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Abstract

A key step in program optimization is the determination of optimal values for code optimization

parameters such as cache tile sizes and loop unrolling factors. One approach, which is implemented in

most compilers, is to use analytical models to determine these values. The other approach, used in library

generators like ATLAS, is to perform a global search over the space of parameter values by generating

different versions of the code and executing them on the actual machine to find the parameter values

that give the best performance.

Neither approach is suitable for use in general-purpose compilers that must generate high quality

code for large programs running on complex architectures. Model-driven optimization may incur a

performance penalty of 10-20% even for a relatively simple code like matrix multiplication, as was shown

recently by Yotov et al. On the other hand, global search is not tractable for optimizing large programs

for complex architectures because the optimization space is too large. To address this problem, some

researchers are exploring more sophisticated search algorithms such as the simplex method, but it remains

to be seen if these methods are successful in reducing search time without compromising on the quality

of the solution.

In this paper, we advocate a different methodology for generating high-performance code without

increasing search time dramatically. Our methodology has three components: (i) modeling, (ii) local

search, and (iii) model refinement. We use analytical models to estimate optimal values for transformation

parameters. Since it is impossible to build tractable analytical models that capture all the features of
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complex architectures, we advocate improving these estimates by using a local search in the neighborhood

of the model-predicted values. Finally, if the performance gap between handwritten code and generated

code is substantial on some architecture, we advocate model refinement.

To demonstrate this methodology, we built a modified ATLAS system that used a simple analytical

model and local search, and showed that on most architectures, the performance of the code produced

by this system was comparable to that of code produced by the original ATLAS system using global

search. However, on x86 architectures, the gap in performance was substantial, and could not be bridged

by local search alone. We argue that the problem is that the model assumed aggressive operation

scheduling to mask instruction latencies, but such scheduling can actually be harmful on x86 architectures,

a somewhat surprising fact that does not appear to be known widely. To address this problem, we use

model refinement to generate a more sophisticated model that, when combined with local search, enables

the production of high-quality code on both RISC and CISC architectures.

1 Introduction

Although the compiler community has invested a lot of effort in inventing program optimization strategies

for producing efficient code from high-level programs [1, 2, 3, 4, 8, 9, 11, 14], the quality of code produced

by current compilers can be quite poor [19]. To improve the state of the art of compilers, it is necessary

to study codes for which highly tuned implementations are available; by comparing these implementations

with compiler-generated code, we can understand what compilers are doing wrong. Benchmark suites like

the SPEC and Perfect benchmarks are not suitable in this context since there are no highly tuned imple-

mentations of these codes to serve as the gold standard for comparisons.

Fortunately, highly tuned implementations do exist in the domain of numerical linear algebra. The key

routines in this domain are the Basic Linear Algebra Subroutines (BLAS), of which matrix multiplication

is the most important one. Recently, Dongarra and his co-workers have implemented a portable BLAS

generator called ATLAS [17], which is publicly available. Experiments show that the code produced by

ATLAS performs nearly as well as the native BLAS on many machines, so the code generated by ATLAS is

an excellent object of study for researchers interested in improving the state of the art of current compilers.

Why does ATLAS produce code that performs so much better than the code produced by current com-

pilers? Most compilers use simple architectural models to determine whether an optimization is useful, and

to estimate values for parameters associated with that optimization. When tiling a loop for example, a

compiler may estimate the tile size using only the size of the data cache, ignoring its associativity and line

size. In contrast, a library generator like ATLAS uses empirical optimization; it produces multiple versions

of the tiled loop with different tile sizes, executes all of them on the actual machine, and selects the tile

2



size that gave the best performance. It is commonly believed that the shortcomings of current compilers

arise because the models they use are too simplistic to permit accurate estimation of optimal values for code

optimization parameters.

However, recent studies by Yotov et al [19] have cast doubt on this belief. To compare empirical optimiza-

tion with model-based optimization, they built a modified version of ATLAS in which search was replaced

with a module that used simple analytical models to estimate values for optimization parameters. This

model is described briefly in Section 3. Somewhat surprisingly, their experiments show that on the three

architectures they considered, the performance of code produced by the model-driven version of ATLAS was

within 10% to 20% of the performance of code produced by ATLAS using global search. Furthermore, the

time required by the model-driven version was negligible compared to the time required to perform global

search. These results suggest that the use of analytical models in compilers need not come in the way of

generating relatively high-quality code.

In this paper, we address two problems in using model-driven optimization in the context of general-

purpose compilers.

The first problem is the performance gap between code produced by library generators and code pro-

duced by using model-driven optimization. Although a compiler that quickly generates code that performs

within 10% to 20% of highly tuned code is adequate in most situations, this performance penalty may be

unacceptable for critical applications that will be run many times. On the other hand, global search as

performed by ATLAS does not scale well to large programs or to complex architectures, so it cannot be

used in general-purpose compilers. Dongarra and co-workers are exploring faster search algorithms like the

simplex method [5], but it is not clear that these algorithms alone are adequate.

The second problem is performance portability. It may seem that the use of global search ensures that

library generators will work “out of the box” on new architectures, whereas model-driven optimization may

fail if the model is a poor abstraction of the new architecture. However, global search is not a panacea. In

particular, if the code generator does not exploit aspects of an architecture that are key to performance,

the resulting code may be poor regardless of how exhaustive the search for optimal parameter values is.

The methodology used in the ATLAS system to adapt to new architectures for which search alone is not

sufficient is to include a collection of user-contributed hand-tuned kernels in the distribution; during the

search process, the performance of these codes is evaluated, and if one of them performs better than the

code generated by the code generator, it is used to produce the library. This methodology cannot be used

for model-driven optimization because it runs counter to the spirit of using models to optimize programs.

The approach that we advocate in this paper to address both problems is to use a combination of model

refinement and local search. To close the performance gap with code produced by empirical optimization,
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we advocate using local search in the neighborhood of the parameter values produced by using the model.

Of course local search alone may not be adequate if the model is not a good abstraction of the architecture.

