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A fundamental achievement in the theory of matroids is the Topological Rep-

resentation Theorem which says that every oriented matroid arises from an ar-

rangement of pseudospheres. In 2003 Swartz extended this result to arbitrary

matroids by using homotopy spheres [14]. Later, Anderson [1] and Engstrom [7]

also constructed topological representations of matroids by homotopy sphere

arrangements. Inspired by Swartz’s work, this thesis will show an explicit fully

partitioned homotopy sphere d-arrangement S that is a CW-complex whose in-

tersection lattice is the geometric lattice of the corresponding matroid for ma-

troids of rank ≤ 4. Moreover S has a d-sphere in it that is a regular CW-complex.

This will allows us to look at how the flag f -vector formula of Billera, Ehrenborg

and Readdy (BER) for oriented matroids applies to arbitrary matroids.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

A fundamental achievement in the theory of matroids is the Topological Rep-

resentation Theorem [8], which says that every oriented matroid arises from an

arrangement of pseudospheres. Until 2003, there were no similar results avail-

able for ordinary matroids. In 2003 Swartz extended this Topological Repre-

sentation Theorem to general matroids by relaxing the requirement of homeo-

morphism to homotopy equivalence [14, Theorem 6.1]. However, Swartz didn’t

propose a specific algorithm to construct the homotopy sphere arrangements of

matroids. Moreover, although the homotopy sphere arrangements of Swartz are

CW-complexes, they may or may not be regular CW-complexes. Some enumer-

ative properties of cell complexes do require a regular CW-complex. For exam-

ple, Bayer and Sturmfels [3] showed that the geometric lattice of the underlying

matroid of an oriented matroid completely determines the flag f -vectors of the

associated pseudosphere arrangement. Billera, Ehrenborg, Readdy (BER) [4,

Theorem 3.1] computed the flag f -vectors of the face poset of any oriented ma-

troid in terms of the flag f -vectors of the geometric lattice. We will call this the

BER formula. The topological representations of oriented matroids are always

regular CW-complexes. Is there an analog of the BER formula for homotopy

sphere arrangements of matroids?

After Swartz’ work, Anderson and Engstrom each gave a different topolog-

ical representation of matroids by homotopy sphere arrangements. Anderson’s

construction [1] is elegant in that it gives a simplicial complex, a stronger re-
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striction than being a regular CW-complex. However her simplicial complex

may have much greater dimension than expected. Engstrom’s construction [7]

via diagrams of spaces gives the correct dimension. However, it may provide

extra cells. This thesis gives an explicit fully partitioned homotopy sphere d-

arrangement S that is a CW-complex whose intersection lattice is the geometric

lattice of the corresponding matroid for rank ≤ 4. Moreover S has a d-sphere

in it that is a regular CW-complex. Our work has no problems in matching the

dimensions of the arrangements, nor in the cell numbers that are completely

determined by Zaslavsky’s enumerative theory [15] or Las Vergnas’s formula

[11], either of which works for pseudosphere arrangements. In Chapter 3 we

propose how to extend the algorithm to all matroids.

The next chapter deals with the enumerative problems. The cd-index is an-

other way to convey the information that flag f -vectors carry. The cd-index is

only defined for Eulerian posets [2]. A graded poset is called Eulerian if every

nontrivial interval has the same number of elements of even rank as of odd rank.

The cd-index gives a compact way of presenting the flag f -vector data since it re-

moves the linear redundancies in the flag f -vectors inherent in Eulerian posets.

For example, cd-index of a rank n Eulerian poset has Fn entries (where Fn is the

nth Fibonacci number) while the flag f -vector has 2n entries. Another interest-

ing fact is the non-negativity of the cd-index of Gorenstein* complexes, which

Stanley conjectured in 1994 [13] and was later proved by Karu [10].

The face poset of the pseudosphere arrangement associated to an oriented

matroid is an Eulerian poset. So we can define the cd-index of an oriented ma-

troid as the cd-index of this face poset. Bayer and Sturmfels [3] showed the cd-

index only depends on the geometric lattice of the underlying matroid. Billera,
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Ehrenborg, and Readdy [4, Theorem 3.1] found an explicit formula of the cd-

index of any oriented matroid in terms of flag f -vectors of the geometric lattice.

However, when it comes to ordinary matroids, it is not clear how to interpret

the formula in [4, Theorem 3.1]. It was asked by Swartz if it can still hold as a

bound for the cd-index of some poset related to the ordinary matroid. In this

thesis, we constructed a similar formula for matroids, and prove it for matroids

of ranks less than 4. We also showed that if the equality of the BER formula

holds, then the matroid must be orientable.

The following sections of this chapter contains background knowledge and

necessary information on matroids, geometric lattices, and broken circuits.

Chapter 2 talks about different types of arrangements.

1.2 Matroids

In this section we give the basic definitions from matroid theory that we need.

It is devoted to providing the minimal background knowledge to understand

this thesis. A matroid is a combinatorial structure that generalizes the notion of

linear independence in vector spaces. Formally, a matroid M is an ordered pair

(E,I) consisting of a finite set E and a collection I of subsets of I having the

following three properties:

1. ∅ ∈ I.

2. If I′ ⊆ I ⊆ E, and I ∈ I, then I′ ∈ I.

3. If I1, I2 ∈ I, and |I1| < |I2|, then there is an element e of I2 − I1 such that

I1 ∪ e ∈ I.
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In order, each of the properties says the following: the empty set is independent;

every subset of an independent set is independent; we can augment the smaller

of a pair of independent sets with different cardinalities. A finite set of vectors

in a vector space with the usual independent sets is an example of a matroid.

A minimal dependent set in an arbitrary matroid M is called a circuit of M

and we shall denote the set of circuits of M by C or C(M). We call a maximal

independent set in M a basis or a base of M. The set of all bases of M is B or

B(M). As in any vector space, the members of B all have the same cardinality

[12, Lemma 1.2.4]. Suppose X ⊆ E. Let I|X be {I ⊆ X | I ∈ I}. Then it is easy to

see that (X, I|X) is also a matroid. That matroid is called the restriction of M to X,

denoted by M|X. Since all the bases of M|X are equicardinal, we let the function

ρ : 2E → N be the cardinality of a basis B of M|X, and call it the rank of X or ρ(X).

When X = M, ρ(M) measures the rank of the matroid. The rank function has the

following properties: [12]

1. ρ(X) ≥ 0.

2. ρ(X) ≤ |X|.

3. ρ(X ∪ Y) + ρ(X ∩ Y) ≤ ρ(X) + ρ(Y), i.e., the rank is a submodular function.

Let the closure function Cl : 2E → 2E, for all X ⊆ E be defined by

Cl(X) = {e ∈ E | ρ(X ∪ e) = ρ(X)}.

For any subset X ⊆ E, if Cl(X) = X, it is called a flat of M. We say that X spans a

subset Y of E(M) if Y ⊆ Cl(X). There are different cryptomorphic characteriza-

tions of matroids, for example, in terms of bases, circuits, flats, etc. Matroids are

frequently associated to hyperplane arrangements, matrices, and graphs.
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Many matroid ideas are derived from graph theory. Recall that a circuit of a

graph is a connected subgraph all of whose vertices have degree two.

Proposition 1.1 [12, Proposition 1.1.7] Let E be the set of edges of a graph G and C be

the set of edge sets of circuits of G. Then C is the set of circuits of a matroid on E.

