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 Females have a non-renewable number of gametes at birth. These 

oocytes are extremely sensitive to environmental factors that generate DNA 

damage. Oocyte death due to DNA damage can result in infertility and ovarian 

failure. In contrast to postnatal oocytes, at earlier stages of gametogenesis 

these cells withstand hundreds of developmentally programmed DNA breaks 

(DSBs). During the first meiotic division these DSBs promote synapsis 

(homologous chromosomes pairing), and recombination, which are both 

essential for sexual reproduction and environmental fitness. However, DSB  

repair and synapsis need to occur in a timely manner, or the quality of the 

gametes becomes compromised. 

 The mechanisms that guarantee oocyte quality were hypothesized to 

operate through two independent pathways: one that surveys DNA integrity, 

and the other synapsis. However, I present experimental evidence that 

oocytes defective for either DNA repair or synapsis are eliminated by the same 

DNA damage response. Furthermore, through the detailed analysis of DNA 

repair dynamics, I provide evidence that the protein HORMAD2, which 

localizes to unsynapsed chromosomes, regulates DSB-repair. I hypothesize 



 

 

that HORMAD2 interferes with repair by preventing broken DNA from using 

the sister chromatid as a repair template. This “block to sister-chromatid 

repair” (BSCR) assures that the homologous chromosome is the substrate of 

choice. Whereas BSCR guarantees homologous recombination, it also 

prevents unsynapsed chromosomes from fixing DSBs. Thus, failure to 

synapse will result in persistent DSBs. Since DNA damage causes oocyte 

death postnatally, unsynapsed chromosome will trigger the DNA damage 

checkpoint.  

 Through the understanding of this checkpoint, I was able to test if the 

transient inhibition of the DNA damage checkpoint protein (CHK2) prevents 

oocyte death. My finding that oocyte death was prevented, and fertility was 

preserved, provides evidence that chemically protecting oocyte from DNA 

damaging agents is a viable clinical approach. This result will hopefully 

translate into a treatment to delay ovarian failure. Taken together these results 

have implications on our current understanding of the prophase I checkpoint. 

 TEACHING AS RESEARCH 

 My interest in improving teaching strategies led me to research the 

qualitative outcome of using a novel teaching tool during the laboratory section 

of a histology course. I tested an interactive response system (IRS) as 

formative assessment tool. I found that IRS results in a positive experience, 

however my study was not able to detect quantitative difference on students’ 

grades was detected.  
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CHAPTER 1 

INTRODUCTION 
 

 Various specialized cells make up the different organs and tissues of 

complex organisms, however they all originate from one single cell: the 

fertilized egg. Meiosis is the specialized cellular division responsible for 

generating the sperm and egg. Similar to somatic cells, meiotic cells have 

regulatory mechanisms that assure the transmission of genetic information 

from parental to daughter cells. These surveillance mechanisms are called 

“checkpoints” (Hartwell and Weinert 1989; Subramanian and Hochwagen 

2014). During the cell cycle there are multiple checkpoints with different 

molecular mechanisms and a common goal: precise cellular division.  

 Many of the quality control mechanisms are conserved between 

somatic and meiotic cells. However, meiosis has specific quality control 

mechanisms to assure that one parental diploid cell will give rise to four 

daughter haploid gametes, while increasing genetic variability (MacQueen and 

Hochwagen 2011; Zickler and Kleckner 2015). Whereas in males the four 

daughter cells give rise to sperms, in female mammals only one daughter cell 

is viable and will give rise to the embryo upon fertilization. The understanding 

of meiosis specific surveillance mechanisms, checkpoints, has impact in 

health and disease. Besides their role in reproductive health, meiotic cells 

constitute a platform for the study of DNA repair and recombination. These 
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cells are proficient in repairing massive amounts of damaged DNA without 

compromising the organism’s genome or environmental fitness.  

 

1. Introduction to meiotic division 

 Sexual reproduction depends on gametogenesis (process in which cells 

undergo meiotic cellular divisions). During mitosis, one parental diploid (2n) 

cell generates two identical 2n daughter cells (Figure 1.1 A). In meiosis the 2n 

parental cell generates up to four daughter cells, each with half of the parental 

chromosome content (e.g. haploid cells). In order to generate the haploid 

gamete, the 2n parental cell undergoes one round of DNA duplication followed 

by two rounds of cellular divisions (Figure 1.1 B) (Gray and Cohen 2016). 

 In the first meiotic division (meiosis I) the maternal and paternal 

homologous chromosomes segregate (reductional division), and at the second 

meiotic division (meiosis II) the sister chromatids separate (equational division) 

(Figure 1.1 C) (Gray and Cohen 2016; Handel and Schimenti 2010). Like 

mitotic division, meiosis I and II are divided in five stages: prophase, 

metaphase, anaphase, telophase and cytokinesis. This classification was 

established during the early 1900s when discrete morphological differences 

within the cells were initially observed. Even though there is variability 

between fungi, plants and animals, in protein sequences and genetic 

regulators of meiotic division, the protein function is highly conserved. Even 

within mammals, species-specific differences in meiosis have been found, 

such as pathways that affect genetic diversity and determine recombination 
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hotspots (Clément and Massy 2017), but the overall molecular mechanisms 

are conserved. In mammals, mouse is the species in which meiosis is best 

studied and is the model system of this dissertation.  

 

Figure 1.1) Representation of mammalian mitosis and meiosis. (A) Mitotic cell 

division; the blue parental cell (top left) undergoes one round of DNA 

replication followed by a cellular division that results in two daughter cells with 

comparable DNA content. (B) Meiotic cell division; the red parental cell 

undergoes one round of DNA replication followed by two rounds of cellular 

division, resulting in four daughter cells with half of the parental DNA content. 

(C) Schematics showing how homologous chromosomes and sister 

chromatids are illustrated in A and B. 
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Committing to meiotic division 

 Eutherian meiosis is a sexually dimorphic process, and gamete 

formation differs between males and females. In female mice meiosis begins 

during embryonic life, soon after the primordial germ cells reach the gonadal 

ridge (Figure 1.2 A). Retinoic acid (RA), a Vitamin A derivative, plays major 

role in meiotic entry. In mice RA is secreted by the mesonephroi at 

approximately 12.5 days post-coitus (dpc). Whereas female germ cells 

promptly respond to the RA stimuli, males at this developmental age secrete a 

retinoid-degrading enzyme, CYP26B1 (a member of the cytochrome P450 

family) (Gray and Cohen 2016; Handel and Schimenti 2010; Niederreither and 

Dollé 2008), that prevents meiotic entry up to postnatal day (dpp) seven 

(Feng, Bowles, and Koopman 2014; McLaren and Southee 1997). 

Females – only one chance to make it right 

 In female mice the first meiotic division is semi-synchronous with 

prophase I starting between 13.5 and 15.5 dpc, and arresting at birth (Bowles 

and Koopman 2007). The number of embryonic germ cells in the ovary is finite 

and non-renewable (Bowles and Koopman 2007; Zhang et al. 2014), thus 

leading to the unavoidable decline of germ cells throughout the lifetime of the 

animal. In females, meiosis I resumes upon ovulation, and progresses to 

meiosis II only if the egg/oocyte is fertilized.  As previously mentioned, male 

meiosis initiates after birth when the renewable pool of spermatogonial stem 

cells start spermatogenesis, which will continuously produce sperm throughout 

the male’s reproductive life. Upon completion of meiotic division, the male  
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Figure 1.2) Gametogenesis is sexually dimorphic. (A) Female mammals have 

a finite number of oocytes that is determined during embryonic development. 

In female mice meiosis starts by 13.5 days post coitus (dpc) when the 

primordial germ cells (PGC) reach the urogenital ridge. It is a semi-

synchronous cellular division that by birth results in a non-renewable, dictyate 

arrested, oocyte reserve. Only ovulated oocytes will finalize the first meiotic 

division. (B) In males, PGCs arrest during embryonic development, and only 

commit to gametogenesis after birth. Once the male gonad begins 

spermatogenesis it will constantly produce gametes (represented by the green 

circular arrow). In mice spermatogenesis starts around postnatal day (dpp) 13. 

It takes about 30 to 35 days for sperm to be fully formed.  



 

 6 

parental germ cell will give rise to four functional gametes (Figure 1.2 B), 

whereas the female parental germ cell will produce only one viable oocyte and 

three polar bodies, smaller cells destined to degenerate (Dalton and Carroll 

2013; Handel and Schimenti 2010). 

 

2. Prophase I – establishing connections 

 The first meiotic division is unique compared to meiosis II and mitosis. 

Prior to meiosis I the replicated chromosomes will loosely align with their 

homologs, recombine, and segregate. Prophase I is the longest stage of 

meiosis (Cobb and Handel 1998) during which most of the aforementioned 

events occur. It is divided in five main sub-stages, classically defined by the 

morphological appearance of the chromosomes. Progressions through the 

subs-stages also correlate with the meiotic DNA breaks dynamics (Figure 1.3):  

• Leptonema, when hundreds of programmed endogenous DNA double 

strand breaks (DSBs) are generated;  

• Zygonema, when DSBs are repaired through recombination, which 

promotes the search for the homologous chromosomes (homologs) 

initiating the tight tethering of the homologs (synapsis);  

• Pachynema, when most, if not all, the DSBs are repaired and the 

homologs are fully synapsed;  

• Diplonema, when the proteinacious structure formed between the 

homologs during synapsis begins to disassemble;  
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Figure 1.3) Prophase I is divided in five sub-stages. Prior to entry in meiotic 

division primordial germ cells undergo one last round of DNA synthesis, called 

pre-meiotic DNA replication, referred here as pre-leptotene stage. Entry into 

meiosis is marked by the occurrence of hundreds of endogenous programmed 

DNA double stranded breaks (DSBs), at leptonema.  As the DSBs begin to be 

repaired by recombination, the axial elements (AE) at the chromosomes axes 

(in zygonema) become juxtaposed and polymerization of the synaptonemal 

complex (SC) begins. At pachynema most, if not all, of the DSBs are repaired 

and the homologs are fully synapsed. After pachynema the SC starts to de-

assemble (in diplonema) and prophase I is finally completed at diakinesis 

when the nuclear envelop starts to disappear. AE, Axial elements; LE, lateral 

elements; CE, central elements; TF, transverse filaments. 
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• Diakinesis, when the nuclear envelop starts to disappear as the cells 

transition to metaphase I, and the sites of reciprocal genetic exchange 

between homologs (cross overs (CO)) can be visualized (chiasmata).  

 

Sister Chromatids – cohesion mediated by cohesins 

 The decision to enter meiosis is made before pre-meiotic DNA 

replication, when the retinoic acid mediated expression of the “stimulated by 

retinoic acid 8” (Stra8) gene is initiated (Baltus et al. 2006; Handel and 

Schimenti 2010; Niederreither and Dollé 2008). Stra8 expression induces pre-

meiotic DNA replication, which precedes prophase I by about 15 hours (Baltus 

et al. 2006; Koubova et al. 2014; Spiller, Bowles, and Koopman 2013). The 

sister chromatids from the resulting chromosome are held together by different 

multi-protein cohesin complexes that mediate sister chromatid cohesion. 

These complexes form a ring-like structure surrounding the sister chromatids 

which will assure that they are held together past anaphase I. 

 Although the resulting sister chromatids are maintained together by 

cohesins, homologous chromosomes still need to find, pair, and recombine for 

reduction of cell ploidy upon anaphase I. Even though juxtaposition of 

homologous chromosome occurs independent of DSBs, the DSB mediated 

homology search is necessary for their stable association (Boateng et al. 

2013; Ishiguro et al. 2014). There is evidence that this initial pairing of 

homologs is a pre-leptotene event that requires the non-catalytic function of a 

meiosis specific topoisomerase- like protein (SPO11- see below), and the 
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formation of inter-axis bridges (of about 400nm) between the loosely paired 

homologs (Boateng et al. 2013; Ishiguro et al. 2014; Zickler and Kleckner 

2015). This proximity between homologs precedes a tighter (~200nm) 

(Johanna L. Syrjänen et al. 2017), side-by-side association (synapsis), and is 

likely important for preventing the erroneous association of non-allelic, 

homologous genomic regions.  

 Besides the pre-meiotic parallel arrangement of homolog-axes, another 

event that helps in the organization of the chromosomes is the positioning of 

the telomeres. During leptonema the telomeres become tethered to the 

nuclear envelope and dynamically cluster together. This disposition is referred 

to as “bouquet conformation” due to its cytological morphology, and has also 

been associated with chromosome pairing (Inagaki, Schoenmakers, and 

Baarends 2010; Subramanian and Hochwagen 2014). Therefore, sister 

chromatids and homologous chromosomes are not stochastically arranged in 

the meiotic nucleus. 

 

Homologous chromosomes – pairing and repairing 

The synaptonemal complex 

 The organization of the chromosomes within the meiotic nucleus is 

suggestive of its importance for synaptonemal complex (SC) assembly to take 

place between homologs. The SC is a proteinacious structure that forms 

between homologs as they synapse. It can be morphologically distinguished 



 

 10 

as comprising of three components (Bolcun-Filas et al. 2007; Schücker et al. 

2015; Johanna L. Syrjänen et al. 2017):  

1- Axial elements (AE) / Lateral elements (LE): Proteinacious filaments 

that form along the side of chromosomes (vertical axis) where 

chromatin loops are held in place. Prior to synapsis the proteins 

associated to the chromosome axis are referred to as axial elements  

(AE). Components include synaptonemal complex protein 3 

(SYCP3) and 2 (SYCP2).  

2- Central element (CE): Proteinacious filaments that form parallel to 

the vertical axis, and are present at the mid-region between the two 

homologs (e.g. between the LE of the synapsed chromosomes). 

Components include synaptonemal complex central element protein 

1, 2, 3 (SYCE1, SYCE2, SYCE3, respectively), and testis expressed 

12 (TEX12). 

3- Transverse filaments (TF): Proteins with an arrangement 

perpendicular to both the axial/lateral and central elements. Their 

horizontal organization forms a ladder-like structure, connecting LE 

to CE, and is composed of SYCP1. 

Initiation of SC assembly correlates to DSBs, which triggers a cascade of 

events leading to the lateral elements associating with the transverse filaments 

and central elements. The resulting structure is a zipper-like proteinacious 

complex formed between the homologs. Once the tripartite structure is fully 
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assembled the chromosomes are said to be synapsed (Kleckner 2006; Page 

and Hawley 2004; Zickler and Kleckner 2015). 

DNA damage and SC assembly 

 SPO11 is a meiosis specific protein with putative structural function on 

homolog juxtaposition (Boateng et al. 2013), and endogenous programmed 

nucleolytic activity (Keeney 2008). The transesterase activity of this type II 

DNA topoisomerase-like protein is likely responsible, but not sufficient, for the 

catalysis of DSBs (Keeney 2008; Lam, Mohibullah, and Keeney 2017). SPO11 

is homologous to the A subunit of archaeal type II topoisomerase VI (TopoVI), 

which is composed of two subunits (A and B) (Nichols et al. 1999). The A 

subunit of TopoVI is involved in DNA interaction, and the B subunit in ATP 

hydrolyses, thus both subunits are required for DSB formation (Robert et al. 

2016). Similar to archaeal TopoVI, catalysis of meiotic DSBs depends on the 

formation of a heterotetramer between SPO11 and the TOPOVIBL protein 

(product of the mouse Gm960 gene) (Robert et al. 2016). Meiotic DSB 

formation also requires other accessory proteins (for example MEI4, MEI1, 

IHO1, etc) that have regulatory and structural roles. Besides the regulation 

prior to DSB formation there are also multiple complex feedback loops to 

assure that the appropriate number of breaks are introduced (Kauppi et al. 

2013; Zickler and Kleckner 2016; Robert et al. 2016). Furthermore, there is 

evidence of sexual dimorphism between the two SPO11 isoforms: beta and 

alpha. The beta isoform is responsible for DSB formation, and the alpha is not 

well characterized but is expressed after synapsis initiation. While it is 
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dispensable for female meiosis, the alpha isoform is important for the 

recombination of heterologous sex chromosomes in males (Kauppi et al. 

2013). Another interesting feature of meiotic DSBs is that they are more likely 

to occur at specific regions of the genome (hotspots), and are cytologically 

associated with axial element (AE) proteins (Cole et al. 2012; Kumar et al. 

2015). 

 Formation of the filament-like aspect of the AE is concurrent with 

SPO11 induced DSBs. Cohesins are likely the first layer of proteins to 

associate along the chromosomes. As the cells enter leptonema, SYCP3 and 

HORMAD1 (one of the mammalian “HORMA” domain-containing proteins 

orthologous to the Saccharomyces cerevisiae Hop1p) proteins become 

cytologically evident, with a spotty distribution that coincides with both 

cohesins, and DNA damage markers. SYCP3 is a coiled-coiled protein with a 

N-terminus-DNA binding motif (Johanna Liinamaria Syrjänen, Pellegrini, and 

Davies 2014). Like other coiled-coiled SC-proteins, it easily polymerizes into 

polycomplex fibers in non-meiotic conditions (Johanna L. Syrjänen et al. 2017; 

Yuan et al. 1998). Based on recent high-resolution microscopy and structural 

studies (Rong et al. 2016; Johanna L. Syrjänen et al. 2017; Johanna 

Liinamaria Syrjänen, Pellegrini, and Davies 2014) it is not unreasonable to 

hypothesize that epigenetic marks (changes in chromatin structure without any 

DNA alteration) and cohesins have a role in guiding SYCP3 polymerization to 

the genomic region destined for SC axis formation. HORMAD1 is one of the 

two meiotic HORMA-domain containing proteins of mammals (Wojtasz et al. 
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2009). HORMA-domains are described as a signal-response mediator of 

protein-protein interactions (Rosenberg and Corbett 2015). Both HORMAD1 

and HORMAD2 are involved in the meiotic recombination control, and are not 

present in synapsed chromosomes. SYCP3, on the other hand, remains 

associated with the chromosome from leptonema to diplonema. Recent 

studies show that HORMAD1 helps promote DSB formation on the 

unsynapsed chromosomes axes (Stanzione et al. 2016), and that radiation 

induced DSBs in Hormad1-/- knockout mice, DNA repair is expedited (Shin, 

McGuire, and Rajkovic 2013).   

 Structural and functional studies suggest that HORMAD1 binds to 

cohesins at the chromosome axis (Kim et al. 2014; Rosenberg and Corbett 

2015). Studies of cohesin mutant mice have not yet identified the HORMAD1 

interactor, but immunopreciptation studies suggest cohesin SMC3 as a likely 

candidate (Fukuda et al. 2010; Hopkins et al. 2014; Wojtasz et al. 2012). Since 

SMC3 is an essential cohesin (ubiquitously expressed and embryonic lethal if 

knocked out), studies of its role in meiosis are limited (Singh and Gerton 

2015). Even though REC8 and RAD21L have no obvious HORMAD1 

interaction (Fukuda et al. 2010; Kumar et al. 2015; Wojtasz et al. 2009), they 

are particularly important as meiosis-specific cohesin subunits. REC8 and 

RAD21L are implicated in preventing SC formation between sister chromatids 

and non-homologs, respectively (Ishiguro et al. 2014; Lee 2013; Xu et al. 

2005). Rec8 expression, similarly to Stra8, is RA-dependent (Bannister et al. 

2004; Koubova et al. 2014; Xu et al. 2005). Presence of REC8 during pre-
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meiotic S phase is important for sister chromatid organization prior to meiotic 

entry. Without REC8, the polymerization of the SC happens within the 

chromosome, alongside each sister chromatid (Agostinho et al. 2016; Ishiguro 

et al. 2014; Rong et al. 2016). Curiously, it is still unknown if in wild type 

meiocytes the axial element SYCP3 assembles as two separate parallel 

structures (one for each sister chromatid) or as only one that simultaneously 

incorporates both sisters (Ortiz et al. 2016). The analysis of RAD21L deficient 

meiocytes implicates this cohesin in meiotic recombination, presumably by 

placing the damaged DNA closer to its homologous chromosome (Agostinho 

et al. 2016; Rong et al. 2016). The spatiotemporal correlation between 

RAD21L and meiotic DSB formation/resolution further supports that RAD21L 

plays a role in the stability of allelic homolog pairing during DSB mediated 

homology search (Ishiguro and Watanabe 2016; Koubova et al. 2014). Thus, 

RAD21L might have a role in “proofreading” homologous recombination. 

However, non-homologous synapsis is a frequent phenotype associated with 

the depletion of other meiotic structural or recombination-related proteins. 

Nonetheless, independent from where synapsis occurs, upon synapsis 

HORMADs are removed form the chromosome axes in a TRIP13 dependent 

manner, and the proteins form the transverse filaments and central elements 

become evident (Wojtasz et al. 2009). 

DNA damage and homologous recombination   

 In mice, SPO11 generates about 200 to 300 DSBs per meiotic cell. 

Disregarding the afore mentioned accessory proteins and TOPOVIBL for 
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proper meiotic DSB formation, it is well established that SPO11 remains 

covalently bound to the broken DNA (Robert et al. 2016; Stanzione et al. 

2016). Each DNA break requires one heterotetramer that contains two 

SPO11-monomers, each monomer cleaving one DNA strand in a reaction that 

results in SPO11 covalently linked to the cleaved DNA strand. The two 

intermediates (SPO11 bound to the 5’ DNA on both sides of the break) are 

removed by the nucleolytic activity of the MRN complex (Garcia et al. 2011; 

Gray and Cohen 2016; Keeney 2008). The MRN complex consists of three 

proteins (MRE11, RAD50 and NBS1) and, in addition to its role in DNA 

damage response, it is also essential for the initial processing of DSBs. In 

meiosis, MRN introduces a single strand DNA (ssDNA) break at either sides of 

the SPO11-DNA intermediate (Gobbini et al. 2016) which are not only 

essential for removal of the SPO11-DNA intermediate but also for DNA-end-

resection. These nicks allow 5’ to 3’ exonuclease resection, which results in a 

3’ ssDNA tail initially coated with the replication protein A (RPA), thus forming 

the substrate for homologous recombination (HR). After being loaded the RPA 

nucleoprotein filament is gradually replaced by the recombinases RAD51 and 

DMC1 (the meiosis specific recombinase). Although to a lesser degree, RPA 

coated ssDNA is also substrate for other genome maintenance factors such as 

the ATR-interacting protein (ATRIP) that recruits the ATR kinase to processed 

DNA breaks (Duursma et al. 2013; Mermershtain and Glover 2013). The 

ssDNA coated with RAD51 and DMC1 forms a nucleoprotein filament capable 

of invading a double-stranded DNA (dsDNA) from an intact chromatid (with 
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predicted predilection for the homolog rather than the sister chromatid) 

(Subramanian et al. 2016). Strand invasion marks the search for a DNA 

template to be used in the repair process. 

 Once engaged with a homologous region, the DNA from the invading 

strand can be repaired, and will form either crossovers (CO) or non-crossover 

(NCO) products. The best-described NCO products originate from synthesis-

dependent strand annealing (SDSA), in which DNA polymerase extends the 

invading strand that is then displaced, and will re-anneal with the other arm of 

the DSB. For CO formation reciprocal exchange of chromatid and associated 

cohesins must occur between the homologs. The most prevalent mechanism 

to form COs requires, after the initial single strand invasion, a second-end 

capture of the other DSB arm (Gray and Cohen 2016). Needless to say that 

the template used by the invading strand is essential for proper CO formation 

between homologs. Furthermore, proper segregation of homologs at 

anaphase I depends on the formation of at least one CO event in each 

chromosome pair. 

