Belief in | nformation Flow

Michael R. Clarkson Andrew C. Myers Fred B. Schneider
Department of Computer Science
Cornell University
{clarkson,andru,fbs}@cs.cornell.edu

Abstract For simplicity, suppose that the password is eitderB,
or C. Suppose also that the user is actually an attacker at-

Measurement of information flow requires a definition of tempting to discover the password, and he believes the pass-
leakage, which traditionally has been defined to occur whenword is overwhelmingly likely to bed but has a minuscule
an attacker’s uncertainty about secret data is reduced. Weand equally likely chance to be eith& or C. (This need
show that this uncertainty-based approach is inadequate fo not be an arbitrary assumption on the attacker’s part; per-
measuring information flow when an attacker is making as- haps the attacker was told by a usually reliable informant
sumptions about secret inputs and these assumptions mighghat the password id.) If the attacker experiments by run-
be incorrect. Moreover, we show that such attacker beliefs ning the program and guessing he expects the outcome
are an unavoidable aspect of any satisfactory definition of to be thate is equal to 1. Such a confirmation of the at-
leakage. To reason about information flow based on beliefs,tacker’s suspicion does seem to convey some small amount
we develop a model that describes how an attacker’s beliefof information. But suppose that the informant was wrong:
changes due to the attacker’s observation of the execution othe real password i§. The outcome of this experiment has
a probabilistic (or deterministic) program. The model lsad ¢ equal to 0, from which the attacker infers thétis not
to a new metric for quantitative information flow that mea- the password. Common sense dictates that his new belief is
sures accuracy rather than uncertainty of beliefs. that B and C' each have a 50% chance of being the pass-
word. The attacker’s belief is greatly changed—he is sur-
prised to discover the password is nbt-so this outcome
seems to convey a larger amount of information than the
previous outcome. Thus, the information conveyed by run-

Qualitative security properties, such as noninterferenceNing W depends on what the attacker believes.

[9], are inappropriate for some programs, because such How much information flows fromp to « in each of the
properties typically either prohibit any flow of informatio above experiments? Answers to this question traditionally
from a high security level to a lower level, or they allow any have been based on change in uncertainty [5, 19, 10, 1, 15,
amount of flow so long as it passes through some release, 16]: information flow is measured by the reduction in
mechanism. For a program whose correct functioning re-the attacker’s uncertainty about secret data. Observe that
quires flow from high to low, the former approach is too re- in the case where the password washe attacker initially
strictive and the latter can lead to unbounded leakage of in-is quite certain (though wrong) about the value of the pass-
formation. Quantitative flow properties, such as “at most word and after the experiment is rather uncertain about the
bits leak per run of the program”, allow violating flows but value of the password; the change from “quite certain” to
with restricted rates. Such properties characterize tbeé-se “rather uncertain” is an increase in uncertainty. So accord
rity of programs whose nature require that some—but noting to the reduction in uncertainty metric, no information
too much—information be leaked. The prime examples of flow occurred, which flatly contradicts our intuition. The
such programs are guards that sit at the boundary betweeproblem with reduction in uncertainty as a metric is that it
trusted and untrusted systems, such as password checkersdoes not take accuracy into account. Accuracy and uncer-
Defining the quantity of information flow is more diffi- tainty are orthogonal properties of the attacker’s belief—
cultthan it might seem. Consider a password checkéiC being certain does not make one correct—and as the pass-
that sets an authentication flagpy checking a stored pass- word checking example illustrates, the amount of informa-
word p against a (quessed) passwgrsupplied by the user. tion flow depends on accuracy rather than on uncertainty.

PWC: ifp=gthena:=1€elsea:=0 This paper presents a new way of measuring information

1. Introduction

flow, based on this insight. Section 2 gives the basic repre-2.2. Semantic Functions

sentations and notations for beliefs and programs. Section

3 describes a model that is a precise characterization of the Execution of progranf is described by a denotational
interaction between attackers and systems; it also describ semantics in which the meaning §fis written [S], and is
how attackers update their beliefs from observing exenutio @ function of typeState — Dist. We also require that this

of programs. Section 4 defines a new quantitative flow met- semantics can be lifted to a function of typest — Dist by

ric, based on information theory, that successfully castur the following definition:

the amount of information flow due to changes in the accu- A

racy of an attacker’s belief. The model andgmetric are for- [516 = Ao 500 80 - (IS]0")(o)

mulated for use with any programming language that can This is a healthiness condition that requires the mean-
be given a denotational semantics that is compatible withing of programs as distribution transformers to be deter-
the representation of beliefs, and Section 5 instantidiies t mined by the meaning of programs as state transformers. By
model and metric for a particular programming language defining programs in terms of how they operate on distribu-
(while-programs plus probabilistic choice). Section 6 dis- tions we permit analysis of probabilistic programs. Settio
cusses related work, and Section 7 concludes. 5 shows how to build a semantics of this form.

2. Incorporating Beliefs 2.3. Labelsand Projections

Our measure of information flow is based on accuracy We need a way to identify secret datanfidentiality
of beliefs. Abeliefis a statement an agent makes about the labels satisfy this need. For simplicity, we assume there
state of the world, accompanied by some measure of howare only two such labels: a labédl that indicates low-
certain the agent is about the truthfulness of the statementconfidentiality (public) data, and a labél that indicates
We begin by developing some mathematical structures forhigh-confidentiality (secret) data. Assume tigaste is a

representing beliefs. product of two domains$tate; and Statey;, which con-
tain the low- and high-labeled data, respectivelylof
2.1. Distributions stateis an elementr;, € Stater; a high stateis an ele-

mentoy € Statey. The projection of state € State onto

A frequency distributioris a functiond that maps a pro- Statey, is writteno | L; this is the part ofs that is vis-
gram state to drequency where a frequency is a non- ible to the attacker. Projection onfiatey, the part ofo
negative real number. A frequency distribution is essen- that is not visible to the attacker, is written| H.
tially an unnormalized probability distribution over pro- Assume that each variable in a program is labeled to in-
gram states; frequency distributions are known to serve bet dicate the confidentiality of the information in that vartieb
ter than probability distributions as the basis for a pragra for examplexy, is a variablex that contains low informa-
ming language semantics [20]. Henceforth, we write “dis- tion. For convenience, assume that variabie labeledL
tribution” to mean “frequency distribution”. and variablée: is labeledH . Let Var ;, be the set of variables

The set of all program states $ate, and the set of all in a program that are labelet, then State;, = Var; —
distributions isDist. The structure oftate is unimportant; Val. The low projectionr | L of a stater is:
it can be instantiated according to the needs of any partic-

ol L & Me&Varg.o(v)
ular language or system. For our examples, states are maps

from variables to values, where domaiviar andVal are Statess ando’ arelow-equivalentwritteno ~ o', if
both countable sets. they have the same low projection:
v € Var o~po = (o]L) = (o/L)
o€ State £ Var — Val o o .
N Distributions also have projections. Letoe a distribu-

. — +
0 € Dist State — R tion ando, a low state. Thertd | L)(oy) is the frequency

Themassn a distributiond is the sum of all the frequen- with which any state whose low projectionds, occurs in

cies: 5t
mass(6) = (o

R (_) 2 9(0) B SIL & dopeStater. Y, (1) =0y 9(07)
A probability distribution has mass 1, but a frequency distr
b_““‘?” rr_lay have any non_-negatlve masspaint masss a 1 Formulax,cp | g P is a quantification in which is the quantifier
distribution that maps a single state to 1, and all otheestat (such as/ or X), z is the variable that is bound iR and P, D is the
to 0. It is denoted by placing a dot over the state: domain ofz, R is the range, and® is the body. We omitD, R, and

evenz when they are clear from context; an omitted range méanrs
6 = \o.if o/ =othenl elsed true.