We denote the matroid described in the above proposition by M(G).

1.3 Geometric Lattices

As mentioned earlier, for any matroid M of rank r, a maximal subset of a given

rank is called a flat. If a set {x1, . . . , xl} spans a flat X, we write X = (x1, . . . , xl)

or X = (x1 · · · xl). The flats of rank 1 are called atoms while the flats of rank

r− 1 are called coatoms. The flats of M, together with the inherited rank function

ρ(M), form a graded partially ordered set (or poset), under inclusion, denoted by

L(M). The meet of two elements is their intersection and their join is the closure

of their union. Thus we get a lattice from a given matroid; in fact, that lattice is a

geometric lattice as the following proposition shows. A geometric lattice is a finite

atomic semi-modular graded lattice [12]. A poset with least element 0̂ is called

atomic if every element other than 0̂ is the least upper bound of a set of atoms.

A semimodular lattice is a lattice that satisfies the following semimodular law:

a ∧ b <: a⇒ b <: a ∨ b

where a <: b means that b covers a, i.e. a < b and there is no element c such that

a < c < b.
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Proposition 1.2 [12] If M is matroid, then L(M) is a geometric lattice. Conversely,

suppose L is a geometric lattice. Let E be the atoms of L. For any A ⊆ E let
∨

A be the

poset join of all the atoms in A. Then I = {A ⊆ E: ρ(
∨

A) = |A|} are the independent

subsets of a matroid M such that L = L(M).

1.4 Broken Circuits

Geometric lattices are frequently considered in the realm of matroid theory be-

cause they are cryptomorphic to finite simple matroids, which are matroids

without loops (1-element circuits) or parallel elements (2-element circuits) [12].

Assume the ground set E = [n] = {1, 2, . . . , n} has the usual order. Depending on

the context, we denote the atoms of M by e1, e2, . . . , en or 1, 2, . . . , n. Let C be a

circuit of M. Deleting the minimal element of C gives a broken circuit. If a basis

B of M does not have a broken circuit as a subset, we call it a non-broken-circuit

basis, or nbc-basis. The broken-circuit complex BC(M) is the simplicial complex of

all subsets of [n] that do not contain a broken circuit. BC(M) is a pure, (r − 1)-

dimensional simplicial complex, and the facets of BC(M) are the nbc-bases of M

[5, Proposition 7.4.2]. Every facet of BC(M) contains 1, which makes the broken

circuit complex a cone.

Denote the set of nbc-bases as follows.

nbc(M) = {B is an nbc-basis of M}.

We call a set B0 an nbc-set if 1 ∈ B0 and B0 ( B for some B ∈ nbc(M). The

smallest nbc-set for any geometric lattice is {1}. Notice any nbc-set is always an

nbc-basis of the sub-lattice [0̂, z] for z = Cl(B0) and 1 ≤ z < 1̂.
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The dual of a matroid M is another matroid M∗ that has the same elements

as M and whose bases are the complements of the bases of M. We can also

approach the notion of nbc-bases in the following manner. Suppose B is a basis

of M, p ∈ B and q < B. Let c(B, q) denote the basic circuit, which is the unique

circuit in the set B∪ q. We have q ∈ c(B, q). Let M∗ be the dual matroid of M. We

call an element p ∈ B internally active if p = min c(E − B, p) in M∗. The set of all

internally active elements with respect to B is denoted by IA(B). Similarly, we

call an element q < B externally active if q = min c(B, q) in M, and call the set of all

externally active elements with respect to B, EA(B). We call the minimal element

in EA the minimal external activity of B, denoted by min EA or min EA(B). Thus

comes an equivalent definition of nbc-bases, those with no external activity.

nbc(M) = {B | EA(B) = ∅}.

Notice that 1 is always either internally active or externally active. A pointed

geometric lattice is a pair (L, e) where e is a specific atom of L. We let L/e denote

the sub-lattice that represents the upper interval [e, 1̂].

Here is an example.

Example 1 Let M(G) be the matroid given by the graph G as shown in Figure 1.1. We

list the 8 bases of M in lexicographic order, and indicate for each basis which elements

are internally or externally active in it.
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5

2

4

3

G

Figure 1.1:

Basis Internally Active Externally Active

{1, 2, 3} 1, 2, 3 -

{1, 2, 4} 1, 2 -

{1, 3, 4} 1 -

{1, 3, 5} 1, 3 -

{1, 4, 5} 1 3

{2, 3, 4} - 1

{2, 3, 5} 3 1

{2, 4, 5} - 1, 3

{1, 3, 4} is an nbc-basis. {1, 4} is an nbc-set because {1, 4} ⊆ {1, 3, 4}. {3, 4} is not an

nbc-set, but is an independent set.

1.5 Möbius Function

Let Int(L) denote the set of all closed intervals of a lattice L. A locally finite poset

is a poset whose intervals [x, y] are all finite. We now define the Möbius function

8



as follows.

Definition 1.3 Let L be a locally finite poset. The Möbius function of L, µ : Int(L)→ Z

is defined recursively by the conditions:

µ(X, X) = 1, for all x ∈ L,

µ(X,Y) = −
∑

X≤Z<Y

µ(X,Z), for all X < Y in L.

The characteristic polynomial of a geometric lattice L is defined by

p(L, t) =
∑
X∈L

µ(0̂, X)tρ(1̂)−ρ(X).

Proposition 1.4 Let L be a geometric lattice. The number of nbc-sets and nbc-bases of

L is 1
2 |p(L,−1))|.

Proof. See [6]. �

Example 2 Let M be the same matroid as in Example 1. The nbc-

bases of M are {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {1, 3, 5}. The nbc-sets of M are

{1, 2}, {1, 3}, {1, 4}, {1, 5}, {1}. On the other hand, we have

1
2
|p(L,−1)| =

1
2

(1 + 5 + 8 + 4) = 9.

The number of nbc-sets and nbc-bases of L matches 1
2 |p(L,−1))|.

9



CHAPTER 2

ARRANGEMENTS

2.1 Arrangements of Subspaces

We follow [16] closely in this section. An arrangement is a finite collection A =

{A1, . . . , Am} of closed subspaces of a topological space U such that A is closed

under intersection and for Ai, A j ∈ A and Ai ⊆ A j the inclusion map Ai ↪→ A j is

a cofibration. Let P be the poset (A,≤) where Ai ≤ A j if and only if A j ⊆ Ai. A

functor D : S → A from a small category S to an arbitrary category A is called

an S -diagram of objects in A. Any partially ordered set (P,≤) can be considered

a small category with arrows pointing downwards, i.e., p → q if and only if

p ≥ q. Note that the arrangement A gives rise to an intersection poset P of A.

Hence there is an associated P-diagram D = D(A) : (P,≤) → CW-Top. If D is a

P-diagram of spaces, then the space related to p ∈ P is denoted by Dp, and the

morphism corresponding to p ≥ q for p, q ∈ P is denoted by dpq. The union of

the arrangementA is the direct limit of its diagram of spaces. Provided that the

inclusion maps are all inclusion maps of cells in a finite CW complex and hence

are cofibrations, this limit is homotopy equivalent to the homotopy direct limit

‖D‖, defined by [16, Definition 1.3], i.e., D(A) ' ‖D‖. For any p ∈ P, let ∆(P<p)

be the order complex of the poset P<p = {q ∈ P: q < p}. We present the following

theorem from [16, Lemma 1.8].

