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Cold atoms trapped in optical lattices (crystals of light) provide a pristine plat-

form for exploring quantum many body physics. Motivated by several recent

experiments, this thesis examines the equilibrium and non-equilibrium dynam-

ics of a Bose-Einstein condensate (BEC) loaded in a low dimensional optical

lattice in order to realize novel quantum phases.

There are two main research directions in this thesis. The first one involves

the possibility that exotic order spontaneously forms when two-component

bosons are trapped in a honeycomb lattice. My studies on this theme is mo-

tivated by the observation of a “twisted superfluid” state in Prof. Klaus Sen-

gstock’s group at Hamburg (Soltan-Panahi et al., Nat. Phys. 8, 71 (2012)). A

twisted superfluid involves Bose-Einstein condensation into a state whose or-

der parameter has a spatially varying phase. In chapter 3, I study the stability

of a Bose-Einstein condensate towards forming a twisted superfluid within the

framework of mean field theory. Despite a exhaustive numerical search I do

not find a parameter regime with a twisted superfluid. This search involved all

experimentally relevant parameter regimes and therefore mean field theory pre-

dicted that the experimentalists should not observe a twisted superfluid. I con-

clude that the experimental observations were either a manifestation of counter



superfluidity or due to interactions during time-of-flight. Subsequent experi-

ments showed that the observations were an artifact of the measurement pro-

cess.

The second research direction in this thesis is an exploration of the stabil-

ity of periodically driven quantum systems (also known as Floquet systems).

Floquet systems can be used to realize exotic non-equilibrium quantum phases

which do not have a counterpart in static systems. However, the driving can

cause these systems to heat up which presents a major obstacle to creating ex-

otic states. To explore this issue in a concrete example, I model an experiment

(Parker, Ha, and Chin, Nat. Phys. 9, 769 (2013)) where a Bose-Einstein conden-

sate loaded in an optical lattice is subjected to periodic shaking. I investigate

the stability of this Floquet BEC to interactions. This research direction consists

of 3 studies. In chapter 4, I first do this analysis for a purely one-dimensional

system and identify a large parameter regime where the BEC is stable. In the

next two chapters, I go beyond 1D and consider the role of transverse degrees

of freedom. This is because the shaken lattice experiments that I model involves

a 1D array of pancakes. I find that this geometry leads to much more dissipa-

tion than a purely 1D system. This extra dissipation arises because interactions

can transfer energy between different directions. In chapter 5, I consider the ex-

treme case where there is no transverse confinement. I find that in the absence

of transverse confinement, a one-dimensional Floquet BEC is generically unsta-

ble. Finally, in chapter 6, I consider harmonic transverse confinement modeling

the crossover between chapters 4 and 5. I find that as the transverse confine-

ment is made stronger, the atom loss rate initially increases, but beyond a crit-

ical transverse confinement, the atom loss disappears due to unavailability of



phase space for scattering. I also predict that if the transverse confinement is

tuned to the vicinity of certain magic values, the heating rate exhibits a sharp

drop. I perform similar analyses for a shaken square lattice and find that gener-

ically a low-dimensional Floquet BEC can be stabilized by suitably designing

the transverse confinement.
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CHAPTER 1

INTRODUCTION

The reductionist hypothesis does not by any means imply a “constructionist” one: The

ability to reduce everything to simple fundamental laws does not imply the ability to

start from those laws and reconstruct the universe. - P. W. Anderson

1.1 Overview

Most of our everyday experiences are built around objects which have a very

large number of constituent atoms (∼ 1023). It is rather fascinating that several

common physical phenomena can’t be explained merely by understanding the

properties of their constituent atoms. For instance, a single gold atom does not

glitter, but a gold pendant does! This leads to an intriguing question: how does

the properties of a particular material (rigidity, conductivity etc.) emerge from

the interactions between its constituent atoms. The branch of physics dedicated

to the study of such emergent phenomena is called “many-body physics”. Cold

neutral atoms loaded in optical lattices present a very pristine setting for study-

ing many body physics in quantum systems.

The many body problem is a hard problem in general. It is easy enough to

write down a Hamiltonian that describes a collection of interacting particles,

but it is generally impossible to solve the Schrödinger equation for that Hamil-

tonian. Thus, the first step in understanding the behavior of many body system

usually involves writing down a minimal model that is believed to retain the

1



relevant phenomenology. However, exactly solving even the minimal model

is impossible in general. This is where cold atoms come in. They provide a

very versatile platform for realizing a variety of many-body models and prob-

ing their dynamics. I study one such model in this thesis: the Bose-Hubbard

model.

The Bose-Hubbard model is realized experimentally by first cooling bosonic

alkali atoms to quantum degeneracy and then trapping them in an optical lat-

tice. Atoms loaded in optical lattices experience a periodic potential analogous

to that experienced by electrons in solids. Thus, cold atoms can be used to real-

ize models related to those describing solid state materials.

A big difference between cold atoms and electronic systems they emulate is

their energy scales. Typically atoms are 104 times heavier than electrons. More-

over the spacing between atoms is of the order of microns (for electrons in solids,

this is of the order of angstroms). Quantum effects start dominating the physics

when the thermal de Broglie wavelength is of the order of the spacing between

the atoms. Thus, the temperature at which quantum effects become important

is:

T =
h2n2/3

2πmkB
(1.1)

For atoms, this condition is satisfied when the temperatures of order 500 nK (in

traditional solids, this temperature is of the order of hundreds of Kelvin and for

superfluid 4He, this temperature is about 5 K). Cooling dilute atomic gases down

to such temperatures requires extremely specialized cooling techniques. Once

cooled however, these atomic systems provide several advantages for probing.

In particular, the dynamics of atoms can be followed on the timescales of mili-

seconds! In the next section, I give an overview of how experimentalists cool
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atoms, load them in optical lattices and probe their state.

1.2 Cooling atoms, loading them in optical lattices and probing

their state

1.2.1 Cooling Atoms

At first glance, cooling down 106 atoms to nanokelvin temperatures looks like

an impossible task. However, over the past two and a half decades, experi-

mentalists have mastered the techniques to achieve this [1]. In this subsection,

I will discuss a set of cooling techniques which are commonly used to create a

Bose-Einstein condensate.

The first step is to produce an atomic beam by evaporating a metal in an

oven. The oven temperatures can vary a lot by atomic species (about 600 K

for 23Na to about 333 K for 133Cs[3]). The atomic beam is then collimated and

put inside a Zeeman slower. The Zeeman slower comprises a cylindrical tube

in which the atomic beam is irradiated by a counter-propagating laser beam

whose frequency is tuned to be resonant with an atomic transition. When an

atom absorbs a photon of momentum k, it transitions to an excited state and

its velocity reduces by ~k
m . The atoms can return to their ground state by the

spontaneous emission of a photon. This photon is emitted in a random direction

and thus on average, the atom slows down. Once an atom is back to its ground

state, it can absorb another photon with momentum k and the cooling cycle

continues.
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A major bottleneck to the cooling atoms in a Zeeman slower is caused by

the fact different atoms in the atomic beam have different atomic transition fre-

quencies due to the Doppler effect. In order to overcome this challenge, exper-

imentalists harness the spin of the atoms. In particular, by cleverly designing a

spatially varying magnetic field, the Zeeman and Doppler effects can be made

to cancel resulting in efficient cooling of the atoms. At this stage, atoms exhibit

a huge drop in temperature (23Na atoms are cooled to 1K [2] and 133Cs atoms

are cooled to 40µK [3] at this stage).

After coming out of the Zeeman slower, the atoms are trapped in a magneto-

optical trap (MOT) and cooled by laser cooling. Laser cooling is carried out by

subjecting the the atoms to a laser beam which is red detuned from an atomic

transition. Atoms moving towards the laser experience a relativistic Doppler

shift which puts the laser beam in resonance with the atomic transition. Thus,

the atom can absorb a photon and thereby lose momentum. This cools atoms

down further (133Cs atoms cool down to a temperatures of 10µK [3] and 23Na

atoms cool down to a temperature of 100µK[2])

After about 107 − 1010 atoms have been trapped in the MOT, the laser beams

are turned off and atoms are trapped in a purely magnetic trap. The magnetic

trap can localize the weak field seeking states near its minima. This trap com-

presses the cloud and sets the stage for evaporative cooling of the gas.

Evaporative cooling is achieved by first allowing the gas to thermalize in the

trap. The highest energy atoms are removed by lowering the trap depth. When

the remaining atoms thermalize again, but this time the atoms thermalize to a

lower temperature. Evaporative cooling relies crucially on the role of elastic

collisions (“good collisions”) between atoms which causes the atoms to rether-
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malize. The rethermalization time is given by τ ∼ 1/(nσv) where n is the density

of the atoms, σ is the collision cross section and v is the average velocity of the

atoms. During the evaporative cooling stage, atoms also suffer from inelastic

collisions (“bad collisions”) which can lead to heating of the gas. For evapora-

tive cooling to be successful, the ratio of “good collisions” to “bad collisions”

must be 100:1 [4]. This is indeed the case for alkali atoms like 23Na and 87Rb.

However, evaporatively cooling 133Cs can be substantially more difficult. This

is because the magnetically trappable state of 133Cs (|F = 3,mF = −3〉) suffers

from a lot of two-body inelastic collisions that change the spin angular momen-

tum of the atoms. These collisions cause the atoms to transition to a state that is

not magnetically trappable, leading to massive atom loss from the trap[4]. The

collision cross section for 133Cs atoms is about 1000 times greater than that that of

87Rb atoms. Thus, while in 87Rb, each atom undergoes several oscillations before

colliding with another atom, 133Cs atoms experience multiple collisions during

one oscillation period. This leads to quick local thermalization, but the sample

as a whole rethermalizes on the timescale of one trap oscillation period. In this

regime the ratio of “good” to “bad” collisions scale inversely with the density.

Thus, as the density of atoms in the trap rises, the evaporation process becomes

more and more inefficient [4]. Two body inelastic scattering can be suppressed

completely if the atom is cooled to its lowest energy state (|F = 3,mF = 3〉) [3, 5].

This state however is not magnetically trappable. Thus, in order to create a BEC

of 133Cs atoms, the atoms are spin polarized to the |F = 3,mF = 3〉 and then

trapped in a purely optical trap. These atoms can then be evaporatively cooled

successfully[3, 5].

The cooling steps involving the Zeeman slower and MOT are independent

of quantum statistics and are also used to cool fermions. However, evapora-
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tively cooling fermions is very difficult unless the atom has multiple hyperfine

states that can be magnetically trapped. This is because collisions between spin-

polarized fermions are highly suppressed at low temperatures and collisions

are crucial for evaporative cooling[6]. 40K has two magnetically trappable states

and hence a gas of 40K atoms has been cooled to quantum degeneracy using

evaporative cooling[7]. However, 40K is very scarce in nature. 6Li on the other

hand is widely available fermionic atom making it the atom of choice for a lot of

quantum gas experiments. However, 6Li does not have two magnetically trap-

pable states and has to be either cooled sympathetically using another atomic

species as a bath[8, 9] or by using purely optical traps [10] (analogous to the case

of 133Cs). In order to engineer more exotic states of matter (like quantum anti-

ferromagnets), experimentalists have developed further sophisticated cooling

techniques [11, 12].

1.2.2 Loading atoms in an optical lattice

Once the atoms have been cooled, then these atoms are loaded in an optical

lattice[13]. An optical lattice is a crystal of light created by interfering laser

beams. The oscillating electric field of a laser E induces a dipole moment, d in

the atom which interacts with the field, E(r) in the following way:

V(r) = −d · E(r), (1.2)

where E = ε(r) exp(−iωt) + ε∗(r) exp(−iωt). In linear response, the dipole mo-

ment d can be written as:

d±i =
∑

j

αi j(ω)E±j (1.3)
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where α(ω) is the polarizability of the atom, ω is the laser wavelength and

E+(E−) corresponds to the positive(negative) frequency component of E. Sim-

ilarly, d+(d−) corresponds to the positive(negative) frequency component of d.

The polarizability of the atom depends on the energies of the excited states of

the atom and the laser wavelength ω. In particular, the maximum contribution

to the polarizability comes from the excited state whose energy, Ee has the low-

est detuning, ∆ = Ee−~ω. The shift in the energy of the ground state, ∆E is equal

to:

∆E = −2Re(
∑

i, j

αi jE+
i E−j ) (1.4)

When the polarizability is scalar αi j = αδi j, then the energy shift (AC stark shift)

is:

∆E = −2Re(α)|E(r)|2 ∝
I(r)
∆

(1.5)

Thus the atoms experience a potential which is proportional to the intensity of

the laser field. A periodic potential is readily created by interfering lasers.

1.2.3 Probes of Cold atoms

The most commonly used technique to probe the state of a trapped cold gas

is time-of-flight imaging. The basic idea behind this method is to turn off all

external potentials, allow the gas to expand and finally image the atom cloud. If

the gas is allowed to expand for a sufficiently long time, then the time-of-flight

images can be used to reconstruct the momentum space wave function of the

trapped gas. I sketch out the rationale for this method below. The interested

reader can find a a more thorough analysis in refs.[14, 15].

When all the external potentials are turned off, interaction effects become
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unimportant after the first few moments and the gas expands ballistically [16].

This means that the Hamiltonian governing the time of flight expansion of a

cold gas is :

H =
∑

k

~2k2

2m
Ψ
†

kΨk (1.6)

where Ψ(k) is the annihilation operator for a particle of momentum k. The den-

sity distribution after a time t is :

nTOF(r, t) = 〈Ψ(r)†Ψ(r)〉

=

∫
d3kd3k′〈Ψ(k, t)†Ψ(k′, t)〉 exp(ikr) exp(−ik′r)

=

∫
d3kd3k′〈Ψ(k, 0)†Ψ(k′, 0)〉 exp(−i

~2k2

2m
t) exp(ikr) exp(−ik′r) exp(i

~2k′2

2m
t)

≈ (
m
~t

)3〈Ψ(k =
mr
~t
, 0)†Ψ(k =

mr
~t
, 0)〉 = (

m
~t

)3〈ntrap(k)〉 (1.7)

Thus, the density distribution in time-of-flight can be used to probe the quan-

tum state of the trapped gas. In this analysis, I have ignored the initial size of

the atomic cloud, which is a very good approximation for long times[14, 15].

The imaging procedure in a TOF protocol involves shining a laser on a cloud

of gas and then measuring the light transmitted on a CCD. Within a ray optics

picture, the transmitted light’s intensity profile is given by:

I(x, y) = I0 exp(−iN(x, y)σ) (1.8)

where N(x, y) =
∫

dzn(x, y, z) is the cross-sectional density of the atoms and σ is

the photon absorption cross-section. This technique measures the shadow of

the gas.

8



1.3 This Thesis

1.3.1 Frontiers of cold atoms research

There are several frontiers in cold atoms research. This thesis focuses on two

broad areas:

• Hamiltonian Engineering and State Control : One of the main directions

of research in cold atoms physics is the quantum simulation of interacting

many body systems. In order to quantitatively emulate models of interest,

a lot of effort has been directed towards devising protocols to engineer

Hamiltonians which are expected to host exotic ground states. A compli-

mentary approach is to devise protocols to create highly correlated states.

Both of these avenues of research has been very fruitful in realizing novel

quantum phases of matter.

• Non-equilibrium Dynamics: Apart from the special case of non-

interacting systems, it is notoriously difficult to simulate quantum dynam-

ics. Cold atom setups provide a perfect place to observe non-equilibrium

dynamics of closed quantum systems. This provides a platform for

answering fundamental questions in statistical mechanics (like how do

quantum systems equilibrate) and also engineer exotic non-equilibrium

quantum states (like Floquet topological insulators).
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1.3.2 Structure of the thesis

In this thesis, I explore many body physics using Bose-Einstein condensates

loaded in one and two dimensional optical lattices. I show these systems can

be used to study exotic phases and non-equilibrium dynamics. I also discuss

how non-equilibrium protocols like periodic driving can be used for creating

exotic states. This thesis is divided into 7 chapters. Each chapter is followed by

the relevant bibliography.

In chapter 2, I lay out the central mathematical framework used in this thesis.

I start off by deriving the Hamiltonian describing the dynamics of interacting

bosons. Specializing to the case of a BEC, I go on to derive the Gross-Pitaevskii

functional which models the free energy of a BEC. Finally, in the case of bosons

loaded in an optical lattice, I map the continuum Hamiltonian to a tight binding

model: the Bose-Hubbard model. I finish the chapter with a brief discussion on

interpreting time-of-flight images of bosons released from an optical lattice.

In chapter 3, motivated by the reported observation of an exotic “twisted su-

perfluid phase”[17], I study the stability of a two-component BEC loaded in a

spin-dependent honeycomb lattice towards forming a twisted superfluid. My

exhaustive numerical search fails to find this phase, pointing to two possible

scenarios: the experimental observations were either a manifestation of non-

mean field physics or due to interactions during time-of-flight. Subsequent ex-

perimental studies have revealed that the data in that paper was misinterpreted

confirming our results[18].

