
Belief in Information Flow

Michael R. Clarkson Andrew C. Myers Fred B. Schneider
Department of Computer Science

Cornell University
{clarkson,andru,fbs}@cs.cornell.edu

Abstract

Measurement of information flow requires a definition of
leakage, which traditionally has been defined to occur when
an attacker’s uncertainty about secret data is reduced. We
show that this uncertainty-based approach is inadequate for
measuring information flow when an attacker is making as-
sumptions about secret inputs and these assumptions might
be incorrect. Moreover, we show that such attacker beliefs
are an unavoidable aspect of any satisfactory definition of
leakage. To reason about information flow based on beliefs,
we develop a model that describes how an attacker’s belief
changes due to the attacker’s observation of the execution of
a probabilistic (or deterministic) program. The model leads
to a new metric for quantitative information flow that mea-
sures accuracy rather than uncertainty of beliefs.

1. Introduction

Qualitative security properties, such as noninterference
[9], are inappropriate for some programs, because such
properties typically either prohibit any flow of information
from a high security level to a lower level, or they allow any
amount of flow so long as it passes through some release
mechanism. For a program whose correct functioning re-
quires flow from high to low, the former approach is too re-
strictive and the latter can lead to unbounded leakage of in-
formation. Quantitative flow properties, such as “at mostk
bits leak per run of the program”, allow violating flows but
with restricted rates. Such properties characterize the secu-
rity of programs whose nature require that some—but not
too much—information be leaked. The prime examples of
such programs are guards that sit at the boundary between
trusted and untrusted systems, such as password checkers.

Defining the quantity of information flow is more diffi-
cult than it might seem. Consider a password checkerPWC

that sets an authentication flaga by checking a stored pass-
wordp against a (guessed) passwordg supplied by the user.

PWC : if p = g then a := 1 else a := 0

For simplicity, suppose that the password is eitherA, B,
or C. Suppose also that the user is actually an attacker at-
tempting to discover the password, and he believes the pass-
word is overwhelmingly likely to beA but has a minuscule
and equally likely chance to be eitherB or C. (This need
not be an arbitrary assumption on the attacker’s part; per-
haps the attacker was told by a usually reliable informant
that the password isA.) If the attacker experiments by run-
ning the program and guessingA, he expects the outcome
to be thata is equal to 1. Such a confirmation of the at-
tacker’s suspicion does seem to convey some small amount
of information. But suppose that the informant was wrong:
the real password isC. The outcome of this experiment has
a equal to 0, from which the attacker infers thatA is not
the password. Common sense dictates that his new belief is
that B andC each have a 50% chance of being the pass-
word. The attacker’s belief is greatly changed—he is sur-
prised to discover the password is notA—so this outcome
seems to convey a larger amount of information than the
previous outcome. Thus, the information conveyed by run-
ningPWC depends on what the attacker believes.

How much information flows fromp to a in each of the
above experiments? Answers to this question traditionally
have been based on change in uncertainty [5, 19, 10, 1, 15,
2, 16]: information flow is measured by the reduction in
the attacker’s uncertainty about secret data. Observe that,
in the case where the password wasC, the attacker initially
is quite certain (though wrong) about the value of the pass-
word and after the experiment is rather uncertain about the
value of the password; the change from “quite certain” to
“rather uncertain” is an increase in uncertainty. So accord-
ing to the reduction in uncertainty metric, no information
flow occurred, which flatly contradicts our intuition. The
problem with reduction in uncertainty as a metric is that it
does not take accuracy into account. Accuracy and uncer-
tainty are orthogonal properties of the attacker’s belief—
being certain does not make one correct—and as the pass-
word checking example illustrates, the amount of informa-
tion flow depends on accuracy rather than on uncertainty.

This paper presents a new way of measuring information

flow, based on this insight. Section 2 gives the basic repre-
sentations and notations for beliefs and programs. Section
3 describes a model that is a precise characterization of the
interaction between attackers and systems; it also describes
how attackers update their beliefs from observing execution
of programs. Section 4 defines a new quantitative flow met-
ric, based on information theory, that successfully captures
the amount of information flow due to changes in the accu-
racy of an attacker’s belief. The model and metric are for-
mulated for use with any programming language that can
be given a denotational semantics that is compatible with
the representation of beliefs, and Section 5 instantiates the
model and metric for a particular programming language
(while-programs plus probabilistic choice). Section 6 dis-
cusses related work, and Section 7 concludes.

2. Incorporating Beliefs

Our measure of information flow is based on accuracy
of beliefs. Abelief is a statement an agent makes about the
state of the world, accompanied by some measure of how
certain the agent is about the truthfulness of the statement.
We begin by developing some mathematical structures for
representing beliefs.

2.1. Distributions

A frequency distributionis a functionδ that maps a pro-
gram state to afrequency, where a frequency is a non-
negative real number. A frequency distribution is essen-
tially an unnormalized probability distribution over pro-
gram states; frequency distributions are known to serve bet-
ter than probability distributions as the basis for a program-
ming language semantics [20]. Henceforth, we write “dis-
tribution” to mean “frequency distribution”.

The set of all program states isState, and the set of all
distributions isDist. The structure ofState is unimportant;
it can be instantiated according to the needs of any partic-
ular language or system. For our examples, states are maps
from variables to values, where domainsVar andVal are
both countable sets.

v ∈ Var
σ ∈ State , Var → Val
δ ∈ Dist , State → R

+

Themassin a distributionδ is the sum of all the frequen-
cies:

mass(δ) ,
∑

σ δ(σ)

A probability distribution has mass 1, but a frequency distri-
bution may have any non-negative mass. Apoint massis a
distribution that maps a single state to 1, and all other states
to 0. It is denoted by placing a dot over the state:

σ̇ , λσ′ . if σ′ = σ then1 else0

2.2. Semantic Functions

Execution of programS is described by a denotational
semantics in which the meaning ofS is written [[S]], and is
a function of typeState → Dist. We also require that this
semantics can be lifted to a function of typeDist → Dist by
the following definition:

[[S]]δ , λσ .
∑

σ′ δ(σ′) · ([[S]]σ′)(σ)

This is a healthiness condition that requires the mean-
ing of programs as distribution transformers to be deter-
mined by the meaning of programs as state transformers. By
defining programs in terms of how they operate on distribu-
tions we permit analysis of probabilistic programs. Section
5 shows how to build a semantics of this form.

2.3. Labels and Projections

We need a way to identify secret data;confidentiality
labels satisfy this need. For simplicity, we assume there
are only two such labels: a labelL that indicates low-
confidentiality (public) data, and a labelH that indicates
high-confidentiality (secret) data. Assume thatState is a
product of two domainsStateL and StateH , which con-
tain the low- and high-labeled data, respectively. Alow
state is an elementσL ∈ StateL; a high stateis an ele-
mentσH ∈ StateH . The projection of stateσ ∈ State onto
StateL is written σ � L; this is the part ofσ that is vis-
ible to the attacker. Projection ontoStateH , the part ofσ
that is not visible to the attacker, is writtenσ � H.

Assume that each variable in a program is labeled to in-
dicate the confidentiality of the information in that variable;
for example,xL is a variablex that contains low informa-
tion. For convenience, assume that variablel is labeledL
and variableh is labeledH. LetVarL be the set of variables
in a program that are labeledL; thenStateL = VarL →
Val. The low projectionσ � L of a stateσ is:

σ � L , λv ∈ VarL . σ(v)

Statesσ andσ′ are low-equivalent, written σ ≈L σ′, if
they have the same low projection:

σ ≈L σ′ , (σ � L) = (σ′ � L)

Distributions also have projections. Letδ be a distribu-
tion andσL a low state. Then(δ � L)(σL) is the frequency
with which any state whose low projection isσL occurs in
δ:1

δ � L , λσL ∈ StateL .
∑

σ′ | (σ′�L) = σL
δ(σ′)

1 Formula?x∈D | R P is a quantification in which? is the quantifier
(such as∀ or Σ), x is the variable that is bound inR andP , D is the
domain ofx, R is the range, andP is the body. We omitD, R, and
evenx when they are clear from context; an omitted range meansR =
true.

2

High projections and high equivalence are defined by
replacing each occurrence ofL with H in the definitions
above.

2.4. Belief Representation

To reason about beliefs, we must choose a representation
for them. Many representations, both quantitative and qual-
itative, have been developed; Halpern [12] presents several
representations that all share the idea ofpossible worlds, the
setW of all elementary outcomes about which beliefs can
be held. Though we do fix a belief representation, the re-
sults presented below are mostly independent of any partic-
ular representation.