In that case, we advocate using model refinement in the same spirit as ATLAS incorporates user-contributed

code - we study the new architecture and refine the model as needed. Note that like the production of user-

contributed code, model refinement must be done manually. Intuitively, in our approach, small performance

problems are tackled using local search, while large performance problems are tackled using model refinement.

The experiments reported in this paper show that the combination of model refinement and local search

is effective in closing performance gaps between the model-generated code and the code generated by global

search, while keeping code generation time small. However, it is important to realize that reducing library

generation time is not the primary focus of our work; rather, our goal is to find optimization strategies for

generating very high-performance code that can be used in general-purpose compilers because they scale to

large programs and complex architectures.

The rest of this paper is organized as follows. In Section 2, we describe (i) the optimization parameters

used in the ATLAS system, and (ii) the global search process used by ATLAS to find optimal values for

these parameters. In Section 3, we briefly describe the model of Yotov et al [19] for computing values for

transformation parameters. In Section 3.2, we discuss experimental results on a number of machines, that

reveal the potential for improvements in the model (and in ATLAS). In Section 4, we describe how model

refinement and local search can be used to tackle these problems in the context of model-driven optimization.

In Section 5, we present experimental results for the same machines as before, showing that this methodology

addresses the performance problems identified earlier. In some cases, we obtain better code than is produced

by the ATLAS code generator. We conclude in Section 6 with a discussion of future work.

2 Overview of ATLAS

Figure 1 is a block diagram of the ATLAS system. There are two main modules: Code Generator, and

Empirical Search Engine.
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Figure 1: Empirical Optimization Architecture
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1. Code Generator: For the purpose of this paper, this module generates an optimized matrix-multiplication

routine, given certain optimization parameters as input. These optimization parameters are described

in more detail in Section 2.1; intuitively, they tell the code generator what tile size to use (NB), how

much to unroll certain loops (MU ,NU ,KU ), etc.

2. Empirical Search Engine: To determine optimal values for these code optimization parameters, ATLAS

employs a global search over the space of these parameters, performed under the direction of the

Empirical Search Engine. This module enumerates each point in the parameter search space, and

passes it on to the code generator, which produces the appropriate matrix-multiplication code (shown

as mini-MMM code in Figure 1). This code is run on the actual machine, and its performance is

recorded. Once the search is complete, the parameter values that give the best performance are used

to generate the library. Section 2.2 describes this search in more detail.

To finish the global search in reasonable time, it is necessary to bound the search space. When ATLAS

installs itself on a machine, it runs a set of micro-benchmarks to measure a set of hardware parameters such

as the L1 data cache capacity [7], the number of registers, etc. These hardware parameters are used by

the Optimization Parameter Estimator module in Figure 1 to bound the search space for the optimization

parameters. For example, the capacity of the L1 data cache is used to bound the search for cache tile size.

2.1 Code optimization parameters

To explain the role of the code optimization parameters, we use the framework of restructuring compilers to

describe the code generated by ATLAS (it is important to keep in mind that ATLAS is not a general-purpose

restructuring compiler). We concentrate on matrix multiplication (MMM), which is the key routine in the

BLAS. Näıve MMM code is shown in Figure 2.

for (int i = 0; i < N; i++)

for (int j = 0; j < M; j++)

for (int k = 0; k < K; k++)

C(i,j) += A(i,k) * B(k,j);

Figure 2: Näıve MMM Code

2.1.1 Memory Hierarchy Optimizations

The code shown in Figure 2 can be optimized by tiling for the L1 data cache and registers.

• Optimization for the L1 data cache:
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To improve locality, ATLAS implements an MMM as a sequence of mini-MMMs, where each mini-

MMM multiplies sub-matrices of size NB × NB. NB is an optimization parameter whose value must

be chosen so that the working set of the mini-MMM fits in the L1 cache.

In the terminology of restructuring compilers, the triply-nested loop of Figure 2 is tiled with tiles of

size NB × NB × NB, producing an outer and an inner loop nest. For the outer loop nest, code for

both the JIK and IJK loop orders are implemented. When the MMM library routine is called, it uses

the shapes of the input arrays to decide which version to invoke. For the inner loop nest, only the JIK

loop order is used, with (j′, i′, k′) as control variables. This inner loop nest multiplies sub-matrices of

size NB × NB, and we call this computation a mini-MMM.

• Optimization for the register file: ATLAS converts each mini-MMM into a sequence of micro-MMMs,

where each micro-MMM multiplies an MU × 1 sub-matrix of A with a 1 × NU sub-matrix of B and

accumulates the result into an MU × NU sub-matrix of C. MU and NU are optimization parameters

that must be chosen so that a micro-MMM can be executed out of the floating-point registers. For this

to happen, it is necessary that MU + NU + MU × NU ≤ NR, where NR is the number of floating-point

registers.

In terms of restructuring compiler terminology, the (j′, i′, k′) loops of the mini-MMM from the previous

step are tiled with tiles of size NU × MU × KU , producing an extra inner loop nest. The JIK loop

order is chosen for the outer loop nest after tiling, and the KJI loop order for the inner loop nest.

The resulting code after the two tiling steps is shown in Figure 3. To keep this code simple, we

have assumed that all step sizes in these loops divide the appropriate loop bounds exactly (so NB

divides M , N , and K, etc.). In reality, code should also be generated to handle the fractional tiles at

the boundaries of the three arrays; we omit this clean-up code to avoid complicating the description.

Figure 4 is a pictorial view of a mini-MMM computation within which a micro-MMM is shown using

shaded rectangles.