In Chapters 4,5, and 6, I explore the stability of driven quantum systems.

First, in chapter 4, I analyze the stability of a BEC in a one-dimensional lattice
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subjected to periodic shaking. My work is motivated by an experiment in Prof.

Cheng Chin’s group [19]. In such a system there is no thermodynamic ground

state, but there may be a long-lived steady-state, described as an eigenstate of a

“Floquet Hamiltonian”. I calculate how scattering processes lead to a decay of

the Floquet state. I map out the phase diagram of the system and find regions

where the BEC is stable and regions where the BEC is unstable against atomic

collisions.

Then, in chapter 5, I analyze the stability of a three-dimensional BEC loaded

in a periodically driven one-dimensional optical lattice. I explore collisional in-

stabilities of the Floquet ground state which transfer energy into the transverse

modes. I calculate decay rates, finding that the lifetime scales as the inverse

square of the scattering length and inverse of the peak three dimensional den-

sity. These rates can be controlled by adding additional transverse potentials.

In chapter 6, I explore the effect of transverse confinement on the stability

of a BEC loaded in a shaken one-dimensional or two-dimensional square lat-

tice. I calculate the decay rate from two-particle collisions. I predict that if the

transverse confinement exceeds a critical value, then, for appropriate shaking

frequencies, the condensate is stable against scattering into transverse direc-

tions. I explore the confinement dependence of the loss rate, explaining the rich

structure in terms of resonances. This chapter concludes my investigation of the

stability of driven quantum systems.

In chapter 7, I conclude my thesis with directions for future work.
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CHAPTER 2

BOSONS IN OPTICAL LATTICES

2.1 Overview

In this chapter, I introduce the mathematical framework for modeling a Bose-

Einstein condensate (BEC) loaded in an optical lattice. In section 2.2, I describe

the interactions between bosons in a dilute quantum gas. In section 2.3, I derive

the Gross-Pitaevskii energy functional which describes the properties of a BEC.

In section 2.4, show that bosons loaded in an optical lattice can emulate the Bose-

Hubbard model. Finally, in section 2.5, derive an expression for the distribution

of atoms in time-of-flight after they have been released from an optical lattice.

2.2 Interactions between atoms

In this section, I consider the interactions between neutral alkali atoms. The

interaction between the atoms is often approximated by a Lennard-Jones poten-

tial, U(r) of the form:

U(r) =
A

r12 −
B
r6 (2.1)

The 1
r12 part of the potential models the repulsion at short distances while the

1
r6 part of the potential models the van der Walls attraction between the atoms

at larger distances. The ground state of an ensemble of alkali atoms is a solid.

However, for the dilute atomic vapors present in cold atom experiments, sci-

entists can produce a metastable BEC. In order to model the BEC, I will use a

pseudo-potential, Upseudo(r) which is repulsive at short distances, has no bound

14



states and correctly reproduces the long range, low energy physics when treated

in the Born approximation. The common choice of the pseudo-potential used in

modeling quantum gases is:

Upseudo(r) = gδ3(r). (2.2)

In the rest of this section, I solve the two-body scattering problem for U(r) and

and show that low-energy scattering can be described in terms of a single num-

ber: the scattering length, a. I will then show how the parameter g in eqn.(2.2)

is related to a within the Born approximation.

The two-particle scattering problem is described by the Hamiltonian :

H =
~2k2

1

2m
+
~2k2

1

2m
+ U(r)

=
~2k2

com

4m
+
~2k2

rel

m
+ U(r) (2.3)

Thus, in the center-of-mass frame, the two-particle scattering problem reduces

to a one-particle problem of a quantum particle of mass m/2 in a potential V(r).

The Schrödinger equation for this system is given by:(
−
~2∇2

m
+ U(r)

)
ψ(r) = Eψ(r) (2.4)

The solution to the scattering problem is of the form:

ψ = exp(i k · r) + ψsc(r) (2.5)

At large distances, the scattered wave is a spherical wave of the form

f (k′) exp(ik · r)/r. Thus, at large r, the wavefunction ψ is of the form

ψ = exp(ikz) + f (k′)
exp(ikr)

r
, (2.6)

where I have chosen z to be the direction of k and |k′| = k. The interaction

between alkali atomis is spherically symmetric. This means that f (k′) can be
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written as f (θ). At low energies, only the s-wave channel contributes. Thus f (θ)

can be considered to be a constant at large distances. Labelling that constant as

−a, the wavefunction ψ can be written as:

ψ = exp(ikz) −
a
r

exp(ikr). (2.7)

For s-wave scattering, a is defined to be the scattering length in the limit of large

distances (k = 0).

I am interested in formulating a theory which only involves the long wave-

length and low energy degrees of freedom. To do this, I Fourier transform the

wavefunction ψ given in eqn.(2.5) to obtain

ψ(k′) = (2π)3δ3(k′ − k) + ψsc(k′) (2.8)

This wave-function satisfies the Schrödinger equation(
~2k2

2m
−
~2k′2

2m

)
ψsc(k′) = U(k′ − k) +

1
V

∑
k′′

U(k′ − k′′)ψsc(k′′) (2.9)

The scattered wave-function can be written down as:

ψsc(k′) =

(
~2k2

2m
−
~2k′2

2m
+ iδ

)−1 U(k′ − k) +
1
V

∑
k′′

U(k′ − k′′)ψsc(k′′)


=

(
~2k2

2m
−
~2k′2

2m
+ iδ

)−1

T (k′, k; E =
~2k2

2m
) (2.10)

and the T -matrix satisfies the relation:

T (k′, k; E) = U(k′ − k) +
1
V

∑
k′′

U(k′ − k′′)
(
E −
~2k′′2

2m
+ iδ

)−1

T (k′′, k; E) (2.11)

At long distances and low energies (E = k = 0), the scattered wave takes the

form:

ψsc = −
mT (0, 0; 0)

4π~2r
(2.12)
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From the definition of the scattering length in eqn.(2.7), I obtain

a =
m

4π~2 T (0, 0; 0) (2.13)

Now, for a contact interaction, U(k′, k) = g and thus the the T matrix becomes:

T (k′, k; E) = g +
g
V

∑
k′′

(
E −
~2k′′2

2m
+ iδ

)−1

T (k′′, k; E) (2.14)

Since, I am only interested in the asymptotic nature of the scattered wave, I can

T (k′, k; E) approximate to be just a function of the energy E. Thus, one gets:

T (k′, k; E) =
g

1 − g
V

∑
k′′

(
E − ~2k′′2

2m + iδ
)−1 (2.15)

This means

T (0, 0, 0) =
4π~2a

m
=

g

1 − g
V

∑
k′′

(
−~

2k′′2
2m + iδ

)−1 (2.16)

For a particular measured value of a and a high momentum cutoff Λ, this equa-

tion yields a particular value of g. The Born approximation amounts to taking

the cut-off Λ = 0 yielding:

g =
4π~2a

m
. (2.17)

The scattering lengths, of alkali atoms that are typically used in cold atom ex-

periments is about 5 nm while the typical inter-particle spacing is about 500 nm.

Thus, these gases are dilute in the sense na3 � 1, where n is the density of the

atoms. The Born approximation is sufficient to accurately calculate the low en-

ergy properties of such dilute quantum gases [1]. Hence, throughout this thesis,

I use an effective interaction of the form:

U(r − r′) =
4π~2a

m
δ
(
r − r′

)
(2.18)
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2.3 Gross-Pitaevskii Energy Functional

With the pseudopotental from eq.(2.18), the Hamiltonian describing a system of

interacting trapped bosons is given by:

H =

∫
d3r Ψ†(r)

(
−
~2∇2

2m
+ Vext(r) +

g
2

Ψ†(r)Ψ(r)
)
Ψ(r), (2.19)

where Ψ(r) is the annihilation operator for a boson at position r. The operators

Ψ and Ψ† obey the usual bosonic commutation relation:[
Ψ(r),Ψ†(r′)

]
= δ3(r − r′)[

Ψ(r) ,Ψ(r′)
]

=
[
Ψ†(r),Ψ†(r′)

]
= 0 (2.20)

In describing a BEC, I assume that all the bosons macroscopically occupy the

same quantum state φ(r). Thus the wavefunction is given by :

ψ(r1, r2, . . . , rN) = ΠN
i=1φ(ri) (2.21)

where
∫

d3r|φ(r)|2 = 1. Thus, in this mean-field approach, the energy of the

condensate is given by:

E[φ] = N
∫

d3r φ∗(r)
(
−
~2∇2

2m
+ Vext(r) +

g
2
|φ(r)|2

)
φ(r). (2.22)

In order to variationally minimizing the energy functional E[φ] while keeping

the number of particles constant, I have to minimize the functional:

F[φ] = E[φ] − µN
∫

d3r |φ(r)|2, (2.23)

where N is the number of particles and µ is the chemical potential. The func-

tional F[φ] is minimized by setting δF
δφ∗

= 0. This condition leads to the time-

independent Gross-Pitaevskii equation(
−
~2

2m
∇2 + Vext(r) + g|ψ(r)|2

)
ψ(r) = µψ(r) (2.24)

where ψ(r) = N1/2φ(r).
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2.4 Bose-Hubbard Model

In this section, I show that bosons loaded in an optical lattice emulates the Bose-

Hubbard model. This analysis follows Jaksch et al. [2].

My starting point is the Hamiltonian in eqn.(2.19) where Vext(r) is a periodic

potential:

Vext(r) = V0 sin(k · r). (2.25)

Following Bloch’s theorem[3], I can write down the eigenfunctions of the single

particle Hamiltonian can be written down in the form:

ψn,k(r) = un,k(r)ei k·r (2.26)

where un,k(r) = un,k(r + R), n is the band-index and k is the crystal momentum.

Using these Bloch functions, I construct a basis of Wannier functions, wα(r,R)

where R is a bravais lattice vector:

wα(r,R) =
∑

k

ψα,k(r) exp(−i k · R) =
∑

k

uα,k(r) exp(−i k · (r − R)). (2.27)

The Wannier function only depends on r − R. The creation and annihilation

operators can now be expanded in the basis of the Wannier states:

ψ(r) =
∑

i

an,iwn(r − Ri). (2.28)

I now expand the Hamiltonian in eqn.(2.19) to obtain a tight binding model:

H =
∑

i, j

−Jn
i ja
†

n,ian, j +
1
2

∑
m,n,m′,n′

∑
i, j,i′, j′

Um,n,m′,n′

i, j,i′, j′ a†m,ia
†

n, jam′,i′an′, j′

 , (2.29)

where

Jn
i j =

∫
d3r w∗n(r − Ri)

(
−
~2∇2

2m
+ V0 sin(k · r)

)
wn(r − R j)

Um,n,m′,n′

i, j,i′, j′ =

∫
d3r g

(
w∗n(r − Ri)w∗m(r − Ri)wm′(r − R′i)wn′(r − R′i)

)
. (2.30)
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As has been shown in ref.[4], if only the lowest band is considered, the the on-

site interaction term U is about two orders of magnitude greater than the other

interaction terms. Thus, the tight-Binding Hamiltonian takes a much simpler

form when only the lowest band is considered, :

H −
∑

i, j

−Ji ja
†

i a j +
U
2

∑
i

a†i a†i aiai

 (2.31)

Moreover, for typical cold atom experiments, the nearest neighbor hopping

term is sufficient to describe the single-particle physics in the lowest band [4].

Thus, the model in eq.(2.31) takes the form:

H −
∑
〈i, j〉

−ta†i a j +
U
2

∑
i

a†i a†i aiai

 , (2.32)

where 〈i, j〉means that only tunneling between nearest neighbor sites is allowed.

This is the Bose-Hubbard model and it can be used to study both the superfluid

and Mott insulator phases of bosons.

2.5 Time-of-flight images

In this section, I derive an expression for the density distribution of an expand-

ing cloud of atoms after all the external potentials are turned off. This density

distribution can be used to interpret time-of-flight images which in turn can be

used to reconstruct the momentum space distribution of the trapped gas. For

bosons loaded in an optical lattice, the momentum space distribution of the

trapped atoms is given by:

ntrap(k) =

∫
d3rd3r′ exp(−i k · (r − r′)〈ψ†(r)ψ(r′)〉. (2.33)
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From the expansion given in eq.(2.28), I obtain:

ntrap(k) =

(m
~t

)3
|w(k)|2

∑
i, j

exp(i k · (ri − rj))〈a
†

i a j〉. (2.34)

Thus after switching off all external potentials and waiting for time t, the density

of atoms at a position, nTOF(r) is proportional to ntrap(mr
~t ):

nTOF(r) = |w(
mr
~t

)|2n(k =
mr
~t

), (2.35)

where n(k = mr
~t ) =

∑
i, j exp(i k · (ri − rj))〈a

†

i a j〉 is the momentum space structure

factor of the trapped gas [5, 6]. All the experiments that I model in this thesis

have used time-of-flight imaging to probe the condensate wavefunction.
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CHAPTER 3

ABSENCE OF THE TWISTED SUPERFLUID STATE IN A MEAN FIELD

MODEL OF BOSONS ON A HONEYCOMB LATTICE

This chapter is adapted from the paper from “Absence of the Twisted Superfluid State in

a mean field model of bosons on a Honeycomb Lattice” by Sayan Choudhury and Erich

J Mueller, published in Physical Review A 87, 033621 (2013).

3.1 Overview

Motivated by recent observations [Soltan-Panahi et al., Nat. Phys. 8, 71 (2012)], I

study the stability of a Bose-Einstein condensate within a spin-dependent hon-

eycomb lattice towards forming a twisted superfluid state. My exhaustive nu-

merical search fails to find this phase. The experimental results are the either

a manifestation of non-mean-field physics or due to interaction effects during

time of flight. I also discuss a recent experiment which has shown that the ob-

servations were an artifact of the measurement process, thus validating my con-

clusion.

3.2 Introduction

3.2.1 Background

Recently, the Hamburg group found evidence of a zero quasi-momentum

“Twisted Superfluid” state of a two-component Bose-Einstein condensate (BEC)
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trapped in a spin-dependent honeycomb lattice [1]. A twisted superfluid is

characterized by Bose-Einstein condensation into a state whose order param-

eter (a macroscopically occupied single particle wavefunction) has a spatially

varying phase. The simplest example is condensation at finite momentum. Al-

ternatively, in a non-Bravais lattice where the unit cell involves multiple sites,

one can have a twisted superfluid at zero quasi-momentum if the phase of the

order parameter varies throughout the unit cell. In this chapter, I model Soltan-

Panahi et al.’s experiment [1] with a mean field Gross-Pitaevskii functional. I

find that the twisted superfluid state is absent within mean field theory thus

suggesting that the observations are either due to non-mean field effects or due

to interactions during time-of-flight.

Twisted Superfluids are quite exotic; the phase twists of the order param-

eter are naturally associated with microscopic currents. Moreover, the present

example involves spontaneous symmetry breaking, and provides a setting for

studying phase transition physics. Analogous physics can be found in magnetic

systems [2] and in the excited states of lattice bosons [3, 4].

3.2.2 Experimental Evidence for a Twisted Superfluid

In their experiment [1], Soltan-Panahi et al. created a two component Bose-

Einstein condensate (BEC) of 87Rb atoms in a spin-dependent honeycomb lat-

tice. Soltan-Panahi et al. find evidence for the Twisted Superfluid state in two

cases: a BEC of 87Rb atoms in the |F = 1,mF = −1〉 and |F = 1,mF = 1〉 state and a

BEC of 87Rb atoms in the |F = 2,mF = −2〉 and |F = 1,mF = −1〉 state. In both of
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these cases, the two spin states form out-of-phase charge density waves in this

spin dependent lattice. In Figure 3.1, I show a cartoon of the density of atoms in

one of the two spin states. For the rest of this chapter, I focus on the case where

the two spin states are |F = 1,mF = −1〉 and |F = 1,mF = 1〉.

The main experimental evidence for non-trivial phases of the superfluid

order parameter comes from time-of-flight expansion, a technique where all

trapping fields are removed and the atomic ensemble falls freely under grav-

ity. Neglecting interactions [5], the long-time real space density profile is sim-

ply the initial density in momentum space. For the special case of a BEC, the

momentum space density, nk is the Fourier transform of the order parameter :

nk = |ψ(k)|2 = |
∫

exp(+ik.r)ψ(r)|2, where ψ(r) is the order parameter of the BEC.

As schematically illustrated in Figure 3.2, if ψ(r) is real, and has the symmetry

of the honeycomb lattice, its Fourier transform (and consequently the time-of-

flight pattern) is six fold symmetric. This six-fold symmetry persists even if the

densities on the two sub-lattices differ, forming a three-fold symmetric charge

density wave as illustrated in Figure 3.1. Mathematically, this six-fold rotational

symmetry of the time-of-flight pattern is a consequence the point group symme-

try of the lattice (C3v) and the relation ψ(−k) = ψ∗(k), which holds for real ψ(r).