DNA damage and repair template of choice 

 The mechanisms acting on DNA-repair template choice are not fully 

understood in mammals. There is evidence for a molecular mechanism that 

blocks the use of the sister chromatid as a repair template (Chapter 3 and 

Shin et al., 2013) as well as for a mechanism where the cell continuously 

produce DSBs on unsynapsed chromosome (Cloutier et al. 2015; Shin, 

McGuire, and Rajkovic 2013; Stanzione et al. 2016). These explanations are 
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not mutually exclusive and it is likely that both act in concert to assure that 

recombination occurs between homologs.  

 Recent findings support the hypothesis that mechanisms to control DSB 

load exist. For instance, the serine/threonine kinase ATM was implicated in 

SPO11 regulation. According to in vivo and in vitro studies ATM is recruited 

and activated by the MRN complex (Blackford and Jackson 2017; Gobbini et 

al. 2016). Besides phosphorylating the histone H2AX at serine 139 (γH2AX), 

ATM negatively regulates SPO11-DSB formation. In meiosis γH2AX is not 

solely a DSB marker but also a critical epigenetic sign for transcriptional 

silencing (see below). Therefore, whereas ATM prevents the creation of 

excessive levels of DSBs, HORMAD1 promotes DSBs formation on 

unsynapsed regions (Lam, Mohibullah, and Keeney 2017; Stanzione et al. 

2016). This regulation of DSB load may serve as a gauge of synapsis 

progression. However, it does not explain how synapsis between non-

homologous chromosomes is avoided.   

 One explanation for why synapsis preferentially occurs between 

homologous chromosomes is the existence of inter-axis bridges, formed prior 

to SC assembly (Kleckner 2006; Page and Hawley 2004; Wang et al. 2017; 

Zickler and Kleckner 2015). These interhomolog connections would be formed 

during late leptonema, when the invading RAD51/DMC1 nucleoprotein 

filament engages with a non-sister chromatid that is associated with axial 

element proteins. At this time the RAD21L cohesin mediates a wide-range 

chromosome “proofreading” to ensure that the invaded strand is indeed from 
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an allelic homologue (Agostinho et al. 2016; Ishiguro et al. 2014; Ishiguro and 

Watanabe 2016; Rong et al. 2016). This hypothesis unites the observations 

that RAD21L forms bridge like structure (~400 nm) between homologs at 

zygonema with the predilection for synapsis between “true” homologs 

(Ishiguro and Watanabe 2016; Rong et al. 2016). 

In summary, there is a fine coordination between DSBs formation, synapsis 

between homologs, and DSB repair (Kauppi et al. 2013; Keeney, Lange, and 

Mohibullah 2014), in order to assure that pairing and repairing is achieved by 

pachynema.  

 

3- Female meiosis  

 Meiosis in mammals is sexually dimorphic (Figure 1.2 A and B). 

Besides the differences in developmental timing of meiotic entry, number of 

gametes, and final number of viable cells resulting from each meiotic division, 

there is also difference in genomic content: males have different sex 

chromosomes (one X and one Y), while females have two X chromosomes. In 

normal male meiosis only a small region of the sex chromosomes (~700 kb) 

(Perry et al. 2001) will synapse, while most of the chromosomes remaining 

unsynapsed. 

 

Synapsis or silence 

 Since the heterologous regions of the sex chromosomes are never 

synapsed, HORMAD1/2 persist on the unsynapsed chromosomes axes. 
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However, DNA-damage markers such as RAD51, DMC1, and RPA disappear 

as prophase I progresses, being practically absent at late pachynema 

(Carofiglio et al. 2013; Moens et al. 2007). In addition to the proteins from the 

axial element, the heterologous sex chromatin has an extra layer of proteins 

from the DNA-damage response pathway. These markers are involved in the 

repression of transcription, which progressively spreads through the chromatin 

loops, forming a domain surrounding the sex chromosomes. The repression of 

transcription of sex chromosomes is essential for meiotic progression in 

males, and failure to silence “toxic” sex-genes results in spermatocyte demise 

(Wojtasz et al. 2012; Hélène Royo et al. 2010). The meiotic sex chromosome 

inactivation (MSCI) is mediated by γH2AX, and can be cytologically identified 

by its characteristic heterochromatic appearance. This domain is called the “X 

Y body” or “sex body” (Cloutier and Turner 2010; Turner 2015) and is a 

consequence of a more general phenomena termed meiotic silencing of 

unsynapsed chromosomes (MSUC) (Turner 2015).  

 Genetic analyses show that HORMAD2 is essential for meiotic 

silencing. Furthermore, Hormad2 deletion affects localization of ATR to 

unsynapsed axis (Kogo, Tsutsumi, Inagaki, et al. 2012; Wojtasz et al. 2012). 

There is convincing evidence that the phosphorylation and spreading of 

silencing factor γH2AX is dependent on ATR kinase and the γH2AX binding 

partner MDC1 (mediator of DNA damage checkpoint 1), respectively (Y. 

Ichijima et al. 2011; H. Royo et al. 2013). Therefore, there is a complex 

interdependency between these silencing factors, which produces massive 
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signal amplification through kinase activity and auto-phosphorylation events. 

Immunoprecipitation analyses suggest that the ATR kinase phosphorylates 

HORMAD2 at an SQ/TQ phosphorylation motif (Fukuda et al. 2012; H. Royo 

et al. 2013).  

 Oocytes are also able to form regions of transcriptional inactivation, 

which are often referred to as “pseudo-sex body” (Cloutier et al. 2016). The 

“pseudo-sex body” is a manifestation of meiotic silencing of unsynapsed 

chromosomes (MSUC) in oocytes, and is also characterized by accumulation 

of asynapsis-associated factors such as HORMAD1/2, BRCA1, ATR and 

γH2AX. In females MSUC can lead to cell death due to silencing of essential 

genes. However, MSUC is inefficient in cells with pervasive synapsis failure 

(more than 2-3 unsynapsed chromosomes) presumably due to limiting 

amounts of silencing factors such as BRCA1(Kouznetsova et al. 2009). Thus, 

MSUC response is limited, but has an important role in the elimination of 

karyotypically abnormal oocytes (either lacking or carrying an extra 

chromosome) (Cloutier et al. 2016). 

 

The silencing paradox 

 Whereas spermatocytes have expression of lethal genes if they fail to 

mount a silencing response, females have to silence all copies of an 

unsynapsed essential gene in order for oocytes to be eliminated. Presumably 

due to limiting factors, an oocyte with massive asynapsis may fail to silence 

every copy of an essential gene, thus remaining as a constituent of the oocyte 
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pool. The failure to mount an effective MSUC can explain the presence of 

oocytes in ovaries of mice with mutations that cause massive synapsis failure 

(such as Spo11-/- and Mei1-/-); each cell will have different silencing patterns 

that will not necessarily incorporate all copies of an essential gene. Thus, of 

the aforementioned mice, the observed small pool of oocytes present in the 

ovaries would represent the MSUC escapers. 

 Based on current knowledge, DSB formation is regulated by the 

presence of HORMAD1 on unsynapsed chromosomes, which works as a 

signal for SPO11-DSB formation (Stanzione et al. 2016). The observation that 

asynapsed chromosomes have DNA damage markers (e.g. RAD51, RPA, 

DMC1) only up to early pachynema suggests that DSBs are resolved by late 

pachynema, even at unsynapsed chromosomes. This argues against the 

existence of a block to use the sister chromatid as DNA repair template 

(BSCR). In this model asynapsis results in DSBs that will be resolved at late 

pachynema and meiocyte elimination occurs through HORMAD2 mediated 

MSUC of essential genes (Kogo, Tsutsumi, Inagaki, et al. 2012; Wojtasz et al. 

2012). Interestingly, the findings reported in Chapter 3 argue in favor of 

HORMAD2 mediating the BSCR. This paradox (discussed in Chapter 4) is 

likely due to failure of recent studies to account for the phosphorylation status 

of the proteins involved in the MSUC and DSB response.  

 For instance, one hypothesis that requires BSCR, constant formation of 

DSB on asynapsed chromosomes, and MSUC takes into the spatiotemporal 

phosphorylation events (see Chapter 4). In such model, the formation of DSB 
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starts a phosphorylation cascade that is not strong enough to trigger MSUC if 

the DSB is resolved. However, if the DSB is not resolved this phosphorylation 

cascade is amplified and starts MSUC. In asynapsed chromosomes, the 

failure to repair the DNA damage using the sister chromatid results in 

persistent DSBs that will either mount MSUC or continuously form new DSBs 

via HORMAD1 signaling to SPO11. The presence of feedback loops and 

signal amplification responses add an extra layer of complexity to both MSUC 

and DSB repair. Nevertheless, meiosis encompasses a fine tuned cascade of 

events, and may be equipped with multiple surveillance mechanisms to 

eliminate unfit cells, with post-translational modifications being one of them. 

 

4- Definition of checkpoint 

 Whereas leptotene meiocytes resist high levels of DSBs, they become 

highly sensitive to genetic insults after diplonema (see Chapter 2 and 3). 

Dictyate arrested oocytes promptly die in response to DNA damage but are 

refractory to synapsis and CO malformations, which is one of the reasons for 

aneuploidies being often traced back to the female gamete (Hassold and Hunt 

2001). In 2005, Di-Giacomo and colleagues proposed a two-branch 

surveillance mechanism for female meiosis (Di Giacomo et al. 2005). The 

model suggested that oocytes have one lax quality control mechanism to 

survey synapsis and a stringent one to survey DNA integrity. Together, the two 

branches constituted the pachytene checkpoint.  
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Historical overview 

 The concept of a checkpoint pathway was introduced by Hartwell to 

describe the existence of control mechanisms that assured the prerequisites 

necessary for proper progression of cellular division had been satisfied 

(Hartwell and Weinert 1989). He was the first to refer to an extrinsic 

mechanism that did not rely on substrate formation as a limiting factor for cell 

cycle progression. His definition implicated the existence of a quality control 

mechanism that actively monitors cell cycle events and provides feed-forward 

signals for cellular development and tissue homeostasis (Zhou and Elledge 

2000). The definition was not limited to DNA integrity, and considered all the 

prerequisites for a cell to be ready for division; for example, organelle load, 

DNA duplication and arrangement of the segregation machinery.  

 One possible interpretation of Hartwell’s concept is that a checkpoint 

consists of signaling mechanisms that creates dependency between otherwise 

metabolically independent processes (MacQueen and Hochwagen 2011; 

Subramanian and Hochwagen 2014). For example, DNA integrity is 

metabolically independent from chromosome segregation, however, the 

presence of a DNA-damage checkpoint creates dependency between them: 

DNA integrity must be achieved before segregation is initiated. Interestingly, 

Subramanian and Hochwagen added to this definition the idea that the 

checkpoint did not evolve to survey and respond to abnormal events. For 

Subramanian and Hochwagen, DNA damage is an inherent part of the cell 

cycle, therefore is not an abnormal event per se. In contrast, other authors 
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interpret checkpoint to be a pathway that detects errors and therefore is non-

essential if the cell remains free of errors (Elledge 1996; Rieder 2011). By this 

definition, elimination of checkpoint components would not be detrimental 

unless the cell is stressed or under abnormal circumstances. Consequently, it 

can be challenging to determine if an element or pathway that participates in 

multiple interacting signaling networks also acts as a checkpoint of something 

(Khodjakov and Rieder 2009; Rieder 2011). 

 

Prophase I checkpoint 

 There are mainly three hypothesized checkpoints that survey meiocytes 

quality during female prophase I:  

1- DNA damage – Failure to repair meiotic DSBs triggers oocyte death 

starting at diplonema. In female mice CHK2 is the checkpoint kinase 

responsible for DNA-damage dependent oocyte elimination regardless 

of animal age (Appendix I). This protein is constitutively expressed but 

its activation depends on the presence of damaged DNA.  

2- Asynapsis - Failure to synapse has been correlated with oocyte 

elimination, but there is little evidence to support the existence of a 

surveillance mechanism. Nevertheless, HORMAD1 and HORMAD2 are 

good candidates for such a checkpoint. HORMAD1 is essential for DSB 

formation and synapsis thus is indispensable for meiotic progression. In 

contrast HORMAD2, which if deleted does not obstruct synapsis but 

abrogates death in synapsis-deficient oocytes, may be deemed as non-
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essential and is a strong candidate to serve as a synapsis checkpoint 

factor. Regardless, both are alluded to as a checkpoint protein. The 

presence of a true synapsis checkpoint is a polemic topic (see Chapter 

4 for a more detailed discussion). The finding that oocytes carrying 

accessory chromosomes (hemizygous chromosomes carrying only non-

essential genes, for example carrying a single copy of the human 

chromosome 21) reach metaphase (Cloutier et al. 2015) suggests that 

synapsis is not under surveillance. 

3- Silencing – The presence of unsynapsed chromosomes results in 

meiotic silencing. In cells competent for making and repairing meiotic 

DSBs, MSUC seems to protect extranumerary accessory chromosomes 

from accumulating DNA breaks at late pachynema. MSUC requires the 

DSB-response machinery, and there are ongoing debates about if 

DSBs are required to trigger it. γH2AX and its binding partner MDC1 

are the hallmarks of meiotic silencing and are known DNA damage 

markers, yet oocyte death due to MSUC has been linked to failed 

transcription of germ cell expressed essential genes rather than to the 

DNA damage checkpoint activation. Silencing of genes can trigger cell 

demise through a plethora of molecular mechanisms, and should not 

correlate to only one stage of cell division, however, Cloutier and 

colleagues report loss of cells only at the pachytene/diplotene transition 

(Cloutier et al. 2016, 2015). There are different opinions regarding 

MSUC status as a checkpoint, but lack of a defined pathway and 
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requirement of DSB-response proteins are contentious elements of 

silencing as a checkpoint. 

Regardless of terminology, when something goes awry with the cells, these 

signaling pathways are activated. These pathways have evolved the molecular 

mechanisms necessary for fixing or eliminating the naturally occurring unfit 

meiocytes. Through the use of genetic and biochemical tools, these pathways 

can be tested under extreme conditions to allow for better understanding of 

these biological processes which may generate translational tools besides 

basic scientific knowledge. 

 

 5- Research focus and goals of this dissertation 

 My research goal was to identify the surveillance mechanisms that 

respond to DNA damage in oocytes. I wanted to understand why oocytes are 

sensitive to genotoxic agents after birth, but refractory to massive amounts of 

DSB during female embryonic development (when hundreds of meiotic DSBs 

are generated). In order to achieve my goal, I used in vitro and in vivo 

approaches that shed light on our understanding of the quality control 

mechanisms functioning during oogenesis.  

 

Preventing oocyte death  

Deletion of Chk2 effectively impairs the activation of the tumor 

suppressor proteins TAp63 and p53, which are responsible for oocyte death 

(Appendix I). The ability to preserve fertility in Chk2-/- animals submitted to 
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ionizing radiation (IR) implied that oocytes are able to repair damaged DNA if 

the checkpoint is de-activated. I tested this hypothesis by transiently inhibiting 

CHK2 in ovaries submitted to IR. The results presented in Chapter 2 indicate 

that oocytes are able to repair damaged DNA if the checkpoint response is 

delayed by a few days. The results not only support that oocytes are able to 

repair damaged DNA but also that CHK2 is a potential target to preserve 

fertility in premature ovarian failure paradigms.  

 

Genetically dissecting the checkpoint 

While studying the DNA-damage checkpoint we found evidence that 

suggested CHK2 also had a role in the presumed synapsis checkpoint. In 

order to explain the unexpected finding that CHK2 depletion improved Spo11-/- 

oocyte survival, I performed a thorough genetic analysis of compound mutant 

mice for meiotic and “checkpoint” related genes. Lack of CHK2 does not affect 

pseudo-sex body formation (no interfere with MSUC response) in synaptic 

mutants and CHK2 does not interfere with HORMADs dynamics. Radiation 

experiments and quantification of non-meiotic DSBs, show that Spo11-/- 

meiocytes have lower DSB repair rates. The presence of HORMADs on the 

axis of both Spo11-/- synaptic mutant, and on the axes of synapsis proficient, 

DSB-repair deficient, Trip13Gt/Gt oocytes, led me to hypothesize that 

HORMADs were blocking DNA repair. The results supporting the BSCR are 

presented in Chapter 3 and further discussion of how these results fit with the 

current understanding of MSUC are in Chapter 4.  
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Research in teaching 

 With the goal of improving learning and teaching experiences, I 

performed a research project as a graduate research and teaching fellow 

(GRTF). The project consisted of evaluating a technology supported 

interactive response system during the laboratory section of Cornell’s upper-

level histology course. The results suggested that both teachers and students 

had positive experiences using the technology for providing feedback and 

assessing learning outcomes. This was a small study not designed to detect 

quantitative improvements in learning outcome, however the results suggest 

that such a tool had qualitative benefits. The published manuscript was 

incorporated into my dissertation as Appendix II.  
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CHAPTER 2 

 

PHARMACOLOGICAL INHIBITION OF THE DNA DAMAGE CHECKPOINT 

PREVENTS RADIATION-INDUCES OOCYTE DEATH  

 

* This chapter is a reprint with minor reformatting of the manuscript: Vera D. 

Rinaldi, Kristin Hsieh, Robert Munroe, Ewelina M. Bolcun-Filas and John C. 

Schimenti. “Pharmacological Inhibition of the DNA Damage Checkpoint 

Prevents Radiation-Induced Oocyte Death”.GENETICS 

DOI:10.1534/genetics.117.203455 
 

1- Abstract 

 Ovarian function is directly correlated with survival of the primordial 

follicle reserve. Women diagnosed with cancer have a primary imperative of 

treating the cancer, but since the resting oocytes are hypersensitive to the 

DNA-damaging modalities of certain chemo- and radiotherapeutic regimens, 

such patients face the collateral outcome of premature loss of fertility and 

ovarian endocrine function. Current options for fertility preservation primarily 

include collection and cryopreservation of oocytes or in vitro fertilized oocytes, 

but this necessitates a delay in cancer treatment and additional assisted 

reproductive technology (ART) procedures.  Here, we evaluated the potential 

of pharmacological preservation of ovarian function by inhibiting a key element 

of the oocyte DNA damage checkpoint response, checkpoint kinase 2 (CHK2; 

CHEK2). Whereas non-lethal doses of ionizing radiation (IR) eradicate 
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immature oocytes in wild type mice, irradiated Chk2-/- mice retain their oocytes 

and thus, fertility. Using an ovarian culture system, we show that transient 

administration of the CHK2 inhibitor 2-(4-(4-Chlorophenoxy)phenyl)-1H-

benzimidazole-5-carboxamide-hydrate ("CHK2iII") blocked activation of the 

CHK2 targets TRP53 and TRP63 in response to sterilizing doses of IR, and 

preserved oocyte viability. After transfer into sterilized host females, these 

ovaries proved functional and readily yielded normal offspring. These results 

provide experimental evidence that chemical inhibition of CHK2 is a potentially 

effective treatment for preserving fertility and ovarian endocrine function of 

women exposed to DNA-damaging cancer therapies such as IR.  

 

2- Introduction 

 It is of paramount importance that organisms minimize the transmission 

of deleterious mutations to their offspring. Accordingly, sensitive mechanisms 

have evolved to eliminate germ cells that have sustained certain threshold 

amounts of DNA damage (Heyer et al. 2000; Suh et al. 2006; Bolcun-Filas et 

al. 2014; Pacheco et al. 2015). Under normal circumstances, this is desirable. 

However, because women are born with a finite number of oocytes, 

environmental factors that cause DNA damage to oocytes can result in 

primary ovarian insufficiency (POI), sterility, and ovarian failure. This is a 

crucial issue for cancer patients undergoing certain types of chemotherapy or 

radiation therapy (Woodruff 2007). For example, POI occurs in nearly 40% of 

all female breast cancer survivors (Oktay et al. 2006). The resulting premature 
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ovarian failure has major impact in a women’s life, both physiologically and 

emotionally. As the life expectancy of cancer survivors increases, so does the 

need to address the adverse outcomes to fertility. Therefore, the ability to 

inhibit oocyte death and preserve fertility, in both pre-pubertal cancer patients 

and premenopausal women, would have a major impact on survivors’ lives.  

 At present, cancer patients have few options regarding fertility 

preservation (“oncofertility”) before treatment, and most involve invasive 

surgical procedures such as extraction of oocytes or ovarian tissue for 

cryopreservation, or IVF followed by embryo cryopreservation (Redig et al. 

2011; Salama and Mallmann 2015; Kim et al. 2016). Not only are these 

invasive, but also they necessitate a delay in cancer treatment. An alternative 

is to co-administer drugs that protect oocytes from chemotherapy at the time 

of treatment. Based upon the knowledge that activation of the “TA” isoform of 

the DNA damage checkpoint gene Trp63 (TP63 in humans, also known as 

p63; the TA isoform of the protein will be referred to as TAp63) occurs via 

phosphorylation, the use of kinase inhibitors was suggested as a means to 

prevent radiation-induced oocyte loss in mice (Suh et al. 2006). It was 

reported (Gonfloni et al. 2009), but later challenged (Kerr et al. 2012) and 

counter-argued (Maiani et al. 2012), that the tyrosine kinase inhibitor imatinib 

(Gleevec) is effective in protecting oocytes. Even if imatinib proves to have 

such activity, it is a relatively promiscuous kinase inhibitor that blocks, among 

other targets, the receptor tyrosine kinase KIT that functions in germline stem 

cells (Lee and Wang 2009). 
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 We previously reported that mouse CHK2 is a key component of the 

meiotic DNA damage checkpoint, and that deletion of Chk2 prevented 

irradiation-induced killing of postnatal oocytes (Bolcun-Filas et al. 2014). We 

also showed that the CHK2 kinase phosphorylates both p53 (formally TRP53; 

TP53 in humans) and TAp63 in oocytes to activate these proteins (and 

stabilize p53). Therefore, the deletion of Chk2 effectively impairs the activation 

of these two downstream effectors, which are both needed to trigger efficient 

oocyte elimination (Bolcun-Filas et al. 2014). More importantly, damaged 

oocytes that survived in the absence of CHK2 produced healthy pups 

suggesting that the inflicted DNA damage was repaired (Bolcun-Filas et al. 

2014). The resistance of Chk2-/- oocytes to otherwise lethal levels of ionizing 

radiation (IR) prompted us to explore whether chemical inhibition of CHK2 

would be effective at preventing radiation-induced oocyte death, and thus 

constitute a potential option for preserving ovarian function in women 

undergoing cancer therapy.  Here we show that transient chemical inhibition of 

CHK2 suppresses follicle loss and allows for the production of healthy 

offspring.  

 

3- Results and Discussion 

 Irradiation of ovaries induces CHK2-dependent phosphorylation of 

TAp63 in oocytes, and this phosphorylation is essential for triggering their 

death (Suh et al. 2006; Bolcun-Filas et al. 2014). CHK2 is a key component of 

the DNA damage response pathway that responds primarily to DNA double 
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strand breaks (DSBs), lying downstream of the apical kinase ATM (ataxia 

telangiectasia mutated). Members of the ATM>CHK2>p53/p63 pathway have 

been implicated as potential anti-cancer drug targets sensitizing cancer cells 

to genotoxic therapies, and chemical inhibitors have been developed against 

CHK2 (Garrett and Collins 2011), which, when deleted in mice, causes only 

minor phenotypic consequences (Takai et al. 2002).  We therefore tested 

whether a well-characterized and highly specific (Arienti et al. 2005; Garrett 

and Collins 2011) CHK2 inhibitor 2-(4-(4-Chlorophenoxy)phenyl)-1H-

benzimidazole-5-carboxamide-hydrate (designated “Chk2 inhibitor II” by the 

manufacturer, referred to hereafter as “CHK2iII”) could mimic the oocyte-

protective effect of genetic Chk2 deletion, and if it could do so in a non-toxic 

manner.  