To perform register allocation for the array variables referenced in the micro-MMM code, the micro-

MMM loop nest (j′′, i′′) in Figure 3 is fully unrolled, producing MU × NU multiply-add statements in the

body of the middle loop nest. In the unrolled loop body, each array element is accessed several times. To

enable register allocation of these array elements, ATLAS introduces a scalar temporary for each element of

A, B, and C that is referenced in the unrolled micro-MMM code, and replaces array references in the unrolled

micro-MMM code with references to these scalars. Appropriate assignment statements are introduced to

initialize the scalars corresponding to A and B elements. In addition, assignment statements are introduced
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// MMM loop nest (j, i, k)

// copy full A here

for j ∈ [1 : NB : M ]

// copy a panel of B here

for i ∈ [1 : NB : N ]

// copy a tile of C here

for k ∈ [1 : NB : K]

// mini-MMM loop nest (j′, i′, k′)

for j′ ∈ [j : NU : j + NB − 1]

for i′ ∈ [i : MU : i + NB − 1]

for k′ ∈ [k : KU : k + NB − 1]

for k′′ ∈ [k′ : 1 : k′ + KU − 1]

// micro-MMM loop nest (j′′, i′′)

for j′′ ∈ [j′ : 1 : j′ + NU − 1]

for i′′ ∈ [i′ : 1 : i′ + MU − 1]

Ci′′j′′ = Ci′′j′′ + Ai′′k′′ * Bk′′j′′

Figure 3: MMM tiled for L1 data cache and Registers

B

NB

N
B

A C

k'

M
U

NU

k
'

Figure 4: mini-MMM and micro-MMM

before and after the k′ loop to initialize the scalars corresponding to C elements, and to write the values back

into the array respectively. It is expected that the back-end compiler will allocate floating-point registers for

these scalars.

2.1.2 Pipeline scheduling

The resulting straight-line code in the body of the k′′ loop is scheduled to make better use of the processor

pipeline. Note that the operations in the k′′ loop are the MU +NU loads of A and B elements required for the

micro-MMM, and the corresponding MU×NU multiplications and additions. On hardware architectures that

have a fused multiply-add instruction, the scheduling problem is much simpler because multiplies and adds

are executed together. Therefore, we only discuss the more interesting case when a multiply-add instruction

is not present. An optimization parameter FMA tells the code generator whether to assume that a fused

multiply-add exists. The scheduling of operations can be described as follows.

• Construct two sequences of length (MU × NU ), one containing the multiply operations and the other

the add operations.
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• Interleave the two sequences, to create a single sequence of the form mul1 mul2 ... mulLs
add1 mulLs+1 add2 ...

that is obtained by skewing the adds by a factor of Ls, where Ls is an optimization parameter. Intu-

itively, this interleaving separates most dependent multiplies and adds by 2×Ls−1 other independent

instructions to avoid stalling the processor pipeline.

• Inject the MU +NU loads of the elements of A and B into the resulting sequence of arithmetic operations

by scheduling a block of IF (Initial Fetch) loads in the beginning and blocks of NF loads thereafter as

needed. IF and NF are optimization parameters.

• Unroll the k′′ loop completely. The parameter KU must be chosen to be large enough to reduce loop

overhead, but not so large the body of the k′ loop overflows the L1 instruction cache.

• Software pipeline the k′ loop in such a way that operations from the current iteration are overlapped

with operations from the previous iteration.

Note that skewing of dependent adds and multiplies increases register pressure; in particular, the following

inequality must hold to avoid register spills:

MU × NU + MU + NU + Ls ≤ NR (1)

2.1.3 Discussion

Table 1 lists the optimization parameters for future reference.

Name Description
NB L1 data cache tile size
MU , NU Register tile size
KU Unroll factor for k′ loop
Ls Latency for computation scheduling
FMA 1 if fused multiply-add, 0 otherwise
FF , IF , NF Scheduling of loads

Table 1: Summary of optimization parameters

There are a few details that we have omitted. In particular, ATLAS copies tiles of A, B, and C into

sequential memory locations before performing the mini-MMM, if it thinks this would be profitable. The

strategy for copying is shown in Figure 3. ATLAS also incorporates a simple form of tiling for the L2 cache,

called CacheEdge; we will not discuss this because our focus in the mini-MMM code, which is independent

of CacheEdge.

It is intuitively obvious that the performance of the generated mini-MMM code suffers if the values of

the optimization parameters in Table 1 are too small or too large. For example, if MU and NU are too
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small, the MU × NU block of computation instructions might not be large enough to hide the latency of

the MU + NU loads, and performance suffers. On the other hand, if these parameters are too large, register

spills will reduce performance. Similarly, if the value of KU is too small, there is more loop overhead, but if

this value is too big, the code in the body of the k′ loop will overflow the instruction cache and performance

will suffer. The goal therefore is to determine optimal values of these parameters for obtaining the best

mini-MMM code.

2.2 Global search in ATLAS

To find optimal values for the optimization parameters, ATLAS uses a global search strategy called orthogonal

line search [12]. Suppose we want to find the optimal value of a function y = f(x1, x2, ...xn). To find an

approximate solution, we reduce this n-dimensional optimization problem into a sequence of 1-dimensional

optimization problems as follows: we order these parameters in some way and optimize them one at a time,

using reference values for those that have not yet been optimized. Orthogonal line search is an approximate

method in the sense that it does not necessarily find the optimal value of a function, but it might come close.

To specify an orthogonal line search, it is necessary to specify (i) the order in which the parameters are

optimized, (ii) the range of possible values considered during the optimization of each parameter, and (iii)

the reference value used for parameter k during the optimization of parameters 1, 2, ..., k − 1.

In ATLAS, the optimization sequence is the following: (i) NB, (ii) MU and NU , (iii) KU , (iv) Ls and (v)

FF , IF , and NF .

To find the best NB, ATLAS generates a number of mini-MMMs for matrix sizes NB × NB where NB

is a multiple of 4 and 16 ≤ NB ≤ min(80,
√

CL1), where CL1 is the capacity of the L1 data cache. During

this search, the values of MU and NU are set to the values closest to each other that satisfy Inequality (1)

with MU > NU . For each block size, ATLAS tries two extreme cases for KU no unrolling (KU = 1) and full

unrolling (KU = NB). Suitable Ls, FF , IF , and NF are obtained from running the micro-benchmarks. The

value of NB that produces highest MFLOPS is chosen as “best NB” value, and it is used from this point on

in all experiments as well as in the final versions of the optimized mini-MMM code.

To find the best MU and NU , ATLAS tries all combinations of MU and NU that satisfy Inequality (1).