To be usable in our framework, a representation must
have certain natural operations defined. Letb andb′ be be-
liefs about possible worldsW andW ′, respectively.

1. Belief product⊗ combinesb andb′ into a new belief
b ⊗ b′ about possible worldsW × W ′, whereW and
W ′ must be disjoint.

2. Belief updateb|U is the belief that results whenb is
updated to include the new information that the actual
world is in a setU ⊆ W of possible worlds.

3. Belief distanceD(b _ b′) is a real numberr ≥ 0 that
quantifies the difference betweenb andb′.

The rest of this paper uses distributions to represent be-
liefs. We take high states as the possible worlds for beliefs,
fixing W to beStateH . We define a beliefb as a normalized
distribution over high states, i.e.mass(b) = 1. Whereas
distributions correspond to positive measures, beliefs cor-
respond to probability measures. Probability measures are
well-studied as a belief representation [12], and have sev-
eral advantages here: they are familiar, quantitative, satisfy
the required operations, and admit a programming language
semantics (as shown in Section 5). There is also a nice jus-
tification for the numbers they produce: roughly,b(σ) char-
acterizes the amount of money an attacker should be willing
to bet thatσ is the true state of the system [12].

For belief product⊗, we define a more general distri-
bution product⊗ of two distributionsδ1 : A → R

+ and
δ2 : B → R

+, whereA andB are disjoint, as:

δ1 ⊗ δ2 , λ(σ1, σ2) ∈ A × B . δ1(σ1) · δ2(σ2)

It is easy to check that ifb andb′ are beliefs, thenb ⊗ b′ is
too. For belief update|, we use distribution conditioning:

δ|U , λσ . if σ ∈ U then
δ(σ)

∑
σ′∈U δ(σ′)

else0

For belief distanceD we use relative entropy, an
information-theoretic metric [13] for the distance be-
tween distributions.

D(b′ _ b) ,
∑

σ b(σ) · log b(σ)
b′(σ)

The base of the logarithm inD can be chosen arbitrarily; we
use base two and writelg to indicatelog2, making bits the
unit of measurement for distance. The relative entropy ofb
to b′ is the expected inefficiency (that is, the number of addi-
tional bits that must be sent) of an optimal code that is con-
structed by assuming an inaccurate distribution over sym-
bolsb′ when the real distribution isb [13]. Like an analytic
metric,D(b′ _ b) is always at least zero andD(b′ _ b)
equals zero only whenb = b′.2

Relative entropy has the property that ifb(σ) > 0 and
b′(σ) = 0, thenD(b′ _ b) = ∞. An infinite distance be-
tween beliefs would cause difficulty in measuring change
in accuracy. To avoid this anomaly, beliefs may be required
to satisfy certain restrictions. For example, an attacker’s be-
lief b might be restricted such that:

(min σH
b(σH)) ≥

ε

|State � H|

for some ε > 0, which ensures thatb is never off by
more than a factor ofε from a uniform distribution; we
call such beliefsadmissible. Other admissibility restrictions
may be substituted for this one if the analysis context sug-
gests stronger assumptions about how attackers form their
beliefs.

3. Experiments

We formalize as anexperimenthow anattacker, an agent
that reasons about beliefs, revises his beliefs from interac-
tion with a system, an agent that executes programs. The
attacker should not learn about the high input to the pro-
gram but is allowed to observe (and perhaps influence) low
inputs and outputs. Other agents (a system operator, other
users of the system with their own high data, an informant
upon which the attacker relies, etc.) might be involved when
an attacker interacts with a system; however, it suffices to
condense all of these to just the attacker and the system, be-
cause the system can act for any other agents.

In a particular experiment, we are chiefly interested in
the programS with which the attacker is interacting. We
conservatively assume that the attacker knows the source
code ofS. For simplicity of presentation, we assume thatS
always terminates and that it never modifies the high state.
Section 3.4 discusses how both restrictions can be lifted
without significant changes.

2 Unlike an analytic metric,D does not satisfy the triangle inequality.
However, there is no compelling reason to assume that the triangle in-
equality holds for beliefs: perhaps it is easier to rule out apossibility
from a belief than to add a new one, or vice-versa.

3

An experimentE = 〈S, bH , σH , σL〉 is conducted as fol-
lows.

1. The attacker chooses a prebeliefbH about the high
state.

2. (a) The system picks a high stateσH

(b) The attacker picks a low stateσL.

3. The system executes the programS, which produces a
stateσ′ ∈ Γ(δ′) as output, whereδ′ = [[S]](σ̇L ⊗ σ̇H).
The attacker observes the low projection of the output
state:o = σ′ � L.

4. The attacker infers a postbelief:b′H = (([[S]](σ̇L ⊗
bH)|o)) � H ∈ B(E)

Figure 1. Experiment Protocol

3.1. Experiment Protocol

Formally, an experimentE is a tuple:

E = 〈S, bH , σH , σL〉

whereS is the program,bH is the attacker’s belief,σH is the
high projection of the initial state, andσL is the low projec-
tion of the initial state. The protocol for experiments is sum-
marized in Figure 1. Here is a justification for the protocol.

An attacker’sprebelief, describing his belief at the be-
ginning of the experiment, may be chosen arbitrarily (sub-
ject to the admissibility requirement in Section 2.4) or may
be informed by previous experiments. In a series of experi-
ments, thepostbelieffrom one experiment becomes the pre-
belief to the next. The attacker might even choose a prebe-
lief bH that contradicts his true subjective probability dis-
tribution on the state, and this gives our analysis additional
power, because it allows the attacker to conduct experiments
that answer questions such as “What would happen if I were
to believebH?”.

The system choosesσH , the high projection of the ini-
tial state, and it might remain constant from one experiment
to the next or it might vary. For example, Unix passwords
do not usually change frequently, but the PINs on RSA Se-
curID tokens change each minute. We conservatively as-
sume that the attacker chooses all ofσL, the low projection
of the initial state, since this gives him additional power in
controlling execution of the program.3 The attacker’s choice
of σL is likely to be influenced bybH , but for generality, we
do not require there be such a strategy.

ProgramS is executed only a single time in a single ex-
periment; multiple executions are modeled by multiple ex-

3 More generally, both the system and the attacker might contribute to
σL. But since we are concerned with only confidentiality, not integrity,
of information, we do not need to distinguish which parts are chosen
by which agent.

periments. The meaning ofS given inputσ̇L⊗σ̇H is an out-
put distributionδ′:

δ′ = [[S]](σ̇L ⊗ σ̇H)

From δ′ the attacker makes anobservation, which is a
low projection of an output state. Probabilistic programs
may yield many possible output states, but in a single execu-
tion of the program, only one output state can be produced.
So in a single experiment, the attacker is allowed only a
single observation. A single state is chosen from a distrib-
ution bysamplingoperatorΓ, whereΓ(δ) generates a state
σ from the domain ofδ with probability δ(σ)/mass(δ);
the mass operator is used to normalize the distribution to
a probability distribution. To emphasize the fact that the
choice is made randomly, assignment of a sample is writ-
tenσ ∈ Γ(δ), using∈ instead of=. The observationo re-
sulting fromδ′ is:

o ∈ Γ(δ′) � L

The formula the attacker uses for postbeliefb′H in Fig-
ure 1 has the attacker perform two operations. The first op-
eration is to use the semantics ofS along with prebelief
bH as the distribution on high input. This “thought experi-
ment” generates the inferences the attacker can make from
his knowledge of the program text and low inputs by pre-
dicting the output distribution. We define the predictionδ′A
to correlate the output state with the high input state:

δ′A = [[S]](σ̇L ⊗ bH)

The second operation is to condition predictionδ′A on
observationo. This incorporates any additional inferences
that can be made from the observation, then restricts that to
high inputs:

b′H = (δ′A|o) � H

The conditioning operator| is a specialization of distribu-
tion conditioning. It removes all the mass in distributionδ
that is inconsistent with observationo, then normalizes the
distribution:

δ|o , λσ . if (σ � L) = o then
δ(σ)

(δ � L)(o)
else0

Belief revision operatorB, which yields the postbelief
from an experimentE = 〈S, bH , σH , σL〉, compactly repre-
sents all of the formulas above:

B(E) , (([[S]](σ̇L ⊗ bH)|o)) � H

where o ∈ Γ(δ′) � L
δ′ = [[S]](σ̇L ⊗ σ̇H)

Because it usesΓ, operatorB produces values by sam-
pling, so we writeb′H ∈ B(E). To select a particularb′H
fromB, we provide observationo:

B(E , o) , (([[S]](σ̇L ⊗ bH)|o)) � H

4

p bH b′H1 b′H2

A 0.98 1 0
B 0.01 0 0.5
C 0.01 0 0.5

Table 1. Beliefs about p

p g a δ′A δ′A|o1 δ′A|o2

A A 0 0 0 0
A A 1 0.98 1 0
B A 0 0.01 0 0.5
B A 1 0 0 0
C A 0 0.01 0 0.5
C A 1 0 0 0

. . . 0 0 0

Table 2. Distributions on the output

3.2. Password Checking as an Experiment

Attaching confidentiality labels to the password checker
of Section 1 yields:

PWC : if pH = gL then aL := 1 else aL := 0

Repeating the analysis ofPWC in terms of our experiment
model allows the informal reasoning previously used to be
made precise.