 We employed an organ culture paradigm to control concentrations, 

penetration and timing of drug delivery to the ovary. Using dose ranges based 

upon published data (Arienti et al. 2005) and the manufacturer’s 

recommendations, we first tested the ability of CHK2iII to block 

phosphorylation of TAp63 in irradiated ovaries, and to block the stabilization of 

p53, which is normally rapidly degraded in cells unless stabilized by DNA-

damage-induced phosphorylation by proteins including uding CHK2 (Chehab 

et al. 2000; Hirao et al. 2000). We used ovaries from 5 days postpartum (dpp) 

females to ensure that oocytes were in the dictyate arrest stage of meiosis, 

residing within primordial follicles. Explanted ovaries were cultured for two 

hours in the presence of 0, 10 or 20µM CHK2iII, then subjected (or not) to 3 
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Gy of IR, a level that not only kills oocytes, but also causes extensive p53 

stabilization and TAp63 phosphorylation (Suh et al. 2006; Bolcun-Filas et al. 

2014). Ovaries were harvested three hours later for protein extraction and 

western blot analysis. In non-irradiated ovaries, TAp63 remained 

unphosphorylated and p53 was undetectable (Fig. 2.1). Irradiation in the 

absence of inhibitor led to robust p53 stabilization, and all TAp63 was shifted 

to a higher mobility, which is known to be due to phosphorylation (Suh et al. 

2006; Livera et al. 2008). Addition of 10µM and 20µM CHK2iII led to partial 

and complete inhibition of TAp63 phosphorylation, respectively, and also 

progressively decreased p53 levels (Fig. 2.1). This confirms that CHK2iII 

treatment rapidly acts to prevent activation of two pro-apoptotic factors in the 

ovary. 
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Figure 2.1) Inhibition of radiation-induced phosphorylation of p53 and TAp63 

by CHK2iII. Western blot analysis of protein extracted from five dpp ovaries. 

Ovaries were incubated with the indicated concentrations of CHK2 inhibitor II 

(see Methods), and exposed or not to 3 Gy of γ-radiation. The immunoblot 

membrane was cut into two parts - one containing proteins >60 kDa, and the 

other <60kDa – and probed with anti-p63 and anti-p53, respectively. The >60 

kDa portion was stripped and re-probed for the germ cell marker MVH. 

Arrowheads indicated the expected molecular weight of the phosphorylated 

form of TAp63 (upper), and non-phosphorylated TAp63 (lower).  
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Figure 2.2) Concentration-dependent protection of irradiated oocytes by 

CHK2iII. (a) Schematic of CHK2iII treatment regimen, beginning with placing 

explanted 5 dpp ovaries into culture.  Blue droplets denote times at which 

fresh media containing CHK2iII was added/replaced.  Red outlined droplets 

indicate changes with drug-free media. (b) Maximum intensity projections of 

immunostained ovary whole ovaries. For 3D visualization, see Supplementary 

movies M1, M2 and M3). The ovaries were cultured according to the timeline 

in “a” in the presence of the indicated concentrations of CHK2iII. DMSO 

corresponds to diluent control. MVH is a cytoplasmic germ cell protein, and 

p63 labels oocyte nuclei. Note that growing follicles (oocytes with larger MVH-

stained cytoplasm) are relatively refractory to IR. (c) Quantification of follicles. 

Data points represent total follicle counts derived from one ovary. Horizontal 

hashes represent mean and standard deviation. Colors correspond to the 

different concentrations of inhibitors. Asterisks indicate p-value ≤ 0.0001 

(Tukey HSD).  
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Next, we tested whether CHK2iII could permanently protect oocytes from a 

lower dose of radiation (0.4 Gy) that normally kills all oocytes within 2 days 

(Bolcun-Filas et al. 2014) but is far below levels (>5 Gy) lethal to whole 

animals. Ovaries were cultured in media supplemented with 0, 5, 10, or 20 µM 

of inhibitor for 2 hours before irradiation. Following IR exposure, ovaries were 

cultured 2 more days with media changes as delineated in Fig. 2.2a, after 

which the drug was removed from the medium. This protocol of media 

changes with drug replenishment was optimized for oocyte survival. Seven 

days after irradiation (and 5 days after removal of CHK2iII), oocyte survival 

was assessed by co-immunolabeling of histological sections (Fig. 2.3) and of 

whole mounts, with the cytoplasmic germ cell marker MVH and oocyte nuclear 

marker p63 (Figs. 2.2b, and Fig. 2.4). Under these conditions the inhibitor was 

well tolerated, and oocyte survival in unirradiated ovaries was not 

compromised (Fig. 2.4b). 

 Remarkably, though 10µM CHK2iII only partially inhibited TAp63 

phosphorylation induced by 3Gy of IR (Fig. 2.1), it dramatically improved 

oocyte survival in ovaries exposed to 0.4Gy of IR, a level sufficient to trigger 

TAp63 phosphorylation and eliminate nearly all primordial follicles in ovaries 

(Fig 2.2b,c; Fig 2.5) (Bolcun-Filas et al. 2014). A small but significant 

protective effect was also observed with 5µM CHK2iII (p=.004, Fig. 2.2b,c). 
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Figure 2.3) Representative immunofluorescence images of ovaries cultured 

according to the timeline in the presence of the indicated concentrations of 

CHK2iII. MVHis a cytoplasmic germ cell marker MVH, and p63 is a nuclear 

oocyte marker. Sections were counterstained with the chromatin-binding dye 

Hoechst. Asterisks indicate primordial follicles, and arrows growing follicles.  

The latter are generally refractory to IR. The treatment followed the same 

regimen as Fig 2.2a. 
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Supplemental figure 1.  Representative immunofluorescence images of ovaries 
cultured according to the timeline in the presence of the indicated concentrations 
of CHK2iII. MVHis a cytoplasmic germ cell marker MVH, and p63 is a nuclear 
oocyte marker. Sections were counterstained with the chromatin-binding dye 
Hoechst. Asterisks indicate primordial follicles, and arrows growing follicles.  The 
latter are generally refractory to IR. The treatment followed the same regimen as 
Fig 2a.
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Figure 2.4) The inhibitor CHK2iII does not compromise follicle survival in non-

irradiated control. (a) Whole mount maximum intensity projection of an ovary 

stained with MVH and p63. (b) Follicle counts of CHK2iII treated ovaries. 

There are no statistically significant differences between the inhibitor 

concentrations tested. 
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Supplemental figure 1: The inhibitor CHK2iII does not 
compromise follicle survival in non-irradiated control. 
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 To assess if oocytes protected by CHK2iII from otherwise lethal levels of 

irradiation were capable of ovulation, fertilization, and subsequent embryonic 

development, we performed intrabursal transfers of irradiated ovaries (0.4 Gy) 

into histocompatible (strain C3H) agouti females. These recipient females 

were first sterilized at 7 dpp by exposure to 0.5Gy of IR. Once females were 

eight weeks old, sterility was verified by housing them with fertile males for at 

least eight weeks. The IR-induced oocyte death led to premature ovarian 

failure, yielding sufficient intrabursal space without the need to physically 

remove the vestigial ovaries before ovary transfer. These recipients were 16 

weeks of age at the time of surgery. Three cultured ovaries, derived from black 

female animals also of strain C3H (see Methods for additional information), 

were placed into each bursa (total 6 ovaries per animal).  Fig. 2.6a 

summarizes the experimental timeline. A total of 8 successful embryo transfer 

surgeries were completed. Three females received mock-treated (cultured in 

media containing 1% DMSO alone), irradiated ovaries (0.4 Gy), and five 

females received irradiated ovaries (also 0.4 Gy) treated with 10µM CHK2iII in 

media containing 1% DMSO.  
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Figure 2.5) Western blot analysis of ovaries showing that 0.4Gys activates the 

DNA damage checkpoint. 

  Once the transferred donor ovary reached 8 weeks of age (with respect 

to the time at which it was explanted), the recipient females were mated to 

proven fertile C3H black (a/a) males for three months, and monitored for litters 

and the coat colors of offspring.  Only females that received CHK2iII-treated 

ovaries delivered progeny, all of which were black, confirming that they were 

produced from fertilization of oocytes ovulated from donor ovaries (Fig. 2.6b 

and c). All offspring had no visible abnormalities that would suggest 

inheritance of gross chromosomal abnormalities (Bolcun-Filas et al. 2014). 

The viability of these animals indicated that even though oocytes have 

sensitive checkpoint mechanisms rendering them vulnerable to low levels of 

DNA damage, they are capable of repairing damaged DNA in a manner 

compatible with normal embryogenesis. Consistent with the IR-induced oocyte 

death in ovaries not treated with CHK2iII, and also the absence of progeny 

from females receiving such ovaries, postmortem inspection revealed only 

residual ovaries in these recipients compared to those mice that received the 

CHK2iII-treated ovaries (Fig. 2.7).  

NoIR0.4Gys3Gys

TAp63

MVH

Supplemental figure 3: Western blot analysis 

of ovaries showing that 0.4Gys activates the 

DNA damage checkpoint.
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Figure 2.7) CHK2iII-rescued ovaries are fertile. (a) Experimental timeline. 

Agouti females (A/A) were sterilized with 0.5Gy of IR at one week of age. The 

transplanted ovaries were from black donor females (a/a) treated as outlined 

in Fig.2. 2a. (b) Agouti host females gave birth to black offspring (a/a) 

exclusively; thus, the ovulated eggs produced were from the donor ovaries. (c) 

Litter sizes of mock-treated and treated ovaries. Each circle represents a litter 

and the circle’s color represents the female that generated that litter. The 

combined average litter size produced by all host females was 3.  
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Our results provide proof-in-principle for the strategy of targeting the CHK2-

dependent DNA damage checkpoint pathway for preventing loss of the 

ovarian reserve - and thus ovarian failure - in cancer patients undergoing 

therapies that are toxic to oocytes. Importantly, checkpoint inhibitors have 

already been explored as potential anticancer therapies, thus substantial 

information is already available on members of this drug class (Antoni et al. 

2007; Garrett and Collins 2011). Nevertheless, it remains to be seen whether 

systemic administration of CHK2iII or other CHK2 inhibitors can achieve 

similar oocyte-protective efficacy against IR- or drug-induced DSBs in vivo, 

and whether they will be effective for both pre-pubertal and adult females. 

Additionally, it will be important to conduct more thorough studies of potential 

genetic risks associated oocytes rescued from DNA damage-induced death by 

checkpoint inhibition.  
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Figure 2.8) Representative images of ovaries from females that underwent 

ovary transfer surgery. Blue arrow points to the ovaries deemed as coming 

from the donor mice. Color circles correspond to females represented on 

figure 2.7c. 

1mm

1mm

1mm

1mm

1mm

Supplemental figure 4.  Representative images of ovaries from females that 
underwent ovary transfer surgery. Blue arrow points to the ovaries deemed as 
coming from the donor mice. Color circles corresponds to females represented on 
figure 3C.

DMSO CHK2iII [10μM] 

1mm



 

 66 

 

4- Material and Methods 

Mice 

 Mice were obtained from The Jackson Laboratory, strains C3HeB/FeJ, 

stock # 000658 (agouti mice, homozygous dominant for coat color (A/A)) and 

C3FeLe.B6-a/J, stock # 000198 (black mice, recessive for coat color, (a/a)). 

Cornell’s Animal Care and Use Committee approved all animal usage, under 

protocol 2004-0038 to JCS.  

 

Organ Culture 

 Ovaries were cultured using an adaptation of a published method 

(Livera et al. 2008). Briefly, ovaries were collected from five day postpartum 

(dpp) C3FeLe.B6-a/J mice, and, following removal from the bursa, placed into 

cell culture inserts (Millicell; pore size: 8µm; diameter: 12mm) pre-soaked in 

ovary culture media: MEM supplemented with 10% FBS, 25mM HEPES 

pH=7.0, 100 units/ml penicillin, 100 µg/ml streptomycin, 0.25 µg/ml Fungizone, 

1% DMSO, and CHK2 inhibitor. The inserts were placed into 24 well plates 

(Model MD24 ThermoFisher) with carriers for the inserts. Sufficient media was 

added to keep organs moist, but not completely submerged. Organs were 

incubated at 37°C, 5% CO2 and atmospheric O2.  

 

Drug Treatment 
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 CHK2iII (CalBiochem 220486) was prepared as 1mM and 2mM stock 

solutions in DMSO and kept frozen at -20°C. Media containing the desired 

concentration of inhibitor was prepared shortly before use, assuring that the 

DMSO concentration was constant (1% DMSO) throughout the different 

conditions. Explanted ovaries were pre-incubated for 2 hours in warm (37°C) 

media containing the desired concentration of inhibitor or 1% DMSO alone 

before being subjected to ionizing radiation in a 137cesium irradiator with a 

rotating turntable. Figure 2.2a presents the media change regimen, with the 

first replacement being immediately after irradiation. The ovaries were cultured 

for either 3 hours before being processed for western blot analysis (to detect 

DNA damage responses), or 7 days followed by either fixation and 

immunostaining (to quantify oocyte survival), or ovary transplant surgery into 

sterile agouti females. 

 

Western Blot Analyses and Antibodies 

 Ovary protein lysates, immunoblotting, probing and detection were 

conducted as described (Bolcun-Filas et al. 2014). Primary antibodies and 

dilutions used were: mouse anti-p63 (1:500, 4A4, Novus Biologicals); rabbit 

anti-p53 (1:300, Cell Signaling #9282); mouse anti-β-actin (1:5000, Sigma) 

and rabbit anti-MVH (1:1000, Abcam).  Secondary antibodies used were: 

Immuno Pure goat anti-mouse IgG(H+L) peroxidase conjugate (1:5000, 

ThermoFisher) and goat anti-rabbit IgG HRP-linked antibody (1:5000, Cell 

Signaling). 
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Immunofluorescence 

 Cultured ovaries were fixed in 4% paraformaldehyde/PBS at 4°C 

overnight, and then washed and stored in 70% ethanol. Ovaries were either 

embedded in paraffin and sectioned at 5µm for immunostaining or subjected 

to whole mount immunostaining and clearing. For the standard 

immunofluorescence, slides were deparaffinized and re-hydrated prior to 

antigen retrieval using sodium citrate buffer. Slides were blocked with 5% goat 

serum (PBS/Tween 20), incubated at 4°C overnight with aforementioned 

primary antibodies (anti-p63 @ 1:500; anti-MVH @ 1:1000), and subsequently 

incubated with Alexa Fluor® secondary antibodies for one hour and Hoechst 

dye for 5 minutes. Slides were mounted with ProLong Anti-fade (Thermo-

Fisher) and imaged.  

 

Ovary transfer surgery and postmortems 

Agouti females were sterilized with 0.5Gy of IR at 1 week of age. At 8 

weeks of age, females were housed with males known to be fertile. Eight 

weeks later, and 2 days prior to ovary transfer surgery, the males were 

removed. Three ovaries, either treated or not with CHK2iII, were placed in the 

intrabursal space of each ovary (total of 6 ovaries per recipient female). The 

females were allowed a recovery period of 6 weeks, then housed with males. 

Three to four months later, upon euthanasia, dissection was performed for 

visual inspection of the transplantation sites. 
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Whole organ immunofluorescence  

 Ovaries cultured for seven days were fixed in freshly prepared 

4%paraformaldehyde (PFA) /PBS at 4°C overnight (ON). Afterwards, tissues 

were washed and stored in 70% ethanol at 4°C until further processing.  

 Fixed ovaries were washed and left to equilibrate for a minimum of four 

hours in PBS before initializing whole-mount immunostaining protocol. In order 

to facilitate handling and tissue integrity, ovaries were kept in the culture insert 

throughout all the procedure. The ovaries were treated for four hours in 

permeabilization solution (PBS, 0.2% Polyvynal alcohol (PVA), 0.1% NaBH4-

solution (Sigma) and 1.5% Triton X-100), than incubated for 24 hours in 

blocking solution (PBS, 0.1% Triton X-100, 0.15% Glycine pH7.4, 10% normal 

goat serum, 3% BSA, 0.2% sodium azide and 100 units/ml penicillin, 100 

µg/ml streptomycin, and 0.25 µg/ml Fungizone). All the immunostaining and 

clearing was performed at room temperature (RT) with gentle rocking. 

Antibodies were diluted to appropriate concentration in the blocking solution. 

Primary antibodies (mouse anti-p63 (1:500, 4A4, Novus Biologicals); and 

rabbit anti-MVH (1:600, Abcam)) were incubated for four days. Afterwards, 

ovaries were washes with washing solution (PBS, 0.2% PVA and 0.15% triton 

X-100) for 10 hours than two times of two hours. Secondary antibodies 

(1:1000 Alexa Fluor® secondary antibodies) were incubated for three days in 

a vial protected from light. Ovaries were washes with washing solution for 

three times of 12 hours (if needed DAPI 50ng/ml was added to the first wash).  
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Clearing, imaging, and oocyte quantification 

 Immunostained ovaries were cleared with modified, freshly-prepared 

ScaleS4(0) reagent (40% D-(-)-sorbitol (w/v), 10% glycerol, 4M urea, 20% 

dimethylsufoxide, pH8.1 (Hama et al. 2015), gently mixed by inversion at 50°C 

for 30min and degassed prior to use). Solution was refreshed twice daily until 

tissue became transparent (usually two days). The insert was placed on top of 

a glass slide, and the membrane containing the cultured ovaries was carefully 

removed with a fine tip scalpel and placed on the slide. Slides were imaged on 

an upright laser scanning Zeiss LSM880 confocal/multiphoton microscope, 

using a 10X NA 0.45 water immersion objective. For proper image stitching 

the adjacent images (tiles) were overlapped by 20%. The z-steps were set for 

5µm between optical sections. Images were reconstructed, visualized and 

analyzed using Fiji-ImageJ (Schindelin et al. 2012). 

 Movies were made using the 3D project feature of Fiji-ImageJ 

(Schindelin et al. 2012). Oocyte quantification was performed in flattened 

maximum intensity projections of the Z-stacks image-series, using the 

“analyze particle” feature of Fiji-ImageJ.   

 

Statistical analysis 

 Statistical analyses were done using JMP Pro12 software (SAS Inc., 

Cary, NC-USA, version 12.0.1). Fertility was analyzed using a mixed model 

with mother as random effect and ovary treatment as fixed effect. Least 
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square (LS) means difference between litter sizes derived from treated vs non-

treated ovaries was performed using the Student’s t test. LS mean differences 

between follicle counts from the different treatment groups were tested using 

Tukey honest significance different (HSD).  
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CHAPTER 3 

 

THE DNA DAMAGE CHECKPOINT ELIMINATES MOUSE OOCYTES WITH 

CHROMOSOME SYNAPSIS FAILURE  

 

* This chapter is a reprint with minor reformatting of the manuscript accepted 

at Mol. Cel.: Vera D. Rinaldi , Ewelina Bolcun-Filas, Hiroshi Kogo, Hiroki 

Kurahashi, and John C. Schimenti. “The DNA damage checkpoint eliminates 

mouse oocytes with chromosome synapsis failure”. 
	
  
At the time of approval of this dissertation the DOI for this manuscript was not 

available. However, a previous version of the manuscript can be found at 

BioRXiv under the title “A Single Checkpoint Pathway Eliminates Mouse 

Oocytes With DNA Damage Or Chromosome Synapsis Failure”. 

doi: https://doi.org/10.1101/137075 

 

1- Abstract 

 Pairing and synapsis of homologous chromosomes during meiosis is 

crucial for producing genetically normal gametes, and is dependent upon 

repair of SPO11-induced double strand breaks (DSBs) by homologous 

recombination. To prevent transmission of genetic defects, diverse organisms 

have evolved mechanisms to eliminate meiocytes containing unrepaired DSBs 

or unsynapsed chromosomes. Here, we show that the CHK2 (CHEK2)-

dependent DNA damage checkpoint culls not only recombination-defective 
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mouse oocytes, but also SPO11-deficient oocytes that are severely defective 

in homolog synapsis. The checkpoint is triggered in those oocytes that 

accumulate a threshold level of spontaneous DSBs (~10) in late Prophase I, 

the repair of which is inhibited by presence of HORMAD1/2 on unsynapsed 

chromosome axes. Furthermore, Hormad2 deletion rescued fertility of oocytes 

containing a synapsis-proficient, DSB repair-defective mutation in a gene 

(Trip13) required for removal of HORMADs from synapsed chromosomes, 

suggesting that many meiotic DSBs are normally repaired by intersister 

recombination in mice. 

 

2- Introduction 

 Genome maintenance in germ cells is critical for fertility, prevention of 

birth defects, and the genetic stability of species. Throughout mammalian 

germ lineage development, from primordial germ cells (PGCs) through 

completion of meiosis, there are mechanisms that prevent transmission of 

gametes with genetic defects. Indeed, mutation rates in germ cells are far 

lower than in somatic cells (Murphey et al. 2013, Conrad et al. 2011, 

Stambrook and Tichy 2010). This is reflected by the exquisite sensitivity of 

PGCs to mutations in certain DNA repair genes (Agoulnik et al. 2002, Luo et 

al. 2014, Nadler and Braun 2000) (Watanabe et al. 2013), resting oocytes to 

clastogens such as radiation and chemotherapeutics (Perez et al. 1997, 
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Maltaris et al. 2007, Suh et al. 2006), and developing prophase I meiocytes to 

genetic anomalies including a modicum of DNA damage (Meirow and Nugent 

2001, Suh et al. 2006) or the presence of a single asynapsed chromosome or 

even a chromosomal subregion (Burgoyne and Baker 1985, Homolka, Jansa, 

and Forejt 2012).  

 Genetic and developmental analyses of mouse mutants have 

suggested there are at least two distinct checkpoints during meiotic prophase I 

in oocytes, one that monitors DSB repair, and another that monitors synapsis. 

Oocytes defective for either synapsis or DSB repair are eliminated with 

different dynamics and severity. Females with mutations causing pervasive 

asynapsis alone (e.g. Spo11-/-) are born with a grossly reduced oocyte pool. 

The surviving oocytes undergo folliculogenesis but are reproductively inviable, 

becoming exhausted within a few weeks by atresia and ovulation (Di Giacomo 

et al. 2005). Oocytes defective in DSB repair alone (Trip13Gt/Gt), or defective in 

both synapsis and meiotic DSB repair (e.g. Dmc1-/-; Msh5-/-), are virtually 

completely eliminated between late gestation and weaning age by the action 

of a DNA damage checkpoint (Li and Schimenti 2007, Di Giacomo et al. 

2005).  Furthermore, genetic ablation of meiotic DSB formation confers a 

Spo11-/- -like phenotype to such DSB repair mutants, consistent with the 

existence of separate DNA damage and synapsis checkpoints (Li and 

Schimenti 2007, Di Giacomo et al. 2005, Finsterbusch et al. 2016, Reinholdt 
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and Schimenti 2005). For DSB repair, CHK2 (checkpoint kinase 2) signaling to 

TRP53/TAp63 is crucial for eliminating Trip13Gt/Gt mutant oocytes that exhibit 

full chromosome synapsis but have unrepaired SPO11-induced DSBs 

(Bolcun-Filas et al. 2014). Interestingly, Chk2 deficiency imparted a Spo11 

null-like phenotype upon Dmc1-/- ovaries, consistent with separate, 

sequentially-acting checkpoints (Bolcun-Filas et al. 2014).  Genetic evidence 

for a distinct synapsis checkpoint came from studies of mice lacking 

HORMAD1 or HORMAD2, proteins which load onto axes of meiotic 

chromosomes throughout early prophase I, but are removed upon synapsis 

(Wojtasz et al. 2009).  Ablation of either HORMADs in mice prevented loss of 

SPO11-deficient oocytes, resulting in the persistence of a [nonfertile] 

primordial follicle reserve in adults (Daniel et al. 2011, Wojtasz et al. 2012, 

Kogo, Tsutsumi, Inagaki, et al. 2012). These data suggested that the 

HORMADs are components of a synapsis checkpoint pathway. Another 

mechanism for elimination of oocytes is related to the phenomenon of MSUC 

(meiotic silencing of unsynapsed chromatin). Though not formally a 

checkpoint, the transcriptional inactivation of a chromosome containing genes 

essential for oocyte survival and development can block progression past 

diplonema (Cloutier et al. 2015).  