For each combination, the value of NB from the previous step and reference values for all other parameters

are used to generate mini-MMM code; the version that performs best determines the values chosen for MU

and NU .

The remaining parameters are optimized in a similar way. We omit the details because they are not

relevant to the rest of this paper.
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3 Model-driven optimization

In this section, we summarize the model of Yotov et al [19] for estimating values for optimization parameters.

This model requires the following machine parameters.

• CL1 and BL1 – capacity and line size of the L1 data cache respectively

• NR – number of floating-point registers

• Lh – latency in cycles of floating-point multiply

• |ALUFP | – number of floating-point pipes

• FMA – existence of a fused multiply-add instruction

This is a superset of the machine parameters required by the ATLAS framework. Furthermore, modelling

requires more accurate values for machine parameters than searching does; models use machine parameters

to directly determine optimal values for optimization parameters, whereas search-based techniques use them

only to bound the search space. Therefore, our system uses a more extensive and robust set of precise

micro-benchmarks [20] than ATLAS does.

3.1 Estimating parameter values

3.1.1 Estimating NB

There has been a lot of work in the compiler community on estimating tile sizes for general programs [3, 13,

18, 9]. In this section, we discuss a sequence of models of increasing accuracy for estimating tile sizes for

matrix-multiplication.

If the three tiles of A, B, and C are copied into sequential memory locations, we can avoid conflict and

capacity misses if all three tiles fit in the L1 cache. This leads to the following inequality.

3 × N2
B ≤ CL1 (2)

This is a simple model, but on most architectures, we can afford to tolerate some misses. If we assume

that we can tolerate some conflict misses but still disallow capacity misses, the tile size can be made larger

since it is not necessary to keep all three tiles in the cache for the duration of the mini-MMM computation.

For example, for the jik loop order, we need to keep only one element of C in cache, because C is indexed

by the control variables in the outermost two loops. For this loop order, we also need to cache the complete

tile of A, since we walk the full tile for each iteration of the j loop. Finally we need to cache a column of
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B, since the jth column is fully accessed for each iteration of the i loop. Therefore, assuming that the cache

has an optimal replacement policy, we obtain the following inequality:

N2
B + NB + 1 ≤ CL1 (3)

Because caches have non-unit line size, it is not possible to keep just one element of C in the cache;

instead we must store an entire line. Correcting for the line size BL1, we obtain the following inequality:

⌈

N2
B

BL1

⌉

+

⌈

NB

BL1

⌉

+ 1 ≤ CL1

BL1
(4)

The replacement policy in real caches is usually pseudo-LRU. Intuitively, in case of LRU replacement, we

need more cache so that unwanted blocks stay there until they become least recently used. This refinement

leads to the following inequality [19]:

⌈

N2
B

BL1

⌉

+ 3

⌈

NB

BL1

⌉

+ 1 ≤ CL1

BL1
(5)

Up to this point, we ignored the interaction between register tiling and L1 data cache tiling. Because of

register tiling, we actually deal with vertical panels of register tiles rather than columns of scalar elements.

This consideration leads to the final inequality used to compute NB [19].

⌈

N2
B

BL1

⌉

+ 3

⌈

NB × NU

BL1

⌉

+

⌈

MU

BL1

⌉

× NU ≤ CL1

BL1
(6)

Once MU and NU are computed as described next, it is easy to compute NB from this inequality.

3.1.2 Estimating MU and NU

Inequality (1), which is reproduced below for convenience, is used to determine MU and NU . To use this

inequality, we need an estimate for Ls, which is computed as described in Section 3.1.3.

MU × NU + MU + NU + Ls ≤ NR

Initially, assume MU = NU . This leads to Inequality (7), which can be solved for MU . This value can

then be substituted into Inequality 1 to determine NU .

M2
U + 2 × MU + Ls − NR ≤ 0 (7)
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Finally, these values are adjusted to ensure that MU and NU are at least 1 and MU > NU .

3.1.3 Estimating Ls

From the discussion of instruction scheduling in Section 2.1, we see that a multiply operation in the innermost

loop body is separated from its dependent add by a total of 2 × (Ls − 1) operations (Ls − 1 multiplies and

Ls − 1 adds).

The value of Ls must be chosen so that add operations can be issued without waiting for the corresponding

multiply operations to complete. If the latency of multiplication is Lh cycles, and we have |ALUFP | floating

point units, it will take 2×(Ls−1)
|ALUFP | cycles to issue 2×(Ls−1) floating point instructions. From this, Equation 8

follows.

Lh =
2 × (Ls − 1)

|ALUFP |
(8)

We therefore obtain the following estimate for Ls.

Ls =

⌈

Lh × |ALUFP |
2

⌉

+ 1 (9)

3.1.4 Estimating KU , FMA, FF , IF , and NF

The parameter KU is set so that the body of the kernel fits in the L1 instruction cache. In most cases, it

is possible to completely unroll the k′ loop (KU = NB), without overflowing the L1 instruction cache.

The optimization parameter FMA is set to the corresponding value measured by the hardware micro-

benchmarks. Finally, performance is largely insensitive to the values of the fetch parameters, so they are set

to (FF , IF , NF ) = (0, 2, 2).

3.2 Experimental results

We compared the performance of code generated by ATLAS and by the model-driven version of ATLAS on

ten different architectures. For lack of space, in this section, we only discuss some of the more interesting

performance results.

3.2.1 AMD Opteron 240

Table 2 shows the specifications of the AMD Opteron 240 machine we used in our experiments.