Therefore, a time-of-flight pattern without inversion symmetry (ψ(−k) , ψ∗(k))

is direct evidence of a complex wavefunction (i.e. a twisted superfluid state).

The experimentalists see exactly this signature.

From the time-of-flight images obtained in [1], a breakdown of the six-fold

rotational symmetry in momentum space is observed for lattice depths Vlat rang-
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ing from about 1 to 4 ER, where ER = ~2

2mλ2
L
, λL is the wavelength of the lasers

forming the lattice, m is the mass of 87Rb atoms and Vlat is precisely defined by

Eq.(3.6). Figure 3.2 illustrates this structure in which the amplitudes of the first

order time-of-flight peaks (denoted by |t| and |z|) have different values for this

range of lattice depths. An important aspect of their experiment was that this

rotational symmetry breaking arises only if both species of atoms are present.

Moreover, the symmetry breaking was opposite for the two species (i.e |t1 |
|z1 |

= |z2 |

|t2 |
).

The order parameter (OP) for the twisted superfluid state is given by:

O = |
|z|2 − |t|2

|z|2 + |t|2
| (3.1)

By construction, OP has a non-zero value in the twisted superfluid and is

zero for a uniform condensate. Soltan-Panahi et al. measure this quantity.

The experimental evidence suggests that the order parameter is uniform on

each of the triangular sub-lattices of the honeycomb lattice, but that there is a

relative phase δ between them.

|z|2 = n+ + n− + 2
√

n+n− sin(δ) and (3.2)

|t|2 = n+ + n− − 2
√

n+n− sin(δ), (3.3)

where the n+ and n− denote the density of atoms on the two distinct sub-lattices.

Thus, the order parameter is :

OP =
2
√

n+n−|sin(δ)|
n+ + n−

. (3.4)
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Figure 3.1: The density wave formed in a honeycomb lattice for the mF = 1
atoms. The points represent lattice sites. Larger points indicate
a site filled with more atoms. This pattern is periodically re-
peated. A complementary density wave is formed by mF = −1
atoms. This density wave does not lead to a 6-fold symmetry
breaking in time-of-flight unless additional phases appear on
the sites.

3.3 The Model

Within a mean field model, I will investigate the relative stability of twisted

or ordinary superfluids. The energy of a two component BEC, described by

macroscopic wavefunctions ψ1 and ψ2 is :

E3D =

∫
d3r

∑
σ=1,2

(
~2

2m
|∇ψσ(r)|2 + Vσ(r)|ψσ(r)|2 + Vconf(r)(|ψ1(r)|2 + |ψ2(r)|2) +

Uσ
3D

2
|ψσ(r)|4

)
+ W3D|ψ1(r)|2|ψ2(r)|2 (3.5)

Here, Uσ
3D = 4π~2aσ

m is the intra-species interaction energy (aσ is the intra-

species scattering length for species σ), while W3D = 4π~2a12
m is the inter-species
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Figure 3.2: Schematic of the Time-of-Flight pattern for a superfluid in a
2D honeycomb lattice. Larger darker dots correspond to more
particles with a given momentum. The complex numbers |t|
and |z| represent the amplitudes of the Fourier transform of the
condensate wavefunction at k = (πa , 0) and k = (

√
3π

2a ,
π
2a ) (see

text). The twisted superfluid is described by |t| , |z|.

interaction energy (a12 is the inter-species scattering length). As already men-

tioned in Section 3.2.2, I focus on the case in [1], where the states 1 (described by

ψ1) and 2 (described by ψ2) are the |F = 1,mF = 1〉 and |F = 1,mF = −1〉 states of

87Rb. For these two hyperfine states of 87Rb atoms, U1
3D,U2

3Dand W3D are almost

equal (a ≈ 100a0 where a0 is the Bohr radius). In principle collisions can connect

these hyperfine states to others (for example |F = 1,mF = 0〉). For the exper-

28



imental parameters, these processes are off-resonant and the two-component

Bose gas model describes the physics.

In the experiment [1], the honeycomb lattice is generated by 3 lasers yielding

a potential Vi(r) = Vhex(r)±αBeff(r) where, state 1 sees the sign ‘+’ and state 2 sees

the sign ‘-’ (with α = 0.13) and

Vhex(r) = 2 Vlat(cos[kL b1.x] + cos[kL b2.x] + cos[kL b3.x]) (3.6)

Beff(r) = 2
√

3 Vlat(sin[kL b1.x] + sin[kL b2.x] + sin[kL b3.x]) (3.7)

where, b1 = −1
2ex +

√
3

2 ey; b2 = −1
2ex −

√
3

2 ey; b3 = ex and kL = 2
√

3π/λL (λL is

the laser wavelength and is 830 nm for the experiment under discussion). With

these considerations Vlat is the height of the barrier between neighboring sites.

The difference between the maximum and minimum values of Vhex(r) is 8 Vlat.

The experiment uses a separate set of lasers to provide strong confinement

in the third dimension, Vconf(r):

Vconf(r) = V1D cos[
2π
λ1D

z] ≈
V1D

2
(

2π
λ1D

)2z2. (3.8)

This potential restricts the dynamics to two dimensions and one may take the

wavefunction of the BEC in the third direction to be constant and Gaussian.

Then the energy can be written as :

E2D =

∫
d2r

∑
σ=1,2

[−
~2

2m
∇2ψσ(r) + Vσ(r)|ψi(r)|2

+
U2D

2
|ψσ(r)|4] + W2D|ψ1(r)|2|ψ2(r)|2 (3.9)
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where U2D = U3D

√ √
mV1D 2π
λ1D h and W2D = W3D

√ √
mV1D 2π
λ1D h . In the experiment [1],

λ1D = λL = 830 nm and V1D = 8.8ER. For these parameters, the weakest lattice

yielding a Mott state is Vlat ≈ 3.5 ER for two particles per unit cell within the

Gutzwiller mean field approximation [6].

I assume a form of ψ1(r) and ψ2(r) which is consistent with the time-of-flight

measurements :

ψ1(r) =
∑

k

ψ1(k) exp(−i k.r), (3.10)

ψ2(r) =
∑

k

ψ2(k) exp(−i k.r). (3.11)

where k are the reciprocal lattice vectors of a honeycomb lattice. I insert this

variational ansatz into eq.(3.5) and minimize the energy with respect to the set

of variational parameters ψ1(k) and ψ2(k). I find from my simulations that for

all experimental parameters ψ1(k) = ψ∗2(k), where ψ∗2(k) is the complex conjugate

of ψ2(k). This result is sensible and implies ψ1 and ψ2 are related by a lattice

translation.

I perform the variational minimization in Fourier space rather than real

space (where such minimization is usually done). This is equivalent to solv-

ing the Gross-Pitaevskii equation in real space within a single unit cell with

periodic boundary conditions. Computationally, I find momentum space to be

more efficient. Moreover, the experimental probes are all in momentum space.

Similar approaches have been used by other authors [7, 8, 9].
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3.4 Method

In k-space, the energy, eq.(3.9) becomes :

E2D

ER
=

∑
{k,k1,k2,k3}εL

∑
i=1,2

[3 k2ψ∗i (k)ψi(k) + Vi(k1)ψ∗i (k2)ψi(k2 − k1)

+
U
2
ψ∗i (k1)ψ∗i (k2)ψi(k3)ψi(k1 + k2 − k3)]

+ Wψ∗1(k1)ψ1(k2)ψ∗2(k3)ψ2(k1 + k3 − k2), (3.12)

where L stands for the reciprocal lattice i.e k = (a1b1 + a2b2), a1 and a2 being

integers and k = |k|. All energies (Vi,U and W) are expressed in terms of ER.

While I carried out unrestricted minimizations, my results are best illus-

trated by considering an ansatz where the low momentum physics is character-

ized by 2 complex numbers t and z. In particular, I take ψ1(k) = t and ψ2(k) = z

for k = {b1, b2, b3} and ψ1(k) = z and ψ2(k) = t for k = {−b1, −b2, −b3}. In

terms of their real and imaginary parts, I write

t = tr + i ti and (3.13)

z = zr + i zi. (3.14)

As has been mentioned in Section 3.2.2, the order parameter (OP) for the twisted

superfluid state is given by:

OP = |
|z|2 − |t|2

|z|2 + |t|2
| (3.15)

For my minimization, I restrict ourselves to |k| ≤ 6 giving us 159 complex

variational parameters. I find that there are no differences if I use |k| ≤ 4 instead.

Therefore, I believe my results faithfully reflect what would be found if an infi-

nite number of Brillouin zones were included. I gain further confidence in the
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convergence of my results by noting that the fraction of population occupying

the |k| = 4 state when U = 0.05ER and Vlat = 3.8ER is about 0.0001%. It should

also be noted that in the absence of interactions, at Vlat = 4ER, the real space

Wannier functions have width 1
kL

√
2
3 and the probability of having |k| ≥ 2 is less

than 2 %. Interactions tend to spread out the wavefunction, further reducing

the occupation of high |k| states. In my simulations, I vary U in the range 0.03ER

to 0.2ER corresponding to various strengths of the transverse confinement. For

the experiment, U ≈ 0.05ER. I also vary α in the range 0.08 to 0.3, corresponding

to varying amounts of detuning of the laser beams.

3.5 Results

I do not find any evidence for the existence of the Twisted Superfluid state de-

spite an extensive search of the parameter space. Since Eq.(3.12) is a quartic

form, it will in general have multiple minima and a number of other stationary

points. The most grave concern with my results is that I might not have found

the global minimum. To some extent, I can alleviate this concern by noting that

the experiment finds a continuous symmetry breaking as a function of lattice

depth. It therefore suffices to establish that my solution is a dynamically sta-

ble local minimum which is continuously connected to the symmetry-unbroken

ground state at Vlat = 0.
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3.5.1 Local Energetic Stability

I check whether whether I have found a true minimum by looking at the eigen-

values of the Hessian H defined by :

Hi j =
∂2E
∂ai∂a j

, (3.16)

where ai and a j are real variational parameters (corresponding to the real and

imaginary parts of ψ(k)). I find that for all parameters, the eigenvalues of H are

positive. This implies that I have at least found a local minimum. In Figure 3.3,

I plot the minimum eigenvalues of the Hessian for different values of the lattice

depth (Vlat) at the illustrative interaction strength, U = 0.05ER and α = 0.14, for

five particles (of each species) per unit cell.

I further illustrate the stability of my theory by doing two separate numeri-

cal experiments :

(a) Fix the ratio of zr (Re[z]) to tr (Re[t]) and vary the remaining variational

parameters to find the energy minima. I find that the minimum of the energy

occurs when zr : tr = 1 and there are no other local minima. The dotted curve

shows this in Figure 3.4.

(b) Fix the ratio of zi (Im[z]) to ti (Im[t]) and vary the remaining variational

parameters to find the energy minima. I find that the minimum of the energy

occurs when zi : ti =1 and there are no other local minima. The solid curve shows

this in Figure 3.4.
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Figure 3.3: Minimum eigenvalue of the Hessian, λ0 in the Normal super-
fluid phase plotted against the lattice depth, Vlat (in units of
ER) when U = 0.05ER and 5 particles (of each species) are
present per unit cell. All the eigenvalues of the Hessian are
positive, thereby showing the stability of the normal phase. I
conclude that there is no Twisted superfluid state for these po-
tential depths. This result is illustrative of all parameter ranges
I explored.

I conclude that there is no second order phase transition within mean field

theory.

3.5.2 Local Dynamic Stability

I also check whether the minimum found is unstable against perturbations. This

is done by looking at the Gross-Pitaevskii equation :

i~
∂ψ

∂t
=
∂E
∂ψ∗

(3.17)
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This would imply :

i~
∂δa j

∂t
=
δE
δa j
≈

∑
l

∂2E
∂a j∂al

δal (3.18)

Taking the real and imaginary parts of both sides, I get the eigenvalue equations

~ω u = Mu (3.19)

where,

M =

 Re[H] -Im[H]

Im[H] Re[H]


I look at the eigenvalues of this matrix, M. A complex eigenvalue would

signify the presence of a mode which will grow with time, thus rendering this

ground state unstable. I find that all the eigenvalues are real. Thus, the mini-

mum that I have found is also dynamically stable. This is a generic feature of

quantum systems: Energetic stability implies dynamic stability [10].

3.6 Discussion

Given that my mean-field treatment of Eq. (3.5) fails to reproduce the exper-

imental observations, I must now confront the question of what additional

physics is needed to produce a twisted superfluid state. In this section, I present

a tight-binding model which has a twisted superfluid ground state and discuss

connections with my approach. Namely, consider a Hamiltonian:

H =
∑
<ij>

(
−t(â†i↑âj↑ + â†i↓âi↓) + tcf(â

†

i↑â
†

j↓âj↑âi↓) + h.c.
)
. (3.20)

Here, aiσ annihilates a particle labelled by the spin index σ on site i, and the sum

is over all nearest neighbor sites of a honeycomb lattice. The parameters t and
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Figure 3.4: Slice through the energy landscape at Vlat = 1.8ER and U =

0.05ER and 5 particles (of each species) per unit cell. Dotted
curve: The ratio Re[z]:Re[t]is varied and the energy is found
by minimizing with respect to the other variational parameters.
Solid curve: Same, but with varying Im[z]:Im[t]. I find that the
overall energy minimum occurs when Re[z] = Re[t] and Im[z]
= Im[t].

tcf represent single particle and counter-flow hopping. I consider a mean-field

ansatz where âjσ is replaced by a c-number, which can take one of two values,

depending on which sub-lattice site j belongs to (see Fig. 3.1):

aj↑ =
√

n+ exp(−i δ/2) sublattice A (3.21)

aj↑ =
√

n− exp(+i δ/2) sublattice B (3.22)

and

aj↓ =
√

n− exp(+i δ/2) sublattice A (3.23)

aj↓ =
√

n+ exp(−i δ/2) sublattice B (3.24)
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A twisted superfluid corresponds to δ , 0 and physically can be interpreted

as a state where there are microscopic single particle single particle currents,

which are precisely balanced by microscopic counterflow currents. The mean-

field energy per site is :

E =
(
−12t

√
n+n−cos(δ) + 6tcf n+n−cos(2δ)

)
. (3.25)

The lowest energy state has δ , 0 if :

2tcf(n+n−) > t
√

n+n− (3.26)

My model in Eq. (3.5) contains terms of the form as those in Eq. (3.25). For

deep lattices [11],

t ∼ |a|−3/2 exp(−π
√

Vlat/ER/2) (3.27)

and

tcf ∼ |a|−3 exp(−π
√

Vlat/ER), (3.28)

where a is the distance between nearest neighbors. The exponential suppres-

sion of tcf means that for any reasonable particle density, Eq.(3.26) is not sat-

isfied. On the other hand, quantum fluctuations suppress single particle hop-

ping more than counterflow [12, 13, 14, 15, 16], and a beyond mean field theory

treatment of Eq.(3.5) could yield a twisted superfluid. Thus, the observations

of Soltan-Panahi et al. [1] may be evidence of non-mean field physics. Other

explanations of non-mean field physics leading to a twisted superfluid can be

found in refs.[17, 18, 19].

An alternate scenario is that once all the external potentials are turned off,

interaction effects in the first milliseconds changes the momentum space wave-

function of the two component BEC and this results in the observed symmetry

breaking in momentum space.
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3.7 Update

In a follow up experiment, the Hamburg group performed a comprehensive

study of the time-of-flight images of a single component and two-component

BEC of 87Rb atoms loaded in a honeycomb lattice [20]. They found that a break-

ing of the six-fold rotational symmetry in time-of-flight images was observed

only when the different components experience different lattice potentials. For

instance, a two-component BEC of 87Rb atoms with atoms in the state |2,−2〉 and

|1,−1〉 experience the potentials Vhex(r) + αBeff(r) and Vhex(r) − αBeff(r). When all

the external potentials are turned off and the gas is allowed to expand, then the

time-of-flight images of the expanding atom cloud exhibits symmetry breaking.

In contrast, a 2 component BEC of atoms in non-magnetic hyperfine states (like

|1, 0〉 and |2, 0〉) where both species experience the same potential Vhex(r) does

not show any symmetry breaking in time-of-flight images. Furthermore, a sin-

gle component BEC never exhibits symmetry breaking in time-of-flight images.

In order to explore this issue further, the experimentalists carried out an-

other protocol: they removed the |2,−2〉 species from the two component BEC

at different times after turning off the external trapping potentials. In this case,

the experimentalists observed that the symmetry breaking was not observed if

one of the components was removed right after all the external potentials are

turned off. However, if both components are present during the expansion,

then the symmetry breaking develops over 1.2 ms and then persists upto 18 ms.