Theorem 2.1 [16, Lemma 1.8] Let P be a poset with a unique maximal element 1̂, and

let D be a P-diagram so that there exist points cp ∈ Dp for all p < 1̂ such that dpq is
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homotopic to the constant map dpq : x 7→ cq ∈ Dq for all p > q. Then

‖D‖ '
∨
p∈P

(∆(P<p) ∗ Dp), (2.2)

where the wedge is formed by identifying cp ∈ ∆(P<p)∗Dp with the point p ∈ ∆(P<1̂)∗Dp,

for every p < 1̂.

2.2 Arrangements of Homotopy Spheres

A homotopy d-sphere is a d-dimensional CW-complex that is homotopy equiva-

lent to S d. Our homotopy spheres are not required to be manifolds. The empty

set is considered a (−1)-sphere. We define d-arrangements of homotopy spheres

as follows.

Definition 2.3 A d-arrangement of homotopy spheres consists of a finite d-

dimensional CW-complex S homotopy equivalent to the d-sphere and a finite set of

(d − 1)-dimensional subcomplexes A = {S 1, . . . , S n} of S, each of which is a homotopy

(d − 1)-sphere, satisfying

• every intersection of elements inA is a homotopy sphere,

• if X ' S d′ is an intersection in A, and X * S i, then X ∩ S i ' S d′−1, where '

denotes homotopy equivalence.

• there exists a fixed-point free involution of the arrangement; specifically there

exists a free involution ι of S such that if X is an intersection inA, ι : X → X.

Definition 2.4 LetA be an arrangement of homotopy spheres. The intersection lattice

of A is the intersection poset of the elements of A ordered by reverse inclusion, denoted

by L(A).
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Proposition 2.5 Suppose A is a d-arrangement of homotopy spheres. Then L(A) is a

geometric lattice with rank function ρ(X) = d − dim X.

Proof. See [14, Proposition 5.3].

Suppose X is a non-empty intersection inA, then the contractionA/X is the

arrangement with ambient space X and elements the intersections of the old

elements with X. L(A/X) is isomorphic to that of [X, 1̂]. The deletion A − S j

is the arrangement {S 1, . . . , Ŝ j, . . . , S n} with S j removed. A is called essential if
n⋂

j=1

S j = ∅. The link ofA is V := ∪n
j=1S j. The homotopy type of the link ofA only

depends on L(A).

Proposition 2.6 IfA is a d-arrangement of homotopy spheres, then

V '
|p(L(A,−1))|−1∨

i=1

S d−1.

Proof. The proof is an application of Theorem 2.1. See [14, Proposition 5.4] for

details. �

Before we cite some propositions as applications of Zaslavsky’s enumerative

theory [15], we introduce the idea of partitionedness.

Definition 2.7 An arrangement of homotopy spheres is partitioned if the (d − 1)-

skeleton of S is contained in V . If every contraction of A. is partitioned, then A is

fully partitioned.

Suppose S is partitioned. Since V is homotopy equivalent to |p(L(A,−1))| − 1

(d − 1)-spheres, we can expect to have |p(L(A,−1))| d-cells in S. Suppose V is a
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union of two symmetric parts attached along S 1, called respectively the upper

and lower halves of V . A straightforward Mayer-Vietoris argument shows that

the upper half is homotopy equivalent to 1
2 |p(L(A,−1))| (d−1)-spheres. We fill in

the (d − 1)-spheres by d-cells, and call it Sup. By Proposition 1.4, 1
2 |p(L(A,−1))|

is the number of nbc-sets and nbc-bases of L. So there exists a bijection between

the d-cells of Sup and the nbc-sets and nbc-bases.

If the homotopy sphere arrangement S is fully partitioned, then an i-cell in

Sup lives in a unique d− i−1-flat y of L(A), i.e., ρ(y)+ i = d−1 where d is the rank

of the geometric lattice. Hence to specify an i-cell in Sup, we can expect two

pieces of data, the d− i− 1-flat y and an nbc-set or nbc-basis B which lives in the

contraction L/y. Zaslavsky’s formulas (and their equivalent formulations by Las

Vergnas [11]) for the number of cells still hold for arrangements of homotopy

spheres as they do for pseudosphere arrangements.

Proposition 2.8 [14] IfA is a partitioned d-arrangement of homotopy spheres, then S

has |p(L(A)),−1| d-dimensional cells.

Corollary 2.9 [14] If every contractionA/X, ρ(X) ≤ i, is partitioned, then the number

of (d − i)-dimensional cells is ∑
ρ(X)=i, X≤Y

|µ(X,Y)|.
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CHAPTER 3

TOPOLOGICAL REPRESENTATIONS

3.1 Topological Representations of lower ranks

There exist different topological representations of geometric lattices, among

which Swartz contributed one using arrangements of homotopy spheres whose

class of intersection lattices matches the corresponding geometric lattices [14,

Theorem 6.1]. We restate it as follows.

Theorem 3.1 [14] If L is the lattice of flats of a rank d + 1 matroid, then there exists

a d-arrangement of homotopy spheres, A, such that L = L(A). Furthermore, A can be

constructed so that there is a fixed-point free involution of S which preservesA.

Swartz’s proof was not algorithmic nor was there a guarantee that S would

be a regular CW-complex. Let L be a rank r geometric lattice of rank ≤ 4.

The algorithm we have gives an explicit fully partitioned homotopy sphere r-

arrangement S that is a CW-complex whose intersection lattice is L. Moreover

S has a (r − 1)-sphere in it that is a regular CW-complex. Our work has no prob-

lems in matching the dimensions of the arrangements, nor in the cell numbers

that are completely determined by Zaslavsky’s enumerative theory [15] or Las

Vergnas’s formula [11], either of which works for pseudosphere arrangements.

The construction is demonstrated below in detail.

Theorem 3.2 If L is the lattice of flats of a rank d +1 matroid, d ≤ 3, then there exists a

d-arrangement of homotopy spheres, A, which is a CW-complex and contains a sphere

14



that is a regular CW-complex, such that L = L(A). Furthermore,A can be constructed

so that there is a fixed-point free involution of S which preservesA.

Since the construction process is inductive by rank, we begin with rank 1

matroids.

3.1.1 Rank 1

This case is trivial because we only have one matroid with one element 1̂ = 1.

Two discrete verticesS = τ1, τ
′
1 will be its topological representationS. Here τ1 is

an abbreviation of τ{1}. From now on, we write either τ1 or τ{1}, which means the

same cell. The upper half is {τ1} whereas the lower half is {τ′1}. Let φ{1} : pt → S

be defined such that φ{1}(pt) = τ1 and symmetrically we define φ′
{1} : pt → S by

φ′
{1}(pt) = τ′1.