On this platform, as well as to some extent on all other x86 CISC platforms, we observed a significant

performance gap between the code generated using the model and the code generated by ATLAS (see the
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Feature Value
CPU Core Frequency 1400 MHz
L1 Data Cache 64 KB, 64 B/line
L1 Instruction Cache 64 KB, 64 B/line
L2 Unified Cache 1 MB, 64 B/line
Floating-Point Registers 8
Floating-Point Functional Units 2
Floating-Point Multiply Latency 4
Has Fused Multiply Add No
Operating System SuSE 9 Linux
C Compiler GNU GCC 3.3
Fortran Compiler GNU Fortran 3.3

Table 2: AMD Opteron 240 Specifications

two lines labelled Model and Global Search in Figure 5). To understand the problem, we studied the

optimization parameter values produced by the two approaches. These values are shown in Table 5. The

two sets of values are quite different, but that by itself is not necessarily significant. For example, Figure 6

shows how performance of the mini-MMM code changes as NB is changed, keeping all other parameters

fixed. It can be seen that the values chosen by Global Search (NB = 60) and Model (NB = 88) are both

good choices for that optimization parameter, even though they are quite different.

1000 2000 3000 4000 5000
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500

1000

1500

2000

MFLOPS

Model

Local Search

Global Search

BLAS

Figure 5: MMM Results for AMD Opteron 240
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Figure 6: AMD Opteron 240 Sensitivity to NB

On the other hand, performance sensitivity to MU and NU , shown in Figure 7, demonstrates that the
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Figure 7: AMD Opteron 240 Sensitivity to MU , NU

optimal values of (MU , NU ) are (6, 1). Notice that this graph is not symmetric with respect to MU and

NU , because an MU × 1 tile of C is contiguous in memory, but a 1 × NU tile is not [16]. Global Search

finds (MU , NU ) = (6, 1), whereas the model estimates (2, 1). To clinch the matter, we verified that the

performance difference disappears if (MU , NU ) are set to (6, 1), and all other optimization parameters are

set to the values estimated by the model.

Since the difference in performance between the code produced by global search and the code produced

by using the model is about 40%, it is likely that there is a problem with the model presented in Section 3 for

determining (MU , NU ). Evidence for this is provided by the line labelled Local Search in Figure 5, which

shows there is significant performance gap even if we use a simple local search around the parameter values

estimated by the model, which is described in more detail in Section 4.2.

In Section 4.1.1, we show how model refinement fixes this problem.

3.2.2 SUN UltraSPARC IIIi

Feature Value
CPU Core Frequency 1060 MHz
L1 Data Cache 64 KB, 32 B/line, 4-way
L1 Instruction Cache 32 KB, 32 B/line, 4-way
L2 Unified Cache 1 MB, 32 B/line, 4-way
Floating-Point Registers 32
Floating-Point Functional Units 2
Floating-Point Multiply Latency 4
Has Fused Multiply Add No
Operating System SUN Solaris 9
C Compiler SUN C 5.5
Fortran Compiler SUN FORTRAN 95 7.1

Table 3: SUN UltraSPARC IIIi Specifications

Table 3 shows the specifications of the SUN UltraSPARC IIIi machine we used in our experiments.

The optimization parameters derived by using the model and global search are shown in Table 7. Figure 14

presents the MMM performance results. On this machine, Model actually performs about 10% better than
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Global Search.

However, this platform is one of several that highlights a deficiency of the model that afflicts ATLAS

Global Search as well. The problem lies in the choice of NB. Figure 8 shows the sensitivity of performance

to NB. The values chosen by Global Search, Model and the best value (44, 84 and 208 respectively) are

denoted by vertical lines.
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Figure 8: SUN UltraSPARC IIIi Sensitivity to NB

Initially, performance increases with increasing values for NB. The first, slight performance drop, at

NB = 208 can be explained by applying the model in Inequality (2) but for the L2 cache (CL2 = 1MB).

This is the point at which all three tiles fit together in the L2 cache. The second, more pronounced,

performance drop, at NB = 360 can be explained by applying Inequality (6) for the L2 cache. After this

point, L2 capacity misses start to occur and performance drops dramatically. Notice that there are no drops

in performance around NB = 52 and NB = 88 which are the corresponding model-predicted values for the

L1 data cache.

The problem is that both Model and Global Search perform tiling for the L1 cache, but it is more

beneficial to tile for the L2 cache on this machine1. In general, this is desirable if (1) the cache miss latency

for the L1 data cache is close to that of the L2 cache, or (2) the cache miss latency of the L1 data cache is

small enough that it is possible to entirely hide almost all of the L1 data cache misses with floating point

computations.

We show how model refinement solves this problem in Section 4.1.2.

3.2.3 Intel Itanium 2

Table 4 shows the specifications of the Intel Itanium 2 machine we used in our experiments.

1In general, another possibility is to do multi-level cache tiling but the ATLAS code generator provides support for a single

level only.
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Figure 9: SUN UltraSPARC IIIi Sensitivity to MU , NU

Feature Value
CPU Core Frequency 1500 MHz
L1 Data Cache 16 KB, 64 B/line, 4-way
L1 Instruction Cache 16 KB, 64 B/line, 4-way
L2 Unified Cache 256 KB, 128 B/line, 8-way
L3 Cache 3MB, 128B/line, 12-way
Floating-Point Registers 128
Floating-Point Functional Units 2
Floating-Point Multiply Latency 4
Has Fused Multiply Add Yes
Operating System RedHat Linux 9
C Compiler GNU GCC 3.3
Fortran Compiler GNU Fortran 3.3

Table 4: Intel Itanium 2 Specifications

The values of optimization parameters estimated by using the model and global search are shown in

Table 9. Figure 15 presents the MMM results.

Figure 10 shows the sensitivity of performance to NB on Intel Itanium 2. The values chosen by Model,

Global Search, and the best value (30, 80 and 360 respectively) are denoted by vertical lines.

As on the SUN UltraSPARC IIIi, tiling for the L1 data cache is not beneficial. On this platform, even

the L2 cache is “invisible” to NB sensitivity, and the drops in performance are explained by substituting the

size of the L3 cache CL3 = 3MB in Inequalities (2) and (6).

The second part of Figure 10 zooms into the interval NB ∈ [300, 400], which contains the value that

achieves best performance (NB = 360). As we can see, there are performance spikes and dips of as much

as 300 MFlops. In particular, the value of NB = 362 obtained by using Inequality (2) for the L2 cache is

not nearly as good as that for NB = 360. Values of NB that are divisible by MU and NU usually provide

slightly better performance because there are no “edge effects”; that is, no special clean-up code needs to be

executed for small left-over register tiles at the boundary. The number of conflict misses in the L1 and L2

caches can also vary with tile size.