All of these observations led the experimentalists to conclude that the observed

symmetry breaking was a manifestation of inter-species interactions during the

time-of-flight.
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The experimental results can be explained theoretically by numerically inte-

grating the Gross-Pitaevskii equation [20]. A simple model for understanding

the observed momentum space symmetry breaking is illustrated in fig.. The

basic idea is to consider a two-component BEC where one of the components

preferentially occupy the A sub-lattice (I will label these atoms as ‘A’ atoms)

and the other component occupies the B sub-lattice (the ‘B’ atoms). When the

gas is expanding after all the potentials are turned off ‘A’ atoms interact with

more ‘B’ atoms in the reciprocal lattice direction b1 than b2. The scenario is in-

verted for the ‘B’ atoms. This kind of momentum-dependent scattering leads to

the observed breaking of the six-fold symmetry in the time-of-flight data.
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Figure 3.5: Scattering process for a 2 component BEC during time-of-flight
expansion. The A sub-lattice is labelled by the color blue while
the B sub-lattice is labelled by black. During time-of-flight ex-
pansion the ’A’ atoms experience more lattice sites the recipro-
cal lattice direction b1 than b2. The effect is reversed for the‘B’
atoms. These scattering processes causes redistribution of the
atoms and leads to the observed symmetry breaking in time-
of-flight.

40



BIBLIOGRAPHY

[1] P. Soltan-Panahi, D.-S. Lühmann, J. Struck, P. Windpassinger and K. Seng-
stock, Nature Physics 8, 71-75 (2012).

[2] J. Struck, C. Ölschläger, R. Le Targat, P. Soltan-Panahi, A. Eckardt, M.
Lewenstein, P. Windpassinger and K. Sengstock, Science 333, 996 (2011).
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CHAPTER 4

STABILITY OF A FLOQUET BOSE-EINSTEIN CONDENSATE IN A

ONE-DIMENSIONAL OPTICAL LATTICE

This chapter is adapted from “Stability of a Floquet Bose-Einstein condensate in a one-

dimensional optical lattice” by Sayan Choudhury and Erich J. Mueller, published in

Physical Review A, 90, 013621 (2014).

4.1 Overview

Motivated by recent experimental observations [Parker, Ha, and Chin, Nat.

Phys. 9, 769 (2013)], I analyze the stability of a Bose-Einstein condensate (BEC)

in a one-dimensional lattice subjected to periodic shaking. In such a system

there is no thermodynamic ground state, but there may be a long-lived steady

state, described as an eigenstate of a “Floquet Hamiltonian”. I calculate how

scattering processes lead to a decay of the Floquet state. I map out the phase

diagram of the system and find regions where the BEC is stable and regions

where the BEC is unstable against atomic collisions. I show that Parker et al.

performed their experiment in the stable region, which accounts for the long

lifetime of the condensate.

4.2 Introduction

Recently there has been much interest in periodically driven quantum systems

(Floquet systems), as time dependent forces provide a new knob for accessing
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interesting phenomena. Some of these phenomena are analogous to physics

seen in static systems (e.g edge modes in Floquet topological insulators and ar-

tificial gauge fields in cold atom systems) [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,

15, 16, 17, 18, 19, 20, 21, 22, 23, 24], but other phenomena are unique to the non-

equilibrium system (such as ac-induced tunneling and anamalous edge states in

insulators with zero Chern number) [25, 26, 27, 28, 29]. In the cold atom context,

particular interest has focussed on bosonic systems, as they are most accessible

experimentally. Parker et al. recently observed an interesting analog of a ferro-

magnetic transition in a Bose gas trapped in a shaken one dimensional optical

lattice [30]. Here, I theoretically analyze their experiment, studying the stability

of their condensate. I find both stable and unstable regions. Consistent with the

experimental observation of background gas collision limited lifetimes, I find

that under the experimental conditions the condensate is stable against atomic

collisions. Similar considerations will be important for any cold atom experi-

ments on periodically driven systems.

The Schrödinger equation with periodic driving is analyzed using Floquet

theory [31, 32]. Prior studies of periodically driven lattice systems have largely

ignored interactions, focussing instead on how the single-particle physics is

renormalized by the driving. For example, the band curvature and effective

mass can be tuned with this technique [33, 34, 35]. One can even invert a band,

effectively flipping the sign of the hopping matrix elements. This latter feature

has been used to realize models of frustrated magnets [3, 4]. More sophisti-

cated driving techniques can be used for engineering artificial gauge fields [5, 6].

The driving can cause band-crossing leading to non-trivial topological numbers

[7, 8, 9, 10, 11, 12, 13]. Extending these results to include interactions is impor-
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tant. Here, I look at atom-atom scattering. In the context of solid state physics,

there has been some consideration of electron-phonon scattering [14, 15]. There

also have been studies of non-dissipative interaction physics [36]. My work

has connections with broader studies of heating in periodically driven systems

[37, 38, 39, 40, 41, 42, 43] .

In Section 4.3, I describe the experiment and my main results about the sta-

bility of the condensate against atom-atom scattering. In section 4.4.1 and 4.4.2,

I derive the Floquet spectrum and in Sec. 4.4.3, I predict the decay rate of a

Floquet BEC.

4.3 Model

In Ref. [30], Parker et al. load a Bose-Einstein condensate (BEC) of 25,000 133Cs

atoms into a one-dimensional optical lattice. This lattice is then shaken at a fre-

quency ω, where ω ≈ (7.3 × 2π) kHz is slightly larger than ∆0
~

: ∆0 is the energy

difference between the first and the second band at k = 0. From the experimental

parameters, I estimate ∆0 ≈ 4.96 ER, where ER = h2

2mλ2
L

(λL is the laser wavelength

and is 1064 nm for this experiment). The amplitude of shaking is slowly ramped

up to a final value near 15-100 nm for a time of 5-100 ms. The shaking continues

for 50-100 ms before the lattice and all the confinement is turned off, allowing

the condensate to expand. By looking at the time of flight expansion images,

the experimentalists determine if the condensate is at zero-momentum or fi-

nite momentum. By analogy with an Ising ferromagnet, where the condensate

momentum is mapped onto the magnetization, they refer to these scenarios as
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paramagnetic and ferromagnetic. They also describe the finite momentum con-

densate as a Z2 condensate.

In the frame of the moving lattice, the Hamiltonian for the driven system is

given by H = H0(t) + Hint [1], where

H0(t) =

∫
dx Ψ†(x)

(
−~2

2m
d2

dx2 + V0 sin2
(
2πx
λL

))
Ψ(x)

+

∫
dx Ψ†(x) (xF0 cos(ωt)) Ψ(x), (4.1)

Hint =
g
2

∑
i1,i2,i3,i4

∫
dx Ψ

†

i1(x)Ψ†i2(x)Ψi3(x)Ψi4(x).

(4.2)

The atomic mass is m, the force from the periodic shaking is F0 cos(ωt) and

g ≈ 4π~2as
md2
⊥

is the 1-D effective interaction strength: as is the scattering length

and d⊥ is the length-scale of transverse confinement.

The most intuitive way to analyze such a periodically driven system is to

imagine observing the evolution of the system stroboscopically: i.e at times t, t +

T, t + 2T, . . . t + nT ; where T = 2π
ω

is the time-period of the Hamiltonian and n is

an integer. The time-evolution operator for n-periods is the n’th power of the

time-evolution operator for one period:

U(nT ) = T exp
(
−i

∫ nT

0
dt H(t)/~

)
= U(T )n (4.3)

It is therefore natural to define an effective Hamiltonian, Heff , such that

U(T ) = exp(−iHeffT/~) (4.4)

The interested reader will find a more detailed derivation of Heff in appendix A.
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In analogy to describing the labeling of Bloch states as “quasi-momentum”,

the eigenvalues of Heff are “quasi-energies”. The operator Heff is not unique, as

its eigenvalues (i.e “quasi-energies”) are only defined up to multiples of ~ω. One

can associate with each Bloch band of the undriven system, an infinite ladder of

Floquet bands, separated by energies ~ω. For the rest of the paper, I refer to the

Bloch band connected adiabatically to the first (second) Bloch band in the limit

of zero shaking as the ground (first excited) band.

Figure 4.1 shows typical Floquet bands for experiments analogous to Parker

et al.’s. The ground band and the first excited band are shown by solid lines,

their periodic repetitions by dashed lines. As is clear from the magnified views

on the right, hybridization leads to a double well structure for the ground band.

Arrows illustrate momentum and energy conserving scattering processes which

can destabilize a BEC in one of the minima. In Section 4.4, I calculate the rate of

scattering by Fermi’s Golden rule [44]. These scatterings are made possible due

to the periodicity of energy for Floquet bands.

As I explain in detail in Sec 4.4, I use phase-space arguments to construct

the phase diagrams in Fig.4.3 and Fig.4.4. As already introduced, I label phases

as ferromagnetic or paramagnetic, depending on the momentum of the lowest

energy Bloch state in the first band. In these diagrams, I also show if a conden-

sate in that state is stable against 2-body collisions. My model contains three

relevant parameters: the detuning (~ω−∆0), the lattice depth V0 and the shaking

amplitude F0. Fig.4.3 shows a slice through the three dimensional phase dia-

gram at F0 = 0. I find that depending on the parameters, the paramagnet may
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Figure 4.1: Floquet Spectra of shaken 1 D lattices for lattice depths of
V0/ER = 2.02 and 7.The shaking frequency is blue detuned.
The parameters in (b) are similar to those in Ref. [30]. Quasi-
momentum, k and Quasi-energy, ε are measured in terms of the
lattice spacing a and the period, T = 2π

ω
. Solid and dashed lines

represent bands and their periodic repetition and circles show
location of band minima. Right panels are magnified views.
Arrows represent scattering processes which cause a conden-
sate at the band minima to decay. In (a) this is an intra-band
scattering process, where the final state of the scattered parti-
cles have the same Bloch index. Case (b) is stable: there are no
2-body processes that conserve energy and momentum.
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be stable or unstable. Increasing the drive strength hybridizes the bands.

In principle, there may be kinematically allowed decay channels involving

higher bands, but the rates will be very low due to small matrix elements. For

very strong interactions, one should also include mean-field shifts to the band-

structure. These are irrelevant for Ref.[30], where the onsite interaction energy

is UH = 0.001ER and the bandwidth 4J = 0.16ER.

4.3.1 Floquet Spectrum

To derive the Floquet spectrum, I map the moving frame continuum Hamilto-

nian H0(t) onto a tight binding model. This is accomplished by expanding the

field operator Ψ(x) in terms of the Wannier functions for the two lowest bands

of H0 in the limit of vanishing F0:

Ψ(x) =
∑

j

w1(x − x j)a j + w2(x − x j)b j, (4.5)

where a j and b j are bosonic annihilation operators and with the Wannier func-

tions centered at the lattice site n given by:

wσ(x − xn) =
1
√

N

∑
k

exp(−inka)ψσ(x, k), (4.6)

where N is the number of sites. The Bloch wave functions, ψσ(x, k) are eigen-

states of H0 (with F0 = 0) with

ψσ(x + a, k) = exp(−ika)ψσ(x, k). (4.7)
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The arbitrary global phase of ψσ(x + a, k) is fixed using the recipe given in Ref.

[45]. The resulting tight-binding model is:

H0(t) =
∑

i j

(
−t(1)

i j a†i a j + t(2)
i j b†i b j + h.c.

)
+

∑
j

A j(t), (4.8)

where,

A j(t) = F0 cos(ωt)
(
x j

(
a†ja j + b†jb j

)
+ χ ja

†

jb j + χ∗jb
†

ja j

)
(4.9)

χ j =

∫
dx xw∗1(x − x j)w2(x − x j)

t(1)
i j =

∫
dx w∗1(x − xi)

(
−~2

2m
d2

dx2 + V(x)
)

w∗1(x − x j)

t(2)
i j =

∫
dx w∗2(x − xi)

(
−~2

2m
d2

dx2 + V(x)
)

w∗2(x − x j)

with V(x) = V0 sin2
(

2πx
λL

)
. Equivalently, I find tσi j by fitting the dispersion obtained

from the tight-binding model to the dispersion of the Bloch bands. For the ex-

perimental lattice strength, the ground band is well approximated by a model

with nearest neighbor hopping. However, to properly account for the greater

curvature of the first excited band, one needs to take into account longer range

hopping (up to |i − j| ≤ 3).

I now rotate my basis, taking |ψ〉 → Uc(t)|ψ〉with:

Uc(t) = exp

− i
~

∫ t

0

∑
j

x jF0 cos(ωt)(a†ja j + b†jb j)

 (4.10)

Under this unitary transformation, the Hamiltonian becomes:

H′0(t) = UcH0(t)U−1
c − i~Uc∂tU−1

c

=
∑

i j

(
−J(1)

i j (t)a†i a j + J(2)
i j (t)b†i b j + h.c.

)
+

∑
j

F0 cos(ωt)
(
χ ja

†

jb j + χ∗jb
†

ja j

)
=

∑
k

∑
m

cos(mka)
(
−J(1)

m (t)a†kak − J(2)
m (t)b†kbk

)
+

∑
k

F0 cos(ωt)
(
χ ja

†

kbk + χ∗jb
†

kak

)
(4.11)
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where,

Jσi j(t) = tσi j exp(−iF0
cos(ωt)
~ω

(xi − x j))

= tσi j exp(−iF0
cos(ωt)
~ω

a(i − j)), (4.12)

the lattice spacing is a and m = |i − j| = {1, 2, 3}. I numerically calculate the time

evolution operator, U(T ) by integrating i~∂tU = HU from t = 0 to t = T = 2π
ω

with the boundary condition U(0) = 1. The “quasi-energies”, ε are given by the

eigenvalues of the matrix (i~/T ) log[U(T )]. I stress again that since, a logarithm

has an infinite number of branches, the energy spectrum is unbounded. Typical

results are shown in Fig.4.1.

4.3.2 Rotating Wave Approximation

While the scattering rate may be calculated by the Floquet formalism, I can sim-

plify the argument by making a Rotating Wave Approximation which is the

leading order expansion in F0a/~ω. I will calculate the rates in the region where

F0a
~ω
≈ 0.005. In this limit, Eq.(6.24) reduces to Jσi j(t) = tσi j is time-independent.

Thus, I obtain an effective Hamiltonian :

Heff(k) =
∑

k

(
E(1)

k a†kak + E(2)
k b†kbk

)
+

∑
k

F0

(
exp(−iωt)χ ja

†

kbk + exp(iωt)χ∗jb
†

kak

)
,

where

E(1)
k = −

∑
m

cos(mka)t0
m and

E(2)
k = −

∑
m

cos(mka)t(1)
m ,
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where tσm = tσi,i+m and is the same for any site i since the system is homogenous.

Further, under the canonical transformation, U = exp
(
iωt b†kbk

)
, the Hamilto-

nian takes the form:

Heff(k) =
∑

k

(
E(1)

k a†kak + (E(2)
k − ~ω)b†kbk

)
+

∑
k

F0

(
χ ja

†

kbk + χ∗jb
†

kak

)
(4.13)

I use this Hamiltonian for calculating the scattering rate using Fermi’s

golden rule.

4.4 Scattering Rate

Since Eq.(4.13) is time-independent, I can use Fermi’s golden rule [44] to calcu-

late the rate for two particles to scatter from initial state |ψi〉 to final state |ψ f 〉

as:
dN
dt

=
2π
~

∑
n

|〈ψ f |Hint|ψi〉|
2δ(E f − Ei), (4.14)

For my calculation, |ψi〉 corresponds to the BEC at momentum k0, while |ψ f 〉 has

two particles outside of the condensate:

|ψi〉 =
(Φ†1(k0))N

√
N!

|vac〉

and

|ψ f 〉 =
(Φ†i1(k0 + q))(Φ†i2(k0 − q))(Φ†1(k0))N−2

√
(N − 2)!

|vac〉

where Φ
†

i (k) is the boson creator operator at momentum k is the dressed band i.

Kitagawa et al. [14] generalize Eq.(4.14) to the situation where the rotating wave

approximation breaks down.
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I expand the field operator in terms of the Bloch functions in Eq. (4.7),

Ψσ(x) =
∑

k

Φσ(k)ψσ(x, k). (4.15)

This yields an interaction Hamiltonian of the form

Hint

g
=

1
2

∑
j

∫ L

0
dx Ψ

†

j(x)Ψ†j(x)Ψ j(x)Ψ j(x)

 + 2
(∫ L

0
dx Ψ

†

1(x)Ψ†2(x)Ψ1(x)Ψ2(x)
)

=
1
2

∑
{k}, j

Γ
k1k2k3k4
j j j j Φ j

†
(k1)Φ j

†
(k2)Φ j(k3)Φ j(k4)

 + 2

∑
{k}

Γ
k1k2k3k4
1 2 1 2Φ1

†
(k1)Φ2

†
(k2)Φ1(k3)Φ2(k4)

 .
(4.16)

where, the index j labels the Bloch band and {k} = {k1, k2, k3, k4}. The matrix

elements are :

Γ
k1k2k3k4
i1i2i3i4

=

∫ L

0
dx ψ∗i1(x, k1)ψ∗i2(x, k2)ψi3(x, k3)ψi4(x, k4).

Γ
k1k2k3k4
i1i2i3i4

vanishes unless k1 + k2 = k3 + k4 + 2πm/a for some integer m.