The attacker starts by choosing prebeliefbH , perhaps
as formalized in Table 1. The columns of this table give
the probability that the belief at the head of the column
assigns to the state at the beginning of a row. Next, the
system chooses the initial high projectionσH , and the at-
tacker chooses the initial low projectionσL. In the first ex-
periment in Section 1, the password wasA, so the system
choosesσH = (p 7→ A). Similarly, the attacker chooses
σL = (g 7→ A, a 7→ 0). (The initial value ofa is actually ir-
relevant, since it is never used by the program anda is set
along all control paths.) Next, the system runsPWC . The
output distributionδ′ should clearly be a point mass at the
stateσ′ = (p 7→ A, g 7→ A, a 7→ 1); the semantics in Sec-
tion 5 will validate this intuition. Sinceσ′ is the only state
that can be sampled fromδ′, the attacker’s observationo1 is
σ′ � L = (g 7→ A, a 7→ 1).

In the final step of the protocol, the attacker applies the
definition ofB. He runs a thought experiment, predicting an
output distributionδ′A = [[PWC]](σ̇L ⊗ bH), given in Ta-
ble 2. The ellipsis in the final row of the table indicates that
all states not shown have frequency 0. This distribution is

intuitively correct: the attacker believes that he has a 98%
chance of being authenticated, whereas 1% of the time he
will fail to be authenticated because the password isB, and
another 1% because it isC. The attacker conditions pre-
diction δ′A on observationo1, obtainingδ′A|o1, also shown
in Table 2. Projecting to high yields the attacker’s postbe-
lief b′H1, shown in Table 1. This postbelief is what the infor-
mal reasoning in Section 1 suggested: the attacker is certain
that the password isA.

The second experiment in Section 1 is also correctly
modeled by a formal experiment. In it,bH andσL remain
the same as before, butσH becomes(p 7→ C). Observation
o2 is therefore the point mass at(g 7→ A, a 7→ 0). The pre-
dictionδ′A remains unchanged, and conditioned ono2 it be-
comesδ′A|o2, shown in Table 2. Projecting to high yields the
new postbeliefb′H2 in Table 1. This postbelief again agrees
with the informal reasoning: the attacker believes that there
is a 50% chance each for the password to beB or C.

3.3. Bayesian Belief Revision

Postbelief operatorB is an application ofBayesian in-
ference, which is a standard technique in applied statistics
for making inferences when uncertainty is made explicit
through probability models [8]. The fundamental Bayesian
method of updating a hypothesisHyp based on an observa-
tion obs is Bayes’ rule:

Pr(Hyp|obs) =
Pr(Hyp)Pr(obs|Hyp)

∑
Hyp′ Pr(Hyp′)Pr(obs|Hyp′)

In our model, the attacker’s hypothesis is about the val-
ues of high states, so the domain of hypotheses isState � H.
ThereforePr(Hyp), the probability he ascribes to a particu-
lar hypothesisσH , is modeled bybH(σH). The probability
Pr(obs|Hyp) the attacker ascribes to an observation given
the assumed truth of a hypothesis is modeled by the pro-
gram semantics: the probability of an observationo given
an assumed high inputσH is ([[S]](σ̇L ⊗ σ̇H) � L)(o).
Given experimentE = 〈S, bH , σH , σL〉, instantiating Bayes
rule on these probability models yieldsB(E , o), which is
Pr(σH |o):

B(E , o) =
bH(σH) · ([[S]](σ̇L ⊗ σ̇H) � L)(o)

∑
σ′

H

bH(σ′
H) · ([[S]](σ̇L ⊗ σ̇′

H) � L)(o)

With this instantiation, we can show that how an attacker
updates his belief according to our experiment protocol is
equivalent to Bayesian updating.

Theorem 1

B(E , o)(σH) = B(E , o)

Proof. In Appendix A. �

5

3.4. Mutable High State and Nontermination

Section 3.1 made two simplifying assumptions about
programS: it never modifies high input, and it always ter-
minates. We now dispense with these mostly minor techni-
cal issues.

To eliminate the first assumption, note that ifS were to
modify the high state, the attacker’s predictionδ′A would
correlate high outputs with low outputs. However, to calcu-
late a postbelief,δ′A must correlate highinputswith low out-
puts. So the high input state must be preserved inδ′A. Let the
notationb0

H mean the same distribution asbH , except that
each state of its domain has a 0 as a superscript. So, ifbH

ascribes probabilityp to the stateσ, thenb0
H ascribes prob-

ability p to the stateσ0. We assume thatS cannot modify
states with a superscript 0. In the case that states map vari-
ables to values, this could be achieved by definingσ0 to be
the same state asσ, but with the superscript 0 attached to
variables; for example, ifσ(v) = 1 thenσ0(v0) = 1. Note
that S cannot modifyσ0 if did not originally contain any
variables with superscripts.

Using this notation, the belief revision operator is ex-
tended toB!, which allowsS to modify the high state in ex-
perimentE = 〈S, bH , σH , σL〉.

B!(E) , (([[S]](σ̇L ⊗ bH ⊗ b0
H)|o)) � H0

where o ∈ Γ(δ′) � L
δ′ = [[S]](σ̇L ⊗ σ̇H)

In the first line of the definition, the high input state is
preserved by introducing the product withb0

H , and the at-
tacker’s postbelief about the input is recovered by restrict-
ing toH0, the high input state with the superscript 0.

To eliminate the second assumption, note that program
S must terminate for an attacker to obtain a low state as an
observation when runningS. There are two ways to model
the observation in the case of nontermination, depending on
whether the attacker can detect nontermination.

If the attacker has an oracle that decides nontermination,
then nontermination can be modeled in the standard deno-
tational style. Let⊥ be the divergent state representing non-
termination,State⊥ , State ∪ {⊥}, and⊥ � L , ⊥. Non-
termination is now allowed as an observation, leading to an
extended belief revision operatorB!⊥:

B!⊥(E) , (out⊥(S, σ̇L ⊗ bH ⊗ b0
H)|o) � H0

where o ∈ Γ(δ′) � L
δ′ = out⊥(S, σ̇L ⊗ σ̇H)

Functionout⊥(S, δ) produces a distribution that yields
the frequency thatS terminates, or fails to terminate, on in-
put distributionδ:

out⊥(S, δ) , λσ : State⊥ . if σ = ⊥
thenmass(δ) − mass([[S]]δ)
else([[S]]δ)(σ)

If S does not terminate on some input states inδ, then out-
put distribution[[S]]δ will contain less mass thanδ; other-
wise,mass(δ) will equalmass([[S]]δ). Missing mass corre-
sponds to nontermination [20, 17], soout⊥ maps the miss-
ing mass to⊥.

An attacker that cannot correctly detect nontermination
is more difficult to model. At some point during the execu-
tion of the program, he will stop waiting for the program to
terminate and declare that he has observed nontermination.
However, he may be incorrect in doing so—leading to be-
liefs about nontermination and instruction timings. The in-
teraction of these beliefs with beliefs about high inputs is
complex; we leave this for future work.

4. Measuring Information Flow

The informal analysis ofPWC in Section 1 suggests that
information flow corresponds to an improvement in the ac-
curacy of an attacker’s belief. Recall the more accurate be-
lief b is with respect to high statėσH , the less the distance
D(b _ σ̇H). We use change in accuracy, as measured by
distance, to quantify information flow.