3.1.2 Rank 2

Let M be a rank 2 simple matroid whose geometric lattice is L. Let a1, . . . , am

be the coatoms of L. Here coatoms and atoms coincide, i.e., ai = ei for i =

1, . . . ,m. In M/1 the nbc-basis is {2} whereas in M/i where i ≥ 2 the nbc-basis

is {1}. Hence in M/1, We have two vertices {τ1
2, τ

1′
2 } as the CW-complex by the

rank 1 process where 1 in τ1
2 and τ1′

2 signifies M/1 and {2} is the nbc-basis. In all

we have {τ1
2, τ

1′
2 }, {τ

2
1, τ

2′
1 }, . . . , {τ

m
1 , τ

m′
1 } as the 2m 0-spheres. The link V := ∪m

i=1Sei

is the union of the representations Sei of contraction [e, 1̂] where e runs over the

atoms. So V is a union of 2m discrete vertices. Let the upper link be all of Se1

with the upper halves of Sei where i = 2, 3, . . . ,m. Thus Vup := {τ1
2, τ

2
1, . . . , τ

m
1 , τ

1′
2 }.

15



Symmetrically, let Vlow := {τ1′
2 , τ

2′
1 , . . . , τ

m′
1 , τ

1
2}. We denote the n-ball by Dn. For

D1 we use the specific 1-ball [0, 1] ⊆ R.

For each nbc-basis B = {1, i}, we let κB : ∂D1 → V be defined by

κB(0) = τ1
2, κB(1) = τi

1.

For the nbc-set B = {1}, we let

κB(0) = τ1
2, κB(1) = τ1′

2 .

Symmetrically, for each nbc-basis B = {1, i}, we let κ′B : ∂D1 → V be defined

by

κ′B(0) = τ1′
2 , κ′B(1) = τi′

1 .

For the nbc-set B = {1}, we let

κ′B(0) = τ1′
2 , κ′B(1) = τ1

2.

Then we construct S as

S = V ∪κB D1 ∪κ′B D1

over all nbc-sets and nbc-bases B where D1’s are all attached via the κB and κ′B

maps. Let the upper and lower S be respectively as follows,

Sup = V ∪κB D1, Slow = V ∪κ′B D1

when B runs over all nbc-sets and nbc-bases. See Figure 3.1 for an example

where m = 4. Observe that S = Sup ∪Slow. The intersection Sup ∩Slow is the

homotopy sphere constructed for M/1. Also note that Sup,Slow are both con-

tractible. Thus S is a homotopy sphere 1-arrangement and contains the sphere

τ1
2 ∪ τ

1′
2 that is a regular CW-complex.
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For any nbc-set or nbc-basis B, let τB and τ′B be the cell whose associated

attaching map is κB and κ′B. As discussed earlier, a 1-cell of Sup corresponds to

an nbc-set or nbc-basis B of L = L/∅. In general, we denote any i-cell by τy
B where

y is the corresponding flat and B the corresponding basis. For convenience, we

write τB for τ∅B where B is an nbc-set or basis on [0̂, 1̂]. This notation applies to

all future higher ranks.

For higher rank matroids, we may need attaching maps φB in rank 2 contrac-

tions in which any independent set can be considered. We now describe how to

do this. For a map φ : Dn → X, we denote φ|∂Dn by ∂φ. When B is not an nbc-set

or nbc-basis φB is defined in terms of φC’s for lexicographically earlier C’s.

For each nbc-set or nbc-basis B, let φB : D1 → S be defined such that ∂φB = κB

and φB is a homeomorphism to the open cell τB on (0, 1). Symmetrically we

define φ′B : D1 → S. For any non-nbc independent set B = {i, j}, we define

φB : D1 → S as follows. If i is parallel to 1, then φ{i, j} = φ{1, j}. Similarly If j is

parallel to 1, then φ{i, j} = φ{1,i}. Otherwise {1, i, j} is a circuit and φ{i, j} is defined by

φ{i, j} =


φ{1,i}(1 − 2x) if 0 ≤ x ≤ 1

2 ,

φ{1, j}(2x − 1) if 1
2 ≤ x ≤ 1.

For singleton non-nbc sets B = {i}, we define φB : D1 → S as follows. If i is

parallel to 1, then φ{i} = φ{1}. Otherwise φB : D1 → S is defined by

φ{i} =


φ{1,i}(1 − 3x) if 0 ≤ x ≤ 1

3 ,

φ{1}(3x − 1) if 1
3 ≤ x ≤ 2

3 ,

φ′
{1,i}(3x − 2) if 2

3 ≤ x ≤ 1.

See Figure 3.2 for an illustration where the green path represents φ{2,4} and φ{3},

respectively. For any non-nbc independent set B, φ′B : D1 → S is defined sym-

metrically. Observe that ∂φ{i, j} = φi
{ j} ∪ φ

j
{i}, ∂φ{i} = φi

{1} ∪ φ
i′
{1} where i , 1, and

17



τ1
2

τ1′
2

τ2
1

τ3
1

τ4
1

τ2′
1

τ3′
1

τ4′
1

τ1

τ1,2

Sup S

τ′1

τ′1,2

τ1
2

τ1′
2

τ2
1

τ3
1

τ4
1

τ2′
1

τ3′
1

τ4′
1

Figure 3.1:

| || | | | |

φ{2,4} φ{3}

−φ{1,2} φ{1,4} −φ{1,3} φ{1} φ′
{1,3}

Figure 3.2:

∂φ{1} = φ1
{2} ∪ φ

1′
{2}.

3.1.3 Rank 3

Now let M be a rank 3 simple matroid whose geometric lattice is L with coatoms

a1, a2, . . . , am and atoms e1, . . . , en in lexicographic order. Let the coatoms contain-

ing e1 be respectively a1, . . . , al where l < m. We induce from rank 2 cases. Each

M/ei for i = 1, 2, . . . , n is a rank 2 contraction, and we call its homotopy sphere

arrangement Sei . Denote Sup in M/ei as Sei
up and denote Slow in M/ei as Sei

low.

Then the link is V := ∪n
iSei . Let the upper link be Vup := Se1 ∪

⋃n
i=2 S

ei
up. Sym-

metrically we define the lower link Vlow. We consider Vup and how to add
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2-cells to Vup to construct Sup then construct S low symmetrically.

For B an independent set in M/ei, we denote the φB map in Sei as φei
B .

For each nbc-basis B = {1, a, b}, we let κB : ∂D2 → V where ∂D2 = [0, 1] with 0

identified with 1 be defined by

κB =


φ1
{a,b}(3x) if 0 ≤ x ≤ 1

3 ,

φa
{1,b}(3x − 1) if 1

3 ≤ x ≤ 2
3 ,

φb
{1,a}(2 − 3x) if 2

3 ≤ x ≤ 1.

For nbc-set B = {1, a}, we let

κB =


φ1
{a}(2x) if 0 ≤ x ≤ 1

2 ,

φa
{1}(1 − 2x) if 1

2 ≤ x ≤ 1.

For the nbc-set B = {1}, we let

κB =


φ1
{2}(2x) if 0 ≤ x ≤ 1

2 ,

φ1′
{2}(1 − 2x) if 1

2 ≤ x ≤ 1.

We define κ′B : ∂D2 → V symmetrically.

Example 3 Let M be the same matroid as in Example 1. Let the topological represen-

tations of contractions [ei, 1̂] be in five different colors, respectively. S1 in red, S2
up

in brown, S3
up in yellow, S4

up in cyan, and S5
up in green. They make up Vup. In

Figure 3.3, the boundary of the shaded area is κ{1,2,4}. In Figure 3.4, the boundary of

the shaded area is κ{1,3,4}. In Figure 3.5, the boundary of the shaded area is κ{1,2}. In

Figure 3.6, the boundary of the shaded area is κ{1,4}. In Figure 3.7, the boundary of the

shaded area is κ{1}.