High projections and high equivalence are defined by The base of the logarithm ib» can be chosen arbitrarily; we
replacing each occurrence &fwith H in the definitions use base two and wrifg to indicatelog,, making bits the

above. unit of measurement for distance. The relative entropy of
tod' is the expected inefficiency (that is, the number of addi-
2.4. Belief Representation tional bits that must be sent) of an optimal code that is con-

structed by assuming an inaccurate distribution over sym-
To reason about beliefs, we must choose a representatiomols b’ when the real distribution is[13]. Like an analytic
for them. Many representations, both quantitative and-qual metric, D(b' — b) is always at least zero and(b’ — b)
itative, have been developed; Halpern [12] presents severaequals zero only wheh= b'.2

representations that all share the idepagsible worldsthe Relative entropy has the property thabitz) > 0 and
setWW of all elementary outcomes about which beliefs can b (c) = 0, thenD(Y' — b) = co. An infinite distance be-

be held. Though we do fix a belief representation, the re-yyeen beliefs would cause difficulty in measuring change
sults presented below are mostly independent of any partic, 5ccuracy. To avoid this anomaly, beliefs may be required

ular representation. _ to satisfy certain restrictions. For example, an attacKee-
To be usable in our framework, a representation must ief 4, might be restricted such that:

have certain natural operations defined. Landd’ be be-

liefs about possible worldd” andW’, respectively. €

min,,, b(o >
1. Belief product® combinesh andd’ into a new belief (w bom)) |State | H|

b ® b’ about possible world&” x W', wherelW and
W' must be disjoint. for somee > 0, which ensures thak is never off by
2. Belief updateb|U is the belief that results whelnis more than a factor o from a uniform distribution; we
updated to include the new information that the actual call such beliefadmissible Other admissibility restrictions
world is in a sel/ C W of possible worlds. may be substituted for this one if the analysis context sug-
N gests stronger assumptions about how attackers form their

3. Belief distanceD(b — V') is a real number > 0 that beliefs

guantifies the difference betweémndd’.

The rest of this paper uses distributions to represent be-
liefs. We take high states as the possible worlds for beliefs ;
fixing W to beStatey . We define a belieff as a normalized 3. Experiments
distribution over high states, i.enass(b) = 1. Whereas .)
distributions correspond to positive measures, beliefs co ~ We formalize as aexperimenhow anattacket an agent
respond to probability measures. Probability measures ardhat reasons about beliefs, revises his beliefs from intera
well-studied as a belief representation [12], and have sev-tion with a systeman agent that executes programs. The
eral advantages here: they are familiar, quantitativésfyat ~ attacker should not learn about the high input to the pro-
the required operations, and admit a programming languagedam but is allowed to observe (and perhaps influence) low
semantics (as shown in Section 5). There is also a nice jusiNPuts and outputs. Other agents (a system operator, other

acterizes the amount of money an attacker should be willingUPon which the attacker relies, etc.) might be involved when
to bet thatv is the true state of the system [12]. an attacker interacts with a system; however, it suffices to

For belief productz, we define a more general distri- condense all of these to just the attacker and the system, be-

bution products of two distributionss; : A — R+ and cause the system can act for any other agents.
d9 : B — RT, whereA and B are disjoint, as: In a particular experiment, we are chiefly interested in
2 the programS with which the attacker is interacting. We
W@ = Ao1,02) € Ax B.0i(01) - 02(02) conservatively assume that the attacker knows the source
It is easy to check that if andd’ are beliefs, theh ® V' is code ofS. For simplicity of presentation, we assume tRat

too. For belief updatg we use distribution conditioning: always terminates and that it never modifies the high state.
() Section 3.4 discusses how both restrictions can be lifted
SlU £ Xo.if o € Uthenes———— elsel without significant changes.
EU’GU 6(0)

For belief distanceD we use relative entropy an
information-theoretic metric [13] for the distance be- 2 Unlike an analytic metricD does not satisfy the triangle inequality.

tween distributions However, there is no compelling reason to assume that thegteiam
' equality holds for beliefs: perhaps it is easier to rule opbasibility
’ 2 b(o) from a belief than to add a new one, or vice-versa.
DR —b) = 3, b(a)~logm

An experiment§ = (S,by,om,o0yr) is conducted as fol-
lows.

1. The attacker chooses a prebelief about the high

state.
2. (a) The system picks a high statg
(b) The attacker picks a low statg,.

3. The system executes the prograpwhich produces a
states’ € I'(9’) as output, wheré’ = [S](6L ® dn).
The attacker observes the low projection of the output
stateo = o’ | L.

4. The attacker infers a postbeliéf;, = (([S](6r ®

br)lo)) | H € B(E)

Figure 1. Experiment Protocol

3.1. Experiment Protocol

Formally, an experimer#f is a tuple:
5 = <S,bH,O'H,O'L>

whereS is the programpy is the attacker’s beliey is the
high projection of the initial state, anrd, is the low projec-
tion of the initial state. The protocol for experiments issu
marized in Figure 1. Here is a justification for the protocol.
An attacker'sprebelief describing his belief at the be-

ginning of the experiment, may be chosen arbitrarily (sub-
ject to the admissibility requirement in Section 2.4) or may
be informed by previous experiments. In a series of experi-
ments, thepostbeliefrom one experiment becomes the pre-

periments. The meaning 8fgiven inputé;, ® & is an out-
put distributions’:

6" =[S](6L @ o)

From ¢’ the attacker makes asbservation which is a
low projection of an output state. Probabilistic programs
may yield many possible output states, but in a single execu-
tion of the program, only one output state can be produced.
So in a single experiment, the attacker is allowed only a
single observation. A single state is chosen from a distrib-
ution by samplingoperatorl’, wherel'(§) generates a state
o from the domain of§ with probability §(o)/mass(d);
the mass operator is used to normalize the distribution to
a probability distribution. To emphasize the fact that the
choice is made randomly, assignment of a sample is writ-
teno € T'(9), usinge instead of=. The observatiom re-
sulting from¢’ is:

0eT() | L

The formula the attacker uses for postbeligf in Fig-
ure 1 has the attacker perform two operations. The first op-
eration is to use the semantics §falong with prebelief
by as the distribution on high input. This “thought experi-
ment” generates the inferences the attacker can make from
his knowledge of the program text and low inputs by pre-
dicting the output distribution. We define the predictin
to correlate the output state with the high input state:

0y = [S1(61 @ br)

The second operation is to condition predictiéin on
observatioro. This incorporates any additional inferences

belief to the next. The attacker might even choose a prebethat can be made from the observation, then restricts that to

lief by that contradicts his true subjective probability dis-
tribution on the state, and this gives our analysis addition
power, because it allows the attacker to conduct expersnent

high inputs:
= (04lo) I H

The conditioning operatdris a specialization of distribu-

that answer questions such as “What would happen if | wereyjon conditioning. It removes all the mass in distributién

to believeby ?".
The system choosesy, the high projection of the ini-

tial state, and it might remain constant from one experiment

to the next or it might vary. For example, Unix passwords
do not usually change frequently, but the PINs on RSA Se-

curlD tokens change each minute. We conservatively as-

sume that the attacker chooses alb@f the low projection
of the initial state, since this gives him additional power i
controlling execution of the prografiThe attacker’s choice
of oy, is likely to be influenced by, but for generality, we
do not require there be such a strategy.