The matrix element in Fermi’s Golden rule takes the form:

|〈ψ f |Hint|ψi〉|
2 = N(N − 1)

g2

4

∑
q

|
∑
i1i2

Γ
k0+qk0−qk0k0
i1 i2 1 1 |2

≈ N2 g2

4

∑
q

|
∑
i1i2

Fqk0
i1i2
|2

= N2 g2

4
L
2π

∫
dqIqk0 (4.17)

where,

Iqk0 = |
∑
i1i2

Fqk0
i1i2
|2
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Hence, I see that the scattering rate is given by:

dN
dt

=
∑
n j1 j2

2π
~

L
2π

N2 g2

4

∫
dqIqk0δ(E f − Ei)

=
∑
n j1 j2

N2g2L
4~

∫
dE f

dq
dE f

Iqk0δ(E f − Ei)

=
∑
n j1 j2

g2

4~ER

N2

La
L2

∫
dE f

d(qa)
d(E f /ER)

Iqk0δ(E f − Ei)

=
g2

4~ER

N2

La
Γ, (4.18)

which defines the intensive dimensionless quantity Γ, which depends only on

the lattice geometry, the shaking frequency and the shaking strength. All of

these parameters can be tuned in the experiment The floquet BEC is stable wher-

ever Γ = 0. One can use purely geometric arguments to find the region of phase

space where the floquet BEC is stable or unstable. The crux of this geometric

argument is the following. In the BEC, bosons macroscopically occupy the state

with momentum k0 (and energy ε(1)
k0

). Interaction drives energy-momentum con-

serving scattering processes that result in particles scattering out of the BEC.

Each of these processes involve two particles scattering out of the BEC into a

state with energy E1 (and momentum k0 − k1) and a state with energy 2ε(1)
k0
− E1

(and momentum k0 + k1). The BEC is unstable wherever phase space is available

for such scattering processes. I illustrate this argument in Fig.4.2.
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.

Figure 4.2: Geometrical construction to demonstrate when the floquet BEC
is stable. Condition for the floquet BEC to be unstable: 2ε(1)

k0
−

(ε(2)
k0−k − ~ω) = ε(2)

k0+k. Here, I illustrate the situation when k0 = 0.
(A) illustrates the situation where the floquet BEC is stable
while (B) illustrates the situation where the floquet BEC is un-
stable. The BEC is unstable wherever the blue line (represent-
ing ε(2)

k ) and the orange line (representing 2ε(1)
0 −(ε(2)

−k −~ω)) cross.
I have marked the crossing points with circles.
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Unstable Paramagnet
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Figure 4.3: Phase diagram of the floquet BEC for a variety of lattice depths
and detunings in the limit of infinitesimal driving.

In order to analyze the stability of the floquet BEC, I look at two slices

through parameter space. Figure 4.3 shows the stability phase diagram of the

periodically driven BEC for a variety of lattice depths and detunings in the limit

of infinitesimal driving.
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Figure 4.4: (Color Online) Phase Diagram of the Floquet BEC in a shaken
one-dimensional lattice of depth V0 = 7.0 ER. The zero-
momentum bandgap, ∆0 is 4.96 ER. The vertical arrow shows
the parameters of Ref.[30]. The BEC is stable in the blue de-
tuned regime. In the red detuned regime, the BEC is unstable
below a critical driving strength and stable above it. The thick
black line shows the critical driving strength.

Figure 4.4 shows the stability phase diagram of the floquet BEC for typical

experimental parameters of V0 = 7ER, (where ∆0 = 4.96ER). I find that there is a

large region of parameter space where the floquet BEC is stable (Γ = 0).

57



4.5 Conclusion

In this chapter, I analyzed the stability of a one dimensional Floquet BEC. I

identified a large parameter regime where the BEC is stable. The experiment

in ref.[30] was done in the regime where the BEC should be stable. The exper-

imentalists observe “moderate heating” and they find that the condensate has

a lifetime of about 1 second. In chapter 5, I show how the geometry of the ex-

periment can lead to the observed moderate heating. Finally, in chapter 6, I will

show how the heating rate of a Floquet BEC can be reduced by changing the

transverse confinement.
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CHAPTER 5

TRANSVERSE COLLISIONAL INSTABILITIES OF A BOSE-EINSTEIN

CONDENSATE IN A DRIVEN ONE-DIMENSIONAL LATTICE

This chapter is adapted from “Transverse collisional instabilities of a Bose-Einstein con-

densate in a driven one-dimensional lattice” by Sayan Choudhury and Erich J. Mueller,

published in Physical Review A, 91, 023624 (2015)”

5.1 Overview

Motivated by recent experiments, I analyze the stability of a three-

dimensional Bose-Einstein condensate (BEC) loaded in a periodically driven

one-dimensional optical lattice. Such periodically driven systems do not have

a thermodynamic ground state, but may have a long-lived steady state which

is an eigenstate of a “Floquet Hamiltonian”. I explore collisional instabilities

of the Floquet ground state which transfer energy into the transverse modes.

I calculate decay rates, finding that the lifetime scales as the inverse square of

the scattering length and inverse of the peak three- dimensional density. These

rates can be controlled by adding additional transverse potentials.

5.2 Introduction

In the previous chapter, I discussed how periodically driven cold atom systems

has been used to emulate models of frustrated quantum magnetism [1, 2, 3, 4]

and models of topological matter [5, 6, 7, 8, 9, 10]. However, some of these ex-
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periments have unexpected heating [10, 11]. In the last chapter, I began address-

ing the sources of this heating by studying collisions within a one-dimensional

Bose-Einstein condensate (BEC) in a shaken optical lattice. I found that in the

presence of strong transverse confinement, there were large parameter ranges

where the system was stable. Here, I extend that work to the regime where there

is no transverse confinement. The additional decay channels generally lead to

more dissipation and diffusive dynamics.

In this chapter, I consider two paradigmatic examples of Floquet systems in

which a three dimensional BEC is loaded into an a modulated one-dimensional

lattice. The difference lies in the nature of the drive: I consider (a) amplitude

modulation of lattice depth (similar to the setup in Refs. [12, 13, 14]) and (b)

lattice shaking (similar to the setup in Ref. [15, 16]). These two protocols are

illustrated schematically in Fig. 5.1. I solve the Schrödinger equation for both

systems and treat the inter-atomic interactions perturbatively. My analysis is

along the lines of the last chapter, where I used Fermi’s golden rule to study the

tight confinement limit. This kinetic approach can be contrasted with quantum

coherent arguments such as those used by Creffield in Ref. [17]. Creffield used

the Bogoliubov equations to look at a dynamical instability of a BEC in a shaken

one dimensional optical lattice. These decay channels are important when the

interactions are strong. I consider a different limit: for most recent experiments,

the interaction strengths are too low for the interaction-driven modification of

the dispersion to be relevant, rather the physics is dominated by the energy and

momentum conserving scattering processes which are accounted for through

my kinetic equations. In a field-theoretic formulation this corresponds to only

keeping the imaginary part of the self-energy.
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In section 5.3, I analyze the stability of a BEC in an amplitude modulated

tilted optical lattice. A similar analysis can be used for Raman-driven lattices,

such as those used to realize the Harper Hamiltonian [10, 14]. It is also related

to earlier studies of Bloch oscillations [18]. In section 5.4, I study the stability

of a BEC loaded in a shaken optical lattice. This system can be mapped onto a

classical spin model which exhibits a paramagnetic-ferromagnetic phase transi-

tion as well as a roton-maxon excitation spectrum [15, 16]. In both section 5.3

and section 5.4, I obtain analytical results for the lifetime of the BEC. Finally, in

section 5.4, I discuss the general form of the dissipation rate in driven systems.

5.3 Amplitude Modulated Lattice

In this section, I consider a BEC in a deep tilted one dimensional optical lat-

tice. Adjacent sites are offset by an energy ∆ � J, suppressing tunneling (J

being the nearest neighbor tunnelling matrix element). There is no transverse

confinement, yielding a one-dimensional array of pancakes. The lattice depth is

then modulated at a frequency ω(≈ ∆) so that tunnelling is restored between the

pancakes. The Hamiltonian describing this system is :

H =

∫
d2r⊥

∑
j

− (J + 2Ω cos(ωt))
(
a†j+1a j + a†ja j+1

)
+ ∆ ja†ja j +

g
2

a†ja
†

ja ja j +
~2

2m
∇⊥a†j∇⊥a j, (5.1)

The constant Ω parameterizes the modulation of the hopping matrix element.

The transverse spatial components are suppressed : a j = a j(r⊥) where r⊥ = (x, y)
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(a)

(b)

Figure 5.1: The two protocols of lattice driving (a) An amplitude modu-
lated tilted lattice and (b) A shaken lattice
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and ∇⊥ = x̂∂x + ŷ∂y. The coupling constant is

g =
4π~2as

m

∫
dz φ(z)4

=
4π~2as

md
(5.2)

where φ(z) is the Wannier wavefunction in the z direction, normalized so that∫
|φ|2dz = 1. This equation defines d, the size of the Wannier state and is valid if

d � as [19].

Depending on how one sets up the problem the φ(z) used in Eq.(5.2) will be

either the Wannier states of the static lattice, some time average of the instanta-

neous eigenstates or even some time-dependent function which yields an oscil-

lating g. The distinction will be important if the drive frequency is resonant with

a band changing collision or if the modulation amplitude is large. Similarly, the

relationship between J,Ω and the lattice parameters may be renormalized by

large amplitude driving and the time-dependence of the parameters may not be

sinusoidal. For most present experiments, where the amplitude of oscillations

is small, these effects can be ignored.

As in [20], I now perform a gauge transformation to replace the tilt with a

time dependent phase :

a j = b je−i∆ jt. (5.3)

The operators b j will evolve with a new Hamiltonian H′, chosen so that

i∂tb j = [b j,H′]. (5.4)

Specializing to the resonant case ω = ∆, I Fourier transform this equation yield-
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ing

H′ =
∑

k

εk(t)b†kbk +
g

2V

∑
k1,k2,k3

b†k1
b†k2

bk3bk4 , (5.5)

where k4 = k1 + k2 − k3, k = {kz, k⊥} and g = ga, where a is the lattice spacing.

The instantaneous single-particle dispersion is given by:

εk(t) = −2Ω cos(kz) − 2Ω cos(kz − 2∆t) − 2J cos(kz − ∆t) +
~2k2
⊥

2m
(5.6)

where V is the system volume and bk =
∑

j b j exp(ik j). The best interpretation

of this dispersion comes from looking at the group velocity of a wave-packet,

∂ε/∂k. There is a drift term, vd = ∂ε/∂kz = 2Ω sin(kz) and an oscillating part

vm = ∂ε/∂kz = −4Ω∆ sin(kz − 2∆t) − 2J sin(kz − ∆t) which is analogous to micro

motion in ion traps [21].

I wish to explore the behaviour of a condensate at k = 0. To this end, I break

my Hamiltonian into three terms H′ = H0 + H1 + H2,

H0 =
∑

k

εk(t)b†kbk +
g

2V
b†0b†0b0b0 +

2g
V

∑
k,0

b†0b†kbkb0,

(5.7)

H1 = α
g

2V

∑
k,0

b†
−kb†kb0b0 + H.C., (5.8)

H2 = H − H1 − H0 (5.9)

where α = 1 is a formal parameter I will use for perturbation theory. As α is ac-

companied by a factor of the interaction strength gN/V , this expansion is equiva-

lent to perturbation theory in g. Here H0 contains the single-particle physics and

the Hartree-Fock terms, H1 contains interaction terms corresponding to atoms

scattering from the condensate to finite momentum states and H2 contains terms

where a condensed and a non-condensed atom scatter or two non-condensed

atoms scatter. H2 does not contribute at lowest order in perturbation theory, as
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there are initially no non-condensed atoms.

I will imagine that at time t = 0, the state of the system is:

|0〉 =

(
b†0

)N

√
N!
|vac〉, (5.10)

which is an eigenstate of H0. I will perturbatively calculate how |ψ(t)〉 evolves.

To lowest order,

|ψ(t)〉 = e−i E0t
~

|0〉 + ∑
k

ck(t)|k〉 + · · ·
 (5.11)

where the state |k〉 is given by :

|k〉 = b†kb†
−k

(
b†0

)N−2

√
(N − 2)!

|vac〉. (5.12)

and the coefficient is

ck(t) =
Λk

i~

∫ t

0
dτ exp

[
−i

∫ t

τ

2
Ek(s)
~

ds
]
. (5.13)

whose amplitude is given by

Λk = 〈k|H1|0〉/α =
gn
2

(5.14)

In Eq.(5.13), the (Hartee-Fock) excitation energy is

Ek(t) = εk(t) + gn − ε0(t). (5.15)

Performing the integral in the exponent yields∫ t

τ

Ek(s) ds = E(0)
k × (t − τ)

+
Ω

∆
(sin(kz − 2∆τ) − sin(kz − 2∆t))

+
2J
∆

(sin(kz − ∆τ) − sin(kz − ∆t)) (5.16)
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where the “effective dispersion” is

E(0)
k = 2Ω[1 − cos(kz)] + gn +

k2
⊥

2m
. (5.17)

This energy corresponds to the spectrum one would obtain from Floquet the-

ory. It takes the form of a tight-binding model along z with a nearest-neighbor

hopping of strength Ω. The resonant modulation has restored hopping. I now

expand Eq. (5.13) in powers of J/∆ and Ω/∆. Neglecting off-resonant terms and

making the standard approximation sin2(xt)/(xt)2 ≈ 2πtδ(x), finding

|ck|
2 ≈

|Λk|
2

~

Ω2

∆2 t 2πδ(E(0)
k − ∆)

+
|Λk|

2

~

4J2

∆2 t 2πδ(E(0)
k − ∆/2), (5.18)

which is analogous to Fermi’s golden rule. The result can also be derived us-

ing the formulation in Ref. [22]. The first term proportional to Ω2 is naturally

interpreted as coming from a pair of particles absorbing a lattice vibration. The

second term involves one particle “hopping downhill” with the potential en-

ergy converted to transverse motion.

I now calculate the total rate of scattering out of the condensate. The relevant
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timescale is

1
τ

=
1

N0
∂tN0 =

2
N
∂t

∑
k

|ck|
2 =

1
τ2

+
1
τ1

1
τ2

=
2|Λk|

2

N~
Ω2

∆2

∑
k

2πδ(E(0)
k − ∆) (5.19)

1
τ1

=
2|Λk|

2

N~
4J2

∆2

∑
k

2πδ(E(0)
k − ∆/2). (5.20)

The sums over k are straightforward. I first note that that because Ω is small, the

dependence of E(0)
k on kz is weak, and can be neglected. Thus the sum over k just

yields a constant

ρ(ν) =
∑

k

2πδ(E(0)
k − ν)

≈
V
a

∫
d2k⊥
(2π)2 2πδ

(
k2
⊥

2m
+ gn − ν

)
=

Vm
a
. (5.21)

Putting in the factors of ~ the total rate of scattering out of the condensate is

1
τ

=
g2nm
2a~3

Ω2 + 4J2

∆2

= gn
2πas

~d
Ω2 + 4J2

∆2 (5.22)

Some typical numbers are gn/h ∼ 300Hz,Ω ∼ 40Hz, J ∼ 5Hz,∆ ∼ 1kHz and

d ∼ 75nm. For 87Rb, the scattering length is as ∼ 5nm. Thus the lifetime of the

BEC is about 750ms.

5.4 Shaken Lattice

In this section, I look at the stability of a three-dimensional BEC loaded

into a shaken one-dimensional optical lattice. I considered the strictly one-

dimensional version in the last chapter. I are motivated by the set-up in Ref.
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Figure 5.2: Schematic showing first (top) and second (bottom) Floquet
quasi-energy bands of an optical lattice: ε is the single-particle
energy, k is the quasi-momentum and a is the lattice spacing.
Since Floquet energies are only defined modulo the shaking
quanta ~ω, the energy of the second band has been shifted
down by ~ω. Alternatively, this shift can be interpreted as
working in a dressed basis, where the energy includes a con-
tribution from the phonons. The mixing between the bands
depends on the shaking amplitude. Dashed curves correspond
to weak shaking, where the first band has its minimum at k = 0.
Solid curves correspond to strong shaking, where there are two
minima at k = ±k0 , 0.
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[15] where Parker et al. load a three-dimensional BEC of 133Cs atoms in a one-

dimensional lattice and then shake the lattice at a frequency resonant with the

zero-energy bandgap of the first two bands. This results in a strong mixing of

the first two bands (schematically illustrated in Fig. 6.2). For my analysis, I label

the Bloch band connected adiabatically to the first Bloch band in the limit of zero

shaking as the ground band. As is evident from Fig. 6.2, due to level repulsion

between the Bloch bands, the ground band exhibits a bifurcation from having

one minimum at {k = 0} to two minima at {k⊥ = 0, k = k0 , 0}. This is analo-

gous to the paramagnetic-ferromagnetic phase transition in Landau theory for

classical spin models. In the paramagnetic regime the bosons always condense

at k = 0, while in the ferromagnetic regime, the bosons condense at some finite

momentum {k⊥ = 0, k , 0}. Here, I first perturbatively analyze the stability of

a BEC against collisions in the limit of weak forcing amplitude. This gives an

intuitive picture about how the scattering rate varies with amplitude. I then

numerically calculate collision rates for larger shaking amplitudes spanning the

experimentally interesting critical region. I find that the linearized theory over-

estimates the damping, but gives the correct order of magnitude.
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5.4.1 Model

In the frame co-moving with the lattice, the tight-binding Hamiltonian describ-

ing the system can be written as H0(t) + Hint:

H0(t) =

∫
d2r⊥

∑
i j

(
−t(1)

i j a†i a j + t(2)
i j b†i b j + h.c.