 Whereas these lines of evidence support the existence of separate 

checkpoints monitoring DNA damage and synapsis, studies in non-
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mammalian organisms indicate that the “pachytene checkpoint” – a term 

referring to delayed progression of meiosis or death of meiocytes triggered by 

genetic aberrations present in late pachynema – is more complex, consisting 

of both distinct and overlapping signaling pathways that also impact DNA 

repair modalities such as choice of recombination partner for the repair of 

meiotic DSBs (e.g. sister chromatid vs. homolog) (Roeder and Bailis 2000, 

Subramanian and Hochwagen 2014, MacQueen and Hochwagen 2011, Joshi 

et al. 2015). Here, we report the results of a series of experiments designed to 

discriminate whether the pachytene checkpoint in mouse oocytes indeed 

consists of distinct pathways responding to different signals, or if the 

responses are integrated into a single checkpoint pathway. Using a variety of 

mouse mutants, we show that most oocytes which are highly defective for 

chromosome synapsis accumulate spontaneous DSBs at a level that can 

trigger the CHK2-dependent DNA damage signaling pathway, leading to their 

elimination. Additionally, we present evidence that the reason asynaptic 

Spo11-/- oocytes can be rescued by HORMAD1/2 deficiency is that their 

absence disrupts the so-called barrier to sister chromatid recombination 

(BSCR), enabling intersister (IS) repair of those spontaneous DSBs. Taken 

together, we propose that the “pachytene checkpoint” consists primarily of a 

canonical damage signaling pathway, and that extensive asynapsis leads to  
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Figure 3.1) CHK2 is required for efficient elimination of asynaptic Spo11-/- 

mouse oocytes. (A) H&E stained histological sections of 8 weeks old ovaries. 

Black arrowheads indicate antral follicles. CL= Corpus Luteum; the presence 

of corpora lutea are indicate of prior rounds of ovulation. The lower portion of 

each panel contains a higher magnification image of an ovarian cortical 

region, where primordial follicles primarily reside. Yellow arrows and stars 

indicate primordial and primary follicles, respectively. (B) Follicle counts from 

ovaries of indicated genotypes at 3 and 8 weeks postpartum, respectively. 

Each data point is from a single ovary, each being from a different animal. 

Total = all follicle types. Horizontal hashes denote mean and standard 

deviation. Littermate controls included animals with the following genotypes: 

Spo11+/+Chk2+/+, Spo11+/- Chk2+/-, Spo11+/- Chk2+/- and Spo11+/+Chk2-/- . The 

values obtained for the 3 weeks follicles/ovaries counts are not comparable to 

the 8 weeks (see methods). Asterisks indicate p-values: (*) 0.005 ≤ p-values ≤ 

0.05, (**)0.001 ≤ p-values ≤ 0.005 and (***) p-values ≤ 0.001 derived from a 

non-parametric, one-way ANOVA test (Kruskal-Wallis).  
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oocyte loss by inhibiting IS repair rather than triggering a distinct “synapsis 

checkpoint.” 

 

3- Results 
CHK2 is involved in the elimination of Spo11-/- oocytes 

 To investigate potential overlap in the meiotic DSB repair and synapsis 

checkpoint pathways in mice, we tested whether CHK2, a well-defined DSB 

signal transducer, contributes to the elimination of Spo11-/- oocytes that are 

asynaptic due to lack of programmed meiotic DSBs needed for recombination-

driven homolog pairing.  Consistent with prior reports (Baudat et al. 2000, Di 

Giacomo et al. 2005), we observed a greatly reduced number of total follicles 

in 3 week postpartum (pp) Spo11-/- ovaries compared to WT, and in particular, 

the oocyte reserve (pool of primordial resting follicles) was almost completely 

exhausted by 8 weeks of age (Fig. 3.1). Surprisingly, Chk2 deletion rescued 

the oocyte reserve (Fig. 3.1A,B), albeit not to WT levels. The rescued follicles 

in double mutant females persisted robustly at least until 6 months pp (in one 

case, 554 total follicles in a single ovary).  

 

HORMAD2 deficiency prevents elimination of Trip13 mutant oocytes that have 

complete synapsis but unrepaired meiotic DSBs, restoring female fertility 
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Figure 3.2) Synapsis-competent Trip13Gt/Gt oocytes are eliminated in a 

HORMAD2-dependent manner. (A) H&E stained histological sections of 8 

week old ovaries of indicated genotypes. Black arrowheads indicate antral 

follicles. CL= Corpus Luteum. The lower half of each panel shows a higher 

magnification of cortical regions of ovaries. Yellow arrows and stars indicate 

primordial and primary follicles, respectively. (B) Follicle quantification of 8 

week old ovaries. Each data point is from a single ovary, each being from a 

different animal. “Total” = all follicle types. Horizontal hashes denote mean and 

standard deviation. The statistic used was Kruskal-Wallis.  * indicates p-value 

= 0.002. (C) Graphed are mean litter sizes. N ≥ 3 females tested for fertility per 

genotypic group. Control matings were between mice with the genotypes 

Trip13Gt/+ and Trip13Gt/+ Hormad2+/-. Error bars represent standard deviation 

and ** indicates p-value ≤ 0.005 derived from the Kruskal-Wallis test. 
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Taken alone, the rescue of Spo11-/- oocytes by Chk2 deletion suggests that 

severe asynapsis leads to CHK2 activation and signaling to mediate oocyte 

elimination. This led us to postulate that either: 1) CHK2 is a common 

component of otherwise distinct synapsis and DNA damage checkpoints, or 2) 

that there is a single linear checkpoint pathway that responds to both 

asynapsis and DNA damage, and that DNA damage activates the checkpoint  

pathway more robustly or sooner in prophase I (thus accounting for the 

different patterns of oocyte elimination in asynaptic vs. DSB repair-deficient 

oocytes mentioned above (Di Giacomo et al. 2005)).  

 We reasoned that if there is a single linear checkpoint pathway, then 

putative synapsis checkpoint genes required to eliminate Spo11-/- oocytes 

would also be required to eliminate Trip13Gt/Gt oocytes. Trip13Gt/Gt meiocytes 

have synapsed chromosomes and persistent SPO11-dependent DSBs, which 

leads to neonatal depletion of follicles in a CHK2>TRP53/TAp63 pathway-

dependent manner (Fig. 3.2A)(Li and Schimenti 2007, Bolcun-Filas et al. 

2014). To test this, we determined whether deficiency of HORMAD2, a 

putative synapsis checkpoint protein, could rescue Trip13Gt/Gt oocytes. 

HORMAD2 and its paralog HORMAD1 are “HORMA” (Hop1, Rev7 and Mad2) 

domain-containing proteins orthologous to the Saccharomyces cerevisiae 

synaptonemal complex (SC) axial element protein Hop1p, and deletion of 

either prevents elimination of Spo11-/- oocytes (Daniel et al. 2011, Wojtasz et 
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al. 2012, Kogo, Tsutsumi, Inagaki, et al. 2012). We used a mutant of Hormad2 

rather than Hormad1, because deletion of the latter disrupts recombination 

and homolog synapsis (Daniel et al. 2011, Kogo, Tsutsumi, Ohye, et al. 2012, 

Shin et al. 2010). Remarkably, not only did ovaries of 2 month old Trip13Gt/Gt 

Hormad2-/- mice retain a substantial primordial follicle pool (Fig. 3.2A,B), but 

also these females were fertile (Fig. 3.2C). The rescued fertility of these 

oocytes suggested either that these DSBs were compatible with further oocyte 

maturation, or that they were eventually repaired as in the case of Trip13Gt/Gt 

females whose fertility was restored by Chk2 ablation (Bolcun-Filas et al. 

2014). The dynamics of DSB repair are addressed below. 

 Since TRIP13 is required for removal of the HORMADs from 

chromosome axes upon synapsis (Wojtasz et al. 2009), and persistence of 

HORMADs on unsynapsed chromosomes correlates with MSUC-mediated 

silencing of essential genes (Wojtasz et al. 2012, Cloutier et al. 2015), the 

question arises as to whether Trip13Gt/Gt oocytes are eliminated not because 

of unrepaired DSBs, but rather by transcriptional silencing. However, this is 

unlikely for the following reasons. First, Trip13Gt/Gt oocytes are depleted with a 

temporal pattern and degree consistent with mutants defective in DSB repair, 

not asynapsis (Li and Schimenti 2007, Di Giacomo et al. 2005). Second, 

Spo11 is epistatic to Trip13, in that Trip13Gt/Gt Spo11-/- ovaries resemble 

Spo11 single mutants in their pattern of oocyte elimination (Li and Schimenti 
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2007), demonstrating that unrepaired meiotic DSBs drive early culling of 

Trip13 mutant oocytes. Third, HORMAD persistence on synapsed Trip13Gt/ Gt 

or unsynapsed Spo11-/- meiotic chromosome axes is not affected by Chk2 

deletion (Fig. 3.3), which might be predicted if CHK2 was rescuing either 

mutant class by disrupting the ability of HORMADs to signal asynapsis. The 

latter is further supported by the fact that CHK2 depletion does not interfere 

with MSCI (meiotic sex chromosome inactivation, which is mechanistically 

similar or identical to MSUC) in males (Pacheco et al. 2015), and that Chk2-/-  

mice are fertile unlike Hormad1-/- animals (Daniel et al. 2011, Shin, McGuire, 

and Rajkovic 2013, Kogo, Tsutsumi, Ohye, et al. 2012) 

Figure 3.3) CHK2 is not required for HORMAD localization to meiotic 

chromosomes axes of Spo11-/- or Trip13-Gt/Gt  oocytes. Meiotic spreads of 

18.5dpc oocytes from different mutants showing presence of HORMAD2 on 

unsynapsed axis. 
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Supplementary Fig. 1 CHK2 is not required for 
HORMAD localization to meiotic chromosomes 
axes of Spo11-/- or Trip13Gt/Gt oocytes.
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HORMAD2 inhibits DSB repair in prophase I oocytes 

 That HORMAD2 deficiency could rescue both Trip13Gt/Gt and Spo11-/- 

oocytes is consistent with a single checkpoint capable of detecting both 

damaged DNA and asynapsed chromosomes. If there is indeed a single 

checkpoint pathway, then combined deficiency for CHK2 and HORMAD2 

should rescue asynaptic and DSB repair-defective Dmc1-/- oocytes to the 

same degree as deficiency for either one alone. However, Dmc1-/- Chk2-/- 

Hormad2-/- females had ≥3 fold increase in primordial and total follicles 

compared to Dmc1-/- Hormad2-/- or Dmc1-/- Chk2-/- ovaries (Fig. 3.4A,B). This 

lack of epistasis indicates that HORMAD2 and CHK2 are not functioning solely 

as members of a single linear checkpoint pathway sensing either or both 

asynapsis and DNA damage.   

 We therefore considered two alternative explanations for why Hormad2 

deficiency rescues Trip13Gt/Gt oocytes: 1) HORMAD2 deficiency reduces the 

number of SPO11-induced DSBs to a level sufficient for synapsis, but below 

the threshold for checkpoint activation; and/or 2) it facilitates DSB repair. 

Studies of related proteins support both explanations. Absence of the budding 

yeast ortholog Hop1p not only decreases meiotic DSB formation, but also 

increases use of the sister chromatid as a template for HR repair  
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Figure 3.4) HORMAD2 and CHK2 are not in the same checkpoint 

pathway. (A) H&E stained histological sections of cortical regions of 8 week 

old mutant mouse ovaries, where primordial follicles are concentrated. 

Primordial follicles, which constitute the oocyte reserve, are indicated by 

yellow arrows, and a primary follicle by a star. Residual Dmc1-/- ovaries are not 

represented because they are completely devoid of oocytes (Pittman et al. 

1998). (B) Follicle counts from ovaries of indicated genotypes at 8 weeks of 

age. “Total” = all types of follicles. Data points represent follicle counts derived 

from one ovary, each ovary originating from a different animal. Asterisk 

indicates p-value ≤ 0.05 (Kruskal-Wallis test). 
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(Mao-Draayer et al. 1996, Carballo et al. 2008, Lam and Keeney 2014, 

Schwacha and Kleckner 1997, Niu et al. 2005, Latypov et al. 2010). Mouse 

HORMAD1 is required for loading HORMAD2 onto unsynapsed axes, proper 

SC formation (Daniel et al. 2011), and normal levels of meiotic DSBs (Daniel 

et al. 2011, Stanzione et al. 2016). Whereas Dmc1-/- Hormad1-/- or irradiated 

Hormad1-/- oocytes exhibit fewer DSB markers than oocytes containing 

HORMAD1 (Shin et al. 2010, Daniel et al. 2011), this can be attributable 

largely to enhanced repair (Shin, McGuire, and Rajkovic 2013). Intersister (IS) 

HR repair of DSBs in S. cerevisiae is substantial and it increases in hop1 

mutants (Goldfarb and Lichten 2010). Moreover, disruption of SC axes in mice 

(by deletion of Sycp2 or Sycp3) appears to alter recombination partner choice 

in favor of the sister chromatid, decreasing persistent DSBs in Trip13Gt/Gt 

oocytes to a degree that diminishes their elimination (Li, Bolcun-Filas, and 

Schimenti 2011). These data led us to hypothesize that the rescue of Trip13 

mutant oocytes by Hormad2 deficiency was due to increased DSB repair, 

possibly by diminishing the BSCR. 

 To test this, we quantified levels and rates of meiotic DSB repair in 

various genotypes of prophase I oocytes. Whereas the number of leptotene 

and zygotene stage RAD51 foci was not significantly different in Trip13Gt/Gt 

Hormad2-/- oocytes compared to Trip13Gt/Gt or other control and mutant 

genotypes (Fig. 3.5A,B), there were significantly fewer compared to Trip13Gt/Gt  
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Figure 3.5) Depletion of HORMAD2 accelerates DSB-repair during early 

stages of meiotic prophase I. (A) Representative images of meiotic 

chromosome spreads from oocytes at substages of meiotic prophase I, probed 

with antibodies for SYCP3 (SC axis protein) and the DSB marker RAD51. 

Oocytes were isolated from female embryos ranging from 15.5 dpc to 

newborns. (B) Numbers of RAD51 foci in meiotic prophase I substages of 

mutants. Only RAD51 foci present on SYCP3 stained axes were scored. Each 

data point represents one cell. In each genotypic group, at each stage, the 

counts are derived from at least three animals. Horizontal hashes in summary 

statistic plots denote mean and standard deviation from a mixed model 

calculation (Table S1). Colors correspond to genotypes. Asterisks indicate 

statistical significant differences between groups in terms of the least square 

means of RAD51 foci. p-values: *** p ≤ 0.001; ** p ≤ 0.005 ; * p ≤ 0.05 (Tukey 

HSD).  
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by pachynema and diplonema (p = 0.02 and 0.03, respectively, using Tukey 

HSD in a mixed model). RAD51 levels in Trip13Gt/Gt and Trip13Gt/Gt Chk2-/- 

newborn oocytes remained high in diplonema compared to all other genotypes 

(Fig. 3.5A,B), presumably reflecting a relative deficiency in DSB repair. 

Furthermore, we found that RAD51 foci induced by 2Gy of ionizing radiation 

(IR) disappeared more rapidly in Spo11-/- Hormad2-/- oocytes than either 

Spo11-/- or Spo11-/- Chk2-/- oocytes, as assessed 8 hours after treatment (Fig. 

3.6).  Overall, the data indicate that HORMAD2 on the axes of either 

asynapsed (Spo11-/-) or synapsed (Trip13Gt/Gt) (Wojtasz et al. 2009) meiotic 

chromosomes inhibits DSB repair, most likely by promoting IS recombination. 

 

Evidence that CHK2-mediated elimination of asynaptic oocytes is driven by 

accumulation of SPO11-independent DSBs 

 If indeed Hormad2 deletion rescues DSB-containing oocytes by 

weakening or eliminating the BSCR, this raises the question as to why 

HORMAD2 deficiency rescues Spo11-/- oocytes that don’t make meiotic DSBs. 

A clue comes from the surprising observation that Spo11-/- oocytes sustain 

DSBs of unknown origin (but possibly from LINE-1 retrotransposon activation) 

during early pachynema (Malki et al. 2014, Carofiglio et al. 2013).  We 

hypothesized that these DSBs occur at levels sufficient to trigger the CHK2-

dependent checkpoint in Spo11-/- oocytes, but that in the absence of SC axis-
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bound HORMAD2, there is sufficient DSB repair to prevent checkpoint 

activation. To test this, we determined the threshold number of DSBs that kills 

WT and Chk2-/- oocytes by exposing explanted newborn ovaries to a range of 

IR.  RAD51 foci on chromosome axes accumulated roughly linearly in oocytes 

exposed to 0.5 - 9Gy (Fig. 3.7A), and Chk2-/- oocytes withstood up to 7Gy 

(Fig. 3.7B), a dosage that induces 73.3 RAD51 foci (Fig. 3.7A). In contrast, as 

little as 0.3Gy (10.3 foci by linear regression) abolished the entire primordial 

follicle pool of WT ovaries. Consistent with our hypothesis that HORMAD2 

prevents DSB repair, the SC axes of Spo11-/- zygotene/pachytene-like 

chromosomes in newborn oocytes contained far more discrete RAD51 foci 

(raw average of 39.8; likely an underestimate, see Fig. 3.8) than in Spo11-/- 

Hormad2-/- oocytes (avg. 7.3 foci), the latter being almost identical to WT or 

Chk2-/- oocytes (7.5 and 7.3 respectively; Fig. 3.7C) in which HORMAD2 has 

been removed from synapsed chromosomes.  These data indicate that the 

majority of Spo11-/- oocytes (60.8%) bear a level of DSBs (>10.3 foci) 

sufficient to trigger their elimination by the CHK2-dependent DNA damage 

checkpoint, while most WT oocytes (71%) are below this threshold. 
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Figure 3.6) Depletion of HORMAD2 accelerates repair of induced DSBs in 

oocytes. Fetal ovaries were collected at 15.5dpc, cultured  24 hours, exposed 

to 2 Gy of ionizing radiation (IR), then cultured for an additional 4-8 hours. (A) 

Immunolabeling of surface spread chromosomes from oocytes collected 8hrs 

after IR.  (B) Quantification of RAD51 foci. Each data point represents one 

oocyte. The graphs include mean and standard deviation, and are color coded 

according to genotypic group. The 4 and 8 hr unirradiated samples were 

combined. Data were derived from at least two different animals per condition.   



	
  

 96 

4- Discussion 

 Meiocytes have genetic quality control mechanisms that respond to 

their unique developmental circumstances, chromosome biology and cell 

cycle. For example, the pachytene/prophase I checkpoint is active only at a 

point in prophase I at which DSBs have normally been repaired, but not during 

the time between programmed DSB formation and HR repair. While the oocyte 

"pachytene checkpoint" is distinct with respect to its cell cycle timing and its 

ability to monitor an event (chromosome synapsis) unique to meiosis, our 

current and prior (Bolcun-Filas et al. 2014) work indicate that for 

circumstances involving extensive asynapsis and DNA damage, this 

checkpoint in oocytes involves a DNA damage response (DDR) common to 

somatic cells. Our surprising finding that the DDR is involved in culling of 

Spo11-/- oocytes raises the question of how SPO11-independent DSBs - first 

reported by Carofiglio et al (Carofiglio et al. 2013) and confirmed here - arise 

on unsynapsed chromosomes. One possible source is LINE-1 retrotransposon 

activation, which has been correlated with natural oocyte attrition (Malki et al. 

2014). However, transposon expression normally occurs only transiently at the 

onset of meiosis before epigenetic silencing (van der Heijden and Bortvin 

2009). It is possible that the extensive asynapsis in Spo11-/- oocytes per se, or 

disruption of the meiotic program including the normal course of DSB induction 

and repair, interferes with transposon silencing. Another possibility is that 
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Figure 3.7) DNA damage threshold required to trigger oocyte death, and 

evidence for HORMAD-mediated inhibition of IS repair . (A) Linear 

regression for conversion of radiation dosages to RAD51 focus counts. Meiotic 

surface spreads were made from WT neonatal ovaries 2.5 hrs after IR. Plotted 

are means with standard deviations. Each IR dose has focus counts from ~25 

oocytes derived from each of a total of 18 animals. (B) Chk2-/- oocytes are 

highly IR resistant. Shown are immunofluorescence images of ovarian 

sections labeled with nuclear and cytoplasmic germ cell markers (p63 and 

MVH, respectively). (C) RAD51 focus foci counts from newborn oocyte 

spreads regardless of stage. Only oocytes with discrete patterns of RAD51 

foci were scored, as defined in Fig. 3.8. Data points represent individual 

oocytes, derived from at least five different animals from each genotypic 

group. Horizontal hashes denote means and standard deviations calculated 

using a mixed model with individual animals as a variable. Asterisks indicate 

statistically significant differences between groups with p-values: *** p ≤ 0.001; 

** p ≤ 0.005 ; * p ≤ 0.05 (Tukey HSD). See Table S3 for raw data and 

statistical calculations. (D) Model for pachytene checkpoint activation in mouse 

oocytes. Oocytes with many unsynapsed chromosomes (green) ultimately 

accumulate DSBs, which cannot be repaired due to block to IS recombination 

imposed by HORMADs on asynapsed axes. Failure of DSB repair leads to 

activation of CHK2 and downstream effector proteins (p53/TAp63) that trigger 
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apoptosis. Few asynapsed chromosomes (red) lead to inactivation of essential 

genes by MSUC thereby causing oocyte death. HRR - Homologous 

Recombination Repair; IH - Interhomolog; IS - Intersister; MSUC - Meiotic 

Silencing of Unsynapsed Chromatin. 
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 unsynapsed chromosomes are more susceptible to spontaneous breakage. 

These outcomes could be exacerbated by extended retention of HORMADs 

on unsynapsed axes, inhibiting repair of these breaks. An intriguing question 

is whether the production of these SPO11-independent DSBs, whatever their 

origin, evolved as a contributory mechanism for genetic quality control.  It is 

also conceivable that the extended presence of HORMADs themselves 

contributes to spontaneous DSB formation, possibly as a "last ditch" 

mechanism to drive pairing or synapsis in chromosomes devoid of sufficient 

interhomolog recombination events.  

 The late appearance and highly variable number (Fig. 3.7C) of SPO11-

independent DSBs in Spo11-/- oocytes may explain the differences in timing 

and extent of oocyte elimination in exclusively asynaptic vs. DSB repair-

deficient (e.g. Dmc1, Trip13) mutants. As reported by Di Giacomo and 

colleagues (Di Giacomo et al. 2005), whereas Dmc1-/- oocytes were 

completely eliminated before dictyate arrest and follicle formation, Spo11-/- 

ovaries contained ~15-20% of WT numbers of follicles (including 27 fold less 

primordial follicles by 4 days pp); this reduced oocyte reserve was depleted by 

2-3 months of age by subsequent cycles of recruitment and maturation. 