Refining the model to account for effects like conflict misses is not likely to be tractable in general, so we

advocate using local search around the model-predicted value, as discussed in detail in Section 4.2.1.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

MU

NU

2
4

6
8

10
12

14
16

MU

2
4

6
8

10
12

14
16

NU

0
1000
2000

3000

4000

2
4

6
8

10
12

14
MU

2
4

6
8

10
12

14
NU

Figure 11: Intel Itanium 2 Sensitivity to MU , NU

For completeness, we show the sensitivity of performance to MU and NU in Figure 11, although there

is nothing interesting in this graph. Because of the extremely large number of registers on this platform

(NR = 128), the peak of the hill is more like a plateau with a multitude of good choices for the MU and NU

unroll factors. Both Model and Global Search do well.
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3.3 Summary

Our experiments point to two deficiencies with the model of Yotov et al [19]. On x86-based architectures like

the Opteron, there is only a small number of registers, and the model does not choose (MU , NU ) optimally.

On machines like the UltraSPARC IIIi and the Itanium 2, the model (and ATLAS Global Search) tile for the

wrong cache level. Finally, local improvement seems useful for some parameters such as NB on the Itanium.

4 Closing the gap

We discuss model refinement in Section 4.1, and local search in Section 4.2.

4.1 Model refinement

4.1.1 Choosing MU and NU for small NR

Recall that in Section 2, we discussed how operations within the innermost loop of the mini-MMM code

are scheduled to obtain good performance even on machines without out-of-order execution. In particular,

the separation between multiplies and their dependent additions increases register pressure; to avoid spills,

Inequality (1), reproduced below for convenience, must hold.

MU × NU + MU + NU + Ls ≤ NR (10)

For the Opteron, Table 5 shows that the model chose MU = 2, NU = 1, FMA = 0, while Global Search

chose MU = 6, NU = 1, FMA = 1. If instead the model had chosen, MU = 6 and FMA = 1, while keeping

the rest of the parameters the same, the mini-MMM performance rises to 2050 MFLOPS. The parameters

values found by Global Search are puzzling for several reasons. First, the Opteron does not have a FMA

instruction! Second, choosing 6 and 1 for the values of MU and NU , violates Inequality (1) since the Opteron

has only 8 registers. How can we explain this?

Recall that Inequality (1) should hold because ATLAS generates code which allocates an MU × 1 vector-

tile of matrix A (which we call ā), an 1×NU vector-tile of matrix B (which we call b̄) and a MU ×NU tile of

matrix C (which we call c̄). It then performs the outer-product of ā and b̄ and accumulates the result into

c̄. The outer-product computation requires that each element of ā be multiplied by each element of b̄, and

this reuse justifies storing these vectors in registers.

Notice that if NU = 1, then b̄ is a single scalar that is multiplied by each element of ā. Therefore no reuse

exists for the elements of ā. This observation lets us generate the code in Figure 12, which uses 1 register

for b̄ (rb), 6 registers for c̄ (rc1 . . . rc6) and 1 temporary register (rt).
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rc1 ← c̄1 . . . rc6 ← c̄6

...

loop k

{

rb← b̄1

rt← ā1

rt← rt× rb

rc1 ← rc1 + rt

rt← ā2

rt← rt× rb

rc2 ← rc2 + rt

...

rt← ā6

rt← rt× rb

rc6 ← rc6 + rt

}

...

c̄1 ← rc1 . . . c̄6 ← rc6

Figure 12: (MU , NU ) = (6, 1) code for x86 CISC

One might expect that this code will not perform well, as there are dependences between most of the

adjacent instructions because of the temporary register rt. In fact the code in Figure 12 performs well

because of two architectural features of the Opteron.

1. Out-of-order execution: it is possible to schedule several multiplications in successive CPU cycles

without waiting for their corresponding adds to complete.

2. Register renaming: the single temporary register rt is renamed to a different physical register for each

pair of multiply-add instructions.

Performing instruction scheduling as described in Section 2 requires additional logical registers for tem-

poraries, which in turn limits the sizes of the register tiles. If an architecture has a small number of logical

registers but the processor implements out-of-order execution and register renaming, it is better to use the

logical registers for allocating larger register tiles and leave instruction scheduling to the out-of-order hardware

core, which can use the extra physical registers to hold the temporaries.

These insights permit us to refine the model described in Section 3 as follows: for processors with a small

number of logical registers and register renaming, set NU = 1, MU = NR−2, FMA = 1. Section 5 describes

experimental results that demonstrate that this strategy eliminates the performance gap between the code

produced by model-driven optimization and the code produced by ATLAS using global search.
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Even if there are enough logical registers, this kind of scheduling may be beneficial if the ISA is 2-address

rather than 3-address, because one of the operands is overwritten. This is true on the Opteron when the

16 SSE vector registers are used to hold scalar values, which is GCC’s default behavior. Even though

Inequality 1 prescribes 3 × 3 register tiles, the refined model prescribes 14 × 1 tiles. Experiments show that

this performs better [16].

Although there is a large body of existing work on register allocation and instruction scheduling for

pipelined machines [21, 6, 10, 15], we are not aware of any prior work that has highlighted this peculiar

interaction between compile-time scheduling and register allocation, and dynamic register-renaming and

out-of-order execution.

4.1.2 Multilevel Memory Hierarchy

As discussed in Section 3.2, there are some machines for which tiling for the L2 or L3 cache will give better

performance than tiling for the L1 cache. The model presented in Section 3 does not account for cache miss

penalties at different cache levels, so although we estimate tile sizes for different cache levels, we cannot

determine which level to tile for.

One approach to addressing this problem in the context of model-driven optimization is to refine the

model to include miss penalties. Our experience however is that it is difficult to use micro-benchmarks to

measure miss penalties accurately for lower levels of the memory hierarchy on modern machines. Therefore,

we decided to estimate tile sizes for all the cache levels according to Inequalities (2) and (6), and then

empirically determine which one gives the best performance.