)
+

∑
j

F0 cos(ωt)
(
z j

(
a†ja j + b†jb j

)
+ χ ja

†

jb j + χ∗jb
†

ja j

)
+
~2

2m

(
∇⊥a†j∇⊥a j + ∇⊥b†j∇⊥b j

)
(5.23)

Hint =

∫
d2r⊥

∑
i

g1

2
a†i a†i aiai +

g2

2
b†i b†i bibi + 2g12a†i b†i aibi + H′ (5.24)

where,

χ j =

∫
dz zw∗1(z − z j)w2(z − z j)

t(1)
i j =

∫
dz w∗1(z − zi)

(
−~2

2m
d2

dz2 + V(z)
)

w∗1(z − z j)

t(2)
i j =

∫
dz w∗2(z − zi)

(
−~2

2m
d2

dx2 + V(z)
)

w∗2(z − z j)

with V(z) = V0 sin2
(

2πz
λL

)
and H′ is off-resonant. It should also be noted that χ j is

independent of j and so I can call it χ. If necessary more bands can be included.

I now perform a basis rotation : |ψ〉 → Uc(t)|ψ〉with:

Uc(t) = exp

− i
~

∫ t

0

∑
j

z jF0 cos(ωt)(a†ja j + b†jb j)

 (5.25)

73



Under this unitary transformation, the Hamiltonian becomes:

H′0(t) = UcH0(t)U−1
c − i~Uc∂tU−1

c

=
∑

i j

(
−J(1)

i j (t)a†i a j + J(2)
i j (t)b†i b j + h.c.

)
+ F cos(ωt)

(
χa†jb j + χ∗b†ja j

)
+

∑
k⊥

~2k2
⊥

2m

=
∑

k

∑
m

cos(mka)
(
−J(1)

m (t)a†kak − J(2)
m (t)b†kbk

)
+

∑
k

F0 cos(ωt)
(
χa†kbk + χ∗b†kak

)
+

∑
k⊥

~2k2
⊥

2m
(5.26)

where,

Jσi j(t) = tσi j exp(−iF0
cos(ωt)
~ω

(zi − z j))

= tσi j exp(−iF0
cos(ωt)
~ω

a(i − j)), (5.27)

a = λL/2 is the lattice spacing and χ = χ∗ for a suitable choice of phase for ak and

bk.

Thus, in the limit of F/(~ω) � 1, the Hamiltonian describing the system is :

H = Hsp + Hint, where

Hsp =
∑

k

ε(1)
k a†kak + ε(2)

k b†kbk + χF0 cos(ωt)
(
a†kbk + b†kak

)
(5.28)

Hint =

∫
d2r⊥

∑
i

g1

2
a†i a†i aiai +

g2

2
b†i b†i bibi + 2g12a†i b†i aibi + H′

Here, ε(1)
k (ε(2)

k ) is the dispersion of the first (second) band and ak(bk) is the anni-

hilation operator for particles in the first (second band).

I make the transformation bk → exp(−iωt)bk and discard far off-resonant

terms (making the rotating wave approximation) to simplify the single-particle
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terms :

H(sp)
RWA =

∑
k

ε(1)
k a†kak + ε(2)

k b†kbk + χF0

(
a†kbk + b†kak

)
,

Here k = {k,k⊥}, ε(1)
k = ε(1)

k + (~k⊥)2/(2m), ε(2)
k = ε(2)

k + (~k⊥)2/(2m)− ~ω. I diagonalise

this quadratic form writing

H(sp)
RWA =

∑
k

ε(1)
k a†kak + ε(2)

k b
†

kbk (5.29)

The dressed dispersions ε(1)
k and ε(2)

k are shown as solid lines in Fig.(6.2). The

bare dispersions ε(1)
k and ε(2)

k are shown as dashed lines. I treat H(sp)
RWA both per-

turbatively and non-perturbatively to obtain scattering rates in the next two

subsections.

5.4.2 Perturbation Theory

For small forcing amplitudes, I gain insight by a perturbative expansion in F0.

To linear order in F0, the dressed operators are

a†k = a†k − (χF0)/(ε(2)
k − ε

(1)
k )b†k (5.30)

b
†

k = b†k + (χF0)/(ε(2)
k − ε

(1)
k )a†k (5.31)

Because I have made the rotating wave approximation, I have a time-

independent problem and I can simply apply Fermi’s Golden Rule to calculate

the lifetime of the BEC, treating the interaction term as a perturbation. The stan-

dard procedure yields a scattering rate:

dN
dt

=

∫
dk
2π

∫
d2k⊥
(2π)2 |〈ψ f |Hint|ψi〉|

2σ (5.32)

σ =
2π
~
δ(ε(1)

k + ε(2)
k +

(~k⊥)2

m
− 2ε(1)

0 )
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The initial and final states are

|ψi〉 =
(a†0)N

√
N!
|0〉

|ψ f 〉 = b
†

ka†
−k

(a†0)(N−2)

√
N − 2!

|0〉 (5.33)

|ψi〉 represents all particles in the condensate, while |ψ f 〉 has one particle with

momentum k in the dressed b band and one with momentum −k in the ground

band.

The transverse integrals are elementary and yield

dN
dt

=
m

2~3 n2
∫

dk
2π

(
g1

∆k
− 2

g12

∆0
)2(χF0)2, (5.34)

where ∆k =
(
ε(2)

k − ε
(1)
k

)
, ∆0 =

(
ε(2)

0 − ε
(1)
0

)
and g = ga. While Eq.(5.34) can always be

integrated numerically, I have found a sequence of approximations which let us

analytically estimate the scattering rate. First, I approximate the Wannier func-

tions as w1(x) = ( 1
d2

1π
)1/4 exp(−x2/2d2

1) and w2(x) = ( 1
πd2

1
)3/4x exp(−x2/2d2

1), where

d1 = a/(π(V0)1/4) (V0 being the lattice depth expressed in units of ER). Within this

approximation, g1 ≈ 2g12, where g1 = (4π~2asa)/(md), d = d1
√

2π ie the size of the

Wannier state, a is the lattice spacing, and as is the scattering length . This is a

good approximation as a numerical calculation using the exact Wannier states

for the lattice in Ref. [15, 16] yields g1 = (1/0.41) g12.

As a second approximation, I note that except for k near 0, ∆k � ∆0. The

contribution of those parts to the integral in Eq.(5.34) is small, allowing us to

neglect the k dependence of the integrand. Hence, I see that the rate of scattering

is approximately:
dN
dt
≈ (g1n)2(

χF0

∆0
)2 Vm

2a~3 (5.35)
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This gives the timescale for the scattering to be:

τ =
N
dN
dt

≈
2~3a
mg2

1n
(

∆0

χF0
)2. (5.36)

Stronger interactions, higher density and larger forcing amplitudes all increase

the scattering rate.

5.4.3 Beyond Perturbation Theory

In this section, I extend my results to larger F0. This allows us to probe the

critical and ferromagnetic region. Generically, I write

a†k = uka
†

k + vkb
†

k (5.37)

b
†

k = −vka
†

k + ukb
†

k (5.38)

with |uk|
2 + |vk|

2 = 1. In particular,

uk =
1√

1 + |γk|
2
; vk =

γk√
1 + |γk|

2

1
γk

=

√
4F2

0χ
2 + δε2

k + δεk

2χF0

δεk = ε(1)
k − ε

(2)
k

One can invert the above relationships to obtain:

a†k = uka
†

k − vkb
†

k (5.39)

b†k = vka
†

k + ukb
†

k (5.40)
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For F0 < Fc (Fc being the critical shaking force), I use Eq. (5.33) as my initial and

final states. For F0 > Fc, I use

|ψi〉 =
(a†k0

)N

√
N!
|0〉

|ψ(1)
f 〉 = b

†

k0+ka†k0−k

(a†k0
)(N−2)

√
N − 2!

|0〉

|ψ(2)
f 〉 = b

†

k0+kb
†

k0−k

(a†k0
)(N−2)

√
N − 2!

|0〉

(5.41)

The states are analogous to those in eq.(5.33). In particular, |ψi〉 has all particles

in a finite momentum condensate (k0 = {k = k0,k⊥ = 0}).

The scattering rate is then:

dN
dt

=

∫
dk
2π

∫
d2k⊥
(2π)2 |〈ψ

(1)
f |Hint|ψi〉|

2σ12

+

∫
dk
2π

∫
d2k⊥
(2π)2 |〈ψ

(2)
f |Hint|ψi〉|

2σ22 (5.42)

where

σ12 =
2π
~
δ(ε(1)

k0−k + ε(2)
k0+k +

(~k⊥)2

m
− 2ε(1)

k0
)

σ22 =
2π
~
δ(ε(2)

k0−k + ε(2)
k0+k +

(~k⊥)2

m
− 2ε(1)

k0
)

In general g12 = αg1 and g2 = βg1. Approximating the Wannier functions with

the harmonic oscillator wave functions would yield α = 1/2 and β = 3/4. Rather

than using this approximation, I numerically calculate the maximally localised

Wannier functions for the experimental lattice depth of V = 7ER and find that

α = 0.41 and β = 0.6.
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Figure 5.3: Plot of dimensionless decay rate Γ as a function of amplitude
of shaking, F0 for ω = 5.5 ER/~ and V0 = 7.0ER. The dotted line
shows Γ calculated using Eq.(5.44), while the thick line shows
the function (χF0

∆0
)2 corresponding to the rate in Eq.(5.36). The

kink shows the paramagnetic-ferromagnetic phase transition.

Extracting the dimensional factors ,

τ =
N
dN
dt

=
2~3a

mg2
1nΓ

(5.43)

where the dimensionless parameter Γ depends on the forcing strength and can

be expressed as

Γ =

∫
dk
2π

(| − uk0−kvk0+kuk0uk0 + α uk0+kvk0−kvk0vk0 + 2 β(uk0+kuk0−kuk0vk0 − vk0+kvk0−kuk0vk0)|
2)

+ (|vk0−kvk0+kuk0uk0 + α uk0+kuk0−kvk0vk0 − 2 β(vk0+kuk0−kuk0vk0 + uk0+kvk0−kuk0vk0)|
2) (5.44)

The dotted line in Fig.(5.3) shows Γ using α = 0.41 and β = 0.6 corresponding

to a lattice depth of V = 7ER There is a distinct kink in the Γ vs F0 plot which
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shows the paramagnetic-ferromagnetic phase transition. For all F0, the numeri-

cal calculation gives a smaller Γ than the perturbative estimate in Eq.(5.35). For

the experimental lattice depths, d ∼ 100nm, gn/h ∼ 150Hz, as ∼ 1.5nm yielding

τ ∼ 1s which matches experimental observations [15].

5.5 General Conclusions

5.5.1 Form of the scattering rate

Generically two-particle scattering will give a rate proportional to g2n. The in-

stabilities studied here relied upon scattering into transverse modes. These rates

can be modified by tuning the density of these modes. For example, one could

imagine engineering band gaps with transverse optical lattices. Note, such lat-

tices may provide additional confinement and increase the effective g, inadver-

tently increasing the decay rate.

5.5.2 Diffusive Dynamics

The same dissipation which causes the condensate to decay can also lead to dif-

fusive motion. Such diffusion may provide another way to study this physics. I

model the kinetics by a Boltzmann equation:

∂n(z, p)
∂t

+ v(p)
∂n(z, p)
∂z

=
n(z, p) − (n(z)/2π)

τ
(5.45)

Here n(z, p) is the coarse-grained number of particles whose position along the

lattice direction is z and whose quasi-momentum in that direction is p, while
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n(z) =
∫

dp n(z, p) is the linear density and the group velocity is v(p) = ∂ε/∂p. I

have integrated over the transverse directions. The τ appearing here is exactly

the same as in Eqs.(5.22), (5.36) and (5.43). The collision term takes this simple

form because atoms are scattered to random values of momentum in the lattice

direction after a collision. Taking the zeroth and first moments of the Boltzmann

equation yields typical hydrodynamic equations

∂n(z)
∂t

+
∂J
∂z

= 0 (5.46)

∂J
∂t

+
∂

∂z
(〈v2〉n(z)) =

J
τ

(5.47)

where the current J is defined by J =
∫

dv v(p)n(z, p). In the over damped

limit, these can be rewritten as a diffusion equation with diffusion constant

D = 〈v2〉τ ∝ J2
eff
τ, where Jeff is the effective tunnelling coefficient (cf. Eq.(5.17)).

Observing the diffusive motion may be one way of experimentally measuring

τ, complementing more direct methods [23, 24].

5.6 Summary and Outlook

In this chapter, I analyzed the stability of a BEC in a driven one-dimensional

optical lattice with no transverse confinement. I found that due to the presence

of transverse modes, the BEC would always be unstable and I calculated the

decay rates. Experimentally, this instability would be manifest in many forms,

including heating and diffusive dynamics. In chapter 4, I had found that in the

limit of extremely tight transverse confinement the BEC has regimes of stability.

Generally, experiments are neither in the tight binding limit, nor in the limit

with no transverse confinement. The results in the present paper are applicable
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as long as the level spacing of the quantum modes in the transverse direction

(∼ 100 Hz for Ref.[15]) are small as compared to the drive frequency ω (∼ 7.3

KHz for Ref.[15]). The results from the previous chapter apply in the oppo-

site limit. In the next chapter, I study the heating rates of a Floquet BEC in the

crossover from weak to strong transverse confinement. This study will provide

insight about how the heating rate of a Floquet BEC can be controlled by suit-

ably designing the transverse confinement.
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Nascimbéne, N. R. Cooper, I. Bloch, and N. Goldman, Nature Physics 11,
162-166 (2015).

[8] C. J. Kennedy, G. A. Siviloglou, H. Miyake, W. C. Burton and W. Ketterle
Phys. Rev. Lett. 111, 225301 (2013).

[9] M. Aidelsburger, M. Atala, M. Lohse, J. T. Barreiro, B. Paredes, and I. Bloch,
Phys. Rev. Lett. 111, 185301 (2013).

[10] H. Miyake, G. A. Siviloglou, C. J. Kennedy, W. C. Burton and W. Ketterle
Phys. Rev. Lett. 111, 185302 (2013).

[11] C. Chin, Private Communication

[12] A. Alberti, G. Ferrari, V. V. Ivanov, M. L. Chiofalo, and G. M. Tino, New J.
Phys. 12, 065037 (2010).

[13] V. V. Ivanov, A. Alberti, M. Schioppo, G. Ferrari, M. Artoni, M. L. Chiofalo,
and G. M. Tino, Phys. Rev. Lett. 100, 043602 (2008).

83



[14] H. Miyake, Ph.D. Thesis, Massachusetts Institute of Technology, October
2013.

[15] C. V. Parker, L-C. Ha and C. Chin, Nature Phys. 9,769 (2013).

[16] L-C. Ha, L. Clark, C. V. Parker, B. M. Anderson and C. Chin, Phys. Rev.
Lett. 114, 055301 (2015)

[17] C. E. Creffield, Phys. Rev. A 79, 063612 (2009).

[18] O. Morsch, J. H. Müller, M. Cristiani, D. Ciampini and E. Arimondo, Phys.
Rev. Lett. 87, 140402 (2001).

[19] K. R. A. Hazzard and E. J. Mueller, Phys. Rev. A 81, 033404 (2010).

[20] A. R. Kolovsky, H. J. Korsch, and E-M Graefe, Phys. Rev. A 80, 023617
(2009).

[21] D. J. Berkeland, J. D. Miller, J. C. Bergquist, W. M. Itano and D. J. Wineland,
J. App. Phys. 83, 5025 (1998).

[22] A. Verdeny, A. Mielke and F. Mintert, Phys. Rev. Lett. 111, 175301 (2013).

[23] U. Schneider, L. Hackermüller, J. P. Ronzheimer, S. Will, S. Braun, T. Best, I.
Bloch, E. Demler, S. Mandt, D. Rasch and A. Rosch, Nature Phys. 8, 213-218
(2012).

[24] J. P. Ronzheimer, M. Schreiber, S. Braun, S. S. Hodgman, S. Langer, I. P.

