERM and TSSM in NY whereas the old label only had TSSM. You need a 2(ee) recommendation, which is readily available, for use against ERM with older material. Since Zeal miticide 1 affects eggs and immatures, it is advised to apply before populations reach damaging levels to give the material time to work. Similar advice can be applied to Onager, Savey and Portal. Danitol and Brigade (two-spotted only) are broad-spectrum insecticides that also have fairly good miticidal activity. Pyrethroids are hard on beneficial mites, however.

Spider mites are often thought of as a secondary pest. In other words, something must happen in the vineyard that disrupts their natural control by predators, particularly predatory mites, before their populations can increase to damaging levels. Several broadspectrum insecticides used in grapes, including Danitol, Brigade, Brigadier, Leverage, Baythroid and possibly Sevin can suppress predatory mites. Since Danitol and Brigade have miticidal activity they would not be expected to flare spider mites in the short term. However, in the past, spider mites have been quick to develop resistance to frequent use of pyrethoids. This may or may not happen but it is worth keeping in mind. One of the first things to watch out for is initial good suppression of mites followed by a resurgence indicating the spider mites recovered more quickly than the predatory mites. The other miticides (Vendex, Onager, Savey, Zeal, Acramite, Nealta, and Nexter) are generally pretty easy on natural enemies, although at high rates Nexter can negatively affect predatory mites. Overall, paying attention to conserving predatory mites can pay economic dividends since miticides are quite expensive.

Japanese Beetle. By and large, Japanese beetle populations have not been as bad as they were a few years ago. The adults (1/2 inch body, metallic green in color, Fig 15) seem to have a fondness for grape foliage, but also feed on a number of other plant species. Although the adults have broad diets, the larvae (Fig 16) feed principally on the roots of grasses. Hence, we often find the most significant problems with

adult Japanese beetles in areas surrounded by an abundance of turf. The fact that most vineyards have sod row middles may exacerbate problems with adults. Indeed, we

Fig. 16; Mature Japanese beetle larva (grub). Photo: S. Hesler.

(myself, Tim Weigle, and Elson Shields) have been investigating the use of entomopathogenic nematodes (soil inhabiting, insect feeding) against Japanese beetle larvae in sod row middles as a way to reduce adult Japanese beetle populations and damage. Establishment of beneficial nematodes appears good but the results are not very clear in terms of reducing adult feeding damage.

The adults emerge from the soil in mid-summer and begin feeding and then mating and egg-laying. The feeding damage caused by adults can be quite extensive, perhaps exceeding 10 or 20% of the foliage. Fortunately, grapes are fairly tolerant of this

type of feeding at this time of the season. The exact amount is hard to nail down but it seems that up to 15 or 20% leaf damage has little impact. Note, though, that the actual impact of leaf feeding will depend on a number of factors including health and size of the vine and the cultivar. Moreover, if it is a high value cultivar then the economic injury level will be lower compared to a lower value cultivar. Young vines may be particularly vulnerable in that they have fewer reserves to draw upon to recover from damage. You should make a special effort to regularly monitor vines inside growth tubes for Japanese beetles and apply insecticides directly into the tubes if treatment is warranted. Grape cultivars do seem to vary in resistance to Japanese beetle. Thick leaved native cultivars are the most resistant followed by hybrids and then *V. vinifera*.

There are several insecticides labeled for use against Japanese beetles on grapevines. These all are roughly similar in efficacy but they do vary in impact of beneficial arthropods like predatory mites. I mention this because multiple applications of something like Sevin could depress predatory mite populations and promote spider mite outbreaks. Also keep in mind that the adults are very mobile and can re-colonize a vineyard block after being treated with an insecticide. Regular monitoring of the situation is recommended.

Spotted Wing Drosophila.

Spotted Wing Drosophila (SWD) (also known as *Drosphila suzukii*, Fig 17) is a new invasive fruit fly that looks superficially like your every day vinegar fly *Drosophila melanogaster* of genetics fame. The name comes from the spots at the end of the wings in the male. Note the female SWD lacks these spots. Female vinegar flies typically lay eggs in damaged and/or overripe fruit. On the other hand, female SWD have very robust ovipositors and will lay their eggs in ripe, marketable fruit leading to damage and

contamination with maggots.