Then we construct S as

S = V ∪κB D2 ∪κ′B D2

19



125

125′

14

13

14′

13′

24

23

345

κ{1,2,4} in Vup

Figure 3.3:
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Figure 3.4:
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Figure 3.5:
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Figure 3.6:
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κ{1} in Vup

Figure 3.7:

over all nbc-sets and nbc-bases B where D2’s are all attached via the κB and κ′B

maps. Let the upper and lower S be respectively as follows,

Sup = V ∪κB D2, Slow = V ∪κ′B D2

when B runs over all nbc-sets and nbc-bases. Observe that S = Sup ∪ Slow.

The intersection Sup ∩ Slow is the homotopy sphere constructed for M/1.

For any nbc-set or nbc-basis B, let τB and τ′B be the cell whose associated

attaching map is κB and κ′B.

For higher rank matroids, we may need attaching maps φB in rank 3 contrac-

tions in which any independent set can be considered. We now describe how to

do this. When B is not an nbc-set nor nbc-basis φB is defined in terms of φC’s for

lexicographically earlier C’s.

Now for each nbc-set or nbc-basis B, let φB : D2 → S be defined such that
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∂φB = κB and φB is a homeomorphism to the open cell τB on the interior of

D2. Symmetrically we define φ′B : D2 → S. For any non-nbc independent set

B = {i, j, k} of types as follows where i < j < k, let φB : D2 → S be defined

as illustrated in Figure 3.8 and Figure 3.9. For any non-nbc independent set B,

φ′B : D2 → S is defined symmetrically.

It is possible that in an independent set B there can be an elements parallel

to and smaller than an element in B. Then that element of B can be replaced by

the smaller parallel one. Also, there can be external activities in a subset of B. In

these cases the φmaps in the diagram involve lexicographically earlier indepen-

dent sets and hence are well-defined. In general if EA(B) , 0 and min EA = c,

then φ{i, j,k} is defined to be the union of φ{c, j,k}, φ{c,i,k}, and φ{c,i, j}, each of which a

union of φB′ maps until EA(B′) = 0.

1. B = {1, a, b}where {c, a, b} is a circuit and min EA = c ∈ (12).

2. B = {1, a, b}where {c, a, b} is a circuit and min EA = c < (12).

3. B = {a, b, c}where {1, a, b, c} is a circuit and a < (12).

4. B = {a, b, c}where {1, a, b, c} is a circuit and a ∈ (12) (or b ∈ (12) or c ∈ (12)).

5. B = {a, b, c}where {1, a, b} (or {1, a, c} or {1, b, c}) is a circuit.

6. B = {a, b}where a ∈ (12) and b < (12) and EA = ∅.

7. B = {a, b}where a < (12) and b < (12) and EA = ∅.

8. B = {a, b}where {1, a, b} is a circuit.

9. B = {a, b}where {c, a, b} is a circuit and min EA = c < (12).

10. B = {a, b}where {c, a, b} is a circuit and min EA = c ∈ (12).

11. B = {a}where {1, a} is a circuit and a ∈ (12).
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12. B = {a}where a < (12).

Observe that ∂φ{i, j,k} = φi
{ j,k} ∪ φ

j
{i,k} ∪ φ

k
{i, j}, ∂φ{i, j} = φi

{ j} ∪ φ
j
{i}, ∂φ{i} = φi

{1} ∪ φ
i′
{1}

where i , 1, and ∂φ{1} = φ1
{2} ∪ φ

1′
{2}. In ∂φ{i, j,k}, φi

{ j,k} ∩ φ
j
{i,k} = φ

i j
{k}; in ∂φ{i, j}, φi

{ j} ∩ φ
j
{i} =

φ
i j
min(E−(i, j)) ∪ φ

i j′

min(E−(i, j)); in ∂φ{i}, φi
{1} ∩ φ

i′
{1} = φ1i

min(E−(1,i)) ∪ φ
1i′
min(E−(1,i)); and in ∂φ{1},

φ1
{2} ∩ φ

1′
{2} = φ12

min(E−(1,2)) ∪ φ
12′
min(E−(1,2)).

Recall S := Sup ∪ Slow being glued along Se1 . The following lemma shows

Sup is contractible.

Lemma 3.3 Let M be a matroid on [n] of rank 3. Then Sup is contractible.

Proof. A unique facet of a cell τz
B is a facet which is on the boundary of τz

B and

is in no other τz0
B0

. The unique facet for τ{1,a,b} is φb
{1,a}; for τ{1,a}, φa

{1}; and for τ{1},

φ1′
{2}. To show Sup is contractible, it is sufficient to show when we collapse the

cells by their unique facets, we are left with a tree. It is equivalent to show V̄

is a tree, where V̄ is obtained by removing all the unique facets in Vup. First

V̄ is connected because every vertex is connected to (12). Second we show the

number of edges is 1 less than the number of vertices. The number of vertices

here is m + l where m is the number of coatoms and l is the number of coatoms

above e1. The number of edges is

∑
Y∈L(M), r(X)=1

|µ(X,Y)| +
∑

Y∈L(M), X=e1

|µ(X,Y)| −
∑

Y∈L(M), r(X)=0

|µ(X,Y)|

= f{1,2}(M) + l −
2 − 2 f{2}(M) + f{1,2}(M)

2

= f{2}(M) + l − 1

= m + l − 1.

Hence V̄ is a tree. �
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φ1,c,a φ1,c,b

1 {c, a, b} is a circuit and min EA = c ∈ (12)
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(abc)

(12)
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φ1,c,a φ1,c,b

2 {c, a, b} is a circuit and min EA = c < (12)

(ac) (bc)

(ab)

(12)
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φ1,a,c φ1,b,c
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3 {1, a, b, c} is a circuit and a < (12)

(ac) (bc)

(ab)
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φ1,a,c φ1,b,c
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4 {1, a, b, c} is a circuit and a ∈ (12)

(ac) (bc)
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5 {1, a, b} or {1, a, c} or {1, b, c} is a circuit
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(12a)(1b)

φ1,b φ1,a

6 a ∈ (12) and b < (12) and EA = ∅

Figure 3.8:
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Figure 3.9:
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Thus Sup,Slow are both contractible. Since Sup ∩ Slow is a homotopy

1-sphere, S is a homotopy sphere 2-arrangement that is a CW-complex and con-

tains the 2-sphere τ1
{2} ∪ τ

1′
{2} that is a regular CW-complex.

3.1.4 Rank 4

Now let M be a rank 4 simple matroid whose geometric lattice is L with coatoms

a1, a2, . . . , am and atoms e1, . . . , en in lexicographic order. Let the coatoms contain-

ing e1 be respectively a1, . . . , al where l < m. We induce from rank 3 cases. Each

M/ei for i = 1, 2, . . . , n is a rank 3 contraction, and we call its homotopy sphere

arrangement Sei . Denote Sup in M/ei as Sei
up and denote Slow in M/ei as Sei

low.

Then the link is V := ∪n
iSei . Let the upper link be Vup := Se1 ∪

⋃n
i=2 S

ei
up. Sym-

metrically we define the lower link Vlow. We consider Vup and how to add

3-cells to Vup to construct Sup then construct S low symmetrically.