Additionally, Dmc1-/- oocytes degenerate before Spo11-/- oocytes, suggesting 

that an earlier-acting mechanism was triggering Dmc1-/- oocyte death. These 
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distinctions, in conjunction with epistasis analysis of mutants doubly deficient 

for Spo11 and DSB repair mutations, led to the conclusion that there are DSB-

dependent and -independent mechanisms to eliminate defective oocytes. We 

suggest that the difference in timing of oocyte elimination, at least in part, may 

be related to the DSB load. The abundant SPO11 DSBs formed early in 

prophase I may trigger the checkpoint sooner and more uniformly in 

recombination mutants that fail to reduce DSB levels in a timely manner. 

According to this scenario, spontaneous DSBs that don’t arise until later 

stages of [abnormal] prophase I in Spo11-/- oocytes would trigger the DNA 

damage checkpoint at a later point. Based on our data (Fig. 3.7A), we suggest 

that those oocytes with below-threshold DSB levels escape the DNA damage 

checkpoint, and are either eliminated by other mechanisms (see below) or 

survive to constitute the reduced follicular reserve in Spo11 mutants.  

 While the CHK2-dependent checkpoint is of central importance to 

genetic quality control in oocytes, our observations that Chk2 deletion does 

not fully restore oocyte numbers to WT levels in mutants indicates that it is not 

absolutely required for eliminating all oocytes with unrepaired DSBs. Rather, 

the fraction of oocytes rescued is inversely related to the burden of unrepaired 

meiotic DSBs. For example, whereas Chk2 deficiency rescued nearly 1/3 of 

Trip13Gt/Gt oocytes (which are partially proficient for DSB repair and which 

harbor 35±4 and 63±4.7 persistent RAD51 foci in diplonema and pachynema, 
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respectively; Fig. 3.5B), it rescued only a small fraction (~5%) of profoundly 

recombination-deficient Dmc1-/- oocytes (harboring an average of ~150 

RAD51 foci (Li, Bolcun-Filas, and Schimenti 2011)). We posit that the oocytes 

that fail to be rescued in these mutants are eliminated either by a separate or 

a complementary checkpoint pathway (for example, ATR-CHK1 (Smith et al. 

2010)), or succumb from catastrophic levels of DNA damage. It is informative 

that deletion of Hormad1, but not Hormad2, rescues Dmc1-/- oocytes to a 

greater extent than Chk2 deletion. As discussed earlier, the rescued Dmc1-/- 

Hormad1-/- oocytes had a marked reduction in DSBs (Shin, McGuire, and 

Rajkovic 2013, Wojtasz et al. 2012, Bolcun-Filas et al. 2014). Since 

HORMAD1 is needed to load HORMAD2 onto unsynapsed chromosome axes 

(not vice versa), then the impact of Hormad1 deletion upon IS recombination 

constitutes the combined roles of both HORMAD proteins. However, when 

Hormad2 alone is deleted, the continued presence of chromosomally-bound 

HORMAD1 may provide a less-effective, but still substantive, BSCR.  The 

lower level of residual DSBs in Spo11 and Trip13 mutant oocytes (compared 

to Dmc1-/-) may render them responsive to a weaker BSCR such as when 

Hormad2 is deleted. We postulate that because of its involvement in 

stimulating SPO11 activity (Daniel et al. 2011), Hormad1 deletion is very 

effective in rescuing a DSB repair mutant like Dmc1 because not only are 

fewer DSBs formed, but also IS recombination is more active. 
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Figure 3.8) Patterns of RAD51 staining on oocyte meiotic chromosomes of 

various genotypes. (A) The plots show the percentage of oocytes from the 

specified genotypes, color-coded for either discrete foci or varying levels of 

continuous staining patterns. (B) Classification of the different levels of 

continuous RAD51 immunostaining. All chromosome spreads are derived from 

newborn mice. RAD51 quantification was performed in images derived from 

an objective with 0.45µm resolving power. At this resolution, the RAD51 

signals could be classified as discrete or continuous (coating AEs and/or SCs). 

It is likely that these continuous staining regions consist of numerous distinct 

foci.  Because these were not enumerated in the calculation of discrete 

SPO11-independent DSBs, the actual number of SPO11-independent DSBs is 

probably higher than reported here. 
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 Our results add to increasing evidence that IS recombination is 

important in mammalian meiosis. As discussed in the text, the HORMADs and 

SC axial element structure appear to inhibit IS repair of meiotic DSBs 

preferentially, thus allowing IH recombination to drive homolog pairing and 

synapsis. However, as synapsis progresses and the SC is formed, the 

HORMADs are removed and presumably both IS and IH recombination can 

occur readily as in yeast (Subramanian et al. 2016). Since not all RAD51 foci 

disappear by pachynema when synapsis is complete (for example, see Fig. 

3.5B), it is possible that a substantial fraction of these DSBs are normally 

repaired by IS recombination. We speculate that the persistent unrepaired 

DSBs on synapsed chromosomes of Trip13 mutants, which retain HORMADs 

on their SCs, may actually constitute a substantial fraction of SPO11-induced 

DSBs (an average of ~65/oocyte nucleus of the 200-300 induced; Fig. 3.5) 

that would normally be repaired by IS recombination. However, we cannot rule 

out the possibility that the “persistent” DSBs on synapsed Trip13Gt/Gt 

chromosomes actually arise from continued SPO11 cleavage signaled by 

continued presence of SC-bound HORMADs (Kauppi et al. 2013).  

 In trying to decipher the quality-control mechanisms functioning during 

meiosis, it is important to recognize that experimental studies such as those 

performed here employ mutants with pervasive, non-physiological levels of 
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defects. Meiocytes in wild-type individuals would have less extreme genetic 

defects. In oocytes bearing a small number (1-3) of unsynapsed 

chromosomes, the unsynapsed chromosomes underwent transcriptional 

silencing (MSUC) during pachynema, causing elimination at the diplotene 

stage (Kouznetsova et al. 2009, Cloutier et al. 2015) from lack of essential 

gene products encoded by these chromosomes (Cloutier et al. 2015). 

However, oocytes with more than 2-3 unsynapsed chromosomes impairs 

MSUC, presumably due to a limiting amount of BRCA1 (Kouznetsova et al. 

2009).  Nevertheless, Spo11-/- meiocytes typically exhibit “pseudo sex bodies,” 

named as such because they resemble the XY (sex) body, involving a small 

number of asynapsed autosomes (Bellani et al. 2005). Formation of pseudo 

sex bodies in Spo11-/- oocytes is dependent upon HORMADs (Daniel et al. 

2011, Kogo, Tsutsumi, Ohye, et al. 2012), leading to the proposal that these 

are responsible for oocyte elimination (Kogo, Tsutsumi, Inagaki, et al. 2012). 

This may be the case in a subset of oocytes where the pseudo sex body 

impacts either a chromosomal region containing haploinsufficient loci, or both 

alleles of a locus needed for meiotic progression or oocyte survival. Since 

CHK2 deficiency can rescue Spo11-/- oocytes while not abolishing HORMAD 

localization (Fig. 3.3) or pseudo sex body formation (not shown), yet does not 

rescue all Spo11 oocytes, it is likely that neither MSUC nor CHK2 alone is 

entirely responsible for elimination of all oocytes with pervasive asynapsis. 
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Finally, because MSUC involves many components of the DNA damage 

response (Ichijima et al. 2011, Turner et al. 2004, Fernandez-Capetillo, 

Celeste, and Nussenzweig 2003), it is conceivable that asynapsis leading to 

MSUC would activate effector elements of the DNA damage checkpoint 

pathway, including CHK2. However, this does not appear to be the case, 

because silenced supernumerary chromosomes do not eliminate oocytes 

(Cloutier et al. 2015), MSCI (meiotic sex chromosome inactivation) does not 

kill spermatocytes, and asynaptic oocytes are not eliminated in a pattern 

typical of DNA repair mutants. 

 The “pachytene checkpoint” has commonly been thought to consist of 

separate DNA damage and synapsis checkpoints in multiple organisms.  

However, the finding that MSUC can cause death of oocytes led to the 

suggestion that there is only 1 formal cell cycle checkpoint in mouse oocytes - 

the DNA damage checkpoint (Cloutier et al. 2015) – is consistent with this 

idea, and our data provides mechanistic evidence in support of it. Current 

information supports a model (Fig. 3.7D) for two major mechanisms by which 

oocytes with synapsis defects are eliminated: 1) MSUC, for oocytes with a 

small number of asynapsed chromosomes that do not accumulate unrepaired 

DSBs above a threshold, and in which both homologs of chromosomes 

bearing essential genes for meiotic progression are silenced (Cloutier et al. 

2015), and 2) the DNA damage checkpoint, for oocytes with multiple 
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asynapsed chromosomes that accumulate a sufficient number of DSBs to 

trigger the DNA damage checkpoint (Fig. 3.7D). These disparate mechanisms 

may have distinct purposes. Because oocytes with only 1 or 2 unsynapsed 

chromosomes may not efficiently trigger the spindle assembly checkpoint 

(SAC) (LeMaire-Adkins, Radke, and Hunt 1997), the MSUC pathway would 

safeguard against aneuploidy. Superficially, it would seem that because 

oocytes with extensive asynapsis would effectively trigger the SAC, that the 

DNA damage checkpoint mechanism is redundant. However, it is likely 

advantageous reproductively to eliminate such defective oocytes before they 

enter dictyate as constituents of the ovarian reserve, otherwise the fraction of 

unproductive ovulations (those terminated by the SAC) would increase, thus 

compromising fecundity.  
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7- Methods 

Organ Culture and Irradiation 

Embryonic and postpartum explanted ovaries were cultured under conditions 

as we previously detailed (Rinaldi et al., 2017). Ovaries were irradiated in a 

137cesium irradiator with a rotating turntable. Immediately after irradiation, the 

media was replaced, and ovaries were cultured for indicated periods of time 

prior to tissue processing.  

 

Histology and Immunostaining 

Ovaries were dissected and incubated in Bouin’s fixative overnight at room 

temperature. Afterwards, tissues were washed in 70% ethanol prior to being 

embedded in paraffin for serial sectioning at 6mm thickness. Ovaries were 

stained with Harris Hematoxylin and Eosin (H&E) and follicles counted in 
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every fifth section except for the three-week counts reported in Figure 1B, in 

which every 12th section was counted. There was no correction factor applied 

to the values reported. Only one ovary per animal was used. 

 Cultured ovaries, used for histological sections followed by 

immunostaining, were fixed in 4% paraformaldehyde/PBS over night at 4°C. 

After 70% ethanol washes, ovaries were embedded in paraffin and serially 

sectioned at 5mm. These ovaries were immunostained using standard 

methods. Briefly, slides were deparaffinized and re-hydrated prior to antigen 

retrieval using sodium citrate buffer. Slides were blocked with 5% goat serum 

(PBS/Tween 20) and incubated at 4°C overnight with primary antibodies: 

mouse anti-p63 (1:500, 4A4, Novus Biologicals); and rabbit anti-MVH (1:1000, 

Abcam). Afterwards, sections were incubated with Alexa Fluor® secondary 

antibodies for one hour and Hoechst dye for 5 minutes. Slides were mounted 

with ProLong Anti-fade (Thermo-Fisher) and imaged.  

 Histological images were obtained from slides digitized using a Leica 

Scanscope CS2.  

 

Immunofluorescence of meiotic chromosome surface spreads 

Meiotic surface spreads of prophase I female meiocytes were prepared using 

an adaptation (Reinholdt et al., 2004) of a drying-down technique (Peters et 

al., 1997) that was described in great detail in the former reference. Meiotic 
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stages (leptonema-diakinesis) were determined based on SYCP3 staining 

patterns (Gray and Cohen, 2016). Slides were stored at -80°C until 

immunostained. For staining, slides were brought to room temperature (RT) 

and washed once with PBS+0.1% Tween-20 (PBS-T). Slides were blocked for 

40 minutes at RT with PBS-T containing 5% normal goat serum (5%GS-PBS-

T). Primary antibodies were diluted into 5%GS-PBS-T and incubated overnight 

at RT in a humidified chamber. Antibodies and dilutions used included: rabbit 

anti-RAD51 (1:250 Abcam 176458), mouse anti-SYCP3 (1:600 Abcam) and 

guinea pig anti-HORMAD2 antibody (1:1000, kind gift from Attila Toth). 

Secondary antibodies used were diluted 1:1000 in in 5%GS-PBS-T and 

included goat anti-rabbit Alexa 488/594, goat anti-mouse Alexa 488/594 and 

goat anti-guinea pig Alexa 488/594. Images were taken using an Olympus 

microscope with 40X lens or 100X immersion oil lens and CCD camera.  

 

Focus Quantification 

Foci were quantified both manually, through the visualization and annotation 

of individual foci, and also semi-automatically using Fiji-ImageJ (Schindelin et 

al., 2012). Semi-automated counts were performed using binary images 

obtained from the RAD51-labeled channel, with the threshold set above 

background level. The count was obtained after performing “Watershed”, by 

the “Analyze Particles” functionality with size set for 1.5 to infinity. Cell counts 
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that displayed discrepancy of more than 20% between manual and semi-

automated counts were discarded.  

 

Fertility Test 

To test if HORMAD2 deficiency was able to rescue the Trip13Gt/Gt sterility 

phenotype, three double mutant females were mated to wild type C3H/HeJ 

males proven to be fertile through previous matings. Each female provided 

more than 4 consecutive litters up to the time of preparation of this manuscript. 

All three females originated from different litters. Trip13Gt/Gt littermates were 

housed with fertile males and used as negative controls.  

 

8- Quantification and statistical analysis 

Statistical analysis 

Comparisons between compound mutants and controls were done using 

littermates or related animals. Unless otherwise noted, all experiments used at 

least three mice per experimental group. All statistical analyses were done 

using JMP Pro12 software (SAS Inc., Cary, NC-USA, version 12.0.1). 

Comparisons of fertility and follicle counts between genotypic groups were 

tested using both the Tukey honest significance different (HSD) and the non-

parametric, one-way ANOVA test (Kruskal -Wallis). Both tests provided 

concordant results. RAD51 focus counts were analyzed using a mixed model 
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with animal ID as random effect and genotype as fixed effect. Least square 

means (LSMeans) differences were tested using Tukey HSD. The residuals 

from the mixed model were normally distributed. 
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CHAPTER 4 

 
DISCUSSION & CONCLUDING REMARKS 

 

1- Overview and summary of findings 

 The shorter reproductive life of female mammals (as compared to 

males) correlates with their limited and non-renewable number of resting 

oocytes. These oocytes reside within primordial follicles, and they constitute 

the female’s ovarian reserve. The size of the oocyte pool is determined by 

birth, and its numbers gradually decrease with time. The progressive loss of 

oocytes is a natural phenomenon, however it can be expedited by 

environmental factors that result DNA damage such as disease treatments 

(like the ones used in cancer treatments), stress and drug use. Under 

laboratory conditions, female mice submitted to low levels of DNA damage 

after birth show massive oocyte death that results in sterility days after 

exposure, and ovarian failure in a month’s period. This postnatal DNA damage 

induced oocyte death contrasts with what happens to oocytes during 

embryonic development, more specifically during leptonema. At this early 

stage of prophase I hundreds of developmentally programmed DNA double 

stranded breaks (DSBs) are formed through the natural course of prophase I. 

This dichotomy of sensitivity to DNA damage was the driving force of my 

investigation. 
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 The sensitivity to low levels of DNA damage observed after birth in 

dictyate-arrested oocytes can be traced back to the meiotic checkpoint that 

surveys DNA integrity. In female mice, prophase I starts during embryonic life, 

progresses up to diplonema, which coincides with parturition, at which point 

meiosis arrests. Therefore, after birth most oocytes are at a late-diplotene-like 

stage (e.g. dictyate arrest). At this resting stage a single layer of flattened cells 

(the pre-granulosa cells) surrounds each dictyate-arrested oocyte forming a 

primordial follicle. Primordial follicles constitute the ovarian reserve of a 

female, and the residing oocyte remains arrested at dictyate from birth until 

maturation/ovulation. The maturation of the primordial follicle is called 

folliculogenesis, and culminates with either ovulation or follicular atresia. As 

the female reaches reproductive maturity folliculogenesis begins and a handful 

of primordial follicles will be periodically recruited to grow to primary stage; 

when the pre-granulosa cells become cuboidal and start to mitotically divide. 

The follicle development continues with the granulosa cells further dividing and 

forming layers surrounding the residing oocyte, which also will rapidly enlarge 

(Fortune 2003).  

 Besides the natural primordial follicle decline due to ovulation and 

atresia, failure to repair endogenous DSBs also results in oocyte death. The 

DNA damage checkpoint responsible for culling oocytes is the same from 

conception until follicular development (results shown on Appendix I (Bolcun-

Filas et al. 2014) and Chapter 2). However, once primordial follicles commit to 

folliculogenesis, they are no longer under the same checkpoint (based on 
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results reported in Chapter 2, growing follicles are refractory to the levels of 

DSBs I tested). Nevertheless, the observation that dictyate-arrested oocytes 

are under the same prophase I checkpoint, suggests that knowledge about the 

mechanisms governing meiosis I can translate into treatments that impact 

female reproductive health. For example, knowledge about the pathway 

responsible for oocyte death can be used to design and inform treatments for 

the preservation of the primordial follicle reserve. Saving primordial follicles 

has implications not only for fertility but also for retaining the endocrinological 

function of the ovary. Furthermore, if not directly through pharmacological 

treatments, the knowledge gained from my research may be used to aid the 

design of new contraceptive methods or for improving ex-vivo conditions used 

for oocyte preservation. 

 In addition to the presence of a surveillance mechanism that monitors 

DNA integrity, meiocytes were previously thought to have a "synapsis 

checkpoint" responsible for triggering cell death in meiotic cells that fail to find 

and pair homologous chromosomes (synapsis-defective oocytes). However, 

the data presented in Chapter 3 argues against such a checkpoint, and lends 

support to the possibility that accumulation of DSBs in asynapsed 

chromosomes triggers the DNA damage checkpoint, which results in cell 

death. The failure to repair DSBs in asynapsed chromosomes is likely 

because of a block to use the sister chromatid as a DNA repair template 

(BSCR). The proposed model suggests that oocytes will be eliminated if they 

accumulate DSBs above a putative DNA-damage threshold (in the reported 
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study I found that ~10 RAD51 foci, which correlates to 0.3 Gys, is the DNA 

damage threshold). Since synapsis-defective oocytes are not able to promptly 

repair the damaged DNA, they will trigger the DNA-damage checkpoint when 

they reach diplonema. This model explains the apparent “leakiness” of the 

female “synapsis checkpoint”, since DSBs below the threshold will survive 

even with unsynapsed chromosomes.  

 Based on the finding describe in this thesis, I suggest that there are 

mainly three ways for an oocyte to be eliminated: 

1- CHK2-dependent: when there are low levels of DSBs, yet above a wild-

type level (~10 RAD51 foci). 

2- CHK2-independent but HORMAD2-dependent: through MSUC, 

therefore silencing all transcribed copies of a gene that is essential for 

the survival of the meiotic cell. 

3- CHK2-independent and HORMAD2-independent: when cells have 

catastrophic levels of DNA damage (>77 RAD51 foci).  

 

2 – The prophase I checkpoint 

  Taken together, the results presented here convey that the traditional 

concept of a "pachytene checkpoint" is obsolete. In 2000, based on studies in 

yeast, Roeder used the term “pachytene checkpoint” to refer to control 

mechanisms that prevent meiotic cells from exiting the pachytene stage of 

prophase I (Roeder and Bailis 2000). This traditional “pachytene checkpoint” 

consisted of two branches: DNA damage checkpoint and synapsis checkpoint. 
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The model was evidently inappropriate for organisms with heterologous sex 

chromosomes, such as humans and mice, where males have one “X” and one 

“Y” chromosome that will never fully synapse. If there were indeed a synapsis 

checkpoint, the sex chromosomes would trigger its activation, be eliminated, 

and the animal would never reproduce. However, there is no doubt that 

animals with such chromosomes are proficient in meiosis despite the presence 

of the asynapsed sex chromosomes. Moreover, the model did not account for 

cell cycle arrest that occurs at other stages of prophase I. For instance in 

females, asynapsis and DNA damage cause oocyte death at diplonema 

(Chapter 2 and 3 and Cloutier et.al. 2015).  

 

DNA-damage checkpoint 

 The DNA-damage checkpoint in meiosis is similar to the classical DNA-

damage checkpoint of mitotic cells. The main difference is that oocytes are 

much more sensitive to DNA-damaging agents than somatic cells. Combining 

the results presented in Chapter 2 and Chapter 3 with recent findings of the 

involvement of HORMAD1 in promoting DSBs on unsynapsed chromosomes 

(Stanzione et al. 2016), the oocyte’s sensitivity to low levels of DSBs may 

constitute an alternative route for the elimination of cells with synapsis defects.  

 In 2016, Stanzione et.al. described that HORMAD1 (one of the two 

mammalian “HORMA”-domain containing proteins, related to yeast Hop1) is 

required for DSB formation by SPO11 (a topoisomerase-IV-like protein) and 

SPO11-accessory proteins; lack of HORMAD1 results in 70 % decrease in 
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endogenous DSB formation (Stanzione et al. 2016). I report in Chapter 3 that 

HORMAD2 interferes with DSB repair in synapsis deficient oocytes (e.g. 

Spo11-/-). The interference is observed as a delay in DSB repair in the meiotic 

cells with persistent HORMAD2 on chromosome axes, which supports the 

existence of a protein block that prevents the use of the sister chromatid as 

repair template (BSCR). The BSCR model suggests that unsynapsed 

chromosomes, which have both HORMAD1 and HORMAD2, will accumulate 

DSBs that, even at low levels, activate the DNA-damage checkpoint. However, 

like the synapsis checkpoint model, BSCR fails to explain what happens to the 

heterologous sex chromosomes. 

 

Silencing of essential genes (MSUC) as a checkpoint  

 Studies using meiotic cells carrying heterologous chromosomes (both 

male “XY” meiotic cells and female “XX” carrying and additional accessory 

chromosome) identified that unsynapsed regions undergo transcriptional 

silencing during male and female meiosis in mice. The meiotic silencing of 

unsynapsed chromosomes (MSUC) was suggested as a separate mechanism 

that effectively serves as a checkpoint. The equivalent to the MSUC response 

in males is referred to meiotic sex chromosome inactivation (MSCI). Both 

MSUC and MSCI result in inactivation of transcription (see Chapter 1). MSCI 

is essential for survival of the male meiotic cells. Failure to invoke a MSCI 

response results in spermatocyte death at mid-pachynema (agreeing with 

Roeder’s definition of a pachytene checkpoint). However, the meiotic silencing 
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response is sexually dimorphic: in males, failure to silence sex-linked genes is 

lethal whereas in females, success in silencing essential genes triggers oocyte 

death (Cloutier et al. 2016).  

 Furthermore, in female oocytes the prophase arrest due to silencing is 

unpredictable, since the death response depends on whether the silenced 

gene is essential for meiosis; MSUC per se does result in cellular demise. In 

2015, Cloutier and colleagues found that when silencing occurs in additional 

hemizygous accessory chromosomes, oocytes remain alive despite MSUC 

occurring at this extra chromosome (Cloutier et al. 2015). They further found 

that in females, oocyte demise through MSUC is stochastic (Cloutier et al. 