SWD first was detected in NY in 2011, and since then has caused wide spread damage to vulnerable fruit crops like blueberries and raspberries. Research by several of us in the eastern US indicates that SWD females will lay eggs in some thinner-skinned cultivars of grape but overall, SWD does not seem to be a major issue as a direct pest for most cultivars. We do have more concerns about its potential, along with other fruit flies, in causing and spreading sour rot. Collaborative research between my lab and Cornell University plant pathologist, Wayne Wilcox's, lab is under way to evaluate the role fruit flies have in sour rot and whether targeting fruit flies with insecticides near harvest can be beneficial. Preliminary results indicate in a bad sour rot year, like 2015, insecticides targeting fruit flies, with or without biocides targeting the pathogen, can reduce disease levels. Stay tuned for more details but it does seem clear that Drosophila fruit flies, in combination with damaged, ripe fruit of susceptible cultivars and suitable weather conditions, contributes to the problem. Our research should help us to identify under what conditions fruit is at risk of developing sour rot and which tactics are effective in managing the disease. For more information on SWD visit http://www.fruit.cornell.edu/spottedwing/. Adult SWD are susceptible to a number of different insecticides including organophosphates (e.g. malathion), pyrethroids (e.g. Mustang Max [zeta-cypermethrin]) and spinosad type insecticides (e.g. Delegate [spinetoram] or an organic alternative, Entrust [spinosad]). Since fruit flies are only a threat near harvest, insecticides with relatively short DTH restrictions are the most helpful.

Multicolored Asian Lady Beetle (MALB). MALB was introduced into the US from

Asia to help control aphid pests. It has spread to many areas in the southern and eastern US and into Ontario Canada and has generally been an effective biological control agent. However, it has the habit of moving into vineyards in the fall near harvest time. When disturbed, the adult MALB releases a defensive chemical out of its joints (methoxypyrazines) that helps it ward off enemies. Unfortunately, the defensive chemical has a nasty taste and offensive odor for people at very low detection levels that gets carried into the juice and wine. Relatively low densities of MALB (10 per grape lug) can cause off-flavors in juice and wine. MALB is sporadic both in where it shows up during a given year and from year to year. Vineyards in the Niagara Peninsula in Canada appear particularly vulnerable. Also,

Fig. 18. Multicolored Asian lady beetles congregating on grape cluster in fall. Photo: J. Kovack

vineyards adjacent to soybeans in a year when soybean aphid is abundant may be more

vulnerable. Pay attention to the crop updates of the regional grape extension programs as we get into harvest to see if and when MALB is turning up in vineyards. Then scout your vineyards before harvest. Late harvested varieties are usually the most vulnerable. After several years of not having major issues with MALB, in 2015 numerous growers of late maturing wine grapes experienced significant infestations of clusters. The economic injury level for Concord grapes has been established at about 6 beetles per 10 pounds of fruit by National Grape Cooperative. For wine grapes, something in the range of 5 beetles per 25 clusters could result in offflavors. There could be several different species of ladybugs in your vineyard but probably only MALB would be at high densities on the clusters. You can recognize MALB by the black markings directly behind the head that look like an M or W depending on which direction you look from. The color or number of spots is variable. The abundance of MALB appears to be closely tied to the abundance of soybean aphid, which tends to alternate between high and low years.

There are a few chemical approaches to managing MALB in New York: Danitol [fenropathrin], Mustang Max, Aza-Direct and Evergreen [natural pyrethrins]. To use Danitol in New York for this purpose, you need to have the 2(ee) label. However, a 21 days to harvest restriction limits its usefulness. Mustang Max, another pyrethroid, includes MALB on the grape label and only has a 1 DTH restriction. Aza-Direct, which is based on the active ingredient azadirachtin from the neem tree, appears to have a repellent effect on MALB, again based on trials by Roger Williams at Ohio State. Based on a trial a few years ago by Tim Weigle, Evergreen appears to have both toxic and repellent effects on MALB. Aza-Direct and Evergreen have no days to harvest restrictions. For Aza-Direct, pH in spray water should be 7 or less (optimum is 5.5 to 6.5). The neonicotinoid insecticide Venom [dinotefuran] has shown good efficacy against MALB (both toxic and repellent) in trials conducted by Rufus Isaacs at Michigan State University. It only has a 1 day to harvest restriction. Venom is labeled for use in PA but not NY. Recently a 2(ee) label expansion for Admire Pro has also been approved. Admire Pro has a zero day to harvest interval when applied to foliage. Imidacloprid has both toxic and repellent effects on MALB similar to Venom.

Bottom line comments

The bottom line message for insect and mite pests is to regularly monitor your grapes. There is no guarantee that a particular pest will show up in a particular year or at a particular site. Moreover, you typically have time to react using an eradicant if a pest does reach sufficient densities to cause economic damage. Knowledge of what is present will lead to better management decisions.