Recall ∂D3 is homeomorphic to a tetrahedron that is a union of four triangles.

Denote them by ∆i, i = 1, 2, 3, 4. ∂D3 is also homeomorphic to a union of three

bigons, or a union of two bigons, all of which share the same south and north

pole. Denote them as γi as shown in Figure 3.10, seen downwards above the

north pole where i = 1, 2, 3, 4, 5. For each nbc-basis B = {1, a, b, c}, we let κB :

∂D3 → V be defined such that

κB|∆1 = φ1
{a,b,c}, κB|∆2 = φa

{1,b,c}, κB|∆3 = φb
{1,a,c}, κB|∆4 = φc

{1,a,b}.

For nbc-set B = {1, a, b}, we let κB : ∂D3 → V be defined such that

κB|γ1 = φ1
{a,b}, κB|γ2 = φa

{1,b}, κB|γ3 = φb
{1,a}.
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γ2

γ3

γ4

γ5

N N

Figure 3.10:

For nbc-set B = {1, a}, we let κB : ∂D3 → V be defined such that

κB|γ4 = φ1
{a}, κB|γ5 = φa

{1}.

For the nbc-set B = {1}, we let κB : ∂D3 → V be defined such that

κB|γ4 = φ1
{2}, κB|γ5 = φ1′

{2}.

The previously observed values of ∂φ insure that the various piecewise parts

of κB are compatible with each other.

We define κ′B : ∂D3 → V symmetrically.

Then we construct S as

S = V ∪κB D3 ∪κ′B D3

over all nbc-sets and nbc-bases B where D3’s are all attached via the κB and κ′B

maps. Let the upper and lower S be respectively as follows,

Sup = V ∪κB D3, Slow = V ∪κ′B D3

when B runs over all nbc-sets and nbc-bases. Observe that S = Sup ∪ Slow.

The intersection Sup ∩ Slow is the homotopy sphere constructed for M/1.
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For any nbc-set or nbc-basis B, let τB and τ′B be the cell whose associated

attaching map is κB and κ′B.

The following lemma shows Sup is contractible.

Lemma 3.4 Let M be a matroid on [n] of rank 4. Then H3(Sup) = H2(Sup) =

H1(Sup) = π1(Sup) = 0, and Sup is contractible.

Proof. A unique facet of a cell τz
B is a facet which is on the boundary of τz

B

and is in no other τz0
B0

. The unique facet for τ{1,a,b,c} is φc
{1,a,b}; for τ{1,a,b}, φb

{1,a}; for

τ{1,a}, φa
{1}; and for τ{1}, φ1′

{2}. Hence those τB’s for B being nbc-sets and nbc-bases

are all independent to each other and they all have a vertex (12). There are

| 12 p(L(A,−1))| of them. Similar to Proposition 2.6, we can show

Vup '

1
2 |p(L(A,−1))|∨

i=1

S 2
i .

Since Sup is Vup with several 3-cells attached, we have π1(Sup) = H1(Sup) = 0.

To show Hi(Sup) = 0 for i = 2, 3, it is equivalent to show that {∂τB} for B being

nbc-sets and nbc-bases is a basis for Hi(Vup), which can be seen via their unique

facets. Therefore

H3(Sup) = H2(Sup) = H1(Sup) = π1(Sup) = 0.

By Whitehead’s Theorem [9, Theorem 4.5], Sup,Slow are both contractible. �

Since Sup ∩ Slow is a homotopy 2-sphere, S is a homotopy sphere 3-

arrangement that is a CW-complex and contains the 3-sphere τ1
{2} ∪ τ

1′
{2} that is

a regular CW-complex.
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3.2 Rank r

Conjecture 3.5 If L is the lattice of flats of a rank d + 1 matroid, d > 4, then the

inductive algorithm produces a d-arrangement of homotopy spheres,A, which is a CW-

complex and contains a sphere that is a regular CW-complex, such that L = L(A).

Furthermore, there is a fixed-point free involution of S which preservesA.

As we see in the cases of ranks ≤ 4 our construction is inductive on rank.

Let M be a rank r simple matroid whose geometric lattice is L with coatoms

a1, a2, . . . , am and atoms e1, . . . , en in lexicographic order. Let the coatoms con-

taining e1 be respectively a1, . . . , al where l < m. We induce from rank r−1 cases.

Each M/ei for i = 1, 2, . . . , n is a rank r − 1 contraction, and we call its homotopy

sphere arrangement Sei . Denote Sup in M/ei as Sei
up and denote Slow in M/ei as

S
ei

low. Then the link is V := ∪n
iSei . Let the upper link be Vup := Se1 ∪

⋃n
i=2 S

ei
up.

Symmetrically we define the lower link Vlow. We consider Vup and how to add

(r − 1)-cells to Vup to construct Sup then construct S low symmetrically.

For each nbc-basis or set B = {1, u1, . . . , uq}, q ≤ r − 1, we let κB : ∂Dr−1 → V be

defined such that

κB = φ1
{u1,u2,...,uq}

∪ φu1
{1,u2,...,uq}

∪ · · · ∪ φ
uq

{1,u1,...,uq−1}
. (3.6)

For the nbc-set B = {1}, we let κB : ∂Dr−1 → V be defined such that

κB = φ1
{2} ∪ φ

1′
{2}.

We define κ′B : ∂Dr−1 → V symmetrically.

Then we construct S as

S = V ∪κB Dr−1 ∪κ′B Dr−1
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over all nbc-sets and nbc-bases B where Dr−1’s are all attached via the κB and κ′B

maps. Let the upper and lower S be respectively as follows,

Sup = V ∪κB Dr−1, Slow = V ∪κ′B Dr−1

when B runs over all nbc-sets and nbc-bases. Observe that S = Sup ∪ Slow.

The intersection Sup ∩ Slow is the homotopy sphere constructed for M/1.

For any nbc-set or nbc-basis B, let τB and τ′B be the cell whose associated

attaching map is κB and κ′B.

Now for each nbc-set or nbc-basis B, let φB : Dr−1 → S be defined such

that ∂φB = κB and φB is a homeomorphism to the open cell τB on the interior of

Dr−1. Symmetrically we define φ′B : Dr−1 → S. For any non-nbc independent set

B = {u1, . . . , uq}, q ≤ r − 1, we let φB : Dr−1 → S be defined such that

∂φB = φ1
{u1,u2,...,uq}

∪ φu1
{1,u2,...,uq}

∪ · · · ∪ φ
uq

{1,u1,...,uq−1}
. (3.7)

As before, when B is not an nbc-set or nbc-basis φB is defined in terms of

φC’s for lexicographically earlier C’s. If we can show Hi(Sup) = π1(Sup) = 0 for

i = 1, 2, . . . , r − 1, then Sup is contractible. That might be done by showing each

cell τz
B has a unique facet. The main obstacle is to prove that Equation 3.6 and

Equation 3.7 can be met on a sphere.
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CHAPTER 4

ORIENTED MATROIDS AND ITS CD-INDEX

4.1 Oriented Matroids

We have a set {+,−, 0}with the order relations

+ > 0, − > 0.

Then the set {+,−, 0}E is a poset with the usual product ordering of posets.

Within this poset, there is no maximal element. We call an element X ∈ {+,−, 0}E

a sign vector.