4.1. Information Flow from a Report

Given an experimentE = 〈S, bH , σH , σL〉, a report is a
pair 〈E , b′H〉 such thatb′H ∈ B(E). The accuracy of the at-
tacker’s prebeliefbH in a report〈E , b′H〉 is D(bH _ σ̇H);
the accuracy of the attacker’s postbeliefb′H in that report
is D(b′H _ σ̇H). And, the amount of information flowQ
caused by〈E , b′H〉 is defined as the difference of these two
quantities:

Q(〈E , b′H〉) , D(bH _ σ̇H) − D(b′H _ σ̇H)

Thus the amount of information flow (in bits) inQ corre-
sponds to the improvement in the accuracy of the attacker’s
belief, exactly as desired.

Using relative entropy as the distance operatorD in the
definition ofQ allows us to give a concrete interpretation to
the number produced by our definition ofQ. Recalling the
coding efficiency interpretation of relative entropy in Sec-
tion 2.4, the amount of information flowQ is the improve-
ment in the expected inefficiency of the attacker’s optimal
code for the high input.

With an additional definition from information theory, a
more consequential characterization ofQ is possible. Let
Iδ(F) denote theinformationcontained in eventF drawn
from probability distributionδ:

Iδ(F) , − lg Prδ(F)

Information is sometimes called “surprise” becauseI mea-
sures how surprising an event is; for example, events that
occur with probability 1 have surprise 0.

6

For an attacker, there are two unknowns in the outcome
of an experiment: the initial high state, and the probabilistic
choices made by the program. LetδS = [[S]](σ̇L ⊗ σ̇H) � L
be the system’s distribution on low outputs, andδA =
[[S]](σ̇L ⊗ bH) � L be the attacker’s distribution on low
outputs.IδA

(o) measures the information contained ino
about both unknowns, butIδS

(o) measures only the latter
unknown. For programs that make no probabilistic choices,
neither quantity can measure any information about prob-
abilistic choices; thus,δA contains information about only
the initial high state, andδS is a point mass at some stateσ
such thatσ � L = o, so the amount of informationIδS

(o) is
0. For probabilistic programs,IδS

(o) is generally not equal
to 0; subtracting it removes all the information contained
in IδA

(o) that is solely about the outcomes of probabilis-
tic choices, leaving only information about high inputs.

The following theorem states thatQ measures the infor-
mation about high inputσH contained in observationo.

Theorem 2

Q(〈E , b′H〉) = IδA
(o) − IδS

(o)

Proof. In Appendix A. �

As an example, consider the experiments onPWC in
Section 3.2. The first experimentE1 has the attacker cor-
rectly guess the passwordA, so:

E1 = 〈PWC , bH , (p 7→ A), (g 7→ A, a 7→ 0)〉

wherebH (and the other beliefs about to be used) is de-
fined in Table 1. Only one report,〈E1, b

′
H1〉, is possible from

this experiment. CalculatingQ(〈E1, b
′
H1〉) yields a flow of

0.0291 bits from the report. The small flow makes sense be-
cause the report has only confirmed something the attacker
already believed to be almost certainly true. In experiment
E2 the attacker guesses incorrectly.

E2 = 〈PWC , bH , (p 7→ C), (g 7→ A, a 7→ 0)〉

Again, only one report〈E2, b
′
H2〉 is possible from this ex-

periment, and calculatingQ(〈E2, b
′
H2〉) yields an informa-

tion flow of 5.6439 bits. A higher information flow makes
sense because the attacker’s postbelief is much closer to cor-
rectly identifying the high state. The attacker’s prebelief bH

ascribed a0.02 probability to the event[p 6= A], and the in-
formation of an event with probability0.02 is 5.6439, the
same information flow calculated above. This suggests that
Q is correctly measuring the information about high input
contained in the observation.

4.2. Comparing Accuracy and Uncertainty

The information flow in experimentE2 is surprisingly
high; at most two bits are required to store passwordp

bH = 〈0.5, 0.5〉
o = (l 7→ 1)

bH = 〈0.5, 0.5〉
o = (l 7→ 0)

bH = 〈0.99, 0.01〉
o = (l 7→ 1)

bH = 〈0.01, 0.99〉
o = (l 7→ 0)

-�

6

?

Less accurate More accurate

More certain

Less certain

III

III IV

Figure 2. Effect of FLIP on postbelief

in memory, so how can the program leak more than five
bits? In brief, the extra bits correct the attacker’s misconcep-
tions about the password, but this question also illuminates
the difference between measuring information flow based
on uncertainty versus based on accuracy. Consider how an
uncertainty-based approach would analyze the program.

The attacker’s initial uncertainty aboutp is H(bH) =
0.1614 bits, whereH is the information-theoretic measure
of entropy, or uncertainty, in a probability distributionδ.

H(δ) , −
∑

σ δ(σ) · lg δ(σ)

Maximum entropy is achieved by uniform distributions
[13], so the maximal uncertainty aboutp is lg 3 ≈ 1.6 bits,
the same number of bits required to storep. In the sec-
ond experiment, the attacker’s final uncertainty aboutp is
H(bH2) = 1. The reduction in uncertainty is0.1614 − 1 =
−0.8386. An uncertainty-based analysis, such as [5] or [16],
would interpret this negative quantity as an absence of infor-
mation flow. But this is clearly not the case—the attacker’s
belief has been guided much closer to reality by the ex-
periment. The uncertainty-based analysis ignores realityby
measuringbH andbH2 against themselves only, instead of
against the high stateσH .

Accuracy and uncertainty are orthogonal properties of
beliefs, as shown in Figure 2. The figure shows the change
in an attacker’s accuracy and uncertainty when an experi-
mentE = 〈FLIP , bH , (h 7→ 0), (l 7→ 0)〉 is run, and obser-
vationo is generated by the run. The notationbH = 〈x, y〉
means thatbH(h 7→ 0) = x andbH(h 7→ 1) = y. The pro-
gramFLIP is:

FLIP : l := h 0.998 l := ¬h

Usually,FLIP setsl to beh, so the attacker will expect
this to be the case. Runs that satisfy this expectation will
cause his postbelief to be more accurate, but may cause his
uncertainty to either increase or decrease, depending on his

7

Quadrant h I II III IV
bH : 0 0.5 0.5 0.99 0.01

1 0.5 0.5 0.01 0.99
o (l 7→ 0) (l 7→ 1) (l 7→ 1) (l 7→ 0)
b′H : 0 0.99 0.01 0.5 0.5

1 0.01 0.99 0.5 0.5
Increase in accuracy +0.9855 −5.6439 −0.9855 +5.6439
Reduction in uncertainty +0.9192 +0.9192 −0.9192 −0.9192

Table 3. Analysis of FLIP

p
bH : A 0.98

B 0.01
C 0.01

b′H : A 0
B 0.5
C 0.5

Increase in accuracy +5.6439
Reduction in uncertainty −0.8245

Table 4. Analysis of PWC

prebelief; when uncertainty increases, an uncertainty met-
ric would mistakenly say that no flow has occurred.

With probability 0.01, FLIP produces a run that fools
the attacker and setsl to be¬h, causing his belief to be-
come less accurate. The decrease in accuracy results inmis-
information, which is a negative information flow. When the
attacker’s prebelief is almost completely accurate, such runs
will make him more uncertain. But when the attacker’s pre-
belief is uniform, runs that result in misinformation will
make him less uncertain; when uncertainty decreases, an
uncertainty metric would mistakenly say that flow has oc-
curred. Table 3 demonstrates this phenomenon concretely.
The quadrant labels refer to Figure 2. For each quadrant,
the attacker’s prebeliefbH , observationo, and the result-
ing postbeliefb′H is given in the top half of the table. In
the bottom half, increase in accuracy is calculated using
the information flow metricQ(〈E , b′H〉), and reduction in
uncertainty is calculated using the difference in entropy
H(bH) −H(b′H).

Finally, recall that when the attacker guessed a password
incorrectly in Section 1, his belief became more accurate
and more uncertain. Table 4 gives the exact changes in his
accuracy and uncertainty, using guessg = A and password
p = C.

In summary, uncertainty is inadequate as a metric for in-
formation flow. By Theorem 2, information flows when an

attacker’s belief becomes more accurate, but an uncertainty
metric can mistakenly measure a flow of zero or less. In-
versely, misinformation flows when an attacker’s belief be-
comes less accurate, but an uncertainty metric can mistak-
enly measure a positive information flow. Hence, accuracy
is the correct metric for information flow.