Notice that in the context of global search, the problem can be addressed by making the search space

for NB large enough. However, this would increase the search time substantially since the size of an L3

cache, which would be used to bound the search space, is typically much larger than the size of an L1 cache.

This difficulty highlights the advantage of our approach of using model-driven optimization together with a

small amount of search - we can tackle multi-level memory hierarchies without increasing installation time

significantly.

4.2 Local search

In this section, we describe how local search can be used to improve the NB, MU , NU , and Ls optimization

parameters chosen by the model.
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4.2.1 Local Search for NB

If NBM
is the value of NB estimated by the model, we can refine this value by local search in the interval

[NBM
− lcm(MU , NU ), NBM

+ lcm(MU , NU )]. This ensures that we examine the first values of NB in the

neighborhood of NBM
that are divisible by both MU and NU .

4.2.2 Local Search for MU , NU , and Ls

Unlike sensitivity graphs for NB, sensitivity graphs for MU and NU tend to be convex in the neighborhood

of model-predicted values. This is probably because register allocation is under compiler control, and there

are no conflict misses. Therefore, we use a simple hill-climbing search strategy to improve these parameters.

We start with the model predicted values for MU , NU , and Ls and determine if performance improves

by changing each of them by +1 and −1. We continue following the path of increasing performance until we

stop at a local maximum. On platforms on which there is a Fused-Multiply-Add instruction (FMA = 1),

the optimization parameter Ls has no effect on the generated code and in that case we only consider MU

and NU for the hill-climbing local search.

5 Experimental Results

We evaluated the following six approaches on a large number of modern plarforms, including DEC Alpha

21264, IBM Power 3/4, SGI R12000, SUN UltraSPARC IIIi, Intel Pentium III/4, Intel Itanium 2, AMD

Athlon MP, and AMD Opteron 240. We used ATLAS v.3.6.0, which is the latest stable version of ATLAS

as of this writing.

1. Model: This approach uses the model of Yotov et al [19] as described in Section 3.

2. Refined Model: This approach uses the refined model for (MU , NU ) described in Section 4.1.1.

3. Local search: This approach uses local search as described in Section 4.2, in the neighborhood of

parameter values determined by Refined Model.

4. Multi-level Local Search: This approach is the same as Local Search, but it considers tiling for lower

levels of the memory hierarchy as described in Section 4.1.2.

5. Global Search: This is the ATLAS search strategy.

6. Unleashed: This is the full ATLAS distribution that includes user-contributed code, installed with

accepting all defaults that the ATLAS team have provided. As such, it usually performs optimizations
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which are not exposed through the ATLAS’ Code Generator and therefore it is normally not directly

comparable to our results.

For lack of space, we present results only for the machines discussed earlier in this paper.

5.1 AMD Opteron 240

Table 5 shows the values of the optimization parameters for Model, Refined Model, Local Search, Multi-Level

(ML) Local Search, Global Search, and Unleashed, along with the corresponding performance numbers for

mini-MMM.

NB MU , NU , KU Ls FMA FF , IF , NF MFLOPS
Model 88 2, 1, 88 2 0 0, 2, 2 1189
Refined Model 88 6, 1, 88 1 1 0, 2, 2 2050
Local Search 88 6, 1, 88 1 1 0, 2, 2 2050
ML Local Search 88 6, 1, 88 1 1 0, 2, 2 2050
Global Search 60 6, 1, 60 6 1 0, 6, 1 2072
Unleashed 56 2608

Table 5: Optimization Paramameters for AMD Opteron 240

Table 6 shows the times taken by our micro-benchmarks and by the ATLAS micro-benchmarks for

determining machine and optimization parameters.

Parameters Total
Machine Optimization (sec)

Model 101 2 103
Refined Model 101 2 103
Local Search 101 31 132
ML Local Search 101 126 227
Global Search 148 375 523

Table 6: Timings for AMD Opteron 240

Figure 13 shows the MMM performance for all approaches. Local Search and Multi-Level Local Search

are not plotted on this platform, because as Table 5 suggests, their performance is virtually equivalent to

that of Refined Model. For native BLAS we used ACML 2.0.

The MMM performance achieved by Model + Local Search is only marginally worse than that of Global

Search, which according to our sensitivity analysis is due to a slightly suboptimal value of NB. Had we

extended the interval in which we do local NB search by a small amount, we would have achieved the same

performance.

In summary, the model refinement described in Section 4.1.1 to take into account the small number of

logical registers on this machine is sufficient to address performance problems with basic model of Yotov et

al [19].
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Figure 13: MMM Results for AMD Opteron 240

5.2 SUN UltraSPARC IIIi

Table 7 shows the values of the optimization parameters for Model, Refined Model, Local Search, Multi-Level

(ML) Local Search, Global Search, and Unleashed, along with the corresponding performance numbers for

mini-MMM.

NB MU , NU , KU Ls FMA FF , IF , NF MFLOPS
Model 84 4, 4, 84 4 0 0, 2, 2 1120
Refined Model 84 4, 4, 84 4 0 0, 2, 2 1120
Local Search 84 4, 4, 84 4 0 0, 2, 2 1120
ML Local Search 208 4, 4, 16 4 0 0, 2, 2 1308
Global Search 44 4, 3, 44 5 0 0, 3, 2 986
Unleashed 168 1694

Table 7: Optimization Paramameters for SUN UltraSPARC IIIi

Table 8 shows the times taken by our micro-benchmarks and by the ATLAS micro-benchmarks for

determining machine and optimization parameters.

Parameters Total
Machine Optimization (sec)

Model 112 7 119
Refined Model 112 7 119
Local Search 112 127 239
ML Local Search 112 496 608
Global Search 203 1233 1436

Table 8: Timings for SUN UltraSPARC IIIi

Figure 14 shows the MMM performance for all approaches. Refined Model and Local Search are not

plotted on this platform, because as Table 7 suggests, their performance is virtually equivalent to that of

Model. We used the native BLAS library included in Sun One Studio 9.0.