Programs' is executed only a single time in a single ex-
periment; multiple executions are modeled by multiple ex-

3 More generally, both the system and the attacker might itordr to
o,. But since we are concerned with only confidentiality, neggnity,
of information, we do not need to distinguish which parts dresen

by which agent.

that is inconsistent with observatienthen normalizes the
distribution:

5(0)
(61 L)(o)
Belief revision operatoi3, which yields the postbelief

from an experimenf = (S, by, o, o), compactly repre-
sents all of the formulas above:

B(£) ((ISI(6L ® bur)lo)) | H
whereo € I'(¢') [L
¢ = [S](6L @ on)

Because it useB, operator3 produces values by sam-
pling, so we writeb; € B(£). To select a particulal’,
from B, we provide observation:

B(E,0) (([ST(6L @ bm)lo)) | H

dlo = Ao.if (6] L) = othen else0

A

A

intuitively correct: the attacker believes that he has a 98%

P H by ‘ by, ‘ Vo chance of being authenticated, whereas 1% of the time he
A 17098 1 0 will fail to be authenticated because the passwor,iand

Bl o.01 ol 05 another 1% because it iS. The attacker conditions pre-

ol o.o1 ol 05 diction ¢’y on observatior;, obtainingd’,|o;, also shown

in Table 2. Projecting to high yields the attacker’s postbe-
lief b%;,, shown in Table 1. This postbelief is what the infor-
mal reasoning in Section 1 suggested: the attacker is gertai
that the password id.

The second experiment in Section 1 is also correctly
modeled by a formal experiment. In ity ando;, remain

Table 1. Beliefs about p

p g al &4 | o1 | 4]0z the same as before, buif; becomegp — C). Observation
A A0 0 0 0 o2 is therefore the point mass @t — A,a — 0). The pre-
A A 110098 1 0 diction ¢’ remains unchanged, and conditionedegiit be-
B A 0] 0.01 0 0.5 comesy’, |oz, shown in Table 2. Projecting to high yields the
B A1 0 0 0 new postbeliet/,, in Table 1. This postbelief again agrees
C A 0] 0.01 0 0.5 with the informal reasoning: the attacker believes thatehe
cC A1 0 0 0 is a 50% chance each for the password tdber C.

0 0 0

3.3. Bayesian Belief Revision

Table 2. Distributions on the output . . L o
Postbelief operatoB is an application oBayesian in-

ference which is a standard technique in applied statistics
3.2. Password Checking as an Experiment for making inferences when uncertainty is made explicit
through probability models [8]. The fundamental Bayesian
Attaching confidentiality labels to the password checker method of updating a hypothesi&p based on an observa-
of Section 1 yields: tion obs is Bayes’ rule

Pr(Hyp)Pr(obs|Hyp)

>y Pr(Hyp")Pr(obs|Hyp')
Repeating the analysis ¢fIWC in terms of our experiment

model allows the informal reasoning previously used to be N our model, the attacker's hypothesis is about the val-
made precise. ues of high states, so the domain of hypothesBi® | H.

The attacker starts by choosing prebeligf, perhaps ThereforePr(.Hyp)., the probability he ascribes to apa}rticu—
as formalized in Table 1. The columns of this table give & hypothesisr, is modeled by (o). The probability
the probability that the belief at the head of the column Pr(0bs|Hyp) the attacker ascribes to an observation given
assigns to the state at the beginning of a row. Next, thetn® a@ssumed truth of a hypothesis is modeled by the pro-
system chooses the initial high projectiow, and the at- ~ 9ram semantics: the probability of an observaiiogiven
tacker chooses the initial low projectien.. In the firstex- &N assumed high inputy is ([S](6r @ &m) | L)(0).

periment in Section 1, the password wasso the system ~ Given experiment = (S,by, o, 01), instantiating Bayes
choosesry; = (p — A). Similarly, the attacker chooses rule on these probability models yield3(&, o), which is

PWC: ifpg=grthenar:=1¢€esear:=0 Pr(Hyp|obs)

or = (g— A, a— 0).(The initial value ofa is actually ir- Pr(op|o):

relevant, since it is never used by the program ansl set br(ow) - ([S](6L ®6r) | L) (o)

along all control paths.) Next, the system ruR&/C. The B(&,0) = R CARGICEEAII0

output distributiond’ should clearly be a point mass at the oy TH\UH L H

states’ = (p — A,g — A,a — 1); the semantics in Sec- With this instantiation, we can show that how an attacker

tion 5 will validate this intuition. Since’ is the only state updates his belief according to our experiment protocol is
that can be sampled froi, the attacker’s observatien is equivalent to Bayesian updating.
o' |L=(g— A,ar—1).

In the final step of the protocol, the attacker applies the
definition of 5. He runs a thought experiment, predicting an B(E,0)(ox)
output distributiony’y = [PWC](6r ® by), given in Ta-
ble 2. The ellipsis in the final row of the table indicates that Proof. In Appendix A. O
all states not shown have frequency 0. This distribution is

Theorem 1

= B(&,0)

3.4. MutableHigh State and Nonter mination

If S does not terminate on some input state§,ithen out-
put distribution[S]é will contain less mass thaft other-

Section 3.1 made two simplifying assumptions about wise, mass(5) will equal mass([S]d). Missing mass corre-

programs: it never modifies high input, and it always ter-

sponds to nontermination [20, 17], sat; maps the miss-

minates. We now dispense with these mostly minor techni- ing mass tal.

cal issues.
To eliminate the first assumption, note thatifvere to
modify the high state, the attacker’s predictidfy would

correlate high outputs with low outputs. However, to calcu-

late a postbeliefy’; must correlate higmputswith low out-
puts. So the high input state must be preserved in_et the
notationb?, mean the same distribution &g, except that
each state of its domain has a 0 as a superscript. $g, if
ascribes probability to the stater, thenb?, ascribes prob-
ability p to the states". We assume tha§ cannot modify

An attacker that cannot correctly detect nontermination
is more difficult to model. At some point during the execu-
tion of the program, he will stop waiting for the program to
terminate and declare that he has observed nontermination.
However, he may be incorrect in doing so—leading to be-
liefs about nontermination and instruction timings. The in
teraction of these beliefs with beliefs about high inputs is
complex; we leave this for future work.

4. Measuring Information Flow

states with a superscript 0. In the case that states map vari-

ables to values, this could be achieved by defirifigo be
the same state as but with the superscript 0 attached to
variables; for example, i#(v) = 1 thens®(v°) = 1. Note
that S cannot modifyo? if did not originally contain any
variables with superscripts.

Using this notation, the belief revision operator is ex-
tended ta3', which allowsS to modify the high state in ex-
periment = (S, by, om,0L).

B(€) = (([S1(61 ®br @ by)lo)) [H
whereo € I'(§') | L
§' =[S](6L ® o)

In the first line of the definition, the high input state is
preserved by introducing the product wiify, and the at-
tacker’s postbelief about the input is recovered by restric
ing to HY, the high input state with the superscript 0.

To eliminate the second assumption, note that program
S must terminate for an attacker to obtain a low state as an

observation when runnin§. There are two ways to model

The informal analysis oP W' in Section 1 suggests that
information flow corresponds to an improvement in the ac-
curacy of an attacker’s belief. Recall the more accurate be-
lief b is with respect to high staigy, the less the distance
D(b — &y). We use change in accuracy, as measured by
distance, to quantify information flow.