4.3. Expected Information Flow

We expect the results of this paper to be useful in decid-
ing whether a program satisfies a quantitative security prop-
erty. Since an experiment on a probabilistic programS can
produce many reports, it is reasonable to assume that such
properties will discuss expected flow over those reports. So
we define expected flowQE over all reports from experi-
mentE :

QE(E) , Eo∈δ′�L[Q(〈E ,B(E , o)〉)]
=

∑
o (δ′ � L)(o)
·Q(〈E , ([[S]](σ̇L ⊗ bH)|o) � H)〉)

whereδ′ = [[S]](σ̇L ⊗ σ̇H) gives the probability distribution
on reports, as in Figure 1, andEδ[X] is the expected value
of an expressionX with respect to distributionδ.

Expected flow is useful in analyzing probabilistic pro-
grams that can produce many observations for a single in-
put. Consider a faulty password checker:

FPWC : if p = g then a := 1 else a := 0;
a := ¬a 0.18 skip

With probability 0.1, FPWC flips the authentication flag.
Can this program be expected to confound attackers; that is,
doesFPWC leak less expected information thanPWC?
This question can be answered by comparing the expected
flow from FPWC to the flow ofPWC . Table 5 gives the
flow of FPWC for experimentsEF

1 andEF
2 , which are iden-

tical toE1 andE2 from Section 4.1, except that they execute
FPWC instead ofPWC . Observe that, for both pairs of ex-
periments, the expected flow ofFPWC is less than the flow
of PWC . The random flip ofa makes it more difficult for
the attacker to increase the accuracy of his belief.

8

E o Q(〈E ,B(E , o)〉) QE(E)
E1 (a 7→ 1) 0.0291 0.0291

(a 7→ 0) impossible
EF
1 (a 7→ 1) 0.0258 0.0018

(a 7→ 0) −0.2142
E2 (a 7→ 1) impossible 5.6439

(a 7→ 0) 5.6439
EF
2 (a 7→ 1) −3.1844 2.3421

(a 7→ 0) 2.9561

Table 5. Leakage of PWC and FPWC

Reports〈EF
1 , (a 7→ 0)〉 and〈EF

2 , (a 7→ 1)〉 correspond
to an execution where the value ofa is flipped. The flow for
these reports is negative, indicating that the program is giv-
ing the attacker misinformation, as described in Section 4.2.

Calculating expected flow requires a summation over all
o ∈ StateL, which may be a countably infinite set; this is
infeasible to calculate either by hand or by machine. For-
tunately, expected flow can be conservatively approximated
by conditioning on a single distribution rather than condi-
tioning on many observations. Conditioningδ on δL has
the effect of making the low projection ofδ identical toδL,
while leaving the high projection ofδ unchanged.

δ|δL , λσ .
δ(σ)

∑
σ′ | σ≈Lσ′ δ(σ′)

· δL(σ � L)

The bound on expected flow is then calculated as follows.

Theorem 3 Let:

E = 〈S, bH , σH , σL〉
δ′ = [[S]](σ̇L ⊗ σ̇H)

eH = (([[S]](σ̇L ⊗ bH))|(δ′ � L)) � H

Then:
QE(E) ≤ Q(〈E , eH〉)

Proof. In Appendix A. �

The experiment model can be extended to increase the
applicability of expected flow. Rather than choose a partic-
ular low stateσL, the attacker may more generally choose
a distribution over low states,δL, which the system sam-
ples to produce the initial low stateσL ∈ Γ(δL). This ex-
presses a randomized guessing strategy for the attacker. By
taking the expectation inQE with respect to bothσL ando,
the expected flow for the attacker’s guessing strategy can be
calculated. The initial high stateσH can be similarly gener-
alized toδH and incorporated intoQE . This could be used,
for example, to determine the expected flow of the pass-
word checker when users’ choice of passwords can be de-
scribed by a distribution.

Repetition # 1 2
bH : A 0.98 0

B 0.01 0.5
C 0.01 0.5

σL(g) A B
o(a) 0 0
b′H : A 0 0

B 0.5 0
C 0.5 1

Q(〈E , b′H〉) 5.6439 1.0

Table 6. Repeated experiments on PWC

4.4. Maximum Information Flow

Designers of quantitative security properties are likely to
want to limit maximum information flow. So we define the
maximum amount of information flow that programS can
cause in a single report as the maximum amount of flow
from any report of any experimentE = 〈S, bH , σH , σL〉 on
S:

Qmax(S) , maxE,b′
H

| b′
H
∈B(E) Q(〈E , b′H〉)

Consider applyingQmax(S) to PWC . Assuming that
bH satisfies the admissibility restriction in Section 2.4 and
that the attacker guesses an incorrect password yields that
PWC can leak at most− lg(ε · n−1

n
) bits per report, where

n is the number of possible passwords. Ifε = 1, the at-
tacker is forced to have a uniform distribution over pass-
words, representing a lack of belief for any particular value
for the password. Additionally, ifn = 2k for somek, then
we obtain that fork-bit passwords,PWC can leak at most
k − lg(2k − 1) bits in a report; fork > 12 this is less than
0.0001 bits, supporting the intuition that password check-
ing leaks little information.

4.5. Repeated Experiments

Nothing precludes repetition of experiments. The most
interesting case has the attacker return to step 2b of the ex-
periment protocol in Figure 1 after updating his belief in
step 4; that is, the system keeps the high input to the pro-
gram constant, and the attacker is allowed to check new low
inputs based on the results of previous experiments. Sup-
pose that experimentE1 from Section 4.1 is run and then
repeated withσL = (g 7→ B). Then the attacker’s belief
about the password evolves as shown in Table 6.

Summing the information flow for each repetition yields
a total information flow of6.6439. This total corresponds
to whatQ would calculate for a single experiment, if that
experiment changed prebeliefbH to postbeliefb′H2, where

9

b′H2 is the attacker’s postbelief in the second repetition in
Table 6:

D(bH _ σ̇H) − D(b′H2 _ σ̇H) = 6.6439 − 0
= 6.6439

This example is an instance of a more general theo-
rem stating that the postbelief from a series of experiments,
where the postbelief from one experiment becomes the pre-
belief to the next, contains all the information learned dur-
ing the series. LetEi = 〈S, bHi

, σH , σLi
〉 be theith exper-

iment in the series, and letri = 〈Ei, b
′
Hi

〉 be a report from
Ei. Let r1, . . . , rn be a series ofn reports in which prebe-
lief bHi

in experimentEi is the postbeliefb′Hi−1
from re-

port i− 1. Finally, letb′H0
= bH1

be the attacker’s prebelief
for the entire series.

Theorem 4

D(bH1
_ σ̇H) − D(b′Hn

_ σ̇H) =
∑

i | 1≤i≤n Q(ri)

Proof. In Appendix A. �

5. Language Semantics

The last piece required for our framework is a semantics
[[S]] based on distributions. For our programming language,
we usewhile-programs extended with a probabilistic choice
construct p8. The operational semantics for the determinis-
tic subset of this language is standard. Probabilistic choice
S1 p8 S2 executess1 with probabilityp or S2 with proba-
bility 1 − p.

MetavariablesS, v, E, andB range over programs, vari-
ables, arithmetic expressions, and Boolean expressions, re-
spectively. Evaluation of expressions is assumed side-effect
free, but we do not otherwise give their syntax or seman-
tics. The syntax of the language is:

S ::= skip | v := E | S;S | if B then S else S
| while B do S | S p8 S

The experiment protocol of Section 3 requires a seman-
tics in which programs are functions that map distributions
to distributions. Here we build such a semantics in two
stages, as suggested by Section 2.2. First, we build a sim-
pler semantics that maps states to distributions. Second, we
lift the simpler semantics so that it operates on distributions.

Our first task then is to define the semantics[[S]] :
State → Dist. This semantics should describe the proba-
bility of termination in a given state: if[[S]]σ = δ, then the
probability ofS, when begun inσ, terminating inσ′ should
be δ(σ′). The semantics is given in Figure 3. We assume
some semantics[[E]] : State → Val that gives meaning to
expressions, and a semantics[[B]] : State → Bool that gives
meaning to Boolean expressions.