McCulloch, F. Heidrich-Meisner, I. Bloch and U. Schneider, Phys. Rev. Lett.

110, 205301 (2013).

84



CHAPTER 6

STABILITY OF A BOSE-EINSTEIN CONDENSATE IN A DRIVEN

OPTICAL LATTICE: CROSSOVER BETWEEN WEAK AND TIGHT

TRANSVERSE CONFINEMENT

This chapter is adapted from “Stability of a Bose-Einstein condensate in a driven

optical lattice: Crossover between weak and tight transverse confinement” by Sayan

Choudhury and Erich J. Mueller, published in Physical Review A 92, 063639 (2015)

6.1 Overview

In this chapter, I explore the effect of transverse confinement on the stabil-

ity of a Bose-Einstein condensate loaded in a shaken one-dimensional or two-

dimensional square lattice. I calculate the decay rate from two-particle colli-

sions. I predict that if the transverse confinement exceeds a critical value, then,

for appropriate shaking frequencies, the condensate is stable against scattering

into transverse directions. I explore the confinement dependence of the loss

rate, explaining the rich structure in terms of resonances.

6.2 Introduction

In the last two chapters, I have discussed some conceptual and practical issues

with using periodic driving to control a cold atom system. A driven system has

neither a “ground state” nor a well-defined thermodynamic temperature. Fur-

thermore, nearly all successful examples of this technique study non-interacting

or very weakly interacting particles, and one almost always sees strong heating
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effects when moderate or strong interactions are introduced. In this chapter,

I model some simple examples where these fundamental and practical issues

are transparent. I make a series of predictions which are readily verifiable using

techniques demonstrated in recent experiments [1, 2], and which will enable the

experimental study of interacting Floquet systems with cold atoms.

These chapter builds on the last two chapters where I studied the heating

rates of a periodically driven (Floquet) Bose-Einstein condensate (BEC) in two

different geometries. In chapter 4, I considered a 1D gas of atoms trapped in a

shaken 1D lattice. There I found large parameter regions where a Floquet BEC

is stable against 2-body collisions. In chapter 5, I considered a 3D gas of atoms

trapped in a shaken 1D lattice, making an array of “pancakes”. I found that two-

body collisions allowed energy to be taken from the shaking and transferred to

transverse motion. The heating rates were consistent with those observed in

experiment. In this setting, there is no steady state: the energy increases mono-

tonically with time. The natural question is how these limits are connected. A

3D gas with harmonic transverse confinement should interpolate between these

behaviors. In this chapter, I calculate heating rates in this crossover.

I find a rich structure. First, there is a critical strength of the transverse con-

finement beyond which two-body collisions are unable to deplete the conden-

sate. Second, as a function of the transverse confinement, the dimensionless

loss rate is non-monotonic, displaying drops and jumps characteristic of reso-

nances. I explain this behavior in terms of the opening and closing of transverse

decay channels. My results will be crucial to the next generation of experi-
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ments. For example, one will be unable to observe a Floquet fractional quan-

tum Hall effect without tuning to parameters where losses are negligible. While

other authors have conducted related studies of the stability of driven systems

[3, 4, 5, 6, 7, 8, 9, 10, 11, 12], the question of collisional loss into transverse chan-

nels is relatively unexplored. While I focus on a particular model, the loss into

transverse modes is quite generic in cold atoms.

Figure 6.1(a) depicts a 1-D lattice with weak transverse confinement yielding

an array of pancake traps. I consider driving the system by moving the lattice

sites back-and-forth in the lattice direction. Figure 6.1(b) illustrate the tight con-

finement limit. Figure 6.1(c) illustrates a 2D lattice in the weak confinement

limit, where one has an array of cigar shaped traps. I consider square arrays,

with the shaking oriented 45o from a lattice direction. These geometries are mo-

tivated by the experiments performed at Chicago [1, 2]. Using a kinetic model,

I predict the scattering rate of bosons from a BEC as a function of the transverse

confinement. Bilitewski and Cooper have performed a related study of the pop-

ulation dynamics in the Floquet realization of the Harper-Hofstader model [10].

In places where our studies overlap our results agree.

In section 6.3, I introduce my model for analyzing the shaken lattice experi-

ments. I also discuss the general formalism for obtaining the Floquet band struc-

ture. In section 6.4, I use Fermi’s golden rule to predict the scattering rate for

bosons out of the BEC and obtain the stability phase diagram for a BEC loaded

in a one-dimensional shaken lattice and in a shaken square lattice. Finally, I

conclude with directions for future experiments.
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(a)

(b)

(c)

Figure 6.1: Schematic of shaken optical lattices: (a)1D lattice with weak
transverse confinement; (b) 1D Lattice with tight transverse
confinement; (c) 2D lattice with weak transverse confinement.
Ellipsoids represent edges of cloud in each well of the optical
lattice sites and arrows illustrate motion of trap. A typical spac-
ing between lattice sites is 532 nm (half the laser wavelength
λL = 1064 nm) and a typical shaking amplitude is 15 nm.
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6.3 Model

6.3.1 One-Dimensional Shaken Lattice

The starting point of my modeling is the set-up in [1] where a BEC of 133Cs atoms

is trapped in a one-dimensional shaken optical lattice (with weak transverse

confinement). When the shaking amplitude exceeds a certain critical value, the

BEC undergoes a phase transition to a Z2 superfluid (where condensation oc-

curs at finite momentum k = ±k0 , 0). A schematic of the dispersion is shown in

Fig. 6.2. For modeling this physics, it is sufficient to consider the first two Bloch

bands and ignore the remaining bands (see supplement of [1]).

In the frame of the moving lattice, the Hamiltonian for the driven system is

given by H = H0(t) + Hint, where [1],

H0(t) =

∫
d3r Ψ†(r)

(
−~2

2m
d2

dz2 + V0 sin2
(
2πz
λL

)
+ zF0 cos(ωt) +

(
−~2

2m
∇2
⊥ + mΩ2(x2 + y2)

))
Ψ(r)

Hint =
g
2

∫
d3r Ψ†(r)Ψ†(r)Ψ(r)Ψ(r). (6.1)

The atomic mass is m, the wavelength of the laser forming the optical lattice is

λL, the force from the periodic shaking is F0 cos(ωt) and g ≈ 4π~2as
m is the interac-

tion strength, as being the scattering length. The transverse trap frequency is Ω.

As is detailed in in the appendix at the end of this chapter, the single particle

part of the Hamiltonian describing the system Hsp can be written as

Hsp =
∑
n,k

ε(1)
nk an†

k an
k + ε(2)

nk bn†
k bn

k + F0 cos(ωt)
(
χan†

k bn
k + χ∗bn†

k an
k

)
(6.2)
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Figure 6.2: Schematic showing first (top) and second (bottom) Floquet
quasi-energy bands of an optical lattice: ε is the single-particle
energy (arbitrary units used for schematic), k is the quasi-
momentum and a is the lattice spacing. Since Floquet energies
are only defined modulo the shaking quanta ~ω, the energy of
the second band has been shifted down by ~ω so that it lies be-
low the first band. Alternatively, this shift can be interpreted as
working in a dressed basis, where the energy includes a contri-
bution from the phonons. The mixing between the bands de-
pends on the shaking amplitude. Dashed curves correspond to
weak shaking, where the first band has its minimum at k = 0.
Solid curves correspond to strong shaking, where there are two
minima at k = ±k0 , 0.
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Here, ε(1)
nk (ε(2)

nk ) is the dispersion of the first (second) band, an
k (bn

k ) is the annihila-

tion operator for particles in the first (second) band with the harmonic oscillator

level being n and χ is dipole matrix element between the first and the second

band. As described in in the appendix at the end of this chapter, εnk is generally

time-dependent. However, when F0a/(~ω) � 1, εnk can be taken to be time-

independent.

I make the transformation bk → exp(−iωt)bk and discard far off-resonant

terms (making the rotating wave approximation) to simplify the single-particle

Hamiltonian :

H(sp)
RWA =

∑
n,k

ε(1)
nk an†

k an
k + ε(2)

nk bn†
k bn

k + χF
(
an†

k bn
k + bn†

k an
k

)
, (6.3)

Here ε(1)
nk = ε(1)

k + (nx + ny + 1)~Ω, ε(2)
nk = ε(2)

k + (nx + ny + 1)~Ω− ~ω. I diagonalize this

quadratic form writing

H(sp)
RWA =

∑
nk

ε(1)
nk an†

k an
k + ε(2)

nk b
n†
k b

n
k (6.4)

For a particular value of n = {nx, ny}, the dressed dispersions ε(1)
nk and ε(2)

nk are

shown as solid lines in Fig. 6.2. The bare dispersions ε(1)
nk and ε(2)

nk are shown as

dashed lines.

6.3.2 Shaken Square Lattice

I can easily extend the analysis of the previous section to the case of the square

lattice. Since the shaken square lattice is separable and equivalent to two shaken

one-dimensional lattices, one can write down the single-particle part of the
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Hamiltonian, H2D in the frame of the optical lattice as :

H2D =

∫
d3r Ψ(r)†(H1D(z) + H1D(y))Ψ(r) +

(
−
~2

2m
d2

dx2 + mΩ2x2
)
Ψ(r)†Ψ(r) (6.5)

where,

H1D(z) = −
~2

2m
d2

dz2 + V0 sin2
(
2πz
λL

)
+ zF0 cos(ωt)

H1D(y) = −
~2

2m
d2

dy2 + V0 sin2
(
2πy
λL

)
+ yF0 cos(ωt)

Performing the same manipulations as in the last section, I end up with the

following single particle Hamiltonian :

HRWA
2D =

∑
n,k

ε(1,1)
n,k an†

k an
k + ε(1,2)

n,k b
n†
k b

n
k + ε(2,1)

n,k cn†
k cn

k + ε(2,2)
n,k d

n†
k d

n
k (6.6)

where ε(i, j)
n,k = ε(i)

n=0,kz
+ ε

( j)
n=0,ky

+ (n + 1/2)~Ω.

Due to the separability of the square lattice, instead of the Z2 reflection sym-

metry, the ground band develops a D4 symmetry for shaking beyond a critical

force. I show this schematically in Fig. 6.3.

6.4 Stability Analysis

In this section, I use a kinetic approach to investigate the stability of a Floquet

BEC as a function of transverse confinement. Just like the treatment in chapters

4 and 5, I use Fermi’s golden rule, treating the interaction term as a perturbation.

An equivalent approach is to calculate the self-energy of the Floquet BEC. The

imaginary part of the self-energy then gives the decay rate of the BEC.
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Figure 6.3: Schematic showing the dispersion of the first Floquet band of
a shaken square lattice beyond a critical amplitude. Color rep-
resents energy in units of the recoil energy, ER (see scale). I see
that the superfluid order parameter develops a D4 symmetry
in momentum space.

Based on my results in chapters 4 and 5, one would expect that the Floquet

BEC would be unstable when the transverse confinement is weak. However, a

stable Floquet BEC can be realized if the transverse confinement exceeds a crit-

ical value. I find this critical transverse confinement strength for both the 1D

shaken lattice and the shaken square lattice. For tighter potentials, the conden-

sate is truly stable against energy-momentum conserving two-body collisions. I

also identify several distinct signatures of interaction-driven scattering.

Within the rotating wave approximation, the rate of scattering of two atoms

out of the BEC is then given by:
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dN
dt

=
2π
~

∑
f

|〈ψ f |Hint|ψi〉|
2δ(ε f − εi) (6.7)

where

|ψi〉 =
(a0†

k0
)N

√
N!
|0〉

|ψ f 〉 = Ψ
†

k0+kΨ
†

k0−k

(a0†
k0

)(N−2)

√
N − 2!

|0〉 (6.8)

where, Ψk is a shorthand for representing {ak, bk, ck, dk}, the state |ψi〉 denotes the

BEC where the bosons have condensed at momentum k0, while |ψ f 〉 denotes a

state where two bosons have scattered out of the condensate to momenta k0 + k

and k0−k respectively. The energies of the final states are ε f and εi respectively. If

I did not use the Rotating Wave Approximation, a more complicated expression

is necessary [14]. Using Eq.(6.7) I investigate the stability of a Floquet BEC. All

my calculations are done for the experimental parameters of Ref.[1] a lattice

depth of 7ER, where the recoil energy, ER = h2/(2mλ2
L) where λL = 1064 nm

and m = 133 amu. For these units, the zero-momentum bandgap for the 1D

optical lattice is is 4.96 ER and the lattice is shaken at the blue detuned frequency

of 5.5 ER. It is reasonable to assume that loss is exponential. If not, Eq.(6.7)

only describes the short-time behavior. At finite temperature, there are also

heating processes involving one condensed atom and non-condensed atoms, or

two non-condensed atoms. At typical BEC temperatures, these are negligible.
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6.4.1 One-Dimensional Shaken Lattice

I first consider the case of a Floquet BEC loaded in a shaken 1D lattice. For this

case, the boson scattering rate in Eq.(6.7) can be expressed as :

dN
dt

=
2π
~

g2

4
N2

Ll2
⊥

1
ERa3 Γ ==

2π
~

(
gn
2

)2 V
ERa3 Γ (6.9)

where Γ is the adimensional scattering rate, L is the linear system size, l⊥ =

√
~/(mΩ), and n is the density. This is of the same form as eq.(5.35). The detailed

derivation and the expression for Γ are given in the appendix at the end of this

chapter. Γ depends on the lattice depth, shaking frequency, shaking force and

transverse confinement. It does not depend on the scattering length or the den-

sity.

Figure 6.4 shows Γ vs F0 for weak transverse confinement (~Ω/ER =

0.04 and 0.08). As is expected from my results in chapter 5, for small F0, Γ rises

quadratically and is roughly independent of Ω. For large F0, a series of reso-

nances are visible. The lifetime of the condensate is given by :

τ =
N

dN/dt
=

mLl2
⊥a

8ha2
s NΓ

=
ma

8ha2
snΓ

(6.10)

Taking typical experimental parameters from the experiment in ref.[1], m =

133 amu, L = 30000 nm, l⊥ = 1000 nm as = 1.5 nm, N = 30, 000 and Γ = 0.01, I

get τ ∼ 1 s.
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Figure 6.4: Adimensional scattering rate Γ as a function of the forcing am-
plitude, F0 in the limit of weak confinement into a 1D lattice
[Fig. 6.1(a)]. Blue, Dotted : ~Ω/ER = 0.04, Red, Dashed :
~Ω/ER = 0.08, Black, Solid: Analytic result from Chapter 5.
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To better understand the structure of resonances in Fig. 6.4, I plot Γ on a log

scale as a function of the transverse confinement frequency, Ω in Fig. 6.5. The

set of vertical lines are given by the formulae:

~Ω(a)
n = E12/(2n) =

(
ε(1)
π + ε(2)

−π − 2ε(1)
0

)
/(2n) and

~Ω(b)
n = E22/(2n) =

(
ε(2)
π + ε(2)

−π − 2ε(1)
0

)
/2n (6.11)

(6.12)

These energy values, E12 and E22 correspond to the maximum longitudinal en-

ergy transfer in two different scattering channels and the resonance structure in

Fig. 6.5 corresponds to the closing of scattering channels. The factor of 2n corre-

sponds to the spacing of parity allowed states. This structure can be understood

by considering the energy and momentum conserving scattering processes in

Fig.(6.6). Whenever a scattering channel closes, the available phase space for

energy-momentum conserving scattering processes suddenly reduces leading

to a sudden drop in the scattering rate.

As explained in the appendix of this chapter (eqns.6.23 and 6.25), the scat-

tering rate of atoms out of the floquet BEC is proportional to the overlap of the

square of the excited state oscillator wave function with the square of the ground

state oscillator wave function and a density of states factor, dk/dE f where k is

the crystal momentum and E f is the energy of the final state that the bosons

scatter to. There are two primary types of scattering channels: (a) when two

bosons from the condensate scatter into the the first excited band (i.e band 2)

and (b) when one boson from the condensate goes to some higher energy state

in the ground band (band 1) and the other boson goes to the first excited band

(band 2). The density of states factor is much higher for the latter type of chan-
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Figure 6.5: Logarithm of the adimensional scattering rate, Γ in a 1D lat-
tice [Fig. 6.1(a),(b)] as a function of the transverse trapping fre-
quency, Ω for a fixed value of the forcing amplitude, F0 = Fc,
where Fc is the amplitude where the dispersion of the ground
band is quartic near k = 0. Red vertical lines denote resonances
at Ω = Ω

(a)
n ,Ω(b)

n corresponding to the closing of scattering chan-
nels (see text).The black dashed line shows the value of ln(Γ)
for different values of the transverse confinement for which
the BEC lifetime is greater than 10 s (assuming the parameters
quoted after Eq.(6.10)).

nel. Thus, the drop in scattering rate is bigger when a channel of type (b) closes

compared to the situation when a channel of type (a) closes. The wavefunction

overlap is also larger for large Ω leading to greater drops in the scattering rate

when the transverse confinement is tighter.
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Figure 6.6: Schematic illustrating conservation of energy and momentum
in two-body collisions in a shaken pancake lattice. Black dot
denotes condensate in first band at k = 0. Solid lines show first
and second with no transverse excitations. Arrows denote an
energy and momentum conserving collision. The resonances
in Figs. (6.4) and (6.5) correspond to the situation where the
final states have |ka| = π

This resonance structure leads to special parameters where the BEC would

be particularly stable or unstable. These resonances are a useful fingerprint

of the loss mechanism and can be used in an experiment to test my model of

interaction-driven instability. The dashed line in Fig.6.5 corresponds to a life-

time of τ ≈ 10s (using the parameters below Eq.(6.10)). There is a large window

around ~Ω ∼ 1.1ER, where the lifetime exceeds 10 s.
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Figure 6.7: Stability phase diagram for a BEC in a driven 1D lattice for a
fixed value of the forcing amplitude, F0 = Fc. Here ω−ω0 is the
detuning of the shaking frequency ω from the zero-momentum
bandgap ω0.