4.1. Information Flow from a Report

Given an experimerf = (S, by, o, 0L,), areportis a
pair (£, b%;) such that/; € B(E). The accuracy of the at-
tacker’s prebelieby in a report(€, b)) is D(by — dg);
the accuracy of the attacker's postbelbéf in that report
is D(bly — &m). And, the amount of information flow@
caused by(&, b,) is defined as the difference of these two
guantities:

Q& b)) =

Thus the amount of information flow (in bits) i@ corre-

D(by — 6m) — D(b}l — Gp)

the observation in the case of nontermination, depending onsponds to the improvement in the accuracy of the attacker’s

whether the attacker can detect nontermination.

If the attacker has an oracle that decides nontermination,

belief, exactly as desired.
Using relative entropy as the distance operdon the

then nontermination can be modeled in the standard denodefinition of Q allows us to give a concrete interpretation to

tational style. LetL be the divergent state representing non-

termination,State; £ Stateu {1}, andL | L £ 1. Non-

the number produced by our definition @f Recalling the
coding efficiency interpretation of relative entropy in Sec

termination is now allowed as an observation, leading to antion 2.4, the amount of information flo@ is the improve-

extended belief revision operatBt:

BU‘((‘:) £ (OUtL(S,&L®bH®b%)|O) fHO
whereo € I'(§') | L
0 = outJ_(S,&L ®(.TH)

Functionout | (S,) produces a distribution that yields
the frequency tha$ terminates, or fails to terminate, on in-
put distributiond:

out (S,0)

Mo : State, .if o= L
thenmass(d) — mass([S]0)
else([S]4)(o)

ment in the expected inefficiency of the attacker’'s optimal
code for the high input.

With an additional definition from information theory, a
more consequential characterization @fis possible. Let
Zs(F) denote theénformationcontained in event’ drawn
from probability distributiony:

I5(F) & —lgPrs(F)

Information is sometimes called “surprise” becalismea-
sures how surprising an event is; for example, events that
occur with probability 1 have surprise 0.

For an attacker, there are two unknowns in the outcome
of an experiment: the initial high state, and the probatlis
choices made by the program. loet= [S](6 ® du) | L
be the system’s distribution on low outputs, afd =
[S](6L ® by) | L be the attacker’s distribution on low
outputs.Zs, (o) measures the information containeddn
about both unknowns, b, (o) measures only the latter
unknown. For programs that make no probabilistic choices,
neither quantity can measure any information about prob-
abilistic choices; thusj 4 contains information about only
the initial high state, andyg is a point mass at some state
such that | L = o, so the amount of informatidbs (o) is
0. For probabilistic programd;. (o) is generally not equal
to 0; subtracting it removes all the information contained
in Zs, (o) that is solely about the outcomes of probabilis-
tic choices, leaving only information about high inputs.

The following theorem states th@ measures the infor-
mation about high input; contained in observation

Theorem 2
Q((E, b))
In Appendix A. O

Ls, (0) —ZIss (0)

Proof.

As an example, consider the experiments/OWC in
Section 3.2. The first experime#j has the attacker cor-
rectly guess the passwort] so:

51:<PWC7bHa(p}_>A)7(g’_>Aaa}_>0)>

whereby (and the other beliefs about to be used) is de-
fined in Table 1. Only one repof;, b,), is possible from
this experiment. Calculatin@((&;, b)) yields a flow of
0.0291 bits from the report. The small flow makes sense be-
cause the report has only confirmed something the attacke
already believed to be almost certainly true. In experiment
&, the attacker guesses incorrectly.

Ey = (PWC, by, (p— C),(g— A,a— 0))

Again, only one repor{&;, b;,) is possible from this ex-
periment, and calculatin@((&;, b)) yields an informa-
tion flow of 5.6439 bits. A higher information flow makes
sense because the attacker’s postbelief is much closer-to co
rectly identifying the high state. The attacker’s prelfdlig
ascribed @.02 probability to the evenfp # A, and the in-
formation of an event with probabilit§.02 is 5.6439, the

More certain

by = (0.5,0.5)
o= (1)

b = (0.5,0.5)
o= (1~0)

Less accurate More accurate

b = (0.01,0.99)
o= (1~ 0)

b = (0.99,0.01)
o= (1)

il Less certain

Figure 2. Effect of F'LIP on postbelief

in memory, so how can the program leak more than five
bits? In brief, the extra bits correct the attacker's misegm
tions about the password, but this question also illumate
the difference between measuring information flow based
on uncertainty versus based on accuracy. Consider how an
uncertainty-based approach would analyze the program.
The attacker’s initial uncertainty aboptis H(by) =
0.1614 bits, whereH is the information-theoretic measure
of entropy or uncertainty, in a probability distributiah

=25 6(0) -1g(0)

Maximum entropy is achieved by uniform distributions
[13], so the maximal uncertainty abopis lg 3 ~ 1.6 bits,
the same number of bits required to stgreln the sec-
ond experiment, the attacker’s final uncertainty aboig
H(bg=2) = 1. The reduction in uncertainty 51614 — 1 =
0.8386. An uncertainty-based analysis, such as [5] or [16],
r ; . ; ; .
would interpret this negative quantity as an absence of-info
mation flow. But this is clearly not the case—the attacker’s
belief has been guided much closer to reality by the ex-
periment. The uncertainty-based analysis ignores reajity
measuringhy andbyo against themselves only, instead of
against the high statey.

Accuracy and uncertainty are orthogonal properties of
beliefs, as shown in Figure 2. The figure shows the change
in an attacker's accuracy and uncertainty when an experi-
ment€ = (FLIP,by, (h — 0), (I — 0)) is run, and obser-
vationo is generated by the run. The notatibp = (z,y)
means thaby (h — 0) = z andby (h — 1) = y. The pro-

L

H(9)

same information flow calculated above. This suggests thatgram FLIP is:

Q is correctly measuring the information about high input
contained in the observation.

4.2. Comparing Accuracy and Uncertainty

The information flow in experiment, is surprisingly
high; at most two bits are required to store password

FLIP : l:=h 0,99H l:=-h

Usually, FLIP setsi to beh, so the attacker will expect
this to be the case. Runs that satisfy this expectation will
cause his postbelief to be more accurate, but may cause his
uncertainty to either increase or decrease, dependingson hi

Quadrant h I 1] 1] v
by : 0 0.5 0.5 0.99 0.01

1 0.5 0.5 0.01 0.99
0 (l—0) | (I—1)]| d~1)| (I—0)
by 0 0.99 0.01 0.5 0.5

1 0.01 0.99 0.5 0.5
Increase in accuracy +0.9855 | —5.6439 | —0.9855 | +5.6439
Reduction in uncertainty +0.9192 | +0.9192 | —0.9192 | —0.9192

Table 3. Analysis of FLIP

p
by : A 0.98

B 0.01

C 0.01
by A 0

B 0.5

C 0.5
Increase in accuracy +5.6439
Reduction in uncertainty —0.8245

Table 4. Analysis of PW(C

prebelief; when uncertainty increases, an uncertainty met
ric would mistakenly say that no flow has occurred.