During the period after budbreak to bloom **plant bugs (banded grape bug and** *Lygocoris inconspicuous*) represent the greatest insect risk for yield loss. Most vineyard blocks escape serious damage from plant bugs most years but every year I find sites with significant numbers that managers don't know about. Monitor for the nymphs at about 10-inch stage, keying in on the flower buds. If you find more than one nymph per 10 clusters, consider an insecticide treatment such as Sevin or Danitol or Assail. Remember that only the nymph stage causes significant damage. Treatments close to bloom are probably too late to do much good since most nymphs have completed development and become adults. Other than plant bugs, there are relatively few insect pests between budbreak to bloom period that can cause significant harm. For those sites where **grape cane gallmaker** has become problematic, this is the time period where control should be applied. Also, sites with sandy soils may experience damaging populations of **rose chafer** at around bloom time. The light-brown adult beetles feed on flowers and young clusters and can reduce yields. **Grape rootworm** also comes out around bloom or a little after. Adult beetles cause characteristic chain like feeding damage on lower leaves. It's the larval stage that causes the significant injury, feeding on roots. We have been observing more evidence that this pest is becoming an issue for grape growers, especially in the Lake Erie Region, but also some in the Finger Lakes. Chemical control targets the adult stage.

Mid-summer to harvest is the time where insects and mites often create the most concern. On the top of the list is **grape berry moth**. Traditionally for high-risk sites we have recommended an insecticide during the postbloom period to kill first generation larvae. But except for super high-risk sites or high value varieties, our research indicates this postbloom spray is not useful. Focus should be on the second-generation and thirdgeneration larvae in mid-summer and late summer and in warm years, late summer/early fall damage from a combination of third and fourth generation larvae. Timing of insecticides is important. Insecticides target the egg and young larva before it penetrates the berry. **Check out the temperature-based phenology forecast model available online at <u>http://newa.cornell.edu/</u> (look under pest forecast models for grape berry moth). This model can help you better time the occurrence of grape berry moth flight activity for the second and third flights. It has not been as useful for timing late season GBM. In warm years and in high-risk sites, growers need to continue chemical control on a 10 to 14 day interval from mid-August to mid-September. Good coverage of the fruiting zone is essential.**

Two other pests are worth mentioning for the mid-summer period. One is conspicuous and you probably will be tempted to spray for it even if it does not make economic sense to do so because the damage looks bad. I am speaking of **Japanese beetle**. Granted, these guys can do a lot of feeding during July. But remember that for a healthy vineyard, especially a vigorous one, the vines can probably handle conservatively 15% foliar damage. If you do need to treat, be aware of the potential for some insecticides to flare spider mites. **Spider mite** is the second pest I wanted to mention. They are actually not very conspicuous and, as a consequence, growers may miss them. Be on the lookout for yellowing or bronzing leaves and generally low thrift during the hot days of late July and August.

Toward harvest keep an eye out for **multicolored asian lady beetle (MALB)**. This normally beneficial insect can become a pest at this time of year by congregating in the clusters at harvest. Its primarily been an issue for late harvested varieties. The adult beetle releases a noxious chemical when disturbed (such as by harvesting the fruit) and this can taint wine and juice. Their populations have been fairly low in recent years although in 2015 we did see some significant infestations, especially in areas where soybeans are also being grown. For late maturing cultivars it is essential that you monitor clusters for MALB close to harvest and take appropriate action if they are present. Keep an eye out for email alerts from your regional grape extension programs. The other late-season insect pests we have concerns about are fruit flies, both the invasive spotted wing drosophila and regular vinegar flies. Our concern centers on their role in spreading sour rot bacteria. In a year where weather conditions favor sour rot, our results indicate that an insecticide near harvest targeting fruit flies can help reduce incidence and severity of sour rot.

In summary, there is a seasonality to pests and checking the electronic updates from your regional grape extension programs is an excellent way to stay on top of what you should be on the look out for during the season. Generally speaking we have good chemical control options available for most arthropod pests if necessary. But be smart about using them. Pay attention to label restrictions and review recommendations in the pest management guidelines. Rotate among materials with different modes of action to reduce development of resistance. Be aware of consequences of your choice of pesticides on natural enemies. The cheapest material to apply on a per acre basis may not always result in the lowest cost because of unintended consequences and/or the need for repeated applications. Most important, only use pesticides or other control options when it makes economic sense to do so (monitor and apply economic thresholds where available). If you have questions, contact your regional extension office or you can also contact me at my office (315-787-2345) in Geneva or through email at gme1@cornell.edu.