The statementsskip, if, andwhile have essentially the
same denotations as in the standard deterministic case.4

State updateσ[v 7→ V], whereV ∈ Val, changes the value
of v to V in σ. The distribution updateδ[v 7→ E] in the de-
notation of assignment represents the result of substituting
the meaning ofE for v in all the states ofδ and is defined
as:

δ[v 7→ E] , λσ . (
∑

σ′ | σ′[v 7→[[E]]σ′]=σ δ(σ′))

The sequential composition of two programs, written
S1;S2, is defined using intermediate states. The probabil-
ity of S1;S2, starting fromσ, reaching a final stateσ′′ is the
sum of the probabilities of all the ways thatS1 can reach
some intermediateσ′ and thenS2 from thatσ′ can reach
σ′′. Note that([[S1]]σ)(σ′) is the probability thatS1, begin-
ning in σ, terminates inσ′, because[[S1]]σ produces a dis-
tribution that, when applied toσ′, returns the probability of
termination inσ′. Similarly, ([[S2]]σ

′)(σ′′) is the probabil-
ity thatS2, beginning inσ′, terminates inσ′′.

The final program construct is probabilistic choice,S1 p8
S2, where0 ≤ p ≤ 1. The semantics multiplies the prob-
ability of choosing a sideSi with the probability thatSi

produces a particular output stateσ′. Since the same state
σ′ might actually be produced by both sides of the choice,
the probability of its occurrence is the sum of the probabil-
ity from either side:p · ([[S1]]σ)(σ′)+ (1−p) · ([[S2]]σ)(σ′).
This formula is simplified to the definition in Figure 3 us-
ing · and+ as pointwise operators:

p · δ , λσ . p · δ(σ)

δ1 + δ2 , λσ . δ1(σ) + δ2(σ)

To show how to lift the semantics in Figure 3 and define
[[S]] : Dist → Dist we use an intuition to what is done for
the sequential operator above, where there are many states
σ′ in whichS could begin execution, and all of them could
potentially terminate in stateσ. So to compute([[S]]δ)(σ),
we take a weighted average over all input statesσ′. The
weights areδ(σ′), which describes how likelyσ′ is to be
used as the input state. Withσ′ as input,S terminates in
stateσ with frequency([[S]]σ′)(σ). Thus we define[[S]]δ as:

[[S]]δ , λσ .
∑

σ′ δ(σ′) · ([[S]]σ′)(σ)

This is in accordance with the requirements of Section 2.2.
Applying this definition to the semantics in Figure 3

yields [[S]]δ for each kind of statement in the language

4 To ensure that the fixed point forwhile exists, we have to verify
that Dist is a complete partial order (CPO) with a bottom element.
In fact, to make this so, we have to extend the definitionDist to be
State → [0, 1]. This makes distributions correspond to subprobabil-
ity measures, and it is easy to check that the semantics always pro-
duces subprobability measures as output. The LUB is at mostλσ . 1,
and the bottom element isλσ . 0.

10

[[skip]]σ = σ̇
[[v := E]]σ = σ̇[v 7→ E]
[[S1;S2]]σ = λσ′′ .

∑
σ′ ([[S1]]σ)(σ′) · ([[S2]]σ

′)(σ′′)
[[if b then S1 else S2]]σ = if [[B]]σ then[[S1]]σ else[[S2]]σ

[[while B do S]]σ = fixf : Dist → Dist. if [[B]]σ thenf([[S]]σ) elseσ̇
[[S1 p8 S2]]σ = p · [[S1]]σ + (1 − p) · [[S2]]σ

Figure 3. Semantics of programs in states

[[skip]]δ = δ
[[v := E]]δ = δ[v 7→ E]
[[S1;S2]]δ = [[S2]]([[S1]]δ)

[[if B then S1 else S2]]δ = [[S1]](δ |B) + [[S2]](δ | ¬B)
[[while B do S]]σ = fixf : Dist → Dist. f([[S]](δ |B)) + (δ | ¬B)

[[S1 p8 S2]]δ = [[S1]]p · δ + [[S2]](1 − p) · δ

Figure 4. Semantics of programs in distributions

as shown in Figure 4. This corresponds directly to a se-
mantics given by Kozen [14], which interprets programs
as continuous linear operators on measures. Our semantics
uses an extension of the distribution conditioning operator
| to Boolean expressions. Whereas distribution condition-
ing produces a normalized distribution, Boolean expression
conditioning produces an unnormalized distribution:

δ|B , λσ . if [[B]]σ thenδ(σ) else0

By producing unnormalized distributions as part of the
meaning ofif andwhile statements we are tracking the fre-
quency with which each branch of the statement is chosen.

6. Related Work

We believe our work is the first to address and show
the importance of attacker beliefs in quantifying informa-
tion flow. Perhaps the first connection between information
theory and information flow is Denning [5], who demon-
strates the analysis of a few particular assignment andif
statements, using entropy to calculate leakage. Millen [19],
using deterministic state machines, proves that a system sat-
isfies noninterference exactly when the mutual information
between certain inputs and outputs is zero. He also pro-
poses mutual information as a metric for information flow,
but does not show how to compute the amount of flow for
programs.

Wittbold and Johnson [25] introducenondeducibility
on strategies, an extension of Sutherland’snondeducibility
[21]. Wittbold and Johnson observe that if a program is run

multiple times and feedback between runs is allowed, then
information can be leaked by coding schemes across mul-
tiple runs. A system that is nondeducible on strategies has
no noiseless communication channels between high input
and low output, even in the presence of feedback. The flow
model (FM) is a security property first given by McLean
[18] and later given a quantitative formalization by Gray
[10], who called it the Applied Flow Model (AFM). The FM
stipulates that the probability of a low output may depend
on previous low outputs, but not on previous high outputs.
Gray formalizes this in the context of probabilistic state ma-
chines, and he relates noninterference to the rate of max-
imum flow between high and low. Browne [1] develops a
novel application of the idea behind the Turing test to char-
acterize information flow: a system passes Browne’s Tur-
ing test exactly when for all finite lengths of time, the infor-
mation flow over that time is zero. Halpern and O’Neill [11]
construct a framework for reasoning about secrecy that gen-
eralizes many previous results on qualitative and probabilis-
tic security.

Volpano [22] gives a type system that can be used to
establish the security of password checking and one-way
functions such as MD5 and SHA1. Noninterference does
not allow such functions to be typed, so this type system is
an improvement over previous systems. However, the type
system does not allow a general analysis of quantitative in-
formation flow. Volpano and Smith [23] give another type
system that enforcesrelative secrecy, which requires that
well-typed programs cannot leak confidential data in poly-
nomial time.

11

Weber [24] defines the propertyn-limited secu-
rity, which allows declassification at a rate that depends,
in part, on the sizen of a buffer shared by the high and
low projections of a state. Lowe [15] defines theinfor-
mation flow quantityof a process with two usersH and
L to be the number of behaviors ofH that L can dis-
tinguish. When there aren such distinguishable behav-
iors,H can use them to transmitlg n bits toL. These both
measure the size of channels rather than accuracy of be-
lief.

Di Pierro, Hankin, and Wiklicky [7] relax noninterfer-
ence toapproximate noninterference, where “approximate”
is a quantified measure of the similarity of two processes in
a process algebra. Similarity is measured using the supre-
mum norm over the difference of the probability distribu-
tions the processes create on the store. They show how to in-
terpret this quantity as a probability on an attacker’s ability
to distinguish two processes from a finite number of tests,
in the sense of statistical hypothesis testing. Finally, the pa-
per explores how to build an abstract interpretation that al-
lows approximation of the confinement of a process. More
recent work [6] has generalized this to measuring approxi-
mate confinement in probabilistic transition systems.

Clark, Hunt, and Malacaria [3] apply information the-
ory to the analysis ofwhile-programs. They develop a sta-
tic analysis that provides bounds on the amount of informa-
tion that can be leaked by a program. The metric for infor-
mation leakage is based on conditional entropy; the analy-
sis consists of a dataflow analysis, which computes a use-
def graph, accompanied by a set of syntax-directed infer-
ence rules, which calculate leakage bounds. The analysis of
Boolean and arithmetic expressions is somewhat problem-
atic, requiring the introduction of specialized rules thatap-
ply only outside of loops. Also, the bounds onif-statements
are calculated conservatively: the analysis does not make
use of any facts that are known about the relative probabil-
ity of each branch being chosen. Our work solves both of
these problems by using a denotational semantics that cal-
culates precise probability distributions; however, we have
not developed a static analysis. In other work [2], the same
authors investigate other leakage metrics, settling on condi-
tional mutual information as an appropriate metric for mea-
suring flow in probabilistic languages; they do not consider
relative entropy. Mutual information is always at least 0, so
unlike relative entropy it cannot represent misinformation.