With probability 0.01, FLIP produces a run that fools
the attacker and setsto be —h, causing his belief to be-
come less accurate. The decrease in accuracy resutisin
information which is a negative information flow. When the
attacker’s prebelief is almost completely accurate, sunk r
will make him more uncertain. But when the attacker’s pre-
belief is uniform, runs that result in misinformation will

attacker’s belief becomes more accurate, but an uncertaint
metric can mistakenly measure a flow of zero or less. In-
versely, misinformation flows when an attacker’s belief be-
comes less accurate, but an uncertainty metric can mistak-
enly measure a positive information flow. Hence, accuracy
is the correct metric for information flow.

4.3. Expected Information Flow

We expect the results of this paper to be useful in decid-
ing whether a program satisfies a quantitative security-prop
erty. Since an experiment on a probabilistic progréman
produce many reports, it is reasonable to assume that such
properties will discuss expected flow over those reports. So
we define expected flo@ g over all reports from experi-
mentE:

QE(E) Eoeﬁ' FL[Q(<£7B(5’O)>)]

[
Q& ([SI(6L @ bu)lo) | H)))

whered’ = [S](6, ® &) gives the probability distribution
on reports, as in Figure 1, ardgs[X] is the expected value
of an expressiotX with respect to distribution.

make him less uncertain; when uncertainty decreases, an Expected flow is useful in analyzing probabilistic pro-

uncertainty metric would mistakenly say that flow has oc-

grams that can produce many observations for a single in-

curred. Table 3 demonstrates this phenomenon concretelyPut. Consider a faulty password checker:

The quadrant labels refer to Figure 2. For each quadrant,

the attacker's prebelieffiy, observatioro, and the result-
ing postbeliefd’; is given in the top half of the table. In

FPWC: ifp=gthena:=1€sea:=0;

a:=-a o.1[skip

the bottom half, increase in accuracy is calculated usingWith probability 0.1, FPWC flips the authentication flag.

the information flow metricQ((£, b)), and reduction in
uncertainty is calculated using the difference in entropy
H(br) = H(b).

Can this program be expected to confound attackers; that is,
does FPW(leak less expected information th&ivC?
This question can be answered by comparing the expected

Finally, recall that when the attacker guessed a passwordlow from FPW(C to the flow of PWC. Table 5 gives the
incorrectly in Section 1, his belief became more accurate flow of FPWC for experimentg{ and&Z", which are iden-
and more uncertain. Table 4 gives the exact changes in higical to £; and&; from Section 4.1, except that they execute

accuracy and uncertainty, using guess A and password
p=C.

In summary, uncertainty is inadequate as a metric for in-
formation flow. By Theorem 2, information flows when an

FPWC instead ofPW(C'. Observe that, for both pairs of ex-
periments, the expected flow 6P W is less than the flow
of PWC'. The random flip olx makes it more difficult for
the attacker to increase the accuracy of his belief.

& 0 QUE,B(E,0))) | Qr(E) Repetition # 1 2
& | (a—1) 0.0291 | 0.0291 by : Al 098 [0
(a—0) impossible B 0.01 |05

EF [(a—1) 0.0258 | 0.0018 C | 0.01 |05
(a+— 0) —0.2142 or(9) A | B

E | (a—1) impossible| 5.6439 o(a) 0 0
(a— 0) 5.6439 by Al 0 0

EM (a—1) —3.1844 | 2.3421 Bl 05 |0
(a— 0) 2.9561 cl 05 |1
Q((E, 1)) 5.6439 [1.0

Table 5. Leakage of PWWC and FPW(C

Table 6. Repeated experiments on PW(C

Reports(&F, (a — 0)) and (€L, (a — 1)) correspond
to an execution where the valuewfs flipped. The flow for 4.4. Maximum Information Flow
these reports is negative, indicating that the programwis gi
ing the attacker misinformation, as described in Sectién 4. Designers of quantitative security properties are likely t
Calculating expected flow requires a summation over all want to limit maximum information flow. So we define the
o € Stater, which may be a countably infinite set; this is maximum amount of information flow that prograshcan
infeasible to calculate either by hand or by machine. For- cause in a single report as the maximum amount of flow
tunately, expected flow can be conservatively approximatedfrom any report of any experime@it= (S, by, om, o) on
by conditioning on a single distribution rather than condi- S:
tioning on many observations. Conditioniagon §;, has

the effect of making the low projection éfidentical tod;, Quax(S) = maxe |, ene) Q(E, b))
while leaving the high projection @f unchanged. Consider applyingQumax(S) to PWC. Assuming that
A 5(o) by satisfies the admissibility restriction in Section 2.4 and
oo = Ao Do | , 0(0’) or(o [L) that the attacker guesses an incorrect password yields that
o |oxL0o

PWC can leak at most Ig(e - 1) bits per report, where
The bound on expected flow is then calculated as follows. 1, is the number of possible passwordself= 1, the at-

tacker is forced to have a uniform distribution over pass-

Theorem 3 Let: words, representing a lack of belief for any particular ealu
E = (S,by,on,0L) for the password. Additionally, it. = 2% for somek, then
§ = [S](6r ®dm) we obtain that folk-bit passwordsPWC can leak at most
erx = (([S](6L@bu)|(0' L)) H k —1g(2* — 1) bits in a report; fork > 12 this is less than
_ 0.0001 bits, supporting the intuition that password check-
Then: ing leaks little information.
Qp(€) < Q¢ en))
Proof. In Appendix A. O 4.5. Repeated Experiments

The experiment model can be extended to increase the Nothing precludes repetition of experiments. The most
applicability of expected flow. Rather than choose a partic- interesting case has the attacker return to step 2b of the ex-
ular low states, the attacker may more generally choose periment protocol in Figure 1 after updating his belief in
a distribution over low states,,, which the system sam- step 4; that is, the system keeps the high input to the pro-

ples to produce the initial low state;, € I'(dy). This ex- gram constant, and the attacker is allowed to check new low
presses a randomized guessing strategy for the attacker. Binputs based on the results of previous experiments. Sup-
taking the expectation i@ g with respect to botlr, ando, pose that experimerdf; from Section 4.1 is run and then

the expected flow for the attacker’s guessing strategy can beepeated witho;, = (¢ — B). Then the attacker’s belief
calculated. The initial high statey can be similarly gener- about the password evolves as shown in Table 6.

alized tooy and incorporated int@ . This could be used, Summing the information flow for each repetition yields
for example, to determine the expected flow of the pass-a total information flow 06.6439. This total corresponds
word checker when users’ choice of passwords can be deto what @ would calculate for a single experiment, if that
scribed by a distribution. experiment changed prebeligf; to postbelieft’;,, where

by is the attacker’s postbelief in the second repetition in
Table 6:

D(br = &) = Dby = 61) =

6.6439 — 0
6.6439

This example is an instance of a more general theo-
rem stating that the postbelief from a series of experiments

where the postbelief from one experiment becomes the pre-

belief to the next, contains all the information learned-dur
ing the series. Lef; = (S, by,, 0, 0r,) be theit® exper-
iment in the series, and lef = (&;, b%;) be a report from
&. Letry,...,r, be a series of reports in which prebe-
lief by, in experiment; is the postbelieb}; from re-

porti — 1. Finally, letby; = by, be the attacker's prebelief
for the entire series.

Theorem 4
D(by, — 6m) — D(bhn —~) = Zi | 1<i<n Q(rs)

Proof. In Appendix A. O

5. Language Semantics

The last piece required for our framework is a semantics
[S] based on distributions. For our programming language,
we usewhile-programs extended with a probabilistic choice
construct,|. The operational semantics for the determinis-
tic subset of this language is standard. Probabilisticagoi
S1 p[Se executess; with probabilityp or Sy with proba-
bility 1 — p.