2016); cell death depends on the gene and how many copies of the gene are 

being silenced. In pervasive synapsis deficient meiocytes, the probability of 

silencing all actively transcribed copies of a gene required for cell survival is 

low. This lack of a defined outcome when the MSUC pathway is activated 

does not agrees with the traditional definition of a checkpoint, and feeds the 

ongoing debate about whether MSUC acts as a checkpoint. 

  

The conundrum 

 Studies found that HORMAD2 is essential for the silencing response 

(MSUC) (Wojtasz et al. 2012; Kogo, Tsutsumi, Inagaki, et al. 2012). Therefore, 

if HORMADs persist on the axis of a chromosome, there are two predicted 

outcomes. 1- accumulation of DSBs due to HORMAD1 supporting continuous 
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SPO11-dependent DSB formation and HORMAD2 delaying the DSB repair; 2- 

HORMAD2 mediated silencing response (MSUC).  

 Accumulation of DSBs was indeed observed in the study described in 

Chapter 3 that used two mice models known to have persistent HORMADs on 

their chromosome axes (e.g. Spo11-/- and Trip13Gt/Gt) (Wojtasz et al. 2009). 

HORMADs are removed from the chromosomes axes upon synapsis by the 

protein Thyroid Hormone Receptor Interactor 13 (TRIP13) (Wojtasz et al. 

2009). Mice homozygous for the hypomorphic allele (Trip13Gt) (Li and 

Schimenti 2007) of this protein have persistent DSB markers and HORMAD1 

and HORMAD2 along synapsed chromosome axes. In Spo11-/- oocytes 

HORMADs are never removed from the chromosome axes supposedly due to 

failure to synapse.  

 The MSUC response in Spo11-/- was described to correlate with the 

presence of HORMAD2 (Kogo, Tsutsumi, Inagaki, et al. 2012; Wojtasz et al. 

2012). These reports assumed that lack of the SPO11 protein resulted in no 

DSBs formed during meiosis. However, presence of DSBs in Spo11-/- 

meiocytes was previously shown (Chicheportiche et al. 2007; Baudat et al. 

2000), and Chapter 3 shows that Spo11-/- oocytes have DSBs above the wild 

type level for the DNA-damage threshold (>30 RAD51 foci). Although 

debatable, it was initially accepted that MSUC was independent of DSBs 

formation, even though it depends on the recruitment of proteins from the 

DNA-damage response to the silencing site (e.g. ATR, MDC1, γH2AX – see 
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Chapter 1). Nevertheless, the localization of HORMAD2 and presence of 

DSBs in the Spo11-/- oocytes, ties MSUC response to BSCR.  

 The evidence that Spo11-/- oocytes have DSBs provides support that 

MSUC is similar to the silencing response observed in somatic cells (Yosuke 

Ichijima, Sin, and Namekawa 2012). During DNA replication of somatic cells, 

stalled replication forks become coated with RPA, which triggers a MDC1 

dependent amplification of the ATR/γH2AX phosphorylation cascade that 

results in silencing. However, MSUC was again described to be independent 

of DSB formation in oocytes carrying different types of chromosome 

abnormalities (Cloutier et al. 2015; Manterola et al. 2009). Cloutier et. al. 

describe that, in DSB repair proficient meiocytes with heterologous sex 

chromosomes or other chromosomal abnormalities, MSUC happens on the 

axes regardless of the presence of DSB markers. They show presence of 

HORMAD1/2 at asynapsed axes and claim that DSBs were either never 

formed or repaired prior to mounting a MSUC response. Their claim is 

supported by the lack of DSBs (as measured by DNA damage markers 

RAD51, DMC1 and RPA), which are described as being resolved by late 

pachynema (Cloutier et al. 2015). Another study that supports MSUC as 

independent of DSBs used the meiotic-DSB deficient Iho1-/- animal model 

(Stanzione et al. 2016). In this model, meiocytes have HORMADs at the 

unsynapsed axes, have no DSBs (no RPA), but mount MSUC (γH2AX cloud) 

similar to SPO11 deficient cells. Interestingly, on this report the authors 

observe complete depletion of oocytes in six weeks old Iho1-/- ovaries. The 
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report that HORMADs not only promote DSB but also delay DSB repair 

through BSCR is contradictory to the claim that MSUC occurs independently 

of DSBs. I envision an alternative hypothesizes where the presence of RPA, 

such as what is observed on asynapsed chromosomes at early pachynema, is 

responsible for triggering MSUC. The paradox of observing MSUC domains 

forming independent of DSBs in regions primed to have accumulation of DNA 

damage (due to the presence of HORMAD1/2) may be a result of the loss of 

temporal resolution when observing the histological manifestation of MSUC 

and DSBs. Future studies may shed light in this conundrum and determine if 

MSUC is indeed independent of DSBs or if this independency is just an artifact 

of observing a snapshot of a continuous biological process.  

 

Spatiotemporal modifications of proteins during meiosis  

 The lack of temporal resolution may explain the observed lack of 

dependency between both MSUC and presence of DSB. Although it is not yet 

possible to visualize a single meiotic cell and its protein dynamics in vivo and 

at real time, studies from discrete time points of testicular development have 

shed some light on the phosphorylation events occurring at the chromosome 

axes. Proteins involved in synapsis and recombination have different 

posttranslational modifications such as phosphorylation, ubiquitination, and 

sumoylation, which likely modulate their function. The meiotic phospho-

proteome has not yet been characterized. However, there are few reports that 

show that HORMAD1/2 have multiple ATM/ATR phosphorylation motifs that 
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account for at least two phosphorylation forms out of the three nuclear-bound 

forms found by gel shift assays (Fukuda et al. 2012; Kogo, Tsutsumi, Ohye, et 

al. 2012). The expression patterns between HORMAD1 and HORMAD2 are 

slightly different, with HORMAD2 expression delayed in relation to HORMAD1. 

Regarding HORMAD1 phosphorylation, there are two reports with different 

findings. One report implicates HORMAD1 phosphorylation as being required 

for an axis bound state (H1p) (Kogo, Tsutsumi, Ohye, et al. 2012) and another 

shows ATR-mediated phosphorylation at serine (Ser) 375 (H1p375) only upon 

DSB formation (Fukuda et al. 2012). One of the HORMAD2 phosphorylation 

sites was determined to be on serine 271, an ATR-dependent phosphorylation 

motif, which showed a limited localization restricted to the sex chromosomes 

(H. Royo et al. 2013; Fukuda et al. 2012). Based on sequence and structural 

analyses both HORMAD proteins have a predicted “closure motif” that 

specifically binds HORMAD1 (Rosenberg and Corbett 2015); in other words, 

HORMAD1 forms homodimers (HORMAD1-HORMAD1) and heterodimers 

with HORMAD2 (HORMAD1-HORMAD2). Together with the genetic studies 

the predicted model also suggests that HORMAD2 is dependent on 

HORMAD1 for recruitment to the chromosome axis. This makes the genetic 

analysis of Hormad1-/- confounded by the simultaneous failure of HORMAD2 

to load onto the chromosome axis.  

 The information about the phosphorylation of axial components 

illustrates the need for better studies about posttranslational modifications. 

Phosphorylation information can be used to infer how BSCR and MSUC are 
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regulated by HORMAD2. In addition to the aforementioned, Trip13Gt/Gt 

meiocytes, which have DSBs markers and HORMADs on synapsed 

chromosomes, were shown to accumulate the H1p375 form of HORMAD1 at 

their synapsed axis. Spo11-/- meiocytes are deficient in H1p375 (Fukuda et al. 

2012), but oocytes were reported to have H1p, the putative axis bound state 

(Kogo, Tsutsumi, Ohye, et al. 2012) on their asynapsed axis. Perhaps this is 

an indication that different phosphorylation forms activate different pathways. 

 

An alternative model for MSUC initiation 

 The presence of “late” DSBs at early pachynema in asynapsed 

chromosomes together with the presence of non-meiotic DSBs in Spo11-/- 

meiocytes, lead me to suggest a model in which the presence of HORMAD2 at 

unsynapsed axis retains unrepaired DSBs. On this scenario, the delay in DSB 

repair results in enough RPA signaling to trigger MSUC. It may even be that 

lack of DSB repair results in long tracks of RPA-coated ssDNA, for example 

due to hyper-resection, which would explain the apparent increase in RPA foci 

during late Zygonema in male meiotic cells. In the synapsed autosomes, 

TRIP13 removes HORMADs from axis, thus removes the BSCR and expedite 

repair of remaining DSBs. However, if the BSCR is not lifted, thus HORMADs 

persists on axes, RPA coated ssDNA tracks activate ATR and starts a chain 

reaction of phosphorylation events that will result in MSUC. Therefore, in this 

model, retention of HORMAD2 will cause MSUC due to the presence of 

unrepaired DSB. As soon as the ATR response starts, it is rapidly amplified 
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through the phosphorylation of HORMADs. Phospho-HORMADs act by 

amplifying the ATR response, thus catalyzing the spread of the silencing 

factors to the chromatin loops.  

 This model accounts for the observed persistence of DSB marks at the 

unsynapsed chromosomes (“XY” and accessory hemizygous) that only 

disappear at late pachynema. It also explains the apparent lack of DSBs in 

MSUC regions. In summary, the model suggests that DSB induced 

phosphorylation of HORMADs enhances the ability to recruit ATR resulting in 

a robust yet slightly delayed response relative to the ATM-DSB response. It 

alludes to MSUC as a delayed ATR response that requires DSBs as 

nucleating factor. Because TRIP13 removes HORMADs from the axis upon 

synapsis, the MSUC response only occurs at unsynapsed axis. Therefore, the 

delayed yet amplified ATR signal from the DSBs would ensure that even small 

numbers of DSBs would trigger MSUC.   

 

3 – Future directions   

  In order to test the proposed model, the initial step would be to 

determine if DSBs are indeed needed for MSUC response. This can be 

determined by through analysis of the onset of MSUC in Spo11-/- and Iho1-/-, 

and how it correlates to non-meiotic DSBs. Inducing DSBs in Iho1-/-, and 

determining if it potentiates the MSUC response can further evaluate this. If it 

turns out that MSUC is indeed independent of DSBs, further studies will be 

needed to determine why six week old Iho1-/- ovaries are devoid of oocytes, 
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since the present study, and Cloutier’s reports, suggest that MSUC is not 

sufficient to explain massive oocyte attrition due to asynapsis (Cloutier et al. 

2015; Stanzione et al. 2016).. Nevertheless, if MSUC is not triggered by the 

presence of DSBs, one explanation could be that phosphor-HORMAD2 on Ser 

271 have structural similarities to RPA, triggering silencing in similar way to 

stalled forks in somatic cells. Another future direction is the obvious need to 

identify the posttranslational modification events of each meiotic stage. This 

can be achieved through stage specific phosphor-proteomics and generation 

of animals with mutations at phosphorylation sites.  

 The field would also benefit from the identification of the essential 

genes for meiosis. The latter by performing a thorough comparative analysis of 

RNA-seq data derived from Spo11-/-Chk2-/- and Spo11-/-Hormad2-/- oocytes. 

The less expressed genes from Spo11-/-Chk2-/- oocytes (proficient in MSUC 

response and not eliminated due to low levels of persistent DSBs) that are 

highly expressed in Spo11-/-Hormad2-/- oocytes (which will express all the 

genes) would be the candidates for essential meiotic genes. Briefly, the 

rationale is that there will be about a 10% reduction of the lethal genes in the 

Spo11-/-Chk2-/- oocytes pool. The 10% reduction is based on the frequency of 

naturally occurring asynapsed oocytes. Another question to be addressed 

comes from the intriguing observation that in oocytes with chromosomal 

abnormalities (e.g. XO -Turner syndrome, or autosomal translocations), the 

silencing of the unsynapsed chromosome triggers oocyte elimination during 

diplonema (Cloutier et al. 2015). That is counterintuitive, because silencing of 
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essential genes should cause oocyte death at the stage in which the gene 

product is required. This observation indicates that other potential 

posttranslational modifications might be involved with oocyte elimination 

during prophase I.  

 Regarding the findings in Chapter2, there is still the need to verify if the 

animals born from the CHK2-inhibitor treated ovaries have mutations, or 

transgenerational epigenetic modification. The most straightforward 

experiment is likely through whole genome sequencing and single embryo 

RNA- and small RNA-seq.  

 Furthermore the broader field of meiosis could benefit from using high-

resolution microscopy to better characterize meiotic division. An optimal 

approach would be with collective efforts, to gather enough material to map 

meiosis at a molecular level. Using super resolution microscopy and 3D 

imaging tools it may be possible to visualize how the SC is organized, and 

how HORMADs are positioned. The spatial resolution may provide the missing 

link on how HORMAD2 is interfering with DSB-repair. A collaborative effort 

would also answer major questions about recombination events, SC 

assembly, and overall nuclear organization.
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Abstract: Genetic errors in meiosis can lead to birth defects and spontaneous 
abortions.  Checkpoint mechanisms of hitherto unknown nature eliminate oocytes with 
unrepaired DNA damage, causing recombination-defective mutant mice to be sterile.  
Here, we report that checkpoint kinase 2 (Chk2; Chek2), is essential for culling 
oocytes bearing unrepaired meiotic or induced DNA double-strand breaks (DSBs). 
Female infertility caused by a meiotic recombination mutation or postnatal irradiation 
was reversed by concurrent mutation of Chk2.  We found that both meiotically-
programmed and induced DSBs trigger CHK2-dependent activation of TRP53 (p53) 
and TRP63 (p63) in damaged oocytes. These and other data establish CHK2 as 
essential for DNA damage surveillance in female meiosis, and indicate that the oocyte 
DSB damage response primarily involves a pathway hierarchy of 
ATR>CHK2>p53+p63. 

One Sentence Summary: CHK2 signaling to p53 and p63 is central to the checkpoint 
that monitors DNA damage in both meiotic and resting oocytes. 

Main Text: Fertility, health of offspring, and species success depends on 
production of gametes with intact genomes.  Particularly crucial is the proper 
segregation of homologous chromosomes at the first meiotic division.  This requires 
homologs to pair, synapse, and (in most organisms) form chiasmata (crossovers, or 
COs) that link homologs and enable disjunction to opposite poles during anaphase.  
These chromosome behaviors are driven by homologous recombination (HR), a high-
fidelity DSB repair process. Meiocytes fulfill the requirement for HR by producing 
proteins (namely SPO11) that create DSBs, thereby driving HR-mediated repair.  In 
mice, ~10% of the >200 DSBs are repaired as COs, and the rest by non-crossover 
(NCO) recombination (1).   

Aberrations in homolog synapsis or DSB repair are potentially deleterious, but 
checkpoints monitor these processes and eliminate defective meiocytes (2-4).  Mouse 
spermatocytes are sensitive to both unrepaired DSBs and the presence of asynapsed 
chromosomes, either of which trigger their apoptotic elimination at mid-pachynema of 
meiotic prophase I (5, 6). In contrast, the stage at which oocytes are completely culled 
depends upon the type of meiotic defect(s); those defective for both DSB repair and 
synapsis (e.g. Msh5, Dmc1 mutants) occurs earlier (within a few days after birth) than 
in mutants defective in synapsis alone (~2 months postpartum), suggesting that 
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mammalian oocytes have distinct DNA damage and synapsis checkpoints (2, 7) 
(Fig.1A). Additionally, mutations preventing DSB formation (Spo11, Mei1) are 
epistatic to those affecting DSB repair (2, 7). The DNA damage checkpoint acts 
around the time oocytes enter meiotic arrest (dictyate, or resting stage) and 
presumably persists, since resting primordial follicles are highly sensitive to ionizing 
radiation (IR)-induced DNA damage (8).  

We focused on CHK2 kinase as a candidate component of the meiotic DNA 
damage checkpoint. It is a canonical downstream effector of the ATM kinase that 
responds primarily to DSBs, and can also be activated by the ATR kinase that 
responds primarily to ssDNA (9, 10). Unlike Atm and Atr, Chk2 is dispensable for 
fertility and viability.  If Chk2 is required for the meiotic DNA damage checkpoint, 
then its ablation should rescue a DSB repair mutation that otherwise causes meiocyte 
death. The RecA homolog Dmc1 is required for meiotic DSB repair via interhomolog 
(IH) recombination (11). Its deficiency also prevents synapsis, which is HR-dependent 
in mice. Whereas 3 week postnatal WT or Chk2-/- ovaries contain primordial through 
antral follicles (Figs.1B,C; S1), Dmc1-/- ovaries are devoid of follicles (Fig.1E). 
Deletion of Chk2 enabled survival of developing oocytes in DMC1-deficient 3-week 
old ovaries (Figs.1F,G).  Primordial follicles were absent, however, leading to a nearly 
complete depletion of oocytes by 2 months of age (Figs.S1,S2).  This pattern and 
timing of oocyte loss resembles that of Spo11 or Spo11-/- Dmc1-/- mice (Fig.1A; (2)), 
suggesting that Chk2 ablation compromises the DSB repair checkpoint, but not the 
synapsis checkpoint.   

To test this, we took advantage of a hypomorphic allele of Trip13 (Trip13Gt) that 
causes male and female meiotic failure.  Trip13Gt/Gt meiocytes are proficient in 
chromosome synapsis and CO formation, but fail to complete NCO DSB repair (12), 
causing elimination of the entire primordial follicle pool and all but a few developing 
oocytes by three weeks of age (Fig.1H) (12, 13). Trip13Gt/Gt oocyte elimination occurs 
at the DNA damage checkpoint (12, 13) (Fig.1A).  Strikingly, Chk2-/- Trip13Gt/Gt 
ovaries had a large oocyte pool at 3 weeks postpartum (Figs.1I,J; S1), and they 
retained similarly high numbers of primordial follicles and exhibited all stages of 
follicle development after two months (Fig.S2), indicating that the rescue of surviving 
oocytes from checkpoint elimination was permanent or nearly so (see below). We 
considered the possibility that the rescue of Trip13Gt/Gt oocytes by CHK2 deficiency 
might be due to repair of DSBs by an alternative pathway during pachynema, since the 
Chk2 budding yeast ortholog MEK1 is involved in DSB repair pathway choice (14). 
However, all dictyate Chk2-/- Trip13Gt/Gt oocytes (n=54), like Trip13Gt/Gt oocytes, 
exhibited abundant γH2AX staining, indicative of persistent unrepaired DSBs (vs. 7% 
of Chk2-/- dictyate oocytes; n=45) (Fig.2A,B).  

To test whether the rescued oocytes were functional despite the presence of DSBs 
into late meiotic Prophase I, we evaluated the fertility of Chk2-/- Trip13Gt/Gt adult 
females. Remarkably, all produced multiple litters in matings to fertile males (Fig.2C). 
Litter sizes were smaller compared to control females (Fig.2D), attributable to fewer 
ovulated oocytes and implanted embryos (Fig.S3) as expected from the smaller 
primordial follicle pool. Chk2-/- Trip13Gt/Gt females sustained fertility for many months, 
yielding 4-7 litters each (Fig.2C) and over 160 pups collectively. Those progeny 
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maintained to adulthood (n=28) showed no visible abnormalities up to 1 year of age. 
The fact that these rescued oocytes were functional and yielded healthy offspring 
suggests that all or most DSBs persisting into late meiosis were eventually repaired.  
Indeed, there was no evidence of persistent DNA damage (as indicated by γH2AX) in 
2 month old primordial, growing, or germinal vesicle (GV) stage preovulatory Chk2-/- 
Trip13Gt/Gt oocytes compared to controls (Fig.S4). Thus, repair of DSBs occurred after 
birth by unknown mechanisms. 

Next, we sought to identify the downstream target of CHK2 that mediates 
apoptosis in DSB repair-defective oocytes. Canonically, CHK2 signals to p53 in 
mitotic cells. In Drosophila melanogaster, CHK2-dependent p53 activation occurs in 
response to SPO11-induced breaks (3). We threefore tested whether p53 deficiency 
could rescue the elimination of Trip13Gt/Gt oocytes.  Three week old p53-/- Trip13Gt/Gt 
ovaries had significantly more oocytes than Trip13Gt/Gt single mutants (Figs.3B,C; S1), 
however, the rescue was not as dramatic as that enabled by Chk2 deletion (Fig.1D). 
The p53-/- Trip13Gt/Gt ovaries contained far fewer primordial follicles at 3 weeks 
postpartum, and these were progressively depleted such that by 2 months of age 
almost no oocytes remained (Fig.S2).  Therefore, CHK2-mediated elimination of these 
DSB repair-defective oocytes does not occur exclusively via signaling to p53, 
indicating the existence of another downstream effector(s) that acts perinatally in 
primordial follicles.  

One candidate is p63, a p53 paralog.  A predominant isoform called TAp63 
appears perinatally in late pachytene and diplotene oocytes, approximately coinciding 
with DNA damage checkpoint activation. Since TAp63 was implicated in the 
elimination of dictyate oocytes subjected postnatally to DSB-causing IR (15, 16), and 
it contains a CHK2 consensus substrate motif LxRxxS (17), we speculated that CHK2 
might activate TAp63 in response to DSBs.  Indeed, whereas IR induces 
phosphorylation in WT ovaries (15, 16), TAp63 remained unphosphorylated in 
CHK2-deficient ovaries (Fig.3D). Moreover, mutating serine to alanine in the CHK2 
phosphorylation motif in p63 also prevented IR-induced TAp63phosphorylation in 
cultured cells (Fig.3E). We next tested if CHK2 is required for elimination of DSB-
bearing dictyate oocytes, presumably via TAp63 activation. Strikingly, whereas the 
entire primordial follicle pool was eradicated one week after IR-treatment of WT 
ovaries, CHK2 deficiency prevented oocyte elimination despite the presence of p63 
protein (Fig.3F). Furthermore, irradiated Chk2-/- females remained fertile with average 
litter size (6.3± 1.8, n=7) similar to unirradiated controls (6±2.3, n=3).  If this rescue 
of fertility was due entirely to abolition of TAp63 activation, then deletion of TAp63 
should also restore fertility of irradiated females. Previous studies (15, 16) found that 
p63-/- and TAp63-/- oocytes survived 5 days after 0.45-5Gy of IR, but longer term 
survival was not evaluated. Surprisingly, we found that 0.45Gy IR completely 
eradicated primordial oocytes after 7 days in females homozygous for a viable, TA 
domain-specific deletion allele of p63 (TAp63-)(18, 19), identical to WT (Fig.4A,B).  

These results suggested that in response to IR-induced DSBs (and perhaps meiotic 
DSBs as well), CHK2 signals to a protein(s) in addition to TAp63. Suspecting p53, we 
found that whereas irradiated p53-/- ovaries were essentially devoid of oocytes 
(Fig.4C) (15, 16),  p53-/- TAp63-/- oocytes (including those in primordial follicles) were 
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rescued (Fig.4D) to a degree similar to Chk2 mutants (Fig.3F). Interestingly, we 
observed partial rescue of irradiated p53+/- TAp63-/- (Fig.4E) but not p53-/- TAp63+/- 
oocytes. These data indicate that CHK2 signals to both p53 and p63 in resting oocytes, 
and that they act in a partially redundant fashion to eliminate DSB-bearing oocytes. 
The marked effects of p53 haploinsufficiency, and the possible inconsistencies with 
earlier reports showing that deletion of p63 alone could rescue primordial follicles 
from IR over the short term, indicate that checkpoint responses may be sensitive to 
quantitative variation such as that influenced by genetic background. 