Model performs marginally better than Global Search because the ATLAS micro-benchmarks estimated

that the L1 data cache size is 16KB, rather than 64 KB. This overly restricted the NB interval examined by

Global Search, leading to poor performance. Multi-Level Local Search performs better than Local Search

because it finds that it is better to tile for the L2 cache rather than for the L1.
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Figure 14: MMM Results for SUN UltraSPARC IIIi

5.3 Intel Itanium 2

The description of this platform was presented in Table 4.

Table 9 shows the values of the optimization parameters for Model, Refined Model, Local Search, Multi-

Level (ML) Local Search, Global Search, and Unleashed, along with the corresponding performance numbers

for mini-MMM.

NB MU , NU , KU Ls FMA FF , IF , NF MFLOPS
Model 30 10, 10, 4 1 1 0, 2, 2 3130
Refined Model 30 10, 10, 4 1 1 0, 2, 2 3130
Local Search 30 10, 10, 4 1 1 0, 2, 2 3130
ML Local Search 360 10, 10, 4 1 1 0, 2, 2 4602
Global Search 80 10, 10, 4 4 1 0, 19, 1 4027
Unleashed 120 4890

Table 9: Optimization Paramameters for Intel Itanium 2

Table 10 shows the times taken by our micro-benchmarks and by the ATLAS micro-benchmarks for

determining machine and optimization parameters.

Parameters Total
Machine Optimization (sec)

Model 143 6 149
Refined Model 143 6 149
Local Search 143 162 305
ML Local Search 143 278 421
Global Search 1554 29667 31221

Table 10: Timings for Intel Itanium 2

Figure 15 shows the MMM performance for all these approaches. Refined Model and Local Search are

not plotted on this platform, because their performance is virtually equivalent to that of Model. Native

BLAS used is MKL 6.1.

Model does not perform well because it tiles for the L1 data cache. For the Itanium, ATLAS used the

size of the L2 cache (256KB) to restrict NB, effectively selecting the maximum value in the search range

(NB = 80). Nevertheless this tile size is not optimal either. The Multi-level model determined that tiling

for the 3 MB L3 cache is optimal, and chooses a value of NB = 362. This is refined to NB = 360 by local
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Figure 15: MMM Results for Intel Itanium 2

search. This improves performance compared to both Model and Global Search.

5.4 SGI R12000

Feature Value
CPU Core Frequency 270 MHz
L1 Data Cache 32 KB, 32 B/line, 2-way
L1 Instruction Cache 32 KB, 32 B/line, 2-way
L2 Unified Cache 4 MB, 32 B/line, 1-way
Floating-Point Registers 32
Floating-Point Functional Units 2
Floating-Point Multiply Latency 2
Has Fused Multiply Add No
Operating System IRIX64
C Compiler SGI MIPSPro C 7.3.1.1m
Fortran Compiler SGI MIPSPro FORTRAN 7.3.1.1m

Table 11: SGI R12000 Specifications

Table 11 shows the specifications of the SGI R12000 machine we used in our experiments.

Table 12 shows the values of the optimization parameters for Model, Refined Model, Local Search, Multi-

Level (ML) Local Search, Global Search, and Unleashed, along with the corresponding performance numbers

for mini-MMM.

NB MU , NU , KU Ls FMA FF , IF , NF MFLOPS
Model 58 5, 4, 58 1 1 0, 2, 2 440
Refined Model 58 5, 4, 58 1 1 0, 2, 2 440
Local Search 58 5, 4, 58 1 1 0, 2, 2 440
ML Local Search 418 5, 4, 16 1 1 0, 2, 2 508
Global Search 64 4, 5, 64 1 0 1, 8, 1 457
Unleashed 64 463

Table 12: Optimization Paramameters for SGI R12000

Table 13 shows the times taken by our micro-benchmarks and by the ATLAS micro-benchmarks for

determining machine and optimization parameters.

Figure 16 shows the MMM performance on the SGI R12K. Refined Model and Local Search are not

plotted on this platform, because as Table 12 suggests, their performance is virtually equivalent to that of

Model. For native BLAS we used SGI SCSL v.1.4.1.3.
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Parameters Total
Machine Optimization (sec)

Model 118 13 131
Refined Model 118 13 131
Local Search 118 457 575
ML Local Search 118 496 608
Global Search 251 2131 2382

Table 13: Timings for SGI R12000
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Figure 16: MMM Results for SGI R12000

The most interesting fact on this platform is that Multi-Level Local Search successfully finds that it is

worth tiling for the L2 cache. By doing this, it achieves better performance than even the native BLAS. Global

Search achieves slightly better performance than Model due to the minor differences in several optimization

parameters. Unleashed does fine for relatively small matrices but for large ones performs worse than Model

and Global Search. Although not entirely visible from the plot, on this platform, the native compiler (SGI

MIPSPro) does a relatively good job.

6 Conclusions and Future Work

The compiler community has invested considerable effort in inventing program optimization strategies which

can produce high-quality code from high-level programs, and which can scale to large programs and complex

architectures. In spite of this, current compilers produce very poor code even for a simple kernel like matrix

multiplication. To make progress in this area, we believe it is necessary to perform detailed case studies.

This paper reports the results of one such case study. Previously, Yotov et al [19] have shown that model-

driven optimization can produce BLAS codes with performance within 10-20% of that of code produced

by empirical optimization. We have shown that this remaining performance gap can be eliminated by a

combination of model refinement and local search, without increasing search time substantially. The model

refinement (i) corrects the instruction scheduling strategy for machines on which there are relatively few

logical registers, and (ii) opens up the possibility of tiling for lower levels of the memory hierarchy. On some

machines, this gave better performance than both ATLAS Global Search and the native BLAS.
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We believe that this combination of model refinement and local search is promising, and it is the corner-

stone of a system we are building for generating dense numerical linear algebra libraries that are optimized

for many levels of the memory hierarchy, a problem for which global search is not tractable. We also believe

that this approach is the most promising one for incorporation into general-purpose compilers.
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