Metavariabless, v, F, andB range over programs, vari-
ables, arithmetic expressions, and Boolean expressiens, r
spectively. Evaluation of expressions is assumed sideteff
free, but we do not otherwise give their syntax or seman-
tics. The syntax of the language is:

S skip |v:=E|S;S |if Bthen Selse S

| whileBdoS|S ,[]S

The experiment protocol of Section 3 requires a seman-
tics in which programs are functions that map distributions
to distributions. Here we build such a semantics in two

The statementskip, if, andwhile have essentially the
same denotations as in the standard deterministic “case.
State update[v — V], whereV € Val, changes the value
of v to V' in o. The distribution updaté[v — E] in the de-
notation of assignment represents the result of subsigtuti
the meaning of for v in all the states o6 and is defined
as:

§[v — E]

A0 (Yoo | ot [E]or=o 6(07))

The sequential composition of two programs, written
S1; 59, is defined using intermediate states. The probabil-
ity of S1; Ss, starting frome, reaching a final staig’’ is the
sum of the probabilities of all the ways th&t can reach
some intermediate’ and thenS, from thato’ can reach
o”. Note that([S1]o)(¢’) is the probability thatS;, begin-
ning in o, terminates irv’, becausds; Jo produces a dis-
tribution that, when applied te’, returns the probability of
termination ing’. Similarly, ([Sz2]o’)(¢"”) is the probabil-
ity that S, beginning ino’, terminates inv”’.

The final program construct is probabilistic choife,]

Ss, where0 < p < 1. The semantics multiplies the prob-
ability of choosing a side5; with the probability thatS;
produces a particular output staté Since the same state
o’ might actually be produced by both sides of the choice,
the probability of its occurrence is the sum of the probabil-
ity from either sidep - ([S1]o) (o) + (1 —p) - ([S2]o) (o).
This formula is simplified to the definition in Figure 3 us-
ing - and+ as pointwise operators:

Ao .p-d(o)
Ao .01(0) + da2(0)

p-o
01+ 62

L
L

To show how to lift the semantics in Figure 3 and define
[S] : Dist — Dist we use an intuition to what is done for
the sequential operator above, where there are many states
¢’ in which S could begin execution, and all of them could
potentially terminate in state. So to computd[S]d)(o),
we take a weighted average over all input statésThe
weights arej(c’), which describes how likely’ is to be
used as the input state. WitH as input,S terminates in
states with frequency([S]o”)(o). Thus we defing.S]é as:

Ao D g 6(0") - ([S]o") (o)

4

[S10

stages, as suggested by Section 2.2. First, we build a sim-

pler semantics that maps states to distributions. Secoad, w
lift the simpler semantics so that it operates on distrdmai
Our first task then is to define the semantjcs
State — Dist. This semantics should describe the proba-
bility of termination in a given state: fS]c = 4§, then the
probability of S, when begun irr, terminating ino’ should
be d(¢’). The semantics is given in Figure 3. We assume
some semanticfF] : State — Val that gives meaning to
expressions, and a semantjé¥ : State — Bool that gives
meaning to Boolean expressions.

10

This is in accordance with the requirements of Section 2.2.
Applying this definition to the semantics in Figure 3
yields [S]¢ for each kind of statement in the language

4 To ensure that the fixed point farhile exists, we have to verify
that Dist is a complete partial order (CPO) with a bottom element.
In fact, to make this so, we have to extend the definiivg to be
State — [0, 1]. This makes distributions correspond to subprobabil-
ity measures, and it is easy to check that the semantics always p
duces subprobability measures as output. The LUB is at iostl,
and the bottom element ¥ . 0.

[[sklp}]a = ¢
[v:=EJo = 6é[v— E]
[SiSd = Ao X, ([Sil0)(o") - ([S:]o")(0")
[if bthen S; else So]o = if [B]o then[S;]o else[Ss]o
[while B do S]a = fixf : Dist — Dist.if [B]o thenf([S]o) elsec
[S1 p[l So]o = p-[Si]o+ (1 —p)-[S2]o

Figure 3. Semantics of programs in states

[skip]d = o
[v:=E]J6 = dfv— E]
[S1582]6 = [S2]([S:]9)
[if Bthen S; ese S5]6 = [S1](6] B) + [S2](6| —B)
[while Bdo SJe = fixf: Dist — Dist. f([S](d| B)) + (6| —B)
[S1 0 5206 = [Silp-0+[S2](1—p) -6

Figure 4. Semantics of programs in distributions

as shown in Figure 4. This corresponds directly to a se- multiple times and feedback between runs is allowed, then
mantics given by Kozen [14], which interprets programs information can be leaked by coding schemes across mul-
as continuous linear operators on measures. Our semanticple runs. A system that is nondeducible on strategies has
uses an extension of the distribution conditioning op&rato no noiseless communication channels between high input
| to Boolean expressions. Whereas distribution condition- and low output, even in the presence of feedback. The flow
ing produces a normalized distribution, Boolean expressio model (FM) is a security property first given by McLean

conditioning produces an unnormalized distribution: [18] and later given a quantitative formalization by Gray
N . [10], who called it the Applied Flow Model (AFM). The FM
6|B = Ao.if [B]o thend(o) else0 stipulates that the probability of a low output may depend

on previous low outputs, but not on previous high outputs.
Gray formalizes this in the context of probabilistic state-m
chines, and he relates noninterference to the rate of max-
imum flow between high and low. Browne [1] develops a
novel application of the idea behind the Turing test to char-
6. Related Work acterize information flow: a system passes Browne’s Tur-
ing test exactly when for all finite lengths of time, the infor
We believe our work is the first to address and show mation flow over that time is zero. Halpern and O’Neill [11]
the importance of attacker beliefs in quantifying informa- construct a framework for reasoning about secrecy that gen-
tion flow. Perhaps the first connection between information eralizes many previous results on qua“tative and promb”
theory and information flow is Denning [5], who demon- tjc security.
strates the analysis of a few particular assignmentiéind
statements, using entropy to calculate leakage. Milleih [19 Volpano [22] gives a type system that can be used to
using deterministic state machines, proves that a system sa establish the security of password checking and one-way
isfies noninterference exactly when the mutual information functions such as MD5 and SHA1. Noninterference does
between certain inputs and outputs is zero. He also pro-not allow such functions to be typed, so this type system is
poses mutual information as a metric for information flow, an improvement over previous systems. However, the type
but does not show how to compute the amount of flow for system does not allow a general analysis of quantitative in-
programs. formation flow. Volpano and Smith [23] give another type
Wittbold and Johnson [25] introduceondeducibility system that enforcelative secrecywhich requires that
on strategiesan extension of Sutherland's®ndeducibility well-typed programs cannot leak confidential data in poly-
[21]. Wittbold and Johnson observe that if a program is run nomial time.

By producing unnormalized distributions as part of the
meaning off andwhile statements we are tracking the fre-
quency with which each branch of the statement is chosen.