For any X ∈ {+,−, 0}E, we let its negative −X ∈ {+,−, 0}E be the sign vector

such that −X(e) = −(X(e)) for all e ∈ E. For a collection F of sign vectors, −F

denotes {−X | X ∈ F }.

For any X,Y ∈ {+,−, 0}n, define their composition X ◦ Y ∈ {+,−, 0}n by

X ◦ Y(e) =


X(e) if X(e) , 0,

Y(e) otherwise.

The support of X ∈ {+,−, 0}n is {x ∈ [n] | X(x) , 0}.

Definition 4.1 An oriented matroid M on a finite set E is a collection of sign vectors

V from {+,−, 0}E, called covectors, which satisfies the covector axioms as follows,

1. 0 ∈ V

2. (Symmetry) −V = V
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3. (Composition) for every X,Y ∈ V we have X ◦ Y ∈ V

4. (Vector Elimination) for every X,Y ∈ V and e ∈ X+ ∩ Y− there exists Z ∈ V such

that

Z+ ⊆ (X+ ∪ Y+) − {e}, Z− ⊆ (X− ∪ Y−) − {e},

and every f ∈ E such that {X( f ),Y( f )} , {0} and {X( f ),Y( f )} , {+,−} is in the

support of Z.

Like ordinary matroids, oriented matroids can be defined by several crypto-

morphic systems of axioms [8].

4.2 Pseudosphere Arrangements

Recall that S ⊂ S d is a pseudosphere if there is a self-homeomorphism h sending S

to the equator of S d. A signed pseudosphere in S d is a triple S = (S 0, S +, S −) where

S 0 is the pseudosphere in S d and S +, S − are the two hemispheres bounded by S .

S + and S − are called positive and negative sides of S , respectively.

Definition 4.2 An arrangement of signed pseudospheres in S d is a collection of signed

pseudospheres {S e}e∈E in S d where S e = (S 0
e , S

+
e , S

−
e ) such that

1. For every A ⊆ E, S A := ∩e∈AS 0
e is a topological sphere.

2. For every e ∈ E and A ⊆ E − {e}, either S A ⊆ S 0
e or S A ∩ S 0

e is a pseudosphere in

S A with sides S A ∩ S +
e and S A ∩ S −e .

Every pseudosphere arrangement has a corresponding regular CW-complex.

The face poset ofA is the set of all faces ordered by inclusion. Given an arrange-

ment A = {S e}e∈E of signed pseudospheres in S d, to each x ∈ S d, we have an
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associated sign vector X : E → {0,+,−}, where X(e) determines on which sides

of S e the point x lies. Let V∗(A) be the set of all of these sign vectors, together

with 0. A loop in an oriented matroid is an element e ∈ E such that X(e) = 0 for

all x ∈ V∗(A). We have the following Topological Representation Theorem [8].

Theorem 4.3 Let E be a finite set. For L ∈ {0,+,−}E, the following are equivalent.

1. L is the set of signed covectors of a loop-free oriented matroid of rank r with

elements E.

2. L = V∗(A) for some arrangement of signed pseudospheresA = {S e}e∈E in S r−1.

3. As a poset, L is the face poset of an arrangement of signed pseudospheres.

This Topological Representation Theorem tells us that the set of covectors

of an oriented matroid and the face poset of the corresponding arrangement of

signed pseudospheres are equivalent. From now on, when we say the face poset

of an oriented matroid, we actually mean the face poset of the corresponding

arrangement of signed pseudospheres.

4.3 ab-indices and flag vectors

Let P be a graded poset of rank n + 1. For S ⊆ [n], let PS be the sub-poset of

P which consists of all the elements from P whose rank is in S . Let fS (P) be

the number of maximal chains in PS . The collection { fS }S⊆[n] is called the flag

f -vector. The flag h-vector hS (P) is the collection {hS }S⊆[n] where hS (P) is defined

by

hS (P) =
∑
T⊆S

(−1)|S−T | · fS (P).
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Any flag h-vector of a poset P can be displayed via a polynomial in non-

commutating variables a and b. For a subset S ⊆ [n], let the ab-monomial uS

be defined by uS = u1 · · · un where ui = a if i < S and ui = b if i ∈ S . Then the

ab-index Ψ(P) of a poset P is defined by

Ψ(P) =
∑
S⊆[n]

hS (P) · uS .

Observe that if we assign a and b to have degree 1, then Ψ(P) is a homogeneous

polynomial of degree n.

Bayer and Billera found the most general linear relations that hold be-

tween the components of the flag h-vector of an Eulerian poset P, a poset where

µ(x, y) = (−1)ρ(x)−ρ(y) holds for each interval [x, y]. When P is Eulerian, Fine gave

an elegant way to transform the ab-index from non-commuting variables a,b to

non-commutative variables c,d where c = a + b and d = ab + ba. When Ψ(P) is

written in terms of c and d, we call it the cd-index of P.

Following [4], let Z〈a,b〉 be the ring of polynomials with integer coefficients

in the variables a and b, and let the degree of a and b be 1. Let Z〈c, 2d〉 denote

the subring of Z〈a,b〉 spanned by the elements c = a + b and 2d = 2ab + 2ba and

let Z〈c,d〉 denote c − 2d-polynomials.

For an ab-monomial v = v1v2 · · · vn let ∗ be the dual function such that v∗ =

vn · · · v2v1. By linearity we extend this operation to be an involution on Z〈a,b〉.

Since c∗ = c and 2d∗ = 2d, the involution restricts to Z〈c, 2d〉 by reading the

c − 2d-monomial backwards. We define a linear function ω : Z〈a,b〉 → Z〈c, 2d〉

as follows: replace each occurrence of ab in the given monomial with 2d, replace

the rest with c’s, and extend this definition by linearity to ab-polynomials. Thus

ω always maps an ab-polynomial of degree n to a c − 2d-polynomial of degree
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n. For example,

ω(aaa + 3aab + 2abb) = c3 + 3 · c · 2d + 2 · 2d · c.

4.4 Oriented Matroids and cd-indices

Introduced by Bayer and Klapper [2], the cd-index is only defined for Eulerian

posets. Because the face poset of an oriented matroid is an Eulerian poset, the

cd-index of an oriented matroid is well-defined. Every oriented matroid has

an underlying matroid, which is a geometric lattice and can be described by its

lattice of flats. The flats of the underlying matroid are the 0-sets of covectors.

We denote the lattice of flats of an oriented matroid M by L.

Billera, Ehrenborg, and Readdy’s explicit formula for the cd-index of any

oriented matroid is restated as follows.

Theorem 4.4 [4, Theorem 3.1] Let M be an oriented matroid, T the face poset of M,

and L the lattice of flats of M. Then the c-2d-index of T is given by

Ψ(T ) = ω(a · Ψ(L))∗.

Here Ψ(L) is the ab-index of the lattice of flats of M, and Ψ(T ) is the cd-

index of T . Briefly speaking, they computed the cd-index of the facet poset by

replacing every ab in a · Ψ(L) by 2d and replacing everything else by c. It is

also called the c − 2d-index of oriented matroids since every d has a factor of 2

attached to it.
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4.5 Main Theorem for Ordinary Matroids

When it comes to ordinary matroids, the equation in Theorem 4.4 no longer

makes sense. In fact, we have no clue what that equality means. First, the face

poset of a matroid is something we need to re-define. Second, paralleling the

equality in oriented matroids, under what conditions can equality still hold after

we re-define the face poset? It was conjectured by Swartz that the right side of

the equation in Theorem 4.4 can be an upper bound for the cd-index of some

poset related to the ordinary matroid. The problem is how to define and give a

geometric meaning of that poset.