Since Chk2 but not p53 deficiency reversed Trip13Gt/Gt female infertility, an 
outcome similar to the results with postnatal ovary irradiation, we hypothesized that 
the same DNA damage checkpoint was operative in both pachytene/diplotene and 
dictyate oocytes. To test this, we first examined patterns of p53 and TAp63 activation 
in different genotypes of ovaries, with or without IR exposure. As expected for WT, 
TAp63 phosphorylation and p53 stabilization/expression occurred only after exposure 
to IR (Fig.4F). Importantly, we observed p53 protein in unirradiated Trip13Gt/Gt 
neonatal ovaries but not WT (Fig.4F), implying a role for p53 in the elimination of 
mutant oocytes with unrepaired meiotic DSBs (and consistent with partial rescue of 
Trip13Gt/Gt p53-/- oocytes; Fig.3C).  Stabilization of p53 in response to unrepaired 
meiotic DSBs is CHK2-dependent, since we did not detect p53 in Chk2-/- Trip13Gt/Gt 
ovaries (Fig.4F). Unexpectedly, TAp63 was absent from neonatal Trip13Gt/Gt ovaries 
bearing residual oocytes (Fig.4F).  Normally, TAp63 mRNA appears in late meiotic 
prophase I when meiotic DSBs have been repaired, and is robustly activated in resting 
oocytes in response to exogenous DNA damage (15, 16).  Nevertheless, the absence of 
TAp63 in Trip13Gt/Gt oocytes predicts that it is not responsible for their death.  Indeed, 
no oocyte rescue was observed in wean age TAp63-/- Trip13Gt/Gt ovaries (Fig.4I).  A 
potential explanation for TAp63 repression in Trip13Gt/Gt oocytes was suggested by our 
observation (Fig.4F) that unphosphorylated TAp63 was present in Chk2-/- Trip13Gt/Gt 
ovaries lacking detectable p53.  These results suggest a regulatory relationship 
between p53 and TAp63 in the meiotic DNA damage response. 

The mutual exclusivity of TAp63 and p53 in Trip13Gt/Gt oocytes gives insight into 
the failure of either single mutant to rescue fertility. We hypothesized that unrepaired 
DSBs that persist into late pachynema trigger CHK2-dependent p53 activation and 
oocyte elimination independent of TAp63, but that in the absence of p53, TAp63 can 
be expressed and activated by CHK2 to drive oocyte elimination. This predicts that 
removal of both proteins would abolish the CHK2-dependent checkpoint.  Indeed, we 
found that p53 heterozygosity could rescue TAp63-/- Trip13Gt/Gt oocytes (Fig.4J). 
Importantly, this rescue included primordial follicles (Fig.4J, inset; note: nullizygosity 
for all three genes is embryonically semilethal).  These and previous results with 
single mutants indicate that the DNA damage checkpoint pathway that monitors repair 
of SPO11-induced DSBs involves CHK2 signaling to both p53 and TAp63, and that 
this pathway also operates in postnatal resting oocytes (Fig.S5).   

A remaining question concerns the upstream activator(s) of CHK2. Canonically, 
ATM phosphorylates CHK2 in response to DSBs, while ATR responds to single 
stranded DNA by activating CHK1 (20, 21).  However, ATR and ATM have other 
activities in mouse meiosis. ATM negatively regulates SPO11, causing Atm-/- oocytes 
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to sustain extensive DSBs and triggering elimination by the meiotic DNA damage 
checkpoint (Fig.1A) (2, 22).  Therefore, CHK2 is likely activated by a different 
kinase. Indeed, Chk2 deficiency rescued Atm-/- oocyte depletion (Fig.S6) to a degree 
similar to the rescue of DMC1-deficient ovaries. The facts that: a) CHK2 can trigger 
apoptosis in the absence of ATM in somatic cells (9), b) CHK2 can be activated in an 
ATR-dependent manner (10) and c) ATR localizes to sites of meiotic DSBs in mice 
(23), prompt us to propose that the DNA damage checkpoint pathway in mouse 
oocytes involves signaling of ATR to CHK2, which in turn signals to p53 and TAp63 
(Fig.S5). Intriguingly, spermatocytes may have a distinct DNA damage response 
pathway; we did not observe histological evidence for rescue of DSB repair-
defective/synapsis-proficient spermatocytes by deletion of Chk2 or p53 (Fig.S7).  

Our results are of biomedical interest with respect to the primordial follicle pool 
depletion and premature ovarian failure that can occur following cancer radiotherapy 
or chemotherapy. CHK2 is an attractive target in this regard, since chemical inhibitors 
are available, and Chk2 insufficiency is of minor phenotypic consequence in mice 
(24). It may also become relevant for assisted reproductive technologies that employ 
in vitro development of germ cells, for example in the assessment of how various 
conditions activate the pathway, or how modulating the pathway can be lead to 
efficient and safe outcomes. 
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Fig. 1. Evidence of a specific DNA damage checkpoint in mouse oocytes. (A) 
Timing of DNA damage and asynapsis checkpoints in oocytes. (B,C,E,F,H,I) 
Histology of 3 week postpartum ovaries. Follicle-devoid ovaries are circled. (D,G,J) 
Oocyte quantification in mutants. Arrowheads (A,B,C,I) indicate primordial follicles. 
Scale bar = 200µm. 
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Fig. 2. DSBs in Trip13Gt/Gt Chk2-/- newborn oocytes are eventually repaired and 
yield offspring. (A) Neonatal oocytes co-immunolabeled as indicated. (B) Trip13Gt/Gt 

Chk2-/- oocytes progress to dictyate (“D”) even with DSBs. P = pachytene. Boxed 
nuclei are magnified (inset). (C) Reproductive longevity and (E) fecundity of females. 
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Fig. 3. Genetic and molecular analysis of the oocyte DNA damage checkpoint. (A-
C) Trip13Gt/Gt oocyte depletion is only partially rescued by p53 deficiency. Scale bar = 
200 µm. (D) DNA damage-induced TAp63 phosphorylation in newborn ovaries is 
CHK2-dependent. Neonatal ovaries (4) received 3Gy IR before protein extraction 2 
hrs later. Note: increased p63 in Chk2-/- is likely due to increased oocytes we observe 
in this genotype. (E) p63 contains a CHK2 phosphorylation site. HeLa cells bearing 
FLAG-tagged TAp63 with WT (LxRxxS) or mutant (LxRxxA) CHK2 motifs. Shifted 
CHK2 (arrowhead) is phosphorylated. IR dose=3Gy.  (F) Depletion of p63-positive 
primordial follicles by IR is CHK2-dependent. Ovaries were cultured 7 days after 
irradiation. Scale bar=100 µm. MVH marks oocytes. Inset: ovary cortical region 
containing primordial follicles. 
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Fig. 4. CHK2 signals to both p63 and p53 in oocytes. (A-E) Depletion of primordial 
follicles by IR requires p53 and TAp63. One week old ovaries were irradiated then 
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cultured 7 days before immunohistochemistry. p63 and MVH are oocyte-specific. (F) 
Dynamic signaling to p53 and p63 in response to meiotic and induced DSBs. Shown 
are Western blots of neonatal ovarian protein. The irradiated sample was collected 2 
hrs post-IR (3Gy). Arrowhead: phosphorylated p63 (15, 16). Note that Trip13 mutants 
are in process of eliminating oocytes (reflected by MVH), hence use of more ovaries. 
(G-J) Both p53 and TAp63 are required for complete elimination of DSB repair-
defective oocytes.  Ovaries are 3 week postpartum. Inset of J shows primordial 
follicles. Scale bar=200 µm. 
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ABSTRACT 

Monitoring of student learning through systematic formative assessment is 

important for adjusting pedagogical strategies. However, traditional formative 

assessments, such as quizzes and written assignments, may not be 

sufficiently timely for making adjustments to a learning process. Technology 

supported formative assessment tools assess student knowledge, allow for 

immediate feedback, facilitate classroom dialogues, and have the potential to 

modify student learning strategies.  As an attempt to integrate technology 

supported formative assessment in the laboratory section of an upper-level 

histology course, the interactive application Learning CatalyticsTM, a cloud-

based assessment system, was used. This study conducted during the 2015 

Histology courses at Cornell University concluded that this application is 

helpful for identifying student misconceptions “on-the-go”, engaging otherwise 

marginalized students, and forming a new communication venue between 

students and instructors. There was no overall difference between grades 

from topics that used the application and grades from those that did not, and 

students reported that it only slightly helped improve their understanding of 

the topic (3.8 ± 0.99 on a five point Likert scale). However, they highly 

recommended using it (4.2 ± 0.71). The major limitation was regarding the 

image display and graphical resolution of this application. Even though 

students embrace the use of technology, 39% reported benefits of having the 

traditional light microscope available.  This cohort of students led instructors 
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to conclude that the newest tools are not always better, but rather can 

complement traditional instruction methods.   

 

Keywords:  Undergraduate medical education, Microscopic anatomy, 

Histology, Virtual microscopy, Digital morphology, E-learning, Interactive 

computer graphics, Formative assessment, Instant feedback assessment 

technique 
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INTRODUCTION 

Most instructors strive to prevent students from making faulty interpretations of 

topics; but if these misinterpretations are inevitable, then identifying them early 

is key (Watkins and Mazur 2013). The use of any teaching tool that generates 

information about students’ achievements and can be used by teachers and 

students to improve learning is a formative assessment tool (Black and Wiliam 

2009; Baleni 2015). The use of formative assessment to obtain and provide 

continuous feedback on student’s state of knowledge has been implemented 

in the biomedical sciences in many forms (Clynes and Raftery, 2008; 

Alexander et al., 2009; Trumbull and Lash, 2013; Antoniou and James, 2014). 

The repertoire of formative assessment tools in use at the Cornell histology 

course (BioAP4130/BioMS4130) encompass quizzes, laboratory reports, case 

study reports and laboratory activities using both light microscopy and virtual 

microscopy as tools.  Instructors utilize these to provide constructive feedback 

to students and gain insight into the misinterpretations and gaps in students 

understanding allowing modifications in teaching strategies. For the Cornell 

histology course these assessments also contribute to the student’s final 

grade, which summarizes the students’ achievements for the course, i.e. the 

summative assessment (Nicola and Macfarlane‐Dick, 2006). Whereas 

formative assessments “monitors to improve” student learning, summative is 

an evaluation of learning. Therefore, even though all graded portions of the 

histology course are also summative assessments, only the final examination 

is not formative.  
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Students can benefit from formative assessments only when provided with 

feedback that allows them to act upon their learning (Perera et al., 2008; 

Trumbull and Lash, 2013). Feedback is an interactive process that provides 

information about a person’s performance of a task, which can be used as 

basis for improvement (Nicola and Macfarlane‐Dick, 2006; Clynes and 

Raftery, 2008; Perera et al., 2008). Feedback provided through the analysis of 

formative assessments helps improve student’s learning strategies (Nicola and 

Macfarlane‐Dick, 2006; Perera et al., 2008). Usually formal feedback, as 

those provided when students receive their graded written assignments, takes 

longer to reach the student and require student’s motivation in order to be 

effective (Mullet et al., 2014). Informal feedback is mostly delivered 

immediately by direct interaction between students and teacher during a 

laboratory session (Clynes and Raftery, 2008). In laboratory settings that 

require instructor-student interactions, immediate informal feedback is not only 

important but also the most frequent. However, informal feedback may never 

reach shy students who are not comfortable asking questions or seeking 

clarification (Sinclair and Cleland, 2007) resulting in marginalization and failure 

to achieve full potential (Sinclair and Cleland, 2007).  

 

The timing in which a student receives feedback is also important and has 

variable outcomes (Dihoff et al., 2003; Sinclair and Cleland, 2007; Clynes and 
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Raftery, 2008; Miller et al., 2014; Mullet et al., 2014) that inevitably depend on 

how students react to it (Dihoff et al., 2013). When feedback is provided while 

interacting with students it is said to be an immediate feedback (Shute, 2007; 

Mullet et al., 2014). Feedback provided days or weeks after an assessment 

has taken place is labeled as “delayed” (Shute, 2007; Mullet et al., 2014). Most 

classroom environments foster both immediate and delayed feedback. It can 

be generalized that students receiving immediate feedback are less likely to 

form memory of wrong concepts (Crouch and Mazur 2001)). In courses that 

progressively build new concepts upon recently acquired knowledge (e.g. 

concepts developed earlier in the course), the memory of a wrong concept 

may irreversibly impair the student’s understanding of the newer topic. 

Therefore, learning outcomes are at stake if a misconception is not promptly 

identified and corrected (Crouch and Mazur 2001); Dihoff et al., 2003). In 

contrast, Mullet et al. have compelling evidence of the benefits of delayed 

feedback that cannot be taken for granted (Mullet et al., 2014). Envisioning 

that no approach is singly the best, the ideal feedback should have both the 

immediate and the delayed component. 

 

Histology is a detail-oriented biomedical course that requires identification and 

description of the cellular organization in healthy tissue (Mione, Valcke, and 

Cornelissen 2013). It is traditionally taught as a combination of descriptive 

lectures and practical laboratory sections (Bloodgood 2012; Bloodgood and 

Ogilvie 2006). The latter aims to develop the students’ abilities to identify 
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subtle morphological differences in characteristics of a tissue and integrate 

their knowledge of the functional aspects of an organ with their observation of 

a two dimensional microscopic image (Bloodgood and Ogilvie 2006; Hortsch 

and Mangrulkar 2015; Mione, Valcke, and Cornelissen 2013; Selvig et al. 

2015). This is a complex and multistep process that is usually facilitated by 

interaction between learners and teachers. Therefore, an ideal formative 

assessment tool would nurture student teacher communication, be able to 

display high-resolution images that react to user interaction, provide formative 

assessment to instructors, and allow for formal immediate and delayed 

feedback to students. 

 

With advances in technology, teachers of morphology-based courses have 

tools that together with virtual slides (VS) can be used to engage students and 

assess learning outcomes before graded examinations are performed. Such 

tools are often referred to as classroom response systems (CRS) (Paschal, 

2002; Shell et al., 2013) or audience response systems (ARS)(Alexander et 

al., 2009). Examples of CRSs are “clickers” (Briggs and Keyek-Franssen 

2010), the Piazza Q&A platform (“Piazza • Ask. Answer. Explore. Whenever.” 

2016), internet-based voting applications (Mathiasen 2015), and the web-

based Learning CatalyticsTM platform (Schell et al., 2013; Mullet et al,. 2014). 

These teaching tools are currently used to engage students and provide 

immediate feedback about their state of knowledge. Even though these tools 

are widely used, there are few formal reports about their effectiveness and 
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how they are perceived by students (Karolcík et al. 2015; Selvig et al. 2015) 

when used during laboratory sections. Even though many excellent 

technology supported formative assessment tools that provide immediate 

feedback are available, this study was conducted using the Perason Learning 

CatalyticsTM platform to readily identify misconceptions and provide a more 

inclusive and formal feedback. 

 

Currently, the Cornell histology course uses microscopy as tool for immediate 

formative assessment. The course is in the form of a traditional lecture 

followed by an interactive laboratory session in which instructors assist 

students in examining histological slides; thus providing students with 

immediate informal feedback. The lecture component uses PowerPoint slides 

coupled with an educational talk. The laboratory component relies on student 

engagement in learning activities that refers back to concepts presented 

during lecture. The activities prompt students to find and correlate histological 

structures with organ function. Students are allowed to work in groups, formed 

without instructor intervention. It is during the laboratory session that all 

formative and summative assessments for the course take place. In the 

laboratory setting, students have access to multiple glass slides, computers 

(used to visualize the virtual slides (VS)), and traditional two head 

microscopes. During the laboratory section instructors make available 

histology books and atlases. If solicited, students receive immediate informal 

feedback while using virtual microscopy (VM) or light microcopy (LM) with 
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glass slides (GS). Unsolicited feedback is offered when instructors deem 

students are having difficulties with the topic (Bloodgood 2012; Collier et al. 

2012). Quizzes, laboratory reports and two examinations in the middle of the 

semester are the formative assessments used to provide delayed formal 

feedback.  

 

Objective: 

The purpose of this study is to evaluate the use of an interactive cloud-based 

classroom response system (CRS) to identify misconceptions “on-the-go”, 

minimize erroneous interpretation due to contradictory or confusing informal 

feedback, and obtain a more inclusive teaching atmosphere (Stoltzfus, 2014). 

The targeted audience is undergraduate and graduate students enrolled in 

Cornell’s 2015 histology course. The course’s laboratory component requires 

student engagement through active learning and peer learning activities. As 

an effort to improve students’ learning outcomes, the learning activities 

constantly incorporate the use of new teaching tools, currently using the VM 

technology coupled with the LM and problem based learning activities. 

However, misconceptions about the topics still arise and are not detected by 

instructors until grading high stakes assessments (Feldman and Capobianco, 

2007). The Pearson Learning CatalyticsTM platform is the selected CRS 

(Schell et al., 2013; Mullet et al,. 2014). Surveys from students and instructors 

provide information on their perception of this CRS. Impact on learning 
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outcome is assessed through self-reported experiences and through the 

comparison of question scores obtained on topics that did or did not use the 

CRS. 

 

 This research was done according to Cornell Institutional Review Board 

Policy # 2 and under paragraph 2 of the Department of Health and Human 

Services Code of Federal Regulations 45CFR46.101(b) and has protocol ID# 

1503005435. 

 

MATERIALS AND METHODS 

Software: 

The Pearson Learning CatalyticsTM, version 2015 (Pearson Education Corp., 

Upper Saddle River, NJ) is the Internet based teaching tool selected to provide 

formative assessment. The following were the reasons for making this choice: 

(1) Learning CatalyticsTM CRS is not restricted to multiple-choice questions. 

Instead, examples of question types that can be created include written short 

or long answers, word cloud, matching pairs, identifying regions and sketching 

(see figure 2 and 4 for examples). (2) Students can use any web-enabled 

device (such as smart-phones, computer and tablets.) Thus, the existing 

laboratory setting did not require the purchase of any extra device. (3) It has 

an interactive component where students not only answer the questions in real 

time, but also are able to let instructors know if they understood the reasoning 
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behind an answer. (4) Students could submit questions without the need to 

raise their hands, speak out loud, or wait for all students to submit their 

answer. (5) Students’ responses are immediately made available on 

instructor’s device (Schell et al., 2013; Mullet et al,. 2014). (6) It is user friendly 

and the implementation only requires that students and instructors have 

access to the Internet, a web-enabled device, and a valid account. At the time 

of the study the student cost was US$12.00 for six months. (7) For the 

purpose of this study Pearson made available two instructor accounts and 50 

student accounts for a period of four months free of charge.  

 

In order to test the tool in a laboratory session, four small modules containing 

ten to fifteen questions each were generated using the software. The modules 

were delivered as 15 to 30 minute review sessions. The sessions were 

interactive in the sense that students and instructors actively discussed 

concepts. Furthermore, as each question was delivered, students articulate a 

response. This commitment to an answer has been shown to make students 

more likely to seek understanding and engage in discussion (Alexander et al., 

2009; Ludvigsen et al., 2015). The notation “interactive review session” (IRS) 

was chosen as a descriptor since the activity was designed around previously 

learned topics and required meaningful learning (there was no passive 

delivery of information). Instructors also reminded students that the IRS was 

voluntary, had no impact on their grade, and used an interactive CRS platform. 

Placing the IRS at the end of the laboratory session was partially based on 
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Favero's description of review sessions, and partially as an attempt to 

minimize any negative impact to the course if students shunned the activity 

(Favero, 2011).  

 

Study Participants: 

All of the students enrolled in the spring semester of the 2015 histology course 

at Cornell University were encouraged to participate in the study. Every 

intervention and survey request provided participants with information 

regarding the research goal and procedures of the study. Participation was not 

required, and students were allowed to withdraw at any time without any 

penalty. The Institutional Review Board (IRB) at Cornell approved the research 

methods used. The Pearson’s Learning CatalyticsTM software was kindly made 

available by Pearson representatives, free of charge, for all students 

regardless of their choice to participate in the study. 

 

The staff for this laboratory semester consisted of one faculty member, one 

postdoctoral teaching assistant (TA), one graduate TA and five undergraduate 

TAs. The faculty member and the graduate TA (authors of this article) 

envisioned and implemented the IRSs activities. The graduate TA did not 

participate in any survey. During the laboratory, all staff members (referred to 

as instructors throughout the manuscript) were encouraged to hover around 

the room waiting for students to call for help. Instructors had weekly meetings 
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in which the slides and slide descriptions were thoroughly reviewed to ensure 

comparable and homogeneous knowledge of the topics.  

 

Interactive Review Session: 

The IRS questions were designed around the topics: integument; 

gastrointestinal tract (GIT); oral cavity; and endocrine system (thyroid, liver 

and pancreas). There are six questions from the Oral Cavity module available 

as Supporting Information. Questions covering the material suggested for the 

week, were designed a day prior to the activity, and mirrored instructors’ 

previous experiences about student misconceptions. Studies by Freeman et al 

suggest that the students are more likely to engage in an interactive exercise if 

they are more familiar with one another and with their instructors (Freeman et 

al. 2014).Therefore, these IRSs were implemented during the second half of 

the semester as an attempt to obtain a better participation rate once students 

had time to build a relationship with instructors and with each other.  

 

Measure of Impact in Learning Outcome: 

In order to test if the CRS mediated feedback impacted learning outcomes, 

surveys and final examination question scores were utilized. Question scores 

derived from topics either using or not using the CRS were compared. For 

topics that did not use the CRS, formal delayed feedback had previously been 

provided through quizzes and laboratory reports. Examination scores were not 
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linked to students’ identification, and the quantitative analysis used question 

scores from all students, independent of their participation on the IRS. Final 

examination scores did not follow a Normal distribution (both score types with 

a P(W) < 0.001 for the Shapiro-Wilk goodness-of-fit test). Therefore non-

parametrical Wilcoxon comparison for each pair method was used to compare 

the difference between scores from IRS and non-IRS topics. A table 

containing the averaged scores, standard deviation (SD), and median for the 

23 questions can be found in the supporting information. There was a total of 

11 non-IRS and 12 IRS related questions for the final examination. All 

statistical analyses were done using JMP Pro, version 12.0.1 software (SAS 

Inc., Cary, NC). Students and instructors were asked to provide feedback 

about their experiences by answering voluntary and anonymous surveys. The 

impact on students’ grades was not a focus of our study instead, the study 

was designed to identify misconceptions “on-the-go”, minimize confusion due 

to informal feedback and obtain a more inclusive teaching environment.  

 

Surveys: 

In order to assess how students experienced each module of the IRS, specific 

internet-based surveys were designed for each module (mini-surveys). These 

surveys were sent to students soon after IRS ended utilizing the Cornell 

Qualtrics platform (a web-based survey tool available to the Cornell 

community). The information provided in the different surveys was used to 
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improve each subsequent IRS (Supporting Information). We also generated 

two paper-based surveys: [1] one delivered before the IRS activity began 

(Supporting Information); [2] and another delivered the last day of class; prior 

to final examination and after all IRSs (Supporting Information). All surveys 

had questions that used the five point Likert-type scale (1 = Strongly disagree; 

2 = Disagree; 3 = Neutral; 4 = Agree; 5 = Strongly agree; 1 = “poor rating” and 

5 = “excellent rating”) and open-ended questions. Kendall’s tau B and 

Cronbach’s alpha statistical tests were performed to assess correlation and 

reliability using JMP Pro12 software. Responses with correlation coefficient (r) 

above r > 0.6, Kendall’s tau p-value p(τ) < 0.05 and Cronbach’s alpha a > 0.7 

were combined to represent a measure of positive or negative students’ 

perception. This combined Likert is therefore a 10 points scale. All mean 

values provided are accompanied by respective standard deviation (SD). 