11

Weber [24] defines the property:-limited secu- data, or no data.
rity, which allows declassification at a rate that depends,
in part, on the sizex of a buffer shared by the high and 7. Conclusion
low projections of a state. Lowe [15] defines thdor-
mation flow quantityof a process with two userd and
L to be the number of behaviors df that L can dis-
tinguish. When there are such distinguishable behav-
iors, H can use them to transnig »n bits to L. These both

This paper presents a model for incorporating attacker
belief into the analysis of quantitative information flow in
programs. The fundamental insight is that attackers’idistr
i butions on high state represent subjective beliefs, not ob-
measure the size of channels rather than accuracy of bejactive facts. A theory based on beliefs reveals that uncer-
lief. tainty, the traditional metric for information flow, is inad

Di Pierro, Hankin, and Wiklicky [7] relax noninterfer- equate: it cannot satisfactorily explain even the simple ex
ence toapproximate noninterferenceshere “approximate” ample of password checking. Accuracy is the appropriate
is a quantified measure of the similarity of two processes in metric for information flow, and we have shown how to use
a process algebra. Similarity is measured using the supreit to calculate exact, expected, and maximum flow. A for-
mum norm over the difference of the probability distribu- mal model of experiments we give enables precise descrip-
tions the processes create on the store. They show how to intions of attackers’ actions. We have instantiated the model
terpret this quantity as a probability on an attacker'sigbil with a probabilistic semantics and have given several exam-
to distinguish two processes from a finite number of tests, ples of applying the model and metric to the measurement
in the sense of statistical hypothesis testing. Finalky,gh- of information flow.
per explores how to build an abstract interpretation that al
lows approximation of the confinement of a process. More
recent work [6] has generalized this to measuring approxi-
mate confinement in probabilistic transition systems.

Acknowledgments

_ i) Stephen Chong participated in an early discussion about
Clark, Hunt, and Malacaria [3] apply information the- the distinction between attacker beliefs and reality. Sig-
ory to the analysis oivhile-programs. They develop a sta- mund Cherem, Jed Liu, Kevin O'Neill, Nathaniel Nystrom,
tic analysis that provides bounds on the amount of informa- Riccardo Pucella, and Lantian Zheng provided helpful com-
tion that can be leaked by a program. The metric for infor- \ents on the paper.
mation leakage is based on conditional entropy; the analy- This work was supported by the Department of the Navy,
sis consists of a dataflow analysis, which computes a usefice of Naval Research. ONR Grant NO0014-01-1-0968:
def graph, accompanied by a set of syntax-directed infer- ajr Force Office of Scientific Research, Air Force Materiel
ence rules, which calculate leakage bounds. The analysis 0t gmmand. USAF grant number F49620-03-1-0156; and
Boolean and arithmetic expressions is somewhat problem-national Science Foundation grants 0208642, 0133302, and
atic, requiring the introduction of spemahzgd rules thpt 0430161. Michael Clarkson is supported by a National Sci-
ply only outside of loops. Also, the bounds rstatements ence Foundation Graduate Research Fellowship; Andrew
are calculated conservatively: the analysis does not makeMyers is supported by an Alfred P. Sloan Research Fel-
use of any facts that are known about the relative probabil—|owship_ Opinions, findings, conclusions, or recommenda-
ity of each branch being chosen. Our work solves both of tions contained in this material are those of the authors and
these problems by using a denotational semantics that calyq not necessarily reflect the views of these sponsors. The
culates precise probability distributions; however, weeha ;5 Government is authorized to reproduce and distrib-

not developed a static analysis. In other work [2], the same e reprints for Governmental purposes notwithstandiryg an
authors investigate other leakage metrics, settling odieon copyright notation thereon.

tional mutual information as an appropriate metric for mea-
suring flow in probabilistic languages; they do not consider
relative entropy. Mutual information is always at least®, s
unlike relative entropy it cannot represent misinformiatio . . .

[1] R. Browne. The Turing test and non-information flow. In

Mclver and Morgan [16] calculate the channel capacity S&P 1991 pages 375-385, Oakland, CA, 1991. IEEE.
of a progra_m_ using conditional e”FTOPV- Th‘?y attemonic [2] D. Clark, S. Hunt, and P. Malacaria. Quantified interference:
nondeterminismas well as probabilistic choice to the lan- Information theory and information flow. Presented at Work-
guage ofwhile-programs, and they show that the perfect shop on Issues in the Theory of Security (WITS'04), April
security (0 bits of leakage) of a program is determined by 2004,
the behaViOI’ Of |tS detel’ministic reﬁnements. They alSG con [3] D. C|ark, S. Hunt’ and P. Malacatria. Quantiﬁed interference
sider restricting the power of the demon making the nonde- for a while languageElectronic Notes in Theoretical Com-
terministic choices, such that it can see all data, or just lo puter Sciencel12:149-166, Jan 2005.

References

12

[4] T.M. Cover and J. A. Thoma&lements of Information The-
ory. John Wiley & Sons, 1991.

D. Denning. Cryptography and Data SecurityAddison-
Wesley, 1982.

A. Di Pierro, C. Hankin, and H. Wiklicky. Measuring the
confinement of probabilistic systems. To appeaflimoret-
ical Computer Science

A. Di Pierro, C. Hankin, and H. Wiklicky. Approximate
non-interference.Journal of Computer Security12(1):37—
81, 2004.

A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin.
Bayesian Data AnalysisChapman and Hall/CRC, 2004.

(5]
(6]

(7]

(8]
9]

models. InProc. IEEE Symposium on Security and Privacy
pages 11-20, Apr. 1982.

J. W. Gray, Ill. Toward a mathematical foundation for infor-
mation flow security. Ir5&P 1991 pages 21-35, Oakland,
CA, 1991. IEEE.

J. Halpern and K. O'Neill. Secrecy in multiagent systems.
In CSFW 2002 pages 32-46, Cape Breton, Nova Scotia,
Canada, 2002. IEEE.

J. Y. Halpern. Reasoning about UncertaintyMIT Press,
Cambridge, Massachusetts, 2003.

G. A. Jones and J. M. Jonemformation and Coding The-
ory. Springer, 2000.

D. Kozen. Semantics of probabilistic progran@&urnal of
Computer and System Scienc22:328-350, 1981.

G. Lowe. Quantifying information flow. IlCSFW 2002
pages 18-31, Cape Breton, Nova Scotia, Canada, 2002.
IEEE.

A. Mclver and C. Morgan. A probabilistic approach to in-
formation hiding. InPProgramming Methodologyghapter 20,
pages 441-460. Springer, 2003.

A. Mclver and C. Morgan. Abstraction, Refinement and
Proof for Probabilistic SystemsSpringer, 2004.

J. McLean. Security models and information flow. S&P
199Q pages 180-189, Oakland, CA, 1990. IEEE.

J. Millen. Covert channel capacity. B&P 1987 pages 60—
66, Oakland, CA, 1987. IEEE.

L. H. Ramshaw. Formalizing the Analysis of Algorithms
PhD thesis, Stanford University, 1979. Available as tech-
nical report, XEROX PARC, 1981.

D. Sutherland. A model of information. IRroceedings of
the 9th National Computer Security Conferengages 175—
183, Sep 1986.

D. Volpano. Secure introduction of one-way functions. In
CSFW 2000pages 246—254, Cambridge, UK, 2000. IEEE.
D. Volpano and G. Smith. Verifying secrets and relative se-
crecy. InPOPL 2000 pages 268-276, Boston, MA, 2000.
ACM.

D. G. Weber. Quantitative hook-up security for covert chan-
nel analysis. INCSFW 1988pages 58—71, Franconia, NH,
1988. IEEE.

J. T. Wittbold and D. Johnson. Information flow in nonde-
terministic systems. I8&P 199Q pages 144-161, Oakland,
CA, 1990. IEEE.