McIver and Morgan [16] calculate the channel capacity
of a program using conditional entropy. They adddemonic
nondeterminismas well as probabilistic choice to the lan-
guage ofwhile-programs, and they show that the perfect
security (0 bits of leakage) of a program is determined by
the behavior of its deterministic refinements. They also con-
sider restricting the power of the demon making the nonde-
terministic choices, such that it can see all data, or just low

data, or no data.

7. Conclusion

This paper presents a model for incorporating attacker
belief into the analysis of quantitative information flow in
programs. The fundamental insight is that attackers’ distri-
butions on high state represent subjective beliefs, not ob-
jective facts. A theory based on beliefs reveals that uncer-
tainty, the traditional metric for information flow, is inad-
equate: it cannot satisfactorily explain even the simple ex-
ample of password checking. Accuracy is the appropriate
metric for information flow, and we have shown how to use
it to calculate exact, expected, and maximum flow. A for-
mal model of experiments we give enables precise descrip-
tions of attackers’ actions. We have instantiated the model
with a probabilistic semantics and have given several exam-
ples of applying the model and metric to the measurement
of information flow.

Acknowledgments

Stephen Chong participated in an early discussion about
the distinction between attacker beliefs and reality. Sig-
mund Cherem, Jed Liu, Kevin O’Neill, Nathaniel Nystrom,
Riccardo Pucella, and Lantian Zheng provided helpful com-
ments on the paper.

This work was supported by the Department of the Navy,
Office of Naval Research, ONR Grant N00014-01-1-0968;
Air Force Office of Scientific Research, Air Force Materiel
Command, USAF, grant number F49620-03-1-0156; and
National Science Foundation grants 0208642, 0133302, and
0430161. Michael Clarkson is supported by a National Sci-
ence Foundation Graduate Research Fellowship; Andrew
Myers is supported by an Alfred P. Sloan Research Fel-
lowship. Opinions, findings, conclusions, or recommenda-
tions contained in this material are those of the authors and
do not necessarily reflect the views of these sponsors. The
U.S. Government is authorized to reproduce and distrib-
ute reprints for Governmental purposes notwithstanding any
copyright notation thereon.

References

[1] R. Browne. The Turing test and non-information flow. In
S&P 1991, pages 375–385, Oakland, CA, 1991. IEEE.

[2] D. Clark, S. Hunt, and P. Malacaria. Quantified interference:
Information theory and information flow. Presented at Work-
shop on Issues in the Theory of Security (WITS’04), April
2004.

[3] D. Clark, S. Hunt, and P. Malacaria. Quantified interference
for a while language.Electronic Notes in Theoretical Com-
puter Science, 112:149–166, Jan 2005.

12

[4] T. M. Cover and J. A. Thomas.Elements of Information The-
ory. John Wiley & Sons, 1991.

[5] D. Denning. Cryptography and Data Security. Addison-
Wesley, 1982.

[6] A. Di Pierro, C. Hankin, and H. Wiklicky. Measuring the
confinement of probabilistic systems. To appear inTheoret-
ical Computer Science.

[7] A. Di Pierro, C. Hankin, and H. Wiklicky. Approximate
non-interference.Journal of Computer Security, 12(1):37–
81, 2004.

[8] A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin.
Bayesian Data Analysis. Chapman and Hall/CRC, 2004.

[9] J. A. Goguen and J. Meseguer. Security policies and security
models. InProc. IEEE Symposium on Security and Privacy,
pages 11–20, Apr. 1982.

[10] J. W. Gray, III. Toward a mathematical foundation for infor-
mation flow security. InS&P 1991, pages 21–35, Oakland,
CA, 1991. IEEE.

[11] J. Halpern and K. O’Neill. Secrecy in multiagent systems.
In CSFW 2002, pages 32–46, Cape Breton, Nova Scotia,
Canada, 2002. IEEE.

[12] J. Y. Halpern. Reasoning about Uncertainty. MIT Press,
Cambridge, Massachusetts, 2003.

[13] G. A. Jones and J. M. Jones.Information and Coding The-
ory. Springer, 2000.

[14] D. Kozen. Semantics of probabilistic programs.Journal of
Computer and System Sciences, 22:328–350, 1981.

[15] G. Lowe. Quantifying information flow. InCSFW 2002,
pages 18–31, Cape Breton, Nova Scotia, Canada, 2002.
IEEE.

[16] A. McIver and C. Morgan. A probabilistic approach to in-
formation hiding. InProgramming Methodology, chapter 20,
pages 441–460. Springer, 2003.

[17] A. McIver and C. Morgan. Abstraction, Refinement and
Proof for Probabilistic Systems. Springer, 2004.

[18] J. McLean. Security models and information flow. InS&P
1990, pages 180–189, Oakland, CA, 1990. IEEE.

[19] J. Millen. Covert channel capacity. InS&P 1987, pages 60–
66, Oakland, CA, 1987. IEEE.

[20] L. H. Ramshaw. Formalizing the Analysis of Algorithms.
PhD thesis, Stanford University, 1979. Available as tech-
nical report, XEROX PARC, 1981.

[21] D. Sutherland. A model of information. InProceedings of
the 9th National Computer Security Conference, pages 175–
183, Sep 1986.

[22] D. Volpano. Secure introduction of one-way functions. In
CSFW 2000, pages 246–254, Cambridge, UK, 2000. IEEE.

[23] D. Volpano and G. Smith. Verifying secrets and relative se-
crecy. InPOPL 2000, pages 268–276, Boston, MA, 2000.
ACM.

[24] D. G. Weber. Quantitative hook-up security for covert chan-
nel analysis. InCSFW 1988, pages 58–71, Franconia, NH,
1988. IEEE.

[25] J. T. Wittbold and D. Johnson. Information flow in nonde-
terministic systems. InS&P 1990, pages 144–161, Oakland,
CA, 1990. IEEE.

A. Proofs

Theorem 1Let E = 〈S, bH , σH , σL〉.

B(E , o)(σH) = B(E , o)

Proof.

B(E , o)

= 〈 Definition ofB 〉
bH(σH) · ([[S]](σ̇L ⊗ σ̇H) � L)(o)∑

σ′

H

bH(σ′
H) · ([[S]](σ̇L ⊗ σ̇′

H) � L)(o)

= 〈 Definition of δ � L, apply distribution too 〉
bH(σH) · (

∑
σ | σ�L=o ([[S]](σ̇L ⊗ σ̇H)(σ))

∑
σ′

H

bH(σ′
H) · (

∑
σ | σ�L=o ([[S]](σ̇L ⊗ σ̇′

H)(σ))

= 〈 Lemma 1.1〉
bH(σH) · (

∑
σ | σ�L=o ([[S]](σ̇L ⊗ σ̇H)(σ))

∑
σ′ | σ′�L=o [[S]](σ̇L ⊗ bH)(σ′)

= 〈 Distributivity, one-point rule〉∑
σ | σ�L=o ∧ σ�H=σH

∑
σ′

H

bH(σH) · [[S]](σ̇L ⊗ σ̇H)(σ)
∑

σ′ | σ′�L=o [[S]](σ̇L ⊗ bH)(σ′)

= 〈 Lemma 1.1〉∑
σ | σ�L=o ∧ σ�H=σH

[[S]](σ̇L ⊗ bH)(σ)
∑

σ′ | σ′�L=o [[S]](σ̇L ⊗ bH)(σ′)

= 〈 Distributivity 〉
∑

σ | σ�L=o ∧ σ�H=σH

[[S]](σ̇L ⊗ bH)(σ)∑
σ′ | σ′�L=o [[S]](σ̇L ⊗ bH)(σ′)

= 〈 Definition of δ � L 〉
∑

σ | σ�H=σH
(([[S]](σ̇L ⊗ bH))|o)(σ)

= 〈 Definition of δ � H, applying distribution toσH 〉

((([[S]](σ̇L ⊗ bH))|o) � H)(σH)

= 〈 Definition ofB(E , o) 〉

B(E , o)(σH)

�

Lemma 1.1Let σ � L = o.

[[S]](σ̇L ⊗ bH)(σ) =
∑

σH
bH(σH) · [[S]](σ̇L ⊗ σ̇H)(σ)

Proof.