Survey [1], adapted from Harris et al. (2001), was designed to obtain 

information about the students’ perception of LM and VM, which are the two 

teaching tools used for immediate formative assessment and informal 

feedback during this histology course. Students had access to both tools in the 

laboratory setting (open from 8am to 5pm on weekdays) and VM at all times in 

their personal computers. The survey assessed student’s preference for the 

tools, difficulty in use and usefulness understanding the material (Supporting 

Information). Survey [2] was designed to provide information about how 

students perceived the IRS and the CRS software, and if the activity helped 

them understand the material. This survey was designed by the authors and 
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tested by six fellow graduate students to assess clarity. Answers from paper-

based surveys were typed into excel spreadsheet for analysis, exactly as 

written by surveyed individual (Supporting Information). Sample answers 

found in this manuscript were transcribed exactly as originals. Authors’ 

observations coupled with instructors’ surveys (delivered using Qualtrics 

platform) to assess software usefulness, and effect on student performance, 

were used to evaluate the activity from a non-student perspective. Excel 

spreadsheets for all surveys are provided as supporting information. 

 

Course Context: 

The study was performed during the laboratory session of the Histology 

course BioAP4130/BioMS4130 taught in the spring semester of 2015 at 

Cornell University in Ithaca, NY. This is an upper-level undergraduate course 

offered by the Department of Biomedical Sciences at the College of veterinary 

medicine. It is a four-credit course, offered only during spring semesters; the 

class meets twice a week (Monday and Wednesday) for 14 weeks and the 

contact hours add up to 24 hours of lecture and 56 hours of laboratory. The 

course consists of 28 lectures during 55 minutes, followed by 28 two-hour 

laboratory sections. There are two laboratory sections that are used for 

preliminary examinations without any laboratory activity.  

The classroom size for the spring 2015 semester was 39 enrolled students 

plus two auditing graduate students (not included in the study). The course’s 
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prerequisite is a three-credit introductory biology course (BIOMG 1350 

Introductory Biology: Cell and Developmental Biology) and students are also 

recommended to have taken principles of biochemistry (BIOMG 3300 or 

BIOMG 3310) or equivalent.   

 

The course content covered all major organ systems. Both GS and VS from a 

variety of vertebrate species were available, even after course hours. Weekly 

packets intended to guide students through the laboratory activities contained 

factsheets (with brief overview of most basic concepts, together with detailed 

description of suggested slides) and an assignment guiding students in their 

learning of histology. The students used the assignments to generate 

laboratory reports, with five out of nine being graded. Students were 

recommended to hand-in the non-graded reports in order to receive formal 

feedback. Laboratory reports and quizzes were low stakes assessments 

(Gilboy et al., 2014). Grades obtained during the course length were used to 

assess and provide feedback on student’s strength and weakness (formative 

assessment and formal feedback respectively) (Krasne et al. 2006; Pulfrey et 

al., 2013) and numerical values were used to determine the student’s final 

grade. Even though students had access to most specimens through VS, 

some samples were provided only as GS with the goal of encouraging 

students to develop their microscopy skills. During the laboratory sessions, 

students were encouraged to work in pairs or small groups, but a few elected 

to work independently (Braun and Kearns 2008).  
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Assessments and Assignments 

Assessments of three types were used: quizzes, written laboratory reports, 

and examinations.  There were four quizzes, which together were worth 15% 

of the total grade; five graded written laboratory reports (and four non-graded 

and voluntary), which together were worth 15% of the total grade; three 

examinations (two preliminary and one final examination), which together 

represented the remaining 70% of the final grade.  Grades are not curved. The 

low-risk written assignments and quizzes were designed to engage students 

with the subject matter and to prepare them for the examinations.  The 

majority of the written assignments required the student to use GS to be fully 

answered. The impact of the use of the CRS during the IRS on learning 

outcome was restricted to questions derived from the final examination. 

 

RESULTS: 

Classroom Demographics 

There were 39 students enrolled in the 2015 histology course, 19 females, and 

20 males (table 1). From these, 28 volunteered (12 males and 16 females) to 

answer the first paper based survey [1] (Supporting Information) and 25 

students (9 males and 16 females) answered the second paper base survey 

[2] (Supporting Information). These surveys provided us with information about 

the students’ career goals, the usefulness of the teaching tools (e.g. VM, LM 
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and CRS) and if they recommended the tool (these are summarized in figure 

1). There were always more females that answered the surveys than males, 

including the mini-surveys (table 1). These students are high achievers with 

72% seeking to pursue a professional medical (MD) or a veterinary degree 

(DVM) (mean Likert scale of 4.2 ± 1.5). 

 

Interactive Review Sessions 

The IRS preferentially exposed students to images derived from unfamiliar 

histological samples in order to obtain information about the students’ 

understanding. The goal of this approach was two fold: avoid responses 

based on memorization of particular aspects of the slide (for example 

histological artifacts) and help identify misconceptions on foundational 

concepts (for example differentiation between organ structure and cell 

morphology) (figure 2). In this regard, Pearson’s Learning CatalyticsTM 

software was a good tool to identify topics in which students needed more 

clarification. Figure 2c is an example of a composite sketch type question. This 

question asked students to draw a line on the interface between the dermis 

and the epidermis. After delivering the question it was noticeable that some 

students had a misconception, with seven out of 22 (32%) responses being 

wrong. Once students saw the composite sketch of their answers, they were 

asked to share the reasoning for their answer with their peers. When the 

question was delivered again, 96% of answers were correct. The student that 
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still marked the wrong answer was identified (instructors have access to 

individual answers) and later received an email from the instructor via the 

software addressing the misconception. Another example of the subtlety of 

misconceptions that can be identified is presented in figure 2a, a composite 

sketch type question. The data from students’ responses allows instructors to 

determine that, although students could indicate the transition point, many had 

trouble differentiating stomach from duodenum. Figure 2a is another example 

taken from the endocrine IRS. 

 

Despite the clear benefit of the application toward identifying misconceptions 

and promoting formal immediate feedback, for this small cohort of students, 

the platform did not improve final examination scores above that of the 

currently employed feedback methods (figure 3). The averages and median 

scores for individual questions can be found in the supporting information. The 

Wilcoxon comparison for each pair method had p-value=0.11, thus there was 

not strong evidence to support difference in students’ performance when 

answering questions from topics derived or not derived from the IRS. The 

average score for questions derived from IRS topics was 7.4 ± 0.96, whereas 

the average from non-IRS topics was7.6 ± 1.07. However, these are absolute 

values that include all students regardless of their attendance for the IRS.  

 

Survey [1]: Microscopes 
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Both LM and VM, the traditional tools used for immediate formative 

assessment and immediate informal feedback, were familiar to this cohort of 

students. There was an overall positive perception for both LM (7.1 ± 1.72) 

and VM (9.2 ± 1.07), as determined by combined Likert scale obtained from 

questions pertaining to usefulness of tool and recommendation of tool (figure 1 

and Supporting Information - table 2 columns Q1-1, Q6-1 and Q1-2, Q6-2). 

When asked about benefits of using both VM and LM in open-ended 

questions, students’ responses reflected appreciation for both.  However some 

students would rather have only the VM (aperio refers to VM): 

 “no, I liked Aperio and felt it was sufficient alone and convenient for me 

to study at home” 

There were 11 students (39%) that answered “yes” they benefit from having 

access to both methods VM and LM together and 6 (21%) answered 

“no”(Supporting Information - Table2 Q2). One student reported the LM as the 

favorite method of learning. The following quote best represented this cohort 

of students: 

 “to an extent yes [only one method is sufficient], but both are better in 

tandem. The virtual is convenient, but the optical is useful on developing 

microscopic techniques/understanding. Both correct for each ones 

shortcomings”  

 

Survey [2]: Interactive Review Session 
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On average students thought the review sessions were helpful (five point 

Likert of 4.2± 0.91) but software only slightly improved guiding the session 

towards problematic topics (five point Likert of 3.8± 0.99). However, there was 

significant correlation between student’s response when asked if “the use of 

an interactive software was helpful to tailor the review session to topics [they] 

had trouble understanding” (figure 1 and Supporting Information - table 3-Q4) 

and if “[they] recommend having review sessions” (figure 1 and Supporting 

Information - table 3-Q5). Even though the correlation was weak between the 

other questions, the average Likert score for all leaned towards 4, thus a good 

rating (figure 1 and Supporting Information - table 3). The combined Likert 

score of 8.0 ± 1.77 (Supporting Information - table 3- association of Q4 and 

Q5) suggests that students’ perception of the interactive review session using 

the Learning Catalytics platform (IRS using CRS) was over-all positive. 

Furthermore, students would recommend the use of interactive software 

during review sessions (five point Likert of 4.2 ± 0.71) (Supporting Information 

- table 3- Q6). Student’s self-reported experiences show that although rated as 

helpful, some students felt that the review modules were not well structured: 

 “I like how the material is presented but it's quite time consuming. With 

better organization and communication, it'd be more time efficient.” 

 “Learning catalytics can be more useful if the questions are improved.” 

The theme about the images size and quality was common throughout the 

activity and is evident in the surveys: 
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 “Learning catalytics is great. But I wish pictures could be bigger.” 

 “Bigger pictures, pictures that showed the right answer at the end 

CLEARLY.” 

The ability to communicate with instructors using the CRS was re-current: 

 “I was able to provide anonymous question that whole class could 

benefit from” 

 “they [IRS using CRS] are great to reinforce material and learn new 

things! I also like how you can message the instructor privately to identify 

material you struggle with” 

 

Mini-Surveys  

The mini-surveys were helpful in designing and structuring the IRSs. For 

instance the first mini-survey (Supporting Information - table 1 – mini-survey 1 

– Integument) clarified that waiting for 90% of the students to answer was not 

an ideal threshold for setting up the review’s pace. After this feedback a time 

limit of 30 seconds to one minute was set for inputting the answers. Another 

request that aided delivery was to use a projector to go over the questions as 

suggested by other students: 

 “[have] a set time to answer each question and then move on.  If most 

of the class gets it wrong then explain in depth the answer but If a vast 

majority of the class gets it correct then move on.”   
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 “Maybe use the projector in the lab to put the questions up….” 

With regards to the second mini-survey (Supporting Information - table 1 – 

mini-survey 2 – Oral Cavity) issues with the quality and size of images were 

raised. Also it was noted that the IRS material was not available to students 

once the section ended. 

 “[Suggestion for the next IRS] Bigger pictures” 

 “Yes, it was helpful, but I did not find it afterwards to aid in my study, 

was it posted?” 

At the third mini-survey (supplemental table 1 – mini-survey 3 – GIT) students’ 

statements revealed familiarity with the different question types. When asked 

for suggestions for the next IRS students’ responses reflected the types of 

questions they deemed helpful:  

 “The what is this, and what is its function- questions” 

 “having the images and having to sketch or circle things is very helpful!” 

Only four students answered the fourth mini-survey (supplemental table 1 – 

mini-survey 4 – endocrine), and their response suggests that the activity was 

helpful:  

 “It helps clarify what we are looking at in the slides.”  

 

Instructor Survey 
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A total of four out of six TAs answered the survey. From the instructors’ 

survey, the theme about the image quality became evident one more time. 

When asked for their opinion about if the software was an effective method to 

deliver the IRS (Supporting Information - table 4 - question 7) three out of the 

four answers reflected the CRS’s limitation: 

 “I just wish that the images could be bigger. I thought the software was 

great because they could draw on images and I liked the way we could see 

which answers were the most common. The software seemed pretty good to 

me.” 

 

Observations from the Authors 

During the review modules the students appeared interested and engaged. 

Students did not limit participation in the IRS to being physically present, and 

three students used cell phones to access the interface while leaving the 

classroom. During the later sessions students were more likely to ask 

questions especially by sending messages using the software rather than by 

voicing them. For instance, two students that never requested help during the 

regular laboratory activity were noticeably more active and seemed 

comfortable texting their questions to the instructors rather than voicing them. 

Therefore, the Learning Catalytics was able to engage a different cohort of 

students that might have otherwise been marginalized (DiLullo, McGee, and 

Kriebel 2011) yielding in a more inclusive classroom environment.  
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Although the process of creating the review modules per-se required a lot of 

up-front work, the positive response of the students made the effort 

worthwhile. Besides the student’s engagement in the activity, the CRS allowed 

for visualization of students’ misconceptions. For instance, the example in 

figure 2c allowed instructors to visualize that 32% of students believed that the 

layers of the epidermis had a maximum depth of a couple of cell layers. While 

most students were able to list the layers that formed the epidermis in a short-

answer type question, seven out of 22 students failed to correctly draw a line 

in the interface between dermis and epidermis on an unfamiliar sample (figure 

2c). This interactive exercise revealed that several students resorted to the 

color differences, instead of conceptual knowledge, to differentiate the layers 

in the image. The image was from thick epidermis that had a much wider layer 

than the histological slide suggested by the laboratory activity handout. The 

example in figure 2a shows student’s ability to identify the transition point 

between duodenum and stomach, but not differentiate which side is the 

duodenum. The CRS provided the ability to identify and address subtle issues 

like these. It also allows instructors to provide immediate feedback to all (if a 

prevalent misconception is identified) or individualized (if it is an isolated 

case). Students can benefit from the feedback immediately or delayed by 

revisiting previously given modules. Therefore, the CRS is an efficient 

immediate formative assessment tool that can be used to provide formal 

immediate and delayed feedback.  
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Every review module provided us with different observations. For instance, 

during the first review module, we noticed students were not expecting to 

actively answer questions. Even though they were informed about the need to 

actively participate, they seemed to be expecting a passive review in which 

instructors lectured about the important topics. This probably reflects previous 

experiences in which instructors provided a list of important concepts without 

the need to actively participate. However there was a shift in students’ 

behavior for the next modules, with the majority studying the material, and 

preparing for the review. The students clearly did not like to answer questions 

incorrectly even when their identity was not disclosed. Since 75% of students 

were either on the preparatory track for veterinary (pre-vet) or human (pre-

med) medicine our interpretation is that there was an intrinsic desire for 

students to excel and demonstrate their understanding of the material. 

Another general observation that supported this interpretation was that when 

questions were easy, students stopped participating, whereas if the questions 

were challenging, they would engage more in the activity. Therefore our 

observations might not represent how students would react in a less 

competitive environment. 

 

DISCUSSION 
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CRS in the Laboratory Setting 

Student’s response to survey [2] suggests that this cohort of students value 

the IRS, independent of the use of a CRS, but would recommend 

implementing it if available. In order to be better suited for a laboratory setting, 

the CRS would need to be coupled with a microscopy method. Whereas the 

VM facilitates group learning (Harris et al., 2001; Braun and Kearns, 2008; 

Husmann et al., 2009), the LM is still the most used method outside of the 

classroom. For instance clinical and academic settings still require the use of 

the traditional microscope to expedite sample analysis or diagnosis of 

diseases, such as the evaluation of fine-needle aspirates and skin surface 

cytology (Pratt 2009).. It was unexpected to find that only 42% of the 

responders envision using the LM throughout their professional career 

(Supporting Information - table2 Q2-1) since 72% seek a medical (MD) or a 

veterinary degree (DVM). Although a CRS does not replace the VM or the LM 

as teaching tool it can be used to motivate and engage students on learning 

activities. 

 

A major limitation of the CRS was image size and quality. Morphology-based 

biomedical courses rely on student’s interpretation of images. In the same way 

recognition and perception of visual stimuli shifts between individuals (Partos 

et al., 2016), students’ perceptions of histological images are variable and 

unpredictable (Figure 4) (Fouché 2015). It is important for teachers to 
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anticipate topics in which students will have difficulties and possible 

misinterpretations, in order to remove such obstacles as quickly and efficiently 

as possible. A teaching tool that allows the incorporation of an interactive live 

digital imaging technology would be better suited for a laboratory setting 

(Higazi, 2011). The results from survey [2] illustrate the importance of image 

size and quality in morphology-based biomedical courses. Hopefully, this 

result will encourage instructors and software developers to invest in 

integrating interactive teaching software to microscopy, in order to devise 

better technology-supported formative assessment tools.  

 

CRS to identify misconception 

As exemplified in figure 2 the CRS has greatly aided in the identification of 

subtle misconceptions. The software allows multiple types of questions 

(Lukoff, 2013; Schell et al., 2013; Mullet et al,. 2014) (figure2 and 4) and 

instructors were able to monitor responses in real-time. As soon as 

misconceptions were identified instructors were able to immediately guide 

students to correct the problem in class discussion.  

 

Although the CRS can be used to identify students’ misconceptions as they 

occur (e.g “on –the-go”), there are limitations for instructors to use this 

technology in a laboratory setting. For instance, the inability to integrate VM 

with the teaching software limits possible interactions to planned discussion, 
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since the activity has to be prepared in advance to use images. Morphology-

based biomedical courses often rely on high-resolution images and benefits 

from students’ interaction with VS. Therefore, being unable to integrate VM 

with the CRS is a limiting factor, especially impairing the creation of questions 

in real-time (Antoniou and James, 2014).  

 

Formal Immediate Feedback 

The BioAP4130/BioMS4130 laboratory setting relies on informal immediate 

feedback, where students have to interact with professors and TAs to clarify 

doubts that they may have from observing a histological sample (Bloodgood 

2012; Collier et al. 2012). Besides student’s personality (Sinclair and Cleland, 

2007; Khalil et al., 2013), other factors that interfere with students seeking 

feedback and student satisfaction with feedback are inconsistencies among 

instructors (Warmann et al., 2016) (Supporting Information – tables 2 and 3). 

Furthermore, instructors have to adapt to the students’ diverse learning styles 

and interpretations in order to provide effective feedback during every activity 

(DiLullo, McGee, and Kriebel 2011; Twenge 2009). In this regard, the CRS not 

only provided a platform for formal immediate feedback, but also allowed for a 

consistent yet individualized feedback. The latter can be done using the 

software’s ability to provide written feedback that stays associated to that 

particular student’s account (Baleni, 2015).  
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Inclusive Environment 

The result that the CRS provided a new venue of communication with the 

instructors was an unpredicted positive outcome of using the CRS. Students 

who are shy or uncomfortable asking questions are often marginalized and 

may fail to achieve their full potential (Sinclair and Cleland, 2007; Khalil et al., 

2013). In this regard the CRS allowed for a more inclusive environment where 

shy students obtained immediate feedback without the need to vocalize their 

questions (Chen, 2015). Both students and instructors appreciated this aspect 

of the CRS. The tool also minimizes erroneous interpretation due to 

contradictory or confusing informal feedback (Warmann et al., 2016), since the 

immediate feedback can be formal and homogeneous (minimizing differences 

in instructors’ ability to guide students through the material, background 

knowledge and teaching experience) (Stoltzfus, 2014). Furthermore, the fact 

that 39% of students’ report they benefit from having access to both VM and 

LM, one student prefers the LM (Supporting Information – table2), and 37% 

strongly recommend the use of the CRS, supports that having a variety of 

stimuli helps provide a more inclusive environment. Therefore, in training 

students for their professional careers, the use of different teaching tools, both 

old and new, results in better learning experiences. . 

 

Limitations of this study 



	
  

 202 

The findings detailed in this manuscript are dependent on self-reported 

experiences and student scores obtained from a small number of questions 

that were drawn from the course’s final examination. Beyond the intrinsic 

difficulties in comparing student performances, the quantitative analysis 

included all students, regardless of their presence in the IRS, and was limited 

to questions from one single examination. The questions present at the final 

examination had different degrees of complexity that confound the analysis 

between IRS and non-IRS topics. Therefore, the quantitative analysis (figure 

3) is limited, and cannot be taken as predictive of the impact on learning 

outcome when CRS-mediated feedback is compared to traditional delayed 

feedback. Furthermore, multiple other studies report that CRS not only 

engages students, but also improves learning outcomes (Alexander et al., 

2009; Briggs and Keyek-franssen, 2010; Mostyn et al., 2012; Talbert 2013). 

 

Responses for the survey [2] had weak correlation, which may indicate 

variability in students’ interpretation of the questions or willingness to provide 

feedback. There were also unexpected technical difficulties reported by 

students during the surveys. The most common complaints were: trouble with 

visualization platform (Leica  Biosystems’ Aperio eSlideManager) from 

students using Macintosh Computers (Apple Corp, Culpertino CA); that 

instructors were inexperienced using the CRS software; and that there were 

significant time constraints of the IRSs activity. Although there was interaction 

between the participants, it relied on a planned activity. An exclusive 
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interactive experience, without previous planning and where the teacher is 

responsive to events as they arise (Antoniou and James, 2014), would require 

a CRS capable of incorporating the VM.  

For this study, the Learning CatalyticsTM software did not improve learning 

outcome as measured through question scores, but helped instructors gain 

insight about students’ interpretation of fundamental concepts. 

CONCLUSIONS 

The use of the CRS facilitates prompt identification of misconceptions and 

allow for a more inclusive classroom environment. However, the fact that the 

questions have to be planned in advance limits its abilities as an interactive 

teaching tool (Antoniou and James, 2014; Warmann et al., 2016).  

Nevertheless, both students and instructors agreed that the use of the 

interactive software was beneficial. Overall the CRS improved the instructors’ 

ability to (1) engage students in learning activities, (2) identify misconceptions 

that would otherwise be unnoticed, (3) provide formal immediate feedback (4) 

exchange information by opening a new venue of communication between 

students and teachers. Furthermore, this cohort of students value the 

availability of multiple teaching tools instead of replacement of older ones, 

especially when such a tool is still prevalent in the work environment. 

Therefore, although the CRS is not essential it is an effective teaching tool to 

identify misconceptions and provide feedback.  
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TABLES 

 

Table 1. Descriptive demographic showing number of respondents, sex and 
academic background. IRS = Interactive review session. 

 

Enrolle
d 

Studen
ts 

Survey 
[1]  

Survey 
[2] 

mini-
Survey 
IRS1 

mini-
Survey 
IRS2 

mini-
Survey 
IRS3 

mini-
Survey 
IRS4 

Total 39 28  25 13 15 6 4 
Male 20 12  9  5 7 0 2 

Female 19 16  16  8 8 6 2 
Sophom

ore 1 0 1 1 0 0 0 
Junior  8 5  7 2 4 3 0 
Senior  19 13  12 6 5 1 2 

Graduat
e 11 7 5 3 6 2 2 
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Figure 1: Summary of surveys’ responses. First two bars summarize career 

aspirations. Following bars summarize student’s perception of IRS activity, 

CRS used, and microscopic methods. IRS= Interactive review sessions; CRS= 

Classroom response system; VM= Virtual microscope; LM=Light microscope; 

Error bars represent standard deviation. 
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Figure 2: Example of Learning Catalytics question types used during review 

sessions. A, Example of a “composite sketch” type question. In this type of 

question the instructor presents the task to the student followed by an image. 

The students respond to the task in their own device by drawing in the image 

provided what he/she believes is the answer. The blue lines in the image to 

the right represents a superposition of all the answers; B, Example of a 

“regions” type question. In this type of question the student is asked to identify 

a specific region in the image provided. The image in the right represents a 

superposition of all answers. Correct answers appear as green dots and 

wrong answers as red dots. This particular software allows the instructors to 

visualize individual answers as well. C, composite sketch from students’ 

answers when asked to indicate the interface between dermis and epidermis 

on a sample image they were not familiar with. Students’ answers are in blue; 

the image shows an overlay of all responses. To the left are their initial 

answers. To the right are their revised answers after discussing the concepts 

and clarifying misunderstandings in the topic.  

 



	
  

 215 

Figure 3:  No improvement in final examination scores. Bar graph 

representing median scores of questions derived from IRS (right) and non-IRS 

(left) derived topics; IRS median= 8.45, non-IRS median= 8.3; p-value=0.30. 

Error bar represents score range. 
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