(10]

(11]

(12]
(13]
(14]

(15]

(16]

(17]
(18]
(19]

(20]

(21]

(22]

(23]

(24]

(25]

13

J. A. Goguen and J. Meseguer. Security policies and security -

A. Proofs

Theorem 1Let& = (S, by, om,0L).
8(5,0)(0}1) B(gao)

Proof.

B(&,0)

(Definition of B)

bu(on) - ([S](6L ® &) T L)(0)
2oy, br(0y) - (1S)(62 @ 6) [L)(0)

(Definition of 6 | L, apply distribution ta)
balon) Oy | o0 ([51(6L ® 61)(0))
2or, V() - (g | o11=0 (1S1(6L @ 63)(0))

(Lemma 1.1)
br(on) - (g | or1r=0 ([S1(6L ® 61)(0))
2ot | o 1L=0 19)(6L ®DH)(0")
(Distributivity, one-point rule)
Y | oll=o A ol Heom ZO—/H bu(owu) - [S1(6L @ 6r)(0)

ZU’ | o/ L=0 [[S]] (&L ® bH)(OJ)
(Lemma 1.1)
Yo |oti—onotH—on 19160 ®bp)(0)
2ot | o'in=o S](6L @ byr)(0”)
(Distributivity)

[S](62 © ba)(0)
o’ | o/ L=o [[S]] (&L ® bH)(OJ)

ZO’ |olL=0o A c|H=0p Z

(Definition of § | L)
20| otti=an ([S1(6L © brr))l0)(0)

(Definition of § | H, applying distribution targ)
((([ST(6L @ bu))lo) I H)(ow)

(Definition of B(€, 0))
B(€,0)(on)
|

Lemmal.lleto | L = o.

[Sl(6L ®@bu)(o) = >=,,, bulou) [S](6L @ ém)(0o)
Proof.
[S1(6L @ bm)(o)
(Definition of [S]4)
2o (6L @bm)(0") - ([S]o")(0)
(Definition of point mass$
ZU’ | o/ L=0p, bH(OJ [H) ’ (IIS]]OJ)(U)
(Leto = (o, o), nesting, one-paint rule
2oy brlon) - [S](6L @ 6u) (o)

Theorem 2Let& = (S, by, 0m,01).

QUEVy)) = Zsu(0) — Lss(0)

Proof.

O

Q((€, b))

= (Definition of Q)
D(byg — 6p) — D(Vy — 6n)

= (Definitions of D and point mas$
—lgbu(on) +1gby(on)

= (Lemma 2.1, properties a@§)
—1g Prs, (0) +1g Prs (o)

= (Definition of Z)
IéA (O) - Iﬁs (0)

Lemma 2.1

(55(0)
5,4(0)

by(om) =bu(om) -

Proof.

by (om)
(Definition of B)
((IS1(6L @ ba)lo) | H)(on)
(Definition of § | H)
Yoo | oti=oy ([S1(61 @ bH)l0)(0)
(Definition of §|o)
[S](6L ® br)(0)

2o | ottt=au notL=o [[](61 & bur) | L)(0)
(One-point rules = {(0,0))
[S](6L ® br)({0,08))
(IS1(6L ®bm) T L)(0)
(Definition of § 4)
52y 1516 @ b) ({0, 0m))
(Definition of [S]4)
5 Lo (6L @0u)(0") ([So') (6@ &n)
(Definition of ®, point mass
m ’ Zo” | o/ L=0r, bH(OJ I H)
(IS ® (6" [H)))(6® 6m)
(High input is immutable

m ’ ZO” | o/lL=0or AN o'|H=0n bH(OJ r H)
([S1(6L @ (6" I H)))(6® &)
(One-pointrules’ = (o, 0H))
sy br(om) - ([S](6r ® 63)) (0 @ om)

14

wit

(High input is immutable, Definition of | L)
52 - br(om) - ([S1(61 ©6%) T L)(0)

= (Definition of 65)

bl 5363

Note that the immutability of high input can be dispensed
h using the technique of Section 3(4.

Theorem 3Let:

Then:

IN

O

E = <S,bH,O'H,O'L>
¢ = [Sl(6L®ém)
eg = (([SI(6L®bu))|(0" | L)) I H
Qp(€) < Q€ en))
Proof.
Qr(&)

(Definition of Qp)
Eoes1L[QU(E, B(E,0)))]

(Definition of Q, letd; = B(E,0))))
Eocsn[D(by —) — Dby — o))

(Linearity of E')
Dby — 61) — Eoco1[D(Vy — 611)]

(Jensen’s inequality and convexity bf, see [4])
D(by — 61) — D(EocsiiL[by] — 01)

= (Lemma3.l)
D(bH — C.TH) — D(eH — &H)
— (Definition of Q)
Q((&,en))

Lemma 3.1Let &, ¢, ey be defined as in Theorem 3. Let

Uy

= B(&,0) and assume the range @fs alwaysd’ | L.

Then:

EO [b}{] = e
Proof.

Eo[tyl(om)
(Definitions of E, b/)
(226 (6" 1 L)(0) - B(€,0)(on)
(Definition of B(€,0))
>0 (6" T L)(0) - (([S1(6L ® brr))lo) | H)(om)
(Definition of 6 | H, applying distribution tar)
22 (0" 1 L)(0)
(Lo | o 1=0 ([S1(6L @ b))|0)(0"))

(Definition of §|o, applying distribution ta’) = (Distributivity)
>0 (6" T L)(0) 81 o Yij1<i<n f(i=1)
oL ® o’ _ 1(;
'(ZU’ | o't H=0u A o’'[L=0 ([[S]] (6’LI® bHI){ [L)(O)) Zl | 1<i<n f (Z) o
= { One-point rule) = (Change of dummyi :=i —1)

' ([S](6L ® bu))((0.01)) 2 o<i<n—1 J'(9)
20 O T DO 781G, @ bir) 1 L)(o) TS s 00
= (Definition of § [L, applied too) _ (split off term,n > 2)
, Sl(6r @ by 0,0H , 1
o 100 5 U s e PO+ Einsigrs 70)
= (Leto = (0,0x), change of dummyo := &, =i 1<i<no1 /(@) = f(n)
definition of~,) = (Arithmetic)
Yo ottigy (8 T L)(©) S0 = f'(n)
. ([S](6L @ bu))(o) = (f(1)=r10))
2ot | oo 1O1(EL ®bm)(07) F(1) = f'(n)

= (Definition of §|6,, applied too) 0

2o otti=oy ([S16L @ bm)I(6" T L))(0)
= (Definition of § [H, applied tooy)

([S1(6L ®br)[(" I L)) | H)(om)
(Definition of ey)

eH(O'H)

ThereforeE, [V;] = ey by extensionality.
|

Theorem 4
D(bg, = 6n) — Dby, —on) = >, Qri)
Proof.
> | 1<i<n Q(ri)
(Definition of Q)
P | 1<i<n D(bu;, — 6m) — D(bﬁqi —6p)
(Lemma 4.1f(i) = D(by, — 6u),
f'(@) = Dy, — om), b, = by,
b/HO = le >
D(bg, —) — Dby, —)

O

Lemma 4.1Assume for a pair of functiong and f’ that

Vij1<icn f(@) = f/(i = 1),n > 2, and f(1) = f'(0).
Then:

(i |1<i<n FG) = /(1) = f(1) = f'(n)
Proof.
S 1zien FG) = F(0)
= (fl)=r@-1))
Dili<i<n JE=1) = f'(2)

15