To mimic the Folkman-Lawrence topological representation of oriented

matroids, Swartz proved the Topological Representation Theorem [14, Theo-

rem 6.1] for matroids, in which the homeomorphism condition was lessened to

homotopy equivalences. The theorem shows that for any matroid M of rank r+1,

there is always a r-arrangement of homotopy spheres S such that L = L(S). In

Chapter 3, we provided a specific algorithm to construct the homotopy sphere

arrangement as a CW-complex in which there is an actual sphere T of S that is

a regular CW-complex. We thus obtain a face poset of that T , called T .

For an arbitrary homotopy sphere arrangement, there is no a priori reason

such a T exists. Since T is the face poset of a regular CW-complex homeomor-

phic to a sphere, T must be an Eulerian poset. Hence, T has a cd-index. The

following theorem shows an optimal upper bound for the cd-index of T when

matroid rank r = 3 since rank 1 and 2 cases are trivial.

Theorem 4.5 Let M be a rank 3 matroid. Let L be the lattice of flats of M, and suppose

T is the face poset of a sub-complex of the fully partitioned homotopy sphere arrangement
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of M that is homeomorphic to S 2. Then the c-2d-index of T satisfies

Ψ(T ) ≤ ω(a · Ψ(L))∗.

For example, the Fano matroid is a minimal non-orientable matroid of rank

3. Let T be the face poset of a sub-complex of the homotopy sphere arrangement

of M we constructed. Then

Ψ(T ) = aaa + aab + aba + baa + abb + bab + bba + bbb = (a + b)3 = c3,

whereas

ω(a · Ψ(L))∗ = ω(a · (aa + 6ba + 6ab + 8bb))∗

= ω(aaa + 6aba + 6aab + 8abb)∗

= c3 + 28cd + 12dc

≥ Ψ(T ).

Proof. The flag h-vectors of L are as follows,

h∅(L) = 1, h{1} = f{1}(L) − 1, h{2}(L) = f{2}(L) − 1

h{1,2}(L) = f{1,2}(L) − f{2}(L) − f{1}(L) + 1

Hence the c-2d-index of L is computed as follows,

Ψ(L) = aa + ( f{1}(L) − 1) ba + ( f{2}(L) − 1)ab + ( f{1,2}(L) − f{2}(L) − f{1}(L) + 1)bb,

and thus

ω(a · Ψ(L))∗ = ω(aaa + ( f{1}(L) − 1) aba + ( f{2}(L) − 1)aab

+ ( f{1,2}(L) − f{2}(L) − f{1}(L) + 1)abb)∗

= (c3 + ( f{1}(L) − 1) · 2d · c + ( f{2}(L) − 1) · c · 2d

+ ( f{1,2}(L) − f{2}(L) − f{1}(L) + 1) · 2d · c)∗

= c3 + ( f{1,2}(L) − f{2}(L))c · 2d + ( f{2}(L) − 1)2d · c
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According to Corollary 2.9, the numbers of 0,1-dimensional cells of the ho-

motopy sphere arrangement of M are as follows,

f{1}(S ) =
∑

r(X)=2, X≤Y

|µ(X,Y)| = 2 f{2}(L),

f{2}(S ) =
∑

r(X)=1, X≤Y

|µ(X,Y)| = 2 f{1,2}(L),

f{3}(S ) = 2 − 2 f{2}(L) + 2 f{1,2}(L) (The Euler characteristic of S is 2).

Hence we have,

f{1}(T ) ≤ f{1}(S ) = 2 f{2}(L),

f{2}(T ) ≤ f{2}(S ) = 2 f{1,2}(L),

f{3}(T ) ≤ f{3}(S ) = 2 − 2 f{2}(L) + 2 f{1,2}(L).

Thus the flag h-vectors of T are as follows,

h∅(T ) = 1, h{1}(T ) ≤ 2 f{2}(L) − 1, h{2}(T ) ≤ 2 f{1,2}(L) − 1,

h{3}(T ) ≤ 1 − 2 f{2}(L) + 2 f{1,2}(L), h{1,2}(T ) = h{3}(T ) ≤ 1 − 2 f{2}(L) + 2 f{1,2}(L),

h{1,3}(T ) = h{2}(T ) ≤ 2 f{1,2}(L) − 1, h{2,3}(T ) = h{1}(T ) ≤ 2 f{2}(L) − 1, h{1,2,3}(T ) = 1,

where h{1,2}(T ) = h{3}(T ), h{2,3}(T ) = h{1}(T ) and h{1,2,3}(T ) = 1 are obtained by the

Dehn-Sommerville equations. Hence the c-2d-index of T is

Ψ(T ) ≤ aaa + (2 f{2}(L) − 1)baa + (2 f{1,2}(L) − 1)aba

+ (1 − 2 f{2}(L) + 2 f{1,2}(L))aab + (1 − 2 f{2}(L) + 2 f{1,2}(L))bba

+ (2 f{1,2}(L) − 1)bab + (2 f{2}(L) − 1)abb + bbb

= c3 + (2 f{1,2}(L) − 2 f{2}(L))cd + (2 f{2}(L) − 2)dc

= ω(a · Ψ(L))∗.

Therefore we have Ψ(T ) ≤ ω(a · Ψ(L))∗. �
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The following proposition and corollary show that what the matroid M will

be once the equality in Theorem 4.5 holds.

Proposition 4.6 If (A,S) is a homotopy sphere arrangement of a rank 3 matroid and S

is homeomorphic to S 2, then (A,S) is a pseudosphere arrangement and M is orientable.

Proof. Let X be a homotopy 1-sphere in S representing an atom of L(A). Then

X is a circle to which at least two disjoint trees attached. See Figure 4.1. The

trees come in pairs in order to satisfy the involution condition. Suppose the

extra edges t0t1 and t′0t′1 are on the same side of X and t0, t′0 are on X. Then the

hemisphere of S 2 within S 1 is mapped to itself by involution. The Brouwer fixed

point theorem gives a fixed point. Hence t0t1 and t′0t′1 should be on different sides

of X, as shown in Figure 4.1. Now any homotopy 1-sphere that intersects with

Y at t1, t′1 connects t1 and t′1 by a path. This path must intersects Y again at some

point other than t1, t′1, making the entire intersection at least three points, which

leads to a contradiction. Therefore the homotopy 1-spheres on S can only be

pseudospheres.

Suppose there is a 1-sphere X2 with two parts on the same side of X. Then the

shaded area is mapped to itself by involution, which again gives a fixed-point

by the Brouwer fixed point theorem. So no sphere can reside in a single side of

any other sphere. ThereforeA is a pseudosphere arrangement. �

Corollary 4.7 Suppose the equality in Theorem 4.5 holds for an arrangement of homo-

topy spheres of a rank 3 matroid M. Then M must be orientable.

Proof. Since the flag f -vectors are equal, the f -vectors are equal. Hence S is a

sphere and Proposition 4.6 applies. �
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Figure 4.1:

Problem 4.8 Does Corollary 4.7 hold for matroids of higher ranks?
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