[[S]](σ̇L ⊗ bH)(σ)

= 〈 Definition of [[S]]δ 〉
∑

σ′ (σ̇L ⊗ bH)(σ′) · ([[S]]σ′)(σ)

= 〈 Definition of point mass〉
∑

σ′ | σ′�L=σL
bH(σ′ � H) · ([[S]]σ′)(σ)

= 〈 Let σ = 〈σL, σH〉, nesting, one-point rule〉
∑

σH
bH(σH) · [[S]](σ̇L ⊗ σ̇H)(σ)

�

13

Theorem 2Let E = 〈S, bH , σH , σL〉.

Q(〈E , b′H〉) = IδA
(o) − IδS

(o)

Proof.

Q(〈E , b′H〉)

= 〈 Definition ofQ 〉

D(bH _ σ̇H) − D(b′H _ σ̇H)

= 〈 Definitions ofD and point mass〉

− lg bH(σH) + lg b′H(σH)

= 〈 Lemma 2.1, properties oflg 〉

− lg PrδA
(o) + lg PrδS

(o)

= 〈 Definition ofI 〉

IδA
(o) − IδS

(o)

�

Lemma 2.1

b′H(σH) = bH(σH) ·
δS(o)

δA(o)

Proof.

b′H(σH)

= 〈 Definition ofB 〉

(([[S]](σ̇L ⊗ bH)|o) � H)(σH)

= 〈 Definition of δ � H 〉
∑

σ | σ�H=σH
([[S]](σ̇L ⊗ bH)|o)(σ)

= 〈 Definition of δ|o 〉
∑

σ | σ�H=σH ∧ σ�L=o

[[S]](σ̇L ⊗ bH)(σ)
([[S]](σ̇L ⊗ bH) � L)(o)

= 〈 One-point rule:σ = 〈o, σH〉 〉
[[S]](σ̇L ⊗ bH)(〈o, σH〉)
([[S]](σ̇L ⊗ bH) � L)(o)

= 〈 Definition of δA 〉
1

δA(o) · [[S]](σ̇L ⊗ bH)(〈o, σH〉)

= 〈 Definition of [[S]]δ 〉
1

δA(o) ·
∑

σ′ (σ̇L ⊗ bH)(σ′) · ([[S]]σ′)(ȯ ⊗ σ̇H)

= 〈 Definition of⊗, point mass〉
1

δA(o) ·
∑

σ′ | σ′�L=σL
bH(σ′ � H)

·([[S]](σ̇L ⊗ (σ̇′ � H)))(ȯ ⊗ σ̇H)

= 〈 High input is immutable〉
1

δA(o) ·
∑

σ′ | σ′�L=σL ∧ σ′�H=σH
bH(σ′ � H)

·([[S]](σ̇L ⊗ (σ̇′ � H)))(ȯ ⊗ σ̇H)

= 〈 One-point rule:σ′ = 〈σL, σH〉 〉
1

δA(o) · bH(σH) · ([[S]](σ̇L ⊗ σ̇′
H))(ȯ ⊗ σ̇H)

= 〈 High input is immutable, Definition ofδ � L 〉
1

δA(o) · bH(σH) · (([[S]](σ̇L ⊗ σ̇′
H)) � L)(o)

= 〈 Definition of δS 〉

bH(σH) ·
δS(o)
δA(o)

Note that the immutability of high input can be dispensed
with using the technique of Section 3.4.�

Theorem 3Let:

E = 〈S, bH , σH , σL〉
δ′ = [[S]](σ̇L ⊗ σ̇H)

eH = (([[S]](σ̇L ⊗ bH))|(δ′ � L)) � H

Then:
QE(E) ≤ Q(〈E , eH〉)

Proof.

QE(E)

= 〈 Definition ofQE 〉

Eo∈δ′�L[Q(〈E ,B(E , o)〉)]

= 〈 Definition ofQ, let b′H = B(E , o)〉) 〉

Eo∈δ′�L[D(bH _ σ̇H) − D(b′H _ σ̇H)]

= 〈 Linearity ofE 〉

D(bH _ σ̇H) − Eo∈δ′�L[D(b′H _ σ̇H)]

≤ 〈 Jensen’s inequality and convexity ofD, see [4]〉

D(bH _ σ̇H) − D(Eo∈δ′�L[b′H] _ σ̇H)

= 〈 Lemma 3.1〉

D(bH _ σ̇H) − D(eH _ σ̇H)

= 〈 Definition ofQ 〉

Q(〈E , eH〉)

�

Lemma 3.1Let E , δ′, eH be defined as in Theorem 3. Let
b′H = B(E , o) and assume the range ofo is alwaysδ′ � L.
Then:

Eo[b
′
H] = eH

Proof.

Eo[b
′
H](σH)

= 〈 Definitions ofE, b′H 〉

(
∑

o (δ′ � L)(o) · B(E , o)(σH)

= 〈 Definition ofB(E , o) 〉
∑

o (δ′ � L)(o) · ((([[S]](σ̇L ⊗ bH))|o) � H)(σH)

= 〈 Definition of δ � H, applying distribution toσH 〉
∑

o (δ′ � L)(o)

·(
∑

σ′ | σ′�H=σH
(([[S]](σ̇L ⊗ bH))|o)(σ′))

14

= 〈 Definition of δ|o, applying distribution toσ′ 〉
∑

o (δ′ � L)(o)

·(
∑

σ′ | σ′�H=σH ∧ σ′�L=o

([[S]](σ̇L ⊗ bH))(σ′)
([[S]](σ̇L ⊗ bH) � L)(o)

)

= 〈 One-point rule〉
∑

o (δ′ � L)(o) ·
([[S]](σ̇L ⊗ bH))(〈o, σH〉)
([[S]](σ̇L ⊗ bH) � L)(o)

= 〈 Definition of δ � L, applied too 〉
∑

o (δ′ � L)(o) ·
([[S]](σ̇L ⊗ bH))(〈o, σH〉)∑
σ′ | σ′�L=o [[S]](σ̇L ⊗ bH)(σ′)

= 〈 Let σ = 〈o, σH〉, change of dummy:o := σ,

definition of≈L 〉
∑

σ | σ�H=σH
(δ′ � L)(o)

·
([[S]](σ̇L ⊗ bH))(σ)∑

σ′ | σ′≈Lσ [[S]](σ̇L ⊗ bH)(σ′)

= 〈 Definition of δ|δL, applied toσ 〉
∑

σ | σ�H=σH
([[S]](σ̇L ⊗ bH)|(δ′ � L))(σ)

= 〈 Definition of δ � H, applied toσH 〉

(([[S]](σ̇L ⊗ bH)|(δ′ � L)) � H)(σH)

= 〈 Definition ofeH 〉

eH(σH)

ThereforeEo[b
′
H] = eH by extensionality.

�

Theorem 4

D(bH0
_ σ̇H) − D(b′Hn

_ σ̇H) =
∑

i Q(ri)

Proof.
∑

i | 1≤i≤n Q(ri)

= 〈 Definition ofQ 〉
∑

i | 1≤i≤n D(bHi
_ σ̇H) − D(b′Hi

_ σ̇H)

= 〈 Lemma 4.1,f(i) = D(bHi
_ σ̇H),

f ′(i) = D(b′Hi
_ σ̇H), bHi

= b′Hi−1
,

b′H0
= bH1

〉

D(bH1
_ σ̇H) − D(b′Hn

_ σ̇H)

�

Lemma 4.1Assume for a pair of functionsf andf ′ that
∀i | 1≤i≤n f(i) = f ′(i − 1), n ≥ 2, andf(1) = f ′(0).
Then:

(
∑

i | 1≤i≤n f(i) − f ′(i)) = f(1) − f ′(n)

Proof.
∑

i | 1≤i≤n f(i) − f ′(i)

= 〈 f(i) = f ′(i − 1) 〉
∑

i | 1≤i≤n f ′(i − 1) − f ′(i)

= 〈 Distributivity 〉
∑

i | 1≤i≤n f ′(i − 1)

−
∑

i | 1≤i≤n f ′(i)

= 〈 Change of dummy:i := i − 1 〉
∑

i | 0≤i≤n−1 f ′(i)

−
∑

i | 1≤i≤n f ′(i)

= 〈 Split off term,n ≥ 2 〉

f ′(0) + (
∑

i | 1≤i≤n−1 f ′(i))

−(
∑

i | 1≤i≤n−1 f ′(i)) − f ′(n)

= 〈 Arithmetic 〉

f ′(0) − f ′(n)

= 〈 f(1) = f ′(0) 〉

f(1) − f ′(n)

�

15