The BEC is completely stable against collisions ~Ω > 2.05ER. In Fig. 6.7, I

show how the stability boundary varies with drive frequency. In terms of the

dispersions of the two bands, the critical confinement is given by :

~Ω = ε(2)
π + ε(2)

−π − 2ε(1)
0 (6.13)

For larger Ω, energy and momentum can’t be conserved in 2-body collisions.

One concern with my analysis is that the optical dipole traps used in experi-

ments are not completely harmonic. The anharmonicity of the traps imply that

the different energy levels in the transverse directions are not equally spaced :
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the energy levels are placed more closely together for higher values of energy

[13, 14]. From eq.6.12, this implies that for small values of Ω, the resonances will

be very closely spaced making it difficult to detect them [13, 14]. For larger val-

ues of Ω, however the shift is much smaller, making the resonances detectable.

Another consequence of the anharmonicty of the trapping potential is the gas

atoms at the edge of the trap experience a different trapping frequency than the

atoms at the center. Thus, the anharmonicity will also lead to a broadening of

the resonances. To make a quantitative estimate for the resonance broadening, I

consider a trapping potential of the form [13] :

Vtrap = U0 (1 − cos(kL.x)) (6.14)

The oscillator frequency at the center of the trap is Ω0 = V0k2
L/m. This is the value

of Ω that I use for my calculations. The spread in position for the gas cloud, ∆x

is given by :

U0

(
1 − cos(kL

∆x
2

)
)

= kBT. (6.15)

The frequency at the edge of the trap is given by Ω′ = Ω0

√
cos(kL

∆x
2 ). Thus, the

range of frequencies experienced by the gas in the trap is then given by:

∆Ω = Ω0

1 −
√

cos(kL
∆x
2

)

 = Ω0

1 − √
U0 − kBT

U0

 (6.16)

Taking U0 = 10~Ω0 [13], and T = 7nK, I get that ∆Ω
Ω0

can vary between 0.16 (for

the weakly confined case, Ω = 0.04ER) to 0.005 (for the tightly confined case,

Ω = 1.1ER).

Thus, it will be difficult to observe the resonances for small Ω since these res-

onances are closely spaced and also broadened more. However, the resonances

at large Ω should be observable. Moreover, I expect my analysis for the stability
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boundary for the Floquet BEC to be robust because it only involves the lowest

energy levels of the transverse traps.

6.4.2 Two Dimensional Shaken Lattice

In this section, I explore the stability of a Bose-Einstein condensate loaded in a

two-dimensional optical lattice. The stability analysis is very similar to that of

the shaken 1D lattice. The scattering rate of bosons can be written down as :

dN
dt

=
2π
~

g2

4
N2

LyLzl⊥

1
ERa3 Γ =

2π
~

(
gn
2

)2 V
ERa3 Γ (6.17)

where Γ is the adimensional scattering rate and Lz and Ly denotes the linear

system size in the z and y directions. This is again of the form of eq.6.9. The

detailed derivation and the expression for Γ are given in in the appendix at the

end of this chapter.

I show Γ for a relatively weak value of transverse confinement (~Ω/ER =

0.08) in Fig. 6.8. The adimensional scattering rate, Γ is higher for the shaken

two-dimensional square lattice when compared to the one-dimensional lattice.
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Figure 6.8: Adimensional scattering rate Γ as a function of the forcing am-
plitude, F0 in the limit of weak confinement (~Ω = 0.08ER) for
a 2D lattice [Fig. 6.1(c)]

The lifetime of the condensate is given by :

τ =
N

dN/dt
=

mLyLzl⊥a
8ha2

s NΓ
(6.18)

Now, taking typical experimental parameters from the experiment in ref.[1],

m = 133 amu, Ly = 30000 nm, Lz = 30000 nm, l⊥ = 1000 nm as = 1.5 nm, N = 30, 000

and Γ = 0.4, I get τ ∼ 0.73 s.

The scatter of points in Fig. 6.8 is related to the resonances. Again, these

can be explored by fixing F0 to some value (here, Fc) and then plotting the

scattering rate, Γ as a function of the transverse confinement, Ω as shown

in Fig. 6.9. The black dashed line again corresponds to a lifetime of 10 s.

There are specific value of Ω at which the scattering rate drops significantly.
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Figure 6.9: Logarithm of the adimensional scattering rate Γ in a 2D lattice
as a function of the transverse confinement, Ω for a fixed value
of the forcing amplitude, F0 = Fc. The black dashed line shows
the value of ln(Γ) for different values of the transverse confine-
ment for which the BEC lifetime is greater than 10 s (assuming
the parameters quoted after Eq.(6.18)).

These values of Ω are shown as vertical lines in Fig. 6.9 and correspond to

~Ω = (E12 + E22)/(2n), (E12 + E12)/(2n), (E22 + E22)/(2n). As in the 1D case, these

frequencies correspond to the closing of scattering channels. There is also struc-

ture related to the van Hove singularities in the density of states, but for clarity,

I do not mark them with vertical lines. Beyond a transverse confinement of 1.4

ER, the BEC will almost always have a lifetime τ > 10s.

Due to the separability of the Hamiltonian, the critical transverse confine-

ment for the 2D square lattice is exactly twice that of the one-dimensional lattice,

so the stability phase diagram is readily inferred from Fig.6.7.
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6.5 Conclusion

In this chapter, I have studied the effect of transverse confinement on the stabil-

ity of a Floquet BEC for both a shaken 1D lattice and a shaken 2D square lattice.

I obtained scattering rates as well as the stability phase diagrams for both sys-

tems. The scattering rate shows a resonant structure and fine tuning parameters

can drastically reduce the loss rate. This structure arises from the opening and

closing of loss channels corresponding to the quantized transverse modes. It

provides a fingerprint of the loss mechanism and could be a valuable tool for

minimizing loss. I find a critical value of transverse confinement, beyond which

there are no allowed 2-body scattering processes which can deplete the conden-

sate. Well before this point however, the scattering rate drops to extremely small

values, making the BEC stable for the time-scales of the experiment.

The loss mechanism that I study has another distinct signature - namely that

energy is converted from the time-dependent potential into transverse motion

of the atoms. This transverse motion can be directly probed in time-of-flight

experiments. With this chapter, I conclude my studies on the stability of a peri-

odically driven BEC.
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6.6 Appendix

6.6.1 Derivation of the 1D Hamiltonian

In a tight-binding prescription, the single-particle Hamiltonian describing the

system in the frame co-moving with the lattice can be written as H0(t):

H0(t) =

∫
d2r⊥

∑
i j

(
−t(1)

i j a†i a j + t(2)
i j b†i b j + h.c.

)
+

∑
j

F(t)
(
z j

(
a†ja j + b†jb j

)
+ χ ja

†

jb j + χ∗jb
†

ja j

)
+
~2

2m

(
∇⊥a†j∇⊥a j + ∇⊥b†j∇⊥b j

)
+ mΩ2(x2 + y2)

(
a†ja j + b†jb j

)
(6.19)

where,

χ j =

∫
dz zw∗1(z − z j)w2(z − z j)

t(1)
i j =

∫
dz w∗1(z − zi)

(
−~2

2m
d2

dz2 + V(z)
)

w∗1(z − z j)

t(2)
i j =

∫
dz w∗2(z − zi)

(
−~2

2m
d2

dx2 + V(z)
)

w∗2(z − z j)

F(t) = F0 cos(ωt) (6.20)

Here, wi is the Wannier function for the ith band. It should be noted that χ j is

independent of j and so I can call it χ. The operators a j and b j annihilate parti-

cles in the two bands. If necessary more bands can be included.

Performing a basis rotation : |ψ〉 → Uc(t)|ψ〉where

Uc(t) = exp

− i
~

∫ t

0

∑
j

z jF0 cos(ωt)(a†ja j + b†jb j)

 , (6.21)
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I transform the Hamiltonian as:

H′0(t) = UcH0(t)U−1
c − i~Uc∂tU−1

c

=
∑
nx,ny

Hn (6.22)

with

Hn =
∑

i j

(
−J(1)

i j (t)an†
i an

j + J(2)
i j (t)bn†

i bn
j + h.c.

)
+ F0 cos(ωt)

(
χan†

j bn
j + χ∗bn†

j an
j

)
+

∑
n

~Ω(nx + ny + 1)
(
an†

j an
j + bn†

j bn
j

)
=

∑
k

∑
m

cos(mka)
(
−J(1)

m (t)an†
k an

k − J(2)
m (t)bn†

k bn
k

)
+

∑
k

F0 cos(ωt)
(
χan†

k bn
k + χ∗bn†

k an
k

)
+

∑
n

~Ω(nx + ny + 1)
(
an†

k an
k + bn†

k bn
k

)
(6.23)

where,

Jσi j(t) = tσi j exp(−iF0
sin(ωt)
~ω

(zi − z j)) = tσi j exp(−iF0
sin(ωt)
~ω

a(i − j)), (6.24)

a = λL/2 is the lattice spacing and χ = χ∗ for a suitable choice of phase for ak and

bk. I use n as a shorthand for denoting {nx, ny}.

In the limit of F0a/(~ω) � 1, Jσi j(t) = tσi j. Hence, I can write down the Hamil-

tonian as :

Hsp =
∑
n,k

ε(1)
nk an†

k an
k + ε(2)

nk bn†
k bn

k + F0 cos(ωt)
(
χan†

k bn
k + χ∗bn†

k an
k

)
(6.25)

where,

ε(1)
nk =

∑
k

∑
m

−t(1)
m cos(mka) + ~Ω(nx + ny + 1)

ε(2)
nk =

∑
k

∑
m

t(2)
m cos(mka) + ~Ω(nx + ny + 1)

(6.26)
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6.6.2 Derivation of the scattering rate

1D Lattice

For the case of the 1D optical lattice, the scattering rate in Eq.(6.7) can be written

down as

dN
dt

=
2π
~

g2

4
N2 L

2π

∑
na,nb

∫
dkΓ

na,nb
k δ(ε f − εi) (6.27)

where

Γ
na,nb
k =

∣∣∣∣∣∣∣ I
na,nb
x Ina,nb

y 〈ψ f |
∫

dkΨ
†

k0−kΨ
†

k0+kΨk0Ψk0 |ψi〉

Ll2
⊥

∣∣∣∣∣∣∣
2

and

Ina,nb
x =

∫
dxφ(nx

a)(x)φ(nx
b)(x)φ(0)(x)φ(0)(x) (6.28)

with na(nb) = {nx
a, n

y
a}({nx

b, n
y
b}), φ

(n)(x) = Hn(x) exp(−x2/2), Hn(x) being the Hermite

polynomial of order n. An important consequence of the form of 6.28 is that

Ina,nb
x = 0 unless nx

a and nx
b (as well as ny

a and ny
b) have the same parity. Finally,

Eq.(6.27) can be simplified to write

dN
dt

=
2π
~

g2

4
N2

Ll2
⊥

1
ERa3 Γ (6.29)

with

Γ =
L2l2
⊥ERa3

2π

∑
na,nb

∫
dkΓ

na,nb
k δ(ε f − εi)

=
L2l2
⊥ERa3

2π

∑
na,nb

∫
dε f

dk
dε f

Γ
na,nb
k δ(ε f − εi) (6.30)

This is Eq.(6.9).
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2D Square Lattice

For the case of the 2D square lattice, the scattering rate in Eq.(6.7) can be written

down as
dN
dt

=
2π
~

g2

4
N2 LyLz

(2π)2

∑
na,nb

∫
d2kΓ

na,nb
k δ(ε f − εi) (6.31)

where

Γ
na,nb
k =

∣∣∣∣∣∣∣ I
na,nb〈ψ f |

∫
d2kΨ

†

k0−kΨ
†

k0+kΨk0Ψk0 |ψi〉

LyLzl⊥

∣∣∣∣∣∣∣
2

and

Ina,nb =

∫
dxφ(na)(x)φ(nb)(x)φ(0)(x)φ(0)(x) (6.32)

with l⊥ =
√
~/(mΩ) just as in the case of the 1D shaken lattice. An important

consequence of the form of 6.32 is that Ina,nb is 0 unless na and nb have the same

priority. Eqn.(6.31) simplifies to give :

dN
dt

=
2π
~

g2

4
N2

LyLzl⊥

1
ERa3 Γ (6.33)

with

Γ =
L2

y L2
z l⊥ERa3

(2π)2

∑
na,nb

∫
d2kΓ

na,nb
k δ(ε f − εi)

This is Eq.(6.17).
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CHAPTER 7

CONCLUSION

In this thesis, I have explored a variety of aspects of quantum simulation using

Bose-Einstein condensates in optical lattices. This thesis can be divided into two

broad themes:

Realization of novel quantum states in cold atom systems : I have explored

this theme in chapter 3. In this chapter, motivated by the observation of an ex-

otic “twisted superfluid phase” in Prof. Klaus Sengstock’s group (Soltan-Panahi

et al., Nat. Phys. 8, 71 (2012)), I have studied the stability of a Bose-Einstein con-

densate towards forming a twisted superfluid within the framework of mean

field theory. I found that the twisted superfluid state is absent in mean field the-

ory thus pointing to either beyond mean-field correlations or interaction effects

during time of flight.

My results are presented in :

Sayan Choudhury and Erich J Mueller, Phys. Rev. A 87, 033621 (2013).

Stability of driven quantum systems : Chapters 4,5 and 6 are devoted to

this theme. In these chapters, I have explored the stability of a periodically

driven (Floquet) Bose-Einstein condensate to interactions. My work was pri-

marily motivated by observations in Prof. Cheng Chin’s group [Parker, Ha, and

Chin, Nat. Phys. 9, 769 (2013)]. I found that a Floquet BEC loaded in a low

dimensional optical lattice is generically unstable in the absence of transverse

confinement. However, by suitably adjusting the transverse confinement, the

BEC can be stabilized.
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My results are presented in:

1. Sayan Choudhury and Erich J. Mueller, Phys. Rev. A 92, 063639 (2015).

2. Sayan Choudhury and Erich J. Mueller, Phys. Rev. A 91, 023624 (2015).

3. Sayan Choudhury and Erich J. Mueller, Phys. Rev. A 90, 013621 (2014).
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APPENDIX A

FLOQUET THEORY

In this appendix, I give a more detailed derivation of the effective Hamiltonian

of a periodically driven system. I set ~ = 1 for my analysis. The starting point of

my analysis is the Schrödinger equation for a periodically driven system:

i
∂

∂t
|ψ(t)〉 = H(t)|ψ(t)〉, (A.1)

where H(t + T ) = H(t).

This equation was first solved by Gaston Floquet and he found that the so-

lutions to this equation had the form:

|ψα(x, t)〉 = exp(−iεαt)|φα(x, t)〉 (A.2)

where |φα(x, t + T )〉 = |φα(x, t)〉. In the context of Floquet systems, εα is called

the quasi-energy and the quantum states described by |ψα(x, t)〉 are known as

Floquet states. Floquet states satisfy the Schrödinger equation:

H|φα(x, t)〉 = εα|φα(x, t)〉, (A.3)

where H = (H(t) − i ∂
∂t ). Fourier transforming both sides of eq.(A.3) leads to a

matrix equation whose eigenvalues are εα. An important property of H that if

|φα(x, t)〉 is an eigenstate ofH with eigenvalue εα, then |φα(x, t)〉 exp(−inΩt) is also

an eigenstate with the eigenvalue εα + nΩ, where Ω = 2π
T . This means that the

quasi-energies of a Floquet system is unbounded.

To compute εα, I use the observation that over the course of one drive period,

a Floquet state evolves as

|ψα(x,T )〉 = exp(−iεαT )|φα(x,T )〉 = exp(−iεαT )|φα(x, 0)〉 = U(0,T )|φα(x, 0)〉 (A.4)
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Thus, the quasi-energies can be obtained as eigenvalues of the operator

log(U(0,T )). Moreover, I can now define an effective Hamiltonian, Heff that cap-

tures the stroboscopic dynamics by the following equation:

Heff =
i
T

log(U(0,T )) (A.5)
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