FRAC Group U6 Labeled for Grapes & Cucurbits Highly Effective on Powdery Mildew No Cross-Resistance Protectant / Preventative Action

FRAC Group 3 Labeled for Grapes Controls Powdery Mildew & Black Rot Preventative + Curative Activity Highly Systemic

New High Quality Copper Excellent Mixing Characteristics Highly Active at Lower Rates Enhanced Copper Safety

Mite control on Grapes Knockdown and Residual

Dave Pieczarka 315.447.0560

Torino® is a registered trademark of Nippon Soda Company, LTD. EPA Reg No 8033-103-10163. Mettle® , Badge® X2 are registered trademarks of isagro USA. Mettle EPA Reg No 80289-8. Badge SC EPA Reg No 80289-3. Badge X2 80289-12. Nexter is a trademark of Nissan Chemical Industries. EPA Reg No 81880-4-10163. Always read and follow label directions

ERO Loaf Cuttor

BRAUN Grape Hoe

BINGER Loaf Romovor LIPCO Sprayor

Niagara on the Lake, ON LOS 1J0 / Canada Phone: (905) 468-5016 e-mail: info@vineyardmachines.com www.vineyardmachines.com

WINERY BENCHMARKS

TAKE YOUR BUSINESS TO THE NEXT LEVEL.

The Winery Benchmarks program is a unique way to see how your business stacks up against your industry peers.

Winery operators use our benchmarking to:

- Identify strengths and weaknesses
- Find full market strategies
- Create high quality marketing
- · Find new ways to control costs

Interested in participating? Call 800.929.7102

FARM CREDIT EAST

LAKEVIEW VINEYARD EQUIPMENT INC.

LAKEVIEW PROVIDES YOU WITH THE PICK OF THE CROP

NEW AND USED GRAPE HARVESTERS, WIND MACHINES, LEAF REMOVERS, VINEYARD SPRAYERS, TRIMMERS, SHREDDERS, AND PRE-PRUNERS. VISIT OUR WEBSITE TO SEE OUR CURRENT INVENTORY

TEL: 905.646.8085 | TF: 1.866.677.4717 | lakeviewvineyardequipment.com 40 Lakeshore Road, R.R. #5 | Niagara-on-the-Lake, ON | LOS 1J0

Maximize grapes and minimize mites.

Grow Smart™ with Nealta® miticide.

With its unique site of action, Nealta miticide gives you highly effective control of Twospotted spider mites and European red mites in your vineyards. It controls mites at all life stages, is safe on beneficials and gives you a resistance management tool that works. For more, contact your local BASF Authorized Representative.

agproducts.basf.us/products/nealta-miticide

Cornell University Cooperative Extension Finger Lakes Grape Program

The information, including any advice or recommendations, contained herein is base upon the research and experience of Cornell Cooperative Extension personnel. While this information constitutes the best judgment/opinion of such personnel at the time issued, neither Cornell Cooperative Extension nor any representative thereof makes any representation or warrantee, express or implied, of any particular result or application of such information, or regarding any product. Users of any product are encouraged to read and follow product-labeling instructions and check with the manufacturer or supplier for updated information. Nothing contained in this information should be interpreted as an endorsement expressed or implied of any particular product.

Become a fan of the Finger Lakes Grape Program on Facebook, or follow us on Twitter (@cceflgp).

Visit our website, http://flgp.cce.cornell.edu, for more information on grape growing, pest management, educational

events and more.

FINGER LAKES VINEYARD NOTES

Is published by Cornell Cooperative Extension Finger lakes Grape Program Ontario, Schuyler, Seneca, Steuben, Wayne and Yates Counties 417 Liberty Street, Penn Yan, NY 14527

Comments may be directed to

Hans Walter-Peterson

Viticulture Extension Specialist Finger Lakes Grape Program Cornell Cooperative Extension Cornell University College of Agriculture and Life Sciences 417 Liberty Street, Suite 1024 Penn Yan, NY 14527 Office: (315) 536-5134 Cell: (315) 521-8789 Web: http://flgp.cce.cornell.edu/ Find us on Social Media: Facebook: https://www.facebook.com/CCEFLGP YouTube: http://www.youtube.com/cceflgp Twitter: http://twitter.com/cceflgp

"Cornell Cooperative Extension provides equal program and employment opportunities"